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On the estimation of a harmonic component in a time series 
with stationary independent residuals 

BY A. M. WALKER 
University of Sheffield 

SUMMARY 

Let {Xt} be a time series such that 
00 

Xt= E(Xt) + gu(O) 6t-u' 
u=O 

where E(Xt) is the sum of a finite number of simple harmonic terms of the form 

A cos (ot) + B sin (cot), 

the et are independently and identically distributed random variables each with mean zero 
and finite variance, and the gu(O) are specified functions of a vector-valued parameter 0. 
Whittle ( 1952) proposed an approximate least squares method of simultaneously estimating 
O and the angular frequencies, sine and cosine coefficients, of each harmonic term from 
observations (X1, ..., Xn) and derived heuristically the asymptotic distribution of the 
estimators. This paper presents rigorous proofs of Whittle's statements concerning the 
asymptotic distribution, formulated precisely as limit theorems, for the special case of 
independent residuals, where Xt = E(Xt) +et, so that the parameter 0 disappears. The 
arguments used here suggest how one can deal with the general case, and proofs for this 
will be given in a subsequent paper. 

1. INTRODUCTION 

We consider a discrete parameter time series {Xt, t = 0, ? 1, ...} suclh that 

xt = Mt + yt, ( * 1) 
where q 

mt = E(Xt) = E {Ar cos (ort) + Br sin (o)rt)}, (1.2) r=1 

Yt = E gql(0) ct-ll (1*3) 
u=O 

Further the Et are distributed independently and identicallywithE(et) = OandE(e2) - v < , 
and the gu(O) are specified functions of a vector-valued parameter 0 = (01, ..., Op), with 

yo(O) =1, to avoid indeterminacy, and E g2 (O) < oo. The series {Xt} thus has a systematic 
u=OU 

component consisting of the sum of q simple harmonic terms with angular frequencies o0, 
and a residual or noise component which is a completely stationary series having spectral 
density 2 

f(d) 0) = 2E gu(o)eiwu (1.4) 27T Uio 

and is usually called a linear process; see, for example, Hannan (1960, p. 33). 
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Suppose that the values of 0, Ar, Br and co, (1 < r < q) and v are all unknown a priori. 
We then have a fairly general type of hidden periodicities model, the term hidden periodicity 
denoting a harmonic component in mt whose frequency as well as its amplitude and phase 
are unknown. The restricted model obtained by taking the residual component to consist 
of white noise, so that Yt = et, the parameter 0 disappearing, has been quite widely used 
in analyzing physical and economic data, underlying what is often referred to as periodogram 
analysis. In recent years it has tended to be regarded as unsatisfactory, mainly because 
of the misleading results that can be obtained if the white noise assumption is not a good 
approximation or because of doubts as to whether it is realistic to represent mt as the sum 
of harmonic components. 

The problem of estimating the parameters in (1 1) from data consisting of a set of 
observations X() = (X1, ..., XJ) and of determining the approximate distribution of the 
estimators for large n was dealt with by Whittle (1952). He used a method of estimation 
which was approximately equivalent to an application of the principle of least squares, 
becoming approximately the method of maximum likelihood when et has a normal dis- 
tribution so that {Xt} becomes a normal or Gaussian process. Our object is to present rigorous 
proofs of his main results, stated precisely as limit theorems, which he obtained by purely 
heuristic arguments. These can be constructed by proceeding, in the same way as in the 
classical asymptotic theory of maximum likelihood estimation, whereby consistency of 
the estimators is first established, and then the mean value theorem is applied to yield 
asymptotic normality with the aid of a central limit theorem; compare, for example, Rao 
(1952, pp. 157-61) or Rao (1965, pp. 299-302). The details of the proofs unfortunately 
turn out to be extremely complicated. This is due essentially to the presence of unknown 
angular frequencies w7. in (1-2) combined with the dependence between the residuals Yt 
expressed by (1-3). It, therefore, seemed best to deal with the white noise case, for which 
yt = Et, and leave the general case with dependent residuals to a subsequent paper. Even 
in the white noise case the effect of having unknown angular frequencies is fairly com- 
plicated, but the degree of complication is substantially reduced by having independent 
residuals. Also it turns out that the arguments used for this, together with those used to 
establish consistency and asymptotic normality of the estimators of the components of 0 
when mt = 0, a problem first treated heuristically by Whittle (1952, 1953, 1954) and dealt 
with rigorously much later by Walker (1964), suggest how to proceed in the general case. 

Appreciable simplification is achieved when only one harmonic component is present. 
For this reason, we shall take q = 1 in (12) in the proofs that follow, and then indicate the 
modifications required when q > 1 in ? 5. 

2. STATEMENT OF RESULTS, ONE HARMONIC COMPONENT 

Suppose that 
Xt = A cos (cot) +Bsin (wot) +et. (2.1) 

If the et are normally distributed, the log likelihood function of the observations X1, ..., X" 
is obviously 

Ln(A, B, w, v) =-in log (2irv) - IS,(A, B, w)/v, (2-2) 
where n 

Sn(A,B,(o) = {Xt-A cos (ot)-Bsii(Ot)}2. (2.3) 
t-l 
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Maximum likelihood estimators of A, B and co are thus obtained by minimizing the residual 
sum of squares S, and the maximum likelihood estimator of v is equal to the minimum 
sum of squares divided by n. We use this method of estimation whatever the distribution of et. 
It is, however, convenient to modify the definition of the estimators slightly by replacing 
Sn(A, B, o) by the expression 

Un(A, B,)= X2 -2 ? Xt{A cos (cot) + B sin (cot)} + l n(A2 + B2). (2.4) 
t==l t=1 

This appreciably simplifies the estimation equations, and since 

1. n 2 Sn(A, B, c))-Un(A, B, c0) = E {(A2 - B2) cos (2cot) + 2ABsin (2cot)} 
2t==1 

which is 0(1) as n - oo if co $ 0 or 7T, we miay expect the effect on the estimators to be 
negligible for large n provided that coo, the true value of co, is not equal to O or 7T; we assuine 
from now on that 0 < coo < o. 

We denote the modified estimators of A, B, w and v by A, B, (63n and in, respectively. 
Then clearly 2 n 2 n2n 

An = n E Xt cos (( t), Bn = E Xt sin (n t), (2.5) nt=l nt=-i 
where (3n is such that 

In(On) = max {In(w)}. (2 6)) 
O < co < 7T 

Further 
2 2 

In(@)= - E Xteiwt (2.7) n t. 
the usual definition of the periodogram intensity function. It is easy to see that witholut 
loss of generality the range of w may be taken to be [0, T]. Also 

{ X( I ) (2.8) 
THEOREM 1. Let 

Xt = AO COS ((L) t) + Bo sin ((LO t) + Et (O < (00 < 7T), 

where the Et are distributed independently and identically with E(ct) = 0 and E(C2) = v < X. 

Then the estimators An Bn 6n and vi are all consistent as n, -* cc. 
The restriction w0 * 0 or oT is not important. In practice one might have to allow for a 

constant term in mt, replacing (2 1) by 

Xt = C + A cos (wt) + B siii ((wt) + t, 
but then it caii be shown that the resuilts still hold if in the definition of the estimators Xt 

is replaced by Xt - n- E Xt; this extension, which also applies to Theorem 2, is discussed 
t=1 

briefly at the end of the paper in ? 6. 

THEOREM 2. Under the conditions of Theorem 1, {nl(A- A0) n4(B -B0) ni( -?o)} con- 
verges in law to N(O, 2vWo-), when n -? oo, a multinormal distributtion with mean (0, 0, 0) and 
covariance matrix 2vWo-, where 

[1 0 1BO 

0o 2 0) 1 -AA (2.9) 
L B1 - 1 X(A + B2)J 
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This gives us the asymptotic distribution of the estimators An, Bn and (3n. Evaluating 
the inverse of W0 explicitly, we easily see that 

Ao + 4Bo -3A0B0 -B6B0 
Wo=1 -3A B0 4A2 +B2 6Ao . (2.10) 

L 6Bo 6Ao 12 

An equivalent way of stating our result is therefore that the distribution of (Xn, 1, 6in) iS 

asymptotically normal with mean (AO, Bo, w0) and covariance matrix 

n-'(AO + 4B2) -3n-'AOBO -6n-2Bo1 
Ag?BJ3nAOB0 0 

A,> + L3n-1A LBo n-1(4A 2+ B2) 6n -2 A0 (21 1 ) 
-6n-2B0 6n-2A0 12n-3 

Compare Whittle [1952, p. 53, (4.14); 1954, p. 224, (11)] where, however, the factor in the 
bottom diagonal element of the matrix is given incorrectly as 6 instead of i. Approximate 
confidence intervals for AO, Bo and wo0 and functions of these such as the phase of the harmonic 
component tan-' (- BO/AO) can be obtained in the usual way by using the consistent esti- 
mator of the covariance matrix given by substituting An, Bn 3 and v for An Bn 0 0 and v 
respectively in (2 11); for example, an approximate 95 00 confidence interval for No is 
((n- 1-96[24in/{n3(An n+ )}] n + 1-96[240n/{nA + ffli). An unusual feature here is 
the norming factor ni for 2n - (w0, the asymptotic variance Of 6Jn being proportional to n-3 

instead of the expected n-1. As we shall see, this is due to the sharpness of the largest peak 
of the periodogram intensity function In. It should be noted that G. R. Hext in an un- 
published Stanford report gives a formula for the asymptotic variance of 6Jn, according to 
which it is proportional to n-4 instead of n-3. Hext's formula, however, is incorrect, the 
reason being that the effects of certain remainder terms in his expressions for means and 
variances of sample autocovariances cannot be neglected, as he assumes. 

As regards the numerical computation of the estimators, the only part presenting any 
difficulty is the determination Of ~(n from (2.6). We hope to deal with this problem in detail 
elsewhere. Meanwhile we note that the following procedure should usually be satisfactory. 
Obtain a first approximation, 6(') say, by carrying out a standard periodogram analysis, 
which yields values In,k = In(2nrk/n), where k runs through all nonnegative integers not 
exceeding 'n, and taking c(l) = 2nk(n)/n, the angular frequency giving the largest of these 
periodogram intensities In, kn). Strictly we should write k{n, X(n)} here rather than k(n). 
Next, obtain a second approximation, u,2) by applying parabolic interpolation based on 
the reciprocals of In, k(n)-l In, k(n) and In, k(n)+1; if we write yl, Y2 and Y3 respectively for these 
reciprocals, this gives 

n{6i -n - i(Y3 - Y1)/(Y3 + Y, l 

Finally, starting from 6(2), obtain further approximations by iteration based on Newton's 
rule in the usual way. For the iteration to converge the difference between the starting 
value and w0 must be of smaller order than n-1 in probability; this is the reason (i(2) is used 
rather than co(l). 
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3. CONSISTENCY OF ESTIMATORS 

We begin the proof of Theorem 1 by showing that, as n -* co, 

(On 0 = o P(n-1). (3.1) 

This result is much stronger than we need to establish consistency of 6n, but without it, 
it is not clear how one can obtain consistency of An and fin. 

From the definition (2.7) of In(w)), we have 
n 2 

JnIn(w0) = E eiwt {Ao cos ((wot) + Bo sin ((ot) + et} (3.2) 
t=1 

Write 
A cos (w0t) + Bo sin (wot) = Do eiwot + D e-iwot, (3.3) 

where 
D '= (A -iB0), Do = J(A0+iB0). 

Then from (3.2), if we write 

Mn(f) = n eiut = exp{*i(n+ 1)u}sin((inu)/sin(3u) (0 < u < 27r), (3 

ti1 (u = 0or227T), 

in1n((o)= |1et eiwt + 2[ E et e-i&t{D0Mn(&( + w0) + D*Mn(O( - (o)}] 

+ I Do Mn (w + (oo) + D Mn(O-c (00) 12. (3*5) 
When w = wo, (3.5) is dominated by the term 

ID*Mn(O) 12 = -In2(A2 + B 
n 

In fact, since the real and imaginary parts of E et eiot each have variance -nv + 0(1), 
so that t=1 

n 

X teiwot= Op(ne), 

and Mn(2co) = 0(1), we see that 

inI71(wo) - 'n2(A2 +Bo) + Op+(ni ), 
or 

or I(?o)= In(A 2+ B2) + O (nl). (3.6) 
We now obtain an estimate of 

max {In()} = K(n, 8), (3.7) 
IW-)oI n - n 1 

say, where 8 can be arbitrarily small. For this we require the result 

max ( et ei 2 P)=0(n0). (3.8) 
0<w< zr t = 1 

To establish (3.8), we note that 
n 2 n-IsI 

E ctet = e eiws E etet+lS 
t=l Isl?n-1 t=1 

n-Isl 
K, ya 6tCt+Is1 

IslI<n-1 t= 1 
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whose expectation does not exceed 

E ( E et) + 2 : E ( E ce+s)2} = v n + 2 E (n-s)i} < 2vni; 

compare Walker [1965, p. 112, (29)]. 
Using (3.8) and 

max {IMn(w+w(o)I} = 0(1), max {IMn((-(o)I} = n, 
O<)<< s< 

we see from (3-5) that 

max {IJnIn(w) - ID* Mn(w - (o)121} = 0(n1) + Op(ni) + O(n), 

which gives 
max {I In((w)- n-1 (A + B) n M(w_-(o) 121} = 0(n1). (3-9) 

If we were to add the assumption that E(IetIr) < oo for some r > 4, we could use a much 
more powerful, but by no means elementary result of Whittle [1959, p. 180, (44)], according 
to which the factor ni in (3-8) can be reduced to n log n, so that (3-9) becomes Op{(n log n)l}, 
but it turns out that this is not necessary. 

Now the function nMn(u) 2 = sin2 ('nu)/sin2 (au) (0 < u < 27r) decreases monotonically 
from its absolute maximum of n2 at u = 0 to a minimum of zero at u= 27r/n. For the 
derivative of log {i Mn(u) 12} is 

n cot (!nu) - cot (!u) = (2/u) {i/r(1nu) - f(u)j, 

where 3b(x) = x cot x, and 

= '(x) = cosec2 x{sin (2x)-2x} < 0 (x > 0). 

Hence for any a which is sufficiently small to make {sin (!&)/(!)}2 > 1/7T2, 

max {M(( -_ ) 12} = sin2 (8)/sin2 (ln-18) (3.10) 

when n is sufficiently large, since further local maxima of this function must be less than 
cosec2 (r/n), and 

lim [sin2 (18)/{sin2 (!n-18) cosec2 (2T/n)}] = {7Tsin (18)/(_8)}2. 
n-c 

It follows from (3-9) that 

K(n, d) ' !n-(A2 + B2) sin2 (18)/sin2 (!n-18) + Op(ni) 
if n > no(8), say. Therefore, with probability tending to unity as n -- cx, 

n-1K(n, 8) < !(A2 + B2) sin.2 (Q) lim [{n2 sin2 (n-18)}-1] 
n-oo 

< (A2o+B2) 

= p lim {n-1In((0)}, 

from (3.6). This implies that 
lim [pr {K(n, 8) < n((O)}] = 1, 

and, therefore, 
rim {pr (nI('n-o0I < = 1 (3.11) 
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Since 8 can be arbitrarily small, (3.1 1) is equivalent to (3 1). 
We now establish that 

plimAn = AO) p lim Bn = Bo. (3.12) 
n-+c n 

From the definition (2.5) of An and f,n) 

An + iPin= - E (Do eiwot + D* e-iwot + et) ei nt 

and so 
2 ~~~~~~~~n 1 

n-A+ i n -B0) = n)oMn(n + (0) + Do{Mn(n - (o)-f}+ t Cteiwntl. 

Thus 

.21 - A + i(P 23D13 A-Ao + i(Bn-Bo) n {I Mn(@n + o) I + I Mn("@n- )-nI } + n E eteinn . (n313) n ~~~~~~~~~n t=1 

Now consistency of 6Jn clearly gives 

p lim {n-1IM((n+ w0)I} = 0. (3.14) 
n-+co 

Also, applying the mean value theorem to the real and imaginiary parts of 

Mn(^n - (0)- n = Mn(9n - (0 - Mn(o), 

and using IM,(w)I = | teilt < n2, for all w, we see that 

InlM(c)-O -n}l < 21nj?n-(01 
Hence, from (3.1), 

plim {n-1 I Jn((0- )-nI} = 0. (315) 
n-+oo~ 

n 
Finally, from (3 8), E etei6n t = Op(ni), which gives 

t=1 

p lim ( et(ei2n t) ) 0. (3.16) 

From (3-13)-(3-16) we thus obtain plim IAn-Ao+i(fn-Bo)1 = 0, which is equivalent 
to (3.12). n 

Lastly, from (2.8) we have 
n 

A 1 E 21/'2.32\ V = n- . A,-(ALt+tDJ, (3.17) n - - 
t=1 

since 
2 2(A+B). In(?n) = 2 (n + Bn 

Substituting Xt = A0cos(0Ot)+Bosin(0Ot)+et in (3-17), we see that 

Vn = n1 E e2 + 2n- (AO E st COS (?O t) + Bo E et sin ((ot)) + 1 (Ao2 + Bo-A^n-Bn+ p1) 
t=l t=l t=l 

f M 

(3.18) 

In (3 18) the first term converges in probability to v by the weak law of large numbers, and 
the second and third terms clearly converge in probability to zero. Hence vn is consistent. 
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4. ASYMPTOTIC NORMALITY OF THE ESTIMATORS 

Since Un(A, B, w) defined by (2-4) is a minimum when A = An) B = fn and w = nn 
an application of the mean value theorem gives 

(Un)A0 = (Un).An-. nA(AO-A n))+n(Uf)Al.Bn(Bo-Bf)+(Uf)Af. l(Wo-6f) (4) 

(Un) B0 = (Ufl)A eB.(Ao-An) + (Ufl)B. Bn(B0-fl) + (Un)B.n'lwn (wo-6n), (4.2) 

(Un)Bo = (Un)AnBn.(AO-An) + (Un)B..Bn*(BO-n) + ( (423) 

where (Un)Ao denotes aUn(Ao,B0,o O)/aAO, (Un)A.n denotes nnnn 
etc., and we use the generic notation (A*, B*, (w*) for a point on the line joining (AO, Bo, 00) 
and (Ani Bn 6n), so that 

(An*Bn,C*) = A(A, B0) O) + ( n1-A) (A n) n) (O < A < 1). (4.4) 

The points (A*,Bn*,&*) in (4-1), (4.2) and (4.3) will in general not be the same, but to 
distinguish them would complicate the notation, and no ambiguity will arise by not doing 
so. 

Now 
n 

(Un)Alo = nA 0-2 a Xt Cos (a00 t) 
t=1 

n 
= nAO-2 E {Ao COS2 (00 t) + Bo sin (w0 t) cos (oo t) + et cos (?o t)} 

t=1 

n 
-2 E etCos (00t)+OP(1), (4.5) 

t=1 

and similarly 
n 

(Un)B0 = -2 E etsin(w0t)+Op(1), (4.6) 
t=1 

n 
(Un)W0 = 2 E ett{A0 sin (o0t)-B0 cos (cowt)} + Op(n). (4.7) 

t=l 
n 

The sums in (4.5)-(4.7) are all of the form E kIt et, where 
t=1 

im [max (I I/( t k 0. (4.8) 

For example, with (4.7), 

n n 
k2 4 E t2 [-1A2{1 - cos (2oot)} + Bo2{1 + cos (2?0t)} - A0Bo sin (2?0t)] 

t=l t=l 
n 

- 2(Ao + Bo) E t2 + O(n2) 
t=1 

=2n3(A2 + B2) + O(n2). 

It follows that the central limit theorem can be applied to these. For (4.8) implies the 
Lindeberg-Feller condition 

lim {{ Y2dGt(Y)/e7 } = 0, (4.9) 
n-o _= 

. 
_> 0. ,,_* 
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where Gt is the distribution function of Yt = ktet and n = (v E k2) (see, for example, 

Rao, 1965, p. 108), since the integral oii the left hand side of (4 9) is equal to 

2~ E k2dF(e), 
0'n t=1 I > 8a,,/lktl 

where F is the distribution function of Et, and therefore does not exceed 

v-r c2 dfle). JICI >&o,t/max Ik,I 

We, therefore, see that n-I(Un)A0, n4(Uf)B0 and n-(Un)c, converge in law respectively to 
N(0, 2v), N(O, 2v) and N{0, 2(Ao + B2) v} wheni n - oo. 

For the limiting joint distribution we consider the random variable 

VnJ(A A 2, A3) = Al 1 n (Un),10 + A2n- I (Un)Bo + A3 nt 2(Un)',O, 

where the Ai (i = 1, 2, 3) are arbitrary real numbers. Now 
n 

Vn(AD A2, /3) = 2 )E 6eA3n--'t{A0 sin (wot) - Bo cos (wot)} 
t=1 

-n-{Al cos (?0t) + A2 sin (oot)}] + Op(n-2 ) (4.10) 
n 

and the sum in (4. 10) is of the form V kn e, where 
t=1 

lim [max Iknt I/ ( 2 t 0 (4.11) 
n-c 1--At--n t= 1 

the numerator in (4.11) being O(n-l-) and the denominator 0(1). Hence the central limit 
theorem will apply to this sum also by the generalized Lindeberg-Feller condition (see, 
for example, Loeve, 1963, p. 295), which is implied by (4.8). A straightforward calculation 
shows that 

lim (Ek2 ) = 2(A2 + A2) + 2 (A +B) A + 2BA AA3- 2A A2A3. (4. 12) 
n-co t=l 

Thus Vn(Al, A2, A3) converges in law to a normal distribution with mean zero and variance 
(4.12). Consequently, by using the equivalence of convergeiice in law and pointwise coli- 
vergence of characteristic functions (see, for example, Rao, 1965, p. 103), we see that the 
joint distribution of n--I(Un)AO, n- (Un)BO and n-(Un),, converges to that of N{(0, 0, 0), 2vWO}, 
wlhere WO is given by (2.9). 

Next, we look at the behaviour of the second order partial derivatives occurring on the 
right hand sides of (4 1)-(4.3). For three of these no analysis is required, as 

(Un)AA = (Un)BB1] = n, (Un)AB = 0. (4X13) 
n 

Now (Un)A,,, = 2 E Xttsin((ot). Therefore, 
t=1 

n 

= 2 E {Aocos (oot) +Bosin (oot) +etltsin((o*t) 

n n3 
= Bo E t cos {((o* -(o) t} + Aot sin {((o* -o(0) t} + 2 E ctt sin ((o4* t) + Op(n). (4.14) 

t=1 t=1 

From (3.1) and (4.4), we have (0*4-()o = 
o,(n-1). 
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Now by applying the mean value theorem to the real and imaginary parts of 
M' (fi* _ (tJ)Mn? 

n 
and using jMno)jl < ( t2 - 1n3, for all o, we see that 

t=1 

iEt exp {i((o* -o() t} = ln(n + 1) i + o(n2), 

so that 
F n1 

p lim n-2 E t exp {i((o* - o) t}] = . (4.15) 
n t=1 

Also, employing an argument similar to that followinlg equation (3.8) in ? 3, we have 
n 2 n-Isi 
E ettett = eis eett+S1t(t+ jsl) 

t=1 Islsn-1 t=1 

n-Isl 

< E ~E 16t1C+1sl t(t + Is9 ) I 
Isl<-n-1 t=1 

so that 

E(max etteiwt )) 

< 

0 < w< r t= 1 

E(E t2 t2) + 2 tE [(t?CtE+st(t + 8)l]) 

< 3vni. (4.16) 

Expression (4.16) is rather a crude inequality, but it suffices for our purpose here. It follows 
from (4* 16) that 

|E ettsill(ont)| S max( E etteit ) = O(ni). (417) 
t=l O<@w? t=l 

Hence, from (4.14), (4.15), and (4.17), 

p lim {n 2(Ufl)A*W.,} = -2B0. (4.18) 
n-c 

Similarly, since 
n 

(Ufl)Bfl.W . = -2 E {A0 COS(CI0t) +B0sin (n0)t) +est1t cos(&4nt) 

n n 
=-A0 1 tcs C {(4(n- 0) t}-2 E etto S(+ t)2+O(n), 

t=l t=1 
We Obtain1 

P rn3 { 2(Un)B .s = -- (4n19) 
FinallY, 

(Un) Un2 E Xt t2{An*coso4*t + Bn*sin (o4nt)} 

= 2 E o cos (416t) + B sin (w0t)} {A* cos (ont) + B* sin (w*t)} 

+ 2An* t2COS( mt)+ 2Bn e t nt2sin (o4t). (4120) 
t=l t=l1 
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We can show that ( 1 2 
E max ( , = O(n-1') 

0o< < 7t= 1 

in the same way as we obtained (4.16), and hence, (4 4) giving consistency of A* and B*, 
that the last two terms of (4.20) are each O,(n4'). Also the first term of (4.20) is equal to 

n 
E t2(AA* + B B) cos {(o - oo) t} + Op(n2) - 3n3(A +B )+o(n3) (4.21) 

t= 1 

if we apply the mean value theorem to the real part of 
n 

- t2 exp {i ((o tM-(o)0) t} = Mn((o ()- n(?) 
t=1 

Hence 
plim {n- n), = (A2+B2). (4.22) 

n- a 
Thus if 

n l(U,)A.1* n1(Un)An* Bn ?2 (Un)AWit 

W* = n i(Un)An fBn n(Un)BnF*B n 2(UUn)Bn*Wn* (4.23) 
-n- Un)An- n n (Un)Bn n' n- (n)n Wn 

we have, from (4.13), (4.18), (4K19) and (4.22), 

p lim W* = W0. (4.24) 

Now from (4.1) to (4 3), we see that 

{n-(Un)Ao, n-(Un)BO n-A(U )eBO} =)-'{(An-A0) n(B -B0) ni(c) -001)} W*, 

so that, assuming W* to be nonsingular, which will be true with probability tending to 
unity as n oX by (4.24), since W0 is easily verified to be nonsingular, we have 

{ni(An - AO), i( - BO) n)(, n - (0)} = - {n (U), nI(Uf)B, n)(UB)o} WI * (4n25) 

We showed above that the row vector on the right hand side of (4.24) converges in law to 
N(O, 2vWO) when n -> oc, where 0 = (0, 0, 0). It will therefore follow that the row vector 
on the left hand side converges in law to N(O, 2vW-1), by using an obvious generalization of 
a well known elementary limit theorem [see, for example, Rao, 1965, p. 102, (xb)], namely 
that if Yn and Y are row vector-valued and Zn matrix valued random variables such that 
when n --> oo, Yn -- Y in law and p lrm Zn = C, then Yn Zn -> YC in law. We have thus 
established Theorem 2. 

5. THE CASE OF SEVERAL HARMONIC COMPONENTS 

Suppose now that the model in Theorem I is generalized to 
q 

Xt = L1 {A,,0 cos (Co,,0t) + B,0sin (o,, 0t)} + et, (5.1) 

where q > 1. The function corresponding to (2.4) whose minimization yields estimators 
Ar,n) Dr,n and ('r, n (1 < r < q) becomes 

n q n q 
3 X2 I 5 Xt8A,cos(odt)+B sin(co t)j +-n E (A2+B2). (5-2) 

t=1 = t=1 t=l -1 

3 Bl hi 58 
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We, therefore, obtain 

Ar,n = E Xt cos (Jr7,t) fr, n =r n Xt sin (A9r n t) (5 3) 

If we write w = (ol, ...,) and wn = (61, n *q, n) 

q 
n(b))= E In(O)r) (5.4) 

r=1 
is a maximum when w) = wU 

Here, however, since to obtain (5.2) from the residual sum of squares 

n q 2 
z xt- {Arcos5(&)t)+Brsinf(wt)J}] 

t=1 ?&1 

terms of the form ArAsEt Cos (Wrt) cos (wst) and BrBsEt sin (wit) sin (8st) have to be omitted, 
the maximization of (5.4) cannot be unrestricted; some condition must be imposed to keep 
the w,. from being too close together and thus prevent estimators of two angular frequencies 
from converging in probability to the same value. In fact unrestricted maximization 
obviously makes the ('r,n all equal to the angular frequency for which In attains its absolute 
maximum, and it is quite easy to see that this will converge in probability to that wr for 
which the corresponding amplitude (A2 + Br2)i is greatest. The required condition is 

lim min (nfl.r-8)s1) = 00. (5.5) 
n-o 1 Srts< q 

We might, therefore, for example, maximize (5.4) subject to 

min (I wr- ()s= nfl. (5-6) 
r$s 

When (5.5) holds, then in the relevant domain, Sn say, of the function on in w space, only 
q of the q2 differences w8 - O can be O(n-1). If we label the components of w so that these 
differences are t) - (,)r o, we see that the behaviour of 

q q n 2 

nOn?f(zl) =E E{Ds, oMn((or + (os o) + Ds o Mn()r - &s' o)} + 2; et eialr t 
r=1 s=1 s=1 

where Ds80 = i(A8,0-iBs8o), D*,0 = 1(As,0+iBs,0), As,0 
and Bs,0 denote the true values of 

Asand B, are controlled by the sum of terms I Dr*oMn(r - r, 0) 12 whenwi.-wi.0 (1 ? r < q) 
are small. In fact, we can show, just as in ? 3, that if we take a sequence of sets {Sn} in w 
space for which (5.5) holds, then 

q 
masx ( ?6n(tln-1 E1 (A2 o+B2 o) Mn(?r-wi.0)I2 = Op(ni). 

Now let Rn, = *{ 1i)r-&)r,oJ < n-1l (1 < r < q)}, which will certainly be contained in Sn 
for sufficiently large n, and B(n4c? = Sn - Rn, the complement of Rn with respect to Sn. 
Then for sufficiently small 8, 

plim[n-1 sup {q5(w)}] < E (A ,:+B2,0)=plimn1qfn(w0) (5.7) SU {0(O 
<e2) r,r 

+ 
rQ 

)= i n- nO) 
n-oo wc ER~). r 1 no 

where wo = (l, 0, ..., )q, 0). We, therefore, have 

p lim {n(c4,n-' ) O)} ? 0. (5.8) 
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Since 0. is symmetrical in its q arguments, a means of determining which comnponient of 
w is associated with a particular angular frequency has to be found. We canl, however, 
obtain this from the fact that 

p lim {fl1In(.r,n)} = J(A, o + B0), (5.9) 

which is fairly readily demonstrated by usinlg Taylor's theorem and (5 8). If, therefore, 
the (or are labelled so that 

A2 2 os > .**> A2,+ B2> 

then with probability tending to unity as n -> oc, 

In( (31, n) >1 ... 1> In( "'q, n) 

Thus if we determine the 'r, n as the q largest local maxima of the periodogram intensity 
funictioin subject to a separation condition satisfying (5.5), these will, for sufficiently large n, 
almost certainly estimate the frequencies of the harmonic components arranged in de- 
scending order of magnitude. Having established the consistency of the 4r n, we then 
deduce that 

plimA7, =Ar,0 p lim Br,n = B70, p lim v = 
n-o n--o n --)-o 

by arguments of the type used in ? 3 following equation (3.12). 
Finally, if we denote (5 2) by Un(A, B, w), where A = (A1 ..., Aq), B -(B1, ...,Bq). wve 

see that Un(A, B, w) is of the form 
n n 

t fn,r{Ar, Br, (Or,X(}. 
I=1 t=1 

Therefore applying the mean value theorem as in ? 4 gives us q sets of equationls each of 
the form (41)-(4.3), whence 

{f2(Ar,n -Ar,0o), fl(Br,n -Br0), nll(ir,n -(or,O)l 

n{nl (Unf)Ar, O ( n a((n)Br, ', n ( Xn),., o} ,{Wr*,nJ X (5l?0) 

in an obvious notation. Thein from resuilts of the type (4-5)-(4.7), for example, 

(Ufl)Ar7 = -2 e ecos ((,0t) + O(l), 
t= 1 

andi an application of the central limit theorem as in ? 4, it follows that the row vectors on 
the right hand sides of (5.10) are asymptotically distributed inidependently as N(O, 2VWr, 0), 
where the matrix Wr,0 is obtained by replacing Ao and Bo in the expression (2.9) for W0 
by Ar0 and Br 0, respectively. Again as in, ? 4, we can show that 

plimW%, = Wr0. 
n-+o 

Therefore, we reach the conclusion that the row vectors on the left hand sides of (5-10) 
are asymptotically distributed independently as N(0, 2vW-1). This is the required generaliza- 
tion of Theorem 2. 

In practice the determination of the estimators (64,n by maximizing On(w) subject to a 
restriction such as (5-6) would be very laborious, and the awkward problem of the appro- 
priate choice of the minimum separation to be used for a particular set of data would also 
arise. However, it is not hard to see that an asymptotically equivalent procedure, which is 

3- 2 
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much simpler, is obtained as follows. We first determine (C),n by maximizing I.(w)) un- 
conditionally, then (62 n by maximizing unconditionally 

n ~~~~~~~~~~~~~~~~~2 
|1{Xt-A O E1 nt-1 i (@1 t)} eiwt |,(5*11 ) 

where A1 n and f3l,n are defined by (5-3), and so on, (oq,n being finally determined by 
maximizing unconditionally 

E cxt E A (),t) +Bs,nsin (6r5nt)}] eiwt 2 (512) t=l r=l 
nCO 7,n0Brn r,n ew 

Here one must strictly introduce the additional assumption that the A2, + B2,0 (1 < r < q) 
are all unequal, but this is clearly a very mild restriction. 

Verification of the asymptotic equivalence is somewhat tedious although straightforward, 
so we omit the details. Essentially what one does is as follows. One first shows that 

l, n -61,o = op (n-1), using 

m 1 In(@)-Ln-1 E (A 2,+B2)IMn(Wr0)I2 ) = Op(nl), (5.13) 
0 < < n r=l 

and hence that p lim (A 1, n) = A 1, 0 and p lim (f31, n) = B1, 0, arguing as in ? 3; then that the 
n--o n--o, 

terms Ar,0 cos (Jr,ot) +Br,0sin ( iJr,0t) inE(Xt) for r > 2 have no effect on the limiting be- 
haviour of the first order partial derivatives of Un(A, B, w) with respect to A1, B1 and w, 
at (A1, B1, Ok1) = (A1 OX Bl, 0 (wl,o) and the second order partial derivatives at 

(A1,Bl,w(l)= (A=o,B*,o*o) 

Further an argument analogous to that used in ? 4 yields the same asymptotic distribution 
for (Al,n, n(l,n) as was found above. Next, using the fact that what may be called the 
periodogram function corrected for the effect of the first harmonic component, namely 
(5* 11) multinlied by 2/n, differs from the function 

q 
in-' E (A 2, +B B2 n) | & _ O)-r, O) 1 2 

r=2 

by a quantity which is at most Op(nJ), which may be proved in the same way as (5.13), one 
obtains 6 2,n - 0)2,0 = op(n-1), p limA2, = A2,0 andp lim B Then, if the function 

Un(A, B, w) is modified by replacing Xt in (5.2) by 

X -A P ~~~~~~~~~~~~~(5.14) Xt-l,n COS(^tl,nt)- il,n $ (^tl,nt),(.4 

one shows that the limiting behaviour of the first order partial derivatives with respect to 
A2, B2 and w)2 at (A2, B2, ?2) = (A2, 0 B2,0, 02, 0) and the second order partial derivatives at 
(A2, B2,u 2) = (A2*0, B2*0, w* 0) is unaffected by the replacement of the last two terms in 
(5.14) by -A1,0 cos (oil,0t) and -Bl,0sin (w,0t); the preceding argument then yields the 
asymptotic distribution for (A2n, 2,n' C2,n). One continues similarly, finally dealing with 
the expression (5 12), proportional to the periodogram function corrected for the effect of 
the first q - 1 harmonic components. 
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6. EFFECT OF CORRECTING FOR THE SERIES MEAN 

It will suffice to illustrate this for the case of a single harmonic component. Suppose that 

xt = Co+Aocos ((oot) +Bosin (wot) +et, (6-1) 

and let In((o), tn(A, B, w) be the expressions obtained from In((O), U.(A, B, w0) defined by 
n 

(2.7) and (2-4), by replacing Xt by Xt - X, where X = n-1 E Xt. Then 
t=1 

-In(@)j 2X (MJ(w) E Xt e-iwt +{XIMn(O) 1}2, (6-2) 

-n 
tJn(A, B, o) - Un(A, B, o) =-nX2 + 2X E {A cos (ot) + B sin (o)t)}. (6.3) 

t=1 

We may take CO = 0 without loss of generality, since In(.) and Un(.) are invariant under a 
change of origin. Clearly 

n 
X= n-l{DoMn(o) + Do* Mn(_ o)}n-1 E = Op(n-). (6.4) 

t=1 
Also from (3.9), we have 

max ( EXteiJt) = Op(n). 

Hence, from (6.2), we see that 
In((o)-In(wo) = Op(nl). (6.5) 

Thus (3.9) will still hold if In(O) is replaced by 1n((o). The argument of ? 3 then gives us 
(3.1), that is, (3 o = o (n-1). Also we have now 

An+ii= - E (Do e")o t + Do e-i?)o t + {et) eilne t - 2-M(s (6-6) 

The last term on the right hanid side of (6.6) is clearly at most Op(n-i) and so, as in ? 3, we 
find that An and Bn are consistent. The estimator of v is 

n ' 
Vn = n-l E Xt-2 An2 Bn 

t=1 

anid it is easy to see that this also is consistent. 
Again from (6.3) we have 

(n)AO -(Un)AO + i{(tA)Bo-(Un))BO} = 2XMn ((o0) = Op(n ), (6X7) 

( 
o-(Un)wo 

= 2X{D0M'((o0)+D'*M(-(o0)} = Op(ni). (6.8) 

It follows that {n-i(Cn)A0, n-1(Un)B0, n-1(Un)<,0} has the same limiting distribution as 
{n-i(Un))A0, n-i(Un)BO, n-i(Un)0}. Finally, on differentiating (6.7) and (6 8) with respect to (o, 
we obtain expressions which are respectively Op(ni) and OP(ni). This result still holds if 
AO,B0 and wo are replaced respectively by A*, B* and w*, and consequently we find that the 
matrix W* obtained by replacing Un by Qn in (4.23) converges in probability to WO. The 
argument in ? 4 can thus be applied to show that Theorem 2 still holds if Xt is replaced by 
xt-X. 
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This paper is a revised version of a Stanford University report prepared during the tenure 
of a Visiting Professorship in 1968. This work constitutes part of a programme of research 
in time series analysis under the direction of Professor E. Parzen, supported by the United 
States Office of Naval Research and the United States Army Research Office. 
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