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A Test for Non-stationarity of Time-series 

By M. B. PRIESTLEY and T. SUBBA RAO 

University of Manchester, Institute of Science and Technology 

(Received May 1968. Revised September 1968) 

SUMMARY 
We consider the problem of testing a given time-series for stationarity. The 
approach is based on evolutionary spectral analysis, and the proposed 
method consists essentially in testing the "homogeneity" of a set of 
evolutionary spectra evaluated at different instants of time. 

Using a logarithmic transformation, we show that the mechanics of the 
test are formally equivalent to a two-factor analysis of variance procedure 
when the residual variance is known, a priori. 

In addition to testing stationarity, the analysis provides also a method for 
testing whether the observed series fits a "uniformly modulated" model, and 
a test for "randomness" (constancy of spectra). 

1. INTRODUCTION 
SEVERAL authors have proposed methods for testing whether or not a given time- 
series may be regarded as stationary. Some of these methods are designed to detect 
non-stationary "trends" in a particular characteristic of the series, such as the mean 
or the variance (Grenander and Rosenblatt, 1957; Parthasarathy, 1961; Granger and 
Hatanaka, 1964; Sen, 1965; Subba Rao, 1968), whilst others are designed to test 
whether the correlation or spectral properties of two sections of a time-series are 
"compatible" (Quenouille, 1958; Jenkins, 1961). In the later cases the two sections 
of the series have to be specified, a priori, and it is assumed that within each section 
the series is stationary. The method to be described in this paper differs from those 
mentioned above in that it may be used to test the overall stationarity of the complete 
second-order properties of a time-series. This test makes use of the concept of the 
"evolutionary (that is, time-dependent) spectrum" of a non-stationary process, and 
the basis of the method consists essentially in testing the "uniformity" of a set of 
evolutionary spectra evaluated at different instants of time. The mechanics of the 
test are almost identical to those of a two-factor analysis of variance procedure, and 
the basic approach follows the lines suggested by Priestley (1965). 

A further advantage of this method is that it enables one to test not only the overall 
stationarity of the series, but also to examine the character of the non-stationarity 
(when it exists). 

As a preliminary step, we summarize below the main ideas and results of evolu- 
tionary spectral theory. (For a more detailed discussion see Priestley, 1965, 1967.) 

2. EVOLUTIONARY SPECTRA 
We consider the class of non-stationary processes, {X(t)}, with E{X(t)} = 0, 

E{X2(t)} < so, all t, which admit spectral representations of the form 

X(t) = f e"IAt(o) dZ(w), (2.1) 
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where Z(w) is an orthogonal process with El dZ(w) 12 = 4(dw); for each fixed w, At(w) 
(considered as a function of t) has a Fourier transform whose absolute maximum 
occurs at the origin, and A = (- oo, oo) or (- r,-,) according as to whether the 
parameter t is continuous or integral valued. Thus, we are assuming that the mean of 
the series has been removed, either by regression analysis or by filtering techniques- 
cf. Granger and Hatanaka (1964)-or by incorporating "mean detrending" in the 
procedure for estimating spectra, as is normally done when dealing with stationary 
processes.) The evolutionary spectrum at time t with respect to the family 

s= {e_= AetA(w)} 
is defined by 

dFt(w) = j At(Z) 12 14(d), c w A. (2.2) 

Assuming that the measure , is absolutely continuous with respect to dco (as will be 
assumed throughout the rest of the paper), we define the evolutionary spectral density 
function at time t by 

ft(4w) = F(co) = I At(co) 12d/l (2.3) 

Given a sample from a continuous parameter process, X(t), 0 < t < T, we may estimate 
ft4(C) (O? t < T) by using the "double-window" technique (Priestley, 1965, 1966), as 
follows. Choose a "filter" (or "window") {g(u)} which is square integrable and 
normalized, so that 

2l I g(u) 12du= f F() 12dw2d 1. (2.4) 

Here 

P(cw) = f g(u) e-iuw du (2.5) 
_00 

denotes the frequency response function of {g(u)}. Now write, for any frequency co, 
I 

U(t, w0) = f g(u) X(t- u) e-iw(t-u) du. (2.6) 

In practice, the time-domain "width" of the filter {g(u)} will be small compared with 
T so that, for t>O, the limits of the integral in (2.6) may be replaced by (- c,oc). 
(In other words, we are supposing that t is sufficiently large for the effects of 
"transients" in the filter output to have decayed.) 

Now choose a second "window", wTK(t), depending on the parameter T', which 
satisfies 

(a) wT'(t) > 0, for all t, T', 

(b) wT'(t) decays to zero as I t i e oo, for all T', 

(c) WT'(t)dt = 1, for all T', 

(d) f {wTT(t)}2 dt <oo, for all T'. 
J-% 
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Write 

WT'(A) = e itwT'(t) dt; (2.7) 
_00-0 

assume that 
(e) there exists a constant C such that 

lim T' f_ AWT,() 12dA -C. (2.8) 
T'>o J-oo 

Then we may estimate f(co) by 

(w) = f WT_(u) U(t-u, ) 12 du. (2.9) 

The remarks noted above apply also to the limits of the integral in (2.9), which may 
also be replaced by (- oo, oo). With the obvious modifications, a similar procedure 
may be used to estimate the evolutionary spectra of discrete-parameter processes. 

It has been shown by Priestley (1965) that the mean and variance of 75(U) are 
approximately given by 

E{w(o)} - fI w + 0) I r(o) 12 dO, (2.10) 

var{4t(wj)} -(C/T')t(w) {j0 I r(6)14 d6} w =A 0, (2.11) 

where 

f4(w + 0) = f WT'(u)fJ_U(w + 0) du 
_00 

and 

J ft_U{WT,(U)}2 du 

0 {WT,(U)}2du 

(When co = 0,-or r, in the discrete case-the above expression for the variance 
should be doubled.) 

As a further approximation, it may be shown that (i) if the "bandwidth" of 
I 1(6) 12 is small compared with the "frequency domain bandwidth" of ft(o), and 
(ii) if the "bandwidth" of WT'(u) is small compared with the "time-domain bandwidth" 
of ft(), then 

E{w(a)} ft() (2.10) 
(that is, 4t() is approximately an unbiased estimate of 4w()) and 

var{t(w)} (C/T)fl(w) 1 Ir(6)1 d6} (2.11) 

(Note that f(co) and J,2(w) may be interpreted as "smoothed" forms of f4(w) and 
fl(w) respectively.) 
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To illustrate the use of (2.11) suppose, for example, that we choose {g(u)} to be 
of the form 

g{u) = 1/{2 (hT)} I uj I h, (2.12) 
j,u/> h. 

Then 

1 sin2 hw I r(,O) 12 = C 
inho 

jP() T2 hw 
corresponding to the Bartlett window, and we find that 

TI r(6) 14 dO = 2h/3,. 

Further, if we choose WT,(t) to be of the form 

WT'(t) = {1/Ti2 T'<t?2T', (2.13) 
O, otherwise, 

corresponding to the Daniell window, then it is not difficult to show that 

C=lim iT' | WT,(A) 12dA = 27T. 
T'-->o J-o 

Using these results in (2.11), we now obtain 

vart() (4h/3T')ft(w). (2.14) 

The expression for the covariance between ]9(co2) and ],,(w1) is somewhat compli- 
cated, but is given in Priestley (1966). It is sufficient here to quote the result that this 
covariance will be effectively zero if either 

(i) I wi ? C2 I> bandwidthofl r(o) 12 or 

(ii) I tl - t2 I> "width" of the function {WT'(u)}. 

(For a fuller discussion of these estimation procedures, together with numerical 
illustrations and a treatment of the "design relations" governing the choice of the 
parameters of the estimates, see the references quoted above.) 

3. THE BASIS OF THE TEST 
It is well known that, in the case of stationary processes, a logarithmic trans- 

formation will stabilize (approximately) the variance of the estimated spectral density 
function, and this device has been suggested by Jenkins and Priestley (1957) and 
Grenander and Rosenblatt (1957) in connection with goodness of fit tests. It follows 
from (2.10) and (2.11) that this transformation will produce the same effect when 
applied to evolutionary spectral estimates. With this in mind, let us write 

Y(t, w) = logf](wo). (3.1) 
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Then we have, approximately, 

E{ Y(t, w)} = logf/(co) (3.2) 
and 

var{Y(t,w)} = U2 ((O#0,'7T), (3.3) 
where 

r2 = (CIT') {f r(j ()14d0} (3.4) 

is now independent of co and t. Alternatively, we may write 

Y(t, co) = loge]t(C) + E(t, w), (3.5) 
where approximately, 

E[E(t, co)] = 0, all t, co, 

var [EQ, w)] = a2, all t, all o O, vr. 

Suppose now that we have evaluated the, estimated evolutionary spectra 4(w), over 
the interval (0, T). We now choose a set of times t1, t2, ..., t1 (say) and a set of 
frequencies 1, C2, ...I, oJ (say) which cover the range of times and frequencies of 
interest, and are such that conditions (i) and (ii) of Section 2 are both satisfied. If 
now we write 

Yii = Y(ti, uj),) i ll 

fi._=ft(coi), 
1931j I J, -1...,J, 

Eij = E(ti, w), ) 
then we have the model 

Yij =fij + Ei, (3.6) 

and if the {ti} and {wj} are spaced "sufficiently wide apart" the {Iij} will be approxi- 
mately uncorrelated. As yet, only the first two moments of the {,/(w)} have been 
investigated, but Jenkins (1961) suggested that, in the case of stationary processes, 
the logarithmic transformation would bring the distribution of the spectral estimates 
closer to normality. Although this statement was not substantiated, its validity is 
rendered highly plausible by the analogous result given in Kendall and Stuart (1966, 
Vol. 3, p. 93) relating to the distribution of the sample variance of a set of independent 
normal observations. It is shown by these authors that the variance-stabilized 
logarithmically transformed sample variance tends to normality more rapidly than the 
untransformed sample variance. The relevance of this result follows from the fact 
that a spectral estimate is distributed as a weighted sum of x2 variables, and conse- 
quently may be treated approximately as a x2 variable-as suggested by Blackman 
and Tukey (1958) and Jenkins (1961). It seems reasonable to suppose, therefore, that 
(at least approximately) we may treat the {Ejj} as independent N(O, C2). (This result 
requires rather more than the approximate normality of logJt(co); it requires, in fact, 
that the joint distribution of {log]t(C1)}, i = 1, ..., I, j = 1, ..., J, be approximately 
normal. A rigorous proof of this would certainly require a separate paper, but there 
seems little doubt that a result of this type could be proved under sufficiently strong 
conditions.) 
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It should be recalled that the variances of t(O), and 4t(i) (in the discrete case) are 
equal to 2a2. Accordingly, these frequencies should either be omitted from the set 
(Coi, ..., j), or alternatively for each t, 4t0) and 4(T) should be replaced by the single 
"entry", { ft(0)+t(il)}. This device will not affect the test for stationarity, but will 
certainly affect a test for "randomness"-see below. With the above assumption, 
(3.6) becomes the usual "two-factor analysis of variance" model, and may be rewritten 
in the conventional form 

H: Yij = k+ oti+gj + Y,j + (Ei-1..;j ,.,) (3.7) 
If {X(t)} is a stationary process, then 

E{4w()}r.f(w) (independent of t), 

wheref(w) is the usual (non-time-dependent) spectral density function. Consequently, 
we may test the stationarity of {X(t)} by using standard techniques to test the model 

H1: Yij = p+flj+Eij (3.8) 

against the general model H given by (3.7). Note that we may test for the presence 
of the "interaction" term, yij, even with one observation per "cell", since in this 
situation we know the value of 

a2 = var{fEi} 
a priori. In fact, it turns out that the interaction term has a rather interesting inter- 
pretation, and we discuss this point in the next section. 

4. INTERPRETATION OF THE PARAMETERS 
It is fairly obvious that the parameters {fa}, {/3j} may be interpreted as the "main- 

effects" of the time and frequency "factors" (respectively), and that the {yij} represent 
an "interaction" between these two factors. However, it is interesting to inquire 
under what circumstances we would expect the {yij} to be all zero. Now if all the 
{yij} are in fact zero, then log4(w) is additive in terms of time and frequency, so that 
f(w) is "multiplicative", that is, may be written in the form, 

f(co) = c2(t)f(W), (4.1) 

for some functions c(t) and f(co). 
If ft(w) is of the form (4.1) it is not difficult to show that {X(t)} must be of the 

form 
X(t) = c(t) XO(t), (4.2) 

where {X0(t)} is a stationary process with spectral density function, f(w). Processes 
of the form (4.2) have been discussed by Herbst (1963) and Priestley (1965), who 
described them as Uniformly Modulated Processes. Thus, a test for the presence of 
interaction is equivalent to testing whether or not {X(t)} is a Uniformly Modulated 
Process. 

We would point out that, in addition to the test for stationarity, this approach 
provides also a test for "complete randomness" (in other words, constancy of spectra 
over frequency). This is achieved simply by testing the model 

2 yij = +i+Eij (4.3) 
against the general model H. 
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5. THE TEST PROCEDURE 
Given the computed values of Yij-=logft,(w1), we first construct the standard 

analysis of variance table for a two-factor design, which, with the usual notation, is 
set out below. 

Item Degrees of freedom Sum of squares 

I 
Between times I-1 ST = J I (Yi. _ 

i =1 

Between frequencies J- I SF = I (YR. -Y)2 
j=1 

I J 
Interaction + residual (I-i) (J- 1) SO-R = (Ye,- Yj Y.+. ..)2 

Total IJ-1 S0= y 2 
i=1 J1= 

(1) In testing for stationarity, the first step is to test the interaction sum of squares, 
using the result SI?RIo-2 = X(I_1)(J_1). (Recall that, since a2 is known, all comparisons 
are based on x2 rather than F-tests.) 

(2) If the interaction is not significant, we conclude that {X(t)} is a uniformly 
modulated process, and proceed to test for stationarity by testing ST, using 

ST/u2 X(I-1)* 

(3) If, however, the interaction turns out to be significant, we conclude that 
{X(t)} is non-stationary, and non-uniformly modulated. As is usually the case, there 
is now little point in testing the "main-effect" ST, but we may well wish to examine 
whether the non-stationarity of {X(t)} is restricted only to some frequency components. 
(For example, we may wish to test whether the "high" frequencies are stationary and 
only the "low" frequencies non-stationary.) To test this type of hypothesis we select 
those frequencies of interest, say {w1, cjw2, ... w)}, and test for stationarity at these 
frequencies by using the statistic 

fiE(Yii _]i) 2-=a2Xk2(-1_) (5.1) 
jeK i=1 

(Here K denotes the set of integers {jl,1j2, . . jk}.) In particular, this type of test may 
be used to examine whether any one particular frequency component is stationary. 

(4) Reversing the roles of "times" and "frequencies", the above procedure may 
be used in exactly the same way to test for "complete randomness", either at all times 
(using SF when SI+R is not significant), or at a particular subset of times (using a 
statistic analogous to (5.1)). 

6. EXAMPLES 
We now apply our test to two examples. 
Example 1. Here we consider the uniformly modulated process (in discrete time), 

X(t) = {e-(t-500)2/2(200)'} X0(t), (t = 0, 1, 2, ... ), 
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where XO(t) is the (stationary) second-order autoregressive process 

XOQ+ 2)- 0.8X0(t + 1) + 0-4XO(t) = ZQ) 

in which the {Z(t)} as independent variables, each having the distribution N(0, 1002). 
Artificial realizations of this process were constructed, and the evolutionary spectra 
estimated for t = 108 (150) 558. The estimates, 4t(w), were obtained by using the 
discrete time analogue of (2.9) in which WTr(u) is given by (2.13), with T' = 200, 
and g(u) has the form (2.12) with h = 7. (For further details see Priestley, 1965).) 
For this analysis we find that 

cr2 = 7/150 (cf. equation (2.14)). 

Also, the window I P(CO) 2 has a bandwidth of approximately 7r/h = vr/7, and the 
window {WT,(t)} has width T' = 200. Thus, in order to obtain approximately un- 
correlated estimates, the points {wj}, {tJ should be chosen so that the spacings between 
the {1j} are at least ir/7 and the spacings between the {ti} are at least 200. In fact, as 
will be shown below, the test works quite satisfactorily even with a (uniform) {tJ 
spacing as low as 150. (This smaller spacing was used as it allowed us to include an 
extra value of t in Tables 1 and 3.) The {coj} were chosen as follows: 

j = vj/20, j- 1 (3) 19, 

corresponding to a uniform spacing of 3vr/20 (which just exceeds 7r/7). The values of 
loge4t(co) are shown in Table 1. 

TABLE 1 

\ 7T/20 47r/20 7i7/20 10r/20 137T/20 16iT/20 19X120 
t 

108 2-3597 2.3245 2-1499 1.9856 1-6258 1.4274 1-2494 
258 3-1849 3.2967 3.3749 2.8425 2-3800 2 0380 2-0579 
408 3-7692 3.8002 3-6135 3.1199 2-8137 2-5727 2-4673 
558 3-7253 3-6672 3-5288 3-1247 2-7545 2.7050 2-4871 

TABLE 2 

Item Degrees of Sum of squares x2= 
freedom (sum of squares/cr2) 

Between times 3 7-6353 163-61 
Between frequencies 6 6.4716 138 68 
Interaction + residual 18 0-1848 3.96 

Total 27 14-2917 306 25 

The analysis of variance is shown in Table 2. 
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As expected, the interaction is extremely small (confirming the uniformly modulated 
model) and both the "between times" and "between frequencies" sums of squares 
are highly significant, confirming that the process is non-stationary and that the 
spectra are non-uniform. 

Example 2. Here we consider a non-stationary, non-uniformly modulated process 
which was generated by taking the same stationary process, {Xo(t)}, of Example 1 
and passing it through each of the three (approximately) "band-pass" filters with 
ranges (0, 7/3), (iTr!3, 27/3), (2X-/3, IT) respectively. The outputs of the filters were then 
multiplied by three different functions of time and recombined to form the process 
{X(t)}. 

The evolutionary spectra of {X(t)} are as follows: 

ICl(t) 12f(CO), o < 7r/3, 
Jt(@) = I C2(t) 12f(w), 17/3 < co< 27/3, 

I C3(t) 12f(Cw), 27/3 < c <7T, 
where 

Cl(t)= e-(t-100)2/2(200)2 

C2(t) = [1+ (t - 300)2/275]-1, 

C3(t) = 2377 t2 e-t/300 

(For further details see Abdrabbo, 1966). 
The spectra were estimated from artificial realizations using the same formulae 

and parameters as in Example 1 (so that again aT2 = 7/150), and evaluated at the same 
values of t and co. The values of logtw(co) are as shown in Table 3. 

TABLE 3 

\ T/20 47X/20 7X/20 1O-/20 137X/20 167/20 197X/20 
t 

108 4*5786 4 6293 5 0356 4.6723 4 0922 3 8433 3 7419 
258 4-1970 4 1694 4-9950 4.4738 4 2272 4 1818 4 0763 
408 3-1430 3*3359 4-0464 3 9416 4 0465 4-3829 4 1709 
558 2-7110 2 8195 3 7248 3 7301 4-1195 4-5665 4 1467 

TABLE 4 

Item Degrees of Sum of x2= 
freedom squares (sum of squares/ur2) 

Between times 3 2 3187 49-69 
Between frequencies 6 1.9071 40-87 
Interaction+residual 18 4 3055 92-26 

Total 27 8 5313 182 82 

The analysis of variance is shown in Table 4. 
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In this case it will be noticed that the interaction term is highly significant (0.1 per 
cent), confirming that {X(t)} is non-uniformly modulated. The "between times" and 
"between frequencies" sums of squares are also highly significant, but it is instructive 
here to decompose the total x2 for (between times +interaction) into its various 
frequency components, as suggested in Section 5. We obtain the results set out in 
Table 5. 

TABLE 5 

j 1 4 7 10 13 16 19 Total 

x2 49*27 42*54 28-46 12-60 0-38 6.16 2.54 141-95 

To test each component for stationarity we refer each entry to x2 on three degrees 
of freedom. Thus, on the basis of these results we might conclude that, whilst the 
low frequencies were certainly non-stationary, there was no evidence to suggest non- 
stationarity in the high frequencies (although x2 for j = 16 is reasonably large com- 
pared with X2(0X05) = 7X81). However, since the estimated spectra at different times 
appear quite close at the upper frequencies, this result is hardly surprising. 
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