
1 An overview of almost sure convergence

An attractive features of almost sure convergence (which we define below) is that it often

reduces the problem to the convergence of deterministic sequences.

First we go through some definitions (these are not very formal). Let Ωt be the set of

all possible outcomes (or realisations) at the point t, and define the random variable Yt as

the function Yt : Ωt → R. Define the set of possible outcomes over all time as Ω = ⊗∞
t=1Ωt,

and the random variables Xt : Ω → R, where for every ω ∈ Ω, with ω = (ω0, ω2, . . .), we

have Xt(ω) = Yt(ωt). Hence we have a sequence of random variables {Xt}t (which we call

a random process). When we observe {xt}t, this means there exists an ω ∈ Ω, such that

Xt(ω) = xt. To complete things we have a sigma-algebra F whose elements are subsets of

Ω and a probability measure P : F → [0, 1]. But we do not have to worry too much about

this.

Definition 1 We say that the sequence {Xt} converges almost sure to µ, if there exists a

set M ⊂ Ω, such that P(M) = 1 and for every ω ∈ N we have

Xt(ω) → µ.

In other words for every ε > 0, there exists an N(ω) such that

|Xt(ω) − µ| < ε, (1)

for all t > N(ω). We denote Xt → µ almost surely, as Xt
a.s.→ µ.

We see in (1) how the definition is reduced to a nonrandom definition. There is an equivalent

definition, which is explicitly stated in terms of probabilities, which we do not give here.

The object of this handout is to give conditions under which an estimator ân converges

almost surely to the parameter we are interested in estimating and to derive its limiting

distribution.

2 Strong consistency of an estimator

2.1 The autoregressive process

A simple example of a sequence of random variables {Xt} which are dependent is the auto-

gressive process. The AR(1) process satisfies the representation

Xt = aXt−1 + ǫt, (2)

where {ǫt}t are iid random variables with E(ǫt) = 0 and E(ǫ2
t ) = 1. It has the unique causal

solution

Xt =
∞∑

j=0

ajǫt−j.
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From the above we see that E(X2
t ) = (1 − a2)−1. Let σ2 := E(X2

0 ) = (1 − a2)−1.

Question What can we say about the limit of

σ̂2
n =

1

n

n∑

j=1

X2
t .

• If E(ε4
t ) < ∞, then we show that E(σ̂n − σ2)2 → 0 (Exercise).

• What can we say about almost sure convergence?

2.2 The strong law of large numbers

Recall the strong law of large numbers; Suppose {Xt}t is an iid sequence, and E(|X0|) < ∞
then by the SLLN we have that

1

n

n∑

j=1

Xt
a.s.→ E(X0),

for the proof see Grimmet and Stirzaker (1994).

• What happens when the random variables {Xt} are dependent?

• In this case we use the notion of ergodicity to obtain a similar result.

2.3 Some ergodic tools

Suppose {Yt} is an ergodic sequence of random variables (which implies that {Yt}t are iden-

tically distributed random variables). For the definition of ergodicity and a full treatment

see, for example, Billingsley (1965).

• A simple example of an ergodic sequence is {Zt}, where {Zt}t are iid random variables.

Theorem 1 One variation of the ergodic theorem: If {Yt} is an ergodic sequence, where

E(|g(Yt)|) < ∞. Then we have

1

n

n∑

i=1

g(Yt)
a.s.→ E(g(Y0)).

We give some sufficient conditions for a process to be ergodic. The theorem below is a

simplified version of Stout (1974), Theorem 3.5.8.

Theorem 2 Suppose {Zt} is an ergodic sequence (for example iid random variables) and

g : R
∞ → R is a continuous function. Then the sequence {Yt}t, where

Yt = g(Zt, Zt−1, . . . , ),

is an ergodic process.
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(i) Example I Let us consider the sequence {Xt}, which satisfies the AR(1) representa-

tion. We will show by using Theorem 2, that {Xt} is an ergodic process. We know

that Xt has the unique (casual) solution

Xt =
∞∑

j=0

ajǫt−j.

The solution motivates us to define the function

g(x0, x1, . . .) =
∞∑

j=0

ajxj.

We have that

|g(x0, x1, . . .) − g(y0, y1, . . .)| = |
∞∑

j=0

ajxj −
∞∑

j=0

ajyj|

≤
∞∑

j=0

aj|xj − yj|.

Therefore if maxj |xj − yj| ≤ |1 − a|ε, then |g(x1, x2, . . .) − g(y1, y2, . . .)| ≤ ε. Hence

the function g is continuous (under the sup-norm), which implies, by using Theorem

2, that {Xt} is an ergodic process.

Application Using the ergodic theorem we have that

1

n

n∑

t=1

X2
t

a.s.→ σ2.

(ii) Example II A stochastic process often used in finance is the ARCH process. {Xt} is

said to be an ARCH(1) process if it satisfies the representation

Xt = σtZt σ2
t = a0 + a1X

2
t−1.

It has almost surely the solution

X2
t = a0

∞∑

j=0

aj
1

j
∏

i=0

Z2
t−i.

Using the arguments above we can show that {X2
t }t is an ergodic process.

3 Likelihood estimation

Our object here is to evaluate the maximum likelihood estimator of the AR(1) parameter

and to study its asymptotic properties. We recall that the maximum likelihood estimator is

the parameter which maximises the joint density of the observations. Since the log-likelihood
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often has a simpler form, we often maximise the log density rather than the density (since

both the maximum likelihood estimator and maximum log likelihood estimator yield the

same estimator).

Suppose we observe {Xt; t = 1, . . . , n} where Xt are observations from an AR(1) process.

Let Fǫ fǫ be the distribution function and the density function of ǫ respectively. We first

note that the AR(1) process is Markovian, that is

P(Xt ≤ x|Xt−1, Xt−2, . . .) = P(Xt ≤ x|Xt−1) (3)

⇒ fa(Xt|Xt−1, . . .) = fa(Xt−1|Xt−1).

• The Markov property is where the probability of Xt given the past is the same as the

probability of Xt given Xt−1.

• To prove (3) we see that

P(Xt ≤ xt|Xt−1 = xt−1, Xt−2 = xt−2) = P(aXt−1 + ǫt ≤ xt|Xt−1 = xt−1, Xt−2 = xt−2)

= P(ǫt ≤ xt − axt−1|Xt−2 = xt−2)

= Pǫ(ǫt ≤ xt − axt−1) = P(Xt ≤ xt|Xt−1 = xt−1),

hence the process satisfies the Markov property.

By using the above we have

P(Xt ≤ x|Xt−1) = Pǫ(ǫ ≤ x − aXt−1)

⇒ P(Xt ≤ x|Xt−1) = Fǫ(x − aXt−1)

fa(Xt|Xt−1) = fǫ(Xt − aXt−1). (4)

Evaluating the joint density and using (4) we see that it satisfies

fa(X1, X2, . . . , Xn) = fa(X1)
n∏

t=2

fa(Xt|Xt−1, Xt−1, . . .) (by Bayes theorem)

= fa(X1)
n∏

t=2

f(Xt|Xt−1) (by the Markov property)

= fa(X1)
n∏

t=2

fǫ(Xt − aXt−1) (by (4)).

Therefore the log likelihood is

log fa(X1, X2, . . . , Xn) = log f(X1)
︸ ︷︷ ︸

often ignored

+
n∑

k=2

log fǫ(Xt − aXt−1)

︸ ︷︷ ︸

conditional likelihood

.

Usually we ignore the initial distribution f(X1) and maximise the conditional likelihood to

obtain the estimator.
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Hence we use ân as an estimator of a, where

ân = arg max
a∈Θ

n∑

k=2

log fǫ(Xt − aXt−1),

and Θ is the parameter space we do the maximisation in. We say that ân is the conditional

likelihood estimator.

3.1 Likelihood function when the innovations are Gaussian

We now consider the special case that the innovations {ǫt}t are Gaussian. In this case we

have that

log fǫ(Xt − aXt−1) = −1

2
log 2π − (Xt − aXt−1)

2.

Therefore if we let

Ln(a) = − 1

n − 1

n∑

t=2

(Xt − aXt−1)
2,

since 1
2
log 2π is a constant we have

Ln(a) ∝
n∑

k=2

log fǫ(Xt − aXt−1).

Therefore the maximum likelihood estimator is

⇒ ân = arg max
a∈Θ

Ln(a).

In the derivations here we shall assume Θ = [−1, 1].

Definition 2 An estimator α̂n is said to be a consistent estimator of α, if there exists a set

M ⊂ Ω, where P(M) = 1 and for all ω ∈ M we have

α̂n(ω) → α.

Question: Is the likelihood estimator ân strongly consistent?

• In the case of least squares for AR processes, ân has the explicit form

ân =
1

n−1

∑n
t=2 XtXt−1

1
n−1

∑n−1
t=1 X2

t

.

Now by just applying the ergodic theorem to the numerator and denominator we get

almost sure converge of ân (exercise).
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• However we will tackle the problem in a rather artifical way and assume that it does

not have an explicit form and instead assume that ân is obtained by minimising Ln(a)

using a numerical routine. In general this is the most common way of minimising a

likelihood function (usually explicit solutions do not exist).

• In order to derive the sampling properties of ân we need to directly study the likelihood

function Ln(a). We will do this now in the least squares case.

Most of the analysis of Ln(a) involves repeated application of the ergodic theorem.

• The first clue to solving the problem is to let

ℓt(a) = −(Xt − aXt−1)
2.

By using Theorem 2 we have that {ℓt(a)}t is an ergodic sequence. Therefore by using

the ergodic theorem we have

Ln(a) =
1

n − 1

n∑

t=2

ℓt(a)
a.s.→ E(ℓ0(a)).

• In other words for every a ∈ [−1, 1] we have that Ln(a)
a.s.→ E(ℓ0(a)). This is what we

call almost sure pointwise convergence.

Remark 1 It is interesting to note that the least squares/likelihood estimator ân can also be

used even if the innovations do not come from a Gaussian process.

3.2 Strong consistency of a general estimator

We now consider the general case where Bn(a) is a ‘criterion’ which we maximise (or min-

imse). We note that Bn(a) includes the likelihood function, least squares criterion etc.

We suppose it has the form

Bn(a) =
1

n − 1

n∑

j=2

gt(a), (5)

where for each a ∈ [c, d], {gt(a)}t is a ergodic sequence. Let

B̃(a) = E(gt(a)), (6)

we assume that B̃(a) is continuous and has a unique maximum in [c, d].

We define the estimator α̂n where

α̂n = arg max
a∈[c,d]

Bn(a).
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Object To show under what conditions α̂n
a.s.→ α, where α = arg maxB(a).

Now suppose that for each a ∈ [c, d] Bn(a)
a.s.→ B̃(a), then this it called almost sure pointwise

convergence. That is for each a ∈ [c, d] we can show that there exists a set Ma such that

Ma ⊂ Ω where P (Ma) = 1, and for each ω ∈ Ma and every ε > 0

|Bn(ω, a) − B̃(a)| ≤ ε,

for all n > Na(ω). But the Na(ω) depends on the a, hence the rate of convergence is not

uniform (the rate of depends on a).

Remark 2 We will assume that the set Ma is common for all a, that is Ma = Ma′ for all

a, a′ ∈ [c, d]. We will prove this result in Lemma 1 under the assumption of equicontinuity

(defined later), however I think the same result can be shown under the weaker assumption

that B̃(a) is continuous.

Returning to the estimator, by using the pointwise convergence we observe that

Bn(a) ≤ Bn(ân)
a.s.→ B̃(ân) ≤ B̃(a), (7)

where ân is kept fixed in the limit. We now consider the difference |Bn(ân)−B̃(a)|, if we can

show that |Bn(ân) − B̃(a)| a.s.→ 0, then â
P→ a almost surely.

Studying (Bn(ân) − B̃(a)) and using (7) we have

Bn(a) − B̃(a) ≤ Bn(ân) − B̃(a) ≤ Bn(ân) − B̃(ân).

Therefore we have

|Bn(ân) − B̃(a)| ≤ max
{

|Bn(a) − B̃(a)|, |Bn(ân) − B̃(ân)|
}

.

To show that the RHS of the above converges to zero we require not only pointwise conver-

gence but uniform convergence of Bt(a), which we define below.

Definition 3 Bn(a) is said to almost surely converge uniformly to B̃(a), if

sup
a∈[c,d]

|Bn(a) − B̃(a)| a.s.→ 0.

In other words there exists a set M ⊂ Ω where P (M) = 1 and for every ω ∈ M ,

sup
a∈[c,d]

|Bn(ω, a) − B̃(a)| → 0.

Therefore returning to our problem, if Bn(a)
a.s.→ B̃(a) uniformly, then we have the bound

|Bn(α̂n) − B̃(α)| ≤ sup
a∈[c,d]

|Bn(a) − B̃(a)| a.s.→ 0.

This implies that Bn(α̂n)
a.s.→ B̃(α) and since B̃(α) has a unique minimum we have that

α̂n
a.s.→ α. Therefore if we can show almost sure uniform convergence of Bn(a), then we have

strong consistency of the estimator α̂n.

Comment: Pointwise convergence is relatively easy to show, but how to show uniform convergence?
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Figure 1: The middle curve is ˜B(a, ω). If the sequence {Bn(a, ω)} converges uniformly to
˜B(a, ω), then Bn(a, ω) will lie inside these boundaries, for all n > N(ω).

3.3 Uniform convergence and stochastic equicontinuity

We now define the concept of stochastic equicontinuity. We will prove that stochastic

equicontinuity together with almost sure pointwise convergence (and a compact parame-

ter space) imply uniform convergence.

Definition 4 The sequence of stochastic functions {Bn(a)}n is said to be stochastically

equicontinuous if there exists a set M ∈ Ω where P (M) = 1 and for every and ε > 0,

there exists a δ and such that for every ω ∈ M

sup
|a1−a2|≤δ

|Bn(ω, a1) − Bn(ω, a2)| ≤ ε,

for all n > N(ω).

Remark 3 A sufficient condition for stochastic equicontinuity is that there exists an N(ω),

such that for all n > N(ω) Bn(ω, a) belongs to the Lipschitz class C(L) (where L is the same

for all ω). In general we verify this condition to show stochastic equicontinuity.

In the following lemma we show that if {Bn(a)}n is stochastically equicontinuous and

also pointwise convergent, then there exists a set M ⊂ Ω, where P(M) = 1 and for every

ω ∈ M , there is pointwise convergence of Bn(ω, a) → B̃(a). This lemma can be omitted on

first reading (it is mainly technical).

Lemma 1 Suppose the sequence {Bn(a)}n is stochastically equicontinuous and also pointwise

convergent (that is Bn(a) converges almost surely to B̃(a)), then there exists a set M ∈ Ω

where P (M) = 1 and for every ω ∈ M and a ∈ [c, d] we have

|Bn(ω, a) − B̃(a)| → 0.
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PROOF. Enumerate all the rationals in the interval [c, d] and call this sequence {ai}i. Then

for every ai there exists a set Mai
where P (Mai

) = 1, such that for every ω ∈ Mai
we have

|Bn(ω, ai)− B̃(ai)| → 0. Define M = ∩Mai
, since the number of sets is countable P (M) = 1

and for every ω ∈ M and ai we have Bn(ω, ai) − B̃(ai) → 0. Suppose we have equicontinity

for every realisation in M̃ , and M̃ is such that P (M̃) = 1. Let M̄ = M̃ ∩ {∩Mai
}. Let

ω ∈ M̄ , then for every ε/3 > 0, there exists a δ > 0 such that

sup
|a1−a2|≤δ

|Bn(ω, a1) − Bn(ω, a2)| ≤ ε/3,

for all n > N(ω). Now for any given a, choose a rational aj such that |a − aj| ≤ δ. By

pointwise continuity we have

|Bn(ω, ai) − B̃(ai)| ≤ ε/3,

where n > N ′(ω). Then we have

|Bn(ω, a) − B̃(a)| ≤ |Bn(ω, a) − Bn(ω, ai)| + |Bn(ω, ai) − B̃(ai)| + |B̃(a) − B̃(ai)| ≤ ε,

for n > max(N(ω), N ′(ω)). To summarise for every ω ∈ M̃ and a ∈ [c, d], we have |Bn(ω, a)−
B̃(a)| → 0. Hence we have pointwise covergence for every realisation in M̃ . �

We now show that equicontinuity implies uniform convergence.

Theorem 3 Suppose the set [a, b] is a compact interval and for every a ∈ [c, d] Bn(a) con-

verges almost surely to B̃(a). Furthermore assume that {Bn(a)} is almost surely equicontin-

uous. Then we have

sup
a∈[c,d]

|Bn(a) − B̃(a)| a.s.→ 0.

PROOF. Let M̄ = M ∩ M̃ where M is the set where we have uniform convergence and M̃

the set where all ω ∈ M̃ , {Bn(ω, a)}n converge pointwise, it is clear that P (M̄) = 1. Choose

ε/3 > 0 and let δ be such that for every ω ∈ M̃ we have

sup
|a1−a2|≤δ

|Bn(ω, a1) − Bn(ω, a2)| ≤ ε/3,

for all n > N(ω). Since [c, d] is compact it can be divided into a finite number of intervals.

Therefore let c = ρ0 ≤ ρ1 ≤ · · · ≤ ρp = d and supi |ρi+1 − ρi| ≤ δ. Since p is finite, there

exists a Ñ(ω) such that

max
1≤i≤p

|Bn(ω, ai) − B̃(ai)| ≤ ε/3,

for all n > Ñ(ω) (where Ni(ω) is such that |Bn(ω, ai) − B̃(ai)| ≤ ε/3, for all n ≥ Ni(ω) and

Ñ(ω) = maxi(Ni(ω))). For any a ∈ [c, d], choose the i, such that a ∈ [ai, ai+1], then by

stochastic equicontinuity we have

|Bn(ω, a) − Bn(ω, ai)| ≤ ε/3,
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for all n > N(ω). Therefore we have

|Bn(ω, a) − B̃(a)| ≤ |Bn(ω, a) − Bn(ω, ai)| + |Bn(ω, ai) − B̃(ai)| + |B̃(a) − B̃(ai)| ≤ ε,

for all n ≥ max(N(ω), Ñ(ω)). Since N̄(ω) does not depend on a, then supa |Bn(ω, a) −
B̃(a)| → 0. Furthermore it is true for all ω ∈ M̄ and P(M̄) = 1 hence we have almost sure

uniform convergence. �

The following theorem summarises all the sufficient conditions for almost sure consistency.

Theorem 4 Suppose Bn(n) and B̃(a) are defined as in (5) and (6) respectively. Let

α̂n = arg max
a∈[c,d]

Bn(a) (8)

and α = arg max
a∈[c,d]

B̃(a). (9)

Assume that [c, d] is a compact subset and that B̃(a) has a unique maximum in [c, d]. Fur-

thermore assume that for every a ∈ [c, d] Bn(a)
a.s.→ B̃(a) and the sequence {Bn(a)}n is

stochastically equicontinuous. Then we have

α̂n
a.s.→ α.

3.4 Strong consistency of the least squares estimator

We now verify the conditions in Theorem 4 to show that the least squares estimator is

strongly consistent.

We recall that

ân = arg max
a∈Θ

Ln(a), (10)

where

Ln(a) = − 1

n − 1

n∑

t=2

(Xt − aXt−1)
2.

We have already shown that for every a ∈ [−1, 1] we have Ln(a)
a.s.→ L̃(a), where L̃(a) :=

E(g0(a)). Recalling Theorem 3, since the parameter space [−1, 1] is compact, to show strong

consistency we need only to show that Ln(a) is stochastically equicontinuous.

By expanding Ln(a) and using the mean value theorem we have

Ln(a1) − Ln(a2) = ∇Ln(ā)(a1 − a2), (11)

where ā ∈ [min[a1, a2], max[a1, a2]] and

∇Ln(α) =
−2

n − 1

n∑

t=2

Xt−1(Xt − αXt−1).
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Because α ∈ [−1, 1] we have

|∇Ln(α)| ≤ Dn,

where

Dn =
2

n − 1

n∑

t=2

(|Xt−1Xt| + X2
t−1).

Since {Xt}t is an ergodic process, then {|Xt−1Xt| + X2
t−1} is an ergodic process. Therefore,

if var(ǫ0) < ∞, by using the ergodic theorem we have

Dn
a.s.→ 2E(|Xt−1Xt| + X2

t−1).

Let D := 2E(|Xt−1Xt| + X2
t−1). Therefore there exists a set M ∈ Ω, where P(M) = 1 and

for every ω ∈ M and ε > 0 we have

|Dn(ω) −D| ≤ ε,

for all n > N(ω). Substituting the above into (11) we have

|Ln(ω, a1) − Ln(ω, a2)| ≤ Dn(ω)|a1 − a2|
≤ (D + ε)|a1 − a2|,

for all n ≥ N(ω). Therefore for every ε > 0, there exists a δ := ε/(D + ε) such that

|Ln(ω, a1) − Ln(ω, a2)| ≤ (D + ε)|a1 − a2|,

for all n ≥ N(ω). Since this is true for all ω ∈ M we see that {Ln(a)} is stochastically

equicontinuous.

Theorem 5 Let ân be defined as in (10). Then we have

ân
a.s.→ a.

PROOF. Since {Ln(a)} is almost sure equicontinuous, the parameter space [−1, 1] is compact

and we have pointwise convergence of Ln(α)
a.s.→ L̃(α), by using Theorem 4 we have that

ân
a.s.→ α, where α = max L̃(α). Finally we need to show that α ≡ a. Since

L̃(α) = E(ℓ0(a)) = −E(X1 − αX0)
2,

we see by differentiating L̃(α) that it is maximised when α = E(X0X1)/E(X2
0 ). Inspecting

the AR(1) process we see that

Xt = aXt−1 + ǫt

⇒ XtXt−1 = aX2
t−1 + ǫtXt−1

⇒ E(XtXt−1) = aE(X2
t−1) + E(ǫtXt−1)

︸ ︷︷ ︸

=0

.

Therefore a = E(X0X1)/E(X2
0 ), hence α ≡ a, thus we have shown strong consistency of the

least squares estimator. �
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(i) This is the general method for showing almost sure convergence of a whole class of

estimators. Using a similar techique one can show strong consistency of maximum like-

lihood estimator of the ARCH(1) process, see Berkes, Horváth, and Kokoskza (2003)

for details.

(ii) Described here was strong consistency where we showed α̂n
a.s.→ α. Using similar tools

one can show weak consistency where α̂n
P→ α (convergence in probability), which

requires a much weaker set of conditions. For example, rather than show almost sure

pointwise convergence we would show pointwise convergence in probability. Rather

than stochastic equicontinuity we would show equicontinuity in probability, that is for

every ǫ > 0 there exists a δ such that

lim
n→∞

P

(

sup
|a1−a2|≤δ

|Bn(a1) − Bn(a2)| > ǫ

)

→ 0.

Some of these conditions are easier to verify than almost sure conditions.

4 Central limit theorems

Recall once again the AR(1) process {Xt}, where Xt satisfies

Xt = aXt−1 + ǫt.

It is of interest to check if there actually is dependency in {Xt}, if there is no dependency

then a = 0 (in which case {Xt} would be white noise). Of course in most situations we only

have an estimator of a (for example, α̂n defined in (10)).

(i) Given the estimator ân, how to see if a = 0?

(ii) Usually we would do a hypothesis test, with H0: a = 0 against the alternative of say

a 6= 0. However in order to do this we require the distribution of ân.

(iii) Usually evaluating the exact sample distribution is extemely hard or close to impossible.

Instead we would evaluating the limiting distribution which in general is a lot easier.

(iv) In this section we shall show asymptotic normality of
√

n(ân − a). The reason for

normalising by
√

n, is that (ân − a)
a.s.→ 0 as n → ∞, hence in terms of distributions it

converges towards the point mass at zero. Therefore we need to increase the magnitude

of the difference ân−a. We can show that (ân−a) = O(n−1/2), therefore
√

n(ân−a) =

O(1). Multiplying (ân−a) by anything larger would mean that its limit goes to infinity,

multipying (ân − a) by something smaller in magnitude would mean its limit goes to

zero, so n1/2, is the happy median.
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We often use ∇Ln(a) to denote the derivative of Ln(a) with respect to a (∂Ln(a)
∂a

). Since

ân = arg maxLn(a), we observe that ∇Ln(ân) = 0. Now expanding ∇Ln(ân) about a (the

true parameter) we have

∇Ln(ân) −∇Ln(a) = ∇2Ln(ân − a),

⇒ −∇Ln(a) = ∇2Ln(ân − a), (12)

where ∇Ln(α) = ∂2Ln

∂α2 ,

∇Ln(a) =
−2

n − 1

n∑

t=2

Xt−1(Xt − aXt−1) =
−2

n − 1

n∑

t=2

Xt−1ǫt

and ∇2Ln =
2

n − 1

n∑

t=2

X2
t−1.

Therefore by using (12) we have

(ân − a) = −
(
∇2Ln

)−1 ∇Ln(a). (13)

Since {X2
t } are ergodic random variables, by using the ergodic theorem we have ∇2Ln

a.s.→
2E(X2

0 ). This with (13) implies

√
n(ân − a) = −

(
∇2Ln

)−1

︸ ︷︷ ︸

a.s.
→ (2E(X2

0
))−1

√
n∇Ln(a). (14)

To show asymptotic normality of
√

n(ân−a), will show asymptotic normality of
√

n∇Ln(a).

We observe that

∇Ln(a) =
−2

n − 1

n∑

t=2

Xt−1ǫt,

is the sum of martingale differences, since E(Xt−1ǫt|Xt−1) = Xt−1E(ǫt|Xt−1) = Xt−1E(ǫt) =

0. In order to show asymptotic of ∇Ln(a) we will use the martingale central limit theorem.

4.0.1 Martingales and the conditional likelihood

First a quick overview. {Zt; t = 1, . . . ,∞} are called martingale differences if

E(Zt|Zt−1, Zt−2, . . .) = 0.

An example is the sequence {Xt−1ǫt}t considered above. Because ǫt and Xt−1, Xt−2, . . . are

independent then E(Xt−1ǫt|Xt−1, Xt−2, . . .) = 0.

The stochastic sum {Sn}n, where

Sn =
n∑

k=1

Zt

13



is called a martingale if {Zt} are martingale differences.

First we show that the gradient of the conditional log likelihood, defined as

Cn(θ) =
n∑

t=2

∂ log fθ(Xt|Xt−1, . . . , X1)

∂θ
,

at the true parameter θ0 is the sum of martingale differences. By definition if Cn(θ0) is the

sum of martingale differences then

E

(
∂ log fθ(Xt|Xt−1, . . . , X1)

∂θ
⌋θ=θ0

∣
∣
∣Xt−1, Xt−2, . . . , X1

)

= 0.

Rewriting the above in terms of integrals and exchanging derivative with integral we have

E

(
∂ log fθ(Xt|Xt−1, . . . , X1)

∂θ
⌋θ=θ0

∣
∣
∣Xt−1, Xt−2, . . . , X1

)

=

∫
∂ log fθ(xt|Xt−1, . . . , X1)

∂θ
⌋θ=θ0

fθ0
(xt|Xt−1, . . . , X1)dxt

=

∫
1

fθ0
(xt|Xt−1, . . . , X1)

∂fθ(xt|Xt−1, . . . , X1)

∂θ
⌋θ=θ0

fθ0
(xt|Xt−1, . . . , X1)dxt

=
∂

∂θ

(∫

fθ(xt|Xt−1, . . . , X1)dxt

)

⌋θ=θ0
= 0.

Therefore {∂ log fθ(Xt|Xt−1,...,X1)
∂θ

⌋θ=θ0
}t are a sequence of martingale differences and Ct(θ0) is

the sum of martingale differences (hence it is a martingale).

4.1 The martingale central limit theorem

Let us define Sn as

Sn =
1√
n

n∑

t=1

Yt, (15)

where Ft = σ(Yt, Yt−1, . . .), E(Yt|Ft−1) = 0 and E(Y 2
t ) < ∞. In the following theorem

adapted from Hall and Heyde (1980), Theorem 3.2 and Corollary 3.1, we show that Sn is

asymptotically normal.

Theorem 6 Let {Sn}n be defined as in (15). Further suppose

1

n

n∑

t=1

Y 2
t

P→ σ2, (16)

where σ2 is a finite constant, for all ε > 0,

1

n

n∑

t=1

E(Y 2
t I(|Yt| > ε

√
n)|Ft−1)

P→ 0, (17)
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(this is known as the conditional Lindeberg condition) and

1

n

n∑

t=1

E(Y 2
t |Ft−1)

P→ σ2. (18)

Then we have

Sn
D→ N (0, σ2). (19)

4.2 Asymptotic normality of the least squares estimator

We now use Theorem 6 to show that
√

n∇Ln(a) is asymptotically normal, which means

we have to verify conditions (16)-(18). We note in our example that Yt := Xt−1ǫt, and

that the series {Xt−1ǫt}t is an ergodic process. Furthermore, since for any function g,

E(g(Xt−1ǫt)|Ft−1) = E(g(Xt−1ǫt)|Xt−1), where Ft = σ(Xt, Xt−1, . . .) we need only to condi-

tion on Xt−1 rather than the entire sigma-algebra Ft−1.

C1 : By using the ergodicity of {Xt−1ǫt}t we have

1

n

n∑

t=1

Y 2
t =

1

n

n∑

t=1

X2
t−1ǫ

2
t

P→ E(X2
t−1) E(ǫ2

t )
︸ ︷︷ ︸

=1

= σ2.

C2 : We now verify the conditional Lindeberg condition.

1

n

n∑

t=1

E(Y 2
t I(|Yt| > ε

√
n)|Ft−1) =

1

n

n∑

t=1

E(X2
t−1ǫ

2
t I(|Xt−1ǫt| > ε

√
n)|Xt−1)

We now use the Cauchy-Schwartz inequality for conditional expectations to split X2
t−1ǫ

2
t

and I(|Xt−1ǫt| > ε). We recall that the Cauchy-Schwartz inequality for conditional

expectations is E(XtYt|G) ≤ [E(X2
t |G)E(Y 2

t |G)]1/2 almost surely. Therefore

1

n

n∑

t=1

E(Y 2
t I(|Yt| > ε

√
n)|Ft−1)

≤ 1

n

n∑

t=1

{
E(X4

t−1ǫ
4
t |Xt−1)E(I(|Xt−1ǫt| > ε

√
n)2|Xt−1)

}1/2

≤ 1

n

n∑

t=1

X2
t−1E(ǫ4

t )
1/2
{
E(I(|Xt−1ǫt| > ε

√
n)2|Xt−1)

}1/2
. (20)

We note that rather than use the Cauchy-Schwartz inequality we can use a generalisa-

tion of it called the Hölder inequality. The Hölder inequality states that if p−1+q−1 = 1,

then E(XY ) ≤ {E(Xp)}1/p{E(Y q)}1/q (the conditional version also exists). The ad-

vantage of using this inequality is that one can reduce the moment assumptions on

Xt.
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Returning to (20), and studying E(I(|Xt−1ǫt| > ε)2|Xt−1) we use that E(I(A)) = P(A)

and the Chebyshev inequality to show

E(I(|Xt−1ǫt| > ε
√

n)2|Xt−1) = E(I(|Xt−1ǫt| > ε
√

n)|Xt−1)

= E(I(|ǫt| > ε
√

n/Xt−1)|Xt−1)

= Pε(|ǫt| >
ε
√

n

Xt−1

)) ≤ X2
t−1var(ǫt)

ε2n
. (21)

Substituting (21) into (20) we have

1

n

n∑

t=1

E(Y 2
t I(|Yt| > ε

√
n)|Ft−1)

≤ 1

n

n∑

t=1

X2
t−1E(ǫ4

t )
1/2

{
X2

t−1var(ǫt)

ε2n

}1/2

≤ E(ǫ4
t )

1/2

εn3/2

n∑

t=1

|Xt−1|3E(ǫ4
t )

1/2

≤ E(ǫ4
t )

1/2

εn1/2

1

n

n∑

t=1

|Xt−1|3.

If E(ǫ4
t ) < ∞, then E(X4

t ) < ∞, therefore by using the ergodic theorem we have
1
n

∑n
t=1 |Xt−1|3 a.s.→ E(|X0|3). Since almost sure convergence implies convergence in

probability we have

1

n

n∑

t=1

E(Y 2
t I(|Yt| > ε

√
n)|Ft−1) ≤

E(ǫ4
t )

1/2

εn1/2
︸ ︷︷ ︸

→0

1

n

n∑

t=1

|Xt−1|3

︸ ︷︷ ︸

P
→E(|X0|3)

P→ 0.

Hence condition (17) is satisfied.

C3 : We need to verify that

1

n

n∑

t=1

E(Y 2
t |Ft−1)

P→ σ2.

Since {Xt}t is an ergodic sequence we have

1

n

n∑

t=1

E(Y 2
t |Ft−1) =

1

n

n∑

t=1

E(X2
t−1ε

2|Xt−1)

=
1

n

n∑

t=1

X2
t−1E(ε2|Xt−1) = E(ε2)

1

n

n∑

t=1

X2
t−1

︸ ︷︷ ︸

a.s.
→ E(X2

0
)

P→ E(ε2)E(X2
0 ) = σ2,

hence we have verified condition (18).
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Altogether conditions C1-C3 imply that

√
n∇Ln(a) =

1√
n

n∑

t=1

Xt−1ǫt
D→ N (0, σ2). (22)

Recalling (14) and that
√

n∇Ln(a)
D→ N (0, σ2) we have

√
n(ân − a) = −

(
∇2Ln

)−1

︸ ︷︷ ︸

a.s.
→ (2E(X2

0
))−1

√
n∇Ln(a)

︸ ︷︷ ︸

D
→N (0,σ2)

. (23)

Using that E(X2
0 ) = σ2, this implies that

√
n(ân − a)

D→ N (0,
1

4
(σ2)−1). (24)

Thus we have derived the limiting distribution of ân.
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