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A Measure of Stationarity in Locally Stationary
Processes With Applications to Testing

Holger DETTE, Philip PREUSS, and Mathias VETTER

In this article we investigate the problem of measuring deviations from stationarity in locally stationary time series. Our approach is based
on a direct estimate of the L2-distance between the spectral density of the locally stationary process and its best approximation by a spectral
density of a stationary process. An explicit expression of the minimal distance is derived, which depends only on integrals of the spectral
density of the locally stationary process and its square. These integrals can be estimated directly without estimating the spectral density, and
as a consequence, the estimation of the measure of stationarity does not require the specification of a smoothing bandwidth. We show weak
convergence of an appropriately standardized version of the statistic to a standard normal distribution. The results are used to construct
confidence intervals for the measure of stationarity and to develop a new test for the hypothesis of stationarity. Finally, we investigate the
finite sample properties of the resulting confidence intervals and tests by means of a simulation study and illustrate the methodology in two
data examples. Parts of the proofs are available online as supplemental material to this article.

KEY WORDS: Goodness-of-fit tests; Integrated periodogram; L2-distance; Nonstationary processes; Spectral density.

1. INTRODUCTION

Locally stationary time series models have found consid-
erable interest in the recent literature, because in many ap-
plications time series change their dependence characteristics
as time evolves. These phenomena cannot be adequately de-
scribed by the assumption of weak stationarity, and therefore
locally stationary processes provide an interesting class of mod-
els with more flexibility, as they offer a more realistic theo-
retical framework for the analysis of time series which allows
for the second-order characteristics of the underlying stochas-
tic process, and, more specifically, for its autocovariance struc-
ture to vary with time. Out of the large literature we mention
the early work on this subject of Priestley (1965), who con-
sidered oscillating processes. Neumann and von Sachs (1997)
and Nason, von Sachs, and Kroisandt (2000) discussed the es-
timation of evolutionary spectra by wavelet methods. Dahlhaus
(1997) gave a definition of locally stationary processes on the
basis of a time-varying spectral representation and established
the asymptotic theory for statistical inference in such cases (see
also Dahlhaus 2000). Some applications of locally stationary
processes to speech signals and earthquake data can be found
in the article by Adak (1998), while Sakiyama and Taniguchi
(2004) discussed the problem of discriminant analysis for lo-
cally stationary processes. More recent work in this field can
be found in the articles by Dahlhaus and Polonik (2006, 2009)
and Dahlhaus (2009) who discussed quasi maximum likelihood
estimation, empirical process theory, and its application to sta-
tistical inference in locally stationary processes.

Several models for locally stationary processes have been
proposed in the literature, including time-varying AR(p) mod-
els and time-varying ARMA(p,q) models. In contrast to the
“classical inference” mentioned in the previous paragraph, the
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problem of testing semiparametric hypotheses (such as a time-
varying autoregressive structure or stationarity) for a time-
varying spectral density has found much less attention. Sergides
and Paparoditis (2009) investigated semiparametric hypotheses
and proposed a bootstrap test in this context, but the rare liter-
ature typically focuses on testing for second-order stationarity,
which we call stationarity throughout this article for the sake of
simplicity. Several authors have pointed out the importance of
validating stationarity in locally stationary processes, such that
the statistician is able to decide at an early stage whether an
observed time series can be considered as covariance stationary
or not. Sakiyama and Taniguchi (2003) considered the problem
of testing stationarity versus local stationarity in a parametric
locally stationary model, while Lee et al. (2003) investigated
the constancy over time of a finite number of autocovariances.
von Sachs and Neumann (2000) proposed a multiple testing
procedure estimating empirical wavelet coefficients by local-
ized versions of the periodogram, while Paparoditis (2010) used
L2-distances between the local sample spectral density and an
overall spectral density estimator (see also Paparoditis 2009).
Usually statistical inference of the spectrum in locally station-
ary processes depends on local averages of the periodogram and
a common feature in many of these methods is the fact that the
statistical inference depends on the choice of additional reg-
ularization parameters. For example, the (Haar) multiple test
of von Sachs and Neumann (2000), checking the significance
of the coefficients in a wavelet expansion of the spectral den-
sity of the locally stationary process, depends on the threshold
value (and method). Similarly, Paparoditis (2009, 2010) com-
pared nonparametric estimators of the spectral density both of
the stationary and the locally stationary process, and as a conse-
quence, the resulting statistical analysis depends sensitively on
the choice of a smoothing parameter which is required for the
density estimation.

An alternative approach in this context is the application of
the empirical spectral measure for inference in locally station-
ary time series (see Dahlhaus and Polonik 2009). In particular
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Dahlhaus (2009) proposed a test for stationarity by comparing
estimates of the integrated time frequency spectral density un-
der the null hypothesis of stationarity and the alternative of lo-
cal stationarity. This approach avoids smoothing and under the
null hypothesis the corresponding empirical process converges
weakly to a Gaussian process. However, as pointed out in exam-
ple 2.7 of the article by Dahlhaus (2009), the calculation of the
limiting distribution of a corresponding Kolmogorov–Smirnov
statistic is an unsolved task, because the limiting process de-
pends in a complicated way on certain features of the data gen-
erating process.

In contrast to the literature cited in the previous paragraph,
which has its main focus on testing stationarity, the present ar-
ticle is devoted to deviations from stationarity in locally sta-
tionary processes. We propose an extremely simple measure
for a deviation from stationarity by determining the best L2-
approximation of the spectral density of the underlying process
by the spectral density of a stationary process. More precisely,
we consider the minimal distance

D2 = min
g

∫ π

−π

∫ 1

0
(f (u, λ) − g(λ))2 du dλ, (1.1)

where f (u, λ) denotes the spectral density of the locally sta-
tionary process (u ∈ [0,1], λ ∈ [−π,π]) and the minimum is
calculated over the set of all spectral densities g corresponding
to stationary processes. Note that D2 = 0 if and only if there
exists a function f : [−π,π] → C, such that the hypothesis

H0 : f (u, λ) = f (λ) a.e. on [0,1] × [−π,π] (1.2)

is satisfied, that is, the given locally stationary process is in fact
stationary. On the other hand, if the process is not stationary,
D2 (or a corresponding standardized version) is a natural mea-
sure for the deviation of the locally stationary process from sta-
tionarity. It will be shown in Section 2 that the minimal L2-
distance defined in (1.1) can be determined explicitly and de-
pends only on integrals of the functions f (u, λ) and f 2(u, λ)

calculated over the full time and frequency domain, which can
easily be estimated from the data by appropriate summations
over local periodograms. The result is an empirical measure of
stationarity which avoids the problem of smoothing the local
periodogram. Moreover, it can be shown that the limiting dis-
tribution of this estimate (after an appropriate standardization)
is normal, where the corresponding asymptotic variance can
easily be estimated from the data. As a consequence, we ob-
tain a simple and intuitive tool for investigating deviations from
stationarity in locally stationary processes, which includes—in
contrast to the available literature—the construction of asymp-
totic confidence intervals and tests for precise hypotheses. As
any method for time–frequency analysis, the new test proposed
in this article depends on a regularization parameter which con-
stitutes a compromise between time and frequency resolution.
However, to our knowledge the new method is the only avail-
able procedure for testing stationarity in locally stationary pro-
cesses which avoids a further regularization and yields a test
statistic with a simple limit distribution. It is therefore particu-
larly attractive for practitioners and we demonstrate that it is at
least competitive to (and in many cases more efficient than) the
tests which have been proposed so far.

The remaining part of the article is organized as follows. In
Section 2 we introduce the necessary notation and the basic as-
sumptions, and explain the main principle of our approach. The
asymptotic theory is derived in Section 3, while the finite sam-
ple properties of the estimate for the quantity D2 are studied in
Section 4. In particular, we investigate the coverage probabil-
ity and the power of the constructed confidence intervals and
tests. We also provide a comparison of the new test with the
procedures proposed by von Sachs and Neumann (2000) and
Paparoditis (2010) and illustrate the methodology by reanalyz-
ing several data examples, which have recently been discussed
in the literature. Finally, some more technical details required
in the asymptotic analysis are deferred to the Appendix and to
supplemental material on the web.

2. MEASURING STATIONARITY

Locally stationary time series can be defined via a sequence
of stochastic processes {Xt,T}t=1,...,T (T ∈ N), where each ob-
servation Xt,T exhibits a linear representation of the form

Xt,T =
∞∑

l=−∞
ψt,T,lZt−l, t = 1, . . . ,T. (2.1)

Throughout this article, we assume that the random variables Zt
are independent and identically normally distributed, with mean
zero and variance σ 2. The assumption of Gaussianity of the
errors is not necessary in general, but it is imposed to simplify
technical arguments (see Remark 2).

Since the constants ψt,T,l are in general time-dependent, each
process Xt,T will typically not be stationary. Nevertheless, if one
assumes that the coefficients behave like some smooth func-
tions in a neighborhood of time t/T , the time series becomes
locally stationary in the sense that observations close nearby
show approximately stationary behavior. Therefore we adopt
not only the usual summation condition

∞∑
l=−∞

|ψt,T,l| < ∞,

but impose additionally that there exist twice continuously dif-
ferentiable functions ψl : [0,1] → R with

∞∑
l=−∞

sup
t=1,...,T

|ψt,T,l − ψl(t/T)| = O(1/T). (2.2)

Furthermore, we assume that the technical conditions
∞∑

l=−∞
sup

u∈[0,1]
|ψl(u)||l|2 < ∞, (2.3)

∞∑
l=−∞

sup
u∈[0,1]

|ψ ′
l (u)||l| < ∞, (2.4)

∞∑
l=−∞

sup
u∈[0,1]

|ψ ′′
l (u)| < ∞ (2.5)

are satisfied. The time-varying spectral density of the locally
stationary process {Xt,T} is defined in terms of the auxiliary
functions ψl, that is,

f (u, λ) = σ 2

2π

∣∣ψ(u, exp(−iλ))
∣∣2

, (2.6)
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(a) (b)

Figure 1. (a) Plot of the local spectral density f (u, λ) in (2.7). (b) Plot of the best approximation of f by the spectral density
g(u, λ) = g∗(λ) = ∫ 1

0 f (u, λ)du.

where the function ψ is given by ψ(u, exp(−iλ)) :=∑∞
l=−∞ ψl(u) exp(−iλl). Assumption (2.3) is in general rather

mild, as it is satisfied by a variety of time-varying ARMA(p,q)

models. Also, it guarantees existence of the time-varying spec-
tral density function (2.6), and it was shown by Dahlhaus (1996)
that f is unique under the assumptions stated above.

The following lemma provides an explicit expression for the
minimal distance between the locally stationary density f (u, λ)

and the class of all spectral densities corresponding to station-
ary processes.

Lemma 1. The minimal distance defined in (1.1) is given by

D2 =
∫ π

−π

∫ 1

0
f 2(u, λ)du dλ −

∫ π

−π

(∫ 1

0
f (u, λ)du

)2

dλ.

Proof. Let g∗(λ) = ∫ 1
0 f (u, λ)du; then we obtain∫ π

−π

∫ 1

0
(f (u, λ) − g(λ))2 du dλ

=
∫ π

−π

∫ 1

0
(f (u, λ) − g∗(λ))2 du dλ

+
∫ π

−π

(g(λ) − g∗(λ))2 dλ

≥
∫ π

−π

∫ 1

0
(f (u, λ) − g∗(λ))2 dλ

=
∫ π

−π

∫ 1

0
f 2(u, λ)du dλ −

∫ π

−π

(∫ 1

0
f (u, λ)du

)2

dλ,

where there is equality if and only if g = g∗.

Example 1. Consider the tvMA(2) process Xt,T = cos(2π t/
T)Zt − (t/T)2Zt−1, where σ 2 = 1. We obtain by a straightfor-
ward calculation

f (u, λ) = 1

2π
{cos(2πu)2 − 2u2 cos(2πu) cos(λ) + u4}, (2.7)

and the best approximation via a stationary spectral density is
given by g∗(λ) = ∫ 1

0 f (u, λ)du = 7
20π

− 1
2π3 cos(λ). Plots of the

functions f (u, λ) and g∗(λ) are shown in Figure 1.

Observing the representation of the quantity D2 in Lemma 1,
an estimate for it can easily be constructed by estimating the
integrals

F1 = 1

2π

∫ π

−π

∫ 1

0
f 2(u, λ)du dλ, (2.8)

F2 = 1

4π

∫ π

−π

(∫ 1

0
f (u, λ)du

)2

dλ. (2.9)

In this context the additional regularization comes into play. As-
sume without loss of generality that the total sample size T can
be decomposed as T = NM, where N and M are integers and N
is even. The main idea is to split the entire data into M blocks
with N observations each, from which we define appropriate
local periodograms. Precisely, let IX

N(u, λ) := |JX
N(u, λ)|2 be the

usual periodogram around time u computed from N observa-
tions, that is, we set

JX
N(u, λ) := 1√

2πN

N−1∑
s=0

X	uT
−N/2+1+s,T exp(−iλs)

and Xi,T = 0, if i /∈ {1, . . . ,T} (see Dahlhaus 1997). Since
IX
N(u, λ) serves as a local estimate for the spectral density

f (u, λ), we obtain global estimates for the two integrals from
appropriate Riemann approximations in time and frequency.

For this purpose, we use the notation uj := tj
T := N(j−1)+N/2

T
(j = 1, . . . ,M) for the mid-point of each block and set

F̂1,T = 1

T

	N/2
∑
k=1

M∑
j=1

IX
N(uj, λk)

2, (2.10)

F̂2,T = 1

N

	N/2
∑
k=1

(
1

M

M∑
j=1

IX
N(uj, λk)

)2

, (2.11)
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where λk = 2πk/N denotes the usual Fourier frequency. The
estimate of the measure of stationarity D2 is finally given by

D̂2
T = 2π F̂1,T − 4π F̂2,T . (2.12)

Note that it is not self-evident that our approach is working,
because it is usually not true that an integrated function of the
periodogram converges to the corresponding integrated func-
tion of the spectral density (as it was pointed out for stationary
processes by Taniguchi 1980). This phenomenon is visible here
as well, but the difference only regards multiples of π , which
explains the somewhat unintuitive definition of D̂2

T in (2.12).
In the following section we will investigate the asymptotic

properties of the statistic D̂2
T for an increasing sample size.

3. ASYMPTOTIC PROPERTIES AND
STATISTICAL APPLICATIONS

In order to establish the asymptotic properties of the estimate
proposed in Section 2 we require the following basic assump-
tions. As noted above, we have T = NM, and we assume

N → ∞, M → ∞,
(3.1)

T1/2

N
→ 0,

N

T3/4
→ 0.

Our first result specifies the asymptotic distribution of the vec-
tor (F̂1,T , F̂2,T)T defined by (2.10) and (2.11).

Theorem 1. If the assumptions (2.3)–(2.5) and (3.1) are sat-
isfied, then

√
T{(F̂1,T , F̂2,T)T − (F1,F2 + dN,T)T} D→ N (0,�),

where the covariance matrix � and the constant dN,T are given
by

� =
(

5
π

∫ π

−π

∫ 1
0 f 4(u, λ)du dλ

2
π

∫ π

−π
(
∫ 1

0 f (u, λ)du
∫ 1

0 f 3(u, λ)du)dλ

2
π

∫ π

−π
(
∫ 1

0 f (u, λ)du
∫ 1

0 f 3(u, λ)du)dλ

1
π

∫ π

−π
((

∫ 1
0 f (u, λ)du)2

∫ 1
0 f 2(u, λ)du)dλ

)
(3.2)

and

dN,T = N

4πT

∫ π

−π

∫ 1

0
f 2(u, λ)du dλ, (3.3)

respectively.

Proof. For a proof of the asymptotic normality in Theorem 1
we use the Cramér–Wold device and show weak convergence
of the linear combination

AT(c) = cT
√

T{(F̂1,T , F̂2,T)T − (F1,F2 + dN,T)T}
D→ N (0, cT�c)

for all vectors c ∈ R
2. This is done in several steps: First, we

prove in the Appendix that the lth cumulant of the statistic
AT(c) satisfies

cuml(AT(c)) = O
(
T1−l/2) for l ≥ 2, (3.4)

which shows, inter alia, that the cumulants of degree higher than
2 converge to zero. Afterward, we calculate both the means and
the variances and covariances of F̂1,T , F̂2,T and obtain

cum1(AT(c)) = o(1) (3.5)

as well as

lim
T→∞ T Var(F̂1,T ) = 5

π

∫ π

−π

∫ 1

0
f 4(u, λ)du dλ, (3.6)

lim
T→∞ T Var(F̂2,T ) = 1

π

∫ π

−π

((∫ 1

0
f (u, λ)du

)2

×
∫ 1

0
f 2(u, λ)du

)
dλ, (3.7)

lim
T→∞ T Cov(F̂1,T , F̂2,T) = 2

π

∫ π

−π

(∫ 1

0
f (u, λ)du

×
∫ 1

0
f 3(u, λ)du

)
dλ. (3.8)

Details of these computations are available online as supple-
mental material. The assertion then follows because the cumu-
lants of the random variable AT(c) converge to the cumulants
of a normal distribution with mean 0 and variance cT�c.

Now a straightforward application of the Delta-method
yields the asymptotic distribution of the statistic D̂2

T defined
in (2.12).

Theorem 2. If the assumptions of Theorem 1 are satisfied,
then we have

√
T(D̂2

T − D2 + 4πdN,T)
D→ N(0, τ 2),

where the constant dN,T is defined in (3.3) and the asymptotic
variance is given by

τ 2 = 20π

∫ π

−π

∫ 1

0
f 4(u, λ)du dλ

− 32π

∫ π

−π

(∫ 1

0
f (u, λ)du

∫ 1

0
f 3(u, λ)du

)
dλ

+ 16π

∫ π

−π

((∫ 1

0
f (u, λ)du

)2 ∫ 1

0
f 2(u, λ)du

)
dλ.

(3.9)

The asymptotic bias 4πdN,T = 2πN
T F1 in Theorem 2 is non-

vanishing, since the condition N = o(
√

T) is excluded by the
assumptions in (3.1). Note that the proof of Theorem 1 shows
that such a bias is inevitable for all possible growth conditions
on M and N, as in general either F̂1,T or F̂2,T is biased. Never-
theless, it can easily be estimated by the statistic

BT := 2πN

T2

	N/2
∑
k=1

M∑
j=1

IX
N(uj, λk)

2 = 2πN

T
F̂1,T .

It follows from Theorem 1 that

√
T(BT − 4πdN,T) = 2πN

T

√
T(F̂1,T − F1)

P→ 0,
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Dette, Preuss, and Vetter: A Measure of Stationarity in Locally Stationary Processes 1117

thus Theorem 2 yields

√
T(D̂2

T − D2 + BT)
D→ N(0, τ 2).

For statistical applications it remains to estimate the asymp-
totic variance τ 2. In general (i.e., if D2 > 0), suitable estimators
for the three integrals in (3.9) can be constructed from rescaled
versions of

τ̂ 2
1 = 1

6T

	N/2
∑
k=1

M∑
j=1

IX
N(uj, λk)

4,

τ̂ 2
2 = 2

3NM2

	N/2
∑
k=1

M∑
j1,j2=1

IX
N

(
uj1, λk

)
IX
N

(
uj2, λk

)3
,

τ̂ 2
3 = 2

NM3

	N/2
∑
k=1

M∑
j1,j2,j3=1

IX
N

(
uj1, λk

)
IX
N

(
uj2, λk

)
IX
N

(
uj3, λk

)2
,

as the following theorem shows. Its proof is similar to the one
of Theorem 1 and is therefore omitted.

Theorem 3. If the assumptions of Theorem 1 are satisfied,
we have

τ̂ 2
1

P→ 1

π

∫ π

−π

∫ 1

0
f 4(u, λ)du dλ,

τ̂ 2
2

P→ 1

π

∫ π

−π

(∫ 1

0
f (u, λ)du

∫ 1

0
f 3(u, λ)du

)
dλ,

τ̂ 2
3

P→ 1

π

∫ π

−π

((∫ 1

0
f (u, λ)du

)2 ∫ 1

0
f 2(u, λ)du

)
dλ.

By means of the preceding result, we obtain a consistent es-
timator for the asymptotic variance τ 2 by setting

τ̂ 2
H1

= 20π2τ̂ 2
1 − 32π2τ̂ 2

2 + 16π2τ̂ 2
3 .

Under the assumption of stationarity (i.e., D2 = 0) the asymp-
totic variance in (3.9) reduces to

τ 2
H0

= 4π

∫ π

−π

f 4(λ)dλ,

and one estimates τ 2
H0

consistently by τ̂ 2
H0

= 4π2τ̂ 2
1 .

Remark 1. (a) If D2 is used as a measure for the deviation
from stationarity of a locally stationary process, we obtain from
Theorem 2 a consistent estimate. In order to address for differ-
ent size of the data we propose to use a normalized measure of
stationarity defined by

R := D2

2πF1
= 1 − 2

F2

F1
, (3.10)

where F1 and F2 are defined in (2.8) and (2.9), respectively.
Note that R ∈ [0,1], because by the Cauchy–Schwarz inequal-
ity 2F2 ≤ F1. In the following we use R as a measure for the
relative deviation from stationarity. A natural estimator for R is
given by

R̂ = D̂2
T + BT

2π F̂1,T
,

and we obtain from Theorem 1 and the Delta-method that the
central limit theorem

√
T(R̂ − R)

D→ N (0, ρ2) (3.11)

holds, where

ρ2 = 4
F2

2

F4
1

σ11 − 8
F2

F3
1

σ12 + 4
1

F2
1

σ22

and the σij are the elements of the covariance matrix � defined
in (3.2). In the same way as before we obtain a consistent esti-
mator ρ̂H1 for ρ, and it follows that the interval[

0, R̂ + ρ̂H1√
T

u1−α

]
(3.12)

is an asymptotic (1 − α) confidence interval for the “parame-
ter” R, where u1−α denotes the (1 − α) quantile of the standard
normal distribution. The coverage probability of (3.12) in finite
sample situations is investigated in Section 4.

(b) A further important application of the asymptotic results
consists in the construction of an asymptotic level α test for
the hypothesis of stationarity in locally stationary time series.
Observing that the hypothesis (1.2) is equivalent to D2 = 0, this
can be accomplished by rejecting the null hypothesis whenever

D̂2
T + BT ≥ τ̂H0√

T
u1−α, (3.13)

where τ̂ 2
H0

denotes the estimate of the asymptotic variance un-
der the null hypothesis. Moreover, the asymptotic power of this
test can be approximated by a further application of Theorem 2,
that is,

PH0 (“stationarity is rejected”) ≈ 	

(√
T

D2

τH1

− τH0

τH1

u1−α

)
,

where τH0 and τH1 denote the (asymptotic) standard deviation

of
√

T(D̂2
T + BT) under the null hypothesis and alternative, re-

spectively, and 	 is the distribution function of the standard
normal distribution.

(c) Note that the results presented in this section provide an
asymptotic level α test for the so-called precise hypotheses

H0 : R > ε versus H1 : R ≤ ε, (3.14)

where R ∈ [0,1] is defined in (3.10) (see Berger and Delampady
1987). The motivation for considering hypotheses of this type
consists in the fact that in practice a (locally stationary) time
series will usually never be precisely stationary, and a more re-
alistic question in this context would be, if the process shows
approximately stationary behavior (see also the discussion in
Remark 3). The parameter ε > 0 in (3.14) denotes a prespeci-
fied constant for which the statistician agrees to analyze the data
under the additional assumption of stationarity. From the weak
convergence in (3.11) an asymptotic level α test for the hypoth-
esis (3.14) is defined by rejecting the null hypothesis, whenever

R̂ − ε <
ρ̂H1√

T
uα. (3.15)

Note that this procedure allows for accepting the null hypothe-
sis of “approximate stationarity” at controlled Type I error.
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Remark 2. It should be noted that the results in Theorem 2
can be extended to the case where the innovations are not nec-
essarily normally distributed. This assumption simplifies the ar-
gument in the proof substantially but can be weakened to the
case of independent identically distributed random variables
with existing moments of all order. In this general case The-
orem 2 remains valid with a different asymptotic variance, that
is,

τ 2
g = τ 2 + κ4

κ2
2

{
4
∫ 1

0

(∫ π

−π

f 2(u, λ)dλ

)2

du

+ 4
∫ 1

0

(∫ π

π

f (u, λ)

(∫ 1

0
f (v, λ)dv

)
dλ

)2

du

− 8
∫ 1

0

(∫ π

−π

f (u, λ)2 dλ

×
∫ π

−π

f (u, λ)

(∫ 1

0
f (v, λ)dv

)
dλ

)
du

}
,

where τ 2 is defined in (3.9) and κ2 and κ4 denote the variance
and the fourth cumulant of the innovations. Even though τ 2

g is

in general different from τ 2, both quantities coincide at least in
the stationary case.

Remark 3. Following Dahlhaus (1997) it is too restrictive to
use the more natural definition

Xt,T =
∞∑

l=−∞
ψl(t/T)Zt−l, t = 1, . . . ,T,

for a locally stationary process, as in this case even time-varying
AR(1) processes are ruled out. This explains the need for the
more general class of processes introduced in (2.1). As a draw-
back, the spectral density function has to be defined via the ap-
proximating sequence ψl, and this means in particular that even
f (u, λ) = f (λ) does not imply stationarity of Xt,T , as one can
only conclude that the time-varying coefficients ψl,t,T can be
approximated by constants ψl. Thus the minimal distance D2

formally plays the role of a best approximation of the time-
varying spectral density by a time-homogeneous function, but
to avoid confusion we still refer to this case as the stationary
one. This concept is standard in the context of investigating sta-
tionarity in locally stationary processes (see, e.g., Paparoditis
2009, 2010 or Dahlhaus 2009).

4. FINITE SAMPLE PROPERTIES

In this section we study the finite sample properties of the
statistical applications mentioned in Remark 1. In particular we
investigate the approximation of the level of the test for station-
arity and present a detailed power comparison with two alter-
native methods which have recently been proposed for this pur-
pose. We also study the coverage probability of the asymptotic
confidence intervals for the parameter D2 (or R) and the prob-
lem of validating stationarity in the sense of (3.14), and illus-
trate potential applications in two data examples. All reported
simulation results are based on 1000 simulation runs.

4.1 Testing for Stationarity

4.1.1 Some Comments on the Choice of M and N. It is an
intrinsic feature that any statistical inference in locally station-
ary processes depends on the choice of M and N (or on simi-
lar parameters) in the definition of the local periodogram (see
Dahlhaus 1997; Paparoditis 2010; among many others) and in
this paragraph we investigate the impact of this choice on level
and power of the test for stationarity. For this purpose we ex-
emplarily consider the tvMA(2) model

Xt,T = 2Zt −
{

1 + b cos

(
2π

t

T

)}
Zt−1, (4.1)

with independent, standard Gaussian distributed innovations
Zt and different choices for the parameter b. Other scenarios
showed similar results and are not depicted for the sake of
brevity. In Table 1 we display the simulated rejection proba-
bilities of the test (3.13) for different combinations of M and N.
The choice b = 0 corresponds to the null hypothesis of station-
arity, while the values b = 0.5 and b = 1 represent two alter-
natives. We observe that all rejection probabilities are increas-
ing with M (under the null hypothesis and alternative). In other
words, a larger choice of M will usually increase the power but
at the same time yields an overestimation of the nominal level.
From Table 1 it is visible that in all cases the choice M = 8
leads to a reasonable approximation of the nominal level and
only for sample sizes T = 1024 and T = 2048 a larger value can
be recommended. This corresponds to intuition because under
the null hypothesis (i.e., b = 0) the spectral density does not
depend on u so that even small values of M lead to a precise
approximation of the nominal level of the test. To obtain both

Table 1. Rejection probabilities of the test (3.13) in the tvMA(2) model (4.1)
for different values of b

H0 : b = 0 H1 : b = 0.5 H1 : b = 1

T N M 5% 10% 5% 10% 5% 10%

256 32 8 0.062 0.138 0.090 0.200 0.266 0.463
256 16 16 0.134 0.251 0.177 0.33 0.411 0.574

512 64 8 0.053 0.125 0.117 0.234 0.430 0.582
512 32 16 0.125 0.240 0.216 0.354 0.535 0.697

1024 128 8 0.038 0.122 0.140 0.263 0.690 0.825
1024 64 16 0.079 0.166 0.224 0.381 0.758 0.866

2048 256 8 0.049 0.112 0.246 0.386 0.921 0.97
2048 128 16 0.073 0.161 0.297 0.452 0.943 0.983
2048 64 32 0.158 0.267 0.438 0.558 0.965 0.98
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Table 2. Simulated level of the test (3.13) in models (4.2)–(4.4) for different parameters

H0 : Xt + φXt−1 = Zt

φ = −0.5 φ = −0.25 φ = 0 φ = 0.25 φ = 0.5

T N M 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

256 32 8 0.009 0.041 0.025 0.077 0.046 0.092 0.062 0.141 0.077 0.152
512 64 8 0.014 0.048 0.032 0.085 0.048 0.11 0.056 0.127 0.055 0.146

1024 128 8 0.021 0.057 0.036 0.081 0.039 0.097 0.047 0.118 0.06 0.132

H0 : Xt = Zt + θZt−1

θ = −0.5 θ = −0.25 θ = 0.1 θ = 0.25 θ = 0.5

T N M 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

256 32 8 0.054 0.135 0.058 0.132 0.041 0.086 0.02 0.08 0.014 0.048
512 64 8 0.041 0.121 0.042 0.107 0.031 0.085 0.021 0.075 0.014 0.055

1024 128 8 0.048 0.109 0.055 0.117 0.042 0.098 0.034 0.08 0.019 0.071

H0 : Xt + φXt−1 = Zt + θZt−1

(φ, θ) = (−0.25,−0.25) (−0.5,−0.5) (0.5,0.5) (0.25,−0.25) (0.25,0.25)

T N M 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

256 32 8 0.048 0.119 0.051 0.119 0.041 0.109 0.056 0.137 0.045 0.113
512 64 8 0.049 0.102 0.054 0.123 0.046 0.097 0.063 0.151 0.042 0.105

1024 128 8 0.047 0.105 0.056 0.12 0.05 0.106 0.053 0.124 0.052 0.093

a reasonable approximation of the level and a good power be-
havior of the test, we therefore recommend to choose M = 8
for sample sizes up to T = 2048. In the following section we
will illustrate that this choice yields a good approximation of
the nominal level for many other stationary processes.

4.1.2 Approximation of the Nominal Level. We now study
the approximation of the nominal level of the test for stationar-
ity defined in (3.13) in the following ARMA(p,q) models:

Xt + φXt−1 = Zt, (4.2)

Xt = Zt + θZt−1, (4.3)

Xt + φXt−1 = Zt + θZt−1, (4.4)

where we investigate various combinations of the parameters
φ and θ . On the basis of the results of the previous paragraph
we used M = 8 in the three examples under consideration. The
corresponding rejection probabilities are depicted in Table 2 for
various parameters in the models (4.2)–(4.4). In most situations
the approximation of the nominal level of the test is rather ac-
curate. In the AR(1) and MA(1) model the test is conservative
for the parameters φ = −0.5 and θ = 0.5, respectively, whereas
in the case of an ARMA(1,1) process we observe a reasonable

approximation of the Type I error for all parameter combina-
tions.

Remark 4. Note that the statistic D̂2
T is essentially a quadratic

form in the random variables IX
N(uj, λk). Therefore it is rea-

sonable to investigate an approximation of its distribution by
a scaled and shifted χ2 distribution. To be precise, let YT de-
note a χ2 distributed random variable with nT = 2T/τ̂ 2

H0
de-

grees of freedom and set aT = −BT − 1; then 1
nT

YT + aT is
approximately normally distributed with expectation −BT and

variance
τ 2

H0
T . Because under the null hypothesis the statistic D̂2

T
is also approximately normally distributed with the same expec-
tation and variance, an alternative asymptotic level α test can be
defined by rejecting the null hypothesis, whenever

D̂2
T >

χ2
nT ,1−α

nT
+ aT , (4.5)

where χ2
nT ,1−α denotes the (1 − α) quantile of χ2 distribution

with nT degrees of freedom. In order to check if this test yields
a better approximation of the nominal level we have exemplar-
ily investigated model (4.4). The rejection probabilities of the
test (4.5) are depicted in Table 3, and comparing these with the

Table 3. Simulated level of the test (4.5) in model (4.4) for different parameters

H0 : Xt + φXt−1 = Zt + θZt−1

(φ, θ) = (−0.25,−0.25) (−0.5,−0.5) (0.5,0.5) (0.25,−0.25) (0.25,0.25)

T N M 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

256 32 8 0.045 0.119 0.045 0.118 0.04 0.106 0.053 0.135 0.045 0.112
512 64 8 0.048 0.102 0.052 0.122 0.045 0.097 0.057 0.149 0.04 0.102

1024 128 8 0.047 0.105 0.055 0.119 0.05 0.106 0.051 0.124 0.051 0.098
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Table 4. Rejection probabilities of the test (3.13) for various alternatives of local stationarity

(4.6) (4.7) (4.8) (4.9) (4.10) (4.11)

T 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

256 0.828 0.919 0.681 0.83 0.899 0.964 0.207 0.336 0.740 0.864 0.627 0.775
512 0.986 0.997 0.943 0.978 0.997 1 0.277 0.422 0.951 0.978 0.865 0.924

1024 1 1 0.999 1 1 1 0.386 0.516 0.990 1 0.980 0.997

third part of Table 2 we do not observe substantial differences
with respect to the approximation of the nominal level. Because
other scenarios (which we have not depicted here for the sake of
brevity) showed a similar picture we will work with quantiles
from the normal distribution throughout this section.

4.1.3 Power Consideration. In this section we study the
power of the test and compare it with some alternative proce-
dures for testing stationarity from the literature. For this pur-
pose we consider the following nonstationary processes:

Xt,T = 1.1 cos(1.5 − cos(4π t/T))Zt−1 + Zt, (4.6)

Xt,T = 0.6 sin(4π t/T)Xt−1 + Zt, (4.7)

Xt,T = (0.5Xt−1 + Zt)I{[1,T/4]∪[3T/4+1,T]}(t)

+ (−0.5Xt−1 + Zt)I[T/4+1,3T/4](t), (4.8)

Xt,T = (−0.5Xt−1 + Zt)I{[1,T/2]∪[T/2+T/64+1,T]}
+ 4ZtI[T/2+1,T/2+T/64](t), (4.9)

where IA(t) denotes the indicator function of a set A. Addition-
ally we investigate a wavelet process (see Van Bellegem and
von Sachs 2008) defined by

Xt,T =
T−1∑
k=0

w1(k/T)ψ1,k−tZ1,k +
T−1∑
k=0

w2(k/T)ψ2,k−tZ2,k,

(4.10)

where the functions w1,w2 and the coefficients ψ1,k,ψ2,k are
given by

w1(x) = 0.6 cos(4πx), w2(x) = 0.8x2,

ψ1,k = 2−1/2I{0}(k) − 2−1/2I{1}(k),

ψ2,k = 1
2 I{0,1}(k) − 1

2 I{2,3}(k),

respectively. Our final example is of the form

Xt,T =
∫ π

−π

exp(iλt)A(t/T, λ)dξ(λ), (4.11)

where ξ is an orthogonal-increment process and

A(u, λ) = 1

2π

(
1 − (

0.3 + 8.7 cos(6πu)

· I[1/2,3/4]×[π/2,2π/3](u, λ)
)

exp(−iλ)
)
.

One can show that Xt,T from (4.11) defines a locally stationary
process with spectral density f (u, λ) = |A(u, λ)|2 (see Dahlhaus
1996).

The models (4.6)–(4.8) have been considered by Paparoditis
(2010) as well, and we investigate these for the sake of a com-
parison. Models (4.6) and (4.7) have smooth changes in the

autocovariance structure while model (4.8) represents a pro-
cess with a structural break. In model (4.9) the autocovari-
ance changes only in a very short time period, while model
(4.10) represents a locally stationary wavelet process (see Van
Bellegem and von Sachs 2008). Finally, model (4.11) corre-
sponds to a locally stationary process, where nonstationarity is
expressed over a short period of time and a narrow frequency
band. According to the discussion in Section 4.1.1 we choose
M = 8, because this choice yields a satisfying approximation
of the nominal level. The simulated rejection probabilities are
displayed in Table 4. We observe that all deviations from sta-
tionarity are detected with reasonable probabilities. For the al-
ternatives (4.6)–(4.8) the power of the new test can now be com-
pared with the power of the test proposed by Paparoditis (2010)
for checking stationarity. This author considered the statistic

max
N/(2T)≤s≤T−N/(2T)

N
√

b(QT(us) − μT),

where μT is a bias which depends only on the sample size and
some kernel function K, and

QT(us) :=
∫ π

−π

(
1

N

∑
j

Kb(λ − λj)

(
IN(us, λj)

f̂ (λj)
− 1

))2

dλ

is an estimate of the integrated distance
∫ π

−π
(f (us, λ)/f (λ) −

1)2 dλ. Here f̂ (λ) = 1
T

∑
j Kh(λ−λj)IT(λj) denotes a kernel es-

timate of the spectral density (from all data) under the assump-

tion of stationarity, Kh(x) = K(x/h)
h , and b and h are bandwidths.

In other words, this approach divides the data in segments with
N = o(T) points, and for each segment the L2-distance between
the spectral density estimator using only N data points and the
global spectral density estimator using all T data points is calcu-
lated. Finally, the maximum of the distances over all segments
is determined. Paparoditis (2010) pointed out that the power of
this test depends sensitively on the choice of the bandwidths in
the kernel estimators and investigated several bandwidths and
window lengths. The range of the power of his test for these
different choices is displayed in Table 5 for the sake of an easy
comparison. We observe that in models (4.6) and (4.8) the test
proposed in this article yields a substantially larger power than
the procedure proposed by Paparoditis (2010) for all choices
of the bandwidth and window length in this procedure. Even for
the best choice (which is of course not known in applications)
the power of the new test is larger. In model (4.7) it is at least
possible to choose the parameters of regularization such that
the test of Paparoditis (2010) yields a similar power behavior as
the test (3.13). However, for most choices of these regulariza-
tion parameters the power of the test proposed by (Paparoditis
2010) is also substantially smaller in this example.
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Table 5. The range of the power of the test of Paparoditis (2010) for different bandwidths and window lengths

(4.6) (4.7) (4.8)

T 5% 10% 5% 10% 5% 10%

256 [0.495,0.805] [0.675,0.898] [0.485,0.75] [0.641,0.85] [0.46,0.605] [0.555,0.765]

An alternative test for stationarity in locally stationary pro-
cesses was proposed by von Sachs and Neumann (2000). Their
approach is based on Haar wavelets dividing the data and the
interval [−π,π] into different parts and comparing the spectral
density estimators on neighboring intervals, both in time and
frequency. Formally, the test rejects the null hypothesis of sta-
tionarity if the maximum of the coefficients

2(j+j′)/2

π1/2

∫ (k′+1)2−j′π

k′2−j′π

(
I〈	k2−jT
,	(k+1/2)2−jT
〉(λ)

− I〈	(k+1/2)2−jT
,	(k+1)2−jT
〉(λ)
)

dλ,

with k = 0, . . . ,2j − 1, k′ = 0, . . . ,2j′ − 1, j = 0, . . . , J, j′ =
0, . . . , J′, exceeds a suitable quantile of the normal distribution,
where

I〈L,R〉(λ) := 1

2π(R − L + 1)

∣∣∣∣∣
R∑

t=L

Xt exp(−iλt)

∣∣∣∣∣
2

is the ordinary periodogram for the sequence XL, . . . ,XR. In
Table 6 we show the simulated power of this test for the six
alternatives (4.6)–(4.11). It was pointed out by von Sachs and
Neumann (2000) that the performance of the test depends sen-
sitively on the choice of the regularization parameters J and
J′ and in the simulation study these are chosen such that the
nominal level of the wavelet test is approximated with reason-
able accuracy, that is, J = 2 and J′ = 0. The results in Tables 4
and 6 are therefore directly comparable. We observe that in
model (4.6)–(4.8) the test (3.13) proposed in the present article
yields substantially larger rejection probabilities than the test of
von Sachs and Neumann (2000). Interestingly the power of the
latter test does not increase with the sample size in these ex-
amples, and it is not obvious that their test is consistent in this
setting. On the other hand, the wavelet test has some advantages
compared to the test (3.13) for the alternatives (4.9)–(4.11) by
its construction because these examples represent noncontinu-
ous changes in the local spectral density. While the improve-
ment is substantial in example (4.9), it is not so visible for the
alternatives (4.10) and (4.11) if the sample size is larger than
T = 512.

4.2 Confidence Intervals

The coverage probability of the confidence intervals defined
in (3.12) is exemplarily investigated for the tvMA(2) model de-
fined in (4.1) and for sample sizes T ≤ 2048. The results are
displayed in Table 7 for various values of T and M. We ob-
serve reasonable coverage probabilities for b = 0 and b = 0.5;
in the case of stationarity (b = 0), the actual coverage proba-
bility is in fact slightly larger than the prespecified level, while
the opposite behavior is observed in the case b = 1. In all cases
the accuracy is improved with increasing sample size. Note for
b = 0.5 and b = 1 that the coverage probability is increasing
with M while it is relatively stable in the case b = 0, as ex-
pected for stationary time series. Based on our numerical exper-
iments, we recommend to choose the parameter M sufficiently
large in order to account for the local structure of the time se-
ries in a satisfying way. In particular, for sample sizes T ≤ 2048
we conclude that the choice M = 16 is sufficient for most of
the examples while in some cases M = 32 leads to better re-
sults (see the part corresponding to b = 1). Table 7 shows that
the coverage probability is satisfying even for smaller values
of M if b = 0.5 or b = 0. An intuitive explanation for these
observations is again that a smaller value of b yields a lower
time-dependency of the spectral density, and as a consequence,
smaller values of the factor M are required for efficient analy-
sis.

4.3 Validating Stationarity

In this section we investigate the finite sample properties
of the test (3.15) for the precise hypothesis (3.14), where the
bound for accepting stationarity is chosen as ε = 0.1. As in
Section 4.2 we consider the tvMA(2) model defined in (4.1).
Note that for the values b = 1, b = 0.5, and b = 0 we ob-
tain Rb=1 ≈ 0.134, Rb=0.5 ≈ 0.042, and Rb=0 = 0, respectively.
Therefore the cases b = 0 and b = 0.5 correspond to the alterna-
tive H1 : R < 0.1, while the choice b = 1 gives a scenario for the
null hypothesis H0 : R ≥ 0.1. The results are depicted in Table 8
for various choices of M and N. The power of the test (3.14) is
decreasing with M. We recommend to choose M = 8 for sample
sizes T ≤ 1024 and M = 16 if T = 2048 in order to obtain a sat-
isfying approximation of the nominal level and a good size of
the test. Note that the choice b = 1 does not correspond to the

Table 6. Rejection frequencies of the wavelet test for stationarity proposed by von Sachs and Neumann (2000) under various alternatives

(4.6) (4.7) (4.8) (4.9) (4.10) (4.11)

T 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

256 0.224 0.306 0.275 0.375 0.219 0.312 0.616 0.686 0.934 0.96 0.938 0.972
512 0.207 0.289 0.258 0.342 0.228 0.317 0.754 0.80 0.99 1 0.999 1

1024 0.198 0.294 0.20 0.294 0.232 0.344 0.94 0.964 1 1 1 1
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Table 7. Coverage probabilities of the asymptotic confidence intervals (3.12) in the tvMA(2) model (4.1)
for different values of b

b = 0 b = 0.5 b = 1

T N M 95% 90% 95% 90% 95% 90%

256 32 8 0.975 0.932 0.948 0.9 0.876 0.819
256 16 16 0.975 0.939 0.954 0.923 0.897 0.854

512 64 8 0.966 0.924 0.954 0.904 0.885 0.815
512 32 16 0.955 0.93 0.94 0.906 0.896 0.85

1024 128 8 0.958 0.9 0.933 0.886 0.875 0.8
1024 64 16 0.959 0.924 0.954 0.907 0.888 0.827

2048 256 8 0.948 0.894 0.926 0.867 0.847 0.774
2048 128 16 0.954 0.91 0.928 0.875 0.908 0.867
2048 64 32 0.975 0.945 0.946 0.909 0.943 0.913

boundary of the hypothesis. Therefore it is expected that the
level of the test for b = 1 should be smaller than the nominal
level and approximately α for a parameter b∗ with Rb∗ = 0.1,
that is, b∗ ≈ 0.815. This can be observed for sample sizes larger
than 512.

4.4 Data Examples

In this subsection we illustrate the application of the de-
veloped methodology by reanalyzing two data examples from
the recent literature. We begin with an example from neuro-
science which has been considered by von Sachs and Neumann
(2000) and Paparoditis (2009) as well. These authors analyzed a
dataset of tremor data recorded in the Cognitive Neuroscience
Laboratory of the University of Québec at Montreal. On the
whole, there are 3072 observations, and the first-order differ-
ences �t = Xt − Xt−1 of the time series are analyzed. The
purpose of the study is a comparison of different regions of
tremor activity coming from a subject with Parkinson’s dis-
ease. In the left part of Figure 2 we show a plot of the esti-
mate

f̂ (u, λ) = 2π

N

N∑
k=1

1

b
K

(
λ − λk

b

)
IX
N(u, λk) (4.12)

for the two-dimensional density f (u, λ), where N = 256 and
b = 0.18 (see Paparoditis 2009 for a similar approach). The

plot indicates some nonstationarity in the data and it might be
of interest to investigate this visual conclusion by the statisti-
cal methodology developed in this article. For the calculation
of the test statistic we used N = 192 and M = 16 in order to
address for non-stationary behavior of the time series and to
keep the bias reasonably small. For the measure D2 of station-
arity we obtain D̂2 = D̂2

T + BT ≈ 3.56 × 10−7 with a standard
deviation of τ̂H1 ≈ 1.06 × 10−5. This yields for the standard-
ized distance

√
T D2

τ
the estimate

√
3071 D̂2

τ̂H1
≈ 1.884 and the

test for stationarity rejects the null hypothesis with a p-value
of 0.033. Note that these findings confirm the investigations of
Paparoditis (2009). In our second example we investigate 1201
observations of weekly egg prices at a German agriculture mar-
ket between April 1967 and May 1990. Following Paparoditis
(2010), again the first-order differences �t = Xt −Xt−1 are ana-
lyzed. For the calculation of the estimate D̂2 and the test statistic
we chose N = 80, M = 15 and obtain D̂2 = D̂2

T + BT ≈ 0.0013,

τ̂H1 ≈ 0.0967, which yields the estimate
√

1200 D̂2

τ̂H1
≈ 0.454

for the standardized distance
√

T D2

τ
. A plot of the density es-

timate (4.12) is shown in the right panel of Figure 2, where
we used N = 134 and b = 0.112. Although this plot shows
some non-stationary behavior for small and large values of u
we obtain a p-value of 0.321 and the null hypothesis of sta-
tionarity cannot be rejected. These observations are different
from the result obtained by Paparoditis (2010). An possible ex-

Table 8. Rejection frequencies of the test for the precise hypothesis (3.14) (with ε = 0.1) of the tvMA(2) model (4.1)
for different values of b

b = 0 (H1) b = 0.5 (H1) b = 0.815 (H0) b = 1 (H0)

T N M 5% 10% 5% 10% 5% 10% 5% 10%

256 32 8 0.224 0.334 0.153 0.254 0.09 0.154 0.055 0.107
256 16 16 0.178 0.254 0.131 0.2 0.071 0.113 0.051 0.084

512 64 8 0.338 0.474 0.209 0.317 0.091 0.155 0.043 0.081
512 32 16 0.316 0.433 0.201 0.292 0.084 0.139 0.04 0.068

1024 128 8 0.563 0.677 0.304 0.422 0.085 0.149 0.029 0.069
1024 64 16 0.467 0.587 0.288 0.375 0.087 0.141 0.03 0.052

2048 256 8 0.793 0.863 0.444 0.567 0.132 0.201 0.03 0.061
2048 128 16 0.715 0.797 0.435 0.547 0.07 0.13 0.008 0.026
2048 64 32 0.621 0.694 0.332 0.428 0.05 0.091 0.007 0.013
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Figure 2. Estimate of the spectral density for two datasets. Left: neuroscience data. Right: egg data.

planation is that we smooth the differences between the local
spectral density and the best stationary approximation over time
while Paparoditis (2010) took the maximum as the test statis-
tic.

APPENDIX: TECHNICAL DETAILS

This appendix is devoted to the proof of (3.4), which is based on the
product theorem for cumulants from the work of Brillinger (1981), to
which we refer for all unexplained terminology. We restrict ourselves
to the case c = (1,0), as the general one follows from exactly the same
lines with an additional amount of notation. By assumption we focus
on l ≥ 2 only. In this case the cumulant is invariant under translation,
and therefore it suffices to compute the lth cumulant of

√
TF̂1,T , which

by multilinearity becomes

cuml(
√

TF̂1,T )

= cuml

(
1

T1/2

M∑
j=1

	N/2
∑
k=−	(N−1)/2


IX
N(uj, λk)

2

)

= 1

Tl/2

M∑
j1,...,jl=1

	N/2
∑
k1,...,kl=−	(N−1)/2


cum
(
IX
N

(
uj1 , λk1

)2
, . . . ,

IX
N

(
ujl , λkl

)2)
.

Assumption (2.2) yields

IX
N(uj, λk)

2 = 1

(2πN)2

N−1∑
p,q,r,s=0

∞∑
v,w,x,y=−∞

exp(−iλk(p − q + r − s))

× ψv(uj,p)ψw(uj,q)ψx(uj,r)ψy(uj,s)

× E
(
Ztj,p−v Ztj,q−w Ztj,r−x Ztj,s−y

) + O

(
1

T

)
,

where we have set tj,p = tj − N/2 + 1 + p and uj,p = tj,p/T . It is obvi-
ous that we can forget about the small order term above.

Let us introduce some further notation. First we set

Yi1 = Ztji,pi−vi
, Yi2 = Ztji,qi−wi

,

Yi3 = Ztji,ri−xi
, Yi4 = Ztji,si−yi

for i ∈ {1, . . . , l}. Then we define

V(ν) = 1

Tl/2

1

N2l

×
∞∑

v1,...,yl=−∞

M∑
j1,...,jl=1

N−1∑
p1,...,sl=0

	N/2
∑
k1,...,kl=−	(N−1)/2


ψv1

(
uj1,p1

) · · ·

× ψyl

(
ujl,sl

)
exp

(−iλk1 (p1 − q1 + r1 − s1)
) · · ·

× exp
(−iλkl (pl − ql + rl − sl)

)
× cum(Yik; ik ∈ ν1) · · · cum(Yik; ik ∈ ν2l) (A.1)

for any indecomposable partition ν = ν1 ∪ · · · ∪ ν2l with subsets con-
taining two elements of the table

(1,1) (1,2) (1,3) (1,4)
...

...
...

...

(l,1) (l,2) (l,3) (l,4)

The product theorem finally gives

cuml(
√

TF̂1,T ) = 1

(2π)2l

∑
ν

V(ν),

where the summation on the right side is performed with respect to
all indecomposable partitions containing two elements, due to the nor-
mality of Z. As the number Cl of such partitions does not depend on T ,
it suffices to prove that each V(ν) has the desired properties. Thus we
keep ν fixed. Also as ν is indecomposable, we know that each row of
the table communicates with any other one, and thus we can assume
without loss of generality that the ith row hooks with the (i + 1)st one
(otherwise we switch the rows accordingly).

Let us also fix v1, . . . , yl and j1. That the first row hooks with the
second one means that a product of the form cum(Y11,Y23) appears
within (A.1). In order for it to be nonzero the corresponding indices of
Z have to be equal, that is, there has to exist a relation of the form

tj1 − N/2 + 1 + p1 − v1 = tj2 − N/2 + 1 + r2 − x2

⇔ r2 = p1 − v1 + x2 + tj1 − tj2 . (A.2)

Thus r2 has to satisfy both

x2 − v1 + tj1 − tj2 ≤ r2 ≤ x2 − v1 + tj1 − tj2 + N − 1

and

0 ≤ r2 ≤ N − 1,
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and since v1, x2, and tj1 are kept fixed and as tj1 − tj2 = mN for m ∈
Z, we conclude that there are at most two options for tj2 (and thus
for j2) that lead to a nonzero cumulant. By induction it follows that
given j1 there is only a finite number Dl of valid choices for the indices
j2, . . . , jl, and in the following we keep one of these fixed as well.

We have already seen in (A.2) that there are 2l conditions of the
form

p1 − r2 = v1 − x2 + tj2 − tj1 (A.3)

that have to be satisfied in order for the cumulants to be nonzero. Since
ν is a partition, each variable p1, . . . , sl appears exactly once within
these 2l expressions. On the other hand, using

	N/2
∑
k=−	(N−1)/2


exp(−iλkt) =
	N/2
∑

k=−	(N−1)/2

exp(−iλtk)

= NI{NZ}(k) (A.4)

for any integer t, we see that further l equations

pi − qi + ri − si = miN with mi ∈ Z (A.5)

have to be valid as well, and it is obvious that only mi ∈ {−1,0,1} is
possible. Fix one of the El possible sequences m1, . . . ,ml. In the fol-
lowing we will prove that the solution space of the previous system of
3l equations in 4l variables is at most of dimension l + 1. For this as-
sertion it suffices to show that the solution space of the corresponding
homogeneous system has the same properties.

To this end we identify R
4l with the variables p1,q1, r1, s1, . . . ,pl,

ql, rl, sl in that particular order. Then we set

vi = (0 · · · 0 1 −1 1 −1 0 · · · 0 )T ∈ R
4l

for i ∈ {1, . . . , l}
and

wi = (0 · · · 0 1 0 · · · 0 −1 0 · · · 0 )T ∈ R
4l

for i ∈ {1, . . . ,2l},
where the vectors vi and wi relate to the homogeneous versions of the
equations in (A.5) and (A.3) in an obvious way: vi refers to the condi-
tions involving pi, . . . , si, whereas wi represents the 2l equations from
(A.3) in arbitrary order. The claim on the dimension of the solution
space can be deduced from the following lemma.

Lemma 2. The vectors v2, v3, . . . , vl,w1, . . . ,w2l are linearly inde-
pendent.

Proof. Suppose there are constants α2, α3, . . . , αl, β1, . . . , β2l such
that

α2v2 + α3v3 + · · · + αlvl + β1w1 + · · · + w2lβ2l = 0. (A.6)

Focus on those wi1 with a nonzero entry among the first four rows.
Since v1 is not included in the sum, the corresponding coefficients βi1
have to be zero, as otherwise (A.6) would not be satisfied. Now the
partition is chosen in such a way that the first row of the table hooks
with the second one; thus there is a vector wi12 with one nonzero entry
within rows 1 to 4 and the second nonzero entry within rows 5 to 8.
As βi12 is zero, the same argument as before forces α2 to be zero. The
claim now follows by induction, as we have αj = 0, thus each βij = 0,
and the jth row hooks with the (j + 1)st.

With the aid of these results the proof of assertion (3.4) is now easy.
From the previous discussion we know that the sum in (A.1) has the

following upper bound:

|V(ν)| ≤ DlElσ
4l 1

Tl/2

1

N2l

×
∞∑

v1,...,yl=−∞
MNl+1Nl sup

u

∣∣ψv1(u)
∣∣ · · · sup

u

∣∣ψyl(u)
∣∣

= O
(
T1−l/2)

.

SUPPLEMENTARY MATERIALS

Mean and covariance: The additional material contains parts
of the proof of Theorem 1, namely the computation of the
asymptotic mean and (co)variance. (supplement.pdf)

[Received December 2010. Revised March 2011.]
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