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Abstract. This paper considers residual-based and randomly weighted kernel estimators for in-

novation densities of nonlinear autoregressive models. The weights are chosen to make use of the

information that the innovations have mean zero. Rates of convergence are obtained in weighted

L1-norms. These estimators give rise to smoothed and weighted empirical distribution functions

and moments. It is shown that the latter are efficient if an efficient estimator for the autoregression

parameter is used to construct the residuals.

AMS 2000 subject classifications. Primary 62G07, 62G20, 62M05, 62M10.

Key words and Phrases. Weighted residual-based density estimator, empirical likelihood estimator,

Owen estimator, plug-in estimator, efficient estimator.

1. Introduction

Consider a nonlinear autoregressive model Xi = rϑ(Xi−1) + εi of order p, where Xi−1 =
(Xi−p, . . . , Xi−1) and ϑ is a q-dimensional parameter. Assume that the innovations εi are inde-
pendent and identically distributed (i.i.d.) and have mean zero, finite variance and positive density
f . We are interested in estimating f and study weighted kernel estimators based on estimated
innovations ε̂i = Xi − rϑ̂(Xi−1),

ˆ̂
fw(y) =

1
n

n∑
i=1

ŵikbn(y − ε̂i),

where kbn(y) = k(y/bn)/bn for an appropriate kernel k and bandwidth bn, and ŵi are nonnegative
random weights that average to one. The ordinary kernel estimator uses weights ŵi = 1. Residual-
based density estimators in time series are studied in Robinson (1986, 1987) and Liebscher (1999).
Since the innovations have mean zero, we take weights for which our kernel estimator also has mean
zero, i.e.,

∫
y

ˆ̂
fw(y) dy = 0. Motivated by Owen (1988, 2001), we take ŵi of the form

(1.1) ŵi =
1

1 + λ̂ε̂i
,

where λ̂ is chosen such that
∑n

i=1 ŵiε̂i = 0. Our density estimator can be written as ˆ̂
fw(y) =∫

kbn(y − u) d ˆ̂
Fw(u), where ˆ̂

Fw(t) = 1
n

∑n
i=1 ŵi1[ε̂i ≤ t] is Owen’s empirical likelihood estimator

of the distribution function F , here based on the residuals ε̂i. In the literature, weighted kernel
1
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density estimators have been studied for i.i.d. observations, e.g., for the actual innovations; see
Chen (1997), Zhang (1998), and Hall and Presnell (1999).

We study the behavior of our density estimators in the V -norm

‖g‖V =
∫
V (y)|g(y)| dy

for a measurable function V ≥ 1. The choice V = 1 yields the usual L1-norm. Convergence in this
norm suffices when estimating the innovation distribution function. The choice V (y) = (1 + |y|)γ

for some γ > 0 is useful when estimating moments of the innovation distribution.
We first derive, in Section 2, convergence rates for weighted kernel estimators based on i.i.d.

observations. These results will be used in Section 3 to establish our main result, convergence rates
of residual-based weighted kernel estimators. In the V -norm, the difference between the weighted
residual-based kernel estimator and the (unweighted) kernel estimator based on the actual innova-
tions is of order n−1/2, which is faster than the convergence rate of kernel estimators. Nevertheless,
if kernel estimators are plugged into smooth functionals of the density, the resulting plug-in estima-
tors have rate n−1/2. Moreover, using the above weights leads to an asymptotic variance reduction,
and even to efficient estimators if efficient estimators of the autoregression parameter are used.
This will be illustrated in the last two sections. In Sections 4 and 5 we use ˆ̂

fw to construct es-
timators

∫ t
−∞

ˆ̂
fw(y) dy and

∫
ym ˆ̂
fw(y) dy for the distribution function F (t) and the m-th moment

of the innovations. These estimators will be n1/2-consistent if ϑ̂ is, and will be efficient if ϑ̂ is. In
these sections we also demonstrate in some special cases that these weighted linear functionals have
significantly smaller asymptotic variance than their unweighted counterparts. Müller, Schick and
Wefelmeyer (2003) use the results of Section 3 to obtain n−1/2-consistent and efficient estimators
for conditional expectations.

2. Weighted kernel estimators based on i.i.d. observations

Let ε1, . . . , εn be i.i.d. observations with mean zero, finite variance σ2 and density f . We write
f̂ for the usual kernel density estimator and f̂w for the weighted kernel estimator:

f̂(y) =
1
n

n∑
i=1

kbn(y − εi) and f̂w(y) =
1
n

n∑
i=1

wikbn(y − εi).

We restrict attention to weights wi of the form

wi =
1

1 + λεi
,

where λ is chosen such that
∑n

i=1wiεi = 0. As shown by Owen (2001), such a λ exists with
probability tending to one. Our density estimator can be written as f̂w(y) =

∫
kbn(y − u) dF̂w(u),

where F̂w(t) = 1
n

∑n
i=1wi1[εi ≤ t] is Owen’s empirical likelihood estimator of F (t).
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Let V ≥ 1 be a measurable function. We assume throughout that V is f -square integrable.
We study the behavior of kernel density estimators in the V -norm. For this we require additional
assumptions on V .

Condition V1. The function D defined by

D(s) = sup
|t|≤|s|

sup
y∈R

|V (y + t)− V (y)|
V (y)

, s ∈ R,

is continuous at 0, i.e., D(s) → 0 as s→ 0.

Condition V2. There is an α > 1 such that, with W (y) = (1 + |y|)αV 2(y),

‖f‖W =
∫
W (y)f(y) dy <∞.

These two conditions are met with α = 2 by V (x) = 1 as we have assumed f to have finite
variance. We are also interested in the choice V (x) = (1 + |x|)γ for γ > 0. One verifies that this
function satisfies Condition V1 with D(s) ≤ |s|γ for 0 < γ < 1 and with D(s) ≤ |s|γ(1 + |s|)γ−1

for γ ≥ 1. Condition V2 holds provided
∫
|y|2γ+αf(y) dy is finite for some α > 1. For γ < 1/2, this

integral is finite for α < 2(1− γ) as f has finite variance.
Throughout we impose the following conditions on the bandwidth and the kernel.

Condition K. The bandwidth bn satisfies bn → 0 and nbn → ∞. The kernel k is a bounded
measurable function,

(2.1)
∫
k(u) du = 1,

∫
uk(u) du = 0,

and, for some β > 3,

(2.2)
∫

(1 + |u|)β(1 +D(u))2|k(u)| du <∞.

The requirements on k are met by a symmetric bounded density with compact support contained
in {D < ∞}, but Condition K allows for kernels of higher order and does not require a compact
support if D(s) is finite for all s ∈ R. For the choice V (x) = (1 + |x|)γ for some γ > 0, (2.2) is
implied by

∫
(1 + |u|)2γ1+β|k(u)| du <∞ with γ1 = max{1, γ}.

It follows from Condition V1 that

(2.3) V (y + s) ≤ (1 +D(s))V (y), s, y ∈ R.

Since ‖f̂‖V ≤ 1
n

∑n
i=1

∫
V (y)|kbn(y − εi)| dy = 1

n

∑n
i=1

∫
V (εi + bnu)|k(u)| du, we obtain from (2.3)

that

(2.4) ‖f̂‖V ≤ ‖k‖1+D
1
n

n∑
i=1

V (εi), bn ≤ 1.
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Note that ‖k‖1+D is finite under (2.2). The expected value of f̂(y) is

f ∗ kbn(y) =
∫
f(y − bnu)k(u) du.

Since
∫
V (y)|f ∗ kbn(y)| dy ≤

∫∫
V (y + bnu)f(y)|k(u)| du dy, we derive from (2.3) that

(2.5) ‖f ∗ kbn‖V ≤ ‖k‖1+D‖f‖V , bn ≤ 1.

The following lemma shows that ‖f ∗ kbn − f‖V → 0.

Lemma 2.1. Suppose Condition V1 holds. Then, for every (measurable) function g with finite
V -norm, and for every (measurable) function h with finite (1 +D)-norm we have

(2.6)
∫
V (y)

∫
|g(y − bu)− g(y)||h(u)| du dy → 0 as b→ 0.

Proof. Since g has finite V -norm, the product V g of V and g is integrable. Thus the map
s→

∫
|(V g)(y− s)− (V g)(y)| dy is bounded by 2‖g‖V and continuous in view of the L1-continuity

of translation, see Rudin (1974, Theorem 9.5). It now follows from the Lebesgue dominated con-
vergence theorem that

I1(b) =
∫∫

|(V g)(y − bu)− (V g)(y)| dy |h(u)| du→ 0 as b→ 0.

By Condition V1, for each u ∈ R we have D(bu) ≤ D(u) for |b| ≤ 1 and D(bu) → 0 as b → 0.
Hence the substitution v = y−bu, inequality (2.3), and again the Lebesgue dominated convergence
theorem give that

I2(b) =
∫∫

|V (y)− V (y − bu)||g(y − bu)| dy |h(u)| du ≤ ‖g‖V

∫
D(bu)|h(u)| du→ 0 as b→ 0.

Since the left-hand side of (2.6) is bounded by I1(b) + I2(b), the desired result follows. �

We say a function g is V -Lipschitz if there is a positive constant L such that

‖g(· − s)− g‖V =
∫
V (y)|g(y − s)− g(y)| dy ≤ L(1 +D(s))|s|, s ∈ R.

If f is V -Lipschitz and
∫

(1 +D(s))|sk(s)| ds is finite, then

‖f ∗ kbn − f‖V = O(bn).

A slightly stronger result is possible if f is V -smooth. We say a function g is V -smooth if g is
absolutely continuous and its almost everywhere derivative g′ has finite V -norm. It is easy to check
that a V -smooth function is V -Lipschitz.

Lemma 2.2. Suppose Conditions K and V1 hold. If f is V -smooth, then

‖f ∗ kbn − f‖V = o(bn).

If, in addition, f ′ is V -Lipschitz, then

‖f ∗ kbn − f‖V = O(b2n).
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Proof. Since f is absolutely continuous, we have

f(y − s)− f(y) = −sf ′(y)− s

∫ 1

0
(f ′(y − ts)− f ′(y)) dt.

This and (2.1) give

f ∗ kbn(y)− f(y) = −bn
∫ 1

0

∫
(f ′(y − tbnu)− f ′(y))uk(u) du dt.

It follows from (2.2) that
∫

(1 + D(s))|sk(s)| ds is finite. Now use the previous lemma and the
Lebesgue dominated convergence theorem to conclude that ‖f ∗ kbn − f‖V = o(bn). If f ′ is V -
Lipschitz, we get the faster rate O(b2n) using again (2.2). �

Even faster rates are possible if we require f to be V -smooth of higher order. We say a measurable
function g is V -smooth of order zero if ‖g‖V <∞ and define V -smoothness of order m for positive
integers m recursively: g is V -smooth of order m + 1 if g is absolutely continuous with an almost
sure derivative g′ that is V -smooth of order m. In particular, a V -smooth function is V -smooth of
order one. We say the kernel is of type m if m is a positive integer and∫

uik(u) du = 0, i = 1, . . . ,m, and
∫

(1 +D(u))(1 + |u|)m+1|k(u)| du <∞.

The following result is now immediate.

Lemma 2.3. Suppose Conditions K and V1 hold. Let f be V -smooth of order m for some m > 1,
and let k be of type m. Then

‖f ∗ kbn − f‖V = o(bmn ).

If, in addition, f (m) is V -Lipschitz, then

‖f ∗ kbn − f‖V = O(bm+1
n ).

It follows from (2.3) and simple calculations that

(2.7) W (y + s) ≤ Dα(s)W (y), s, y ∈ R,

with
Dα(s) = (1 + |s|)α(1 +D(s))2, s ∈ R.

From this we derive now inequalities analogous to (2.4) and (2.5),

(2.8) ‖f̂‖W ≤ ‖k‖Dα

1
n

n∑
i=1

W (εi), bn ≤ 1,

and

(2.9) ‖f ∗ kbn‖W ≤ ‖k‖Dα‖f‖W , bn ≤ 1.

Note that ‖k‖Dα is finite under (2.2) for α ≤ β.
The following result is known for the case V = 1; see Devroye (1992).
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Lemma 2.4. Suppose Conditions K, V1 and V2 hold. Then

‖f̂ − f ∗ kbn‖V = Op(n−1/2b−1/2
n ).

Proof. The Cauchy–Schwarz inequality yields that, for measurable g,

(2.10) ‖g‖2
V ≤ Cα‖g2‖W

with Cα =
∫

(1 + |y|)−α dy. We may assume that bn ≤ 1 and that α ≤ β. Since k is bounded, the
latter and (2.2) imply that ‖k2‖Dα is finite. We calculate

nE[‖(f̂ − f ∗ kbn)2‖W ] = ‖nE[(f̂ − f ∗ kbn)2]‖W ≤ ‖k2
bn
∗ f‖W ≤ b−1

n ‖k2‖Dα‖f‖W .

Thus, the above inequalities yield the bound E[‖f̂ − f ∗ kbn‖2
V ] = O(n−1b−1

n ) which implies the
desired result. �

If follows from Lemmas 2.1 and 2.4 that ‖f̂ − f‖V = op(1) for every V that satisfies Conditions
V1 and V2. Actually, a stronger result is possible.

Corollary 2.1. Suppose Conditions K, V1 and V2 hold. Let V∗(y) = (1 + |y|)V (y). Then

‖f̂ − f‖V∗ = op(1).

Proof. An application of the Cauchy–Schwarz inequality yields

‖f̂ − f‖2
V∗ ≤

∫
(1 + |y|)V 2(y)|f̂(y)− f(y)| dy

∫
(1 + |y|)|f̂(y)− f(y)| dy.

The first factor on the right-hand side is bounded by ‖f̂‖W + ‖f‖W , which is Op(1) in view of
(2.8) and Condition V2. Using the Cauchy–Schwarz inequality again we find that the square of the
second factor is bounded by∫

(1 + |y|)2(|f̂(y)|+ f(y)) dy
∫
|f̂(y)− f(y)| dy.

Since f and |k| have finite second moments,
∫

(1 + |y|)2(|f̂(y)| + f(y)) dy = Op(1). The desired
result now follows as ‖f̂ − f‖1 ≤ ‖f̂ − f‖V = op(1). �

Of course rates in the V -norm are also possible. Combining Lemmas 2.3 and 2.4, we obtain the
following result which gives rates analogous to those for pointwise estimation of densities.

Corollary 2.2. Suppose Conditions K, V1 and V2 hold. Let f be V -smooth of order m for some
non-negative integer m, and let f (m) be V -Lipschitz. Assume that k is of type m if m > 1. Let
bn ∼ n−1/(2m+3). Then ‖f̂ − f‖V = Op(n−(m+1)/(2m+3)).

Let us now look at the weighted density estimator f̂w. Owen (2001, pp. 219–221) has shown that
the λ appearing in the definition of the weights wi satisfies

(2.11) λ = σ−2 1
n

n∑
i=1

εi + op(n−1/2),



WEIGHTED RESIDUAL-BASED DENSITY ESTIMATORS 7

and that the weights wi are uniformly close to one:

(2.12) w∗ = max
1≤i≤n

|wi − 1| = op(1).

We use this to compare f̂w and f̂ .

Lemma 2.5. Suppose Conditions K, V1 and V2 hold. Then, with ψ(y) = yf(y),

‖f̂w − f̂ + λψ‖V = op(n−1/2).

Proof. Since wi − 1 = −λεiwi, we can write f̂w − f̂ = −λψ̂w, where

ψ̂w(y) =
1
n

n∑
i=1

wiεikbn(y − εi).

As n1/2λ = Op(1) by (2.11), it suffices to show that ‖ψ̂w − ψ‖V = op(1). Let ψ̂ be the version of
ψ̂w with wi = 1 for all i. We have

‖ψ̂w − ψ̂‖V ≤ w∗
1
n

n∑
i=1

|εi|
∫
V (y)|kbn(y − εi)| dy = w∗

1
n

n∑
i=1

|εi|
∫
V (εi + bnu)|k(u)| du.

Thus, in view of (2.3), (2.12), and E[|ε|V (ε)] <∞, we obtain ‖ψ̂w−ψ̂‖V = op(1). Let ψ̃(y) = yf̂(y).
It follows from Corollary 2.1 that ‖ψ̃ − ψ‖V ≤ ‖f̂ − f‖V∗ = op(1). Thus we are left to show that
‖ψ̂ − ψ̃‖V = op(1).

It is easy to check that h̃(y) = (ψ̂(y) − ψ̃(y))/bn = 1
n

∑n
i=1 k̃bn(y − εi) with k̃(y) = −yk(y)

and k̃bn = k̃(y/bn)/bn. Repeating the arguments of Lemma 2.4 with k replaced by k̃ and with
α ≤ β − 2 to guarantee the finiteness of ‖k̃2‖Dα , we obtain that ‖h̃− f ∗ k̃bn‖V = Op(n−1/2b

−1/2
n ).

It follows from (2.3) that ‖f ∗ k̃bn‖V ≤ ‖f‖V ‖k̃‖1+D <∞. Combining the above yields the desired
‖ψ̂ − ψ̃‖V = op(1). �

3. Residual-based weighted kernel estimators

Now consider observations X1−p, . . . , Xn from a stationary and ergodic nonlinear autoregressive
process of order p,

Xi = rϑ(Xi−1) + εi,

with Xi−1 = (Xi−p, . . . , Xi−1) and ϑ a q-dimensional parameter. Assume that the innovations
ε1, . . . , εn are i.i.d. with mean zero, finite variance σ2, and density f , and are independent of
X0. Write (ε,X) for random variables distributed as (εi,Xi−1). Then ε and X are independent.
Denote the distribution functions of ε and X by F and G. We make the following assumptions on
the autoregression function.

Condition R. The function τ 7→ rτ (x) is differentiable for all x with gradient τ 7→ ṙτ (x). For each
constant C,

(3.1) sup
|τ−ϑ|≤Cn−1/2

n∑
i=1

(
rτ (Xi−1)− rϑ(Xi−1)− ṙϑ(Xi−1)>(τ − ϑ)

)2
= op(1).
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Moreover, E[|ṙϑ(X)|5/2] <∞ and the matrix E[ṙϑ(X)ṙϑ(X)>] =
∫
ṙϑṙ

>
ϑ dG is positive definite.

Example 3.1. Consider the classical autoregressive model Xt = ϑXt−1 + εt of order one with
|ϑ| < 1. Here p = q = 1 and rϑ(x) = x. Thus ṙϑ(x) = x and the left-hand side of (3.1) equals zero.
The moment condition E[|ṙϑ(X)|5/2] = E[|X0|5/2] <∞ follows from

(3.2)
∫
|y|5/2f(y) dy <∞.

Of course, E[X2
0 ] > 0. This shows that the autoregressive process of order one satisfies Condition

R if (3.2) holds. The same can be shown for higher order autoregressive models.

Example 3.2. Condition R holds for self-exciting threshold autoregressive models with known
thresholds. Let us look at the simplest such model, namely the SETAR(2,1,1) model

Xt = ϑ1Xt−1I[Xt−1 ≤ 0] + ϑ2Xt−1I[Xt−1 > 0] + εt,

with ϑ1 < 1, ϑ2 < 1 and ϑ1ϑ2 < 1. The conditions on the parameter yield ergodicity of the model,
see Petrucelli and Woolford (1984). Here p = 1, q = 2, rϑ(x) = ϑ1xI[x ≤ 0] + ϑ2xI[x > 0],
ṙϑ(x)> = (xI[x ≤ 0], xI[x > 0]), and the left-hand side of (3.1) equals zero. The moment condition
is equivalent to E[|X0|5/2] <∞ and is implied by (3.2). It is easy to check that the matrix

∫
ṙϑṙ

>
ϑ dG

is diagonal with positive diagonal entries. This shows that Condition R is satisfied if (3.2) holds.

Example 3.3. Now look at the EXPAR(1) modelXt = [ϑ1+ϑ2 exp(−ϑ3X
2
t−1)]Xt−1+εt with |ϑ1| <

1 and ϑ3 > 0. Chan and Tong (1985) have shown that this model is geometrically ergodic. Here
p = 1, q = 3, rϑ(x) = [ϑ1 + ϑ2 exp(−ϑ3x

2)]x and ṙϑ(x)> = (x, x exp(−ϑ3x
2),−ϑ2x

3 exp(−ϑ3x
2)).

It is easy to see that this gradient satisfies a Lipschitz condition: There are positive H and δ such
that |ṙτ (x) − ṙϑ(x)| ≤ H|τ − ϑ| for all x ∈ R and all |τ − ϑ| < δ. From this we immediately
derive that the left-hand side of (3.1) is Op(n−1). The moment condition E[ṙϑ(X)|5/2] <∞ follows
from E[|X0|5/2] which in turn is implied by (3.2). The matrix

∫
ṙϑṙ

>
ϑ dG is positive definite unless

ϑ2 = 0. Thus the EXPAR(1) model satisfies Condition R if ϑ2 6= 0 and (3.2) holds.

Remark 3.1. In the previous examples we have actually verified that (3.1) holds with op(1)
replaced by 0 or by Op(n−1). These faster rates are consequences of the smoothness of the functions
τ 7→ ṙτ (x). Indeed, suppose these functions satisfy a Hölder condition at ϑ with exponent ζ > 0 in
the following sense: There is a δ > 0 and an A ∈ L2(G) such that

|ṙτ (x)− ṙϑ(x)| ≤ |τ − ϑ|ζA(x), x ∈ Rp, |τ − ϑ| < δ.

Then (3.1) holds with op(1) replaced by Op(n−ζ).

We do not know the innovations and estimate them by the residuals

ε̂i = Xi − rϑ̂(Xi−1), i = 1, . . . , n,
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where ϑ̂ is a n1/2-consistent estimator of ϑ. These residuals are uniformly close to the actual
innovations:

(3.3) max
1≤i≤n

|ε̂i − εi| = op(1).

To see this, introduce

ε∗i = εi − ṙϑ(Xi−1)>(ϑ̂− ϑ).

It follows from Condition R and the n1/2-consistency of ϑ̂ that

(3.4)
n∑

i=1

(ε̂i − ε∗i )
2 = op(1),

and hence

(3.5) ζ1 = max
1≤i≤n

|ε̂i − ε∗i | = op(1).

It follows from stationarity and finiteness of E[|ṙϑ(X)|5/2], that

(3.6) ζ2 = max
1≤i≤n

|ε∗i − εi| = |ϑ̂− ϑ| max
1≤i≤n

|ṙϑ(Xi−1)| = op(n−1/10).

Relations (3.5) and (3.6) imply (3.3).
The kernel estimators based on ε̂i and ε∗i are defined by

ˆ̂
f(y) =

1
n

n∑
i=1

kbn(y − ε̂i) and f̂∗(y) =
1
n

n∑
i=1

kbn(y − ε∗i ).

The next lemma compares these two in the V -norm.

Lemma 3.1. Suppose Conditions K, R and V1 hold, and k is continuously differentiable with
‖k′‖1+D finite. Then

‖ ˆ̂
f − f̂∗‖2

V = Op

(
n−1b−2

n

n∑
i=1

(ε̂i − ε∗i )
2
)

= op(n−1b−2
n ).

Proof. We may assume that bn ≤ 1. We begin with the following observation. For a non-negative
(measurable) function g and random variables ξ1, . . . , ξn, one has the inequalities

(3.7)
∫
V (y)

1
bn
g
(y − z − ξi

bn

)
dy ≤

(
1 +D

(
max
1≤i≤n

|ξi|
))
‖g‖1+DV (z), i = 1, . . . , n.
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To see this, make the substitution y = z + ξi + bnu and then use (2.3) twice. In view of (3.7) we
have

‖ ˆ̂
f − f̂∗‖V ≤ 1

n

n∑
i=1

∫
V (y)

∣∣kbn(y − ε̂i)− kbn(y − ε∗i )
∣∣ dy

≤ 1
n

n∑
i=1

|ε̂i − ε∗i |
∫
V (y)

∫ 1

0

∣∣k′bn
(y − ε∗i − s(ε̂i − ε∗i ))

∣∣ ds dy
≤ (1 +D(ζ1 + ζ2))‖k′‖1+D

1
nbn

n∑
i=1

|ε̂i − ε∗i |V (εi).

Since D(ζ1 + ζ2) = op(1) by Condition V1, (3.5) and (3.6), and since V is assumed to be in L2(F ),
an application of the Cauchy–Schwarz inequality gives the desired result. �

Next we compare f̂∗ and f̂ . We do so under the following additional assumption on the kernel
k.

Condition S. The kernel k is twice continuously differentiable with k′ and k′′ having finite (1+D)-
norms and (k′)2 and (k′′)2 having finite Dα-norms.

Recall that q denotes the dimension of the parameter ϑ. Set

γ̂(y) =
1
n

n∑
i=1

k′bn
(y − εi)ṙϑ(Xi−1), y ∈ R.

Lemma 3.2. Suppose Conditions K, R, S, V1 and V2 hold and f is V -smooth. Let 0 ≤ ξ ≤ 1/2
and φ = (20q − 10ξq + 50− 20ξ)/(14 + 5q). Suppose that nbφn →∞. Then

‖f̂∗ − f̂ − (ϑ̂− ϑ)>γ̂‖V = op(n−1/2b−ξ
n ).

Proof. We may assume that bn ≤ 1. It is easy to check that φ increases with q. Thus φ ≥
(70 − 30ξ)/19 ≥ 55/19 > 2. Consequently, nbφn → ∞ implies nb2n → ∞. Set rni = n−1/2ṙϑ(Xi−1).
To stress the dependence on ∆̂ = n1/2(ϑ̂ − ϑ), we express f̂∗(y) − f̂(y) − (ϑ̂ − ϑ)>γ̂(y) as R∆̂(y),
where

R∆(y) =
1
n

n∑
i=1

[
kbn(y − εi + ∆>rni)− kbn(y − εi)−∆>rnik

′
bn

(y − εi)
]
.

In view of the n1/2-consistency of ϑ̂, it suffices to show that, for each (large) constant C,

(3.8) sup
|∆|≤C

‖R∆‖V = op(n−1/2b−ξ
n ).
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Fix now such a C. A Taylor expansion shows that

R∆(y) =
1
n

n∑
i=1

∆>rni

∫ 1

0

(
k′bn

(
y − εi + v∆>rni

)
− k′bn

(y − εi)
)
dv

=
1
n

n∑
i=1

(∆>rni)2
∫ 1

0

∫ v

0
k′′bn

(
y − εi + u∆>rni

)
du dv

and that

R∆+∆̃(y)−R∆(y) =
1
n

n∑
i=1

∆̃>rni

∫ 1

0

(
k′bn

(
y − εi + (∆ + v∆̃)>rni

)
− k′bn

(y − εi)
)
dv

=
1
n

n∑
i=1

∆̃>rni

∫ 1

0
(∆ + v∆̃)>rni

∫ v

0

(
k′′bn

(
y − εi + u(∆ + v∆̃)>rni

)
du dv.

Let an be a sequence of positive numbers such that C ≥ an → 0. It follows from (3.7) that

sup
|∆|≤C

sup
|∆̃|≤an

‖R∆+∆̃ −R∆‖V ≤ 2anC
(
1 +D

(
2C max

1≤i≤n
|rni|

))
b−2
n ‖k′′‖1+D

1
n

n∑
i=1

|rni|2V (εi).

Since max1≤i≤n |rni| = op(n−1/10) and E[|rni|2V (εi)] = n−1E[ṙϑ(X)|2]‖f‖V , we see that

(3.9) sup
|∆|≤C

sup
|∆̃|≤an

‖R∆+∆̃ −R∆‖V = Op(ann
−1b−2

n ).

Let now R∗∆(y) be defined as R∆(y), but with rni replaced by r∗ni = rni1[|rni| ≤ n−1/10]. Then
R∗∆(y) and R∆(y) can differ only on the event {max1≤i≤n |rni| > n−1/10} which has probability
tending to zero. This shows that

(3.10) sup
|∆|≤C

‖R∗∆ −R∆‖V = op(n−1/2b−ξ
n ).

Now set

R̄∗∆(y) =
1
n

n∑
i=1

(∆>r∗ni)
2

∫ 1

0

∫ v

0

∫
k′′bn

(
y − z + u∆>r∗ni

)
f(z) dz du dv.

It is easy to check that
∫
k′′bn

(y−z)f(z) dz =
∫
k′bn

(y−z)f ′(z) dz. Using this and then the inequality
(3.7) we obtain

‖R̄∗∆‖V ≤ 1
n

n∑
i=1

(
∆>r∗ni

)2
b−1
n

(
1 +D(|∆|n−1/10)

)
‖k′‖1+D‖f ′‖V .

Since ‖f ′‖V <∞ and nb2n →∞, we obtain that

(3.11) sup
|∆|≤C

‖R̄∗∆‖V = Op(n−1b−1
n ) = op(n−1/2b−ξ

n ).

Next,

E[‖(R∗∆ − R̄∗∆)2‖W ] ≤
∫ 1

0

∫ v

0

∫
W (y)E[Γ2

∆(y, u)] dy du dv,
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with

Γ∆(y, u) =
1
n

n∑
i=1

(∆>r∗ni)
2
(
k′′bn

(
y − εi + u∆>r∗ni

)
−

∫
k′′bn

(
y − z + u∆>r∗ni

)
f(z) dz

)
a martingale. Since

E[Γ2
∆(y, u)] ≤ n−3|∆|4E[|ṙϑ(X)|41[|ṙϑ(X)| ≤ n2/5](k′′bn

(y − ε+ u∆>n−1/2ṙϑ(X)))2],

we obtain from (3.7) with W in place of V that

sup
|∆|≤C

E[‖(R∗∆ − R̄∗∆)2‖W ] ≤ Dα(Cn−1/10)C4n−3+3/5b−5
n E[|ṙϑ(X)|5/2]‖f‖W ‖(k′′)2‖Dα .

In view of (2.10) we then have, for every finite subset Dn of {∆ ∈ Rq : |∆| ≤ C} with Mn elements,

P
(

max
∆∈Dn

n1/2bξn‖R∗∆ − R̄∗∆‖V > η
)
≤

∑
∆∈Dn

P (n1/2bξn‖R∗∆ − R̄∗∆‖V > η)

≤
∑

∆∈Dn

P (nb2ξ
n Cα‖(R∗∆ − R̄∗∆)2‖W > η2)

≤
∑

∆∈Dn

nb2ξ
n Cα

η2
E[‖(R∗∆ − R̄∗∆)2‖W ], η > 0.

This shows that, for every η > 0 and every finite subset Dn as above,

(3.12) P
(

max
∆∈Dn

n1/2bξn‖R∗∆ − R̄∗∆‖V > η
)

= O(Mnn
−7/5b−5+2ξ

n ).

Now take Dn to be such that the balls of radius an centered at elements of Dn cover the ball
{∆ : |∆| ≤ C}. We can choose Dn such that Mn = O(a−q

n ). Thus, if aq
nn7/5b5−2ξ

n → ∞ and
a−1

n n1/2b2−ξ
n → ∞, then we obtain from (3.9)–(3.12) the desired (3.8). But if we take an =

b
(3−4ξ)/(14+5q)
n , then aq

nn7/5b5−2ξ
n = (nbφn)7/5 →∞ and a−1

n n1/2b2−ξ
n = (nbφn)1/2 →∞. �

Lemma 3.3. Suppose Conditions K, R, S, V1 and V2 hold and f is V -smooth. Then

‖γ̂ − f ′E[ṙϑ(X)]‖V = Op(n−1/2b−3/2
n ) + op(1).

Proof. Let f ′bn
= k′bn

∗ f = f ′ ∗ kbn and set γ̄(y) = 1
n

∑n
i=1 f

′
bn

(y)ṙϑ(Xi−1). It suffices to show

‖γ̂ − γ̄‖V = Op(n−1/2b−3/2
n ),(3.13)

‖γ̄ − f ′E[ṙϑ(X)]‖V = op(1).(3.14)

By Lemma 2.1, we have ‖f ′bn
− f ′‖V = ‖f ′ ∗ kbn − f ′‖V → 0. Relation (3.14) follows from this and

the ergodic theorem.
To prove (3.13) we may assume that bn ≤ 1. Since γ̂(y)− γ̄(y) is a martingale, we have

nb3nE[|γ̂(y)− γ̄(y)|2] ≤ b3nE[|ṙϑ(X)|2]
∫

(k′bn
(y − z))2f(z) dz

≤ E[|ṙϑ(X)|2]
∫
f(y − bnz)(k′(z))2 dz



WEIGHTED RESIDUAL-BASED DENSITY ESTIMATORS 13

and thus, in view of (2.7) and Condition V2,

nb3n

∫
W (y)E[|γ̂(y)− γ̄(y)|2] dy ≤ E[|ṙϑ(X)|2]‖(k′)2‖Dα‖f‖W .

Relation (3.13) follows from this and (2.10). �

Corollary 3.1. Suppose Conditions K, R, S, V1 and V2 hold and f is V -smooth. Let nbφ1
n →∞

with φ1 = (40 + 15q)/(14 + 5q). Then

‖f̂∗ − f̂‖V = op(n−1/2b−1/2
n ).

Proof. Note that φ1 equals φ of Lemma 3.2 with ξ = 1/2, and 55/19 ≤ φ1 < 3. Thus φ1 > 2, and
nbφ1

n →∞ implies that nb2n →∞. Consequently we obtain from Lemma 3.3 that ‖γ̂>(ϑ̂− ϑ)‖V =
Op(n−1b

−3/2
n ) +Op(n−1/2) = op(n−1/2b

−1/2
n ). This and Lemma 3.2 give the desired result. �

Corollary 3.2. Suppose Conditions K, R, S, V1 and V2 hold and f is V -smooth. Let nbφ0
n →∞

with φ0 = (50 + 20q)/(14 + 5q). Then

‖f̂∗ − f̂ − f ′E[ṙϑ(X)]>(ϑ̂− ϑ)‖V = op(n−1/2).

Proof. Note that φ0 equals φ of Lemma 3.2 with ξ = 0 and 70/19 ≤ φ0 < 4. Thus φ0 > 3 and
nbφ0

n →∞ implies nb3n →∞. Consequently we obtain from Lemma 3.3 that ‖γ̂ − f ′E[ṙϑ(X)]‖V =
op(1). This and Lemma 3.2 give the desired result. �

Lemmas 2.2, 2.4, 3.1 and Corollary 3.1 give the following convergence rate for the residual-based
density estimator ˆ̂

f in the V -norm.

Theorem 3.1. Suppose Conditions K, R, S, V1 and V2 hold and f is V -smooth. If nbφ1
n → ∞

with φ1 = (40 + 15q)/(14 + 5q), then

‖ ˆ̂
f − f‖2

V = Op(n−1b−1
n ) + o(b2n) +Op

(
n−1b−2

n

n∑
i=1

(ε̂i − ε∗i )
2
)

= op(n−1b−2
n + b2n).

Remark 3.2. Suppose the assumptions of Theorem 3.1 are met. Then ‖ ˆ̂
f−f‖V = op(1). Mimicking

the proof of Corollary 2.1 yields the stronger ‖ ˆ̂
f − f‖V∗ = op(1). If bn ∼ n−1/4, then we even have

‖ ˆ̂
f − f‖V = op(n−1/4). Better rates are available if we impose additional smoothness assumptions

on f or if we require (3.1) to hold with op(1) replaced by Op(n−1/3). In this latter case we have∑n
i=1(ε̂i − ε∗i )

2 = Op(n−1/3). Then ‖ ˆ̂
f − f‖V = Op(n−1/3) if bn ∼ n−1/3. A sufficient condition for

the strengthened version of (3.1) is a Hölder condition with exponent 1/3; see Remark 3.1.

If Condition R holds with op(1) replaced by Op(n−2/3), then
∑n

i=1(ε̂i − ε∗i )
2 = Op(n−2/3). Thus

Lemma 3.1 and Corollary 3.2 give the following result.
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Theorem 3.2. Suppose Conditions K, S, V1 and V2 hold, f is V -smooth, and Condition R holds
with op(1) replaced by Op(n−2/3). Let nbφ0

n →∞ with φ0 = (50 + 20q)/(14 + 5q), then

‖ ˆ̂
f − f̂ − f ′E[ṙϑ(X)]>(ϑ̂− ϑ)‖V = op(n−1/2).

Since f is assumed to have mean zero, it is more natural to choose an estimator that also has
this property. For this purpose we now consider a weighted kernel estimator

ˆ̂
fw(y) =

1
n

n∑
i=1

ŵikbn(y − ε̂i)

with positive weights ŵi = 1/(1 + λ̂ε̂i), where λ̂ is chosen such that
∑n

i=1 ŵiε̂i = 0. As shown by
Owen (1988, 2001) such a λ̂ exists on the event min1≤i≤n ε̂i < 0 < max1≤i≤n ε̂i. We choose λ̂ = 0
otherwise. The above event has probability tending to one by (3.3), and since the innovations are
centered. In view of (3.3) we have

S =
1
n

n∑
i=1

ε̂2i =
1
n

n∑
i=1

ε2i + op(1) = σ2 + op(1),(3.15)

Z∗ = max
1≤i≤n

|ε̂i| = max
1≤i≤n

|εi|+ op(1) = op(n1/2).(3.16)

Also, in view of (3.4) and the ergodic theorem,

1
n

n∑
i=1

ε̂i =
1
n

n∑
i=1

ε∗i + op(n−1/2) =
1
n

n∑
i=1

εi − E[ṙϑ(X)]>(ϑ̂− ϑ) + op(n−1/2) = Op(n−1/2).

We can then proceed as in Owen (2001, pp. 219–221), with his Xi − µ0 replaced by ε̂i, to conclude
that

(3.17) λ̂ = S−1 1
n

n∑
i=1

ε̂i + op(n−1/2)

and therefore

(3.18) λ̂ = σ−2
( 1
n

n∑
i=1

εi − E[ṙϑ(X)]>(ϑ̂− ϑ)
)

+ op(n−1/2).

It is now easy to see that

(3.19) ŵ∗ = max
1≤i≤n

|ŵi − 1| = op(1).

We are ready to compare ˆ̂
fw with ˆ̂

f in the V -norm.

Lemma 3.4. Suppose Conditions K, R, S, V1 and V2 hold and f is V -smooth. Let nbφ1
n → ∞

with φ1 = (40 + 15q)/(14 + 5q). Then, with ψ(y) = yf(y),

‖ ˆ̂
fw − ˆ̂

f + λ̂ ψ‖V = op(n−1/2).
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Proof. The proof is similar to that of Lemma 2.5. But now we use (3.18) and (3.19) instead of
(2.11) and (2.12). To prove the analogue of ‖ψ̂w − ψ̂‖V = op(1), we now use (3.7) and

1
n

n∑
i=1

|ε̂i|V (εi) ≤
( 1
n

n∑
i=1

ε̂2i
1
n

n∑
i=1

V 2(εi)
)1/2

= Op(1),

which follows from (3.15). We also have ‖ ˆ̂
f‖V = Op(1) and ‖ ˆ̂

f − f‖V∗ = op(1) by Theorem 3.1 and
Remark 3.2. �

Lemma 3.4, Theorem 3.2 and relation (3.18) give the following expansion for ˆ̂
fw.

Theorem 3.3. Suppose Conditions K, S, V1 and V2 hold, Condition R holds with op(1) replaced
by Op(n−2/3), and f is V -smooth. Let nb(50+20q)/(14+5q)

n →∞. Then, with ψ(y) = yf(y),∥∥∥ ˆ̂
fw − f̂ + σ−2ψ

1
n

n∑
i=1

εi − (σ−2ψ + f ′)E[ṙϑ(X)]>(ϑ̂− ϑ)
∥∥∥

V
= op(n−1/2).

A sufficient condition for the strengthened version of (3.1) is a Hölder condition with exponent
2/3, see Remark 3.1. If E[ṙϑ(X)] = 0, as is the case in the classical linear autoregressive model of
order p, we have the simpler conclusion∥∥∥ ˆ̂

fw − f̂ + σ−2ψ
1
n

n∑
i=1

εi

∥∥∥
V

= op(n−1/2).

4. A smoothed and weighted empirical distribution function

As a first application of the previous results, we consider estimation of the innovation distribution
function F . From now on we assume the following.

(A1) The kernel k is a symmetric twice continuously differentiable density with compact support.
(A2) The bandwidth bn satisfies nb4n → 0 and nb(50+20q)/(14+5q)

n →∞.
(A3) Condition R holds with op(1) replaced by Op(n−2/3).

Our estimator is the smoothed and weighted residual-based empirical distribution function

ˆ̂
Fsw(t) =

∫ t

−∞

ˆ̂
fw(u) du =

1
n

n∑
i=1

ŵiK
( t− ε̂i

bn

)
, t ∈ R,

where K is the distribution function of the kernel k. The smoothed empirical distribution function
(based on the actual innovations) is

F̂s(t) =
∫ t

−∞
f̂(u) du =

1
n

n∑
i=1

K
( t− εi

bn

)
, t ∈ R.

We can use Theorem 3.3 with V = 1 to obtain the following expansion for the difference of these
estimators.
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Corollary 4.1. Suppose (A1)–(A3) hold and f is absolutely continuous with ‖f ′‖1 <∞. Then

sup
t∈R

∣∣∣ ˆ̂
Fsw(t)− F̂s(t) + ct

1
n

n∑
i=1

εi − (ct + f(t))E[ṙϑ(X)]>(ϑ̂− ϑ)
∣∣∣ = op(n−1/2),

where

ct = σ−2E[ε1[ε ≤ t]] =

∫ t
−∞ yf(y) dy∫
y2f(y) dy

.

Let F̂ (t) = 1
n

∑n
i=1 1[εi ≤ t] denote the empirical distribution based on the actual innovations.

Since the empirical process n1/2(F̂ − F ) satisfies

sup
|u|≤bn

sup
t∈R

|n1/2(F̂ − F )(t− u)− n1/2(F̂ − F )(t)| = op(1),

we obtain that

sup
t∈R

∣∣∣F̂s(t)− F̂ (t)−
∫

(F (t+ bnu)− F (t))k(u) du
∣∣∣ = op(n−1/2).

As k has mean zero, we see that

∆ = sup
t∈R

∣∣∣ ∫
(F (t+ bnu)− F (t))k(u) du

∣∣∣ ≤ sup
|u|≤bn

sup
t∈R

|F (t− u)− F (t) + uf(t)|.

If f is Lipschitz, then ∆ = O(b2n) and f is absolutely continuous. Thus we have the following ex-
pansion for the difference between the smoothed and weighted residual-based empirical distribution
function and the empirical distribution function based on the true innovations.

Theorem 4.1. Suppose (A1)–(A3) hold. Let f be Lipschitz and ‖f ′‖1 <∞. Then

sup
t∈R

∣∣∣ ˆ̂
Fsw(t)− F̂ (t) + ct

1
n

n∑
i=1

εi − (ct + f(t))E[ṙϑ(X)]>(ϑ̂− ϑ)
∣∣∣ = op(n−1/2).

The terms involving ct come from weighting the kernel estimator. Weighting usually leads to a
smaller asymptotic variance. The gains can be considerable as the next example shows.

Example 4.1. Consider the classical autoregressive process Xt = ϑXt−1 + εt of order one with
|ϑ| < 1. In this case E[ṙϑ(X)] = E[X0] = 0 and

sup
t∈R

∣∣∣ ˆ̂
Fsw(t)− F̂ (t) + ct

1
n

n∑
i=1

εi

∣∣∣ = op(n−1/2)

for any n1/2-consistent estimator of ϑ. The smoothed but unweighted estimator ˆ̂
Fs, which is the

distribution function of ˆ̂
f , satisfies

sup
t∈R

∣∣∣ ˆ̂
Fs(t)− F̂ (t)

∣∣∣ = op(n−1/2).
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The asymptotic variances of the estimators ˆ̂
Fsw(t) and ˆ̂

Fs(t) for a fixed t are F (t)(1−F (t))− c2tσ2

and F (t)(1−F (t)). For the standard normal distribution F and t = 0 we calculate these asymptotic
variances as 1/4 − 1/(2π) and 1/4. Thus using the weighted estimator yields a reduction of the
asymptotic variance of about 64 percent.

To address efficiency issues we assume from now on that f has finite Fisher information for
location. This means that f is absolutely continuous with a.e. derivative f ′, and E[`2(ε)] =∫
`2(y)f(y) dy is finite, where ` = −f ′/f is the score function for location. Then f is V -smooth for

each f -square integrable V . This follows from the inequality

‖f ′‖2
V =

( ∫
V (y)|`(y)|f(y) dy

)2
≤

∫
V 2(y)f(y) dy

∫
`2(y)f(y) dy.

There exists a rich literature on efficient estimators of the finite-dimensional parameter in related
semiparametric time series models; see for example Kreiss (1987a, b), Linton (1993), Jeganathan
(1995), Drost and Klaassen (1997) and Drost, Klaassen and Werker (1997), and Schick and We-
felmeyer (2002b). Koul and Schick (1997) have characterized and constructed efficient estimators
for ϑ in nonlinear autoregression with mean zero innovations as needed here. Such an efficient
estimator ϑ̂ satisfies

ϑ̂ = ϑ+ Λ−1 1
n

n∑
i=1

S(Xi−1, εi) + op(n−1/2),

where
S(X, ε) =

(
ṙϑ(X)− E[ṙϑ(X)]

)
`(ε) + σ−2E[ṙϑ(X)] ε,

and Λ is the covariance matrix of S(X, ε). For such an estimator we have

ˆ̂
Fsw(t) = F̂ (t)− ct

1
n

n∑
i=1

εi + (ct + f(t))E[ṙϑ(X)]>Λ−1 1
n

n∑
i=1

S(Xi−1, εi) + op(n−1/2).

This is the characterization of an efficient estimator for F (t), see Schick and Wefelmeyer (2002a).

Alternative estimators to ˆ̂
Fsw(t) are

ˆ̂
Fw(t) =

1
n

n∑
i=1

ŵi1[ε̂i ≤ t] and ˆ̂
F (t) =

1
n

n∑
i=1

1[ε̂i ≤ t].

If f is uniformly continuous, and Condition R is strengthened to

max
1≤i≤n

sup
|τ−ϑ|≤Cn−1/2

∣∣∣rτ (Xi−1)− rϑ(Xi−1)− ṙϑ(Xi−1)>(τ − ϑ)
∣∣∣ = op(n−1/2),

then Schick and Wefelmeyer (2002a) show that

sup
t∈R

∣∣∣ ˆ̂
F (t)− F̂ (t)− f(t)E[ṙϑ(X)]>(ϑ̂− ϑ)

∣∣∣ = op(n−1/2)

and

sup
t∈R

|ĉt − ct| = op(1) with ĉt =
∑n

i=1 ε̂i1[ε̂i ≤ t]∑n
i=1 ε̂

2
i

.
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Because of the identity ŵi = 1− λ̂ŵiε̂i, we get

sup
t∈R

∣∣∣ ˆ̂
Fw(t)− ˆ̂

F (t) + λ̂
1
n

n∑
i=1

ε̂i1[ε̂i ≤ t]
∣∣∣ = op(n−1/2).

Thus ˆ̂
Fw has the same uniform stochastic expansion as the smoothed version ˆ̂

Fsw, under weaker
assumptions on f . The estimators ˆ̂

Fw and ˆ̂
Fsw have the advantage that they are true distribution

functions. The alternative efficient estimator of Schick and Wefelmeyer (2002a),

F̃ (t) = ˆ̂
F (t)− ĉt

1
n

n∑
i=1

ε̂i,

is not a distribution function.

5. Smoothed and weighted empirical moments

Let m be an integer greater than 1. As a further application of our results on density estimators
we consider estimation of the m-th moment µm =

∫
ymf(y) dy of f . Our estimator is the smoothed

and weighted empirical moment based on the residuals,

ˆ̂µm,w =
∫
ym ˆ̂
fw(y) dy.

Since

µ̂m =
∫
ymf̂(y) dy =

1
n

n∑
i=1

∫
(εi + bnu)mk(u) du =

1
n

n∑
i=1

εmi +O(b2n),

an application of Theorem 3.3 with V (y) = (1 + |y|)m gives the following expansion.

Theorem 5.1. Suppose (A1)–(A3) hold. Let f have a finite absolute moment of order greater than
2m+ 1 and be V -smooth for V (x) = (1 + |x|)m. Then

ˆ̂µm,w =
1
n

n∑
i=1

εmi − µm+1

σ2

1
n

n∑
i=1

εi +
(µm+1

σ2
−mµm−1

)
E[ṙϑ(X)]>(ϑ̂− ϑ) + op(n−1/2).

Let ˆ̂
f(y) = 1

n

∑n
i=1 k̂bn(y − ε̂i) denote the unweighted kernel estimator, and ˆ̂µm =

∫
ym ˆ̂
f(y) dy

the unweighted (smoothed) empirical moment. The weighted (smoothed) empirical moment ˆ̂µm,w

can have considerably smaller asymptotic variance. Consider for simplicity a linear autoregressive
model. Then E[ṙϑ(X)] = 0 and

ˆ̂µm =
1
n

n∑
i=1

εmi + op(n−1/2), ˆ̂µm,w =
1
n

n∑
i=1

εmi − µm+1

σ2

1
n

n∑
i=1

εi + op(n−1/2).

The asymptotic variances of ˆ̂µm and ˆ̂µm,w are µ2m and µ2m − µ2
m+1/σ

2, respectively. For m = 3
and f normal these variances are 15σ6 and (15− 9)σ6 = 6σ6, respectively.
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If we also assume that f has finite Fisher information for location, then ˆ̂µm,w is efficient by Schick
and Wefelmeyer (2002a) if ϑ̂ is. They construct an alternative efficient estimator

µ̃m =
1
n

n∑
i=1

ε̂mi −
∑n

i=1 ε̂
m+1
i∑n

i=1 ε̂
2
i

1
n

n∑
i=1

ε̂i

under weaker assumptions; they only require Condition R and a finite moment of order 2m. Another
efficient estimator is given by

1
n

n∑
i=1

ŵiε̂
m
i .

Indeed, because of the identity ŵi = 1 − λ̂ŵiε̂i, this estimator is asymptotically equivalent to µ̃n

by (3.15), (3.17) and (3.19).
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