
A course in Time Series Analysis

Suhasini Subba Rao

Email: suhasini.subbarao@stat.tamu.edu

August 29, 2022



Contents

1 Introduction 12

1.1 Time Series data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 R code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Filtering time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Trends in a time series 18

2.1 Parametric trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Least squares estimation . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Differencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Nonparametric methods (advanced) . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Rolling windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Sieve estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 What is trend and what is noise? . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Periodic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 The sine and cosine transform . . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 The Fourier transform (the sine and cosine transform in disguise) . . 33

2.5.3 The discrete Fourier transform . . . . . . . . . . . . . . . . . . . . . . 36

2.5.4 The discrete Fourier transform and periodic signals . . . . . . . . . . 38

2.5.5 Smooth trends and its corresponding DFT . . . . . . . . . . . . . . . 42

2.5.6 Period detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.7 Period detection and correlated noise . . . . . . . . . . . . . . . . . . 47

2.5.8 History of the periodogram . . . . . . . . . . . . . . . . . . . . . . . . 49

1



2.6 Data Analysis: EEG data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6.1 Connecting Hertz and Frequencies . . . . . . . . . . . . . . . . . . . . 51

2.6.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 Stationary Time Series 62

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1.1 Formal definition of a time series . . . . . . . . . . . . . . . . . . . . 65

3.2 The sample mean and its standard error . . . . . . . . . . . . . . . . . . . . 66

3.2.1 The variance of the estimated regressors in a linear regression model

with correlated errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 Stationary processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.1 Types of stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.2 Towards statistical inference for time series . . . . . . . . . . . . . . . 79

3.4 What makes a covariance a covariance? . . . . . . . . . . . . . . . . . . . . . 80

3.5 Spatial covariances (advanced) . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Linear time series 87

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Linear time series and moving average models . . . . . . . . . . . . . . . . . 89

4.2.1 Infinite sums of random variables . . . . . . . . . . . . . . . . . . . . 89

4.3 The AR(p) model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.1 Difference equations and back-shift operators . . . . . . . . . . . . . . 92

4.3.2 Solution of two particular AR(1) models . . . . . . . . . . . . . . . . 94

4.3.3 The solution of a general AR(p) . . . . . . . . . . . . . . . . . . . . . 97

4.3.4 Obtaining an explicit solution of an AR(2) model . . . . . . . . . . . 98

4.3.5 History of the periodogram (Part II) . . . . . . . . . . . . . . . . . . 102

4.3.6 Examples of “Pseudo” periodic AR(2) models . . . . . . . . . . . . . 104

4.3.7 Derivation of “Pseudo” periodicity functions in an AR(2) . . . . . . . 108

4.3.8 Seasonal Autoregressive models . . . . . . . . . . . . . . . . . . . . . 110

2



4.3.9 Solution of the general AR(∞) model (advanced) . . . . . . . . . . . 110

4.4 Simulating from an Autoregressive process . . . . . . . . . . . . . . . . . . . 114

4.5 The ARMA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.6 ARFIMA models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.7 Unit roots, integrated and non-invertible processes . . . . . . . . . . . . . . . 125

4.7.1 Unit roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.7.2 Non-invertible processes . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.8 Simulating from models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.9 Some diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.9.1 ACF and PACF plots for checking for MA and AR behaviour . . . . 127

4.9.2 Checking for unit roots . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.10 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5 A review of some results from multivariate analysis 134

5.1 Preliminaries: Euclidean space and projections . . . . . . . . . . . . . . . . . 134

5.1.1 Scalar/Inner products and norms . . . . . . . . . . . . . . . . . . . . 134

5.1.2 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.1.3 Orthogonal vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.1.4 Projecting in multiple stages . . . . . . . . . . . . . . . . . . . . . . . 136

5.1.5 Spaces of random variables . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2 Linear prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.3 Partial correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.4 Properties of the precision matrix . . . . . . . . . . . . . . . . . . . . . . . . 144

5.4.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.4.2 Proof of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6 The autocovariance and partial covariance of a stationary time series 158

6.1 The autocovariance function . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.1.1 The rate of decay of the autocovariance of an ARMA process . . . . . 159

3



6.1.2 The autocovariance of an autoregressive process and the Yule-Walker

equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.1.3 The autocovariance of a moving average process . . . . . . . . . . . . 167

6.1.4 The autocovariance of an ARMA process (advanced) . . . . . . . . . 167

6.1.5 Estimating the ACF from data . . . . . . . . . . . . . . . . . . . . . 168

6.2 Partial correlation in time series . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.2.1 A general definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.2.2 Partial correlation of a stationary time series . . . . . . . . . . . . . . 171

6.2.3 Best fitting AR(p) model . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.2.4 Best fitting AR(p) parameters and partial correlation . . . . . . . . . 174

6.2.5 The partial autocorrelation plot . . . . . . . . . . . . . . . . . . . . . 176

6.2.6 Using the ACF and PACF for model identification . . . . . . . . . . . 177

6.3 The variance and precision matrix of a stationary time series . . . . . . . . . 179

6.3.1 Variance matrix for AR(p) and MA(p) models . . . . . . . . . . . . . 180

6.4 The ACF of non-causal time series (advanced) . . . . . . . . . . . . . . . . . 182

6.4.1 The Yule-Walker equations of a non-causal process . . . . . . . . . . 185

6.4.2 Filtering non-causal AR models . . . . . . . . . . . . . . . . . . . . . 185

7 Prediction 188

7.1 Using prediction in estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.2 Forecasting for autoregressive processes . . . . . . . . . . . . . . . . . . . . . 191

7.3 Forecasting for AR(p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.4 Forecasting for general time series using infinite past . . . . . . . . . . . . . 195

7.4.1 Example: Forecasting yearly temperatures . . . . . . . . . . . . . . . 198

7.5 One-step ahead predictors based on the finite past . . . . . . . . . . . . . . . 204

7.5.1 Levinson-Durbin algorithm . . . . . . . . . . . . . . . . . . . . . . . . 204

7.5.2 A proof of the Durbin-Levinson algorithm based on projections . . . 206

7.5.3 Applying the Durbin-Levinson to obtain the Cholesky decomposition 208

7.6 Comparing finite and infinite predictors (advanced) . . . . . . . . . . . . . . 209

7.7 r-step ahead predictors based on the finite past . . . . . . . . . . . . . . . . 210

4



7.8 Forecasting for ARMA processes . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.9 ARMA models and the Kalman filter . . . . . . . . . . . . . . . . . . . . . . 214

7.9.1 The Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7.9.2 The state space (Markov) representation of the ARMA model . . . . 216

7.9.3 Prediction using the Kalman filter . . . . . . . . . . . . . . . . . . . . 219

7.10 Forecasting for nonlinear models (advanced) . . . . . . . . . . . . . . . . . . 220

7.10.1 Forecasting volatility using an ARCH(p) model . . . . . . . . . . . . 221

7.10.2 Forecasting volatility using a GARCH(1, 1) model . . . . . . . . . . . 221

7.10.3 Forecasting using a BL(1, 0, 1, 1) model . . . . . . . . . . . . . . . . . 223

7.11 Nonparametric prediction (advanced) . . . . . . . . . . . . . . . . . . . . . . 224

7.12 The Wold Decomposition (advanced) . . . . . . . . . . . . . . . . . . . . . . 226

7.13 Kolmogorov’s formula (advanced) . . . . . . . . . . . . . . . . . . . . . . . . 228

7.14 Appendix: Prediction coefficients for an AR(p) model . . . . . . . . . . . . . 231

7.15 Appendix: Proof of the Kalman filter . . . . . . . . . . . . . . . . . . . . . . 239

8 Estimation of the mean and covariance 243

8.1 An estimator of the mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

8.1.1 The sampling properties of the sample mean . . . . . . . . . . . . . . 245

8.2 An estimator of the covariance . . . . . . . . . . . . . . . . . . . . . . . . . . 248

8.2.1 Asymptotic properties of the covariance estimator . . . . . . . . . . . 250

8.2.2 The asymptotic properties of the sample autocovariance and autocor-

relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

8.2.3 The covariance of the sample autocovariance . . . . . . . . . . . . . . 255

8.3 Checking for correlation in a time series . . . . . . . . . . . . . . . . . . . . . 265

8.3.1 Relaxing the assumptions: The robust Portmanteau test (advanced) . 269

8.4 Checking for partial correlation . . . . . . . . . . . . . . . . . . . . . . . . . 274

8.5 The Newey-West (HAC) estimator . . . . . . . . . . . . . . . . . . . . . . . 276

8.6 Checking for Goodness of fit (advanced) . . . . . . . . . . . . . . . . . . . . 278

8.7 Long range dependence (long memory) versus changes in the mean . . . . . 283

5



9 Parameter estimation 286

9.1 Estimation for Autoregressive models . . . . . . . . . . . . . . . . . . . . . . 287

9.1.1 The Yule-Walker estimator . . . . . . . . . . . . . . . . . . . . . . . . 288

9.1.2 The tapered Yule-Walker estimator . . . . . . . . . . . . . . . . . . . 292

9.1.3 The Gaussian likelihood . . . . . . . . . . . . . . . . . . . . . . . . . 293

9.1.4 The conditional Gaussian likelihood and least squares . . . . . . . . . 295

9.1.5 Burg’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

9.1.6 Sampling properties of the AR regressive estimators . . . . . . . . . . 300

9.2 Estimation for ARMA models . . . . . . . . . . . . . . . . . . . . . . . . . . 306

9.2.1 The Gaussian maximum likelihood estimator . . . . . . . . . . . . . . 307

9.2.2 The approximate Gaussian likelihood . . . . . . . . . . . . . . . . . . 308

9.2.3 Estimation using the Kalman filter . . . . . . . . . . . . . . . . . . . 310

9.2.4 Sampling properties of the ARMA maximum likelihood estimator . . 311

9.2.5 The Hannan-Rissanen AR(∞) expansion method . . . . . . . . . . . 313

9.3 The quasi-maximum likelihood for ARCH processes . . . . . . . . . . . . . . 315

10 Spectral Representations 318

10.1 How we have used Fourier transforms so far . . . . . . . . . . . . . . . . . . 319

10.2 The ‘near’ uncorrelatedness of the DFT . . . . . . . . . . . . . . . . . . . . . 324

10.2.1 Testing for second order stationarity: An application of the near decor-

relation property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

10.2.2 Proof of Lemma 10.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 328

10.2.3 The DFT and complete decorrelation . . . . . . . . . . . . . . . . . . 330

10.3 Summary of spectral representation results . . . . . . . . . . . . . . . . . . . 335

10.3.1 The spectral (Cramer’s) representation theorem . . . . . . . . . . . . 335

10.3.2 Bochner’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

10.4 The spectral density and spectral distribution . . . . . . . . . . . . . . . . . 337

10.4.1 The spectral density and some of its properties . . . . . . . . . . . . 337

10.4.2 The spectral distribution and Bochner’s (Hergoltz) theorem . . . . . 340

10.5 The spectral representation theorem . . . . . . . . . . . . . . . . . . . . . . . 342

6



10.6 The spectral density functions of MA, AR and ARMA models . . . . . . . . 345

10.6.1 The spectral representation of linear processes . . . . . . . . . . . . . 346

10.6.2 The spectral density of a linear process . . . . . . . . . . . . . . . . . 347

10.6.3 Approximations of the spectral density to AR and MA spectral densities349

10.7 Cumulants and higher order spectrums . . . . . . . . . . . . . . . . . . . . . 352

10.8 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

10.8.1 The spectral density of a time series with randomly missing observations355

10.9 Appendix: Some proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

11 Spectral Analysis 363

11.1 The DFT and the periodogram . . . . . . . . . . . . . . . . . . . . . . . . . 364

11.2 Distribution of the DFT and Periodogram under linearity . . . . . . . . . . . 366

11.3 Estimating the spectral density function . . . . . . . . . . . . . . . . . . . . 372

11.3.1 Spectral density estimation using a lagged window approach . . . . . 373

11.3.2 Spectral density estimation by using a discrete average periodogram

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

11.3.3 The sampling properties of the spectral density estimator . . . . . . . 382

11.4 The Whittle Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

11.4.1 Connecting the Whittle and Gaussian likelihoods . . . . . . . . . . . 389

11.4.2 Sampling properties of the Whittle likelihood estimator . . . . . . . . 393

11.5 Ratio statistics in Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . 397

11.6 Goodness of fit tests for linear time series models . . . . . . . . . . . . . . . 404

11.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

12 Multivariate time series 408

12.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

12.1.1 Preliminaries 1: Sequences and functions . . . . . . . . . . . . . . . . 408

12.1.2 Preliminaries 2: Convolution . . . . . . . . . . . . . . . . . . . . . . . 409

12.1.3 Preliminaries 3: Spectral representations and mean squared errors . . 410

12.2 Multivariate time series regression . . . . . . . . . . . . . . . . . . . . . . . . 415

12.2.1 Conditional independence . . . . . . . . . . . . . . . . . . . . . . . . 416

7



12.2.2 Partial correlation and coherency between time series . . . . . . . . . 416

12.2.3 Cross spectral density of {ε(a)
t,Y , ε

(a)
t,Y }: The spectral partial coherency

function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

12.3 Properties of the inverse of the spectral density matrix . . . . . . . . . . . . 419

12.4 Proof of equation (12.6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

13 Nonlinear Time Series Models 425

13.0.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

13.1 Data Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

13.1.1 Yahoo data from 1996-2014 . . . . . . . . . . . . . . . . . . . . . . . 429

13.1.2 FTSE 100 from January - August 2014 . . . . . . . . . . . . . . . . . 432

13.2 The ARCH model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

13.2.1 Features of an ARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

13.2.2 Existence of a strictly stationary solution and second order stationarity

of the ARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

13.3 The GARCH model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

13.3.1 Existence of a stationary solution of a GARCH(1, 1) . . . . . . . . . . 439

13.3.2 Extensions of the GARCH model . . . . . . . . . . . . . . . . . . . . 441

13.3.3 R code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

13.4 Bilinear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

13.4.1 Features of the Bilinear model . . . . . . . . . . . . . . . . . . . . . . 442

13.4.2 Solution of the Bilinear model . . . . . . . . . . . . . . . . . . . . . . 444

13.4.3 R code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

13.5 Nonparametric time series models . . . . . . . . . . . . . . . . . . . . . . . . 446

14 Consistency and and asymptotic normality of estimators 448

14.1 Modes of convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

14.2 Sampling properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

14.3 Showing almost sure convergence of an estimator . . . . . . . . . . . . . . . 452

14.3.1 Proof of Theorem 14.3.2 (The stochastic Ascoli theorem) . . . . . . . 454

8



14.4 Toy Example: Almost sure convergence of the least squares estimator for an

AR(p) process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

14.5 Convergence in probability of an estimator . . . . . . . . . . . . . . . . . . . 459

14.6 Asymptotic normality of an estimator . . . . . . . . . . . . . . . . . . . . . . 460

14.6.1 Martingale central limit theorem . . . . . . . . . . . . . . . . . . . . 462

14.6.2 Example: Asymptotic normality of the weighted periodogram . . . . 462

14.7 Asymptotic properties of the Hannan and Rissanen estimation method . . . 463

14.7.1 Proof of Theorem 14.7.1 (A rate for ‖b̂T − bT‖2) . . . . . . . . . . . 468

14.8 Asymptotic properties of the GMLE . . . . . . . . . . . . . . . . . . . . . . 471

15 Residual Bootstrap for estimation in autoregressive processes 481

15.1 The residual bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

15.2 The sampling properties of the residual bootstrap estimator . . . . . . . . . 483

A Background 492

A.1 Some definitions and inequalities . . . . . . . . . . . . . . . . . . . . . . . . 492

A.2 Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

A.3 The Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

A.4 Application of Burkholder’s inequality . . . . . . . . . . . . . . . . . . . . . 501

A.5 The Fast Fourier Transform (FFT) . . . . . . . . . . . . . . . . . . . . . . . 503

B Mixingales and physical depedendence 508

B.1 Obtaining almost sure rates of convergence for some sums . . . . . . . . . . 509

B.2 Proof of Theorem 14.7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

B.3 Basic properties of physical dependence . . . . . . . . . . . . . . . . . . . . . 513

9



Preface

• The material for these notes come from several different places, in particular:

– Brockwell and Davis (1998) (yellow book)

– Shumway and Stoffer (2006) (a shortened version is Shumway and Stoffer EZ).

– Fuller (1995)

– Pourahmadi (2001)

– Priestley (1983)

– Box and Jenkins (1970)

– Brockwell and Davis (2002) (the red book), is a very nice introduction to Time

Series, which may be useful for students who don’t have a rigourous background

in mathematics.

– Wilson Tunnicliffe et al. (2020)

– Tucker and Politis (2021)

– A whole bunch of articles.

– My own random thoughts and derivations.

• Tata Subba Rao and Piotr Fryzlewicz were very generous in giving advice and sharing

homework problems.

• When doing the homework, you are encouraged to use all materials available, including

Wikipedia, Mathematica/Maple (software which allows you to easily derive analytic

expressions, a web-based version which is not sensitive to syntax is Wolfram-alpha).
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• You are encouraged to use R (see David Stoffer’s tutorial). I have tried to include

Rcode in the notes so that you can replicate some of the results.

• Exercise questions will be in the notes and will be set at regular intervals.

• Finally, these notes are dedicated to my wonderful Father, whose inquisitive questions,

and unconditional support inspired my quest in time series.
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Chapter 1

Introduction

A time series is a series of observations xt, observed over a period of time. Typically the

observations can be over an entire interval, randomly sampled on an interval or at fixed time

points. Different types of time sampling require different approaches to the data analysis.

In this course we will focus on the case that observations are observed at fixed equidistant

time points, hence we will suppose we observe {xt : t ∈ Z} (Z = {. . . , 0, 1, 2 . . .}).

Let us start with a simple example, independent, uncorrelated random variables (the

simplest example of a time series). A plot is given in Figure 1.1. We observe that there

aren’t any clear patterns in the data. Our best forecast (predictor) of the next observation

is zero (which appears to be the mean). The feature that distinguishes a time series from

classical statistics is that there is dependence in the observations. This allows us to obtain

better forecasts of future observations. Keep Figure 1.1 in mind, and compare this to the

following real examples of time series (observe in all these examples you see patterns).

1.1 Time Series data

Below we discuss four different data sets.

The Southern Oscillation Index from 1876-present

The Southern Oscillation Index (SOI) is an indicator of intensity of the El Nino effect (see

wiki). The SOI measures the fluctuations in air surface pressures between Tahiti and Darwin.
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Figure 1.1: Plot of independent uncorrelated random variables

In Figure 1.2 we give a plot of monthly SOI from January 1876 - July 2014 (note that

there is some doubt on the reliability of the data before 1930). The data was obtained

from http://www.bom.gov.au/climate/current/soihtm1.shtml. Using this data set one

major goal is to look for patterns, in particular periodicities in the data.
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Figure 1.2: Plot of monthly Southern Oscillation Index, 1876-2014
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Nasdaq Data from 1985-present

The daily closing Nasdaq price from 1st October, 1985- 8th August, 2014 is given in Figure

1.3. The (historical) data was obtained from https://uk.finance.yahoo.com. See also

http://www.federalreserve.gov/releases/h10/Hist/. Of course with this type of data

the goal is to make money! Therefore the main object is to forecast (predict future volatility).
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Figure 1.3: Plot of daily closing price of Nasdaq 1985-2014

Yearly sunspot data from 1700-2013

Sunspot activity is measured by the number of sunspots seen on the sun. In recent years it has

had renewed interest because times in which there are high activity causes huge disruptions

to communication networks (see wiki and NASA).

In Figure 1.4 we give a plot of yearly sunspot numbers from 1700-2013. The data was

obtained from http://www.sidc.be/silso/datafiles. For this type of data the main aim

is to both look for patterns in the data and also to forecast (predict future sunspot activity).

Yearly and monthly average temperature data

Given that climate change is a very topical subject we consider global temperature data.

Figure 1.5 gives the yearly temperature anomalies from 1880-2013 and in Figure 1.6 we plot
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Figure 1.4: Plot of Sunspot numbers 1700-2013

the monthly temperatures from January 1996 - July 2014. The data was obtained from

http://data.giss.nasa.gov/gistemp/graphs_v3/Fig.A2.txt and http://data.giss.

nasa.gov/gistemp/graphs_v3/Fig.C.txt respectively. For this type of data one may be

trying to detect for global warming (a long term change/increase in the average tempera-

tures). This would be done by fitting trend functions through the data. However, sophisti-

cated time series analysis is required to determine whether these estimators are statistically

significant.

1.2 R code

A large number of the methods and concepts will be illustrated in R. If you are not familar

with this language please learn the basics.

Here we give the R code for making the plots above.

# assuming the data is stored in your main directory we scan the data into R

soi <- scan("~/soi.txt")

soi1 <- ts(monthlytemp,start=c(1876,1),frequency=12)

# the function ts creates a timeseries object, start = starting year,
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Figure 1.5: Plot of global, yearly average, temperature anomalies, 1880 - 2013
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Figure 1.6: Plot of global, monthly average, temperatures January, 1996 - July, 2014.

# where 1 denotes January. Frequency = number of observations in a

# unit of time (year). As the data is monthly it is 12.

plot.ts(soi1)

Dating plots properly is very useful. This can be done using the package zoo and the

function as.Date.
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1.3 Filtering time series

Often we transform data to highlight features or remove unwanted features. This is often

done by taking the log transform or a linear transform.

It is no different for time series. Often a transformed time series can be easier to analyse

or contain features not apparent in the original time series. In these notes we mainly focus

on linear transformation of the time series. Let {Xt} denote the original time series and

{Yt} transformed time series where

Yt =
∞∑

j=−∞

hjXt−j

where {hj} are weights.

In these notes we focus on two important types of linear transforms of the time series:

(i) Linear transforms that can be used to estimate the underlying mean function.

(ii) Linear transforms that allow us to obtain a deeper understanding on the actual stochas-

tic/random part of the observed time series.

In the next chapter we consider estimation of a time-varying mean in a time series and

will use some of the transforms alluded to above.

1.4 Terminology

• iid (independent, identically distributed) random variables. The simplest time series

you could ever deal with!
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Chapter 2

Trends in a time series

Objectives:

• Parameter estimation in parametric trend.

• The Discrete Fourier transform.

• Period estimation.

In time series, the main focus is on understanding and modelling the relationship between

observations. A typical time series model looks like

Yt = µt + εt,

where µt is the underlying mean and εt are the residuals (errors) which the mean cannot

explain. Formally, we say E[Yt] = µt. We will show later in this section, that when data

it can be difficult to disentangle to the two. However, a time series analysist usually has

a few jobs to do when given such a data set. Either (a) estimate µt, we discuss various

methods below, this we call µ̂t or (b) transform {Yt} in such a way that µt “disappears”.

What method is used depends on what the aims are of the analysis. In many cases it is to

estimate the mean µt. But the estimated residuals

ε̂t = Yt − µ̂t

18



also plays an important role. By modelling {εt}t we can understand its dependence structure.

This knowledge will allow us to construct reliable confidence intervals for the mean µt. Thus

the residuals {εt}t play an important but peripheral role. However, for many data sets the

residuals {εt}t are important and it is the mean that is a nuisance parameters. In such

situations we either find a transformation which removes the mean and focus our analysis

on the residuals εt. The main focus of this class will be on understanding the structure of

the residuals {εt}t. However, in this chapter we study ways in which to estimate the mean

µt.

Shumway and Stoffer, Chapter 2, and Brockwell and Davis (2002), Chapter 1.

2.1 Parametric trend

In many situations, when we observe time series, regressors are also available. The regressors

may be an exogenous variable but it could even be time (or functions of time), since for a

time series the index t has a meaningful ordering and can be treated as a regressor. Often

the data is assumed to be generated using a parametric model. By parametric model, we

mean a model where all but a finite number of parameters is assumed known. Possibly, the

simplest model is the linear model. In time series, a commonly used linear model is

Yt = β0 + β1t+ εt, (2.1)

or

Yt = β0 + β1t+ β2t
2 + εt, (2.2)

where β0, β1 and β2 are unknown. These models are l inear because they are linear in the

regressors. An example of a popular nonlinear models is

Yt =
1

1 + exp[β0(t− β1)]
+ εt. (2.3)

where β0 and β1 are unknown. As the parameters in this model are inside a function, this
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Figure 2.1: The function Yt in (2.3) with iid noise with σ = 0.3. Dashed is the truth. Left:
β0 = 0.2 and β1 = 60. Right: β0 = 5 and β1 = 60

is an example of a nonlinear model. The above nonlinear model (called a smooth transition

model), is used to model transitions from one state to another (as it is monotonic, increasing

or decreasing depending on the sign of β0). Another popular model for modelling ECG data

is the burst signal model (see Swagata Nandi et. al.)

Yt = A exp (β0(1− cos(β2t))) · cos(θt) + εt (2.4)

Both these nonlinear parametric models motivate the general nonlinear model

Yt = g(xt, θ) + εt, (2.5)

where g(xt, θ) is the nonlinear trend, g is a known function but θ is unknown. Observe that

most models include an additive noise term {εt}t to account for variation in Yt that the trend

cannot explain.

Real data example Monthly temperature data. This time series appears to include seasonal

behaviour (for example the southern oscillation index). Seasonal behaviour is often modelled
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Figure 2.2: The Burst signal (equation (2.4)) A = 1, β0 = 2, β1 = 1 and θ = π/2 with iid
noise with σ = 8. Dashed is the truth. Left: True Signal. Right: True Signal with noise

with sines and cosines

Yt = β0 + β1 sin

(
2πt

P

)
+ β3 cos

(
2πt

P

)
+ εt,

where P denotes the length of the period. If P is known, for example there are 12 months

in a year so setting P = 12 is sensible. Then we are modelling trends which repeat every 12

months (for example monthly data) and

Yt = β0 + β1 sin

(
2πt

12

)
+ β3 cos

(
2πt

12

)
+ εt. (2.6)

is an example of a l inear model.

On the other hand, if P is known and has to be estimated from the data too. Then this

is an example of a nonlinear model. We consider more general periodic functions in Section

2.5.

2.1.1 Least squares estimation

In this section we review simple estimation methods. In this section, we do not study the

properties of these estimators. We touch on that in the next chapter.
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A quick review of least squares Suppose that variable Xi are believed to influence the re-

sponse variable Yi. So far the relationship is unknown, but we regress (project Y n =

(Y1, . . . , Yn)′) onto Xn = (X1, . . . , Xn) using least squares. We know that this means finding

the α which minimises the distance

n∑
i=1

(Yi − αXi)
2.

The α, which minimises the above, for mathematical convenience we denote as

α̂n = arg min
α

n∑
i=1

(Yi − αXi)
2

and it has an analytic solution

α̂n =
〈Y n, Xn〉
‖Xn‖2

2

=

∑n
i=1 YiXi∑n
i=1X

2
i

.

A geometric interpretation is that the vector Y n is projected onto Xn such that

Y n = α̂nXn + εn

where εn is orthogonal to Xn in other words

〈Xn, εn〉 =
n∑
i=1

Xiεi,n = 0.

But so far no statistics. We can always project a vector on another vector. We have made

no underlying assumption on what generates Yi and how Xi really impacts Xi. Once we do

this we are in the realm of modelling. We do this now. Let us suppose the data generating

process (often abbreviated to DGP) is

Yi = αXi + εi,

here we place the orthogonality assumption between Xi and εi by assuming that they are
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uncorrelated i.e. cov[εi, Xi]. This basically means εi contains no linear information about

Xi. Once a model has been established. We can make more informative statements about

α̂n. In this case α̂n is estimating α and α̂nXi is an estimator of the mean αXi.

Multiple linear regression The above is regress Y n onto just one regressor Xn. Now con-

sider regressing Y n onto several regressors (X1,n, . . . , Xp,n) where X ′i,n = (Xi,1, . . . , Xi,n).

This means projecting Y n onto several regressors (X1,n, . . . , Xp,n). The coefficients in this

projection are α̂n, where

α̂n = arg min
α

n∑
i=1

(Yi −
p∑
j=1

αjXi,j)
2

= (X′X)−1X′Y n.

and X = (X1,n, . . . , Xp,n). If the vectors {Xj,n}
p
j=1 are orthogonal, then X′X is diagonal

matrix. Then the expression for α̂n can be simplified

α̂j,n =
〈Y n, Xj,n〉
‖Xj,n‖2

2

=

∑n
i=1 YiXi,j∑n
i=1X

2
i,j

.

Orthogonality of regressors is very useful, it allows simple estimation of parameters and

avoids issues such as collinearity between regressors.

Of course we can regress Y n onto anything. In order to make any statements at the

population level, we have to make an assumption about the true relationship between Yi and

X ′i,n = (Xi,1, . . . , Xi,p). Let us suppose the data generating process is

Yi =

p∑
j=1

αjXi,j + εi.

Then α̂n is an estimator of α. But how good an estimator it is depends on the properties

of {εi}ni=1. Typically, we make the assumption that {εi}ni=1 are independent, identically

distributed random variables. But if Yi is observed over time, then this assumption may well

be untrue (we come to this later and the impact it may have).

If there is a choice of many different variables, the AIC (Akaike Information Criterion)

is usually used to select the important variables in the model (see wiki).

23

http://en.wikipedia.org/wiki/Akaike_information_criterion


Nonlinear least squares Least squares has a nice geometric interpretation in terms of pro-

jections. But for models like (2.3) and (2.4) where the unknown parameters are not the

coefficients of the regressors (Yi = g(X i, θ) + εi), least squares can still be used to estimate θ

θ̂n = arg min
θ∈Θ

n∑
i=1

(Yi − g(X i, θ))
2.

Usually, for nonlinear linear least squares no analytic solution for θ̂n exists and one has to

use a numerical routine to minimise the least squares criterion (such as optim in R). These

methods can be highly sensitive to initial values (especially when there are many parameters

in the system) and may only give the local minimum. However, in some situations one by

“clever” manipulations one can find simple methods for minimising the above.

Again if the true model is Yi = g(X i, θ) + εi, then θ̂n is an estimator of θ.

2.2 Differencing

Let us return to the Nasdaq data (see Figure 1.3). We observe what appears to be an

upward trend. First differencing often removes the trend in the model. For example if

Yt = β0 + β1t+ εt, then

Zt = Yt+1 − Yt = β1 + εt+1 − εt.

Another model where first difference is also extremely helpful are those which have a stochas-

tic trend. A simple example is

Yt = Yt−1 + εt, (2.7)

where {εt}t are iid random variables. It is believed that the logorithm of the Nasdaq index

data (see Figure 1.3 is an example of such a model). Again by taking first differences we

have

Zt = Yt+1 − Yt = εt+1.
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Higher order differences Taking higher order differences can remove higher order polynomials

and stochastic trends. For example if Yt = β0 + β1t+ β2t
2 + εt then

Z
(1)
t = Yt+1 − Yt = β1 + 2β2t+ εt+1 − εt,

this still contains the trend. Taking second differences removes that

Z
(2)
t = Z

(1)
t − Z

(1)
t−1 = 2β2 + εt+1 − 2εt + εt−1.

In general, the number of differences corresponds to the order of the polynomial. Similarly

if a stochastic trend is of the form

Yt = 2Yt−1 − Yt−2 + εt,

where {εt}t are iid. Then second differencing will return us to εt.

Warning Taking too many differences can induce “ugly” dependences in the data. This

happens with the linear trend model Yt = β0+β1t+εt when we difference {Yt} is independent

over time but Zt = Yt − Yt−1 = β1 + εt+1 − εt is dependent over time since

Zt = β1 + εt+1 − εt and Zt+1 = β1 + εt+2 − εt+1,

they both share a common εt+1 which is highly undesirable (for future: Zt has an MA(1)

representation and is non-invertible). Similarly for the stochastic trend Yt = Yt−1 + εt,

taking second differences Z
(2)
t = εt − εt−1. Thus we encounter the same problem. Dealing

with dependencies caused by over differencing induces negative persistence in a time series

and it is a pain in the neck!

R code. It is straightforward to simulate a difference process. You can also use the arima

function in R. For example, arima.sim(list(order = c(0,1,0)), n = 200) will simulate

(2.7) and arima.sim(list(order = c(0,2,0)), n = 200) will simulate a differencing of

order two.
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Exercise 2.1 (i) Import the yearly temperature data (file global mean temp.txt) into

R and fit the linear model in (2.1) to the data (use the R command lm, FitTemp =

lm(data), out = summary(FitTemp)) .

(ii) Suppose the errors in (2.1) are correlated (linear dependence between the errors). If

the errors are correlated, explain why the standard errors reported in the R output may

not be reliable.

Hint: The errors are usually calculated as

(
n∑
t=1

(1, t)′(1, t)

)−1
1

n− 2

n∑
t=1

ε̂2
t .

(iii) Make a plot of the residuals (over time) after fitting the linear model in (i).

(iv) Make a plot of the first differences of the temperature data (against time). Compare

the plot of the residuals with the plot of the first differences.

2.3 Nonparametric methods (advanced)

In Section 2.1 we assumed that the mean had a certain known parametric form. This may

not always be the case. If we have no apriori knowledge of the features in the mean, we

can estimate the mean using a nonparametric approach. Of course some assumptions on the

mean are still required. And the most common is to assume that the mean µt is a sample

from a ‘smooth’ function. Mathematically we write that µt is sampled (at regular intervals)

from a smooth function (i.e. u2) with µt = µ( t
n
) where the function µ(·) is unknown. Under

this assumption the following approaches are valid.

2.3.1 Rolling windows

Possibly one of the simplest methods is to use a ‘rolling window’. There are several windows

that one can use. We describe, below, the exponential window, since it can be ‘evaluated’
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in an online way. For t = 1 let µ̂1 = Y1, then for t > 1 define

µ̂t = (1− λ)µ̂t−1 + λYt,

where 0 < λ < 1. The choice of λ depends on how much weight one wants to give the

present observation. The rolling window is related to the regular window often used in

nonparametric regression. To see this, we note that it is straightforward to show that

µ̂t =
t−1∑
j=1

(1− λ)t−jλYj =
t∑

j=1

[1− exp(−γ)] exp [−γ(t− j)]Yj

where 1− λ = exp(−γ). Set γ = (nb)−1 and K(u) = exp(−u)I(u ≥ 0). Note that we treat

n as a “sample size” (it is of the same order as n and for convenience one can let n = t),

whereas b is a bandwidth, the smaller b the larger the weight on the current observations.

Then, µ̂t can be written as

µ̂t = (1− e−1/(nb))︸ ︷︷ ︸
≈(nb)−1

n∑
j=1

K

(
t− j
nb

)
Yj,

where the above approximation is due to a Taylor expansion of e−1/(nb). This we observe that

the exponential rolling window estimator is very close to a nonparametric kernel smoothing,

which typically takes the form

µ̃t =
n∑
j=1

1

nb
K

(
t− j
nb

)
Yj.

it is likely you came across such estimators in your nonparametric classes (a classical example

is the local average where K(u) = 1 for u ∈ [−1/2, 1/2] but zero elsewhere). The main

difference between the rolling window estimator and the nonparametric kernel estimator is

that the kernel/window for the rolling window is not symmetric. This is because we are

trying to estimate the mean at time t, given only the observations up to time t. Whereas

for general nonparametric kernel estimators one can use observations on both sides of t.
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2.3.2 Sieve estimators

Suppose that {φk(·)}k is an orthonormal basis of L2[0, 1] (L2[0, 1] = {f ;
∫ 1

0
f(x)2dx < ∞},

so it includes all bounded and continuous functions)1. Then every function in L2 can be

represented as a linear sum of the basis. Suppose µ(·) ∈ L2[0, 1] (for example the function

is simply bounded). Then

µ(u) =
∞∑
k=1

akφk(u).

Examples of basis functions are the Fourier φk(u) = exp(iku), Haar/other wavelet functions

etc. We observe that the unknown coefficients ak are a linear in the ‘regressors’ φk. Since∑
k |ak|2 < ∞, ak → 0. Therefore, for a sufficiently large M the finite truncation of the

above is such that

Yt ≈
M∑
k=1

akφk

(
t

n

)
+ εt.

Based on the above we observe that we can use least squares to estimate the coefficients,

{ak}. To estimate these coefficients, we truncate the above expansion to order M , and use

least squares to estimate the coefficients

n∑
t=1

[
Yt −

M∑
k=1

akφk

(
t

n

)]2

. (2.8)

The orthogonality of the basis means that the corresponding design matrix (X ′X) is close

to identity, since

n−1(X ′X)k1,k2 =
1

n

∑
t

φk1

(
t

n

)
φk2

(
t

n

)
≈
∫
φk1(u)φk2(u)du =

 0 k1 6= k2

1 k1 = k2

.

1Orthonormal basis means that for all k
∫ 1

0
φk(u)2du = 1 and for any k1 6= k2 we have

∫ 1

0
φk1(u)φk2(u)du =

0
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This means that the least squares estimator of ak is âk where

âk ≈
1

n

n∑
t=1

Ytφk

(
t

n

)
.

2.4 What is trend and what is noise?

So far we have not discussed the nature of the noise εt. In classical statistics εt is usually

assumed to be iid (independent, identically distributed). But if the data is observed over

time, εt could be dependent; the previous observation influences the current observation.

However, once we relax the assumption of independence in the model problems arise. By

allowing the “noise” εt to be dependent it becomes extremely difficult to discriminate between

mean trend and noise. In Figure 2.3 two plots are given. The top plot is a realisation from

independent normal noise the bottom plot is a realisation from dependent noise (the AR(1)

process Xt = 0.95Xt−1 +εt). Both realisations have zero mean (no trend), but the lower plot

does give the appearance of an underlying mean trend.

This effect because more problematic when analysing data where there is mean term

plus dependent noise. The smoothness in the dependent noise may give the appearance of

additional features mean function. This makes estimating the mean function more difficult,

especially the choice of bandwidth b. To understand why, suppose the mean function is

µt = µ( t
200

) (the sample size n = 200), where µ(u) = 5 × (2u − 2.5u2) + 20. We corrupt

this quadratic function with both iid and dependent noise (the dependent noise is the AR(2)

process defined in equation (2.19)). The plots are given in Figure 2.4. We observe that the

dependent noise looks ‘smooth’ (dependence can induce smoothness in a realisation). This

means that in the case that the mean has been corrupted by dependent noise it difficult to

see that the underlying trend is a simple quadratic function. In a very interesting paper Hart

(1991), shows that cross-validation (which is the classical method for choosing the bandwidth

parameter b) is terrible when the errors are correlated.

Exercise 2.2 The purpose of this exercise is to understand how correlated errors in a non-

parametric model influence local smoothing estimators. We will use a simple local average.

Define the smooth signal f(u) = 5 ∗ (2u − 2.5u2) + 20 and suppose we observe Yi =

29



Time

in
de

pe
nd

en
t

0 20 40 60 80 100

−2
−1

0
1

2

Time

de
pe

nd
en

t

0 20 40 60 80 100

0
5

10

Figure 2.3: Top: realisations from iid random noise. Bottom: Realisation from dependent
noise

f(i/200) + εi (n = 200). To simular f(u) with n = 200 define temp <- c(1:200)/200 and

quadratic <- 5*(2*temp - 2.5*(temp**2)) + 20.

(i) Simulate from the above model using iid noise. You can use the code iid=rnom(200)

and quadraticiid = (quadratic + iid).

Our aim is to estimate f . To do this take a local average (the average can have different

lengths m) (you can use mean(quadraticiid[c(k:(k+m-1))]) for k = 1, . . . , 200−m).

Make of a plot the estimate.

(ii) Simulate from the above model using correlated noise (we simulate from an AR(2)) ar2

= 0.5*arima.sim(list(order=c(2,0,0), ar = c(1.5, -0.75)), n=200) and de-

fine quadraticar2 = (quadratic +ar2).

Again estimate f using local averages and make a plot.

Compare the plots of the estimates based on the two models above.
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Figure 2.4: Top: realisations from iid random noise and dependent noise (left = iid and right
= dependent). Bottom: Quadratic trend plus corresponding noise.

2.5 Periodic functions

Periodic mean functions arise in several applications, from ECG (which measure heart

rhythms), econometric data, geostatistical data to astrostatistics. Often the aim is to esti-

mate the period or of a periodic function. Let us return to the monthly rainfall example

consider in Section 2.1, equation (2.6):

Yt = β0 + β1 sin

(
2πt

12

)
+ β3 cos

(
2πt

12

)
+ εt.

This model assumes the mean has a repetition every 12 month period. But, it assumes a

very specific type of repetition over 12 months; one that is composed of one sine and one

cosine. If one wanted to be more general and allow for any periodic sequence of period 12,

the above should be replaced with

Yt = d12(t) + εt,
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where d12 = (d12(1), d12(2), . . . , d12(12)) and d12(t) = d12(t + 12) for all t. This a general

sequence which loops every 12 time points.

In the following few sections our aim is to show that all periodic functions can be written

in terms of sine and cosines.

2.5.1 The sine and cosine transform

An alternative (but equivalent) representation of this periodic sequence is by using sines and

cosines. This is very reasonable, since sines and cosines are also periodic. It can be shown

that

d12(t) = a0 +
5∑
j=1

[
aj cos

(
2πtj

12

)
+ bj sin

(
2πtj

12

)]
+ a6 cos (πt) . (2.9)

Where we observe that the number aj and bjs is 12, which is exactly the number of different

elements in the sequence. Any periodic sequence of period 12 can be written in this way. Fur-

ther equation (2.6) is the first two components in this representation. Thus the representation

in (2.9) motivates why (2.6) is often used to model seasonality. You may wonder why use just

the first two components in (2.9) in the seasonal, this is because typically the coefficients a1

and b1 are far larger than {aj, bj}6
j=2. This is only a rule of thumb: generate several periodic

sequences you see that in general this is true. Thus in general
[
a1 cos

(
2πt
12

)
+ b1 sin

(
2πt
12

)]
tends to capture the main periodic features in the sequence. Algebraic manipulation shows

that

aj =
1

12

12∑
t=1

d12(t) cos

(
2πtj

12

)
and bj =

1

12

12∑
t=1

d12(t) sin

(
2πtj

12

)
. (2.10)

These are often called the sin and cosine transforms.

In general for sequences of period P , if P is even we can write

dP (t) = a0 +

P/2−1∑
j=1

[
aj cos

(
2πtj

P

)
+ bj sin

(
2πtj

P

)]
+ aP/2 cos (πt) (2.11)
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and if P is odd

dP (t) = a0 +

bP/2c−1∑
j=1

[
aj cos

(
2πtj

P

)
+ bj sin

(
2πtj

P

)]
(2.12)

where

aj =
1

P

P∑
t=1

dP (t) cos

(
2πtj

P

)
and bj =

1

P

P∑
t=1

dP (t) sin

(
2πtj

P

)
.

The above reconstructs the periodic sequence dP (t) in terms of sines and cosines. What we

will learn later on is that all sequences can be built up with sines and cosines (it does not

matter if they are periodic or not).

2.5.2 The Fourier transform (the sine and cosine transform in

disguise)

We will now introduce a tool that often invokes panic in students. But it is very useful

and is simply an alternative representation of the sine and cosine transform (which does

not invoke panic). If you tried to prove (2.10) you would have probably used several cosine

and sine identities. It is a very mess proof. A simpler method is to use an alternative

representation which combines the sine and cosine transforms and imaginary numbers. We

recall the identity

eiω = cos(ω) + i sin(ω).

where i =
√
−1. eiω contains the sin and cosine information in just one function. Thus

cos(ω) = Re eiω = (eiω + e−iω)/2 and sin(ω) = Im eiω = −i(eiω − e−iω)/2.

It has some very useful properties that just require basic knowledge of geometric series.

We state these below. Define the ratio ωk,n = 2πk/n (we exchange 12 for n), then

n−1∑
k=0

exp(ijωk,n) =
n−1∑
k=0

exp(ikωj,n) =
n−1∑
k=0

[exp(iωj,n)]k.
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Keep in mind that jωk,n = j2πk/n = kωj,n. If j = 0, then
∑n−1

k=0 exp(ijωn,n) = n. On the

other hand, if 1 ≤ j, k ≤ (n− 1), then exp(ijωk,n) = cos(2jπk/n) + i sin(2jπk/n) 6= 1. And

we can use the geometric sum identity

n−1∑
k=0

exp(ijωk,n) =
n−1∑
k=0

[exp(iωj,n)]k =
1− exp(inωk,n)

1− exp(iωk,n)
.

But exp(inωk,n) = cos(n2πk/n) + i sin(n2πk/n) = 1. Thus for 1 ≤ k ≤ (n− 1) we have

n−1∑
k=0

exp(ijωk,n) =
1− exp(inωj,n)

1− exp(iωj,n)
= 0.

In summary,

n−1∑
k=0

exp(ijωk,n) =

 n j = n or 0

0 1 ≤ j ≤ (n− 1)
(2.13)

Now using the above results we now show we can rewrite d12(t) in terms of exp(iω) (rather

than sines and cosines). And this representation is a lot easier to show; though you it is in

terms of complex numbers. Set n = 12 and define the coefficient

A12(j) =
1

12

11∑
t=0

d12(t) exp (itωj,12) .

A12(j) is complex (it has real and imaginary parts), with a little thought you can see that

A12(j) = A12(12− j). By using (2.13) it is easily shown (see below for proof) that

d12(τ) =
11∑
j=0

A12(j) exp(−ijωτ,12) (2.14)

This is just like the sine and cosine representation

d12(t) = a0 +
5∑
j=1

[
aj cos

(
2πtj

12

)
+ bj sin

(
2πtj

12

)]
+ a6 cos (πt) .

but with exp(ijωt,12) replacing cos(jωt,12) and sin(jωt,12).
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Proof of equation (2.14) The proof of (2.14) is very simple and we now give it. Plugging in

the equation for A12(j) into (2.14) gives

d12(τ) =
11∑
j=0

A12(j) exp(−ijωτ,12) =
1

12

11∑
t=0

d12(t)
11∑
j=0

exp (itωj,n) exp(−ijωτ,12)

=
1

12

11∑
t=0

d12(t)
11∑
j=0

exp (i(t− τ)ωj,12)).

We know from (2.13) that
∑11

j=0 exp (i(t− τ)ωj,12)) = 0 unless t = τ . If t = τ , then∑11
j=0 exp (i(t− τ)ωj,12)) = 12. Thus

1

12

11∑
t=0

d12(t)
11∑
j=0

exp (i(t− τ)ωj,12)) =
1

12

11∑
t=0

d12(t)I(t = τ)× 12

= d12(t),

this proves (2.14). �

Remember the above is just writing the sequence in terms of its sine and cosine transforms

in fact it is simple to link the two sets of coefficients:

aj = ReA12(j) =
1

2
[A12(j) + A12(12− j)]

bj = ImA12(j) =
−i
2

[A12(j)− A12(12− j)] .

We give an example of a periodic function and its Fourier coefficients (real and imaginary

parts) in Figure 2.5. The peak at the zero frequency of the real part corresponds to the

mean of the periodic signal (if the mean is zero, this will be zero).

Example 2.5.1 In the case that dP (t) is a pure sine or cosine function sin(2πt/P ) or

cos(2πt/P ), then AP (j) will only be non-zero at j = 1 and j = P − 1.

This is straightfoward to see, but we formally prove it below. Suppose that dP (t) =
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Figure 2.5: Left: Periodic function d5(s) = 1 for s = 1, 2, d5(s) = 0 for s = 3, 4, 5 (period 5),
Right: The real and imaginary parts of its Fourier transform

cos
(

2πs
P

)
, then

1

P

P−1∑
s=0

cos

(
2πs

P

)
exp

(
i
2πsj

P

)
=

1

2P

P−1∑
s=0

(
ei2πs/P + e−i2πs/P

)
ei

2πsj
P =

 1/2 j = 1 or P − 1

0 otherwise

Suppose that dP (t) = sin
(

2πs
P

)
, then

1

P

P−1∑
s=0

sin

(
2πs

P

)
exp

(
i
2πsj

P

)
=
−i
2P

P−1∑
s=0

(
ei2πs/P − e−i2πs/P

)
ei

2πsj
P =


i/2 j = 1

−i/2 j = P − 1

0 otherwise

2.5.3 The discrete Fourier transform

The discussion above shows that any periodic sequence can be written as the sum of (modu-

lated) sins and cosines up to that frequency. But the same is true for any sequence. Suppose

{Yt}nt=1 is a sequence of length n, then it can always be represented as the superposition of

n sine and cosine functions. To make calculations easier we use exp(ijωk,n) instead of sines

and cosines:

Yt =
n−1∑
j=0

An(j) exp(−itωj,n), (2.15)
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where the amplitude An(j) is

An(j) =
1

n

n∑
τ=1

Yτ exp(iτωj,n).

Here Yt is acting like dP (t), it is also periodic if we over the boundary [1, . . . , n]. By using

(2.15) as the definition of Yt we can show that Yt+n = Yt.

Often the n is distributed evenly over the two sums and we represent Yt as

Yt =
1√
n

n−1∑
k=0

Jn(ωk,n) exp(−itωk,n),

where the amplitude of exp(−itωk,n) is

Jn(ωk,n) =
1√
n

n∑
τ=1

Yτ exp(iτωk,n).

This representation evenly distributes 1/
√
n amongst the two sums. Jn(ωk,n) is called the

Discrete Fourier transform (DFT) of {Yt}. It serves a few purposes:

• Jn(ωk,n) measures the contribution (amplitude) of exp(itωk,n) (or cos(tωk,n) and sin(tωk,n))

in {Yt}.

• Jn(ωk,n) is a linear transformation of {Yt}nt=1.

• You can view Jn(ωk,n) as a scalar product of {Yt} with sines and cosines, or as projection

onto sines or cosines or measuring the resonance of {Yt} at frequency ωk,n. It has the

benefit of being a microscope for detecting periods, as we will see in the next section.

For general time series, the DFT, {Jn(2πk
n

); 1 ≤ k ≤ n} is simply a decomposition of

the time series {Xt; t = 1, . . . , n} into sins and cosines of different frequencies. The mag-

nitude of Jn(ωk) informs on how much of the functions sin(tω) and cos(tωk) are in the

{Xt; t = 1, . . . , n}. Below we define the periodogram. The periodogram effectively removes

the complex part in Jn(ωk) and only measures the absolute magnitude.
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Definition 2.5.1 (The periodogram) Jn(ω) is complex random variables. Often the ab-

solute square of Jn(ω) is analyzed, this is called the periodogram

In(ω) = |Jn(ω)|2 =
1

n

∣∣∣∣∣
n∑
t=1

Xt cos(tω)

∣∣∣∣∣
2

+
1

n

∣∣∣∣∣
n∑
t=1

Xt sin(tω)

∣∣∣∣∣
2

.

In(ω) combines the information in the real and imaginary parts of Jn(ω) and has the advan-

tage that it is real.

In(ω) is symmetric about π. It is also periodic every [0, 2π], thus In(ω + 2π) = In(ω).

Put together only needs to consider In(ω) in the range [0, π] to extract all the information

from In(ω).

2.5.4 The discrete Fourier transform and periodic signals

In this section we consider signals with periodic trend:

Yt = dP (t) + εt t = 1, . . . , n

=
P−1∑
j=0

AP (j)e−i
2πjt
P + εt

where for all t, dP (t) = dP (t+ P ) (assume {εt} are iid). Our aim in this section is estimate

(at least visually) the period. We use the DFT of the time series to gain some standing of

dP (t). We show below that the linear transformation Jn(ωk,n) is more informative about dP

that {Yt}.

We recall that the discrete Fourier transform of {Yt} is

Jn(ωk,n) =
1√
n

n∑
t=1

Yt [cos(tωk.n)− i sin(tωk)] =
n∑
t=1

Yt exp(−itωk,n)

where {ωk = 2πk
n
}. We show below that when the periodicity in the cosine and sin function

matches the periodicity of the mean function Jn(ω) will be large and at other frequencies it
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will be small. Thus

Jn(ωk,n) =


√
nAp(r) + 1√

n

∑n
t=1 εte

−itωk,n k = n
P
r, r = 0, . . . , P − 1.

1√
n

∑n
t=1 εte

−itωk,n k 6= n
P
Z

(2.16)

Assuming that
∑n

t=1 εte
−itωk,n is low lying noise (we discuss this in detail later), what

we should see are P large spikes, each corresponding to AP (r). Though the above is simply

an algebraic calculation. The reason for the term n in (2.16) (recall n is the sample size) is

because there are n/P repetitions of the period.

Example We consider a simple example where d4(s) = (1.125,−0.375,−0.375,−0.375) (pe-

riod = 4, total length 100, number of repetitions 25). We add noise to it (iid normal with

σ = 0.4). A plot of one realisation is given in Figure 2.7. In Figure 2.8 we superimpose the

observed signal with with two different sine functions. Observe that when the sine function

matches the frequencies (sin(25u), red plot) their scalar product will be large. But when the

sin frequency does not match the periodic frequency the scalar product will be close to zero.
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Figure 2.6: Left: Periodic function d4(s) = (1.125,−0.375,−0.375,−0.375) (period 4)

In Figure 2.9 we plot the signal together with is periodgram. Observe that the plot

matches equation (2.16). At the frequency of the period the signal amplitude is very large.
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Figure 2.8: Left: Signal superimposed with sin(u). Right: Signal superimposed with
sin(25u).

Proof of equation (2.16) To see why, we rewrite Jn(ωk) (we assume n is a multiple of P ) as

Jn(ωk) =
1√
n

n∑
t=0

dP (t) exp(itωk) +
1√
n

n∑
t=1

εte
itωk

=
1√
n

n/P−1∑
t=0

P∑
s=1

dP (Pt+ s) exp(iP tωk + isωk) +
1√
n

n∑
t=1

εte
itωk

=
1√
n

n/P−1∑
t=0

exp(iP tωk)
P∑
s=1

dP (s) exp(isωk) +
1√
n

n∑
t=1

εte
itωk

=
1√
n

P∑
s=1

dP (s) exp(isωk)

n/P−1∑
t=0

exp(iP tωk) +
1√
n

n∑
t=1

εte
itωk .
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Figure 2.9: Left: Signal, Right: periodogram of signal (peridogram of periodic function in
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We now use a result analogous to (2.13)

n/P−1∑
t=0

exp(iP tωk) =


exp(i2πk)

1−exp(iP tωk)
= 0 k 6= n

P
Z

n/P k ∈ n
P
Z

Thus

Jn(ωk) =


√
nAp(r) +

∑n
t=1 εte

itωk k = n
P
r, r = 0, . . . , P − 1.∑n

t=1 εte
itωk k 6= n

P
Z

where AP (r) = P−1
∑P

s=1 dP (s) exp(2πisr/P ). This proves (2.16) �

Exercise 2.3 Generate your own periodic sequence of length P (you select P ). Call this

sequence {dP (t)} and generate a sequence {xt} with several replications of {dP (t)} and cal-

culate the periodogram of the periodic signal.

Add iid noise to the signal and again evaluate the periodogram (do the same for noise

with different standard deviations).

(i) Make plots of the true signal and the corrupted signal.

(i) Compare the periodogram of the true signal with the periodogram of the corrupted signal.
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2.5.5 Smooth trends and its corresponding DFT

So far we have used the DFT to search for periodocities. But the DFT/periodogram of a

smooth signal also leaves an interesting signature. Consider the quadratic signal

g(t) = 6

[
t

100
−
(

t

100

)2
]
− 0.7 t = 1, . . . , 100.

To g(t) we add iid noise Yt = g(t)+εt where var[εt] = 0.52. A realisation and its corresponding

periodogram is given in Figure 2.10. We observe that the quadratic signal is composed of

low frequencies (sines and cosines with very large periods). In general, any signal which

is “smooth” can be decomposed of sines and cosines in the very low frequencies. Thus a

periodogram with a large peak around the low frequencies, suggests that the underlying

signal contains a smooth signal (either deterministically or stochastically).
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Figure 2.10: Left: Signal and noise (blue). The signal is in red. Right: Periodogram of
signal plus noise (up to frequency π/5). Periodogram of signal is in red.

2.5.6 Period detection

In this section we formalize what we have seen and derived for the periodic sequences given

above. Our aim is to estimate the period P . But to simplify the approach, we focus on the

case that dP (t) is a pure sine or cosine function (no mix of sines and cosines).

We will show that the visual Fourier transform method described above is equivalent

to period estimation using least squares. Suppose that the observations {Yt; t = 1, . . . , n}
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satisfy the following regression model

Yt = A cos(Ωt) +B sin(Ωt) + εt = A cos

(
2πt

P

)
+B sin

(
2πt

P

)
+ εt

where {εt} are iid standard normal random variables and 0 < Ω < π (using the periodic

notation we set Ω = 2π
P

).

The parameters A,B, and Ω are real and unknown. Unlike the regression models given

in (2.1) the model here is nonlinear, since the unknown parameter, Ω, is inside a trignomet-

ric function. Standard least squares methods cannot be used to estimate the parameters.

Assuming Gaussianity of {εt} (though this assumption is not necessary), the maximum

likelihood corresponding to the model is

Ln(A,B,Ω) = −1

2

n∑
t=1

(Yt − A cos(Ωt)−B sin(Ωt))2

(alternatively one can think of it in terms use least squares which is negative of the above).

The above criterion is a negative nonlinear least squares criterion in A,B and Ω. It does not

yield an analytic solution and would require the use of a numerical maximisation scheme.

However, using some algebraic manipulations, explicit expressions for the estimators can be

obtained (see Walker (1971) and Exercise 2.5). The result of these manipulations give the

frequency estimator

Ω̂n = arg max
ω

In(ω)

where

In(ω) =
1

n

∣∣∣∣∣
n∑
t=1

Yt exp(itω)

∣∣∣∣∣
2

=
1

n

(
n∑
t=1

Yt cos(tΩ)

)2

+
1

n

(
n∑
t=1

Yt sin(tω)

)2

. (2.17)

Using Ω̂n we estimate A and B with

Ân =
2

n

n∑
t=1

Yt cos(Ω̂nt) and B̂n =
2

n

n∑
t=1

Yt sin(Ω̂nt).
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The rather remarkable aspect of this result is that the rate of convergence of

|Ω̂n − Ω| = Op(n
−3/2),

which is faster than the standard O(n−1/2) that we usually encounter (we will see this in

Example 2.5.2). This means that for even moderate sample sizes if P = 2π
Ω

is not too large,

then Ω̂n will be “close” to Ω. 2. The reason we get this remarkable result was alluded to

previously. We reiterate it again

In(ω) ≈ 1

n

∣∣∣∣∣
n∑
t=1

[A cos (tΩ) +B sin (tΩ)] eitω

∣∣∣∣∣︸ ︷︷ ︸
signal

+
1

n

∣∣∣∣∣
n∑
t=1

εte
itω

∣∣∣∣∣
2

︸ ︷︷ ︸
noise

.

The “signal” in In(ωk) is the periodogram corresponding to the cos and/or sine function.

For example setting Ω = 2π/P , A = 1 and B = 0. The signal is

1

n

∣∣∣∣∣
n∑
t=1

cos

(
2πt

P

)
eitωk

∣∣∣∣∣
2

=

 n
4

k = n
P

or k = n−P
P

0 other wise
.

Observe there is a peak at 2πP
n

and 2π(n−P )
n

, which is of size n, elsewhere it is zero. On the

other hand the noise is

1

n

∣∣∣∣∣
n∑
t=1

εte
itωk

∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣∣
1√
n

n∑
t=1

εte
itωk

︸ ︷︷ ︸
treat as a rescaled mean

∣∣∣∣∣∣∣∣∣
2

= Op(1),

where Op(1) means that it is bounded in probability (it does not grow as n→∞). Putting

these two facts together, we observe that the contribution of the signal dominates the peri-

odogram In(ω). A simulation to illustrate this effect is given in Figure ??

Remark 2.5.1 In practice, usually we evaluate Jn(ω) and In(ω) at the so called fundamental

2In contrast consider the iid random variables {Xt}nt=1, where E[Xt] = µ and var(Xt) = σ2. The variance
of the sample mean X̄ = n−1

∑n
t=1 is var[X̄] = σ2/n (where var(Xt) = σ2). This means |X̄−µ| = Op(n−1/2).

This means there exists a random variable U such that |X̄ − µ| ≤ n−1/2U . Roughly, this means as n→∞
the distance between X̄ and µ declines at the rate n−1/2.
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frequencies ωk = 2πk
n

and we do this with the fft function in R:

{Yt}nt=1 →

{
Jn(

2πk

n
) =

1√
n

n∑
t=1

Yt cos

(
t
2πk

n

)
+ i

1√
n

n∑
t=1

Yt sin

(
t
2πk

n

)}n

k=1

.

Jn(ωk) is simply a linear one to one transformation of the data (nothing is lost in this

transformation). Statistical analysis can be applied on any transformation of the data (for

example Wavelet transforms). It so happens that for stationary time series this so called

Fourier transform has some advantages.

For period detection and amplitude estimation one can often obtain a better estimator of

P (or Ω) if a finer frequency resolution were used. This is done by padding the signal with

zeros and evaluating the periodogram on 2πk
d

where d >> n. The estimate of the period is

then evaluated by using

P̂ =
d

K̂ − 1

where K̂ is the entry in the vector corresponding to the maximum of the periodogram.

We consider an example below.

Example 2.5.2 Consider the following model

Yt = 2 sin

(
2πt

8

)
+ εt t = 1, . . . , n. (2.18)

where εt are iid standard normal random variables (and for simplicity we assume n is a

multiple of 8). Note by using Remark 2.5.1 and equation (2.16) we have

1

n

∣∣∣∣∣2
n∑
t=1

sin

(
2πt

8

)
exp(itωk,n)

∣∣∣∣∣
2

=

 n k = n
8

or n− n
8

0 otherwise

It is clear that {Yt} is made up of a periodic signal with period eight. We make a plot of

one realisation (using sample size n = 128) together with the periodogram I(ω) (defined

in (2.17)). In Figure 2.11 we give a plot of one realisation together with a plot of the
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periodogram. From the realisation, it is not clear what the period is (the noise has made

it difficult to see the period). On the other hand, the periodogram clearly shows a peak

at frequenct 2π/8 ≈ 0.78 (where we recall that 8 is the period) and 2π − 2π/8 (since the

periodogram is symmetric about π).

Time

sig
na

l

0 20 40 60 80 100 120

−3
−1

1
2

3

●●
●
●
●
●●●●

●
●●

●
●●●

●

●●●●●●●
●
●●●

●
●●●

●●●●●●●●●●●●●●●

●

●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●

●

●●●●●●●●
●●●●●●●●●●

●
●●●

●
●●●●●●●

●

●●●
●
●●

●●●●●
●
●
●
●

0 1 2 3 4 5 6

0.0
0.2

0.4

frequency

P

Figure 2.11: Left: Realisation of (2.18) plus iid noise, Right: Periodogram of signal plus iid
noise.

Searching for peaks in the periodogram is a long established method for detecting pe-

riodicities. The method outlined above can easily be generalized to the case that there

are multiple periods. However, distinguishing between two periods which are very close in

frequency (such data arises in astronomy) is a difficult problem and requires more subtle

methods (see Quinn and Hannan (2001)).

The Fisher’s g-statistic (advanced) The discussion above motivates Fisher’s test for hidden

period, where the objective is to detect a period in the signal. The null hypothesis is H0 :

The signal is just white noise with no periodicities the alternative is H1 : The signal contains

a periodicity. The original test statistic was constructed under the assumption that the noise

was iid Gaussian. As we have discussed above, if a period exists, In(ωk) will contain a few

“large” values, which correspond to the periodicities. The majority of In(ωk) will be “small”.
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Based on this notion, the Fisher’s g-statistic is defined as

ηn =
max1≤k≤(n−1)/2 In(ωk)

2
n−1

∑(n−1)/2
k=1 In(ωk)

,

where we note that the denominator can be treated as the average noise. Under the null

(and iid normality of the noise), this ratio is pivotal (it does not depend on any unknown

nuisance parameters).

2.5.7 Period detection and correlated noise

The methods described in the previous section are extremely effective if the error process

{εt} is uncorrelated. However, problems arise when the errors are correlated. To illustrate

this issue, consider again model (2.18)

Yt = 2 sin

(
2πt

8

)
+ εt t = 1, . . . , n.

but this time the errors are correlated. More precisely, they are generated by the AR(2)

model,

εt = 1.5εt−1 − 0.75εt−2 + εt, (2.19)

where {εt} are iid random variables (do not worry if this does not make sense to you we define

this class of models precisely in Chapter 4). As in the iid case we use a sample size n = 128. In

Figure 2.12 we give a plot of one realisation and the corresponding periodogram. We observe

that the peak at 2π/8 is not the highest. The correlated errors (often called coloured noise)

is masking the peak by introducing new peaks. To see what happens for larger sample sizes,

we consider exactly the same model (2.18) with the noise generated as in (2.19). But this

time we use n = 1024 (8 time the previous sample size). A plot of one realisation, together

with the periodogram is given in Figure 2.13. In contrast to the smaller sample size, a large

peak is visible at 2π/8. These examples illustrates two important points:

(i) When the noise is correlated and the sample size is relatively small it is difficult to
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Figure 2.12: Top: Realisation of (2.18) plus correlated noise and n = 128, Bottom: Peri-
odogram of signal plus correlated noise.
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Figure 2.13: Top: Realisation of (2.18) plus correlated noise and n = 1024, Bottom: Peri-
odogram of signal plus correlated noise.

disentangle the deterministic period from the noise. Indeed we will show in Chapters 4

and 6 that linear time series (such as the AR(2) model described in (2.19)) can exhibit

similar types of behaviour to a periodic deterministic signal. This is a subject of on

going research that dates back at least 60 years (see Quinn and Hannan (2001) and
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the P -statistic proposed by Priestley).

However, the similarity is only to a point. Given a large enough sample size (which

may in practice not be realistic), the deterministic frequency dominates again (as we

have seen when we increase n to 1024).

(ii) The periodogram holds important information about oscillations in the both the signal

and also the noise {εt}. If the noise is iid then the corresponding periodogram tends

to be flatish (see Figure 2.11). This informs us that no frequency dominates others.

And is the reason that iid time series (or more precisely uncorrelated time series) is

called “white noise”.

Comparing Figure 2.11 with 2.12 and 2.13) we observe that the periodogram does not

appear completely flat. Some frequencies tend to be far larger than others. This is

because when data is dependent, certain patterns are seen, which are registered by the

periodogram (see Section 4.3.6).

Understanding the DFT and the periodogram is called spectral analysis and is explored

in Chapters 10 and 11.

2.5.8 History of the periodogram

The use of the periodogram, In(ω) to detect for periodocities in the data dates back to

Schuster in the 1890’s. One of Schuster’s interest was sunspot data. He analyzed the

number of sunspot through the lense of the periodogram. A plot of the monthly time series

and corresponding periodogram is given in Figure 2.14. Let {Yt} denote the number of

sunspots at month t. Schuster fitted a model of the type the period trend plus noise model

Yt = A cos(Ωt) +B sin(Ωt) + εt,

Ω = 2π/P . The periodogram below shows a peak at frequency = 0.047 Ω = 2π/(11 × 12)

(132 months), which corresponds to a period of P = 11 years. This suggests that the number

of sunspots follow a periodic cycle with a peak every P = 11 years. The general view until
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Figure 2.14: Sunspot data from Jan, 1749 to Dec, 2014. There is a peak at about 30 along
the line which corresponds to 2π/P = 0.047 and P ≈ 132 months (11 years).

the 1920s was that most time series were a mix of periodic function with additive noise

Yt =
P∑
j=1

[Aj cos(tΩj) +Bj sin(tΩj)] + εt.

However, in the 1920’s, Udny Yule, a statistician, and Gilbert Walker, a Meterologist (work-

ing in Pune, India) believed an alternative model could be used to explain the features seen

in the periodogram. We consider their proposed approach in Section 4.3.5.
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2.6 Data Analysis: EEG data

2.6.1 Connecting Hertz and Frequencies

Engineers and neuroscientists often “think” in terms of oscillations or cycles per second.

Instead of the sample size they will say the sampling frequency per second (number of

observations per second), which is measured in Herz (Hz) and the number of seconds the

time series is observed. Thus the periodogram is plotted against cycles per second rather

than on the [0, 2π] scale. In the following example we connect the two.

Example Suppose that a time series is sampled at 36Hz (36 observations per second) and

the signal is g(u) = sin(2π × 4u) (u ∈ R). The observed time series in one second is

{sin(2π × 4× t
36

)}36
t=1. An illustration is given below.

We observe from the plot above that period of repetition is P = 9 time points (over 36

time points the signal repeats it self every 9 points). Thus in terms of the periodogram this

corresponds to a spike at frequency ω = 2π/9. But to an engineer this means 4 repetitions

a second and a spike at 4Hz. It is the same plot, just the x-axis is different. The two plots

are given below.
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Analysis from the perspective of time series Typically, in time series, the sampling frequency

is kept the same. Just the same number of second that the time series is observed grows.

This allows us obtain a finer frequency grid on [0, 2π] and obtain a better resolution in terms

of peaks in frequencies. However, it does not allow is to identify frequencies that are sampled

at a higher frequency than the sampling rate.

Returning to the example above. Suppose we observe another signal h(u) = sin(2π ×

(4 + 36)u). If the sampling frequency is 36Hz and u = 1/36, 2/36, . . . , 36/36, then

sin

(
2π × 4× t

36

)
= sin

(
2π × (4 + 36)× t

36

)
for all t ∈ Z

Thus we cannot tell the differences between these two signals when we sample at 36Hz, even

if the observed time series is very long. This is called aliasing.

Analysis from the perspective of an engineer An engineer may be able to improve the hard-

ware and sample the time series at a higher temporal resolution, say, 72Hz. At this higher

temporal resolution, the two functions g(u) = sin(2π × 4× u) and h(u) = sin(2π(4 + 36)u)

are different.
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In the plot above the red line is g(u) = sin(2π4u) and the yellow line is g(u) = sin(2π(4 +

36)u). The periodogram for both signals g(u) = sin(2π× 4×u) and h(u) = sin(2π(4 + 36)u)

is given below.

In Hz, we extend the x-axis to include more cycles. The same thing is done for the frequency

[0, 2π] we extend the frequency range to include higher frequencies. Thus when we observe

on a finer temporal grid, we are able to identify higher frequencies. Extending this idea, if

we observe time on R, then we can identify all frequencies on R not just on [0, 2π].
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2.6.2 Data Analysis

In this section we conduct a preliminary analysis of an EEG data set. A plot of one EEG of

one participant at one channel (probe on skull) over 2 seconds (about 512 observations, 256

Hz) is given in Figure 2.15. The neuroscientists who analysis such data use the periodogram

to associate the EEG to different types of brain activity. A plot of the periodogam is

given Figure 2.16. The periodogram is given in both [0, π] and Hz (cycles per second).

Observe that the EEG contains a large amount of low frequency information, this is probably

due to the slowly changing trend in the original EEG. The neurologists have banded the

cycles into bands and associated to each band different types of brain activity (see https:

//en.wikipedia.org/wiki/Alpha_wave#Brain_waves). Very low frequency waves, such

as delta, theta and to some extent alpha waves are often associated with low level brain

activity (such as breathing). Higher frequencies (alpha and gamma waves) in the EEG are

often associated with conscious thought (though none of this is completely understood and

there are many debates on this). Studying the periodogram of the EEG in Figures 2.15

and 2.16, we observe that the low frequency information dominates the signal. Therefore,

the neuroscientists prefer to decompose the signal into different frequency bands to isolate

different parts of the signal. This is usually done by means of a band filter.

As mentioned above, higher frequencies in the EEG are believed to be associated with

conscious thought. However, the lower frequencies dominate the EEG. Therefore to put a

“microscope” on the higher frequencies in the EEG we isolate them by removing the lower

delta and theta band information. This allows us to examine the higher frequencies without

being “drowned out” by the more prominent lower frequencies (which have a much larger

amplitude). In this data example, we use a Butterworth filter which removes most of the

low frequency and very high information (by convolving the original signal with a filter,

see Remark 2.6.1). A plot of the periodogam of the orignal EEG together with the EEG

after processing with a filter is given in Figure 2.17. Except for a few artifacts (since the

Butterworth filter is a finite impulse response filter, and thus only has a finite number of

non-zero coefficients), the filter has completely removed the very low frequency information,

from 0−0.2 and for the higher frequencies beyond 0.75; we see from the lower plot in Figure
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2.17 this means the focus is on 8-32Hz (Hz = number of cycles per second). We observe

that most of the frequencies in the interval [0.2, 0.75] have been captured with only a slight

amount of distortion. The processed EEG after passing it through the filter is given in

Figure 2.18, this data set corresponds to the red periodogram plot seen in Figure 2.17. The

corresponding processed EEG clearly shows the evidence of pseudo frequencies described in

the section above, and often the aim is to model this processed EEG.

The plot of the original, filtered and the differences in the EEG is given in Figure 2.19.

We see the difference (bottom plot) contains the trend in the original EEG and also the small

very high frequency fluctuations (probably corresponding to the small spike in the original

periodogram in the higher frequencies).
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Figure 2.15: Original EEG..

Remark 2.6.1 (How filtering works) A linear filter is essentially a linear combination

of the time series with some weights. The weights are moved along the time series. For

example, if {hk} is the filter. Then the filtered time series {Xt} is the convolution

Yt =
∞∑
s=0

hsXt−s,
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Figure 2.16: Left: Periodogram of original EEG on [0, 2π]. Right: Periodogram in terms of
cycles per second.
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Figure 2.17: The periodogram of original EEG overlayed with processed EEG (in red). The
same plot is given below, but the x-axis corresponds to cycles per second (measured in Hz)

note that hs can be viewed as a moving window. However, the moving window (filter) con-

sidered in Section ?? “smooth” and is used to isolate low frequency trend (mean) behaviour.

Whereas the general filtering scheme described above can isolate any type of frequency be-

haviour. To isolate high frequencies the weights {hs} should not be smooth (should not

change slowly over k). To understand the impact {hs} has on {Xt} we evaluate the Fourier

transform of {Yt}.
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Figure 2.18: Time series after processing with a Buttersworth filter.
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Figure 2.19: Top: Original EEG. Middle: Filtered EEG and Bottom: Difference between
Original and Filtered EEG

The periodogram of {Yt} is

|JY (ω)|2 =

∣∣∣∣∣ 1√
n

n∑
t=1

Yte
itω

∣∣∣∣∣ =

∣∣∣∣∣
n∑
s=1

hse
isω

∣∣∣∣∣
2 ∣∣∣∣∣ 1√

n

n∑
t=1

Xte
itω

∣∣∣∣∣
2

= |H(ω)|2 |JX(ω)|2 .57



If H(ω) is close to zero at certain frequencies it is removing those frequencies in {Yt}. Hence

using the correct choice of hs we can isolate certain frequency bands.

Note, if a filter is finite (only a finite number of coefficients), then it is impossible to

make the function drop from zero to one. But one can approximately the step by a smooth

function (see https: // en. wikipedia. org/ wiki/ Butterworth_ filter ).

Remark 2.6.2 An interesting application of frequency analysis is in the comparison of peo-

ple in medative and non-medative states (see Gaurav et al. (2019)). A general science video

is given in this link.

2.7 Exercises

Exercise 2.4 (Understanding Fourier transforms) (i) Let Yt = 1. Plot the Peri-

odogram of {Yt; t = 1, . . . , 128}.

(ii) Let Yt = 1 + εt, where {εt} are iid standard normal random variables. Plot the Peri-

odogram of {Yt; t = 1, . . . , 128}.

(iii) Let Yt = µ( t
128

) where µ(u) = 5× (2u− 2.5u2) + 20. Plot the Periodogram of {Yt; t =

1, . . . , 128}.

(iv) Let Yt = 2× sin(2πt
8

). Plot the Periodogram of {Yt; t = 1, . . . , 128}.

(v) Let Yt = 2× sin(2πt
8

) + 4× cos(2πt
12

). Plot the Periodogram of {Yt; t = 1, . . . , 128}.

You can locate the maximum by using the function which.max

Exercise 2.5 This exercise is aimed at statistics graduate students (or those who have stud-

ied STAT613). If you are not a statistics graduate, then you may want help from a statistics

student.

(i) Let

Sn(A,B,Ω) =

( n∑
t=1

Y 2
t − 2

n∑
t=1

Yt
(
A cos(Ωt) +B sin(Ωt)

)
+

1

2
n(A2 +B2)

)
.
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Show that

2Ln(A,B,Ω) + Sn(A,B,Ω) = −(A2 −B2)

2

n∑
t=1

cos(2tΩ)− AB
n∑
t=1

sin(2tΩ).

and thus |Ln(A,B,Ω) + 1
2
Sn(A,B,Ω)| = O(1) (ie. the difference does not grow with

n).

Since Ln(A,B,Ω) and −1
2
Sn(A,B,Ω) are asymptotically equivalent (i) shows that we

can maximise −1
2
Sn(A,B,Ω) instead of the likelihood Ln(A,B,Ω).

(ii) By profiling out the parameters A and B, use the the profile likelihood to show that

Ω̂n = arg maxω |
∑n

t=1 Yt exp(itω)|2.

(iii) By using the identity (which is the one-sided Dirichlet kernel)

n∑
t=1

exp(iΩt) =


exp( 1

2
i(n+1)Ω) sin( 1

2
nΩ)

sin( 1
2

Ω)
0 < Ω < 2π

n Ω = 0 or 2π.
(2.20)

we can show that for 0 < Ω < 2π we have

n∑
t=1

t cos(Ωt) = O(n)
n∑
t=1

t sin(Ωt) = O(n)

n∑
t=1

t2 cos(Ωt) = O(n2)
n∑
t=1

t2 sin(Ωt) = O(n2).

Using the above identities, show that the Fisher Information of Ln(A,B, ω) (denoted

as I(A,B, ω)) is asymptotically equivalent to

2I(A,B,Ω) = E
(∂2Sn
∂ω2

)
=


n 0 n2

2
B +O(n)

0 n −n2

2
A+O(n)

n2

2
B +O(n) −n2

2
A+O(n) n3

3
(A2 +B2) +O(n2)

 .

(iv) Use the Fisher information to show that |Ω̂n − Ω| = O(n−3/2).

Exercise 2.6 (i) Simulate one hundred times from model Yt = 2 sin(2pit/8) + εt where
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t = 1, . . . , n = 60 and εt are iid normal random variables. For each sample, estimate

ω, A and B. You can estimate ω, A and B using both nonlinear least squares and

also the max periodogram approach described in the previous question.

For each simulation study obtain the empirical mean squared error 1
100

∑100
i=1(θ̂i − θ)2

(where θ denotes the parameter and θ̂i the estimate).

Note that the more times you simulate the more accurate the empirical standard error

will be. The empirical standard error also has an error associated with it, that will be

of order O(1/
√

number of simulations).

Hint 1: When estimating ω restrict the search to ω ∈ [0, π] (not [0, 2π]). Also when

estimating ω using the max periodogram approach (and A and B) do the search over two

grids (a) ω = [2πj/60, j = 1, . . . , 30] and (b) a finer grid ω = [2πj/600, j = 1, . . . , 300].

Do you see any difference in in your estimates of A, B and Ω over the different grids?

Hint 2: What do you think will happen if the model were changed to Yt = 2 sin(2πt/10)+

εt for t = 1, . . . , 60 and the maxim periodogram approach were used to estimate the

frequency Ω = 2π/20.

(ii) Repeat the above experiment but this time using the sample size n = 300. Compare the

quality/MSE of the estimators of A,B and Ω with those in part (i).

(iii) Do the same as above (using sample size n = 60 and 300) but now use coloured noise

given in (2.19) as the errors. How do your estimates compare with (i) and (ii)?

Hint: A method for simulating dependent data is to use the arima.sim command ar2 =

arima.sim(list(order=c(2,0,0), ar = c(1.5, -0.75)), n=60). This command

simulates an AR(2) time series model Xt = 1.5Xt−1 − 0.75Xt−2 + εt (where εt are iid

normal noise).

R Code

Simulation and periodogram for model (2.18) with iid errors:

temp <- rnorm(128)

signal <- 2*sin(2*pi*c(1:128)/8) + temp # this simulates the series
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# Use the command fft to make the periodogram

P <- abs(fft(signal)/128)**2

frequency <- 2*pi*c(0:127)/128

# To plot the series and periodogram

par(mfrow=c(2,1))

plot.ts(signal)

plot(frequency, P,type="o")

# The estimate of the period is

K1 = which.max(P)

# Phat is the period estimate

Phat = 128/(K1-1)

# To obtain a finer resolution. Pad temp with zeros.

signal2 = c(signal,c(128*9))

frequency2 <- 2*pi*c(0:((128*10)-1))/1280

P2 <- abs(fft(signal2))**2

plot(frequency2, P2 ,type="o")

# To estimate the period we use

K2 = which.max(P)

# Phat2 is the period estimate

Phat2 = 1280/(K2-1)

Simulation and periodogram for model (2.18) with correlated errors:

set.seed(10)

ar2 <- arima.sim(list(order=c(2,0,0), ar = c(1.5, -0.75)), n=128)

signal2 <- 1.5*sin(2*pi*c(1:128)/8) + ar2

P2 <- abs(fft(signal2)/128)**2

frequency <- 2*pi*c(0:127)/128

par(mfrow=c(2,1))

plot.ts(signal2)

plot(frequency, P2,type="o")
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Chapter 3

Stationary Time Series

3.1 Preliminaries

The past two chapters focussed on the data. It did not study the properties at the population

level (except for a brief discussion on period estimation). By population level, we mean what

would happen if the sample size is “infinite”. We formally define the tools we will need for such an

analysis below.

Different types of convergence

(i) Almost sure convergence: Xn
a.s.→ a as n → ∞ (in this course a will always be a constant).

This means for every ω ∈ Ω Xn(ω)→ a, where P (Ω) = 1 as n→∞ (this is classical limit of

a sequence, see Wiki for a definition).

(ii) Convergence in probability: Xn
P→ a. This means that for every ε > 0, P (|Xn − a| > ε)→ 0

as n→∞ (see Wiki)

(iii) Convergence in mean square Xn
2→ a. This means E|Xn − a|2 → 0 as n→∞ (see Wiki).

(iv) Convergence in distribution. This means the distribution of Xn converges to the distribution

of X, ie. for all x where FX is continuous, we have Fn(x)→ FX(x) as n→∞ (where Fn and

FX are the distribution functions of Xn and X respectively). This is the simplest definition

(see Wiki).

• Implies:

– (i), (ii) and (iii) imply (iv).
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– (i) implies (ii).

– (iii) implies (ii).

• Comments:

– Central limit theorems require (iv).

– It is often easy to show (iii) (since this only requires mean and variance calculations).

The “Op(·)” notation.

• We use the notation |θ̂n − θ| = Op(n
−1/2) if there exists a random variable A (which does

not depend on n) such that |θ̂n − θ| ≤ An−1/2.

Example of when you can use Op(n
−1/2). If E[θ̂n] = 0 but var[θ̂n] ≤ Cn−1. Then we can say

that E|θ̂ − θ| ≤ Cn−1/2 and thus |θ̂ − θ| = Op(n
−1/2).

Definition of expectation

• Suppose X is a random variable with density fX , then

E(X) =

∫ ∞
−∞

xfX(x)dx.

If E[Xi] = µ, then the sample mean X̄ = n−1
∑n

i=1Xi is an (unbiased) estimator of µ

(unbiased because E[X̄] = µ); most estimators will have a bias (but often it is small).

• Suppose (X,Y ) is a bivariate random variable with joint density fX,Y , then

E(XY ) =

∫ ∞
−∞

∫ ∞
−∞

xyfX,Y (x, y)dxdy.

Definition of covariance

• The covariance is defined as

cov(X,Y ) = E ((X − E(X))(Y − E(Y ))) = E(XY )− E(X)E(Y ).

• The variance is var(X) = E(X − E(X))2 = E(X2) = E(X)2.

• Observe var(X) = cov(X,X).
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• Rules of covariances. If a, b, c are finite constants and X,Y, Z are random variables with

E(X2) <∞, E(Y 2) <∞ and E(Z2) <∞ (which immediately implies their means are finite).

Then the covariance satisfies the linearity property

cov (aX + bY + c, Z) = acov(X,Z) + bcov(Y,Z).

Observe the shift c plays no role in the covariance (since it simply shifts the data).

• The variance of vectors. Suppose that A is a matrix and X a random vector with variance/-

covariance matrix Σ. Then

var(AX) = Avar(X)A′ = AΣA′, (3.1)

which can be proved using the linearity property of covariances.

• The correlation between X and Y is

cor(X,Y ) =
cov(X,Y )√

var(X)var(Y )

and lies between [−1, 1]. If var(X) = var(Y ) then cor(X,Y ) is the coefficient of the best

linear predictor of X given Y and visa versa.

What is covariance and correlation The covariance and correlation measure the linear dependence

between two random variables. If you plot realisations of the bivariate random variable (X,Y ) (X

on x-axis and Y on y-axis), then the best line of best fit

Ŷ = β0 + β1X

gives the best linear predictor of Y given X. β1 is closely related to the covariance. To see how,

consider the following example. Given the observation {(Xi, Yi); i = 1, . . . , n} the gradient of the

linear of the line of best fit is

β̂1 =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2
.
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As the sample size n→∞ we recall that

β̂1
P→ cov(X,Y )

var(Y )
= β1.

β1 = 0 if and only if cov(X,Y ) = 0. The covariance between two random variables measures the

amount of predictive information (in terms of linear prediction) one variable contains about the

other. The coefficients in a regression are not symmetric i.e. PX(Y ) = β1X, whereas PY (X) = γ1Y

and in general β1 6= γ1. The correlation

cor(X,Y ) =
cov(X,Y )√

var(X)var(Y )

is a symmetric measure of dependence between the two variables.

Exercise 3.1 (Covariance calculations practice) Suppose {εt} are uncorrelated random vari-

ables with E[εt] = 0 and E[ε2
t ] = σ2

• Let Xt = εt + 0.5εt−1. Evaluate cov(Xt, Xt+r) for r = 0,±1,±2,±3,±4,±5.

• Let Xt =
∑∞

j=0 ρ
jεt−j where |ρ| < 1. Evaluate cov(Xt, Xt+r) for r ∈ Z (0,±1,±2,±3,±4, . . .).

Cumulants: A measure of higher order dependence The covariance has a very simple geometric in-

terpretation. But it only measures linear dependence. In time series and many applications in

signal processing, more general measures of dependence are needed. These are called cumulants

and can simultaneously measure dependence between several variables or variables with themselves.

They generalize the notion of a covariance, but as far as I am aware don’t have the nice geometric

interpretation that a covariance has.

3.1.1 Formal definition of a time series

When we observe the time series {xt}, usually we assume that {xt} is a realisation from a random

process {Xt}. We formalise this notion below. The random process {Xt; t ∈ Z} (where Z denotes

the integers) is defined on the probability space {Ω,F , P}. We explain what these mean below:

(i) Ω is the set of all possible outcomes. Suppose that ω ∈ Ω, then {Xt(ω)} is one realisation

from the random process. For any given ω, {Xt(ω)} is not random. In time series we will

usually assume that what we observe xt = Xt(ω) (for some ω) is a typical realisation. That
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is, for any other ω∗ ∈ Ω, Xt(ω
∗) will be different, but its general or overall characteristics

will be similar.

(ii) F is known as a sigma algebra. It is a set of subsets of Ω (though not necessarily the set of

all subsets, as this can be too large). But it consists of all sets for which a probability can

be assigned. That is if A ∈ F , then a probability is assigned to the set A.

(iii) P is the probability measure over the sigma-algebra F . For every set A ∈ F we can define a

probability P (A).

There are strange cases, where there is a subset of Ω, which is not in the sigma-algebra F ,

where P (A) is not defined (these are called non-measurable sets). In this course, we not have

to worry about these cases.

This is a very general definition. But it is too general for modelling. Below we define the notion

of stationarity and weak dependence, that allows for estimators to have a meaningful interpretation.

3.2 The sample mean and its standard error

We start with the simplest case, estimating the mean when the data is dependent. This is usually

estimated with the sample mean. However, for the sample mean to be estimating something

reasonable we require a very weak form of stationarity. That is the time series has the same mean

for all t i.e.

Xt = µ︸︷︷︸
=E(Xt)

+ (Xt − µ)︸ ︷︷ ︸
=εt

,

where µ = E(Xt) for all t. This is analogous to say that the independent random variables {Xt}

all have a common mean. Under this assumption X̄ is an unbiased estimator of µ. Next, our aim

is to obtain conditions under which X̄ is a “reasonable” estimator of the mean.

Based on just one realisation of a time series we want to make inference about the parameters

associated with the process {Xt}, such as the mean. We recall that in classical statistics we usually

assume we observe several independent realisations, {Xt} all with the same distribution, and use

X̄ = 1
n

∑n
t=1Xt to estimate the mean. Roughly speaking, with several independent realisations we

are able to sample over the entire probability space and thus obtain a “good” (meaning consistent

or close to true mean) estimator of the mean. On the other hand, if the samples were highly
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dependent, then it is likely that {Xt} is concentrated over a small part of the probability space. In

this case, the sample mean will not converge to the mean (be close to the true mean) as the sample

size grows.

The mean squared error a measure of closeness One classical measure of closeness between an es-

timator and a parameter is the mean squared error

E
[
θ̂n − θ

]2
= var(θ̂n) +

[
E(θ̂n)− θ

]2
.

If the estimator is an unbiased estimator of θ then

E
[
θ̂n − θ

]2
= var(θ̂n).

Returning to the sample mean example suppose that {Xt} is a time series wher E[Xt] = µ for all

t. Then tt is clear that this is an unbiased estimator of µ and

E
[
X̄n − µ

]2
= var(X̄n).

To see whether it converges in mean square to µ we evaluate its

var(X̄) = n−2(1, . . . , 1) var(Xn)︸ ︷︷ ︸
matrix, Σ


1

1
...

1

 ,

where

var(Xn) =



cov(X1, X1) cov(X1, X2) cov(X1, X3) . . . cov(X1, Xn)

cov(X2, X1) cov(X2, X2) cov(X2, X3) . . . cov(X2, Xn)

cov(X3, X1) cov(X3, X2) cov(X3, X3) . . . cov(X3, Xn)
...

...
...

. . . · · ·

cov(Xn, X1) cov(Xn, X2) . . . . . . cov(Xn, Xn)


.
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Thus

var(X̄) =
1

n2

n∑
t,τ=1

cov(Xt, Xτ )
1

n2

n∑
t=1

var(Xt) +
2

n2

n∑
t=1

n∑
τ=t+1

cov(Xt, Xτ )

=
1

n2

n∑
t=1

var(Xt) +
2

n2

n−1∑
r=1

n−|r|∑
t=1

cov(Xt, Xt+r). (3.2)

A typical time series is a half way house between “fully” dependent data and independent data.

Unlike classical statistics, in time series, parameter estimation is based on only one realisation

xt = Xt(ω) (not multiple, independent, replications). Therefore, it would appear impossible to

obtain a good estimator of the mean. However good estimators of the mean are still possible,

based on just one realisation of the time series so long as certain assumptions are satisfied (i) the

process has a constant mean (a type of stationarity) and (ii) despite the fact that each time series is

generated from one realisation there is ‘short’ memory in the observations. That is, what is observed

today, xt has little influence on observations in the future, xt+k (when k is relatively large). Hence,

even though we observe one tragectory, that trajectory traverses much of the probability space.

The amount of dependency in the time series determines the ‘quality’ of the estimator. There are

several ways to measure the dependency. We know that the most common is the measure of linear

dependency, known as the covariance. Formally, the covariance in the stochastic process {Xt} is

defined as

cov(Xt, Xt+k) = E [(Xt − E(Xt)) (Xt+k − E (Xt+k))] = E(XtXt+k)− E(Xt)E(Xt+k).

Noting that if {Xt} has zero mean, then the above reduces to cov(Xt, Xt+k) = E(XtXt+k).

Remark 3.2.1 (Covariance in a time series) To illustrate the covariance within a time series

setting, we generate the time series

Xt = 1.8 cos

(
2π

5

)
Xt−1 − 0.92Xt−2 + εt (3.3)

for t = 1, . . . , n. A scatter plot of Xt against Xt+r for r = 1, . . . , 4 and n = 200 is given in Figure

3.1. The corresponding sample autocorrelation (ACF) plot (as defined in equation (3.7) is given in

Figure 3.2). Focus on the lags r = 1, . . . , 4 in the ACF plot. Observe that they match what is seen

in the scatter plots.
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Figure 3.1: From model (3.3). Plot of Xt against Xt+r for r = 1, . . . , 4. Top left: r = 1. Top
right: r = 2, Bottom left: r = 3 and Bottom right: r = 4.
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Figure 3.2: ACF plot of realisation from model (3.3).

Using the expression in (3.4) we can deduce under what conditions on the time series we can

obtain a reasonable estimator of the mean. If the covariance structure decays at such a rate that

the sum of all lags is finite, that is

sup
t

∞∑
r=−∞

|cov(Xt, Xt+r)| <∞,
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often called short memory), then the variance is

var(X̄) ≤ 1

n2

n∑
t=1

var(Xt) +
2

n2

n−1∑
r=1

n−|r|∑
t=1

|cov(Xt, Xt+r)|

≤ 1

n2

n∑
t=1

var(Xt) +
2

n2

n−1∑
t=1

∞∑
r=1

|cov(Xt, Xt+r)|︸ ︷︷ ︸
finite for all t and n

≤ Cn−1 = O(n−1). (3.4)

This rate of convergence is the same as if {Xt} were iid/uncorrelated data. However, if the corre-

lations are positive it will be larger than the case that {Xt} are uncorrelated.

However, even with this assumption we need to be able to estimate var(X̄) in order to test/-

construct CI for µ. Usually this requires the stronger assumption of stationarity, which we define

in Section 3.3.

Remark 3.2.2 It is worth bearing in mind that the covariance only measures linear dependence.

For some statistical analysis, such as deriving an expression for the variance of an estimator, the

covariance is often sufficient as a measure. However, given cov(Xt, Xt+k) we cannot say anything

about cov(g(Xt), g(Xt+k)), where g is a nonlinear function. There are occassions where we require

a more general measure of dependence (for example, to show asymptotic normality). Examples of

more general measures include mixing (and other related notions, such as Mixingales, Near-Epoch

dependence, approximate m-dependence, physical dependence, weak dependence), first introduced by

Rosenblatt in the 50s (Rosenblatt and Grenander (1997)). In this course we will not cover mixing.

3.2.1 The variance of the estimated regressors in a linear regres-

sion model with correlated errors

Let us return to the parametric models discussed in Section 2.1. The general model is

Yt = β0 +

p∑
j=1

βjut,j + εt = β′ut + εt,

where E[εt] = 0 and we will assume that {ut,j} are nonrandom regressors. Note this includes the

parametric trend models discussed in Section 2.1. We use least squares to estimate β

Ln(β) =

n∑
t=1

(Yt − β′ut)2,
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with

β̂n = arg minLn(β).

Using that

∇βLn(β) =
∂Ln(β)

∂β
=



∂Ln(β)
∂β1

∂Ln(β)
∂β2
...

∂Ln(β)
∂βp

 = −2
n∑
t=1

(Yt − β′ut)ut,

we have

β̂n = arg minLn(β) = (
n∑
t=1

utu
′
t)
−1

n∑
t=1

Ytut,

since we solve ∂Ln(β̂n)
∂β = 0. To evaluate the variance of β̂n we can either

• Directly evaluate the variance of β̂n = (
∑n

t=1 utu
′
t)
−1
∑n

t=1 Ytut. But this is very special for

linear least squares.

• Or use an expansion of ∂Ln(β)
∂β , which is a little longer but generalizes to more complicate

estimators and criterions.

We will derive an expression for β̂n − β. By using ∂Ln(β)
∂β we can show

∂Ln(β̂n)

∂β
− ∂Ln(β)

∂β
= −2

n∑
t=1

(Yt − β̂
′
nut)ut + 2

n∑
t=1

(Yt − β′ut)ut

= 2
[
β̂n − β

]′ n∑
t=1

utu
′
t. (3.5)

On the other hand, because ∂Ln(β̂n)
∂β = 0 we have

∂Ln(β̂n)

∂β
− ∂Ln(β)

∂β
= −∂Ln(β)

∂β

=
n∑
t=1

[Yt − β′ut]︸ ︷︷ ︸
εt

ut =
n∑
t=1

utεt. (3.6)
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Equating (3.5) and (3.6) gives

[
β̂n − β

]′ n∑
t=1

utu
′
t =

n∑
t=1

u′tεt

⇒
[
β̂n − β

]
=

(
n∑
t=1

utu
′
t

)−1 n∑
t=1

utεt =

(
1

n

n∑
t=1

utu
′
t

)−1
1

n

n∑
t=1

utεt.

Using this expression we can see that

var
[
β̂n − β

]
=

(
1

n

n∑
t=1

utu
′
t

)−1

var

(
1

n

n∑
t=1

utεt

)(
1

n

n∑
t=1

utu
′
t

)−1

.

Finally we need only evaluate var
(

1
n

∑n
t=1 utεt

)
which is

var

(
1

n

n∑
t=1

utεt

)
=

1

n2

n∑
t,τ=1

cov[εt, ετ ]utu
′
τ

=
1

n2

n∑
t=1

var[εt]utu
′
t︸ ︷︷ ︸

expression if independent

+
1

n2

n∑
t=1

n∑
τ 6=t

cov[εt, ετ ]utu
′
τ︸ ︷︷ ︸

additional term due to correlation in the errors

.

This expression is analogous to the expression for the variance of the sample mean in (3.4) (make

a comparision of the two).

Under the assumption that
(

1
n

∑n
t=1 utu

′
t

)
is non-singular, supt ‖ut‖1 <∞ and supt

∑∞
τ=−∞ |cov(εt, ετ )| <

∞, we can see that var
[
β̂n − β

]
= O(n−1). Estimation of the variance of β̂n is important and re-

quires one to estimate var
(

1
n

∑n
t=1 utεt

)
. This is often done using the HAC estimator. We describe

how this is done in Section 8.5.

3.3 Stationary processes

We have established that one of the main features that distinguish time series analysis from classical

methods is that observations taken over time (a time series) can be dependent and this dependency

tends to decline the further apart in time these two observations. However, to do any sort of analysis

of this time series we have to assume some sort of invariance in the time series, for example the mean

or variance of the time series does not change over time. If the marginal distributions of the time

series were totally different no sort of inference would be possible (suppose in classical statistics you
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were given independent random variables all with different distributions, what parameter would

you be estimating, it is not possible to estimate anything!).

The typical assumption that is made is that a time series is stationary. Stationarity is a rather

intuitive concept, it is an invariant property which means that statistical characteristics of the time

series do not change over time. For example, the yearly rainfall may vary year by year, but the

average rainfall in two equal length time intervals will be roughly the same as would the number of

times the rainfall exceeds a certain threshold. Of course, over long periods of time this assumption

may not be so plausible. For example, the climate change that we are currently experiencing is

causing changes in the overall weather patterns (we will consider nonstationary time series towards

the end of this course). However in many situations, including short time intervals, the assumption

of stationarity is quite a plausible. Indeed often the statistical analysis of a time series is done

under the assumption that a time series is stationary.

3.3.1 Types of stationarity

There are two definitions of stationarity, weak stationarity which only concerns the covariance of a

process and strict stationarity which is a much stronger condition and supposes the distributions

are invariant over time.

Definition 3.3.1 (Strict stationarity) The time series {Xt} is said to be strictly stationary

if for any finite sequence of integers t1, . . . , tk and shift h the distribution of (Xt1 , . . . , Xtk) and

(Xt1+h, . . . , Xtk+h) are the same.

The above assumption is often considered to be rather strong (and given a data it is very

hard to check). Often it is possible to work under a weaker assumption called weak/second order

stationarity.

Definition 3.3.2 (Second order stationarity/weak stationarity) The time series {Xt} is said

to be second order stationary if the mean is constant for all t and if for any t and k the covariance

between Xt and Xt+k only depends on the lag difference k. In other words there exists a function

c : Z→ R such that for all t and k we have

c(k) = cov(Xt, Xt+k).
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Remark 3.3.1 (Strict and second order stationarity) (i) If a process is strictly stationar-

ity and E|X2
t | <∞, then it is also second order stationary. But the converse is not necessarily

true. To show that strict stationarity (with E|X2
t | < ∞) implies second order stationarity,

suppose that {Xt} is a strictly stationary process, then

cov(Xt, Xt+k) = E(XtXt+k)− E(Xt)E(Xt+k)

=

∫
xy
[
PXt,Xt+k(dx, dy)− PXt(dx)PXt+k(dy)

]
=

∫
xy [PX0,Xk(dx, dy)− PX0(dx)PXk(dy)] = cov(X0, Xk),

where PXt,Xt+k and PXt is the joint distribution and marginal distribution of Xt, Xt+k respec-

tively. The above shows that cov(Xt, Xt+k) does not depend on t and {Xt} is second order

stationary.

(ii) If a process is strictly stationary but the second moment is not finite, then it is not second

order stationary.

(iii) It should be noted that a weakly stationary Gaussian time series is also strictly stationary too

(this is the only case where weakly stationary implies strictly stationary).

Example 3.3.1 (The sample mean and its variance under second order stationarity) Returning

the variance of the sample mean discussed (3.4), if a time series is second order stationary, then

the sample mean X̄ is estimating the mean µ and the variance of X̄ is

var(X̄) =
1

n2

n∑
t=1

var(Xt)︸ ︷︷ ︸
c(0)

+
2

n2

n−1∑
r=1

n−r∑
t=1

cov(Xt, Xt+r)︸ ︷︷ ︸
=c(r)

=
1

n
c(0) +

2

n

n∑
r=1

(
n− r
n

)
︸ ︷︷ ︸

=1−r/n

c(r),

where we note that above is based on the expansion in (3.4). We approximate the above, by using that

the covariances
∑

r |c(r)| <∞. Therefore for all r, (1−r/n)c(r)→ c(r) and |
∑n

r=1(1−|r|/n)c(r)| ≤∑
r |c(r)|, thus by dominated convergence (see Appendix A)

∑n
r=1(1− r/n)c(r)→

∑∞
r=1 c(r). This

implies that

var(X̄) ≈ 1

n
c(0) +

2

n

∞∑
r=1

c(r) =
1

n

∞∑
r=−∞

c(r) = O(
1

n
).
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The above is often called the long term variance. The above implies that

E(X̄ − µ)2 = var(X̄)→ 0, n→∞,

which we recall is convergence in mean square. This immediately implies convergence in probability

X̄
P→ µ.

The example above illustrates how second order stationarity gives an elegant expression for the

variance and can be used to estimate the standard error associated with X̄.

Example 3.3.2 In Chapter 8 we consider estimation of the autocovariance function. However for

now rely on the R command acf. For the curious, it evaluates ρ̂(r) = ĉ(r)/ĉ(0), where

ĉ(r) =
1

n

n−r∑
t=1

(Xt − X̄)(Xt+r − X̄) (3.7)

for r = 1, . . . ,m (m is some value that R defines), you can change the maximum number of lags

by using acf(data, lag = 30), say). Observe that even if Xt = µt (nonconstant mean), from the

way ĉ(r) (sum of (n− r) terms) is defined, ρ̂(r) will decay to zero as r → n.

In Figure 3.3 we give the sample acf plots of the Southern Oscillation Index and the Sunspot

data. We observe that are very different. The acf of the SOI decays rapidly, but there does appear

to be some sort of ‘pattern’ in the correlations. On the other hand, there is more “persistence” in

the acf of the Sunspot data. The correlations of the acf appear to decay but over a longer period of

time and there is a clear periodicity.

Exercise 3.2 State, with explanation, which of the following time series is second order stationary,

which are strictly stationary and which are both.

(i) {εt} are iid random variables with mean zero and variance one.

(ii) {εt} are iid random variables from a Cauchy distributon.

(iii) Xt+1 = Xt + εt, where {εt} are iid random variables with mean zero and variance one.

(iv) Xt = Y where Y is a random variable with mean zero and variance one.

(iv) Xt = Ut+Ut−1+Vt, where {(Ut, Vt)} is a strictly stationary vector time series with E[U2
t ] <∞

and E[V 2
t ] <∞.
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Figure 3.3: Top: ACF of Southern Oscillation data. Bottom ACF plot of Sunspot data.

Exercise 3.3 (i) Make an ACF plot of the monthly temperature data from 1996-2014.

(ii) Make and ACF plot of the yearly temperature data from 1880-2013.

(iii) Make and ACF plot of the residuals (after fitting a line through the data (using the command

lsfit(..)$res)) of the yearly temperature data from 1880-2013.

Briefly describe what you see.

Exercise 3.4 (i) Suppose that {Xt}t is a strictly stationary time series. Let

Yt =
1

1 +X2
t

.

Show that {Yt} is a second order stationary time series.

(ii) Obtain an approximate expression for the variance of the sample mean of {Yt} in terms of its

long run variance (stating the sufficient assumptions for the long run variance to be finite).

You do not need to give an analytic expression for the autocovariance, there is not enough

information in the question to do this.

(iii) Possibly challenging question. Suppose that

Yt = g(θ0, t) + εt,

76



where {εt} are iid random variables and g(θ0, t) is a deterministic mean and θ0 is an unknown

parameter. Let

θ̂n = arg min
θ∈Θ

n∑
t=1

(Yt − g(θ, t))2.

Explain why the quantity

θ̂n − θ0

can be expressed, approximately, as a sample mean. You can use approximations and heuris-

tics here.

Hint: Think derivatives and mean value theorems.

Ergodicity (Advanced)

We now motivate the concept of ergodicity. Conceptionally, this is more difficult to understand

than the mean and variance. But it is a very helpful tool when analysing estimators. It allows one

to simply replace the sample mean by its expectation without the need to evaluating a variance,

which is extremely useful in some situations.

It can be difficult to evaluate the mean and variance of an estimator. Therefore, we may want

an alternative form of convergence (instead of the mean squared error). To see whether this is

possible we recall that for iid random variables we have the very useful law of large numbers

1

n

n∑
t=1

Xt
a.s.→ µ

and in general 1
n

∑n
t=1 g(Xt)

a.s.→ E[g(X0)] (if E[g(X0)] < ∞). Does such a result exists in time

series? It does, but we require the slightly stronger condition that a time series is ergodic (which

is a slightly stronger condition than the strictly stationary).

Definition 3.3.3 (Ergodicity: Formal definition) Let (Ω,F , P ) be a probability space. A trans-

formation T : Ω → Ω is said to be measure preserving if for every set A ∈ F , P (T−1A) = P (A).

Moreover, it is said to be an ergodic transformation if T−1A = A implies that P (A) = 0 or 1.

It is not obvious what this has to do with stochastic processes, but we attempt to make a link. Let

us suppose that X = {Xt} is a strictly stationary process defined on the probability space (Ω,F , P ).
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By strict stationarity the transformation (shifting a sequence by one)

T (x1, x2, . . .) = (x2, x3, . . .),

is a measure preserving transformation. To understand ergodicity we define the set A, where

A = {ω : (X1(ω), X0(ω), . . .) ∈ H}. = {ω : X−1(ω), . . . , X−2(ω), . . .) ∈ H}.

The stochastic process is said to be ergodic, if the only sets which satisfies the above are such that

P (A) = 0 or 1. Roughly, this means there cannot be too many outcomes ω which generate sequences

which ‘repeat’ itself (are periodic in some sense). An equivalent definition is given in (3.8). From

this definition is can be seen why “repeats” are a bad idea. If a sequence repeats the time average

is unlikey to converge to the mean.

See Billingsley (1994), page 312-314, for examples and a better explanation.

The definition of ergodicity, given above, is quite complex and is rarely used in time series analysis.

However, one consequence of ergodicity is the ergodic theorem, which is extremely useful in time

series. It states that if {Xt} is an ergodic stochastic process then

1

n

n∑
t=1

g(Xt)
a.s.→ E[g(X0)]

for any function g(·). And in general for any shift τ1, . . . , τk and function g : Rk+1 → R we have

1

n

n∑
t=1

g(Xt, Xt+τ1 , . . . , Xt+τk)
a.s.→ E[g(X0, . . . , Xt+τk)] (3.8)

(often (3.8) is used as the definition of ergodicity, as it is an iff with the ergodic definition). This

result generalises the strong law of large numbers (which shows almost sure convergence for iid

random variables) to dependent random variables. It is an extremely useful result, as it shows us

that “mean-type” estimators consistently estimate their mean (without any real effort). The only

drawback is that we do not know the speed of convergence.

(3.8) gives us an idea of what constitutes an ergodic process. Suppose that {εt} is an ergodic

process (a classical example are iid random variables) then any reasonable (meaning measurable)
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function of Xt is also ergodic. More precisely, if Xt is defined as

Xt = h(. . . , εt, εt−1, . . .), (3.9)

where {εt} are iid random variables and h(·) is a measureable function, then {Xt} is an Ergodic

process. For full details see Stout (1974), Theorem 3.4.5.

Remark 3.3.2 As mentioned above all Ergodic processes are stationary, but a stationary process

is not necessarily ergodic. Here is one simple example. Suppose that {εt} are iid random variables

and Z is a Bernoulli random variable with outcomes {1, 2} (where the chance of either outcome is

half). Suppose that Z stays the same for all t. Define

Xt =

 µ1 + εt Z = 1

µ2 + εt Z = 2.

It is clear that E(Xt|Z = i) = µi and E(Xt) = 1
2(µ1 + µ2). This sequence is stationary. However,

we observe that 1
T

∑T
t=1Xt will only converge to one of the means, hence we do not have almost

sure convergence (or convergence in probability) to 1
2(µ1 + µ2).

R code

To make the above plots we use the commands

par(mfrow=c(2,1))

acf(soi,lag.max=300)

acf(sunspot,lag.max=60)

3.3.2 Towards statistical inference for time series

Returning to the sample mean Example 3.3.1. Suppose we want to construct CIs or apply statistical

tests on the mean. This requires us to estimate the long run variance (assuming stationarity)

var(X̄) ≈ 1

n
c(0) +

2

n

∞∑
r=1

c(r).

There are several ways this can be done, either by fitting a model to the data and from the model

estimate the covariance or doing it nonparametrically. This example motivates the contents of the
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course:

(i) Modelling, finding suitable time series models to fit to the data.

(ii) Forecasting, this is essentially predicting the future given current and past observations.

(iii) Estimation of the parameters in the time series model.

(iv) The spectral density function and frequency domain approaches, sometimes within the fre-

quency domain time series methods become extremely elegant.

(v) Analysis of nonstationary time series.

(vi) Analysis of nonlinear time series.

(vii) How to derive sampling properties.

3.4 What makes a covariance a covariance?

The covariance of a stationary process has several very interesting properties. The most important

is that it is positive semi-definite, which we define below.

Definition 3.4.1 (Positive semi-definite sequence) (i) A sequence {c(k); k ∈ Z} (Z is the

set of all integers) is said to be positive semi-definite if for any n ∈ Z and sequence x =

(x1, . . . , xn) ∈ Rn the following is satisfied

n∑
i,j=1

c(i− j)xixj ≥ 0.

(ii) A function is said to be an even positive semi-definite sequence if (i) is satisfied and c(k) =

c(−k) for all k ∈ Z.

An extension of this notion is the positive semi-definite function.

Definition 3.4.2 (Positive semi-definite function) (i) A function {c(u);u ∈ R} is said to

be positive semi-definite if for any n ∈ Z and sequence x = (x1, . . . , xn) ∈ Rn the following

is satisfied

n∑
i,j=1

c(ui − uj)xixj ≥ 0.
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(ii) A function is said to be an even positive semi-definite function if (i) is satisfied and c(u) =

c(−u) for all u ∈ R.

Remark 3.4.1 You have probably encountered this positive definite notion before, when dealing

with positive definite matrices. Recall the n×n matrix Σn is positive semi-definite if for all x ∈ Rn

x′Σnx ≥ 0. To see how this is related to positive semi-definite matrices, suppose that the matrix Σn

has a special form, that is the elements of Σn are (Σn)i,j = c(i−j). Then x′Σnx =
∑n

i,j c(i−j)xixj.

We observe that in the case that {Xt} is a stationary process with covariance c(k), the variance

covariance matrix of Xn = (X1, . . . , Xn) is Σn, where (Σn)i,j = c(i− j).

We now take the above remark further and show that the covariance of a stationary process is

positive semi-definite.

Theorem 3.4.1 Suppose that {Xt} is a discrete time/continuous stationary time series with co-

variance function {c(k)}, then {c(k)} is an even positive semi-definite sequence/function. Con-

versely for any even positive semi-definite sequence/function there exists a stationary time series

with this positive semi-definite sequence/function as its covariance function.

PROOF. We prove the result in the case that {Xt} is a discrete time time series, ie. {Xt; t ∈ Z}.

We first show that {c(k)} is a positive semi-definite sequence. Consider any sequence x =

(x1, . . . , xn) ∈ Rn, and the double sum
∑n

i,j xic(i − j)xj . Define the random variable Y =∑n
i=1 xiXi. It is straightforward to see that var(Y ) = x′var(Xn)x =

∑n
i,j=1 c(i−j)xixj where Xn =

(X1, . . . , Xn). Since for any random variable Y , var(Y ) ≥ 0, this means that
∑n

i,j=1 xic(i−j)xj ≥ 0,

hence {c(k)} is a positive definite sequence.

To show the converse, that is for any positive semi-definite sequence {c(k)} we can find a

corresponding stationary time series with the covariance {c(k)} is relatively straightfoward, but

depends on defining the characteristic function of a process and using Komologorov’s extension

theorem. We omit the details but refer an interested reader to Brockwell and Davis (1998), Section

1.5. �

In time series analysis usually the data is analysed by fitting a model to the data. The model

(so long as it is correctly specified, we will see what this means in later chapters) guarantees the

covariance function corresponding to the model (again we cover this in later chapters) is positive

definite. This means, in general we do not have to worry about positive definiteness of the covariance

function, as it is implicitly implied.
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On the other hand, in spatial statistics, often the object of interest is the covariance function

and specific classes of covariance functions are fitted to the data. In which case it is necessary to

ensure that the covariance function is semi-positive definite (noting that once a covariance function

has been found by Theorem 3.4.1 there must exist a spatial process which has this covariance

function). It is impossible to check for positive definiteness using Definitions 3.4.1 or 3.4.1. Instead

an alternative but equivalent criterion is used. The general result, which does not impose any

conditions on {c(k)} is stated in terms of positive measures (this result is often called Bochner’s

theorem). Instead, we place some conditions on {c(k)}, and state a simpler version of the theorem.

Theorem 3.4.2 Suppose the coefficients {c(k); k ∈ Z} are absolutely summable (that is
∑

k |c(k)| <

∞). Then the sequence {c(k)} is positive semi-definite if an only if the function f(ω), where

f(ω) =
1

2π

∞∑
k=−∞

c(k) exp(ikω),

is nonnegative for all ω ∈ [0, 2π].

We also state a variant of this result for positive semi-definite functions. Suppose the function

{c(u); k ∈ R} is absolutely summable (that is
∫
R |c(u)|du <∞). Then the function {c(u)} is positive

semi-definite if and only if the function f(ω), where

f(ω) =
1

2π

∫ ∞
−∞

c(u) exp(iuω)du ≥ 0

for all ω ∈ R.

The generalisation of the above result to dimension d is that {c(u);u ∈ Rd} is a positive semi-

definite sequence if and if

f(ω) =
1

(2π)d

∫
Rd
c(u) exp(iu′ω)du ≥ 0

for all ωd ∈ Rd.

PROOF. See Section 10.4.1.

Example 3.4.1 We will show that sequence c(0) = 1, c(1) = 0.5, c(−1) = 0.5 and c(k) = 0 for

|k| > 1 a positive definite sequence.

From the definition of spectral density given above we see that the ‘spectral density’ corresponding

82



to the above sequence is

f(ω) = 1 + 2× 0.5× cos(ω).

Since | cos(ω)| ≤ 1, f(ω) ≥ 0, thus the sequence is positive definite. An alternative method is to

find a model which has this as the covariance structure. Let Xt = εt+εt−1, where εt are iid random

variables with E[εt] = 0 and var(εt) = 0.5. This model has this covariance structure.

3.5 Spatial covariances (advanced)

Theorem 3.4.2 is extremely useful in finding valid spatial covariances. We recall that cd : Rd → R

is a positive semi-definite covariance (on the spatial plane Rd) if there exists a positive function fd

where

cd(u) =

∫
Rd
fd(ω) exp(−iu′ω)dω (3.10)

for all u ∈ Rd (the inverse Fourier transform of what was written). This result allows one to find

parametric covariance spatial processes.

However, beyond dimension d = 1 (which can be considered a “time series”), there exists

conditions stronger than spatial (second order) stationarity. Probably the the most popular is

spatial isotropy, which is even stronger than stationarity. A covariance cd is called spatially isotropic

if it is stationary and there exist a function c : R → R such that cd(u) = c(‖u‖2). It is clear that

in the case d = 1, a stationary covariance is isotropic since cov(Xt, Xt+1) = c(1) = c(−1) ==

cov(Xt, Xt−1) = cov(Xt−1, Xt). For d > 1, isotropy is a stronger condition than stationarity. The

appeal of an isotropic covariance is that the actual directional difference between two observations

does not impact the covariance, it is simply the Euclidean distance between the two locations (see

picture on board). To show that the covariance c(·) is a valid isotropic covariance in dimension

d (that is there exists a positive semi-definite function cd : Rd → R such that c(‖u‖) = cd(u)),

conditions analogous but not the same as (3.10) are required. We state them now.

Theorem 3.5.1 If a covariance cd(·) is isotropic, its corresponding spectral density function fd is

also isotropic. That is, there exists a positive function f : R→ R+ such that fd(ω) = f(‖ω‖2).

A covariance c(·) is a valid isotropic covariance in Rd iff there exists a positive function f(·; d)
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defined in R+ such that

c(r) = (2π)d/2
∫ ∞

0
ρd/2J(d/2)−1(ρ)f(ρ; d)dρ (3.11)

where Jn is the order n Bessel function of the first kind.

PROOF. To give us some idea of where this result came from, we assume the first statement is true

and prove the second statement for the case the dimension d = 2.

By the spectral representation theorem we know that if c(u1, ur) is a valid covariance then there

exists a positive function f2 such that

c(u1, u2) =

∫
R2

f2(ω1, ω2) exp(iω1u1 + iω2u2)dω1dω2.

Next we change variables moving from Euclidean coordinates to polar coordinates (see https://

en.wikipedia.org/wiki/Polar_coordinate_system), where s =
√
ω2

1 + ω2
2 and θ = tan−1ω1/ω2.

In this way the spectral density can be written in terms of f2(ω1, ω2) = fP,2(r, θ) and we have

c(u1, u2) =

∫ ∞
0

∫ 2π

0
rfP,2(s, θ) exp(isu1 cos θ + isu2 sin θ)dsdθ.

We convert the covariance in terms of polar coordinates c(u1, u2) = cP,2(r,Ω) (where u1 = r cos Ω

and u2 = r sin Ω) to give

cP,2(r,Ω) =

∫ ∞
0

∫ 2π

0
sfP,2(s, θ) exp [isr (cos Ω cos θ + sin Ω sin θ)] dsdθ

=

∫ ∞
0

∫ 2π

0
sfP,2(s, θ) exp [isr cos (Ω− θΩ)] dsdθ. (3.12)

So far we have not used isotropy of the covariance, we have simply rewritten the spectral represen-

tation in terms of polar coordinates.

Now, we consider the special case that the covariance is isotropic, this means that there exists

a function c such that cP,2(r,Ω) = c(r) for all r and Ω. Furthermore, by the first statement of the

theorem, if the covariance is isotropic, then there exists a positive function f : R+ → R+ such that
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fP,2(s, θ) = f(s) for all s and θ. Using these two facts and substituting them into (3.12) gives

c(r) =

∫ ∞
0

∫ 2π

0
sf(s) exp [isr cos (Ω− θΩ)] dsdθ

=

∫ ∞
0

sf(s)

∫ 2π

0
exp [isr cos (Ω− θΩ)] dθ︸ ︷︷ ︸

=2πJ0(s)

ds.

For the case, d = 2 we have obtained the desired result. Note that the Bessel function J0(·) is

effectively playing the same role as the exponential function in the general spectral representation

theorem. �

The above result is extremely useful. It allows one to construct a valid isotropic covariance

function in dimension d with a positive function f . Furthermore, it shows that an isotropic covari-

ance c(r) may be valid in dimension in d = 1, . . . , 3, but for d > 3 it may not be valid. That is

for d > 3, there does not exist a positive function f(·; d) which satisfies (3.11). Schoenberg showed

that an isotropic covariance c(r) was valid in all dimensions d iff there exists a representation

c(r) =

∫ ∞
0

exp(−r2t2)dF (t),

where F is a probability measure. In most situations the above can be written as

c(r) =

∫ ∞
0

exp(−r2t2)f(t)dt,

where f : R+ → R+. This representation turns out to be a very fruitful method for gener-

ating parametric families of isotropic covariances which are valid on all dimensions d. These

include the Matern class, Cauchy class, Powered exponential family. The feature in common

to all these isotropic covariance functions is that all the covariances are strictly positive and

strictly decreasing. In other words, the cost for an isotropic covariance to be valid in all di-

mensions is that it can only model positive, monotonic correlations. The use of such covariances

have become very popular in modelling Gaussian processes for problems in machine learning (see

http://www.gaussianprocess.org/gpml/chapters/RW1.pdf).

For an excellent review see ?, Section 2.5.
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3.6 Exercises

Exercise 3.5 Which of these sequences can used as the autocovariance function of a second order

stationary time series?

(i) c(−1) = 1/2, c(0) = 1, c(1) = 1/2 and for all |k| > 1, c(k) = 0.

(ii) c(−1) = −1/2, c(0) = 1, c(1) = 1/2 and for all |k| > 1, c(k) = 0.

(iii) c(−2) = −0.8, c(−1) = 0.5, c(0) = 1, c(1) = 0.5 and c(2) = −0.8 and for all |k| > 2,

c(k) = 0.

Exercise 3.6 (i) Show that the function c(u) = exp(−a|u|) where a > 0 is a positive semi-

definite function.

(ii) Show that the commonly used exponential spatial covariance defined on R2, c(u1, u2) =

exp(−a
√
u2

1 + u2
2), where a > 0, is a positive semi-definite function.

Hint: One method is to make a change of variables using Polar coordinates. You may also

want to harness the power of Mathematica or other such tools.
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Chapter 4

Linear time series

Prerequisites

• Familarity with linear models in regression.

• Find the polynomial equations. If the solution is complex writing complex solutions in polar

form x+ iy = reiθ, where θ is the phased and r the modulus or magnitude.

Objectives

• Understand what causal and invertible is.

• Know what an AR, MA and ARMA time series model is.

• Know how to find a solution of an ARMA time series, and understand why this is impor-

tant (how the roots determine causality and why this is important to know - in terms of

characteristics in the process and also simulations).

• Understand how the roots of the AR can determine ‘features’ in the time series and covariance

structure (such as pseudo periodicities).

4.1 Motivation

The objective of this chapter is to introduce the linear time series model. Linear time series models

are designed to model the covariance structure in the time series. There are two popular sub-
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groups of linear time models (a) the autoregressive and (a) the moving average models, which can

be combined to make the autoregressive moving average models.

We motivate the autoregressive from the perspective of classical linear regression. We recall one

objective in linear regression is to predict the response variable given variables that are observed.

To do this, typically linear dependence between response and variable is assumed and we model Yi

as

Yi =

p∑
j=1

ajXij + εi,

where εi is such that E[εi|Xij ] = 0 and more commonly εi and Xij are independent. In linear

regression once the model has been defined, we can immediately find estimators of the parameters,

do model selection etc.

Returning to time series, one major objective is to predict/forecast the future given current and

past observations (just as in linear regression our aim is to predict the response given the observed

variables). At least formally, it seems reasonable to represent this as

Xt =

p∑
j=1

φjXt−j + εt, t ∈ Z (4.1)

where we assume that {εt} are independent, identically distributed, zero mean random variables.

Model (4.1) is called an autoregressive model of order p (AR(p) for short). Further, it would appear

that

E(Xt|Xt−1, . . . , Xt−p) =

p∑
j=1

φjXt−j . (4.2)

I.e. the expected value of Xt given that Xt−1, . . . , Xt−p have already been observed), thus the past

values of Xt have a linear influence on the conditional mean of Xt. However (4.2) not necessarily

true.

Unlike the linear regression model, (4.1) is an infinite set of linear difference equations. This

means, for this systems of equations to be well defined, it needs to have a solution which is mean-

ingful. To understand why, recall that (4.1) is defined for all t ∈ Z, so let us start the equation at

the beginning of time (t = −∞) and run it on. Without any constraint on the parameters {φj},

there is no reason to believe the solution is finite (contrast this with linear regression where these
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issues are not relevant). Therefore, the first thing to understand is under what conditions will the

AR model (4.1) have a well defined stationary solution and what features in a time series is the

solution able to capture.

Of course, one could ask why go through to the effort. One could simply use least squares to

estimate the parameters. This is possible, but there are two related problems (a) without a proper

analysis it is not clear whether model has a meaningful solution (for example in Section 6.4 we

show that the least squares estimator can lead to misspecified models), it’s not even possible to

make simulations of the process (b) it is possible that E(εt|Xt−p) 6= 0, this means that least squares

is not estimating φj and is instead estimating an entirely different set of parameters! Therefore,

there is a practical motivation behind our theoretical treatment.

In this chapter we will be deriving conditions for a strictly stationary solution of (4.1). Under

these moment conditions we obtain a strictly stationary solution of (4.1). In Chapter 6 we obtain

conditions for (4.1) to have both a strictly stationary and second order stationary solution. It is

worth mentioning that it is possible to obtain a strictly stationary solution to (4.1) under weaker

conditions (see Theorem 13.0.1).

How would you simulate from the following model? One simple method for understanding a model

is to understand how you would simulate from it:

Xt = φ1Xt−1 + φ2Xt−1 + εt t = . . . ,−1, 0, 1, . . . .

4.2 Linear time series and moving average models

4.2.1 Infinite sums of random variables

Before defining a linear time series, we define the MA(q) model which is a subclass of linear time

series. Let us supppose that {εt} are iid random variables with mean zero and finite variance. The

time series {Xt} is said to have a MA(q) representation if it satisfies

Xt =

q∑
j=0

ψjεt−j ,

where E(εt) = 0 and var(εt) = 1. It is clear that Xt is a rolling finite weighted sum of {εt}, therefore

{Xt} must be well defined. We extend this notion and consider infinite sums of random variables.
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Now, things become more complicated, since care must be always be taken with anything involving

infinite sums. More precisely, for the sum

Xt =

∞∑
j=−∞

ψjεt−j ,

to be well defined (has a finite limit), the partial sums Sn =
∑n

j=−n ψjεt−j should be (almost

surely) finite and the sequence Sn should converge (ie. |Sn1 −Sn2 | → 0 as n1, n2 →∞). A random

variable makes no sense if it is infinite. Therefore we must be sure that Xt is finite (this is what

we mean by being well defined).

Below, we give conditions under which this is true.

Lemma 4.2.1 Suppose
∑∞

j=−∞ |ψj | <∞ and {Xt} is a strictly stationary time series with E|Xt| <

∞. Then {Yt}, defined by

Yt =

∞∑
j=−∞

ψjXt−j ,

is a strictly stationary time series. Furthermore, the partial sum converges almost surely, Yn,t =∑n
j=−n ψjXt−j → Yt. If var(Xt) <∞, then {Yt} is second order stationary and converges in mean

square (that is E(Yn,t − Yt)2 → 0).

PROOF. See Brockwell and Davis (1998), Proposition 3.1.1 or Fuller (1995), Theorem 2.1.1 (page

31) (also Shumway and Stoffer (2006), page 86). �

Example 4.2.1 Suppose {Xt} is a strictly stationary time series with var(Xt) <∞. Define {Yt}

as the following infinite sum

Yt =
∞∑
j=0

jkρj |Xt−j |

where |ρ| < 1. Then {Yt} is also a strictly stationary time series with a finite variance.

We will use this example later in the course.

Having derived conditions under which infinite sums are well defined, we can now define the

general class of linear and MA(∞) processes.

Definition 4.2.1 (The linear process and moving average (MA)(∞)) Suppose that {εt} are
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iid random variables,
∑∞

j=0 |ψj | <∞ and E(|εt|) <∞.

(i) A time series is said to be a linear time series if it can be represented as

Xt =

∞∑
j=−∞

ψjεt−j ,

where {εt} are iid random variables with finite variance. Note that since that as these sums

are well defined by equation (3.9) {Xt} is a strictly stationary (ergodic) time series.

This is a rather strong definition of a linear process. A more general definition is {Xt} has

the representation

Xt =

∞∑
j=−∞

ψjεt−j ,

where {εt} are uncorrelated random variables with mean zero and variance one (thus the

independence assumption has been dropped).

(ii) The time series {Xt} has a MA(∞) representation if it satisfies

Xt =

∞∑
j=0

ψjεt−j . (4.3)

1

The difference between an MA(∞) process and a linear process is quite subtle. A linear process

involves both past, present and future innovations {εt}, whereas the MA(∞) uses only past and

present innovations.

A very interesting class of models which have MA(∞) representations are autoregressive and

autoregressive moving average models. In the following sections we prove this.

1Note that late on we show that all second order stationary time series {Xt} have the representation

Xt =

∞∑
j=1

ψjZt−j , (4.4)

where {Zt = Xt − PXt−1,Xt−2,...(Xt)} (where PXt−1,Xt−2,...(Xt) is the best linear predictor of Xt given the
past, Xt−1, Xt−2, . . .). In this case {Zt} are uncorrelated random variables. It is called Wold’s representation
theorem (see Section 7.12). The representation in (4.4) has many practical advantages. For example Krampe
et al. (2016) recently used it to define the so called “MA bootstrap”.
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4.3 The AR(p) model

In this section we will examine under what conditions the AR(p) model has a stationary solution.

4.3.1 Difference equations and back-shift operators

The autoregressive model is defined in terms of inhomogenuous difference equations. Difference

equations can often be represented in terms of backshift operators, so we start by defining them

and see why this representation may be useful (and why it should work).

The time series {Xt} is said to be an autoregressive (AR(p)) if it satisfies the equation

Xt − φ1Xt−1 − . . .− φpXt−p = εt, t ∈ Z, (4.5)

where {εt} are zero mean, finite variance random variables. As we mentioned previously, the

autoregressive model is a system of difference equation (which can be treated as a infinite number

of simultaneous equations). For this system to make any sense it must have a solution.

Remark 4.3.1 (What is meant by a solution?) By solution, we mean a sequence of numbers

{xt}∞t=−∞ which satisfy the equations in (7.31). It is tempting to treat (7.31) as a recursion, where

we start with an intial value xI some time far back in the past and use (7.31) to generate {xt} (for

a given sequence {εt}t). This is true for some equations but not all. To find out which, we need to

obtain the solution to (7.31).

Example Let us suppose the model is

Xt = φXt−1 + εt for t ∈ Z,

where εt are iid random variables and φ is a known parameter. Let ε2 = 0.5, ε3 = 3.1, ε4 = −1.2

etc. This gives the system of equations

x2 = φx1 + 0.5, x3 = φx2 + 3.1, and x4 = φx3 − 1.2

and so forth. We see this is an equation in terms of unknown {xt}t. Does there exist a {xt}t which

satisfy this system of equations? For linear systems, the answer can easily be found. But more

complex systems the answer is not so clear. Our focus in this chapter is on linear systems.
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To obtain a solution we write the autoregressive model in terms of backshift operators:

Xt − φ1BXt − . . .− φpBpXt = εt, ⇒ φ(B)Xt = εt

where φ(B) = 1−
∑p

j=1 φjB
j , B is the backshift operator and is defined such that BkXt = Xt−k.

Simply rearranging φ(B)Xt = εt, gives the ‘solution’ of the autoregressive difference equation to

be Xt = φ(B)−1εt, however this is just an algebraic manipulation, below we investigate whether it

really has any meaning.

In the subsections below we will show:

• Let φ(z) = 1−
∑p

j=1 φjz
j be a pth order polynomial in z. Let z1, . . . , zp denote the p roots

of φ(z). A solution for (7.31) will always exist if none of the p roots of φ(z) lie on the unit

circle i.e. |zj | 6= 1 for 1 ≤ j ≤ p.

• If all the roots lie outside the unit circle i.e. |zj | > 1 for 1 ≤ j ≤ p, then {xt} can be generated

by starting with an initial value far in the past xI and treating (7.31) as a recursion

Xt = φ1Xt−1 + . . .+ φpXt−p + εt.

A time series that can be generated using the above recursion is called causal. It will have a

very specific solution.

• If all the roots lie inside the unit circle i.e. |zj | < 1 for 1 ≤ j ≤ p, then we cannot directly

treat (7.31) as a recursion. Instead, we need to rearrange (7.31) such that Xt−p is written in

terms of {Xt−j}pj=1 and εt

Xt−p = φ−1
p [−φp−1Xt−p+1 − . . .− φ1Xt−1 +Xt]− φ−1

p εt. (4.4)

{xt} can be generated by starting with an initial value far in the past xI and treating (7.31)

as a recursion.

• If the roots lie both inside and outside the unit circle. No recursion will generate a solution.

But we will show that a solution can be generated by adding recursions together.

To do this, we start with an example.
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4.3.2 Solution of two particular AR(1) models

Below we consider two different AR(1) models and obtain their solutions.

(i) Consider the AR(1) process

Xt = 0.5Xt−1 + εt, t ∈ Z. (4.5)

Notice this is an equation (rather like 3x2 +2x+1 = 0, or an infinite number of simultaneous

equations), which may or may not have a solution. To obtain the solution we note that

Xt = 0.5Xt−1 + εt and Xt−1 = 0.5Xt−2 + εt−1. Using this we get Xt = εt + 0.5(0.5Xt−2 +

εt−1) = εt + 0.5εt−1 + 0.52Xt−2. Continuing this backward iteration we obtain at the kth

iteration, Xt =
∑k

j=0(0.5)jεt−j + (0.5)k+1Xt−k. Because (0.5)k+1 → 0 as k → ∞ by taking

the limit we can show that Xt =
∑∞

j=0(0.5)jεt−j is almost surely finite and a solution of

(4.5). Of course like any other equation one may wonder whether it is the unique solution

(recalling that 3x2 + 2x+ 1 = 0 has two solutions). We show in Section 4.3.2 that this is the

unique stationary solution of (4.5).

Let us see whether we can obtain a solution using the difference equation representation. We

recall, that by crudely taking inverses, the solution is Xt = (1 − 0.5B)−1εt. The obvious

question is whether this has any meaning. Note that (1 − 0.5B)−1 =
∑∞

j=0(0.5B)j , for

|B| ≤ 2, hence substituting this power series expansion into Xt we have

Xt = (1− 0.5B)−1εt = (
∑
j=0

(0.5B)j)εt = (
∑
j=0

(0.5jBj))εt =

∞∑
j=0

(0.5)jεt−j ,

which corresponds to the solution above. Hence the backshift operator in this example helps

us to obtain a solution. Moreover, because the solution can be written in terms of past values

of εt, it is causal.

(ii) Let us consider the AR model, which we will see has a very different solution:

Xt = 2Xt−1 + εt. (4.6)

Doing what we did in (i) we find that after the kth back iteration we have Xt =
∑k

j=0 2jεt−j+

2k+1Xt−k. However, unlike example (i) 2k does not converge as k →∞. This suggest that if
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we continue the iteration Xt =
∑∞

j=0 2jεt−j is not a quantity that is finite (when εt are iid).

Therefore Xt =
∑∞

j=0 2jεt−j cannot be considered as a solution of (4.6). We need to write

(4.6) in a slightly different way in order to obtain a meaningful solution.

Rewriting (4.6) we have Xt−1 = 0.5Xt − 0.5εt. Forward iterating this we get Xt−1 =

−(0.5)
∑k

j=0(0.5)jεt+j − (0.5)k+1Xt+k. Since (0.5)k+1 → 0 as k →∞ we have

Xt−1 = −(0.5)

∞∑
j=0

(0.5)jεt+j

as a solution of (4.6).

Let us see whether the difference equation can also offer a solution. Since (1 − 2B)Xt = εt,

using the crude manipulation we have Xt = (1− 2B)−1εt. Now we see that

(1− 2B)−1 =

∞∑
j=0

(2B)j for |B| < 1/2.

Using this expansion gives the solution Xt =
∑∞

j=0 2jBjXt, but as pointed out above this

sum is not well defined. What we find is that φ(B)−1εt only makes sense (is well defined) if

the series expansion of φ(B)−1 converges in a region that includes the unit circle |B| = 1.

What we need is another series expansion of (1 − 2B)−1 which converges in a region which

includes the unit circle |B| = 1 (as an aside, we note that a function does not necessarily

have a unique series expansion, it can have difference series expansions which may converge

in different regions). We now show that a convergent series expansion needs to be defined in

terms of negative powers of B not positive powers. Writing (1− 2B) = −(2B)(1− (2B)−1),

therefore

(1− 2B)−1 = −(2B)−1
∞∑
j=0

(2B)−j ,

which converges for |B| > 1/2. Using this expansion we have

Xt = −
∞∑
j=0

(0.5)j+1B−j−1εt = −
∞∑
j=0

(0.5)j+1εt+j+1,

which we have shown above is a well defined solution of (4.6).
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In summary (1− 2B)−1 has two series expansions

1

(1− 2B)
=
∞∑
j=0

(2B)−j

which converges for |B| < 1/2 and

1

(1− 2B)
= −(2B)−1

∞∑
j=0

(2B)−j ,

which converges for |B| > 1/2. The one that is useful for us is the series which converges

when |B| = 1.

It is clear from the above examples how to obtain the solution of a general AR(1). This solution

is unique and we show this below.

Exercise 4.1 (i) Find the stationary solution of the AR(1) model

Xt = 0.8Xt−1 + εt

where εt are iid random variables with mean zero and variance one.

(ii) Find the stationary solution of the AR(1) model

Xt =
5

4
Xt−1 + εt

where εt are iid random variables with mean zero and variance one.

(iii) [Optional] Obtain the autocovariance function of the stationary solution for both the models

in (i) and (ii).

Uniqueness of the stationary solution the AR(1) model (advanced)

Consider the AR(1) process Xt = φXt−1 + εt, where |φ| < 1. Using the method outlined in (i), it

is straightforward to show that Xt =
∑∞

j=0 φ
jεt−j is its stationary solution, we now show that this

solution is unique. This may seem obvious, but recall that many equations have multiple solutions.

The techniques used here generalize to nonlinear models too.
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We first show that Xt =
∑∞

j=0 φ
jεt−j is well defined (that it is almost surely finite). We note

that |Xt| ≤
∑∞

j=0 |φj | · |εt−j |. Thus we will show that
∑∞

j=0 |φj | · |εt−j | is almost surely finite,

which will imply that Xt is almost surely finite. By montone convergence we can exchange sum

and expectation and we have E(|Xt|) ≤ E(limn→∞
∑n

j=0 |φjεt−j |) = limn→∞
∑n

j=0 |φj |E|εt−j |) =

E(|ε0|)
∑∞

j=0 |φj | < ∞. Therefore since E|Xt| < ∞,
∑∞

j=0 φ
jεt−j is a well defined solution of

Xt = φXt−1 + εt.

To show that it is the unique, stationary, causal solution, let us suppose there is another (causal)

solution, call it Yt. Clearly, by recursively applying the difference equation to Yt, for every s we

have

Yt =

s∑
j=0

φjεt−j + φsYt−s−1.

Evaluating the difference between the two solutions gives Yt −Xt = As −Bs where As = φsYt−s−1

and Bs =
∑∞

j=s+1 φ
jεt−j for all s. To show that Yt and Xt coincide almost surely we will show that

for every ε > 0,
∑∞

s=1 P (|As −Bs| > ε) <∞ (and then apply the Borel-Cantelli lemma). We note

if |As − Bs| > ε), then either |As| > ε/2 or |Bs| > ε/2. Therefore P (|As − Bs| > ε) ≤ P (|As| >

ε/2)+P (|Bs| > ε/2). To bound these two terms we use Markov’s inequality. It is straightforward to

show that P (|Bs| > ε/2) ≤ Cφs/ε. To bound E|As|, we note that |Ys| ≤ |φ| · |Ys−1|+ |εs|, since {Yt}

is a stationary solution then E|Ys|(1 − |φ|) ≤ E|εs|, thus E|Yt| ≤ E|εt|/(1 − |φ|) < ∞. Altogether

this gives P (|As−Bs| > ε) ≤ Cφs/ε (for some finite constant C). Hence
∑∞

s=1 P (|As−Bs| > ε) <∑∞
s=1Cφ

s/ε <∞. Thus by the Borel-Cantelli lemma, this implies that the event {|As −Bs| > ε}

happens only finitely often (almost surely). Since for every ε, {|As−Bs| > ε} occurs (almost surely)

only finitely often for all ε, then Yt = Xt almost surely. Hence Xt =
∑∞

j=0 φ
jεt−j is (almost surely)

the unique causal solution.

4.3.3 The solution of a general AR(p)

Let us now summarise our observation for the general AR(1) process Xt = φXt−1 + εt. If |φ| < 1,

then the solution is in terms of past values of {εt}, if on the other hand |φ| > 1 the solution is in

terms of future values of {εt}.

In this section we focus on general AR(p) model

Xt − φ1Xt−1 − . . .− φpXt−p = εt, t ∈ Z, (4.7)
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Generalising this argument to a general polynomial, if the roots of φ(B) are greater than one,

then the power series of φ(B)−1 (which converges for |B| = 1) is in terms of positive powers (hence

the solution φ(B)−1εt will be in past terms of {εt}). On the other hand, if the roots are both less

than and greater than one (but do not lie on the unit circle), then the power series of φ(B)−1 will

be in both negative and positive powers. Thus the solution Xt = φ(B)−1εt will be in terms of both

past and future values of {εt}. We summarize this result in a lemma below.

Lemma 4.3.1 Suppose that the AR(p) process satisfies the representation φ(B)Xt = εt, where

none of the roots of the characteristic polynomial lie on the unit circle and E|εt| <∞. Then {Xt}

has a stationary, almost surely unique, solution

Xt =
∑
j∈Z

ψjεt−j

where ψ(z) =
∑

j∈Z ψjz
j = φ(z)−1 (the Laurent series of φ(z)−1 which converges when |z| = 1).

We see that where the roots of the characteristic polynomial φ(B) lie defines the solution of the

AR process. We will show in Sections ?? and 6.1.2 that it not only defines the solution but also

determines some of the characteristics of the time series.

Exercise 4.2 Suppose {Xt} satisfies the AR(p) representation

Xt =

p∑
j=1

φjXt−j + εt,

where
∑p

j=1 |φj | < 1 and E|εt| <∞. Show that {Xt} will always have a causal stationary solution

(i.e. the roots of the characteristic polynomial are outside the unit circle).

4.3.4 Obtaining an explicit solution of an AR(2) model

A worked out example

Suppose {Xt} satisfies

Xt = 0.75Xt−1 − 0.125Xt−2 + εt,

where {εt} are iid random variables. We want to obtain a solution for the above equations.
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It is not easy to use the backward (or forward) iterating techique for AR processes beyond

order one. This is where using the backshift operator becomes useful. We start by writing Xt =

0.75Xt−1− 0.125Xt−2 + εt as φ(B)Xt = ε, where φ(B) = 1− 0.75B+ 0.125B2, which leads to what

is commonly known as the characteristic polynomial φ(z) = 1 − 0.75z + 0.125z2. If we can find a

power series expansion of φ(B)−1, which is valid for |B| = 1, then the solution is Xt = φ(B)−1εt.

We first observe that φ(z) = 1 − 0.75z + 0.125z2 = (1 − 0.5z)(1 − 0.25z). Therefore by using

partial fractions we have

1

φ(z)
=

1

(1− 0.5z)(1− 0.25z)
=

−1

(1− 0.5z)
+

2

(1− 0.25z)
.

We recall from geometric expansions that

−1

(1− 0.5z)
= −

∞∑
j=0

(0.5)jzj |z| ≤ 2,
2

(1− 0.25z)
= 2

∞∑
j=0

(0.25)jzj |z| ≤ 4.

Putting the above together gives

1

(1− 0.5z)(1− 0.25z)
=
∞∑
j=0

{−(0.5)j + 2(0.25)j}zj |z| < 2.

The above expansion is valid for |z| = 1, because
∑∞

j=0 | − (0.5)j + 2(0.25)j | < ∞ (see Lemma

4.3.2). Hence

Xt = {(1−0.5B)(1−0.25B)}−1εt =
( ∞∑
j=0

{−(0.5)j + 2(0.25)j}Bj
)
εt =

∞∑
j=0

{−(0.5)j + 2(0.25)j}εt−j ,

which gives a stationary solution to the AR(2) process (see Lemma 4.2.1). Moreover since the roots

lie outside the unit circle the solution is causal.

The discussion above shows how the backshift operator can be applied and how it can be used

to obtain solutions to AR(p) processes.

The solution of a general AR(2) model

We now generalise the above to general AR(2) models

Xt = (a+ b)Xt−1 − abXt−2 + εt,
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the characteristic polynomial of the above is 1 − (a + b)z + abz2 = (1 − az)(1 − bz). This means

the solution of Xt is

Xt = (1−Ba)−1(1−Bb)−1εt,

thus we need an expansion of (1 − Ba)−1(1 − Bb)−1. Assuming that a 6= b, and using partial

fractions we have

1

(1− za)(1− zb)
=

1

b− a

(
b

1− bz
− a

1− az

)

Cases:

(1) |a| < 1 and |b| < 1, this means the roots lie outside the unit circle. Thus the expansion is

1

(1− za)(1− zb)
=

1

(b− a)

(
b

∞∑
j=0

bjzj − a
∞∑
j=0

ajzj
)
,

which leads to the causal solution

Xt =
1

b− a

( ∞∑
j=0

(
bj+1 − aj+1)εt−j

)
. (4.8)

(2) Case that |a| > 1 and |b| < 1, this means the roots lie inside and outside the unit circle and

we have the expansion

1

(1− za)(1− zb)
=

1

b− a

(
b

1− bz
− a

(az)((az)−1 − 1)

)
=

1

(b− a)

(
b

∞∑
j=0

bjzj + z−1
∞∑
j=0

a−jz−j
)
, (4.9)

which leads to the non-causal solution

Xt =
1

b− a
( ∞∑
j=0

bj+1εt−j +

∞∑
j=0

a−jεt+1+j

)
. (4.10)

2

2Later we show that the non-causal Xt, has the same correlation as an AR(2) model whose characteristic
polynomial has the roots a−1 and b, since both these roots lie out side the unit this model has a causal
solution. Moreover, it is possible to rewrite this non-causal AR(2) as an MA infinite type process but where
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Returning to (4.10), we see that this solution throws up additional interesting results. Let

us return to the expansion in (4.9) and apply it to Xt

Xt =
1

(1−Ba)(1−Bb)
εt =

1

b− a

 b

1− bB
εt︸ ︷︷ ︸

causal AR(1)

+
1

B(1− a−1B−1)
εt︸ ︷︷ ︸

noncausal AR(1)


=

1

b− a
(Yt + Zt+1)

where Yt = bYt−1 + εt and Zt+1 = a−1Zt+2 + εt+1. In other words, the noncausal AR(2)

process is the sum of a causal and a‘future’ AR(1) process. This is true for all noncausal

time series (except when there is multiplicity in the roots) and is discussed further in Section

??.

We mention that several authors argue that noncausal time series can model features in data

which causal time series cannot.

(iii) a = b < 1 (both roots are the same and lie outside the unit circle). The characteristic

polynomial is (1 − az)2. To obtain the convergent expansion when |z| = 1 we note that

(1− az)−2 = (−1)d(1−az)−1

d(az) . Thus

(−1)

(1− az)2
= (−1)

∞∑
j=0

j(az)j−1.

This leads to the causal solution

Xt = (−1)
∞∑
j=1

jaj−1εt−j .

In many respects this is analogous to Matern covariance defined over Rd (and used in spatial

statistics). However, unlike autocovarianced defined over Rd the behaviour of the autocovari-

the innovations are no independent but uncorrelated instead. I.e. we can write Xt as

(1− a−1B)(1− bB)Xt = ε̃t,

where ε̂t are uncorrelated (and are a linear sum of the iid varepsilont), which as the solution

Xt =
1

b− a

( ∞∑
j=0

(
bj+1 − aj+1)ε̃t−j

)
. (4.11)
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ance at zero is not an issue.

Exercise 4.3 Show for the AR(2) model Xt = φ1Xt−1 + φ2Xt−2 + εt to have a causal stationary

solution the parameters φ1, φ2 must lie in the region defined by the three conditions

φ2 + φ1 < 1, φ2 − φ1 < 1 |φ2| < 1.

Exercise 4.4 (a) Consider the AR(2) process

Xt = φ1Xt−1 + φ2Xt−2 + εt,

where {εt} are iid random variables with mean zero and variance one. Suppose the absolute

of the roots of the characteristic polynomial 1− φ1z − φ2z
2 are greater than one. Show that

|φ1|+ |φ2| < 4.

(b) Now consider a generalisation of this result. Consider the AR(p) process

Xt = φ1Xt−1 + φ2Xt−2 + . . . φpXt−p + εt.

Suppose the absolute of the roots of the characteristic polynomial 1 − φ1z − . . . − φpzp are

greater than one. Show that |φ1|+ . . .+ |φp| ≤ 2p.

4.3.5 History of the periodogram (Part II)

We now return to the development of the periodogram and the role that the AR model played in

understanding its behaviour.

The general view until the 1920s is that most time series were a mix of periodic function with

additive noise (where we treat Yt as the yearly sunspot data)

Yt =
P∑
j=1

[Aj cos(tΩj) +Bj sin(tΩj)] + εt.

In the 1920’s, Udny Yule, a statistician, and Gilbert Walker, a Meterologist (working in Pune,

India) believed an alternative model could be used to explain the features seen in the periodogram.

Yule fitted an Autoregressive model of order two to the Sunspot data and obtained the AR(2)
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model

Xt = 1.381Xt−1 − 0.6807Xt−2 + εt.

We simulate a Gaussian model with exactly this AR(2) structure. In Figure 4.2 plot of the sunspot

data together realisation of the AR(2) process. In Figure 4.1 we plot the periodogram of the sunspot

data and a realisation from the fitted AR(2) process. One can fit a model to any data set. What

●
●

●

●
●

●

●●
●●
●
●●●
●
●●●
●
●●
●
●

●
●

●

●

●

●

●

●

●●●●●

●

●
●
●●
●
●●●●●●●●●●●●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●●●●●●●●●●●●

●
●●
●
●

●

●●●
●●

●

●

●

●

●

●

●
●

●
●●●
●
●●●
●
●●●
●
●●
●●

●

●
●

●

●
●

0 1 2 3 4 5 6

0
20

00
0

frequency[−1]

su
ns

po
t

●●●
●●

●

●

●

●●
●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●
●
●

●

●
●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●

●

●●●●●
●

●

●
●
●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●
●●

●

●

●

●●
●●●

0 1 2 3 4 5 6

0
40

80
12

0

frequency[−1]

fit
te

d 
A

R
(2

)

Figure 4.1: The periodogram of the Sunspot data is the top plot and the periodogram of
the fitted AR(2) model is the lower plot. They do not look exactly the same, but the AR(2)
model is able to capture some of the periodicities.

makes this model so interesting, is that the simple AR(2) models, model suprisingly well many of

the prominent features seen in the sunspot data. From Figures 4.1 and 4.2 we see how well the

AR(2) which is full stochastic can model a periodicities.

To summarize, Schuster, and Yule and Walker fit two completely different models to the same
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Figure 4.2: Top: Sunspot, Lower: a realisation from the AR(2) process. Lines correspond
to period of P = 2π/0.57 = 10.85 years.

data set and both models are able to mimic the periodocities observed in the sunspot data. While

it is obvious how a superimposition of sines and cosines can model periodicities it is not so clear

how the AR(2) can achieve a similar effect.

In the following section we study the coefficient of the AR(2) model and how it can mimic the

periodicities seen in the data.

4.3.6 Examples of “Pseudo” periodic AR(2) models

We start by studying the AR(2) model that Yule and Walker fitted to the data. We recall that the

fitted coefficients were

Xt = 1.381Xt−1 − 0.6807Xt−2 + εt.
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This corresponds to the characteristic function φ(z) = 1 − 1.381z + 0.68z2. The roots of this

polynomial are λ1 = 0.77−1 exp(i0.57) and λ2 = 077−1 exp(−i0.57). Cross referencing with the

periodogram in Figure 4.1, we observe that the peak in the periodogram is at around 0.57 also.

This suggests that the phase of the solution (in polar form) determines the periodicities. If the

solution is real then the phase is either 0 or π and Xt has no (pseudo) periodicities or alternates

between signs.

Observe that complex solutions of φ(z) must have conjugations in order to ensure φ(z) is real.

Thus if a solution of the characteristic function corresponding to an AR(2) is λ1 = r exp(iθ), then

λ2 = r exp(−iθ). Based on this φ(z) can be written as

φ(z) = (1− r exp(iθ)z)(1− r exp(−iθ)) = 1− 2r cos(θ)z + r2z2,

this leads to the AR(2) model

Xt = 2r cos(θ)Xt−1 − r2Xt−2 + εt

where {εt} are iid random variables. To ensure it is causal we set |r| < 1. In the simulations below

we consider the models

Xt = 2r cos(π/3)Xt−1 − r2Xt−2 + εt

and

Xt = 2r cos(0)Xt−1 − r2Xt−2 + εt

for r = 0.5 and r = 0.9.The latter model has completely real coefficients and its characteristic

function is φ(z) = (1− rz)2.

In Figures 4.3 and 4.4 we plot a typical realisation from these models with n = 200 and

corresponding periodogram for the case θ = π/3. In Figures 4.5 and 4.6 we plot the a typical

realisation and corresponding periodogram for the case θ = 0

From the realisations and the periodogram we observe a periodicity centered about frequency

π/3 or 0 (depending on the model). We also observe that the larger r is the more pronounced the

period. For frequency 0, there is no period it is simply what looks like trend (very low frequency
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Figure 4.3: Realisation for Xt = 2r cos(π/3)Xt−1 − r2Xt−2 + εt. Blue = r = 0.5 and red =
r = 0.9.
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Figure 4.4: Periodogram for realisation from Xt = 2r cos(π/3)Xt−1 − r2Xt−2 + εt. Blue =
r = 0.5 and red = r = 0.9.

behaviour). But the AR(2) is a completely stochastic system (random), it is strange that exhibits

behaviour close to period. We explain why in the following section.

We conclude this section by showing what shape the periodogram is trying to mimic (but not

so well!). In will be shown later on that the expectation of the peridodogram is roughly equal to

the spectral density function of the AR(2) process which is

f(ω) =
1

|1− φ1eiω − φ2ei2ω|2
=

1

|1− 2r cos θeiω + r2e2iω|2
.

Plots of the spectral density for θ = π/3, θ = 0 and r = 0.5 and 0.9 are given in Figures 4.7 and

4.8. Observe that the shapes in Figures 4.4 and 4.6 match those in Figures 4.7 and 4.8. But the
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Figure 4.5: Realisation for Xt = 2rXt−1 − r2Xt−2 + εt. Blue = r = 0.5 and red = r = 0.9.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

20
30

40

freq

Pe
rio

do
gra

m 
r =

 0.
5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

00
20

00
30

00
40

00
50

00

freq

Pe
rio

do
gra

m 
r =

 0.
9

Figure 4.6: Periodogram for realisation from Xt = 2rXt−1 − r2Xt−2 + εt. Blue = r = 0.5
and red = r = 0.9.

periodogram is very rough whereas the spectral density is smooth. This is because the periodogram

is simply a mirror of all the frequencies in the observed time series, and the actual time series do

not contain any pure frequencies. It is a mismatch of cosines and sines, thus the messiness of the

periodogram.
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Figure 4.7: Spectral density for Xt = 2rcos(π/3)Xt−1− r2Xt−2 + εt. Blue = r = 0.5 and red
= r = 0.9.
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Figure 4.8: Spectral density for Xt = 2rXt−1 − r2Xt−2 + εt. Blue = r = 0.5 and red =
r = 0.9.

4.3.7 Derivation of “Pseudo” periodicity functions in an AR(2)

We now explain why the AR(2) (and higher orders) can characterise some very interesting behaviour

(over the rather dull AR(1)). For now we assume that Xt is a causal time series which satisfies the

AR(2) representation

Xt = φ1Xt−1 + φ2Xt−2 + εt

where {εt} are iid with mean zero and finite variance. We focus on the case that the characteristic

polynomial is complex with roots λ1 = r exp(iθ) and λ2 = r exp(−iθ). Thus our focus is on the
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AR(2) model

Xt = 2r cos(θ)Xt−1 − r2Xt−2 + εt |r| < 1.

By using equation (4.8) with a = λ and b = λ

Xt =
1

λ− λ

∞∑
j=0

(
λj+1 − λj+1

)
εt−j .

We reparameterize λ = reiθ (noting that |r| < 1). Then

Xt =
1

2r sin θ

∞∑
j=0

2rj+1 sin ((j + 1)θ) εt−j . (4.12)

We can see that Xt is effectively the sum of cosines/sines with frequency θ that have been modulated

by the iid errors and exponentially damped. This is why for realisations of autoregressive processes

you will often see periodicities (depending on the roots of the characteristic). Thus to include

periodicities in a time series in an These arguments can be generalised to higher order autoregressive

models.

Exercise 4.5 (a) Obtain the stationary solution of the AR(2) process

Xt =
7

3
Xt−1 −

2

3
Xt−2 + εt,

where {εt} are iid random variables with mean zero and variance σ2.

Does the solution have an MA(∞) representation?

(b) Obtain the stationary solution of the AR(2) process

Xt =
4×
√

3

5
Xt−1 −

42

52
Xt−2 + εt,

where {εt} are iid random variables with mean zero and variance σ2.

Does the solution have an MA(∞) representation?

(c) Obtain the stationary solution of the AR(2) process

Xt = Xt−1 − 4Xt−2 + εt,
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where {εt} are iid random variables with mean zero and variance σ2.

Does the solution have an MA(∞) representation?

Exercise 4.6 Construct a causal stationary AR(2) process with pseudo-period 17. Using the R

function arima.sim simulate a realisation from this process (of length 200) and make a plot of the

periodogram. What do you observe about the peak in this plot?

4.3.8 Seasonal Autoregressive models

A popular autoregessive model that is often used for modelling seasonality, is the seasonal autore-

gressive model (SAR). To motivate the model consider the monthly average temperatures in College

Station. Let {Xt} denote the monthly temperatures. Now if you have had any experience with

temperatures in College Station using the average temperature in October (still hot) to predict the

average temperature in November (starts to cool) may not seem reasonable. It may seem more

reasonable to use the temperature last November. We can do this using the following model

Xt = φXt−12 + εt,

where |φ| < 1. This is an AR(12) model in disguise, The characteristic function φ(z) = 1 − φz12

has roots λj = φ−1/12 exp(i2πj/12) for j = 0, 1, . . . , 11. As there are 5 complex pairs and two real

terms. We would expect to see 7 peaks in the periodogram and spectral density. The spectral

density is

f(ω) =
1

|1− φei12ω|2
.

A realisation from the above model with φ = 0.8 and n = 200 is given in Figure 4.9. The

corresponding periodogram and spectral density is given in Figure 4.10. We observe that the

periodogram captures the general peaks in the spectral density, but is a lot messier.

4.3.9 Solution of the general AR(∞) model (advanced)

The AR(∞) model generalizes the AR(p)

Xt =
∞∑
j=1

φjXt−j + εt
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Figure 4.9: Realisation from SAR(12) with φ = 0.8.
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Figure 4.10: Left: Periodogram of realisation. Right Spectral density of model.

where {εt} are iid random variables. AR(∞) models are more general than the AR(p) model and

are able to model more complex behaviour, such as slower decay of the covariance structure.

In order to obtain the stationary solution of an AR(∞), we need to define an analytic function

and its inverse.

Definition 4.3.1 (Analytic functions in the region Ω) Suppose that z ∈ C. φ(z) is an ana-

lytic complex function in the region Ω, if it has a power series expansion which converges in Ω, that

is φ(z) =
∑∞

j=−∞ φjz
j.

If there exists a function φ̃(z) =
∑∞

j=−∞ φ̃jz
j such that φ̃(z)φ(z) = 1 for all z ∈ Ω, then φ̃(z)

is the inverse of φ(z) in the region Ω.

Example 4.3.1 (Analytic functions) (i) Clearly a(z) = 1 − 0.5z is analytic for all z ∈ C,
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and has no zeros for |z| < 2. The inverse is 1
a(z) =

∑∞
j=0(0.5z)j is well defined in the region

|z| < 2.

(ii) Clearly a(z) = 1− 2z is analytic for all z ∈ C, and has no zeros for |z| > 1/2. The inverse is

1
a(z) = (−2z)−1(1− (1/2z)) = (−2z)−1(

∑∞
j=0(1/(2z))j) well defined in the region |z| > 1/2.

(iii) The function a(z) = 1
(1−0.5z)(1−2z) is analytic in the region 0.5 < z < 2.

(iv) a(z) = 1 − z, is analytic for all z ∈ C, but is zero for z = 1. Hence its inverse is not well

defined for regions which involve |z| = 1 (see Example 4.7).

(v) Finite order polynomials such as φ(z) =
∑p

j=0 φjz
j for Ω = C.

(vi) The expansion (1− 0.5z)−1 =
∑∞

j=0(0.5z)j for Ω = {z; |z| ≤ 2}.

We observe that for AR processes we can represent the equation as φ(B)Xt = εt, which formally

gives the solution Xt = φ(B)−1εt. This raises the question, under what conditions on φ(B)−1 is

φ(B)−1εt a valid solution. For φ(B)−1εt to make sense φ(B)−1 should be represented as a power

series expansion. Below, we state a technical lemma on φ(z) which we use to obtain a stationary

solution.

Lemma 4.3.2 (Technical lemma) Suppose that ψ(z) =
∑∞

j=−∞ ψjz
j is finite on a region that

includes |z| = 1 (we say it is analytic in the region |z| = 1). Then
∑∞

j=−∞ |ψj | <∞.

An immediate consequence of the lemma above is that if ψ(z) =
∑∞

j=−∞ ψjz
j is analytic in

the region and {Xt} is a strictly stationary time series, where E|Xt| we define the time series

Yt = ψ(B)Xt =
∑∞

j=−∞ ψjXt−j . Then by the lemma above and Lemma 4.2.1, {Yt} is almost

surely finite and strictly stationary time series. We use this result to obtain a solution of an

AR(∞) (which includes an AR(p) as a special case).

Lemma 4.3.3 Suppose φ(z) = 1 +
∑∞

j=1 φj and ψ(z) =
∑∞

j=−∞ ψjz
j are analytic functions in a

region which contains |z| = 1 and φ(z)ψ(z)−1 = 1 for all |z| = 1. Then the AR(∞) process

Xt =

∞∑
j=1

φjXt−j + εt.
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has the unique solution

Xt =

∞∑
j=−∞

ψjεt−j .

We can immediately apply the lemma to find conditions under which the AR(p) process will admit

a stationary solution. Note that this is generalisation of Lemma 4.3.1.

Rules of the back shift operator:

(i) If a(z) is analytic in a region Ω which includes the unit circle |z| = 1 in its interior and {Yt} is

a well defined time series, then Xt defined by Yt = a(B)Xt is a well defined random variable.

(ii) The operator is commutative and associative, that is [a(B)b(B)]Xt = a(B)[b(B)Xt] =

[b(B)a(B)]Xt (the square brackets are used to indicate which parts to multiply first). This

may seem obvious, but remember matrices are not commutative!

(iii) Suppose that a(z) and its inverse 1
a(z) are both have solutions in the region Ω which includes

the unit circle |z| = 1 in its interior. If a(B)Xt = Zt, then Xt = 1
a(B)Zt.

The magic backshift operator

A precise proof of Lemma 4.3.3 and the rules of the back shift operator described above is beyond

these notes. But we briefly describe the idea, so the backshift operator feels less like a magic trick.

Equation (4.7) is an infinite dimension matrix operation that maps (`2-sequences to `2-sequences)

where Γ : `2 → `2 and Γ(x) = ε with x = (. . . , x−1, x0, x1, . . .). Thus x = Γ−1ε. The objectives is to

find the coefficients in the operator Γ−1. It is easier to do this by transforming the operator to the

Fourier domain with the Fourier operator F : `2 → L2[0, 2π] and F ∗ : L2[0, 2π]→ `2. Thus FΓF ∗

is an integral operator with kernel K(λ, ω) = φ(eiω)δω=λ. It can be shown that the inverse operator

(FΓ−1F ∗) has kernel K−1(λ, ω) = φ(eiω)−1δω=λ. One can then deduce that the coefficients of Γ−1

are the Fourier coefficients
∫ 2π

0 φ(eiω)−1e−ijωdω, which correspond to the expansion of φ(z)−1 that

converges in the region that include |z| = 1 (the Laurent series in this region).

AR(∞) representation of stationary time series (Advanced)

If a time series is second order stationary and its spectral density function f(ω) = (2π)−1
∑

r∈Z c(r)e
irω

is bounded away from zero (is not zero) and is finite on [0, π]. Then it will have form of AR(∞)
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representation

Xt =

∞∑
j=1

ajXt−j + εt,

the difference is that {εt} are uncorrelated random variables and may not be iid random

variables. This result is useful when finding the best linear predictors of Xt given the past.

4.4 Simulating from an Autoregressive process

Simulating from a Gaussian AR process

We start with the case that the innovations, {εt}, are Gaussian. In this case, by using Lemma

4.5.1(ii) we observe that all AR processes can be written as the infinite sum of the innovations. As

sums of iid Gaussian random variables are Gaussian, then the resulting time series is also Gaussian.

We show in Chapter 6 that given any causal AR equation, the covariance structure of the time

series can be deduced. Since normal random variables are fully determined by their mean and

variance matrix, using the function mvnorm and var[Xp] = Σp, we can simulate the first p elements

in the time series Xp = (X1, . . . , Xp). Then by simulating (n − p) iid random variables we can

generate Xt using the causal recursion

Xt =

p∑
j=1

φjXt−j + εt.

Remark 4.4.1 Any non-causal system of difference equations with Gaussian innovations can al-

ways be rewritten as a causal system. This property is unique for Gaussian processes.

A worked example

We illustrate the details with with an AR(1) process. Suppose Xt = φ1Xt−1 + εt where {εt} are iid

standard normal random variables (note that for Gaussian processes it is impossible to discriminate

between causal and non-causal processes - see Section 6.4, therefore we will assume |φ1| < 1). We

will show in Section 6.1, equation (6.1) that the autocovariance of an AR(1) is

c(r) = φr1

∞∑
j=0

φ2j
1 =

φr1
1− φ2

1

.
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Therefore, the marginal distribution of Xt is Gaussian with variance (1 − φ2
1)−1. Therefore, to

simulate an AR(1) Gaussian time series, we draw from a Gaussian time series with mean zero and

variance (1− φ2
1)−1, calling this X1. We then iterate for 2 ≤ t, Xt = φ1Xt−1 + εt. This will give us

a stationary realization from an AR(1) Gaussian time series.

Note the function arima.sim is a routine in R which does the above. See below for details.

Simulating from a non-Gaussian causal AR model

Unlike the Gaussian AR process it is difficult to simulate an exact non-Gaussian model, but we

can obtain a very close approximation. This is because if the innovations are non-Gaussian the

distribution of Xt is not simple. Here we describe how to obtain a close approximation in the case

that the AR process is causal.

A worked example We describe a method for simulating an AR(1). Let {Xt} be an AR(1) process,

Xt = φ1Xt−1 + εt, which has stationary, causal solution

Xt =
∞∑
j=0

φj1εt−j .

To simulate from the above model, we set X̃1 = 0. Then obtain the iteration X̃t = φ1X̃t−1 + εt for

t ≥ 2. We note that the solution of this equation is

X̃t =
t∑

j=0

φj1εt−j .

We recall from Lemma 4.5.1 that |Xt−X̃t| ≤ |φ1|t
∑∞

j=0 |φ
j
1ε−j |, which converges geometrically fast

to zero. Thus if we choose a large n to allow ‘burn in’ and use {X̃t; t ≥ n} in the simulations we

have a simulation which is close to a stationary solution from an AR(1) process. Using the same

method one can simulate causal AR(p) models too.

Building AR(p) models One problem with the above approach is the AR(p) coefficients {φj} should

be chosen such that it corresponds to a causal solution. This is not so simple. It is easier to build

a causal AR(p) model from its factorisation:

φ(B) =

p∏
j=1

(1− λjB).
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Thus φ(B)Xt = εt can be written as

φ(B)Xt = (1− λpB)(1− λp−1B) . . . (1− λ1B)Xt = εt.

Using the above representation Xt can be simulated using a recursion. For simplicity we assume

p = 2 and φ(B)Xt = (1− λ2B)(1− λ1B)Xt = εt. First define the AR(1) model

(1− λ1B)Y1,t = εt ⇒ Y1,t = (1− λ1B)−1εt.

This gives

(1− λ2B)Xt = (1− λ1B)−1εt = Y1,t.

Thus we first simulate {Y1,t}t using the above AR(1) method described above. We treat {Y1,t}t as

the innovations, and then simulate

(1− λ2B)Xt = Y1,t,

using the AR(1) method described above, but treating {Y1,t}t as the innovations. This method can

easily be generalized for any AR(p) model (with real roots). Below we describe how to do the same

but when the roots are complex

Simulating an AR(2) with complex roots Suppose that Xt has a causal AR(2) representation. The

roots can be complex, but since Xt is real, the roots must be conjugates (λ1 = r exp(iθ) and

λ2 = r exp(−iθ)). This means Xt satisfies the representation

(1− 2r cos(θ)B + r2B2)Xt = εt

where |r| < 1. Now by using the same method described for simulating an AR(1), we can simulate

an AR(2) model with complex roots.

In summary, by using the method for simulating AR(1) and AR(2) models we can simulate any

AR(p) model with both real and complex roots.
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Simulating from a fully non-causal AR model

Suppose that {Xt} is an AR(p) model with characteristic function φ(B), whose roots lie inside the

unit circle (fully non-causal). Then we can simulate Xt using the backward recursion

Xt−p = φ−1
p [−φp−1Xt−p+1 − . . .− φ1Xt−1 +Xt]− φ−1

p εt. (4.13)

Simulating from a non-Gaussian non-causal AR model

We now describe a method for simulating AR(p) models whose roots are both inside and outside the

unit circle. The innovations should be non-Gaussian, as it makes no sense to simulate a non-causal

Gaussian model and it is impossible to distinguish it from a corresponding causal Gaussian model.

The method described below was suggested by former TAMU PhD student Furlong Li.

Worked example To simplify the description consider the AR(2) model where φ(B) = (1−λ1B)(1−

µ1B) with |λ1| < 1 (outside unit circle) and |µ1| > 1 (inside the unit circle). Then

(1− λ1B)(1− µ1B)Xt = εt.

Define the non-causal AR(1) model

(1− µ1B)Y1,t = εt.

And simulate {Y1,t} using a backward recursion. Then treat {Y1,t} as the innovations and simulate

the causal AR(1)

(1− µ1B)Xt = Y1,t

using a forward recursion. This gives an AR(2) model whose roots lie inside and outside the unit

circle. The same method can be generalized to any non-causal AR(p) model.

Exercise 4.7 In the following simulations, use non-Gaussian innovations.

(i) Simulate a stationary AR(4) process with characteristic function

φ(z) =

[
1− 0.8 exp(i

2π

13
)z

] [
1− 0.8 exp(−i2π

13
)z

] [
1− 1.5 exp(i

2π

5
)z

] [
1− 1.5 exp(−i2π

5
)z

]
.
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(ii) Simulate a stationary AR(4) process with characteristic function

φ(z) =

[
1− 0.8 exp(i

2π

13
)z

] [
1− 0.8 exp(−i2π

13
)z

] [
1− 2

3
exp(i

2π

5
)z

] [
1− 2

3
exp(−i2π

5
)z

]
.

Do you observe any differences between these realisations?

R functions

Shumway and Stoffer (2006) and David Stoffer’s website gives a comprehensive introduction to time

series R-functions.

The function arima.sim simulates from a Gaussian ARIMA process. For example,

arima.sim(list(order=c(2,0,0), ar = c(1.5, -0.75)), n=150) simulates from the AR(2) model

Xt = 1.5Xt−1 − 0.75Xt−2 + εt, where the innovations are Gaussian.

4.5 The ARMA model

Up to now, we have focussed on the autoregressive model. The MA(q) in many respects is a much

simpler model to understand. In this case the time series is a weighted sum of independent latent

variables

Xt = εt + θ1εt−1 + . . .+ θqθt−q = εt +

q∑
j=1

θjεt−j . (4.14)

We observe that Xt is independent of any Xt−j where |j| ≥ q + 1. On the contrast, for an AR(p)

model, there is dependence between Xt and all the time series at all other time points (we have

shown above that if the AR(p) is causal, then it can be written as an MA(∞) thus the dependency at

all lags). There are advantages and disadvantages of using either model. The MA(q) is independent

after q lags (which may be not be viewed as realistic). But for many data sets simply fitting an

AR(p) model to the data and using a model selection criterion (such as AIC), may lead to the

selection of a large order p. This means the estimation of many parameters for a relatively small

data sets. The AR(p) may not be parsimonious. The large order is usually chosen when the

correlations tend to decay slowly and/or the autcorrelations structure is quite complex (not just

monotonically decaying). However, a model involving 10-15 unknown parameters is not particularly

parsimonious and more parsimonious models which can model the same behaviour would be useful.
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A very useful generalisation which can be more flexible (and parsimonious) is the ARMA(p, q)

model, in this case Xt has the representation

Xt −
p∑
i=1

φiXt−i = εt +

q∑
j=1

θjεt−j .

Definition 4.5.1 (Summary of AR, ARMA and MA models) (i) The autoregressive AR(p)

model: {Xt} satisfies

Xt =

p∑
i=1

φiXt−i + εt. (4.15)

Observe we can write it as φ(B)Xt = εt

(ii) The moving average MA(q) model: {Xt} satisfies

Xt = εt +

q∑
j=1

θjεt−j . (4.16)

Observe we can write Xt = θ(B)εt

(iii) The autoregressive moving average ARMA(p, q) model: {Xt} satisfies

Xt −
p∑
i=1

φiXt−i = εt +

q∑
j=1

θjεt−j . (4.17)

We observe that we can write Xt as φ(B)Xt = θ(B)εt.

We now state some useful definitions.

Definition 4.5.2 (Causal and invertible) Consider the ARMA(p, q) model defined by

Xt +

p∑
j=1

ψjXt−j =

q∑
i=1

θiεt,

where {εt} are iid random variables with mean zero and constant variance.

(i) An ARMA process is said to be causal if it has the representation

Xt =
∞∑
j=0

bjεt−j .
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(ii) An ARMA(p, q) process Xt +
∑p

j=1 ψjXt−j =
∑q

i=1 θiεt (where {εt} are uncorrelated ran-

dom variables with mean zero and constant variance) is said to be invertible if it has the

representation

Xt =

∞∑
j=1

ajXt−j + εt.

We have already given conditions underwhich an AR(p) model (and consequently) and ARMA(p, q)

model is causal. We now look at when an MA(q) model is invertible (this allows us to write it as

an AR(∞) process).

A worked example Consider the MA(1) process

Xt = εt + θεt−1,

where {εt} are iid random variables. Our aim is understand when Xt can have an AR(∞) repre-

sentation. We do this using the backshift notation. Recall Bεt = εt−1 substituting this into the

MA(1) model above gives

Xt = (1 + θB)εt.

Thus at least formally

εt = (1 + θB)−1Xt.

We recall that the following equality holds

(1 + θB)−1 =
∞∑
j=0

(−θ)jBj ,

when |θB| < 1. Therefore if |θ| < 1, then

εt = (1 +Bθ)−1Xt =
∞∑
j=0

(−θ)jBjXt =
∞∑
j=0

(−θ)jXt−j .
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Rearranging the above gives the AR(∞) representation

Xt =
∞∑
j=1

(−θ)jXt−j + εt,

but observe this representation only holds if |θ| < 1.

Conditions for invertibility of an MA(q) The MA(q) process can be written as

Xt =

q∑
j=1

θjεt−j + εt.

It will have an AR(∞) representation if the roots of the polynomial θ(z) = 1+
∑q

j=1 θjz
j lie outside

the unit circle. Then we can write (1 +
∑q

j=1 θjz)
−1 =

∑∞
j=0 φjz

j (i.e. all the roots are greater

than one in absolute) and we have

Xt =

∞∑
j=1

ajXt−j + εt.

Causal and invertible solutions are useful in both estimation and forecasting (predicting the

future based on the current and past).

Below we give conditions for the ARMA to have a causal solution and also be invertible. We

also show that the coefficients of the MA(∞) representation of Xt will decay exponentially.

Lemma 4.5.1 Let us suppose Xt is an ARMA(p, q) process with representation given in Definition

4.5.1.

(i) If the roots of the polynomial φ(z) lie outside the unit circle, and are greater than (1 + δ) (for

some δ > 0), then Xt almost surely has the solution

Xt =

∞∑
j=0

bjεt−j , (4.18)

where
∑

j |bj | < ∞ (we note that really bj = bj(φ, θ) since its a function of {φi} and {θi}).

Moreover for all j,

|bj | ≤ Kρj (4.19)
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for some finite constant K and 1/(1 + δ) < ρ < 1.

(ii) If the roots of φ(z) lie both inside or outside the unit circle and are larger than (1 + δ) or less

than (1 + δ)−1 for some δ > 0, then we have

Xt =
∞∑

j=−∞
bjεt−j , (4.20)

(a vector AR(1) is not possible), where

|aj | ≤ Kρ|j| (4.21)

for some finite constant K and 1/(1 + δ) < ρ < 1.

(iii) If the absolute value of the roots of θ(z) = 1 +
∑q

j=1 θjz
j are greater than (1 + δ), then (4.17)

can be written as

Xt =
∞∑
j=1

ajXt−j + εt. (4.22)

where

|aj | ≤ Kρj (4.23)

for some finite constant K and 1/(1 + δ) < ρ < 1.

To compare the behaviour or an AR and ARMA models we simulate from and AR(3) and and

ARMA(3, 2) where both models have the same autoregressive parameters. We simulate from the

AR(3) model (two complex roots, one real root)

(1− 2 · 0.8 cos(π/3)B + 0.82B2)(1− 0.6B)Xt = εt

and the ARMA(3, 2) model

(1− 2 · 0.8 cos(π/3)B + 0.82B2)(1− 0.6B)Xt = (1 + 0.5B − 0.5B2)εt

The realisations and corresponding periodogram are given in Figures 4.11 and 4.12. Observe that

the AR(3) model has one real root λ = 0.6, this gives rise to the perceived curve in Figure 4.11
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Figure 4.11: Realisation from Left: AR(3) and Right: ARMA(3, 2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
5

10
15

20

Periodogram AR(3)

freq

Pt
es

tA
R3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

20
30

40
50

60
70

Periodogram ARMA(3)

freq

Pt
es

tA
RM

A3
2

Figure 4.12: Periodogram from realisation from Left: AR(3) and Right: ARMA(3, 2)
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Figure 4.13: Spectral density from Left: AR(3) and Right: ARMA(3, 2)
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and relatively amplitudes at low frequencies in the corresponding periodogram (in Figure 4.12). In

contrast, the ARMA model has exactly the same AR part as the AR(3) model, but the MA part

of this model appears to cancel out some of the low frequency information! The corresponding

spectral density of the AR(3) and ARMA(3, 2) model are

fAR(ω) =
1

|1− 1.6 cos θeiω + 0.82e2iω|2|1− 0.6eiω|2

and

fARMA(ω) =
|1 + 0.5eiω − 0.5e2iω|2

|1− 1.6 cos θeiω + 0.82e2iω|2|1− 0.6eiω|2

respectively. A plot of these spectral densities is given in Figure 4.13. We observe that the peri-

odogram maps the rough character of the spectral density. This the spectral density conveys more

information than then simply being a positive function. It informs on where periodicities in the

time series are most likely to lie. Studying 4.13 we observe that MA part of the ARMA spectral

density appears to be dampening the low frequencies. Code for all these models is given on the

course website. Simulate different models and study their behaviour.

4.6 ARFIMA models

We have shown in Lemma 4.5.1 that the coefficients of an ARMA processes which admit a stationary

solution decay geometrically. This means that they are unable to model “persistant” behaviour

between random variables which are separately relatively far in time. However, the ARIMA offers a

solution on how this could be done. We recall that (1−B)Xt = εt is a process which is nonstationary.

However we can no replace (1−B)d (where d is a fraction) and see if one can obtain a compromise

between persistance (long memory) and nonstatonary (in the sense of differencing). Suppose

(1−B)dXt = εt.

If 0 ≤ d ≤ 1/2 we have the expansions

(1−B)d =

∞∑
j=0

ψjB
j (1−B)−d =

∞∑
j=0

φjB
j
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where

φj =
Γ(j − d)

Γ(j + 1)Γ(−d)
ψj =

Γ(j + d)

Γ(j + 1)Γ(d)

and Γ(1 + k) = kΓ(k) is the Gamma function. Note that
∑∞

j=0 ψ
2
j < ∞ but

∑∞
j=0 ψj = ∞. This

means that Xt has the stationary solution

Xt =
∞∑
j=0

ψjεt−j .

Noting to show that the above is true requires weaker conditions than those given in Lemma 4.2.1.

It above process does not decay geometrically fast, and it can be shown that the sample covariance

is such that c(r) ∼ |r|2d−1 (hence is not absolutely summable).

4.7 Unit roots, integrated and non-invertible processes

4.7.1 Unit roots

If the difference equation has a root which is one, then an (almost sure) stationary solution of

the AR model does not exist. The simplest example is the ‘random walk’ Xt = Xt−1 + εt (φ(z) =

(1−z)). This is an example of an Autoregressive Integrated Moving Average ARIMA(0, 1, 0) model

(1−B)Xt = εt.

To see that it does not have a stationary solution, we iterate the equation n steps backwards;

Xt =
∑n

j=0 εt−j + Xt−n. St,n =
∑n

j=0 εt−j is the partial sum, but it is clear that the partial sum

St,n does not have a limit, since it is not a Cauchy sequence, ie. |St,n−St,m| does not have a limit.

However, given some initial value X0, for t > 0 the so called “unit process” Xt = Xt−1 + εt is well

defined. Notice that the nonstationary solution of this sequence is Xt = X0 +
∑t

j=1 εt−j which has

variance var(Xt) = var(X0) + t (assuming that {εt} are iid random variables with variance one and

independent of X0).

We observe that we can ‘stationarize’ the process by taking first differences, i.e. defining

Yt = Xt −Xt−1 = εt.

Unit roots for higher order differences The unit process described above can be generalised to tak-

ing d differences (often denoted as an ARIMA(0, d, 0)) where (1−B)dXt = εt (by taking d-differences

we can remove d-order polynomial trends). We elaborate on this below.
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To stationarize the sequence we take d differences, i.e. let Yt,0 = Xt and for 1 ≤ i ≤ d define

the iteration

Yt,i = Yt,i−1 − Yt−1,i−1

and Yt = Yt,d will be a stationary sequence. Note that this is equivalent to

Yt =

d∑
j=0

d!

j!(d− j)!
(−1)jXt−j .

The ARIMA(p, d, q) model The general ARIMA(p, d, q) is defined as (1 − B)dφ(B)Xt = θ(B)εt,

where φ(B) and θ(B) are p and q order polynomials respectively and the roots of φ(B) lie outside

the unit circle.

Another way of describing the above model is that after taking d differences (as detailed in

(ii)) the resulting process is an ARMA(p, q) process (see Section 4.5 for the definition of an ARMA

model).

To illustrate the difference between stationary ARMA and ARIMA processes, in Figure 4.14

Suppose (1 − B)φ(B)Xt = εt and let φ̃(B) = (1 − B)φ(B). Then we observe that φ̃(1) = 0.

This property is useful when checking for unit root behaviour (see Section 4.9).

More exotic unit roots

The unit root process need not be restricted to the case that the characteristic polynomial

associated the AR model is one. If the absolute of the root is equal to one, then a stationary

solution cannot exist. Consider the AR(2) model

Xt = 2 cos θXt−1 −Xt−2 + εt.

The associated characteristic polynomial is φ(B) = 1 − 2 cos(θ)B + B2 = (1 − eiθB)(1 − e−iθB).

Thus the roots are eiθ and e−iθ both of which lie on the unit circle. Simulate this process.

4.7.2 Non-invertible processes

In the examples above a stationary solution does not exist. We now consider an example where

the process is stationary but an autoregressive representation does not exist (this matters when we

want to forecast).
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Consider the MA(1) model Xt = εt − εt−1. We recall that this can be written as Xt = φ(B)εt

where φ(B) = 1−B. From Example 4.3.1(iv) we know that φ(z)−1 does not exist, therefore it does

not have an AR(∞) representation since (1−B)−1Xt = εt is not well defined.
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(b) (1−B)Yt = Xt, where Xt is defined in (a)

Figure 4.14: Realisations from an AR process and its corresponding integrated process, using
N(0, 1) innovations (generated using the same seed).

4.8 Simulating from models

4.9 Some diagnostics

Here we discuss some guidelines which allows us to discriminate between a pure autoregressive

process and a pure moving average process; both with low orders. And also briefly discuss how to

identify a “unit root” in the time series and whether the data has been over differenced.

4.9.1 ACF and PACF plots for checking for MA and AR be-

haviour

The ACF and PACF plots are the autocorrelations and partial autocorrelations estimated from the

time series data (estimated assuming the time series is second order stationary). The ACF we came

across is Chapter 1, the PACF we define in Chapter 6, however roughly it is the correlation between

two time points after removing the linear dependence involving the observations inbetween. In R
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the functions are acf and pacf. Note that the PACF at lag zero is not given (as it does not make

any sense).

The ACF and PACF of an AR(1), AR(2), MA(1) and MA(2) are given in Figures 4.15-4.18.

We observe from Figure 4.15 and 4.16 (which give the ACF of and AR(1) and AR(2) process)

that there is correlation at all lags (though it reduces for large lags). However, we see from the

PACF for the AR(1) has only one large coefficient at lag one and the PACF plot of the AR(2) has

two large coefficients at lag one and two. This suggests that the ACF and PACF plot can be used

to diagnose autoregressive behaviour and its order.

Similarly, we observe from Figures 4.17 and 4.18 (which give the ACF of and MA(1) and MA(2)

process) that there is no real correlation in the ACF plots after lag one and two respectively, but

the PACF plots are more ambigious (there seems to be correlations at several lags).
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Figure 4.15: ACF and PACF plot of an AR(1), Xt = 0.5Xt−1 + εt, n = 400

4.9.2 Checking for unit roots

We recall that for an AR(1) process, the unit root corresponds to Xt = Xt−1 + εt i.e. φ = 1. Thus

to check for unit root type behaviour we estimate φ and see how close φ is to one. We can formally

turn this into a statistical test H0 : φ = 1 vs. HA : |φ| < 1 and there several tests for this, the most

famous is the Dickey-Fuller test. Rather intriguingly, the distribution of φ̂ (using the least squares

estimator) does not follow a normal distribution with a
√
n-rate!

Extending the the unit root to the AR(p) process, the unit root corresponds to (1−B)φ(B)Xt =

εt where φ(B) is an order (p− 1)-polynomial (this is the same as saying Xt −Xt−1 is a stationary

AR(p − 1) process). Checking for unit root is the same as checking that the sum of all the AR
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Figure 4.16: ACF and PACF plot of an AR(2), n = 400
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Figure 4.17: ACF and PACF plot of an MA(1), Xt = εt + 0.8εt−1, n = 400

coefficients is equal to one. This is easily seen by noting that φ̃(1) = 0 where φ̃(B) = (1−B)φ(B)

or

(1−B)φ(B)Xt = Xt − (φ1 − 1)Xt−1 − (φ2 − φ1)Xt−2 − (φp−1 − φp−2)Xt−p+1 + φp−1Xt−p = εt.

Thus we see that the sum of the AR coefficients is equal to one. Therefore to check for unit root

behaviour in AR(p) processes one can see how close the sum of the estimate AR coefficients
∑p

j=1 φ̂j

is to one. Again this can be turned into a formal test.

In order to remove stochastic or deterministic trend one may difference the data. But if the

data is over differenced one can induce spurious dependence in the data which is best avoided

(estimation is terrible and prediction becomes a nightmare). One indicator of over differencing is
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Figure 4.18: ACF and PACF plot of an MA(2), n = 400
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Figure 4.19: ACF of differenced data Yt = Xt −Xt−1. Left Xt = εt, Right Xt = 1.5Xt−1 −
0.75Xt−2 + εt.

the appearance of negative correlation at lag one in the data. This is illustrated in Figure 4.19,

where for both data sets (difference of iid noise and differenced of an AR(2) process) we observe a

large negative correlation at lag one.

4.10 Appendix

Representing an AR(p) model as a VAR(1) Let us suppose Xt is an AR(p) process, with the rep-

resentation

Xt =

p∑
j=1

φjXt−j + εt.
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For the rest of this section we will assume that the roots of the characteristic function, φ(z), lie

outside the unit circle, thus the solution causal. We can rewrite the above as a Vector Autoregressive

(VAR(1)) process

Xt = AXt−1 + εt (4.24)

where 
φ1 φ2 . . . φp−1 φp

1 0 . . . 0 0

0 1 . . . 0 0

0 0 . . . 1 0

 , (4.25)

X ′t = (Xt, . . . , Xt−p+1) and ε′t = (εt, 0, . . . , 0). It is straightforward to show that the eigenvalues of

A are the inverse of the roots of φ(z) (since

det(A− zI) = zp −
p∑
i=1

φiz
p−i = zp (1−

p∑
i=1

φiz
−i)︸ ︷︷ ︸

=zpφ(z−1)

),

thus the eigenvalues of A lie inside the unit circle. It can be shown that for any |λmax(A)| < δ < 1,

there exists a constant Cδ such that |‖Aj‖spec ≤ Cδδ
j (see Appendix A). Note that result is

extremely obvious if the eigenvalues are distinct (in which case the spectral decomposition can be

used), in which case |‖Aj‖spec ≤ Cδ|λmax(A)|j (note that ‖A‖spec is the spectral norm of A, which

is the largest eigenvalue of the symmetric matrix AA′).

We can apply the same back iterating that we did for the AR(1) to the vector AR(1). Iterating

(13.4) backwards k times gives

Xt =

k−1∑
j=0

Ajεt−j +AkXt−k.

Since ‖AkXt−k‖2 ≤ ‖Ak‖spec‖Xt−k‖
P→ 0 we have

Xt =
∞∑
j=0

Ajεt−j .
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We use the above representation to prove Lemma 4.5.1.

PROOF of Lemma 4.5.1 We first prove (i) There are several way to prove the result. The proof

we consider here, uses the VAR expansion given in Section ??; thus we avoid using the Backshift

operator (however the same result can easily proved using the backshift). We write the ARMA

process as a vector difference equation

Xt = AXt−1 + εt (4.26)

where X ′t = (Xt, . . . , Xt−p+1), ε′t = (εt +
∑q

j=1 θjεt−j , 0, . . . , 0). Now iterating (4.26), we have

Xt =
∞∑
j=0

Ajεt−j , (4.27)

concentrating on the first element of the vector Xt we see that

Xt =
∞∑
i=0

[Ai]1,1(εt−i +

q∑
j=1

θjεt−i−j).

Comparing (4.18) with the above it is clear that for j > q, aj = [Aj ]1,1 +
∑q

i=1 θi[A
j−i]1,1. Observe

that the above representation is very similar to the AR(1). Indeed as we will show below the Aj

behaves in much the same way as the φj in AR(1) example. As with φj , we will show that Aj

converges to zero as j → ∞ (because the eigenvalues of A are less than one). We now show that

|Xt| ≤ K
∑∞

j=1 ρ
j |εt−j | for some 0 < ρ < 1, this will mean that |aj | ≤ Kρj . To bound |Xt| we use

(4.27)

|Xt| ≤ ‖Xt‖2 ≤
∞∑
j=0

‖Aj‖spec‖εt−j‖2.

Hence, by using Gelfand’s formula (see Appendix A) we have |‖Aj‖spec ≤ Cρρj (for any |λmax(A)| <

ρ < 1, where λmax(A) denotes the largest maximum eigenvalue of the matrix A), which gives the

corresponding bound for |aj |.

To prove (ii) we use the backshift operator. This requires the power series expansion of θ(z)
φ(z) .

If the roots of φ(z) are distinct, then it is straightforward to write φ(z)−1 in terms of partial

fractions which uses a convergent power series for |z| = 1. This expansion immediately gives the

the linear coefficients aj and show that |aj | ≤ C(1 + δ)−|j| for some finite constant C. On the other
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hand, if there are multiple roots, say the roots of φ(z) are λ1, . . . , λs with multiplicity m1, . . . ,ms

(where
∑s

j=1ms = p) then we need to adjust the partial fraction expansion. It can be shown that

|aj | ≤ C|j|maxs |ms|(1 + δ)−|j|. We note that for every (1 + δ)−1 < ρ < 1, there exists a constant

such that |j|maxs |ms|(1 + δ)−|j| ≤ Cρ|j|, thus we obtain the desired result.

To show (iii) we use a similar proof to (i), and omit the details. �

Corollary 4.10.1 An ARMA process is invertible if the roots of θ(B) (the MA coefficients) lie

outside the unit circle and causal if the roots of φ(B) (the AR coefficients) lie outside the unit

circle.

An AR(p) process and an MA(q) process is identifiable (meaning there is only one model associ-

ated to one solution). However, the ARMA is not necessarily identifiable. The problem arises when

the characteristic polynomial of the AR and MA part of the model share common roots. A simple

example is Xt = εt, this also satisfies the representation Xt − φXt−1 = εt − φεt−1 etc. Therefore it

is not possible to identify common factors in the polynomials.

One of the main advantages of the invertibility property is in prediction and estimation. We will

consider this in detail below. It is worth noting that even if an ARMA process is not invertible, one

can generate a time series which has identical correlation structure but is invertible (see Section

6.4).
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Chapter 5

A review of some results from

multivariate analysis

5.1 Preliminaries: Euclidean space and projections

In this section we describe the notion of projections. Understanding linear predictions in terms of

the geometry of projections leads to a deeper understanding of linear predictions and also algorithms

for solving linear systems. We start with a short review of projections in Euclidean space.

5.1.1 Scalar/Inner products and norms

Suppose x1, . . . , xp ∈ Rd, where p < d. There are two important quantities associated with the

space Rd:

• The Euclidean norm: ‖x‖2 =
√∑d

j=1 x
2
j .

When we switch to random variables the L2-norm changes to the square root of the variance.

• The scalar/inner product

〈xa, xb〉 =
d∑
j=1

xajxbj .

If xa and xb are orthogonal then the angle between them is 90 degrees and 〈xa, xb〉 = 0. It is

clear that 〈x, x〉 = ‖x‖22.
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When we switch to random variables, the inner product becomes the variance covariance.

Two random variables are uncorrelated if their covariance is zero.

Let X = sp(x1, . . . , xp) denote the space spanned by the vectors x1, . . . , xp. This means if z ∈

sp(x1, . . . , xp), there exists coefficients {αj}pj=1 where z =
∑p

j=1 αjxj .

5.1.2 Projections

Let y ∈ Rd. Our aim is to project y onto sp(x1, . . . , xp). The projection will lead to an error which

is orthogonal to sp(x1, . . . , xp). The projection of y onto sp(x1, . . . , xp) is the linear combination

z =
∑p

j=1 αjxj which minimises the Euclidean distance (least squares)

∥∥∥∥∥∥y −
p∑
j=1

αjxj

∥∥∥∥∥∥
2

2

= 〈y −
p∑
j=1

αjxj , y −
p∑
j=1

αjxj〉.

The coefficients {αj}pj=1 which minimise this difference correspond to the normal equations:

〈y −
p∑
j=1

αjxj , x`〉 = y′x` −
p∑
j=1

αjx
′
jx` = 0. 1 ≤ ` ≤ p. (5.1)

The normal equations in (5.1) can be put in matrix form

y′x` −
p∑
j=1

αjx
′
jx` = 0

⇒ X ′Xα = Xy (5.2)

where X ′ = (x1, . . . , xp). This leads to the well known solution

α = (X ′X)−1Xy. (5.3)

The above shows that the best linear predictors should be such that the error y −
∑p

j=1 αjxj and

x` are orthogonal (90 degrees). Let X = sp(x1, . . . , xp), to simplify notation we often use the

notation PX(y) to denote the projection of y onto X. For example, PX(y) =
∑p

j=1 αjxj , where

〈y − PX(y), x`〉 = 0 for all 1 ≤ ` ≤ p. We will often use this notation to simplify the exposition

below.

Since the projection error y − PX(y) contains no linear information on X, then
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• All information on the Inner product between y and x` is contained in its projection:

〈y, x`〉 = y′x` = 〈PX(y), x`〉 1 ≤ ` ≤ p

• Euclidean distance of projection error:

〈y − PX(y), y〉

= 〈y − PX(y), y − PX(y) + PX(y)〉

= 〈y − PX(y), y − PX(y)〉+ 〈y − PX(y), PX(y)〉︸ ︷︷ ︸
=0

=
∥∥y − PX(y)

∥∥2

2
.

5.1.3 Orthogonal vectors

We now consider the simple, but important case that the vectors {xj}
p
j=1 are orthogonal. In this

case, evaluation of the coefficients α′ = (α1, . . . , αp) is simple. From (5.4) we recall that

α = (X ′X)−1Xy. (5.4)

If {xj}
p
j=1 are orthogonal, then X ′X is a diagonal matrix where

(X ′X) = diag
(
x′1x1, . . . , x

′
pxp
)
.

Since

(Xy)i =

d∑
j=1

xi,jyj .

This gives the very simple, entry wise solution for αj

αj =

∑d
j=1 xi,jyj∑d
j=1 x

2
ij

.

5.1.4 Projecting in multiple stages

Suppose that x1, . . . , xp, xp+1 ∈ Rd. Let Xp = sp(x1, . . . , xp) and Xp+1 = sp(x1, . . . , xp+1). Observe

that Xp is a subset of Xp+1. With a little thought it is clear that Xp+1 = sp(Xp, xp+1−PXp(xp+1)).

In other words, xp+1−PXp(xp+1) is the additional information in xp+1 that is not contained in Xp.
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If xp+1 ∈ Xp, then xp+1 − PXp(xp+1) = 0.

Let y ∈ Rd. Our aim is to project y onto Xp+1, but we do it in stages. By first projecting onto

Xp, then onto Xp+1. Since xp+1 − PXp(xp+1) is orthogonal to Xp (this is by the very definition of

PXp(xp+1)) we can write

y = PXp(y) + Pxp+1−PXp (xp+1)(y) + ε

= PXp(y) + α(xp+1 − PXp(xp+1)) + ε.

The coefficient α can deduced by minimising the Euclidean distance of the above;

∥∥y − PXp(y)− α(xp+1 − PXp(xp+1))
∥∥2

2
.

Differentiating with respect to α leads to the normal equation

〈y − PXp(y)− α(xp+1 − PXp(xp+1)), (xp+1 − PXp(xp+1))〉 = 0

= 〈y − α(xp+1 − PXp(xp+1)), (xp+1 − PXp(xp+1))〉 = 0,

where the last line is because PXp(xp+1)) is orthogonal to (xp+1 − PXp(xp+1)). Thus solving the

above gives

α =
〈y, xp+1 − PXp(xp+1)〉
‖xp+1 − PXp(xp+1)‖22

.

Therefore we can write y as

y =
[
PXp(y)− αPXp(xp+1))

]
+ αxp+1 + ε. (5.5)

If α = 0, then xp+1 does not contain any additional information of y over what is already in Xp.

The above may seem a little heavy. But with a few sketches using R3 as an example will

make the derivations obvious. Once you are comfortable with projections in Euclidean space, the

same ideas transfer to projections of random variables where the innerproduct in the space is the

covariances (and not the scalar product).
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5.1.5 Spaces of random variables

The set-up described above can be generalized to any general vector space. Our focus will be on

spaces of random variables. We assume the random variables in the appropriate probability space.

We then define the (Hilbert) space of random variables

H = {X; X is a (real) random variables where var(X) <∞} .

This looks complicated, but in many ways it is analogous to Euclidean space. There are a few

additional complications (such as showing the space is complete, which we ignore). In order to

define a projection in this space project, we need to define the corresponding innerproduct and

norm for this space. Suppose X,Y ∈ H, then the inner-product is the covariance

〈X,Y 〉 = cov(X,Y ).

The norm is clearly the variance

‖X‖22 = 〈X,X〉 = cov(X,X).

Most properties that apply to Euclidean space also apply to H. Suppose that X1, . . . , Xn are

random variables in H. We define the subspace sp(X1, . . . , Xn)

sp(X1, . . . , Xn) =

Y ; where Y =

p∑
j=1

ajXj

 ,

i.e. all all random variables Z ∈ H which can be expressed as a linear combination of {Xj}nj=1.

Now just as in Euclidean space you can project any y ∈ Rd onto the subspace spanned by the

vectors x1, . . . , xp, we can project Y ∈ H onto X = sp(X1, . . . , Xn). The projection is such that

PX(Y ) =

p∑
j=1

αjXj ,

where the α′ = (α1, . . . , αp) are such that

〈X`, Y −
p∑
j=1

αjXj〉 = cov(X`, Y −
p∑
j=1

αjXj) = 0 1 ≤ j ≤ p.
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Using the above we can show that α satisfies

α = [var(X)]−1cov(X,Y ).

where Y = (X1, . . . , Xp)
′ (out of slopiness we will often use say we project onto Y rather than

project onto the space spanned by Y which is sp(X1, . . . , Xn)).

The properties described in Section 5.1.2 apply to H too:

• Inner product between Y and X` is contained in the projection:

〈Y,X`〉 = cov(Y,X`) = cov (PX(Y ), X`) 1 ≤ ` ≤ p. (5.6)

• The projection error

cov(Y − PX(Y ), Y ) = var[Y − PX(Y )].

This is rather formal. We now connect this to results from multivariate analysis.

5.2 Linear prediction

Suppose (Y,X), where X = (X1, . . . , Xp) is a random vector. The best linear predictor of Y given

X is given by

Ŷ =

p∑
j=1

βjXj

where β = Σ−1
XXΣXY , with β = (β1, . . . , βp) and ΣXX = var(X), ΣXY = cov[X, Y ]. The corresond-

ing mean squared error is

E

Y − p∑
j=1

βjXj

2

= E(Y 2)− ΣY XΣ−1
XXΣXY .

Reason To understand why the above is true, we need to find the θ which minimises

E

Y − p∑
j=1

θjXj

2

,
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we assume that Xj has zero mean. Differentiating the above wrt θi leads to the normal equations

−2

E (Y Xi)−
p∑
j=1

θjE (XjXi)

 i = 1, . . . , p.

Equating to zero (since we want to find the θi which minimises the above) is

E (Y Xi)︸ ︷︷ ︸
=cov(Y,Xi)

−
p∑
j=1

θj E (XjXi)︸ ︷︷ ︸
=cov(Xi,Xj)

= 0 i = 1, . . . , p.

Writing the above as a matrix equation gives the solution

β = var (X)−1 cov (Y,X) = Σ−1
XXΣXY .

Substituting the above into the mean squared error gives

E

Y − p∑
j=1

βjXj

2

= E(Y 2)− 2E(Y Ŷ ) + E(Ŷ 2).

Using that

Y = Ŷ + e

where e is uncorrelated with {Xj}, thus it is uncorrelated with Ŷ . This means E[Y Ŷ ] = E[Ŷ 2].

Therefore

E

Y − p∑
j=1

βjXj

2

= E(Y 2)− E(Ŷ 2) = E(Y 2)− β′var(X)β

= E(Y 2)− ΣY XΣ−1
XXΣXY .

5.3 Partial correlation

Suppose X = (X1, . . . , Xd)
′ is a zero mean random vector (we impose the zero mean condition

to simplify notation but it’s not necessary). The partial correlation is the covariance between

Xi and Xj , conditioned on the other elements in the vector. In other words, the covariance
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between the residuals of Xi and Xj after removing their linear dependence on X−(ij) (the vector

not containing Xi and Xj) and the residual of Xj conditioned on X−(ij). To obtain an expression

for this correlation we simplify notation and let X = Xi, Z = Xj and Y = X−(ij)

The notion of partial correlation can also easily be understood through projections and linear

prediction (though there are other equivalent derivations). We describe this below. Let PY (X)

denote the projection of the random variable X onto the space spanned by Y . I.e. PY (X) minimises

the MSE E[X − α′Y ]2. The partial correlation between X and Z given Y is

ρX,Z|Y =
cov(X − PY (X), Z − PY (Z))√

var(X − PY (X))var(Z − PY (Z))
.

By using the results in the previous section we have

PY (X) = α′X,Y Y and PY (Z) = α′Z,Y Y

where

αX,Y = [var(Y )]−1cov(X,Y ) and αZ,Y = [var(Y )]−1cov(Z, Y ). (5.7)

Using (5.7) we can write each of the terms in ρX,Z|Y in terms of the elements of the variance matrix:

i.e.

cov(X − PY (X), Z − PY (Z)) = cov(X,Z)− cov(X,Y )′[var(Y )]−1cov(Z, Y )

var(X − PY (X)) = var(X)− cov(X,Y )′[var(Y )]−1cov(X,Y )

var(Z − PY (Z)) = var(Z)− cov(Z, Y )′[var(Y )]−1cov(Z, Y ).

Relating partial correlation and the regression cofficients We show how the above is related to the

coefficients in linear regression. Using the two-stage projection scheme described in (5.5), but

switching from Euclidean space (and scalar products) to random variables and covariances we can

write

X = PY (X) + βZ )X(Z − PY (Z)) + εX

and Z = PY (Z) + βX )Z(X − PY (X)) + εZ , (5.8)
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where

βZ )X =
cov(X,Z − PY (Z))

var(Z − PY (Z))
and βX )Z =

cov(Z,X − PY (X))

var(X − PY (X))
.

Since Z − PY (Z) is orthogonal to Y (and thus cov(Z − PY (Z), PY (X)) = 0) we have

cov(X,Z − PY (Z)) = cov(X − PY (X), Z − PY (Z)).

This is the partial covariance (as it is the covariance of the residials after projecting onto Y ). This

links βZ )X and βX )Z to the partial covariance, since

βZ )X =
cov(X − PY (X), Z − PY (Z))

var(Z − PY (Z))
and βX )Z =

cov(Z − PY (Z), X − PY (X))

var(X − PY (X))
.

To connect the regression coefficients to the partial correlations we rewrite we rewrite the partial

covariance in terms of the partial correlation:

cov(X − PY (X), Z − PY (Z)) = ρX,Z|Y
√

var(X − PY (X))var(Z − PY (Z)).

Substituting the expression for cov(X−PY (X), Z−PY (Z)) into the expression for βZ )X and βX )Z

gives

βZ )X = ρX,Z|Y

√
var(X − PY (X))

var(Z − PY (Z))
and βX )Z = ρX,Z|Y

√
var(Z − PY (Z))

var(X − PY (X))
. (5.9)

This leads to the linear regressions

X = (PY (X)− βZ )XPY (Z))︸ ︷︷ ︸
in terms of Y

+ βZ )XZ︸ ︷︷ ︸
in terms of Z

+εX

Z = (PY (Z)− βX )ZPY (X))︸ ︷︷ ︸
in terms of Z

+ βX )ZX︸ ︷︷ ︸
in terms of X

+εZ .

For below, keep in mind that var[εX ] = var[X − PY,Z(X)] and var[εZ ] = var[Z − PY,X(Z)].

The identity in (5.9) relates the regression coefficients to the partial correlation. In particular,

the partial correlation is zero if an only if the corresponding regression coefficient is zero too.

We now rewrite (5.9) in terms of var[εX ] = var[X − PY,Z(X)] and var[εZ ] = var[Z − PY,X(Z)].
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This requires the following identity

var(X − PY,Z(X))

var(Z − PY,X(Z))
=

var(X − PY (X))

var(Z − PY (Z))
, (5.10)

a proof of this identity is given at the end of this section. Using this identity together with (5.9)

gives

βZ )X = ρX,Z|Y

√
var(εX)

var(εZ)
and βX )Z = ρX,Z|Y

√
var(εZ)

var(εX)
(5.11)

and

ρX,Z|Y = βZ )X

√
var(εZ)

var(εX)
= βX )Z

√
var(εY )

var(εZ)
(5.12)

Proof of identity (5.10) We recall that

Xi = PX−(i,j)
(Xi) + βij(Xj − PX−(i,j)

(Xj)) + εi

Xj = PX−(i,j)
(Xj) + βji(Xi − PX−(i,j)

(Xi)) + εj .

To relate var(εi) and var(εi,−j) we evaluate

var(εi,−j) = var(Xi − PX−(i,j)
(Xi))

= var[βij(Xj − PX−(i,j)
(Xj))] + var(εi)

= β2
ijvar[Xj − PX−(i,j)

(Xj)] + var(εi)

=
[cov(Xi, Xj − PX−(i,j)

(Xj))]
2

var[Xj − PX−(i,j)
(Xj)]

+ var(εi)

=
[cov(Xi − PX−(i,j)

(Xi), Xj − PX−(i,j)
(Xj))]

2

var[Xj − PX−(i,j)
(Xj)]

+ var(εi)

=
c2
ij

var(εj,−i)
+ var(εi).

where cij = cov(Xi − PX−(i,j)
(Xi), Xj − PX−(i,j)

(Xj)). By the same argument we have

var(εj,−i) =
c2
ij

var(εi,−j)
+ var(εj)

⇒ ρ2
ij = var(εj,−i)var(εi,−j)− var(εj)var(εi,−j).
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Putting these two equations together gives

var(εj,−i)var(εi,−j)− var(εj)var(εi,−j) = var(εi,−j)var(εj,−i)− var(εi)var(εj,−i).

This leads to the required identity

var(εi)

var(εj)
=

var(εi,−j)

var(εj,−i)
,

and the desired result. �

Example 5.3.1 Define the three random vectors X1, X2 and X3, where X1 and X2 are such that

X1 = X3 + ε1 X2 = X3 + ε2

where ε1 is independent of X2 and X3 and ε2 is independent of X1 and X3 (and of course they are

independent of each other). Then cov(X1, X2) = var(X3) however the partial covariance between

X1 and X2 conditioned on X3 is zero. I.e. X3 is driving the dependence between the models, once

it is removed they are uncorrelated and, in this example, independent.

5.4 Properties of the precision matrix

5.4.1 Summary of results

Suppose X ′ = (X1, . . . , Xd) is a zero mean random vector (we impose the zero mean condition to

simplify notation but it is not necessary), where

Σ = var[X] and Γ = Σ−1.

Σ is called the variance matrix, Γ is called the precision matrix. Unless stated otherwise all vectors

are column vectors. We summarize the main results above in the bullet points below. We then

relate these quantities to the precision matrix.

• β′i = (βi,1, . . . , βi,d) are the coefficients which minimise E[Xi − β′iX−i]2, where

X′−i = (X1, . . . , Xi−1, Xi+1, . . . , Xd) (all elements in X excluding Xi).
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• β′i,−j are the coefficients which minimise E[Xi−β′i,−jX−(i,j)]
2, where X−(i,j) are all elements

in X excluding Xi and Xj .

• The partial correlation between Xi and Xj is defined as

ρi,j = cor(εi,−j , εj,−i) =
cov(εi,−j , εj,−i)√

var(εi,−j)var(εj,−i)
,

where

εi,−j = Xi − βi,−jX−(i,j)

εj,−i = Xj − βj,−iX−(i,j).

It can be shown that

cov (εi,−j , εj,−i) = cov(Xi, Xj)− cov(Xi,X
′
−(i,j))var[X−(i,j)]

−1cov(Xj ,X−(i,j))

var (εi,−j) = var(Xi)− cov(Xi,X
′
−(i,j))var[X−(i,j)]

−1cov(Xi,X−(i,j))

var (εj,−i) = var(Xj)− cov(Xj ,X
′
−(i,j))var[X−(i,j)]

−1cov(Xj ,X−(i,j)).

• The regression coefficients and partial correlation are related through the identity

βij = ρij

√
var(εi)

var(εj)
. (5.13)

Let Γi,j denote the (i, j)th entry in the precision matrix Γ = Σ−1. Then Γi,j satisifies the following

well known properties

Γii =
1

E[Xi − β′iX−i]2
.

For i 6= j we have Γi,j = −βi,j/E[Xi − β′iX−i]2 and

βi,j = −Γi,j
Γii

and ρi,j = − Γi,j√
ΓiiΓjj

.
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5.4.2 Proof of results

Regression and the precision matrix The precision matrix contains many hidden treasures. We

start by showing that the entries of the precision matrix contain the regression coefficients of Xi

regressed on the random vector X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xd). We will show that the ith

row of Σ−1 is

(
−βi1/σ2

i , −βi2/σ2
i , . . . 1/σ2

i . . . −βid/σ2
i .
)

where σ2
2 = E[Xi − β′iX−i]2,

∑
j 6=i βijXij is the best linear predictor of Xi given X−i and the ith

entry is 1/σ2
i (notation can be simplified if set βii = −1). And equivalently the ith column of Σ−1

is the transpose of the vector

(
−βi1/σ2

i −βi2/σ2
i . . . −βid/σ2

i .
)
.

Though it may seem surprising at first, the result is very logical.

We recall that the coefficients βi = (βi,1, . . . , βi,d) are the coefficients which minimise E[Xi −

β′iX−i]
2. This is equivalent to the derivative of the MSE being zero, this gives rise to the classical

normal equations

E[(Xi −
∑
j 6=i

βi,jXj)X`] = Σi,` −
∑
j 6=i

βi,jΣj,` = 0 1 ≤ ` ≤ j, ` 6= i.

Further, since Xi −
∑

j 6=i βi,jXj is orthogonal to Xj we have

E[(Xi −
∑
j 6=i

βi,jXj)Xi] = E[(Xi −
∑
j 6=i

βi,jXj)
2].

Recall that each row in the precision matrix is orthogonal to all the columns in Σ except one. We

show below that this corresponds to precisely the normal equation. It is easiest seen through the

the simple example of a 4× 4 variance matrix


c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44


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and the corresponding regression matrix


1 −β12 −β13 −β14

−β21 1 −β23 −β24

−β31 −β32 1 −β34

−β41 −β42 −β43 1

 .

We recall from the definition of β1 that the inner product between c = (c11, c12, c13, c14) and

β̃1 = (1,−β12,−β13,−β14) is

β̃1c
′
1 = 〈β̃1, c1〉 = c11 − β12c12 − β13c13 − β13c13

= E[(X1 −
4∑
j=2

β1,jXj)X1] = E[(X1 −
4∑
j=2

β1,jXj)
2].

Similarly

β̃1c
′
2 = 〈β̃1, c2〉 = c21 − β12c22 − β13c23 − β13c23

= E[(X1 −
4∑
j=2

β1,jXj)X2] = 0.

The same is true for the other cj and β̃j . Based on these observations, we observe that the

regression coefficients/normal equations give the orthogonal projections and


1 −β12 −β13 −β14

−β21 1 −β23 −β24

−β31 −β32 1 −β34

−β41 −β42 −β43 1




c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

 = diag(σ2
1, σ

2
2, σ

2
3, σ

2
4),
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where σ2
j = E[(Xj −

∑
i 6=j βiXi)

2]. Therefore the inverse of Σ is

Σ−1 = diag(σ2
1, σ

2
2, σ

2
3, σ

2
4)−1


1 −β12 −β13 −β14

−β21 1 −β23 −β24

−β31 −β32 1 −β34

−β41 −β42 −β43 1



=


1/σ2

1 −β12/σ
2
1 −β13/σ

2
1 −β14/σ

2
1

−β21/σ
2
2 1/σ2

2 −β23/σ
2
2 −β24/σ

2
2

−β31/σ
2
3 −β32/σ

2
3 1/σ2

3 −β34/σ
2
3

−β41/σ
2
4 −β42/σ

2
4 −β43/σ

2
4 1/σ2

4

 .

By a similar argument we have

Σ−1 =


1 −β21 −β31 −β41

−β12 1 −β32 −β42

−β13 −β23 1 −β43

−β14 −β24 −β34 1

diag(σ2
1, σ

2
2, σ

2
3, σ

2
4)−1

=


1/σ2

1 −β21/σ
2
2 −β31/σ

2
3 −β41/σ

2
4

−β12/σ
2
1 1/σ2

2 −β32/σ
2
3 −β42/σ

2
4

−β13/σ
2
1 −β23/σ

2
2 1/σ2

3 −β43/σ
2
4

−β14/σ
2
1 −β24/σ

2
2 −β34/σ

2
3 1/σ2

4

 .

In summary, the normal equations give the matrix multiplication required for a diagonal matrix

(which is is exactly the definition of ΣΓ = I, up to a change in the diagonal).

Clearly, the above proof holds for all dimensions and we have

Γii =
1

σ2
i

,

and

Γij = −βij
σ2
i

⇒ βi,j = −Γij
Γii

.

Writing the partial correlation in terms of elements of the precision matrix By using the identity
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(5.12) (and that βij = βj→i) we have

ρij = βij

√
var[εj ]

var[εi]
. (5.14)

We recall that Γii = var(Xi − PX−i(Xi))
−1, Γjj = var(Xj − PX−j (Xj))

−1 and Γij = −βijΓii gives

ρij = −Γij
Γii

√
Γii
Γjj

= − Γij√
ΓiiΓjj

.

The above represents the partial correlation in terms of entries of the precision matrix.

5.5 Appendix

Alternative derivations based on matrix identities

The above derivations are based on properties of normal equations and some algebraic manipu-

lations. An alternative set of derivations is given in terms of the inversions of block matrices,

specifically with the classical matrix inversions identities

 A B

C D

−1

=

 A−1 +A−1BP−1
1 CA−1 −A−1BP−1

1

−P−1
1 CA−1 P−1

1

 (5.15)

=

 P−1
2 −P−1

2 BD−1

−D−1CP−1
2 D−1 +D−1CP−1

2 BD−1

 ,

where P1 = (D − CA−1B) and P2 = (A − BD−1C). Or using the idea of normal equations in

projections.

The precision matrix and partial correlation

Let us suppose that X = (X1, . . . , Xd) is a zero mean random vector with variance Σ. The (i, j)th

element of Σ the covariance cov(Xi, Xj) = Σij . Here we consider the inverse of Σ, and what

information the (i, j)th of the inverse tells us about the correlation between Xi and Xj . Let Σij

denote the (i, j)th element of Σ−1. We will show that with appropriate standardisation, Σij is the
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negative partial correlation between Xi and Xj . More precisely,

Σij

√
ΣiiΣjj

= −ρij . (5.16)

The proof uses the inverse of block matrices. To simplify the notation, we will focus on the (1, 2)th

element of Σ and Σ−1 (which concerns the correlation between X1 and X2).

Remark 5.5.1 Remember the reason we can always focus on the top two elements of X is because

we can always use a permutation matrix to permute the Xi and Xj such that they become the top

two elements. Since the inverse of the permutation matrix is simply its transpose everything still

holds.

LetX1,2 = (X1, X2)′,X−(1,2) = (X3, . . . , Xd)
′, Σ−(1,2) = var(X−(1,2)), c1,2 = cov(X(1,2),X−(1,2))

and Σ1,2 = var(X1,2). Using this notation it is clear that

var(X) = Σ =

 Σ1,2 c1,2

c′1,2 Σ−(1,2)

 . (5.17)

By using (5.15) we have

Σ−1 =

 P−1 −P−1c′1,2Σ−1
−(1,2)

−Σ−1
−(1,2)c1,2P

−1 P−1 + Σ−1
−(1,2)c1,2P

−1c′1,2Σ−1
−(1,2)

 , (5.18)

where P = (Σ1,2 − c′1,2Σ−1
−(1,2)c1,2). Comparing P with (??), we see that P is the 2 × 2 variance/-

covariance matrix of the residuals of X(1,2) conditioned on X−(1,2). Thus the partial correlation

between X1 and X2 is

ρ1,2 =
P1,2√
P1,1P2,2

(5.19)

where Pij denotes the elements of the matrix P . Inverting P (since it is a two by two matrix), we

see that

P−1 =
1

P1,1P2,2 − P 2
1,2

 P2,2 −P1,2

−P1,2 P11

 . (5.20)

Thus, by comparing (5.18) and (5.20) and by the definition of partial correlation given in (5.19) we
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have

P (1,2)

√
P (1,1)P (2,2)

= −ρ1,2.

Let Σij denote the (i, j)th element of Σ−1. Thus we have shown (5.16):

ρij = − Σij

√
ΣiiΣjj

. (5.21)

In other words, the (i, j)th element of Σ−1 divided by the square root of its diagonal gives negative

partial correlation. Therefore, if the partial correlation between Xi and Xj given Xij is zero, then

Σi,j = 0.

The precision matrix and the coefficients in regression

The precision matrix, Σ−1, contains many other hidden treasures. For example, the coefficients of

Σ−1 convey information about the best linear predictorXi givenX−i = (X1, . . . , Xi−1, Xi+1, . . . , Xd)

(all elements of X except Xi). Let

Xi =
∑
j 6=i

βi,jXj + εi,

where {βi,j} are the coefficients of the best linear predictor. Then it can be shown that

βi,j = −Σij

Σii
and Σii =

1

E[Xi −
∑

j 6=i βi,jXj ]2
. (5.22)

The precision matrix and the mean squared prediction error

We start with a well known expression, which expresses the prediction errors in terms of the

determinant of matrices.

We recall that the prediction error is

E[Y − Ŷ ]2 = σY − ΣY XΣ−1
XXΣXY (5.23)
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with σY = var[Y ]. Let

Σ =

 var[Y ] ΣY X

ΣXY ΣXX

 . (5.24)

We show below that the prediction error can be rewritten as

E[Y − Ŷ ]2 = σY − ΣY XΣ−1
XXΣXY =

det(Σ)

det(ΣXX)
. (5.25)

Furthermore,

(
Σ−1

)
11

=
1

σY − ΣY XΣ−1
XXΣXY

=
1

E[Y − Ŷ ]2
. (5.26)

Proof of (5.25) and (5.26) To prove this result we use

det

 A B

C D

 = det(D) det
(
A−BD−1C

)
. (5.27)

Applying this to (5.27) gives

det(Σ) = det(ΣXX)
(
σY − ΣY XΣ−1

XXΣXY

)
⇒ det(Σ) = det(ΣXX)E[Y − Ŷ ]2, (5.28)

thus giving (5.25).

To prove (5.26) we use the following result on the inverse of block matrices

 A B

C D

−1

=

 A−1 +A−1BP−1
1 CA−1 −A−1BP−1

1

−P−1
1 CA−1 P−1

1

 (5.29)

=

 P−1
2 −P−1

2 BD−1

−D−1CP−1
2 D−1 +D−1CP−1

2 BD−1

 ,

where P1 = (D − CA−1B) and P2 = (A − BD−1C). This block inverse turns out to be crucial in

deriving many of the interesting properties associated with the inverse of a matrix. We now show

that the the inverse of the matrix Σ, Σ−1 (usually called the precision matrix) contains the mean

squared error.
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Comparing the above with (5.24) and (5.23) we see that

(
Σ−1

)
11

=
1

σY − ΣY XΣ−1
XXΣXY

=
1

E[Y − Ŷ ]2
.

which immediately proves (5.26).

The Cholesky decomposition and the precision matrix

We now represent the precision matrix through its Cholesky decomposition. It should be mentioned

that Mohsen Pourahmadi has done a lot of interesting research in this area and he recently wrote

a review paper, which can be found here.

We define the sequence of linear equations

Xt =

t−1∑
j=1

βt,jXj + εt, t = 2, . . . , k, (5.30)

where {βt,j ; 1 ≤ j ≤ t−1} are the coefficeints of the best linear predictor of Xt given X1, . . . , Xt−1.

Let σ2
t = var[εt] = E[Xt −

∑t−1
j=1 βt,jXj ]

2 and σ2
1 = var[X1]. We standardize (5.30) and define

t∑
j=1

γt,jXj =
1

σt

Xt −
t−1∑
j=1

βt,jXj

 , (5.31)

where we set γt,t = 1/σt and for 1 ≤ j < t − 1, γt,j = −βt,j/σi. By construction it is clear that

var(LX) = Ik, where

L =



γ1,1 0 0 . . . 0 0

γ2,1 γ2,2 0 . . . 0 0

γ3,1 γ3,2 γ3,3 . . . 0 0
...

...
...

...
...

...

γk,1 γk,2 γk,3 . . . γk,k−1 γk,k


(5.32)

and LL = Σ−1 (see Pourahmadi, equation (18)), where Σ = var(Xk). Let Σ = var[Xk], then

Σij =

k∑
s=1

γisγjs (note many of the elements will be zero).
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Remark 5.5.2 (The Cholesky decomposition of a matrix) All positive definite matrices ad-

mit a Cholesky decomposition. That is H ′H = Sigma, where H is a lower triangular matrix. Sim-

ilarly, Sigma−1 = LL′, where L is a lower triangular matrix and L = H−1. Therefore we observe

that if Σ = var(X) (where X is a p-dimension random vector), then

var (LX) = L′ΣL = L′H ′HL = Ip.

Therefore, the lower triangular matrix L “finds” a linear combination of the elements X such that

the resulting random vector is uncorrelated.

We use apply these results to the analysis of the partial correlations of autoregressive processes

and the inverse of its variance/covariance matrix.

A little bit more indepth: general vector spaces

First a brief definition of a vector space. X is called an vector space if for every x, y ∈ X and

a, b ∈ R (this can be generalised to C), then ax + by ∈ X . An inner product space is a vector

space which comes with an inner product, in other words for every element x, y ∈ X we can defined

an innerproduct 〈x, y〉, where 〈·, ·〉 satisfies all the conditions of an inner product. Thus for every

element x ∈ X we can define its norm as ‖x‖ = 〈x, x〉. If the inner product space is complete

(meaning the limit of every sequence in the space is also in the space) then the innerproduct space

is a Hilbert space (see wiki).

Example 5.5.1 (i) The Euclidean space Rn described above is a classical example of a Hilbert

space. Here the innerproduct between two elements is simply the scalar product, 〈x,y〉 =∑n
i=1 xiyi.

(ii) The subset of the probability space (Ω,F , P ), where all the random variables defined on Ω

have a finite second moment, ie. E(X2) =
∫

ΩX(ω)2dP (ω) < ∞. This space is denoted as

L2(Ω,F , P ). In this case, the inner product is 〈X,Y 〉 = E(XY ).

(iii) The function space L2[R, µ], where f ∈ L2[R, µ] if f is mu-measureable and

∫
R
|f(x)|2dµ(x) <∞,
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is a Hilbert space. For this space, the inner product is defined as

〈f, g〉 =

∫
R
f(x)g(x)dµ(x).

It is straightforward to generalize the above to complex random variables and functions defined

on C. We simply need to remember to take conjugates when defining the innerproduct, ie. 〈X,Y 〉 =

cov(X,Y ) and 〈f, g〉 =
∫
C f(z)g(z)dµ(z).

In this chapter our focus will be on certain spaces of random variables which have a finite variance.

Basis

The random variables {Xt, Xt−1, . . . , X1} span the space X 1
t (denoted as sp(Xt, Xt−1, . . . , X1)), if

for every Y ∈ X 1
t , there exists coefficients {aj ∈ R} such that

Y =

t∑
j=1

ajXt+1−j . (5.33)

Moreover, sp(Xt, Xt−1, . . . , X1) = X 1
t if for every {aj ∈ R},

∑t
j=1 ajXt+1−j ∈ X 1

t . We now

define the basis of a vector space, which is closely related to the span. The random variables

{Xt, . . . , X1} form a basis of the space X 1
t , if for every Y ∈ X 1

t we have a representation (5.33) and

this representation is unique. More precisely, there does not exist another set of coefficients {φj}

such that Y =
∑t

j=1 φjXt+1−j . For this reason, one can consider a basis as the minimal span, that

is the smallest set of elements which can span a space.

Definition 5.5.1 (Projections) The projection of the random variable Y onto the space spanned

by sp(Xt, Xt−1, . . . , X1) (often denoted as PXt,Xt−1,...,X1(Y)) is defined as PXt,Xt−1,...,X1(Y) =
∑t

j=1 cjXt+1−j,

where {cj} is chosen such that the difference Y −P(Xt,Xt−1,...,X1)(Yt) is uncorrelated (orthogonal/per-

pendicular) to any element in sp(Xt, Xt−1, . . . , X1). In other words, PXt,Xt−1,...,X1(Yt) is the best

linear predictor of Y given Xt, . . . , X1.

Orthogonal basis

An orthogonal basis is a basis, where every element in the basis is orthogonal to every other element

in the basis. It is straightforward to orthogonalize any given basis using the method of projections.
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To simplify notation let Xt|t−1 = PXt−1,...,X1(Xt). By definition, Xt − Xt|t−1 is orthogonal to

the space sp(Xt−1, Xt−1, . . . , X1). In other words Xt −Xt|t−1 and Xs (1 ≤ s ≤ t) are orthogonal

(cov(Xs, (Xt −Xt|t−1)), and by a similar argument Xt −Xt|t−1 and Xs −Xs|s−1 are orthogonal.

Thus by using projections we have created an orthogonal basis X1, (X2−X2|1), . . . , (Xt−Xt|t−1)

of the space sp(X1, (X2 − X2|1), . . . , (Xt − Xt|t−1)). By construction it clear that sp(X1, (X2 −

X2|1), . . . , (Xt −Xt|t−1)) is a subspace of sp(Xt, . . . , X1). We now show that

sp(X1, (X2 −X2|1), . . . , (Xt −Xt|t−1)) = sp(Xt, . . . , X1).

To do this we define the sum of spaces. If U and V are two orthogonal vector spaces (which

share the same innerproduct), then y ∈ U ⊕ V , if there exists a u ∈ U and v ∈ V such that

y = u + v. By the definition of X 1
t , it is clear that (Xt −Xt|t−1) ∈ X 1

t , but (Xt −Xt|t−1) /∈ X 1
t−1.

Hence X 1
t = s̄p(Xt−Xt|t−1)⊕X 1

t−1. Continuing this argument we see that X 1
t = s̄p(Xt−Xt|t−1)⊕

s̄p(Xt−1 − Xt−1|t−2)⊕, . . . ,⊕s̄p(X1). Hence s̄p(Xt, . . . , X1) = s̄p(Xt − Xt|t−1, . . . , X2 − X2|1, X1).

Therefore for every PXt,...,X1(Y ) =
∑t

j=1 ajXt+1−j , there exists coefficients {bj} such that

PXt,...,X1(Y ) = PXt−Xt|t−1,...,X2−X2|1,X1(Y ) =
t∑

j=1

PXt+1−j−Xt+1−j|t−j (Y ) =
t−1∑
j=1

bj(Xt+1−j −Xt+1−j|t−j) + btX1,

where bj = E(Y (Xj − Xj|j−1))/E(Xj − Xj|j−1))2. A useful application of orthogonal basis is the

ease of obtaining the coefficients bj , which avoids the inversion of a matrix. This is the underlying

idea behind the innovations algorithm proposed in Brockwell and Davis (1998), Chapter 5.

Spaces spanned by infinite number of elements (advanced)

The notions above can be generalised to spaces which have an infinite number of elements in their

basis. Let now construct the space spanned by infinite number random variables {Xt, Xt−1, . . .}.

As with anything that involves ∞ we need to define precisely what we mean by an infinite basis.

To do this we construct a sequence of subspaces, each defined with a finite number of elements

in the basis. We increase the number of elements in the subspace and consider the limit of this

space. Let X−nt = sp(Xt, . . . , X−n), clearly if m > n, then X−nt ⊂ X−mt . We define X−∞t , as

X−∞t = ∪∞n=1X
−n
t , in other words if Y ∈ X−∞t , then there exists an n such that Y ∈ X−nt .

However, we also need to ensure that the limits of all the sequences lie in this infinite dimensional

space, therefore we close the space by defining defining a new space which includes the old space and

also includes all the limits. To make this precise suppose the sequence of random variables is such
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that Ys ∈ X−st , and E(Ys1−Ys2)2 → 0 as s1, s2 →∞. Since the sequence {Ys} is a Cauchy sequence

there exists a limit. More precisely, there exists a random variable Y , such that E(Ys−Y )2 → 0 as

s→∞. Since the closure of the space, X−nt , contains the set X−nt and all the limits of the Cauchy

sequences in this set, then Y ∈ X−∞t . We let

X−∞t = sp(Xt, Xt−1, . . .), (5.34)

The orthogonal basis of sp(Xt, Xt−1, . . .)

An orthogonal basis of sp(Xt, Xt−1, . . .) can be constructed using the same method used to orthog-

onalize sp(Xt, Xt−1, . . . , X1). The main difference is how to deal with the initial value, which in the

case of sp(Xt, Xt−1, . . . , X1) is X1. The analogous version of the initial value in infinite dimension

space sp(Xt, Xt−1, . . .) is X−∞, but this it not a well defined quantity (again we have to be careful

with these pesky infinities).

Let Xt−1(1) denote the best linear predictor of Xt given Xt−1, Xt−2, . . .. As in Section 5.5 it is

clear that (Xt−Xt−1(1)) and Xs for s ≤ t−1 are uncorrelated and X−∞t = sp(Xt−Xt−1(1))⊕X−∞t−1 ,

where X−∞t = sp(Xt, Xt−1, . . .). Thus we can construct the orthogonal basis (Xt−Xt−1(1)), (Xt−1−

Xt−2(1)), . . . and the corresponding space sp((Xt−Xt−1(1)), (Xt−1−Xt−2(1)), . . .). It is clear that

sp((Xt−Xt−1(1)), (Xt−1−Xt−2(1)), . . .) ⊂ sp(Xt, Xt−1, . . .). However, unlike the finite dimensional

case it is not clear that they are equal, roughly speaking this is because sp((Xt−Xt−1(1)), (Xt−1−

Xt−2(1)), . . .) lacks the inital value X−∞. Of course the time −∞ in the past is not really a well

defined quantity. Instead, the way we overcome this issue is that we define the initial starting

random variable as the intersection of the subspaces, more precisely let X−∞ = ∩∞n=−∞X−∞t .

Furthermore, we note that since Xn − Xn−1(1) and Xs (for any s ≤ n) are orthogonal, then

sp((Xt − Xt−1(1)), (Xt−1 − Xt−2(1)), . . .) and X−∞ are orthogonal spaces. Using X−∞, we have

⊕tj=0sp((Xt−j −Xt−j−1(1))⊕X−∞ = sp(Xt, Xt−1, . . .).
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Chapter 6

The autocovariance and partial

covariance of a stationary time series

Objectives

• Be able to determine the rate of decay of an ARMA time series.

• Be able ‘solve’ the autocovariance structure of an AR process.

• Understand what partial correlation is and how this may be useful in determining the order

of an AR model.

6.1 The autocovariance function

The autocovariance function (ACF) is defined as the sequence of covariances of a stationary process.

Precisely, suppose {Xt} is a stationary process with mean zero, then {c(r) : k ∈ Z} is the ACF of

{Xt} where c(r) = cov(X0, Xr). The autocorrelation function is the standardized version of the

autocovariance and is defined as

ρ(r) =
c(r)

c(0)
.

Clearly different time series give rise to different features in the ACF. We will explore some of these

features below.
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Before investigating the structure of ARMA processes we state a general result connecting linear

time series and the summability of the autocovariance function.

Lemma 6.1.1 Suppose the stationary time series Xt satisfies the linear representation
∑∞

j=−∞ ψjεt−j.

The covariance is c(r) =
∑∞

j=−∞ ψjψj+r.

(i) If
∑∞

j=∞ |ψj | <∞, then
∑

k |c(k)| <∞.

(ii) If
∑∞

j=∞ |jψj | <∞, then
∑

k |k · c(k)| <∞.

(iii) If
∑∞

j=∞ |ψj |2 <∞, then we cannot say anything about summability of the covariance.

PROOF. It is straightforward to show that

c(k) = var[εt]
∑
j

ψjψj−k.

Using this result, it is easy to see that
∑

k |c(k)| ≤
∑

k

∑
j |ψj | · |ψj−k|, thus

∑
k |c(k)| <∞, which

proves (i).

The proof of (ii) is similar. To prove (iii), we observe that
∑

j |ψj |2 <∞ is a weaker condition

then
∑

j |ψj | <∞ (for example the sequence ψj = |j|−1 satisfies the former condition but not the

latter). Thus based on the condition we cannot say anything about summability of the covariances.

�

First we consider a general result on the covariance of a causal ARMA process (always to obtain

the covariance we use the MA(∞) expansion - you will see why below).

6.1.1 The rate of decay of the autocovariance of an ARMA process

We evaluate the covariance of an ARMA process using its MA(∞) representation. Let us suppose

that {Xt} is a causal ARMA process, then it has the representation in (4.20) (where the roots of

φ(z) have absolute value greater than 1 + δ). Using (4.20) and the independence of {εt} we have

cov(Xt, Xτ ) = cov(

∞∑
j1=0

aj1εt−j1 ,

∞∑
j2=0

aj2ετ−j2)

=

∞∑
j=0

aj1aj2cov(εt−j , ετ−j) =

∞∑
j=0

ajaj+|t−τ |var(εt) (6.1)
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(here use the MA(∞) expansion). Using (4.21) we have

|cov(Xt, Xτ )| ≤ var(εt)C
2
ρ

∞∑
j=0

ρjρj+|t−τ | ≤ C2
ρρ
|t−τ |

∞∑
j=0

ρ2j = C2 ρ
|t−τ |

1− ρ2
, (6.2)

for any 1/(1 + δ) < ρ < 1.

The above bound is useful, it tells us that the ACF of an ARMA process decays exponentially

fast. In other words, there is very little memory in an ARMA process. However, it is not very

enlightening about features within the process. In the following we obtain an explicit expression for

the ACF of an autoregressive process. So far we have used the characteristic polynomial associated

with an AR process to determine whether it was causal. Now we show that the roots of the

characteristic polynomial also give information about the ACF and what a ‘typical’ realisation of

a autoregressive process could look like.

6.1.2 The autocovariance of an autoregressive process and the

Yule-Walker equations

Simple worked example Let us consider the two AR(1) processes considered in Section 4.3.2. We

recall that the model

Xt = 0.5Xt−1 + εt

has the stationary causal solution

Xt =
∞∑
j=0

0.5jεt−j .

Assuming the innovations has variance one, the ACF of Xt is

cX(0) =
1

1− 0.52
cX(k) =

0.5|k|

1− 0.52

The corresponding autocorrelation is

ρX(k) = 0.5|k|.
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Let us consider the sister model

Yt = 2Yt−1 + εt,

this has the noncausal stationary solution

Yt = −
∞∑
j=0

(0.5)j+1εt+j+1.

Thus process has the ACF

cY (0) =
0.52

1− 0.52
cX(k) =

0.52+|k|

1− 0.52
.

The corresponding autocorrelation is

ρX(k) = 0.5|k|.

Comparing the two ACFs, both models have identical autocorrelation function.

Therefore, we observe an interesting feature, that the non-causal time series has the same

correlation structure of its dual causal time series. For every non-causal time series there exists

a causal time series with the same autocovariance function. The dual is easily constructed. If an

autoregressive model has characteristic function φ(z) = 1−
∑p

j=1 φjz
j with roots λ1, . . . , λp. If all

the roots lie inside the unit circle, then φ(z) corresponds to a non-causal time series. But by flipping

the roots λ−1
1 , . . . , λ−1

p all the roots now lie outside the unit circle. This means the characteristic

polynomial corresponding to λ−1
1 , . . . , λ−1

p leads to a causal AR(p) model (call this φ̃(z)). More over

the characteristic polynomial of the AR(p) models associated with φ(z) and φ̃(z) have the same

autocorrelation function. They are duals. In summary, autocorrelation is ‘blind’ to non-causality.

Another worked example Consider the AR(2) model

Xt = 2r cos(θ)Xt−1 − r2Xt−2 + εt, (6.3)

where {εt} are iid random variables with mean zero and variance one. We assume 0 < r < 1

(which imposes causality on the model). Note, that the non-casual case (r > 1) will have the

same autocovariance as the causal case with r flipped to r−1. The corresponding characteristic
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polynomial is 1−2r cos(θ)z+ r2z2, which has roots r−1 exp(±iθ). By using (6.11), below, the ACF

is

c(k) = r|k|
[
C1 exp(ikθ) + C̄1 exp(−ikθ)

]
.

Setting C1 = a exp(ib), then the above can be written as

c(k) = ar|k| (exp(i(b+ kθ)) + exp(−i(b+ kθ))) = 2ar|k| cos (kθ + b) , (6.4)

where the above follows from the fact that the sum of a complex number and its conjugate is two

times the real part of the complex number.

Consider the AR(2) process

Xt = 1.5Xt−1 − 0.75Xt−2 + εt, (6.5)

where {εt} are iid random variables with mean zero and variance one. The corresponding character-

istic polynomial is 1−1.5z+0, 75z2, which has roots
√

4/3 exp(iπ/6). Using (6.4) the autocovariance

function of {Xt} is

c(k) = a(
√

3/4)|k| cos
(
k
π

6
+ b
)
.

We see that the covariance decays at an exponential rate, but there is a periodicity within the

decay. This means that observations separated by a lag k = 12 are more closely correlated than

other lags, this suggests a quasi-periodicity in the time series. The ACF of the process is given

in Figure 6.1. Notice that it decays to zero (relatively fast) but it also undulates. A plot of a

realisation of the time series is given in Figure 6.2, notice the quasi-periodicity of about 2π/12. To

measure the magnitude of the period we also give the corresponding periodogram in Figure 6.2.

Observe a peak at the frequency about frequency 2π/12 ≈ 0.52. We now generalise the results in

the above AR(1) and AR(2) examples. Let us consider the general AR(p) process

Xt =

p∑
j=1

φjXt−j + εt.

Suppose the roots of the corresponding characteristic polynomial are distinct and we split them
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Figure 6.1: The ACF of the time series Xt = 1.5Xt−1 − 0.75Xt−2 + εt
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Figure 6.2: Left: A realisation from the time series Xt = 1.5Xt−1 − 0.75Xt−2 + εt. Right:
The corresponding periodogram.
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into real and complex roots. Because the characteristic polynomial is comprised of real coefficients,

the complex roots come in complex conjugate pairs. Hence let us suppose the real roots are {λj}rj=1

and the complex roots are {λj , λj}(p−r)/2j=r+1 . The covariance in (6.10) can be written as

c(k) =
r∑
j=1

Cjλ
−k
j +

(p−2)/2∑
j=r+1

aj |λj |−k cos(kθj + bj)

where for j > r we write λj = |λj | exp(iθj) and aj and bj are real constants. Notice that as the

example above the covariance decays exponentially with lag, but there is undulation. A typical

realisation from such a process will be quasi-periodic with periods at θr+1, . . . , θ(p−r)/2, though the

magnitude of each period will vary.

Exercise 6.1 Recall the AR(2) models considered in Exercise 4.5. Now we want to derive their

ACF functions.

(i) (a) Obtain the ACF corresponding to

Xt =
7

3
Xt−1 −

2

3
Xt−2 + εt,

where {εt} are iid random variables with mean zero and variance σ2.

(b) Obtain the ACF corresponding to

Xt =
4×
√

3

5
Xt−1 −

42

52
Xt−2 + εt,

where {εt} are iid random variables with mean zero and variance σ2.

(c) Obtain the ACF corresponding to

Xt = Xt−1 − 4Xt−2 + εt,

where {εt} are iid random variables with mean zero and variance σ2.

(ii) For all these models plot the true ACF in R. You will need to use the function ARMAacf.

BEWARE of the ACF it gives for non-causal solutions. Find a method of plotting a causal

solution in the non-causal case.

Exercise 6.2 In Exercise 4.6 you constructed a causal AR(2) process with period 17.
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Load Shumway and Stoffer’s package astsa into R (use the command install.packages("astsa")

and then library("astsa").

Use the command arma.spec to make a plot of the corresponding spectral density function. How

does your periodogram compare with the ‘true’ spectral density function?

Derivation of the ACF of general models (advanced)

Worked example Let us suppose that Xt satisfies the model Xt = (a + b)Xt−1 − abXt−2 + εt. We

have shown that if |a| < 1 and |b| < 1, then it has the solution

Xt =
1

b− a
( ∞∑
j=0

(
bj+1 − aj+1)εt−j

)
.

By matching the innovations it can be shown that for r > 0

cov(Xt, Xt+r) =
∞∑
j=0

(bj+1 − aj+1)(bj+1+r − aj+1+r). (6.6)

Even by using the sum of a geometric series the above is still cumbersome. Below we derive the

general solution, which can be easier to interprete.

General AR(p) models

Let us consider the zero mean AR(p) process {Xt} where

Xt =

p∑
j=1

φjXt−j + εt. (6.7)

From now onwards we will assume that {Xt} is causal (the roots of φ(z) lie outside the unit circle).

Evaluating the covariance of above with respect Xt−k (k ≤ 0) gives the sequence of equations

cov(XtXt−k) =

p∑
j=1

φjcov(Xt−j , Xt−k). (6.8)

It is worth mentioning that if the process were not causal this equation would not hold, since εt

and Xt−k are not uncorrelated. Let c(r) = cov(X0, Xr) and substituting into the above gives the

sequence of difference equations

c(k)−
p∑
j=1

φjc(k − j) = 0, k ≥ 0. (6.9)
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The autocovariance function of {Xt} is the solution of this difference equation. Solving (6.9) is

very similar to solving homogenuous differential equations, which some of you may be familar with

(do not worry if you are not).

Recall the characteristic polynomial of the AR process φ(z) = 1 −
∑p

j=1 φjz
j = 0, which has

the roots λ1, . . . , λp. In Section 4.3.3 we used the roots of the characteristic equation to find the

stationary solution of the AR process. In this section we use the roots characteristic to obtain the

solution (6.9). We show below that if the roots are distinct (the roots are all different) the solution

of (6.9) is

c(k) =

p∑
j=1

Cjλ
−|k|
j , (6.10)

where the constants {Cj} are chosen depending on the initial values {c(k) : 1 ≤ k ≤ p}. If λj is

real, then Cj is real. If λj is complex, then it will have another root λj+1. Consequently, Cj and

Cj+1 will be complex conjugations of each other. This is to ensure that {c(k)}k is real.

Example p = 2 Suppose the roots of φ(z) = 1−φ1z−φ2z
2 are complex (and this conjugates). Then

c(k) = C1λ
−|k|
1 + C2λ

−|k|
2 = Cλ−|k| + Cλ

−|k|
. (6.11)

Proof of (6.10) The simplest way to prove (6.10) is to use the plugin method (guess a solution and

plug it in). Plugging c(k) =
∑p

j=1Cjλ
−k
j into (6.9) gives

c(k)−
p∑
j=1

φjc(k − j) =

p∑
j=1

Cj

(
λ−kj −

p∑
i=1

φiλ
−(k−i)
j

)

=

p∑
j=1

Cjλ
−k
j

(
1−

p∑
i=1

φiλ
i
j

)
︸ ︷︷ ︸

φ(λi)

= 0.

which proves that it is a solution. �

Non-distinct roots In the case that the roots of φ(z) are not distinct, let the roots be λ1, . . . , λs

with multiplicity m1, . . . ,ms (
∑s

k=1mk = p). In this case the solution is

c(k) =

s∑
j=1

λ−kj Pmj (k),
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where Pmj (k) is mjth order polynomial and the coefficients {Cj} are now ‘hidden’ in Pmj (k).

6.1.3 The autocovariance of a moving average process

Suppose that {Xt} satisfies

Xt = εt +

q∑
j=1

θjεt−j .

The covariance is

cov(Xt, Xt−k) =


∑p

i=0 θiθi−k k = −q, . . . , q

0 otherwise

where θ0 = 1 and θi = 0 for i < 0 and i ≥ q. Therefore we see that there is no correlation when

the lag between Xt and Xt−k is greater than q.

6.1.4 The autocovariance of an ARMA process (advanced)

We see from the above that an MA(q) model is only really suitable when we believe that there

is no correlaton between two random variables separated by more than a certain distance. Often

autoregressive models are fitted. However in several applications we find that autoregressive models

of a very high order are needed to fit the data. If a very ‘long’ autoregressive model is required

a more suitable model may be the autoregressive moving average process. It has several of the

properties of an autoregressive process, but can be more parsimonuous than a ‘long’ autoregressive

process. In this section we consider the ACF of an ARMA process.

Let us suppose that the causal time series {Xt} satisfies the equations

Xt −
p∑
i=1

φiXt−i = εt +

q∑
j=1

θjεt−j .

We now define a recursion for ACF, which is similar to the ACF recursion for AR processes. Let

us suppose that the lag k is such that k > q, then it can be shown that the autocovariance function

of the ARMA process satisfies

cov(Xt, Xt−k)−
p∑
i=1

φicov(Xt−i, Xt−k) = 0 k > q.

167



On the other hand, if k ≤ q, then we have

cov(Xt, Xt−k)−
p∑
i=1

φicov(Xt−i, Xt−k) =

q∑
j=1

θjcov(εt−j , Xt−k) =

q∑
j=k

θjcov(εt−j , Xt−k).

We recall that Xt has the MA(∞) representation Xt =
∑∞

j=0 ajεt−j (see (4.20)), therefore for

k ≤ j ≤ q we have cov(εt−j , Xt−k) = aj−kvar(εt) (where a(z) = θ(z)φ(z)−1). Altogether the above

gives the difference equations

c(k)−
p∑
i=1

φic(k − i) = var(εt)

q∑
j=k

θjaj−k for 1 ≤ k ≤ q

c(k)−
p∑
i=1

φic(k − i) = 0, for k > q,

where c(k) = cov(X0, Xk). Since the above is a is homogenuous difference equation, then it can be

shown that the solution is

c(k) =

s∑
j=1

λ−kj Pmj (k),

where λ1, . . . , λs with multiplicity m1, . . . ,ms (
∑

kms = p) are the roots of the characteristic

polynomial 1 −
∑p

j=1 φjz
j . The coefficients in the polynomials Pmj are determined by initial

condition.

Further reading: Brockwell and Davis (1998), Chapter 3.3 and Shumway and Stoffer (2006),

Chapter 3.4.

6.1.5 Estimating the ACF from data

Suppose we observe {Yt}nt=1, to estimate the covariance we can estimate the covariance c(k) =

cov(Y0, Yk) from the the observations. One such estimator is

ĉn(k) =
1

n

n−|k|∑
t=1

(Yt − Ȳn)(Yt+|k| − Ȳn), (6.12)
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since E[(Yt − Ȳn)(Yt+|k| − Ȳn)] ≈ c(k). Of course if the mean of Yt is known to be zero (Yt = Xt),

then the simpler covariance estimator is

ĉn(k) =
1

n

n−|k|∑
t=1

XtXt+|k|.

The sample autocorrelation is the ratio

ρ̂n(r) =
ĉn(r)

ĉn(0)
.

Thus for r = 0, we have ρ̂n(0) = 1. Most statistical software will have functions that evaluate the

sample autocorrelation function. In R, the standard function is acf. To illustrate the differences

between the true ACF and estimated ACF (with sample size n = 100) we consider the model

Xt = 2 · 0.9 cos(π/3)Xt−1 − 0.92Xt−2 + εt.

We make a plot of the true ACF and estimated ACF in Figure ??. As a contrast we consider the

estimated and true ACF of the MA model

Xt = εt + 2 · 0.9 cos(π/3)εt−1 − 0.92εt−2. (6.13)

This plot is given in Figure 6.4.

Observe that estimated autocorrelation plot contains a blue line. This blue line corresponds to

±1.96/
√
n (where n is the sample size). These are the error bars, which are constructed under the

assumption the data is actually iid. We show in Section 8.2 if {Xt} are iid random variables then

for all h ≥ 1

√
nĉn(h)

D→ N (0, 1). (6.14)

This gives rise to the critical values ±1.96/
√
n.
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Figure 6.3: The AR(2) model. Left: Estimated ACF based on n = 100. Right: True ACF
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Figure 6.4: The MA(2) model. Left: Estimated ACF based on n = 100. Right: True ACF

6.2 Partial correlation in time series

6.2.1 A general definition

In Section 5.3 we introduced the notion of partial correlation for multivariate data. We now apply

this notion to time series.

Definition 6.2.1 Suppose that {Xt}t is a time series. The partial covariance/correlation between

Xt and Xt+k+1 is defined as the partial covariance/correlation between Xt and Xt+k+1 after con-

ditioning out the ‘inbetween’ time series Y ′ = (Xt+1, . . . , Xt+k). We denote this as ρt,t+k+1(k),
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where

ρk(t) =
cov(Xt − PY (Xt), Xt+k+1 − PY (Xt+k+1))√

var(Xt − PY (Xt))var(Xt+k+1 − PY (Xt+k+1))
,

with

cov(Xt − PY (Xt), Xt+k+1 − PY (Xt+k+1))

= cov(Xt, Xt+k+1)− cov(Xt, Y )′[var(Y )]−1cov(Xt+k+1, Y )

var(Xt − PY (Xt))

= var(Xt)− cov(Xt, Y )′[var(Y )]−1cov(Xt, Y )

var(Xt+k+1 − PY (Xt+k+1))

= var(Xt+k+1)− cov(Xt+k+1, Y )′[var(Y )]−1cov(Xt+k+1, Y ).

The above expression is horribly unwieldy. But many simplifications can be made once we impose

the condition of second order stationarity.

6.2.2 Partial correlation of a stationary time series

If the time series is stationary, then the shift t becomes irrelevant (observe cov(Xt, Xt+k+1) =

c(k + 1), cov(Xt, Xt) = c(0) etc). We can center everything about t = 0, the only term that is

relevant is the spacing k and define

ρk+1|k+1 =
cov(X0 − PY (X0), Xk+1 − PY (Xk+1))√

var(X0 − PY (X0))var(Xk+1 − PY (Xk+1))
,

where Y ′ = (X1, X2, . . . , Xk),

cov(Xt − PY (Xt), Xt+k+1 − PY (Xt+k+1)) = c(k + 1)− cov(X0, Y )′[var(Y )]−1cov(Xk+1, Y )

var(X0 − PY (X0)) = c(0)− cov(X0, Y )′[var(Y )]−1cov(X0, Y )

var(Xk+1 − PY (Xk+1)) = c(0)− cov(Xk+1, Y )′[var(Y )]−1cov(Xk+1, Y ).

But there exists another interesting trick that will simplify the above. The value of the above

expression is that given the autocovariance function, one can evaluate the above. However, this

involves inverting matrices. Below we simplify the above expression even further, and in Section
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7.5.1 we show how partial correlation can be evaluated without inverting any matrices. We first

note that by stationarity

cov(X0, Y
′) = (c(1), c(2) . . . , c(k + 1))

and cov(Xn+1, Y
′) = (c(k + 1), c(2) . . . , c(1)).

Thus the two vectors cov(X0, Y
′) and cov(Xk+1, Y

′) are flips/swaps of each other. The flipping

action can be done with a matrix transformation cov(X0, Y ) = Ekcov(Xk+1, Y ) where

Ek =


0 0 0 . . . 0 1

0 0 0 . . . 1 0
...

...
...

...
...

1 0
... 0 0 0

 .

We now describe some useful implications of this result.

Time reversibility property of stationary time series For stationary time series, predicting into the

future and predicting into the past leads to the same set of prediction coefficients (they are

just flipped round). More precisely, the projection of Xk+1 onto the space spanned by Y =

(X1, X2, . . . , Xk), is the best linear predictor of Xk+1 given Xk. We will denote the projection

of Xk onto the space spanned by Y ′ = (X1, X2, . . . , Xk) as PY (Xk+1). Thus

PY (Xk+1) = Y ′var[Y ]−1cov[Xk+1, Y ] = Y ′Σ−1
k ck :=

k∑
j=1

φk,jXk+1−j ,

where Σk = var(Y ) and ck = cov(Xk+1, Y ). But by flipping/swapping the coefficients, the same

construction can be used to predict into the past X0:

PY (X0) =

k∑
j=1

φk,jXj =

k∑
j=1

φk,k+1−jXk+1−j . (6.15)

Proof of equation (6.15)

PY (X0) = Y ′(var[Y ]−1cov[X0, Y ]).
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However, second order stationarity implies that cov[X0, Y ]) = Ekcov[Xk+1, Y ]) = Ekck Thus

PY (X0) = (Σ−1
k Ekcov[Xk+1, Y ])

= Y ′Σ−1
k Ekck = Y ′EkΣ

−1
k ck :=

k∑
j=1

φk,k+1−jXk+1−j .

Thus proving (6.15). �

With a little thought, we realize the partial correlation between Xt and Xt+k (where k > 0) is

the correlation X0−PY (X0) = X0−
∑k

j=1 φk,jXj and Xk+1−PY (Xk+1) = Xk+1−
∑k

j=1 φk,jXk+1−j ,

some algebra gives

cov(Xt − PY (Xt), Xt+k+1 − PY (Xt+k+1)) = c(0)− c′kEkΣ−1
k ck

var(X0 − PY (X0)) = var(Xk+1 − PY (Xk+1)) = var(X0)− c′kΣ−1
k ck.

The last line of the above is important. It states that the variance of the prediction error in the past

X0−PY (X0) has the same as the variance of the prediction error into the future Xk+1−PY (Xk+1).

This is because the process is stationary.

Thus the partial correlation is

ρk+1|k1 =
c(k + 1)− c′kEkΣ

−1
k ck

c(0)− c′kΣ
−1
k ck

. (6.16)

In the section below we show that ρk+1|k+1 can be expressed in terms of the best fitting AR(k+ 1)

parameters (which we will first have to define).

6.2.3 Best fitting AR(p) model

So far we have discussed time series which is generated with an AR(2). But we have not discussed

fitting an AR(p) model to any stationary time series (not necessarily where the true underlying

data generating mechanism is an AR(p)), which is possibly more important. We will show that the

partial correlation is related to these fitted parameters. We state precisely what we mean below.

Suppose that the stationary time series is genuinely generated with the causal AR(p) model

Xt =

p∑
j=1

φjXt−j + εt (6.17)
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where {εt} are iid random variables. Then the projection of Xt onto Y = (Xt−p, . . . , Xt−1) is

PY (Xt) =

p∑
j=1

φjXt−j .

Since Y does not contain any (linear information) about the innovations {εt}t. This means that

{Xt−j}pj=1 are independent of εt. However, because (6.17) is the true model which generates the

data, εt is independent of all {Xt−j} for j ≥ 1. But this is by virtue of the model and not the

projection. The project can only ensure that Xt − PY (Xt) and Y are uncorrelated.

The best fitting AR(p) Now let us suppose that {Xt} is a general second order stationary time

series with autocovariance {c(r)}r. We consider the projection of Xt onto Y = (Xt−p, . . . , Xt−1)

(technically onto sp(X1, . . . , Xn)) this is

PY (Xt) =

p∑
j=1

φp,jXt−j .

By construction Xt−PY (Xt) and Y are uncorrelated but Xt−PY (Xt) is not necessarily uncorrelated

with {Xt−j} for j ≥ (p + 1). We call {φp,j} the best fitting AR(p) coefficients, because if the

true model were an AR(p) model φp,j = φj . The best fitting AR(p) model is very important in

applications. It is often used to forecast the time series into the future. Note we have already

alluded to
∑p

j=1 φp,jXt−j in the previous section. And we summarize these results again. Since∑p
j=1 φp,jXt−j is a projection onto Y , the coefficients {φp,j}pj=1 are

φ
p

= [var(Y )]−1cov(Xt, Y ) = Σ−1
p cp,

where [Σp]t,τ = c(t−τ) and c′p = (c(1), c(2), . . . , c(p)) (observe stationarity means these are invariant

to shift).

6.2.4 Best fitting AR(p) parameters and partial correlation

We now state the main result which connects the best fitting AR(p) parameters with partial cor-

relation. The partial correlation at lag (p + 1) is the last best fitting AR(p) coefficient φp+1,p+1.

More precisely

ρp+1|p+1 = φp+1,p+1. (6.18)
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It is this identity that is used to calculate (from the true ACF) and estimate (from the estimated

ACF) partial correlation (and not the identity in (6.16), which is more cumbersome).

Proof of identity (6.18) To prove this result. We return to the classical multivariate case (in Sec-

tion 5.3). In particular the identity (5.12) which relates the regression coefficients to the partial

correlation:

ρp+1|p+1 = φp+1|p+1

√
var(ε0|X1,...,Xp+1

)

var(εp+1|X0,...,Xp)

where

ε0|X1,...,Xp+1
= X0 − PX1,...,Xp+1(X0) and εp+1|X0,...,Xp = Xp+1 − PX0,...,Xp(Xp+1).

Now the important observation. We recall from the previous section that the variance of the

prediction error in the past, X0−PX1,...,Xp+1(X0) is the same as the variance of the prediction error

into the future, Xp+1 − PX0,...,Xp(Xp+1). Therefore var(ε0|X1,...,Xp+1
) = var(εp+1|X0,...,Xp) and

ρp+1|p+1 = φp+1|p+1.

This proves equation (6.18). �

Important observation Relating the AR(p) model to the partial correlations

Suppose the true data generating process is an AR(p0), and we fit an AR(p) model to the data.

If p < p0, then

PXt−p,...,Xt−1(Xt) =

p∑
j=1

φp,jXt−j .

and ρp|p = φp,p. If p = p0, then

PXt−p0 ,...,Xt−1(Xt) =

p0∑
j=1

φjXt−j

and φp0,p0 = ρp0 = φp0 . For any p > p0, we have

PXt−p,...,Xt−1(Xt) =

p0∑
j=1

φjXt−j .
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Thus the coefficient is ρp|p = φp,p = 0.

Thus for AR(p) models, the partial correlation of order greater than p will be zero. We visualize

this property in the plots in the following section.

6.2.5 The partial autocorrelation plot

Of course given the time series {Xt}nt=1 the true partial correlation is unknown. Instead it is

estimated from the data. This is done by sequentially fitting an AR(p) model of increasing order to

the time series and extracting the parameter estimator φ̂p+1,p+1 = ρ̂p|p and plotting ρ̂p|p against p.

To illustrate the differences between the true ACF and estimated ACF (with sample size n = 100)

we consider the model

Xt = 2 · 0.9 cos(π/3)Xt−1 − 0.92Xt−2 + εt.

The empirical partial estimated partial autocorrelation plot (n = 100) and true correlation is given

in Figures 6.5. As a contrast we consider the estimated (n = 100) and true ACF of the MA model

Xt = εt + 2 · 0.9 cos(π/3)εt−1 − 0.92εt−2.

The plot is given in Figure 6.6.
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Figure 6.5: The AR(2): Left Estimated PACF (n = 100). Right: True PACF plot. n = 100

Observe that the partial correlation plot contains a blue line. This blue line corresponds to

±1.96/
√
n (where n is the sample size).
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Figure 6.6: The MA(2): Left Estimated PACF (n = 100). Right: True PACF plot. n = 100

This blue line can be used as an aid in selecting the Autoregressive order (under certain condi-

tions on the time series). We show in the next lecture that if {Xt} is a linear time series with an

AR(p) representation, then for h > p

√
nρ̂h|h

D→ N (0, 1), (6.19)

which gives the critical values ±1.96/
√
n. But do not get too excited. We show that this result

does not necessarily hold for non-linear time series. More precisely, the distribution will not be

asymptotically pivotal.

6.2.6 Using the ACF and PACF for model identification

Figures 6.3, 6.4, 6.5 and 6.6 are very useful in identifying the model. We describe what we should

observe below.

Using the ACF for model identification

If the true autocovariances after a certain lag are zero q, it may be appropriate to fit an MA(q)

model to the time series. The [−1.96n−1/2, 1.96n−1/2] error bars for an ACF plot cannot be reliably

used to determine the order of an MA(q) model.

On the other hand, the autocovariances of any AR(p) process will only decay to zero as the lag

increases (it will not be zero after a certain number of lags).
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Using the PACF for model identification

If the true partial autocovariances after a certain lag are zero p, it may be appropriate to fit an

AR(p) model to the time series.

Of course, in practice we only have the estimated partial autocorrelation at hand and not the

true one. This is why we require the error bars. In Section 8.4 we show how these error bars are

derived. The surprisingly result is that the error bars of a PACF can be used to determine the

order of an AR(p) process. If the order of the autoregressive process is p, then for lag r > p, the

partial correlation is such that φ̂rr = N(0, n−1/2) (thus giving rise to the [−1.96n−1/2, 1.96n−1/2]

error bars). But It should be noted that there will be correlation between the sample partial

correlations.

Exercise 6.3 (The partial correlation of an invertible MA(1)) Let φt,t denote the partial cor-

relation between Xt+1 and X1. It is well known (this is the Levinson-Durbin algorithm, which we

cover in Chapter 7) that φt,t can be deduced recursively from the autocovariance funciton using the

algorithm:

Step 1 φ1,1 = c(1)/c(0) and r(2) = E[X2 −X2|1]2 = E[X2 − φ1,1X1]2 = c(0)− φ1,1c(1).

Step 2 For j = t

φt,t =
c(t)−

∑t−1
j=1 φt−1,jc(t− j)
r(t)

φt,j = φt−1,j − φt,tφt−1,t−j 1 ≤ j ≤ t− 1,

and r(t+ 1) = r(t)(1− φ2
t,t).

(i) Using this algorithm and induction to show that the PACF of the MA(1) process Xt = εt +

θεt−1, where |θ| < 1 (so it is invertible) is

φt,t =
(−1)t+1(θ)t(1− θ2)

1− θ2(t+1)
.

Exercise 6.4 (Comparing the ACF and PACF of an AR process) Compare the below plots:

(i) Compare the ACF and PACF of the AR(2) model Xt = 1.5Xt−1 − 0.75Xt−2 + εt using

ARIMAacf(ar=c(1.5,-0.75),ma=0,30) and ARIMAacf(ar=c(1.5,-0.75),ma=0,pacf=T,30).
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(ii) Compare the ACF and PACF of the MA(1) model Xt = εt−0.5εt using ARIMAacf(ar=0,ma=c(-1.5),30)

and ARIMAacf(ar=0,ma=c(-1.5),pacf=T,30).

(ii) Compare the ACF and PACF of the ARMA(2, 1) model Xt−1.5Xt−1 + 0.75Xt−2 = εt−0.5εt

using ARIMAacf(ar=c(1.5,-0.75),ma=c(-1.5),30) and

ARIMAacf(ar=c(1.5,0.75),ma=c(-1.5),pacf=T,30).

Exercise 6.5 Compare the ACF and PACF plots of the monthly temperature data from 1996-2014.

Would you fit an AR, MA or ARMA model to this data?

Rcode

The sample partial autocorrelation of a time series can be obtained using the command pacf.

However, remember just because the sample PACF is not zero, does not mean the true PACF is

non-zero.

6.3 The variance and precision matrix of a stationary

time series

Let us suppose that {Xt} is a stationary time series. In this section we consider the variance/co-

variance matrix var(Xn) = Σk, where Xn = (X1, . . . , Xn)′. We will consider two cases (i) when

Xt follows an MA(p) models and (ii) when Xt follows an AR(p) model. The variance and inverse

of the variance matrices for both cases yield quite interesting results. We will use classical results

from multivariate analysis, stated in Chapter 5.

We recall that the variance/covariance matrix of a stationary time series has a (symmetric)

Toeplitz structure (see wiki for a definition). Let Xn = (X1, . . . , Xn)′, then

Σn = var(Xn) =


c(0) c(1) 0 . . . c(n− 2) c(n− 1)

c(1) c(0) c(1) . . . c(n− 3) c(n− 2)
...

...
...

...
...

c(n− 1) c(n− 2)
... . . . c(1) c(0)

 .
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6.3.1 Variance matrix for AR(p) and MA(p) models

(i) If {Xt} satisfies an MA(p) model and n > p, then Σn will be bandlimited, where p off-

diagonals above and below the diagonal will be non-zero and the rest of the off-diagonal will

be zero.

(ii) If {Xt} satisfies an AR(p) model, then Σn will not be bandlimited.

Precision matrix for AR(p) models

We now consider the inverse of Σn. Warning: note that the inverse of a Toeplitz is not necessarily

Toeplitz. Suppose that the time series {Xt}t has a causal AR(p) representation:

Xt =

p∑
j=1

φjXt−j + εt

where {εt} are iid random variables with (for simplicity) variance σ2 = 1. Let Xn = (X1, . . . , Xn)

and suppose n > p.

Important result The inverse variance matrix Σ−1
n is banded, with n non-zero bands off the diagonal.

Proof of claim We use the results in Chapter 5. Suppose that we have an AR(p) process and we

consider the precision matrix of Xn = (X1, . . . , Xn), where n > p. To show this we use the Cholesky

decomposition given in (5.30). This is where

Σ−1
n = LnL

′
n

where Ln is the lower triangular matrix:

Lk =



φ1,0 0 . . . 0 0 . . . 0 0 0 . . . 0

φ2,1 φ2,0 . . . 0 0 . . . 0 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

−φp,p −φp,p−1 . . . −φp,1 φp,0 . . . 0 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

−φn,n −φn,n−1 . . . . . . . . . −φn,4 −φn,3 −φn,2 φn,1 φn,0


(6.20)

where {φ`,j}`j=1 are the coefficients of the best linear predictor of X` given {X`−j}`−1
j=1 (after stan-

dardising by the residual variance). Since Xt is an autoregressive process of order p, if t > p,
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then

φt,j =

 φj 1 ≤ j ≤ p

0 j > p

This gives the lower triangular p-bandlimited matrix

Ln =



γ1,0 0 . . . 0 0 . . . 0 0 0 . . . 0

−γ2,1 γ2,0 . . . 0 0 . . . 0 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

−φp −φp−1 . . . −φ1 1 . . . 0 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

0 0 . . . −φp −φp−1 . . . −φ1 1 0 . . . 0

0 0 . . . 0 −φp . . . −φ2 −φ1 1 . . . 0
...

...
...

...
...

...
...

...
...

...
...

0 0 . . . 0 0 . . . 0 0 0 . . . 1



. (6.21)

Observe the above lower triangular matrix is zero after the pth off-diagonal.

Since Σ−1
n = LnL

′
n and Ln is a p-bandlimited matrix, Σ−1

n = LnL
′
n is a bandlimited matrix

with the p off-diagonals either side of the diagonal non-zero. Let Σij denote the (i, j)th element of

Σ−1
k . Then we observe that Σ(i,j) = 0 if |i− j| > p. Moreover, if 0 < |i− j| ≤ p and either i or j is

greater than p. Further, from Section 5.4 we observe that the coefficients Σ(i,j) are the regression

coefficients of Xi (after accounting for MSE).

Exercise 6.6 Suppose that the time series {Xt} has the causal AR(2) representation

Xt = φ1Xt−1 + φ2Xt−2 + εt.

Let X ′n = (X1, . . . , Xn) and Σn = var(Xn). Suppose LnL
′
n = Σ−1

n , where Ln is a lower triangular

matrix.

(i) What does Ln looks like?

(ii) Using Ln evaluate the projection of Xt onto the space spanned by {Xt−j}j 6=0.
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Remark 6.3.1 Suppose that Xt is an autoregressive process Xt =
∑p

j=1 φjXt−j+εt where var[εt] =

σ2 and {εt} are uncorrelated random variables with zero mean. Let Σm = var[Xm] where Xm =

(X1, . . . , Xm). If m > p then

[
Σ−1
m

]
mm

= Σmm = σ−2

and det(Σm) = det(Σp)σ
2(m−p).

Exercise 6.7 Prove Remark 6.3.1.

6.4 The ACF of non-causal time series (advanced)

Here we demonstrate that it is not possible to identify whether a process is noninvertible/noncausal

from its covariance structure. The simplest way to show result this uses the spectral density

function, which will now define and then return to and study in depth in Chapter 10.

Definition 6.4.1 (The spectral density) Given the covariances c(k) (with
∑

k |c(k)|2 <∞) the

spectral density function is defined as

f(ω) =
∑
k

c(k) exp(ikω).

The covariances can be obtained from the spectral density by using the inverse fourier transform

c(k) =
1

2π

∫ 2π

0
f(ω) exp(−ikω).

Hence the covariance yields the spectral density and visa-versa.

For reference below, we point out that the spectral density function uniquely identifies the autoco-

variance function.

Let us suppose that {Xt} satisfies the AR(p) representation

Xt =

p∑
i=1

φiXt−i + εt

where var(εt) = 1 and the roots of φ(z) = 1−
∑p

j=1 φjz
j can lie inside and outside the unit circle,

but not on the unit circle (thus it has a stationary solution). We will show in Chapter 10 that the
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spectral density of this AR process is

f(ω) =
1

|1−
∑p

j=1 φj exp(ijω)|2
. (6.22)

• Factorizing f(ω).

Let us supose the roots of the characteristic polynomial φ(z) = 1 +
∑q

j=1 φjz
j are {λj}pj=1,

thus we can factorize φ(x) 1 +
∑p

j=1 φjz
j =

∏p
j=1(1− λjz). Using this factorization we have

(6.22) can be written as

f(ω) =
1∏p

j=1 |1− λj exp(iω)|2
. (6.23)

As we have not assumed {Xt} is causal, the roots of φ(z) can lie both inside and outside the

unit circle. We separate the roots, into those outside the unit circle {λO,j1 ; j1 = 1, . . . , p1}

and inside the unit circle {λI,j2 ; j2 = 1, . . . , p2} (p1 + p2 = p). Thus

φ(z) = [

p1∏
j1=1

(1− λO,j1z)][
p2∏
j2=1

(1− λI,j2z)]

= (−1)p2λI,j2z
−p2 [

p1∏
j1=1

(1− λO,j1z)][
p2∏
j2=1

(1− λ−1
I,j2

z)]. (6.24)

Thus we can rewrite the spectral density in (6.25)

f(ω) =
1∏p2

j2=1 |λI,j2 |2
1∏p1

j1=1 |1− λO,j exp(iω)|2
∏p2
j2=1 |1− λ

−1
I,j2

exp(iω)|2
. (6.25)

Let

fO(ω) =
1∏p1

j1=1 |1− λO,j exp(iω)|2
∏p2
j2=1 |1− λ

−1
I,j2

exp(iω)|2
.

Then f(ω) =
∏p2
j2=1 |λI,j2 |−2fO(ω).

• A parallel causal AR(p) process with the same covariance structure always exists.

We now define a process which has the same autocovariance function as {Xt} but is causal.
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Using (6.24) we define the polynomial

φ̃(z) = [

p1∏
j1=1

(1− λO,j1z)][
p2∏
j2=1

(1− λ−1
I,j2

z)]. (6.26)

By construction, the roots of this polynomial lie outside the unit circle. We then define the

AR(p) process

φ̃(B)X̃t = εt, (6.27)

from Lemma 4.3.1 we know that {X̃t} has a stationary, almost sure unique solution. More-

over, because the roots lie outside the unit circle the solution is causal.

By using (6.22) the spectral density of {X̃t} is f̃(ω). We know that the spectral density

function uniquely gives the autocovariance function. Comparing the spectral density of {X̃t}

with the spectral density of {Xt} we see that they both are the same up to a multiplicative

constant. Thus they both have the same autocovariance structure up to a multiplicative

constant (which can be made the same, if in the definition (6.27) the innovation process has

variance
∏p2
j2=1 |λI,j2 |−2).

Therefore, for every non-causal process, there exists a causal process with the same autoco-

variance function.

By using the same arguments above, we can generalize to result to ARMA processes.

Definition 6.4.2 An ARMA process is said to have minimum phase when the roots of φ(z) and

θ(z) both lie outside of the unit circle.

Remark 6.4.1 For Gaussian random processes it is impossible to discriminate between a causal

and non-causal time series, this is because the mean and autocovariance function uniquely identify

the process.

However, if the innovations are non-Gaussian, even though the autocovariance function is ‘blind’

to non-causal processes, by looking for other features in the time series we are able to discriminate

between a causal and non-causal process.
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6.4.1 The Yule-Walker equations of a non-causal process

Once again let us consider the zero mean AR(p) model

Xt =

p∑
j=1

φjXt−j + εt,

and var(εt) <∞. Suppose the roots of the corresponding characteristic polynomial lie outside the

unit circle, then {Xt} is strictly stationary where the solution of Xt is only in terms of past and

present values of {εt}. Moreover, it is second order stationary with covariance {c(k)}. We recall

from Section 6.1.2, equation (6.8) that we derived the Yule-Walker equations for causal AR(p)

processes, where

E(XtXt−k) =

p∑
j=1

φjE(Xt−jXt−k)⇒ c(k)−
p∑
j=1

φjc(k − j) = 0. (6.28)

Let us now consider the case that the roots of the characteristic polynomial lie both outside

and inside the unit circle, thus Xt does not have a causal solution but it is still strictly and second

order stationary (with autocovariance, say {c(k)}). In the previous section we showed that there

exists a causal AR(p) φ̃(B)X̃t = εt (where φ(B) and φ̃(B) = 1 −
∑p

j=1 φ̃jz
j are the characteristic

polynomials defined in (6.24) and (6.26)). We showed that both have the same autocovariance

structure. Therefore,

c(k)−
p∑
j=1

φ̃jc(k − j) = 0

This means the Yule-Walker equations for {Xt} would actually give the AR(p) coefficients of {X̃t}.

Thus if the Yule-Walker equations were used to estimate the AR coefficients of {Xt}, in reality we

would be estimating the AR coefficients of the corresponding causal {X̃t}.

6.4.2 Filtering non-causal AR models

Here we discuss the surprising result that filtering a non-causal time series with the corresponding

causal AR parameters leaves a sequence which is uncorrelated but not independent. Let us suppose
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that

Xt =

p∑
j=1

φjXt−j + εt,

where εt are iid, E(εt) = 0 and var(εt) < ∞. It is clear that given the input Xt, if we apply the

filter Xt −
∑p

j=1 φjXt−j we obtain an iid sequence (which is {εt}).

Suppose that we filter {Xt} with the causal coefficients {φ̃j}, the output ε̃t = Xt−
∑p

j=1 φ̃jXt−j

is not an independent sequence. However, it is an uncorrelated sequence. We illustrate this with an

example.

Example 6.4.1 Let us return to the AR(1) example, where Xt = φXt−1 + εt. Let us suppose that

φ > 1, which corresponds to a non-causal time series, then Xt has the solution

Xt = −
∞∑
j=1

1

φj
εt+j+1.

The causal time series with the same covariance structure as Xt is X̃t = 1
φX̃t−1 + ε (which has

backshift representation (1− 1/(φB))Xt = εt). Suppose we pass Xt through the causal filter

ε̃t = (1− 1

φ
B)Xt = Xt −

1

φ
Xt−1 = −

(1− 1
φB)

B(1− 1
φB )

εt

= − 1

φ
εt + (1− 1

φ2
)

∞∑
j=1

1

φj−1
εt+j .

Evaluating the covariance of the above (assuming wlog that var(ε) = 1) is

cov(ε̃t, ε̃t+r) = − 1

φ
(1− 1

φ2
)

1

φr
+ (1− 1

φ2
)2
∞∑
j=0

1

φ2j
= 0.

Thus we see that {ε̃t} is an uncorrelated sequence, but unless it is Gaussian it is clearly not inde-

pendent. One method to study the higher order dependence of {ε̃t}, by considering it’s higher order

cumulant structure etc.

The above above result can be generalised to general AR models, and it is relatively straightforward

to prove using the Crámer representation of a stationary process (see Section 10.5, Theorem ??).
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Exercise 6.8 (i) Consider the causal AR(p) process

Xt = 1.5Xt−1 − 0.75Xt−2 + εt.

Derive a parallel process with the same autocovariance structure but that is non-causal (it

should be real).

(ii) Simulate both from the causal process above and the corresponding non-causal process with

non-Gaussian innovations (see Section 4.8). Show that they have the same ACF function.

(iii) Find features which allow you to discriminate between the causal and non-causal process.
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Chapter 7

Prediction

Prerequisites

• The best linear predictor.

• Difference between best linear predictors and best predictors.

[Need to explain]

• Some idea of what a basis of a vector space is.

Objectives

• Understand that prediction using a long past can be difficult because a large matrix has to

be inverted, thus alternative, recursive method are often used to avoid direct inversion.

• Understand the derivation of the Levinson-Durbin algorithm, and why the coefficient, φt,t,

corresponds to the partial correlation between X1 and Xt+1.

• Understand how these predictive schemes can be used write space of sp(Xt, Xt−1, . . . , X1) in

terms of an orthogonal basis sp(Xt − PXt−1,Xt−2,...,X1(Xt), . . . , X1).

• Understand how the above leads to the Wold decomposition of a second order stationary

time series.

• To understand how to approximate the prediction for an ARMA time series into a scheme

which explicitly uses the ARMA structure. And this approximation improves geometrically,

when the past is large.
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One motivation behind fitting models to a time series is to forecast future unobserved observa-

tions - which would not be possible without a model. In this chapter we consider forecasting, based

on the assumption that the model and/or autocovariance structure is known.

7.1 Using prediction in estimation

There are various reasons prediction is important. The first is that forecasting has a vast number

of applications from finance to climatology. The second reason is that it forms the basis of most

estimation schemes. To understand why forecasting is important in the latter, we now obtain the

“likelihood” of the observed time series {Xt}nt=1. We assume the joint density of Xn = (X1, . . . , Xn)

is fn(xn; θ). By using conditioning it is clear that the likelihood is

fn(xn; θ) = f1(x1; θ)f2(x2|x1; θ)f3(x3|x2, x1; θ) . . . fn(xn|xn−1, . . . , x1; θ)

Therefore the log-likelihood is

log fn(xn; θ) = log f1(x1) +

n∑
t=1

log ft(xt|xt−1, . . . , x1; θ).

The parameters may be the AR, ARMA, ARCH, GARCH etc parameters. However, usually the

conditional distributions ft(xt|xt−1, . . . , x1; θ) which make up the joint density f(x; θ) is completely

unknown. However, often we can get away with assuming that the conditional distribution is

Gaussian and we can still consistently estimate the parameters so long as the model has been

correctly specified. Now, if we can “pretend” that the conditional distribution is Gaussian, then

all we need is the conditional mean and the conditional variance

E(Xt|Xt−1, . . . , X1; θ) = E (Xt|Xt−1, . . . , X1; θ) and V (Xt|Xt−1, . . . , X1, θ) = var (Xt|Xt−1, . . . , X1; θ) .

Using this above and the “Gaussianity” of the conditional distribution gives

log ft(xt|xt−1, . . . , x1; θ) = −1

2
log V (xt|xt−1, . . . , x1, θ)−

(xt − E(xt|xt−1, . . . , x1, θ))
2

V (xt|xt−1, . . . , x1, θ)
.
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Using the above the log density

log fn(xn; θ) = −1

2

n∑
t=1

(
log V (xt|xt−1, . . . , x1, θ) +

(xt − E(xt|xt−1, . . . , x1, θ))
2

V (xt|xt−1, . . . , x1, θ)

)
.

Thus the log-likelihood

L(Xn; θ) = −1

2

n∑
t=1

(
log V (Xt|Xt−1, . . . , X1, θ) +

(Xt − E(Xt|Xt−1, . . . , X1, θ))
2

V (Xt|Xt−1, . . . , X1, θ)

)
.

Therefore we observe that in order to evaluate the log-likelihood, and estimate the parameters, we

require the conditonal mean and the conditional variance

E(Xt|Xt−1, . . . , X1; θ) and V (Xt|Xt−1, . . . , X1; θ).

This means that in order to do any form of estimation we need a clear understanding of what the

conditional mean (which is simply the best predictor of the observation tomorrow given the past)

and the conditional variance is for various models.

Note:

• Often expressions for conditional mean and variance can be extremely unwieldy. Therefore,

often we require approximations of the conditonal mean and variance which are tractable (this

is reminiscent of the Box-Jenkins approach and is till used when the conditional expectation

and variance are difficult to estimate).

• Suppose we “pretend” that the time series {Xt} is Gaussian. Which we can if it is linear,

even if it is not. But we cannot if the time series is nonlinear (since nonlinear time series

are not Gaussian), then the conditional variance var(Xt|Xt−1, . . . , X1) will not be random

(this is a well known result for Gaussian random variables). If Xt is nonlinear, it can be

conditionally Gaussian but not Gaussian.

• If the model is linear usually the conditonal expectation E(Xt|Xt−1, . . . , X1; θ) is replaced

with the best linear predictor of Xt given Xt−1, . . . , X1. This means if the model is in fact

non-causal the estimator will give a causal solution instead. Though not critical it is worth

bearing in mind.
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7.2 Forecasting for autoregressive processes

Worked example: AR(1) Let

Xt+1 = φXt + εt+1

where {εt}t are iid random variable. We will assume the process is causal, thus |φ| < 1. Since {Xt}

are iid random variables, Xt−1 contains no information about εt. Therefore the best linear (indeed

best predictor) of Xt+1 given all the past information is contained in Xt

Xt(1) = φXt.

To quantify the error in the prediction we use the mean squared error

σ2 = E[Xt+1 −Xt(1)]2 = E[Xt+1 − φXt]
2 = var[εt+1].

Xt(1) gives the one-step ahead prediction. Since

Xt+2 = φXt+1 + εt+2 = φ2Xt + φεt+1 + εt+2

and {εt} are iid random variables, then the best linear predictor (and best predictor) of Xt+2 given

Xt is

Xt(2) = φXt(1) = φ2Xt+1.

Observe it recurses on the previous best linear predictor which makes it very easy to evaluate. The

mean squared error in the forecast is

E[Xt+3 −Xt(2)]2 = E[φεt+1 + εt+2]2 = (1 + φ2)var[εt].

Using a similar strategy we can forecast r steps into the future:

Xt(r) = φXt(r − 1) = φrXt
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where the mean squared error is

E[Xt+r −Xt(r)]
2 = E[

r−1∑
i=0

φiεt+r−i]
2 = var[εt]

r−1∑
i=0

φ2i.

Worked example: AR(2) We now extend the above prediction strategy to AR(2) models (it is

straightfoward to go to the AR(p) model). It is best understood using the vector AR representation

of the model. Let

Xt+1 = φ1Xt + φ2Xt−1 + εt+1

where {εt}t are iid random variables and the characteristic function is causal. We can rewrite the

AR(2) as a VAR(1)

 Xt+1

Xt

 =

 φ1 φ2

1 0

 Xt

Xt−1

+

 εt+1

0


⇒ Xt+1 = ΦXt + εt+1.

This looks like a AR(1) and motivates how to forecast into the future. Since εt+1 is independent

of {Xt−j}j≥0 the best linear predictor of Xt+1 can be obtained using

Xt(1) =

 Xt+1

Xt


(1)

=

 φ1 φ2

1 0

 Xt

Xt−1


(1)

.

The mean squared error is E[X̂t(1)−Xt+1]2 = σ2. To forecast two steps into the future we use that

Xt+2 = Φ2Xt + Φεt+1 + εt+2.

Thus the best linear predictor of Xt+2 is

Xt(2) = [Φ2Xt](1) = φ1(2)Xt + φ2(2)Xt−1,

where [·](1) denotes the first entry in the vector and (φ1(2), φ2(2)) is the first row vector in the
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matrix Φ2. The mean squared error is a

E (φ1εt+1 + εt+2)2 = (1 + φ2
1)var(εt).

We continue this iteration to obtain the r-step ahead predictor

Xt(r) = [ΦXt(r − 1)](1) = [ΦrXt](1) = φ1(r)Xt + φ2(r)Xt−1,

as above (φ1(r), φ2(r)) is the first row vector in the matrix Φr. The mean squared error is

E (Xt+r −Xt(r))
2 = E

(
r−1∑
i=0

[Φi](1,1)εt+r−i

)2

= var[εt]

r−1∑
i=0

([Φi](1,1))
2.

7.3 Forecasting for AR(p)

The above iteration for calculating the best linear predictor easily generalises for any AR(p) process.

Let

Xt+1 = φ1Xt + φ2Xt−1 + . . .+ φpXt+1−p + εt+1

where {εt}t are iid random variables and the characteristic function is causal. We can rewrite the

AR(p) as a VAR(1)



Xt+1

Xt

...

...

Xt−p+1


=



φ1 φ2 φ3 . . . φp

1 0 0 . . . 0

0 1 0 . . . 0
... · · ·

...
. . . 0

0 0 0 . . . 0





Xt

Xt−1

...

...

Xt−p


+



εt+1

0

0
...

0


⇒ Xt+1 = ΦXt + εt+1.
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Therefore the r step ahead predictor is

Xt(r) = [ΦXt(r − 1)](1) = [ΦrXt](1) =

p∑
j=1

φj(r)Xt+1−j

as above (φ1(r), φ2(r), . . . , φp(r)) is the first row vector in the matrix Φr. The mean squared error

is

E (Xt+r −Xt(r))
2 = E

(
r−1∑
i=0

[Φi](1,1)εt+r−i

)2

= var[εt]
r−1∑
i=0

([Φi](1,1))
2

= var[εt]

r−1∑
i=0

φ1(i)2.

The above predictors are easily obtained using a recursion. However, we now link {φj(r)}pj=1

to the underlying AR (and MA) coefficients.

Lemma 7.3.1 Suppose Xt has a causal AR(p) representation

Xt+1 = φ1Xt + φ2Xt−1 + . . .+ φpXt+1−p + εt+1

and

Xt+1 = (1−
p∑
j=1

φjB
j)εt =

∞∑
j=0

ψjεt−j

is its MA(∞) representation. Then the predictive coefficients are

φj(r) =

p−j∑
s=0

φj+sψr−1−s =

min(p,j−1)∑
u=0

φuψr−1+j−u r ≥ 1

and the best r-ahead predictor is

Xt(r) =

p∑
j=1

Xt+1−j

p−j∑
s=0

φj+sψr−1−s r ≥ 1.
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The mean squared error is

E[Xt+r −Xt(r)]
2 = var[εt]

r−1∑
i=0

ψ2
i

with ψ0 = 1,

7.4 Forecasting for general time series using infinite

past

In the previous section we focussed on time series which had an AR(p) representation. We now

consider general time series models and best linear predictors (linear forecasts) for such time series.

Specifically, we focus predicting the future given the (unrealistic situation) of the infinite past. Of

course, this is an idealized setting, and in the next section we consider linear forecasts based on the

finite past (for general stationary time series). A technical assumption we will use in this section is

that the stationary time series {Xt} has both an AR(∞) and MA(∞) representation (its spectral

density bounded away from zero and is finite):

Xt+1 =

∞∑
j=0

ψjεt+1−j =

∞∑
j=1

ajXt+1−j + εt+1, (7.1)

where {εt} are iid random variables (recall Definition 4.5.2). A technical point is that the assump-

tion on {εt} can be relaxed to uncorrelated random variables if we are willing to consider best linear

predictor and not best predictors. Using (7.2), it is clear the best linear one-ahead predictor is

Xt(1) =
∞∑
j=1

ajXt+1−j . (7.2)

and the mean squared error is E[Xt+1 −Xt(1)]2 = σ2. Transfering the ideas for the AR(p) model

(predicting r steps ahead), the best linear predictor r-steps ahead for the general time series is

Xt(r) =

∞∑
j=1

φj(r)Xt+1−j r ≥ 1. (7.3)
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But analogous to Lemma 7.3.1 we can show that

φj(r) =

∞∑
s=0

aj+sψr−1−s r ≥ 1.

Substituting this into (7.3) gives

Xt(r) =

∞∑
j=1

Xt+1−j

∞∑
s=0

aj+sψr−1−s r ≥ 1.

This is not a particularly simple method for estimating the predictors as one goes further in the

future. Later in this section we derive a recursion for prediction. First, we obtain the mean squared

error in the prediction.

To obtain the mean squared error, we note that since Xt, Xt−1, Xt−2, . . . is observed, we can

obtain ετ (for τ ≤ t) by using the invertibility condition

ετ = Xτ −
∞∑
j=1

ajXτ−i.

This means that given the time series {Xt−j}∞j=0 (and AR(∞) parameters {aj}) we can obtain all

the innovations {εt−j}∞j=0 and visa versa. Based on this we revisit the problem of predicting Xt+k

given {Xτ ; τ ≤ t} but this time in terms of the innovations. Using the MA(∞) presentation (since

the time series is causal) of Xt+k we have

Xt+r =

∞∑
j=0

ψj+rεt−j︸ ︷︷ ︸
innovations are ‘observed’

+

r−1∑
j=0

ψjεt+r−j︸ ︷︷ ︸
future innovations impossible to predict

.

Thus we can write the best predictor of Xt+r given {Xt−j}∞j=0 as

Xt(r) =
∞∑
j=0

ψj+rεt−j (7.4)

=

∞∑
j=0

ψj+r

(
Xt−j −

∞∑
i=1

aiXt−j−i

)

=

∞∑
j=0

φj(r)Xt−j .
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Using the above we see that the mean squared error is

E[Xt+r −Xt(r)]
2 = E[

r−1∑
j=0

ψjεt+r−j ]
2 = σ2

r−1∑
j=0

ψ2
j .

We now show how Xt(r) can be evaluated recursively using the invertibility assumption.

Step 1 We use invertibility in (7.2) to give

Xt(1) =
∞∑
i=1

aiXt+1−i,

and E [Xt+1 −Xt(1)]2 = var[εt]

Step 2 To obtain the 2-step ahead predictor we note that

Xt+2 =

∞∑
i=2

aiXt+2−i + a1Xt+1 + εt+2

=

∞∑
i=2

aiXt+2−i + a1[Xt(1) + εt+1] + εt+2,

thus it is clear that

Xt(2) =
∞∑
i=2

aiXt+2−i + a1Xt(1)

and E [Xt+2 −Xt(2)]2 = var[εt]
(
a2

1 + 1
)

= var[εt]
(
1 + ψ2

1

)
.

Step 3 To obtain the 3-step ahead predictor we note that

Xt+3 =

∞∑
i=3

aiXt+2−i + a2Xt+1 + a1Xt+2 + εt+3

=

∞∑
i=3

aiXt+2−i + a2 (Xt(1) + εt+1) + a1 (Xt(2) + a1εt+1 + εt+2) + εt+3.

Thus

Xt(3) =
∞∑
i=3

aiXt+2−i + a2Xt(1) + a1Xt(2)

and E [Xt+3 −Xt(3)]2 = var[εt]
[
(a2 + a2

1)2 + a2
1 + 1

]
= var[εt]

(
1 + ψ2

1 + ψ2
2

)
.
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Step r Using the arguments it can be shown that

Xt(r) =
∞∑
i=r

aiXt+r−i︸ ︷︷ ︸
observed

+
r−1∑
i=1

aiXt(r − i)︸ ︷︷ ︸
predicted

.

And we have already shown that E[Xt+r −Xt(r)]
2 = σ2

∑r−1
j=0 ψ

2
j

Thus the r-step ahead predictor can be recursively estimated.

We note that the predictor given above is based on the assumption that the infinite past is

observed. In practice this is not a realistic assumption. However, in the special case that time

series is an autoregressive process of order p (with AR parameters {φj}pj=1) and Xt, . . . , Xt−m is

observed where m ≥ p− 1, then the above scheme can be used for forecasting. More precisely,

Xt(1) =

p∑
j=1

φjXt+1−j

Xt(r) =

p∑
j=r

φjXt+r−j +
r−1∑
j=1

φjXt(r − j) for 2 ≤ r ≤ p

Xt(r) =

p∑
j=1

φjXt(r − j) for r > p. (7.5)

However, in the general case more sophisticated algorithms are required when only the finite

past is known.

7.4.1 Example: Forecasting yearly temperatures

We now fit an autoregressive model to the yearly temperatures from 1880-2008 and use this model

to forecast the temperatures from 2009-2013. In Figure 7.1 we give a plot of the temperature time

series together with its ACF. It is clear there is some trend in the temperature data, therefore we

have taken second differences, a plot of the second difference and its ACF is given in Figure 7.2.

We now use the command ar.yule(res1,order.max=10) (we will discuss in Chapter 9 how this

function estimates the AR parameters) to estimate the the AR parameters.

Remark 7.4.1 (The Yule-Walker estimator in prediction) The least squares estimator (or

equivalently the conditional likelihood) is likely to give a causal estimator of the AR parameters. But

it is not guaranteed. On the other hand the Yule-Walker estimator is guaranteed to give a causal

198



Time

te
m

p

1880 1900 1920 1940 1960 1980 2000

−
0.

5
0.

0
0.

5

0 5 10 15 20 25 30

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

Series  global.mean

Figure 7.1: Yearly temperature from 1880-2013 and the ACF.

Time

se
co

nd
.d

iff
er

en
ce

s

1880 1900 1920 1940 1960 1980 2000

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

0 5 10 15 20 25 30

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

Series  diff2

Figure 7.2: Second differences of yearly temperature from 1880-2013 and its ACF.

solution. This will matter for prediction. We emphasize here that the least squares estimator cannot

consistently estimate non-causal solutions, it is only a quirk of the estimation method that means

at times the solution may be noncausal.

If the time series {Xt}t is linear and stationary with mean zero, then if we predict several steps

into the future we would expect our predictor to be close to zero (since E(Xt) = 0). This is guaran-

teed if one uses AR parameters which are causal (since the eigenvalues of the VAR matrix is less

than one); such as the Yule-Walker estimators. On the other hand, if the parameter estimators do
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not correspond to a causal solution (as could happen for the least squares estimator), the predictors

may explode for long term forecasts which makes no sense.

The function ar.yule uses the AIC to select the order of the AR model. When fitting the

second differences from (from 1880-2008 - a data set of length of 127) the AIC chooses the AR(7)

model

Xt = −1.1472Xt−1 − 1.1565Xt−2 − 1.0784Xt−3 − 0.7745Xt−4 − 0.6132Xt−5 − 0.3515Xt−6 − 0.1575Xt−7 + εt,

with var[εt] = σ2 = 0.02294. An ACF plot after fitting this model and then estimating the residuals

{εt} is given in Figure 7.3. We observe that the ACF of the residuals ‘appears’ to be uncorrelated,

which suggests that the AR(7) model fitted the data well. Later we define the Ljung-Box test,

which is a method for checking this claim. However since the residuals are estimated residuals and

not the true residual, the results of this test need to be taken with a large pinch of salt. We will

show that when the residuals are estimated from the data the error bars given in the ACF plot

are not correct and the Ljung-Box test is not pivotal (as is assumed when deriving the limiting

distribution under the null the model is correct). By using the sequence of equations
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Figure 7.3: An ACF plot of the estimated residuals {ε̂t}.
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X̂127(1) = −1.1472X127 − 1.1565X126 − 1.0784X125 − 0.7745X124 − 0.6132X123

−0.3515X122 − 0.1575X121

X̂127(2) = −1.1472X̂127(1)− 1.1565X127 − 1.0784X126 − 0.7745X125 − 0.6132X124

−0.3515X123 − 0.1575X122

X̂127(3) = −1.1472X̂127(2)− 1.1565X̂127(1)− 1.0784X127 − 0.7745X126 − 0.6132X125

−0.3515X124 − 0.1575X123

X̂127(4) = −1.1472X̂127(3)− 1.1565X̂127(2)− 1.0784X̂127(1)− 0.7745X127 − 0.6132X126

−0.3515X125 − 0.1575X124

X̂127(5) = −1.1472X̂127(4)− 1.1565X̂127(3)− 1.0784X̂127(2)− 0.7745X̂127(1)− 0.6132X127

−0.3515X126 − 0.1575X125.

We can use X̂127(1), . . . , X̂127(5) as forecasts of X128, . . . , X132 (we recall are the second differences),

which we then use to construct forecasts of the temperatures. A plot of the second difference

forecasts together with the true values are given in Figure 7.4. From the forecasts of the second

differences we can obtain forecasts of the original data. Let Yt denote the temperature at time t

and Xt its second difference. Then Yt = −Yt−2 + 2Yt−1 +Xt. Using this we have

Ŷ127(1) = −Y126 + 2Y127 +X127(1)

Ŷ127(2) = −Y127 + 2Y127(1) +X127(2)

Ŷ127(3) = −Y127(1) + 2Y127(2) +X127(3)

and so forth.

We note that (??) can be used to give the mse error. For example

E[X128 − X̂127(1)]2 = σ2
t

E[X128 − X̂127(1)]2 = (1 + φ2
1)σ2

t

If we believe the residuals are Gaussian we can use the mean squared error to construct confidence

intervals for the predictions. Assuming for now that the parameter estimates are the true param-

eters (this is not the case), and Xt =
∑∞

j=0 ψj(φ̂)εt−j is the MA(∞) representation of the AR(7)
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model, the mean square error for the kth ahead predictor is

σ2
k−1∑
j=0

ψj(φ̂)2 (using (??))

thus the 95% CI for the prediction isXt(k)± 1.96σ2
k−1∑
j=0

ψj(φ̂)2

 ,
however this confidence interval for not take into account Xt(k) uses only parameter estimators

and not the true values. In reality we need to take into account the approximation error here too.

If the residuals are not Gaussian, the above interval is not a 95% confidence interval for the

prediction. One way to account for the non-Gaussianity is to use bootstrap. Specifically, we rewrite

the AR(7) process as an MA(∞) process

Xt =
∞∑
j=0

ψj(φ̂)εt−j .

Hence the best linear predictor can be rewritten as

Xt(k) =

∞∑
j=k

ψj(φ̂)εt+k−j

thus giving the prediction error

Xt+k −Xt(k) =

k−1∑
j=0

ψj(φ̂)εt+k−j .

We have the prediction estimates, therefore all we need is to obtain the distribution of
∑k−1

j=0 ψj(φ̂)εt+k−j .

This can be done by estimating the residuals and then using bootstrap1 to estimate the distribu-

tion of
∑k−1

j=0 ψj(φ̂)εt+k−j , using the empirical distribution of
∑k−1

j=0 ψj(φ̂)ε∗t+k−j . From this we can

1Residual bootstrap is based on sampling from the empirical distribution of the residuals i.e. construct
the “bootstrap” sequence {ε∗t+k−j}j by sampling from the empirical distribution F̂ (x) = 1

n

∑n
t=p+1 I(ε̂t ≤

x) (where ε̂t = Xt −
∑p

j=1 φ̂jXt−j). This sequence is used to construct the bootstrap estimator∑k−1
j=0 ψj(φ̂)ε∗t+k−j . By doing this several thousand times we can evaluate the empirical distribution of∑k−1
j=0 ψj(φ̂)ε∗t+k−j using these bootstrap samples. This is an estimator of the distribution function of∑k−1
j=0 ψj(φ̂)εt+k−j .
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construct the 95% CI for the forecasts.
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Figure 7.4: Forecasts of second differences.

A small criticism of our approach is that we have fitted a rather large AR(7) model to time

series of length of 127. It may be more appropriate to fit an ARMA model to this time series.

Exercise 7.1 In this exercise we analyze the Sunspot data found on the course website. In the data

analysis below only use the data from 1700 - 2003 (the remaining data we will use for prediction).

In this section you will need to use the function ar.yw in R.

(i) Fit the following models to the data and study the residuals (using the ACF). Using this

decide which model

Xt = µ+A cos(ωt) +B sin(ωt) + εt︸︷︷︸
AR

or

Xt = µ+ εt︸︷︷︸
AR

is more appropriate (take into account the number of parameters estimated overall).

(ii) Use these models to forecast the sunspot numbers from 2004-2013.
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7.5 One-step ahead predictors based on the finite past

We return to Section 6.2.3 and call the definition of the best fitting AR(p) model.

The best fitting AR(p) Let us suppose that {Xt} is a general second order stationary time series

with autocovariance {c(r)}r. We consider the projection of Xt onto Y = (Xt−p, . . . , Xt−1) (techni-

cally we should should say sp(Xt−p, . . . , Xt−1)), this is

PY (Xt) =

p∑
j=1

φp,jXt−j

where 
φp,1

...

φp.p

 = Σ−1
p rp, (7.6)

where (Σp)i,j = c(i− j) and (rp)i = c(i+ 1). We recall that Xt − PY (Xt) and Y are uncorrelated

but Xt − PY (Xt) is not necessarily uncorrelated with {Xt−j} for j ≥ (p + 1). We call {φp,j} the

best fitting AR(p) coefficients, because if the true model were an AR(p) model φp,j = φj .

Since Xt − PY (Xt) is uncorrelated with Y = (Xt−p, . . . , Xt−1), the best linear predictor of Xt

given Y = (Xt−p, . . . , Xt−1) is

PY (Xt) =

p∑
j=1

φp,jXt−j

7.5.1 Levinson-Durbin algorithm

The Levinson-Durbin algorithm, which we describe below forms the basis of several estimation

algorithms for linear time series. These include (a) the Gaussian Maximum likelihood estimator,

(b) the Yule-Walker estimator and (c) the Burg algorithm. We describe these methods in Chapter

9. But we start with a description of the Levinson-Durbin algorithm.

The Levinson-Durbin algorithm is a method for evaluating {φp,j}pj=1 for an increasing number

of past regressors (under the assumption of second order stationarity). A brute force method is to

evaluate {φp,j}pj=1 using (7.15), where Σ−1
p is evaluated using standard methods, such as Gauss-

Jordan elimination. To solve this system of equations requires O(p3) operations. The beauty of the

Levinson-Durbin algorithm is that it exploits the (Toeplitz) structure of Σp to reduce the number
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of operations to O(p2). It is evaluated recursively by increasing the order of lags p. It was first

proposed in the 1940s by Norman Levinson (for Toeplitz equations). In the 1960s, Jim Durbin

adapted the algorithm to time series and improved it. In the discussion below we switch p to t.

We recall that in the aim in one-step ahead prediction is to predict Xt+1 given Xt, Xt−1, . . . , X1.

The best linear predictor is

Xt+1|t = PX1,...,Xt(Xt+1) = Xt+1|t,...,1 =
t∑

j=1

φt,jXt+1−j . (7.7)

The notation can get a little heavy. But the important point to remember is that as t grows we

are not predicting further into the future. We are including more of the past in the one-step ahead

prediction.

We first outline the algorithm. We recall that the best linear predictor of Xt+1 given Xt, . . . , X1

is

Xt+1|t =

t∑
j=1

φt,jXt+1−j . (7.8)

The mean squared error is r(t + 1) = E[Xt+1 − Xt+1|t]
2. Given that the second order stationary

covariance structure, the idea of the Levinson-Durbin algorithm is to recursively estimate {φt,j ; j =

1, . . . , t} given {φt−1,j ; j = 1, . . . , t− 1} (which are the coefficients of the best linear predictor of Xt

given Xt−1, . . . , X1). Let us suppose that the autocovariance function c(k) = cov[X0, Xk] is known.

The Levinson-Durbin algorithm is calculated using the following recursion.

Step 1 φ1,1 = c(1)/c(0) and r(2) = E[X2 −X2|1]2 = E[X2 − φ1,1X1]2 = c(0)− φ1,1c(1).

Step 2 For j = t

φt,t =
c(t)−

∑t−1
j=1 φt−1,jc(t− j)
r(t)

φt,j = φt−1,j − φt,tφt−1,t−j 1 ≤ j ≤ t− 1,

Step 3 r(t+ 1) = r(t)(1− φ2
t,t).

We give two proofs of the above recursion.
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Exercise 7.2 (i) Suppose Xt = φXt−1+εt (where |φ| < 1). Use the Levinson-Durbin algorithm,

to deduce an expression for φt,j for (1 ≤ j ≤ t).

(ii) Suppose Xt = φεt−1 + εt (where |φ| < 1). Use the Levinson-Durbin algorithm (and possibly

Maple/Matlab), deduce an expression for φt,j for (1 ≤ j ≤ t). (recall from Exercise 6.3 that

you already have an analytic expression for φt,t).

7.5.2 A proof of the Durbin-Levinson algorithm based on projec-

tions

Let us suppose {Xt} is a zero mean stationary time series and c(k) = E(XkX0). Let PXt,...,X2(X1)

denote the best linear predictor of X1 given Xt, . . . , X2 and PXt,...,X2(Xt+1) denote the best linear

predictor of Xt+1 given Xt, . . . , X2. Stationarity means that the following predictors share the same

coefficients

Xt|t−1 =

t−1∑
j=1

φt−1,jXt−j PXt,...,X2(Xt+1) =

t−1∑
j=1

φt−1,jXt+1−j (7.9)

PXt,...,X2(X1) =
t−1∑
j=1

φt−1,jXj+1.

The last line is because stationarity means that flipping a time series round has the same correlation

structure. These three relations are an important component of the proof.

Recall our objective is to derive the coefficients of the best linear predictor of PXt,...,X1(Xt+1)

based on the coefficients of the best linear predictor PXt−1,...,X1(Xt). To do this we partition the

space sp(Xt, . . . , X2, X1) into two orthogonal spaces sp(Xt, . . . , X2, X1) = sp(Xt, . . . , X2, X1) ⊕

sp(X1 − PXt,...,X2(X1)). Therefore by uncorrelatedness we have the partition

Xt+1|t = PXt,...,X2(Xt+1) + PX1−PXt,...,X2
(X1)(Xt+1)

=

t−1∑
j=1

φt−1,jXt+1−j︸ ︷︷ ︸
by (7.9)

+ φtt (X1 − PXt,...,X2(X1))︸ ︷︷ ︸
by projection onto one variable

=
t−1∑
j=1

φt−1,jXt+1−j + φt,t

X1 −
t−1∑
j=1

φt−1,jXj+1︸ ︷︷ ︸
by (7.9)

 . (7.10)
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We start by evaluating an expression for φt,t (which in turn will give the expression for the other

coefficients). It is straightforward to see that

φt,t =
E(Xt+1(X1 − PXt,...,X2(X1)))

E(X1 − PXt,...,X2(X1))2
(7.11)

=
E[(Xt+1 − PXt,...,X2(Xt+1) + PXt,...,X2(Xt+1))(X1 − PXt,...,X2(X1))]

E(X1 − PXt,...,X2(X1))2

=
E[(Xt+1 − PXt,...,X2(Xt+1))(X1 − PXt,...,X2(X1))]

E(X1 − PXt,...,X2(X1))2

Therefore we see that the numerator of φt,t is the partial covariance between Xt+1 and X1 (see

Section 6.2), furthermore the denominator of φt,t is the mean squared prediction error, since by

stationarity

E(X1 − PXt,...,X2(X1))2 = E(Xt − PXt−1,...,X1(Xt))
2 = r(t) (7.12)

Returning to (7.11), expanding out the expectation in the numerator and using (7.12) we have

φt,t =
E(Xt+1(X1 − PXt,...,X2(X1)))

r(t)
=
c(0)− E[Xt+1PXt,...,X2(X1))]

r(t)
=
c(0)−

∑t−1
j=1 φt−1,jc(t− j)
r(t)

,

(7.13)

which immediately gives us the first equation in Step 2 of the Levinson-Durbin algorithm. To

obtain the recursion for φt,j we use (7.10) to give

Xt+1|t =

t∑
j=1

φt,jXt+1−j

=

t−1∑
j=1

φt−1,jXt+1−j + φt,t

X1 −
t−1∑
j=1

φt−1,jXj+1

 .

To obtain the recursion we simply compare coefficients to give

φt,j = φt−1,j − φt,tφt−1,t−j 1 ≤ j ≤ t− 1.

This gives the middle equation in Step 2. To obtain the recursion for the mean squared prediction

207



error we note that by orthogonality of {Xt, . . . , X2} and X1 − PXt,...,X2(X1) we use (7.10) to give

r(t+ 1) = E(Xt+1 −Xt+1|t)
2 = E[Xt+1 − PXt,...,X2(Xt+1)− φt,t(X1 − PXt,...,X2(X1)]2

= E[Xt+1 − PX2,...,Xt(Xt+1)]2 + φ2
t,tE[X1 − PXt,...,X2(X1)]2

−2φt,tE[(Xt+1 − PXt,...,X2(Xt+1))(X1 − PXt,...,X2(X1))]

= r(t) + φ2
t,tr(t)− 2φt,t E[Xt+1(X1 − PXt,...,X2(X1))]︸ ︷︷ ︸

=r(t)φt,t by (7.13)

= r(t)[1− φ2
tt].

This gives the final part of the equation in Step 2 of the Levinson-Durbin algorithm.

7.5.3 Applying the Durbin-Levinson to obtain the Cholesky de-

composition

We recall from Section 5.5 that by sequentially projecting the elements of random vector on the past

elements in the vector gives rise to Cholesky decomposition of the inverse of the variance/covariance

(precision) matrix. This is exactly what was done in when we make the Durbin-Levinson algorithm.

In other words,

var



X1√
r(1)

X1−φ1,1X2√
r(2)

...
Xn−

∑n−1
j=1 φn−1,jXn−j√

r(n)


= In

Therefore, if Σn = var[Xn], where Xn = (X1, . . . , Xn), then Σ−1
n = LnDnL

′
n, where

Ln =



1 0 . . . . . . . . . 0

−φ1,1 1 0 . . . . . . 0

−φ2,2 −φ2,1 1 0 . . . 0
...

...
. . .

. . .
. . .

...

−φn−1,n−1 −φn−1,n−2 −φn−1,n−3 . . . . . . 1


(7.14)

and Dn = diag(r−1
1 , r−1

2 , . . . , r−1
n ).
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7.6 Comparing finite and infinite predictors (advanced)

We recall that

Xt+1|t = PXt,...,X1(Xt+1) =
t∑

j=1

φt,jXt−j ,

which is the best linear predictor given the finite past. However, often φt,j can be difficult to

evaluate (usually with the Durbin-Levinson algorithm) in comparison to the AR(∞) parameters.

Thus we define the above approximation

X̂t+1|t =
t∑

j=1

φjXt−j .

How good an approximation X̂t+1|t is of Xt+1|t is given by Baxter’s inequality.

Theorem 7.6.1 (Baxter’s inequality) Suppose {Xt} has an AR(∞) representation with param-

eters {φj}∞j=1 such that
∑∞

j=1 |φj | < ∞. Let {φn,j}nj=1 denote the parameters of the parameters of

the best linear predictor of Xt+1 given {Xj}tj=1. Then if n is large enough we have

n∑
j=1

|φn,j − φj | ≤ C
∞∑

j=n+1

|φj |,

where C is a constant that depends on the underlying spectral density.

We note that since
∑∞

j=1 |φj | <∞, then
∑∞

j=n+1 |φj | → 0 as n→∞. Thus as n gets large

n∑
j=1

|φn,j − φj | ≈ 0.

We apply this result to measuring the difference between Xt+1|t and X̂t+1|t

E|Xt+1|t − X̂t+1|t| ≤
t∑

j=1

|φt,j − φj |E|Xt−j | ≤ E|Xt−j |
t∑

j=1

|φt,j − φj | ≤ CE|Xt|
∞∑

j=t+1

|φj |.

Therefore the best linear predictor and its approximation are “close” for large t.

209



7.7 r-step ahead predictors based on the finite past

Let Y = (Xt−p, . . . , Xt−1)

PY (Xt+r) =

p∑
j=1

φp,j(r)Xt−j

where 
φp,1(r)

...

φp,p(r)

 = Σ−1
p rp,r, (7.15)

where (Σp)i,j = c(i − j) and (rp,r)i = c(i + r). This gives the best finite predictor for the time

series at lag r. In practice, one often finds the best fitting AR(p) model, which gives the best finite

predictor at lag one. And then uses the AR prediction method described in Section 7.3 to predict

forward

X̂t(r) = [ΦX̂t(r − 1)](1) = [Φr
pXt](1) =

p∑
j=1

φj(r, p)Xt+1−j

where

Φp =



φp,1 φp,2 φ3 . . . φp.p

1 0 0 . . . 0

0 1 0 . . . 0
... · · ·

...
. . . 0

0 0 0 . . . 0


.

If the true model is not an AR(p) this will not give the best linear predictor, but it will given an

approximation of it. Suppose that j > n

For ARMA models

n∑
j=1

|φj(τ ; p)− φj,n(τ)||Xt−j | =

 Op (ρp) τ ≤ p

Op
(
ρpρ|τ−p|

)
τ > p.

Lemma 7.7.1 Suppose the MA(∞) and AR(∞) parameters satisfy
∑

j |jKψj | <∞ and
∑

j |jKaj | <
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∞ for some K > 1. Then

n∑
j=1

|φj(τ ; p)− φj(τ)|

 O
(

1
pK

)
τ ≤ p

O
(

1
pK |τ−p|K

)
τ > p.

PROOF. If τ < p

n∑
j=1

|φj(τ ; fp)− φj(τ, f)| =
n∑
j=1

|
∞∑
s=1

φj+s(fp)ψτ−s(fp)−
∞∑
s=1

φj+s(f)ψτ−s(f)| = O

(
1

pK

)
.

If τ > p

n∑
j=1

|φj(τ ; fp)− φj(τ, f)| =

n∑
j=1

|
∞∑
s=1

φj+s(fp)ψτ−s(fp)−
∞∑
s=1

φj+s(f)ψτ−s(f)| = O

(
1

pK |τ − p|K

)
.

7.8 Forecasting for ARMA processes

Given the autocovariance of any stationary process the Levinson-Durbin algorithm allows us to

systematically obtain one-step predictors of second order stationary time series without directly

inverting a matrix. In this section we consider the special case of ARMA(p, q) models where the

ARMA coefficients are known.

For AR(p) models prediction is especially easy, if the number of observations in the finite past,

t, is such that p ≤ t. For 1 ≤ t ≤ p one would use the Durbin-Levinson algorithm and for t > p we

use

Xt+1|t =

p∑
j=1

φjXt+1−j .

For ARMA(p, q) models prediction is not so straightforward, but we show below some simple

approximations can be made.

We recall that a causal invertible ARMA(p, q) has the representation

Xt+1 =

p∑
j=1

φjXt+1−j +

q∑
i=1

θiεt+1−i + εt+1.

Then if the infinite past were observed by using equation (7.4) and the AR(∞) and MA(∞) repre-
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sentation of the ARMA model the best linear predictor is

Xt(1) =

∞∑
j=1

ψjεt+1−j

=

∞∑
j=1

ajXt+1−j

where {ψj} and {aj} are the AR(∞) and MA(∞) coefficients respectively. The above representation

does not explictly use the ARMA representation. However since εt−j = Xt−j−Xt−j−1(1) it is easily

seen that an alternative representation is

Xt(1) =

p∑
j=1

φjXt+1−j +

q∑
i=1

θi (Xt+1−i −Xt−i(1)) .

However, for finite predictors the actual one-step ahead prediction formula is not so simple. It can

be shown that for t ≥ max(p, q)

Xt+1|t =

p∑
j=1

φjXt+1−j +

q∑
i=1

θt,i(Xt+1−i −Xt+1−i|t−i), (7.16)

where the coefficients θt,i which can be evaluated from the autocovariance structure of the MA

process. A proof is given in the appendix. It can be shown that θt,i → θi as t→∞ (see Brockwell

and Davis (1998)), Chapter 5.

The prediction can be simplified if we make a simple approximation (which works well if t is

relatively large). For 1 ≤ t ≤ max(p, q), set X̂t+1|t = Xt and for t > max(p, q) we define the

recursion

X̂t+1|t =

p∑
j=1

φjXt+1−j +

q∑
i=1

θi(Xt+1−i − X̂t+1−i|t−i). (7.17)

This approximation seems plausible, since in the exact predictor (7.16), θt,i → θi. By iterating

backwards, we can show that

X̂t+1|t =

t−max(p,q)∑
j=1

ajXt+1−j︸ ︷︷ ︸
first part of AR(∞) expansion

+

max(p,q)∑
j=1

bjXj (7.18)
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where |γj | ≤ Cρt, with 1/(1 + δ) < ρ < 1 and the roots of θ(z) are outside (1 + δ). On the other

hand, the infinite predictor is

Xt(1) =

∞∑
j=1

ajXt+1−j (since Xt+1 =

∞∑
j=1

ajXt+1−j + εt+1).

Remark 7.8.1 We prove (7.18) for the MA(1) model Xt = θεt−1 + εt.The estimated predictor is

X̂t|t−1 = θ
(
Xt−1 − X̂t−1|t−2

)
⇒ Xt − X̂t|t−1 = −θ

(
Xt−1 − X̂t−1|t−2

)
+Xt

=
t−1∑
j=0

(−θ)jXt−j−1 + (−θ)t
(
X1 − X̂1|0

)
.

On the other hand, the infinite predictor is

X̂t|t−1 = θ
(
Xt−1 − X̂t−1|t−2

)
⇒ Xt − X̂t|t−1 = −θ

(
Xt−1 − X̂t−1|t−2

)
+Xt

=
t−1∑
j=0

(−θ)jXt−j−1 + (−θ)t
(
X1 − X̂1|0

)
.

In summary, we have three one-step ahead predictors. The finite past best linear predictor:

Xt+1|t =

p∑
j=1

φjXt+1−j +

q∑
i=1

θi,t(Xt+1−i − X̂t+1−i|t−i) =

t∑
s=1

φt,sXt+1−s (7.19)

The infinite past predictor:

Xt(1) =

p∑
j=1

φjXt+1−j +

q∑
i=1

θi(Xt+1−i −Xt−i(1)) =

∞∑
s=1

ajXt+1−s (7.20)

and the approximate finite predictor:

X̂t+1|t =

p∑
j=1

φjXt+1−j +

q∑
i=1

θi(Xt+1−i − X̂t−i(1)) =
t∑

s=1

ajXt+1−s +

max(p,q)∑
s=1

bsXs. (7.21)

These predictors will be very useful in deriving the approximate Gaussian likelihood for the ARMA

model, see Section 9.2.2. We give a bound for the differences below.
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Proposition 7.8.1 Suppose {Xt} is an ARMA process where the roots of φ(z) and θ(z) have roots

which are greater in absolute value than 1 + δ. Let Xt+1|t, Xt(1) and X̂t+1|t be defined as in (7.19),

(7.20) and (7.21) respectively. Then

E[X̂t+1|t −Xt(1)]2 ≤ Kρt, (7.22)

E[Xt+1|t −Xt(1)]2 ≤ Kρt (7.23)

and

∣∣E[Xt+1 −Xt+1|t]
2 − σ2

∣∣ ≤ Kρt (7.24)

for any 1
1+δ < ρ < 1 and var(εt) = σ2.

7.9 ARMA models and the Kalman filter

7.9.1 The Kalman filter

The Kalman filter can be used to define a variant of the estimated predictor X̂t(1) described in

(7.21). The Kalman filter construction is based on the state space equation

Xt = FXt−1 + Vt

where {Xt}t is an unobserved time series, F is a known matrix, var[Vt] = Q and {Vt}t are indepen-

dent random variables that are independent of Xt−1. The observed equation

Yt = HXt−1 +Wt

where {Yt}t is the observed time series, var[Wt] = R, {Wt}t are independent that are independent

of Xt−1. Moreover {Vt}t and {Wt} are jointly independent. The parameters can be made time-

dependent, but this make the derivations notationally more cumbersome.

The standard notation is to let X̂t+1|t = PY1,...,Yt(Xt+1) and Pt+1|t = var[Xt+1 − X̂t+1|t] (pre-

dictive) and X̂t+1|t+1 = PY1,...,Yt(Xt+1) and Pt+1|t+1 = var[Xt+1− X̂t+1|t+1] (update). The Kalman
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filter is an elegant method that iterates between the prediction steps X̂t+1|t and Pt+1|t and the

update steps X̂t+1|t+1 and Pt+1|t+1. A proof is given at the end of the chapter. We summarise the

algorithm below:

The Kalman equations

(i) Prediction step The conditional expectation

X̂t+1|t = FX̂t|t

and the corresponding mean squared error

Pt+1|t = FPt|tF
∗ +Q.

(ii) Update step The conditional expectation

X̂t+1|t+1 = X̂t+1|t +Kt+1

(
Yt+1 −HX̂t+1|t

)
.

(note the appearance of Yt, this is where the observed data plays a role in the prediction)

where

Kt+1 = Pt+1|tH
∗[HPt+1|tH

∗ +R]−1

and the corresponding mean squared error

Pt+1|t+1 = Pt+1|t −Kt+1HPt+1|t = (I −Kt+1H)Pt+1|t.

(iii) There is also a smoothing step (which we ignore for now).

Thus we observe that if we can write a model in the above notation, then the predictors can be

recursively updated. It is worth mentioning that in order to initiate the algorithm the initial values

X0|0 and P0|0 are required.
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7.9.2 The state space (Markov) representation of the ARMA model

There is no unique state-space representation of the ARMA model. We give below the elegant

construction proposed in Akaike (1977) and expanded on in Jones (1980). This construction can be

used as in prediction (via the Kalman filter) and to estimate the parameters in likelihood likelihood

(but keep in mind initial conditions do matter). The construction is based on the best linear

predictor of the infinite past.

We will assume {Xt} has a causal ARMA(p, q) representation where

Xt =

p∑
j=1

φjXt−j +

q∑
i=1

θiεt−i + εt.

We now obtain a Markov-type representation of the above. It is based on best linear predictors

given the infinite past. Let

X(t+ r|t) = PXt,Xt−1,...(Xt+r),

where we recall that previously we used the notation Xt(r) = X(t + r|t). The reason we change

notation is to keep track of the time stamps. To obtain the representation we use that the ARMA

model has the MA(∞) representation

Xt =
∞∑
j=0

ψjεt−j

where ψ0 = 1. The MA(∞) coefficients can be derived from the ARMA parameters using the

recursion

ψj = θj +

j−1∑
k=1

φkθj−k for j ≥ 1,

setting the initial value ψ0 = 1. Since X(t+ r|t) is the best linear predictor given the infinite past

by using the results from Section 7.4 we have

X(t+ r|t) = PXt,Xt−1,...(Xt+r) =

∞∑
j=r

ψj+rεt+r−j

X(t+ r|t+ 1) = PXt+1,Xt,Xt−1,...(Xt+r) =

∞∑
j=r−1

ψjεt+r−j .
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Thus taking differences we have

X(t+ r|t+ 1)−X(t+ r|t) = ψr−1εt+1.

Rewriting the above gives

X(t+ r|t+ 1) = X(t+ r|t) + ψr−1εt+1. (7.25)

The simplest example of the above is Xt+r = X(t+ r|t+ r) = X(t+ r|t+ r − 1) + εt+r. Based on

(7.25) we have



X(t+ 1|t+ 1)

X(t+ 2|t+ 1)

X(t+ 3|t)
...

X(t+ r − 1|t+ 1)

X(t+ r|t+ 1)


=



0 1 0 . . . 0 0

0 0 1 . . . 0 0

0 0 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1

? ? ? . . . ? ?





X(t|t)

X(t+ 1|t)

X(t+ 2|t)
...

X(t+ r − 2|t)

X(t+ r − 1|t)


+ εt+1



1

ψ1

ψ2

...

ψr−2

ψr−1


.

The important observation is that the two vectors on the RHS of the above are independent, which

is getting us towards a state space representation.

How to choose r in this representation and what are the ?s. Studying the last line in the above

vector equation we note that

X(t+ r|t+ 1) = X(t+ r|t) + ψr−1εt+1,

however X(t+ r|t) is not explicitly in the vector. Instead we need to find a linear combination of

X(t|t), . . . , X(t+ r−1|t) which gives X(t+ r|t). To do this we return to the ARMA representation

Xt+r =

p∑
j=1

φjXt+r−j +

q∑
i=1

θiεt+r−i + εt+r.

The next part gets a little messy (you may want to look at Akaike or Jones for a better explanation).
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Suppose that r > q, specifically let r = q + 1, then

PXt,Xt−1,...(Xt+r) =

p∑
j=1

φjPXt,Xt−1,...(Xt+r−j) +

q∑
i=1

θiPXt,Xt−1,...(εt+r−i) + PXt,Xt−1,...(εt+r)︸ ︷︷ ︸
since r > q this is = 0

=

p∑
j=1

φjPXt,Xt−1,...(Xt+r−j).

If, p < q + 1, then the above reduces to

X(t+ r|t) =

p∑
j=1

φjX(t+ r − j|t).

If, on the other hand p > r, then

X(t+ r|t) =
r∑
j=1

φjX(t+ r − j|t) +
∑
j=r+1

φjXt−j .

Building {Xt−j}rj=1 from {X(t|t), . . . , X(t + r − 1|t)} seems unlikely (it can probably proved it is

not possible, but a proof escapes me for now). Thus, we choose r ≥ max(p, q + 1) (which will then

gives everything in terms of the predictors). This choice gives

PXt,Xt−1,...(Xt+r) =

p∑
j=1

φjX(t+ r − j|t).

This allows us to construct the recursion equations for any r ≥ max(p, q+ 1) by using the above to

build the last row of the matrix. For simplicility we set r = m = max(p, q+1). If p < max(p, q+1),

then for p+ 1 ≤ r ≤ m set φj = 0. Define the recursion



X(t+ 1|t+ 1)

X(t+ 2|t+ 1)

X(t+ 3|t)
...

X(t+m− 1|t+ 1)

X(t+m|t+ 1)


=



0 1 0 . . . 0 0

0 0 1 . . . 0 0

0 0 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1

φm φm−1 φm−2 . . . φ2 φ1





X(t|t)

X(t+ 1|t)

X(t+ 2|t)
...

X(t+m− 2|t)

X(t+m− 1|t)


+ εt+1



1

ψ1

ψ2

...

ψm−2

ψm−1


.

Let Zt = (X(t|t), . . . , X(t+m− 1|t)), and observe that Zt is independent of εt+1. This yields the
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state space equation

Zt+1 = FZt + V t+1

where Φ is the matrix defined above and V ′t+1 = εt+1(1, ψ1, . . . , ψm−1) = εt+1ψ
′
m

. By forward

iterating

Zt+1 = FZt + V t+1 t ∈ Z

from t = −∞ the top entry of Zt gives a stationary solution of the ARMA model. Of course in

practice, we cannot start at t = −∞ and start at t = 0, thus the initial conditions will play a role

(and the solution won’t precisely follow a stationary ARMA).

The observation model is

Yt+1 = (1, 0, . . . , 0)Zt+1,

where we note that Yt+1 = Xt+1. Thus we set Yt = Xt (where Xt is the observed time series).

7.9.3 Prediction using the Kalman filter

We use the Kalman filter described above where we set Q = var(εt)ψ
′
m
ψ
m

, R = 0, H = (1, 0, . . . , 0).

This gives The Kalman equations

(1) Start with an initial value Z0|0. This part is where the approximation comes into play sinceY0

is not observed. Typically a vectors of zeros are imputted for Z0|0 and recommendations for

P0|0 are given in given in Jones (1980) and Akaiki (1978). Then for t > 0 iterate on steps (2)

and (3) below.

(2) Prediction step

Ẑt+1|t = FẐt|t

and the corresponding mean squared error

Pt+1|t = FPt|tF
∗ +Q.
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(3) Update step The conditional expectation

Ẑt+1|t+1 = Ẑt+1|t +Kt+1

(
Yt+1 −HẐt+1|t

)
.

where

Kt+1 =
Pt+1|tH

∗

HPt+1|tH∗

and the corresponding mean squared error

Pt+1|t+1 = Pt+1|t −KtHPt+1|t = (I −KtH)Pt+1|t.

Ẑt+1|t will contain the linear predictors of Xt+1, . . . , Xt+m given X1, . . . , Xt. They are “almost” the

best linear predictors, but as in Section 7.8 the initial value plays a role (which is why it is only

approximately the best linear predictor). Since we do not observe the infinite past we do not know

Zm|m (which is set to zero). The only way this can be exactly the best linear predictor is if Zm|m

were known, which it is not. Thus the approximate one-step ahead predictor is

Xt+1|t ≈ [Zt+1|t](1) ≈
t∑

j=1

ajXt−j ,

where {aj}∞j=1 are the coefficients of the AR(∞) expansion corresponding to the ARMA model.

The approximate r-step ahead predictor is [Zt+1|t](1) (if r ≤ m).

7.10 Forecasting for nonlinear models (advanced)

In this section we consider forecasting for nonlinear models. The forecasts we construct, may not

necessarily/formally be the best linear predictor, because the best linear predictor is based on

minimising the mean squared error, which we recall from Chapter 13 requires the existence of the

higher order moments. Instead our forecast will be the conditional expection of Xt+1 given the past

(note that we can think of it as the best linear predictor). Furthermore, with the exception of the

ARCH model we will derive approximation of the conditional expectation/best linear predictor,

analogous to the forecasting approximation for the ARMA model, X̂t+1|t (given in (7.17)).
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7.10.1 Forecasting volatility using an ARCH(p) model

We recall the ARCH(p) model defined in Section 13.2

Xt = σtZt σ2
t = a0 +

p∑
j=1

ajX
2
t−j .

Using a similar calculation to those given in Section 13.2.1, we see that

E[Xt+1|Xt, Xt−1, . . . , Xt−p+1] = E(Zt+1σt+1|Xt, Xt−1, . . . , Xt−p+1) = σt+1E(Zt+1|Xt, Xt−1, . . . , Xt−p+1)︸ ︷︷ ︸
σt+1 function of Xt,...,Xt−p+1

= σt+1 E(Zt+1)︸ ︷︷ ︸
by causality

= 0 · σt+1 = 0.

In other words, past values of Xt have no influence on the expected value of Xt+1. On the other

hand, in Section 13.2.1 we showed that

E(X2
t+1|Xt, Xt−1, . . . , Xt−p+1) = E(Z2

t+1σ
2
t+1|Xt, Xt−2, . . . , Xt−p+1) = σ2

t+1E[Z2
t+1] = σ2

t+1 =

p∑
j=1

ajX
2
t+1−j ,

thus Xt has an influence on the conditional mean squared/variance. Therefore, if we let Xt+k|t

denote the conditional variance of Xt+k given Xt, . . . , Xt−p+1, it can be derived using the following

recursion

X2
t+1|t =

p∑
j=1

ajX
2
t+1−j

X2
t+k|t =

p∑
j=k

ajX
2
t+k−j +

k−1∑
j=1

ajX
2
t+k−j|k 2 ≤ k ≤ p

X2
t+k|t =

p∑
j=1

ajX
2
t+k−j|t k > p.

7.10.2 Forecasting volatility using a GARCH(1, 1) model

We recall the GARCH(1, 1) model defined in Section 13.3

σ2
t = a0 + a1X

2
t−1 + b1σ

2
t−1 =

(
a1Z

2
t−1 + b1

)
σ2
t−1 + a0.
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Similar to the ARCH model it is straightforward to show that E[Xt+1|Xt, Xt−1, . . .] = 0 (where we

use the notation Xt, Xt−1, . . . to denote the infinite past or more precisely conditioned on the sigma

algebra Ft = σ(Xt, Xt−1, . . .)). Therefore, like the ARCH process, our aim is to predict X2
t .

We recall from Example 13.3.1 that if the GARCH the process is invertible (satisfied if b < 1),

then

E[X2
t+1|Xt, Xt−1, . . .] = σ2

t+1 = a0 + a1X
2
t−1 + b1σ

2
t−1 =

a0

1− b
+ a1

∞∑
j=0

bjX2
t−j . (7.26)

Of course, in reality we only observe the finite past Xt, Xt−1, . . . , X1. We can approximate

E[X2
t+1|Xt, Xt−1, . . . , X1] using the following recursion, set σ̂2

1|0 = 0, then for t ≥ 1 let

σ̂2
t+1|t = a0 + a1X

2
t + b1σ̂

2
t|t−1

(noting that this is similar in spirit to the recursive approximate one-step ahead predictor defined

in (7.18)). It is straightforward to show that

σ̂2
t+1|t =

a0(1− bt+1)

1− b
+ a1

t−1∑
j=0

bjX2
t−j ,

taking note that this is not the same as E[X2
t+1|Xt, . . . , X1] (if the mean square error existed

E[X2
t+1|Xt, . . . , X1] would give a smaller mean square error), but just like the ARMA process it will

closely approximate it. Furthermore, from (7.26) it can be seen that σ̂2
t+1|t closely approximates

σ2
t+1

Exercise 7.3 To answer this question you need R install.package("tseries") then remember

library("garch").

(i) You will find the Nasdaq data from 4th January 2010 - 15th October 2014 on my website.

(ii) By taking log differences fit a GARCH(1,1) model to the daily closing data (ignore the adjusted

closing value) from 4th January 2010 - 30th September 2014 (use the function garch(x,

order = c(1, 1)) fit the GARCH(1, 1) model).

(iii) Using the fitted GARCH(1, 1) model, forecast the volatility σ2
t from October 1st-15th (not-

ing that no trading is done during the weekends). Denote these forecasts as σ2
t|0. Evaluate∑11

t=1 σ
2
t|0
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(iv) Compare this to the actual volatility
∑11

t=1X
2
t (where Xt are the log differences).

7.10.3 Forecasting using a BL(1, 0, 1, 1) model

We recall the Bilinear(1, 0, 1, 1) model defined in Section 13.4

Xt = φ1Xt−1 + b1,1Xt−1εt−1 + εt.

Assuming invertibility, so that εt can be written in terms of Xt (see Remark 13.4.2):

εt =

∞∑
j=0

(
(−b)j

j−1∏
i=0

Xt−1−j

)
[Xt−j − φXt−j−1],

it can be shown that

Xt(1) = E[Xt+1|Xt, Xt−1, . . .] = φ1Xt + b1,1Xtεt.

However, just as in the ARMA and GARCH case we can obtain an approximation, by setting

X̂1|0 = 0 and for t ≥ 1 defining the recursion

X̂t+1|t = φ1Xt + b1,1Xt

(
Xt − X̂t|t−1

)
.

See ? and ? for further details.

Remark 7.10.1 (How well does X̂t+1|t approximate Xt(1)?) We now derive conditions for

X̂t+1|t to be a close approximation of Xt(1) when t is large. We use a similar technique to that

used in Remark 7.8.1.

We note that Xt+1 −Xt(1) = εt+1 (since a future innovation, εt+1, cannot be predicted). We

will show that Xt+1 − X̂t+1|t is ‘close’ to εt+1. Subtracting X̂t+1|t from Xt+1 gives the recursion

Xt+1 − X̂t+1|t = −b1,1(Xt − X̂t|t−1)Xt + (bεtXt + εt+1) . (7.27)

We will compare the above recursion to the recursion based on εt+1. Rearranging the bilinear
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equation gives

εt+1 = −bεtXt + (Xt+1 − φ1Xt)︸ ︷︷ ︸
=bεtXt+εt+1

. (7.28)

We observe that (7.27) and (7.28) are almost the same difference equation, the only difference is

that an initial value is set for X̂1|0. This gives the difference between the two equations as

εt+1 − [Xt+1 − X̂t+1|t] = (−1)tbtX1

t∏
j=1

εj + (−1)tbt[X1 − X̂1|0]

t∏
j=1

εj .

Thus if bt
∏t
j=1 εj

a.s.→ 0 as t → ∞, then X̂t+1|t
P→ Xt(1) as t → ∞. We now show that if

E[log |εt| < − log |b|, then bt
∏t
j=1 εj

a.s.→ 0. Since bt
∏t
j=1 εj is a product, it seems appropriate to

take logarithms to transform it into a sum. To ensure that it is positive, we take absolutes and

t-roots

log |bt
t∏

j=1

εj |1/t = log |b|+ 1

t

t∑
j=1

log |εj |︸ ︷︷ ︸
average of iid random variables

.

Therefore by using the law of large numbers we have

log |bt
t∏

j=1

εj |1/t = log |b|+ 1

t

t∑
j=1

log |εj |
P→ log |b|+ E log |ε0| = γ.

Thus we see that |bt
∏t
j=1 εj |1/t

a.s.→ exp(γ). In other words, |bt
∏t
j=1 εj | ≈ exp(tγ), which will only

converge to zero if E[log |εt| < − log |b|.

7.11 Nonparametric prediction (advanced)

In this section we briefly consider how prediction can be achieved in the nonparametric world. Let

us assume that {Xt} is a stationary time series. Our objective is to predict Xt+1 given the past.

However, we don’t want to make any assumptions about the nature of {Xt}. Instead we want to

obtain a predictor of Xt+1 given Xt which minimises the means squared error, E[Xt+1−g(Xt)]
2. It

is well known that this is conditional expectation E[Xt+1|Xt]. (since E[Xt+1− g(Xt)]
2 = E[Xt+1−
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E(Xt+1|Xt)]
2 + E[g(Xt)− E(Xt+1|Xt)]

2). Therefore, one can estimate

E[Xt+1|Xt = x] = m(x)

nonparametrically. A classical estimator of m(x) is the Nadaraya-Watson estimator

m̂n(x) =

∑n−1
t=1 Xt+1K(x−Xtb )∑n−1

t=1 K(x−Xtb )
,

where K : R → R is a kernel function (see Fan and Yao (2003), Chapter 5 and 6). Under some

‘regularity conditions’ it can be shown that m̂n(x) is a consistent estimator of m(x) and converges

to m(x) in mean square (with the typical mean squared rate O(b4 + (bn)−1)). The advantage of

going the non-parametric route is that we have not imposed any form of structure on the process

(such as linear/(G)ARCH/Bilinear). Therefore, we do not run the risk of misspecifying the model

A disadvantage is that nonparametric estimators tend to be a lot worse than parametric estimators

(in Chapter ?? we show that parametric estimators have O(n−1/2) convergence which is faster than

the nonparametric rate O(b2 + (bn)−1/2)). Another possible disavantage is that if we wanted to

include more past values in the predictor, ie. m(x1, . . . , xd) = E[Xt+1|Xt = x1, . . . , Xt−p = xd] then

the estimator will have an extremely poor rate of convergence (due to the curse of dimensionality).

A possible solution to the problem is to assume some structure on the nonparametric model,

and define a semi-parametric time series model. We state some examples below:

(i) An additive structure of the type

Xt =

p∑
j=1

gj(Xt−j) + εt

where {εt} are iid random variables.

(ii) A functional autoregressive type structure

Xt =

p∑
j=1

gj(Xt−d)Xt−j + εt.

(iii) The semi-parametric GARCH(1, 1)

Xt = σtZt, σ2
t = bσ2

t−1 +m(Xt−1).
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However, once a structure has been imposed, conditions need to be derived in order that the model

has a stationary solution (just as we did with the fully-parametric models).

See ?, ?, ?, ?, ? etc.

7.12 The Wold Decomposition (advanced)

Section 5.5 nicely leads to the Wold decomposition, which we now state and prove. The Wold

decomposition theorem, states that any stationary process, has something that appears close to

an MA(∞) representation (though it is not). We state the theorem below and use some of the

notation introduced in Section 5.5.

Theorem 7.12.1 Suppose that {Xt} is a second order stationary time series with a finite variance

(we shall assume that it has mean zero, though this is not necessary). Then Xt can be uniquely

expressed as

Xt =
∞∑
j=0

ψjZt−j + Vt, (7.29)

where {Zt} are uncorrelated random variables, with var(Zt) = E(Xt−Xt−1(1))2 (noting that Xt−1(1)

is the best linear predictor of Xt given Xt−1, Xt−2, . . .) and Vt ∈ X−∞ = ∩−∞n=−∞X−∞n , where X−∞n

is defined in (5.34).

PROOF. First let is consider the one-step ahead prediction of Xt given the infinite past, denoted

Xt−1(1). Since {Xt} is a second order stationary process it is clear that Xt−1(1) =
∑∞

j=1 bjXt−j ,

where the coefficients {bj} do not vary with t. For this reason {Xt−1(1)} and {Xt −Xt−1(1)} are

second order stationary random variables. Furthermore, since {Xt−Xt−1(1)} is uncorrelated with

Xs for any s ≤ t, then {Xs − Xs−1(1); s ∈ R} are uncorrelated random variables. Define Zs =

Xs−Xs−1(1), and observe that Zs is the one-step ahead prediction error. We recall from Section 5.5

that Xt ∈ sp((Xt −Xt−1(1)), (Xt−1 −Xt−2(1)), . . .)⊕ s̄p(X−∞) = ⊕∞j=0sp(Zt−j)⊕ s̄p(X−∞). Since

the spaces ⊕∞j=0sp(Zt−j) and sp(X−∞) are orthogonal, we shall first project Xt onto ⊕∞j=0sp(Zt−j),

due to orthogonality the difference between Xt and its projection will be in sp(X−∞). This will

lead to the Wold decomposition.
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First we consider the projection of Xt onto the space ⊕∞j=0sp(Zt−j), which is

PZt,Zt−1,...(Xt) =
∞∑
j=0

ψjZt−j ,

where due to orthogonality ψj = cov(Xt, (Xt−j −Xt−j−1(1)))/var(Xt−j −Xt−j−1(1)). Since Xt ∈

⊕∞j=0sp(Zt−j) ⊕ s̄p(X−∞), the difference Xt − PZt,Zt−1,...Xt is orthogonal to {Zt} and belongs in

s̄p(X−∞). Hence we have

Xt =
∞∑
j=0

ψjZt−j + Vt,

where Vt = Xt −
∑∞

j=0 ψjZt−j and is uncorrelated to {Zt}. Hence we have shown (7.29). To show

that the representation is unique we note that Zt, Zt−1, . . . are an orthogonal basis of sp(Zt, Zt−1, . . .),

which pretty much leads to uniqueness. �

Exercise 7.4 Consider the process Xt = A cos(Bt + U) where A, B and U are random variables

such that A, B and U are independent and U is uniformly distributed on (0, 2π).

(i) Show that Xt is second order stationary (actually it’s stationary) and obtain its means and

covariance function.

(ii) Show that the distribution of A and B can be chosen in such a way that {Xt} has the same

covariance function as the MA(1) process Yt = εt + φεt (where |φ| < 1) (quite amazing).

(iii) Suppose A and B have the same distribution found in (ii).

(a) What is the best predictor of Xt+1 given Xt, Xt−1, . . .?

(b) What is the best linear predictor of Xt+1 given Xt, Xt−1, . . .?

It is worth noting that variants on the proof can be found in Brockwell and Davis (1998),

Section 5.7 and Fuller (1995), page 94.

Remark 7.12.1 Notice that the representation in (7.29) looks like an MA(∞) process. There is,

however, a significant difference. The random variables {Zt} of an MA(∞) process are iid random

variables and not just uncorrelated.

We recall that we have already come across the Wold decomposition of some time series. In

Section 6.4 we showed that a non-causal linear time series could be represented as a causal ‘linear
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time series’ with uncorrelated but dependent innovations. Another example is in Chapter 13, where

we explored ARCH/GARCH process which have an AR and ARMA type representation. Using this

representation we can represent ARCH and GARCH processes as the weighted sum of {(Z2
t −1)σ2

t }

which are uncorrelated random variables.

Remark 7.12.2 (Variation on the Wold decomposition) In many technical proofs involving

time series, we often use results related to the Wold decomposition. More precisely, we often

decompose the time series in terms of an infinite sum of martingale differences. In particular,

we define the sigma-algebra Ft = σ(Xt, Xt−1, . . .), and suppose that E(Xt|F−∞) = µ. Then by

telescoping we can formally write Xt as

Xt − µ =
∞∑
j=0

Zt,j

where Zt,j = E(Xt|Ft−j) − E(Xt|Ft−j−1). It is straightforward to see that Zt,j are martingale

differences, and under certain conditions (mixing, physical dependence, your favourite dependence

flavour etc) it can be shown that
∑∞

j=0 ‖Zt,j‖p <∞ (where ‖ · ‖p is the pth moment). This means

the above representation holds almost surely. Thus in several proofs we can replace Xt − µ by∑∞
j=0 Zt,j. This decomposition allows us to use martingale theorems to prove results.

7.13 Kolmogorov’s formula (advanced)

Suppose {Xt} is a second order stationary time series. Kolmogorov’s(-Szegö) theorem is an expres-

sion for the error in the linear prediction of Xt given the infinite past Xt−1, Xt−2, . . .. It basically

states that

E [Xn −Xn(1)]2 = exp

(
1

2π

∫ 2π

0
log f(ω)dω

)
,

where f is the spectral density of the time series. Clearly from the definition we require that the

spectral density function is bounded away from zero.

To prove this result we use (5.25);

var[Y − Ŷ ] =
det(Σ)

det(ΣXX)
.
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and Szegö’s theorem (see, Gray’s technical report, where the proof is given), which we state later

on. Let PX1,...,Xn(Xn+1) =
∑n

j=1 φj,nXn+1−j (best linear predictor of Xn+1 given Xn, . . . , X1).

Then we observe that since {Xt} is a second order stationary time series and using (5.25) we have

E

Xn+1 −
n∑
j=1

φn,jXn+1−j

2

=
det(Σn+1)

det(Σn)
,

where Σn = {c(i− j); i, j = 0, . . . , n− 1}, and Σn is a non-singular matrix.

Szegö’s theorem is a general theorem concerning Toeplitz matrices. Define the sequence of

Toeplitz matrices Γn = {c(i− j); i, j = 0, . . . , n− 1} and assume the Fourier transform

f(ω) =
∑
j∈Z

c(j) exp(ijω)

exists and is well defined (
∑

j |c(j)|2 <∞). Let {γj,n} denote the Eigenvalues corresponding to Γn.

Then for any function G we have

lim
n→∞

1

n

n∑
j=1

G(γj,n)→
∫ 2π

0
G(f(ω))dω.

To use this result we return to E[Xn+1 −
∑n

j=1 φn,jXn+1−j ]
2 and take logarithms

log E[Xn+1 −
n∑
j=1

φn,jXn+1−j ]
2 = log det(Σn+1)− log det(Σn)

=

n+1∑
j=1

log γj,n+1 −
n∑
j=1

log γj,n

where the above is because det Σn =
∏n
j=1 γj,n (where γj,n are the eigenvalues of Σn). Now we

apply Szegö’s theorem using G(x) = log(x), this states that

lim
n→∞

1

n

n∑
j=1

log(γj,n)→
∫ 2π

0
log(f(ω))dω.

thus for large n

1

n+ 1

n+1∑
j=1

log γj,n+1 ≈
1

n

n∑
j=1

log γj,n.
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This implies that

n+1∑
j=1

log γj,n+1 ≈
n+ 1

n

n∑
j=1

log γj,n,

hence

log E[Xn+1 −
n∑
j=1

φn,jXn+1−j ]
2 = log det(Σn+1)− log det(Σn)

=
n+1∑
j=1

log γj,n+1 −
n∑
j=1

log γj,n

≈ n+ 1

n

n∑
j=1

log γj,n −
n∑
j=1

log γj,n =
1

n

n∑
j=1

log γj,n.

Thus

lim
n→∞

log E[Xt+1 −
n∑
j=1

φn,jXt+1−j ]
2 = lim

n→∞
log E[Xn+1 −

n∑
j=1

φn,jXn+1−j ]
2

= lim
n→∞

1

n

n∑
j=1

log γj,n =

∫ 2π

0
log(f(ω))dω

and

lim
n→∞

E[Xt+1 −
n∑
j=1

φn,jXt+1−j ]
2 = exp

(∫ 2π

0
log(f(ω))dω

)
.

This gives a rough outline of the proof. The precise proof can be found in Gray’s technical report.

There exists alternative proofs (given by Kolmogorov), see Brockwell and Davis (1998), Chapter 5.

This is the reason that in many papers the assumption

∫ 2π

0
log f(ω)dω > −∞

is made. This assumption essentially ensures Xt /∈ X−∞.

Example 7.13.1 Consider the AR(p) process Xt = φXt−1 + εt (assume wlog that |φ| < 1) where

E[εt] = 0 and var[εt] = σ2. We know that Xt(1) = φXt and

E[Xt+1 −Xt(1)]2 = σ2.
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We now show that

exp

(
1

2π

∫ 2π

0
log f(ω)dω

)
= σ2. (7.30)

We recall that the spectral density of the AR(1) is

f(ω) =
σ2

|1− φeiω|2

⇒ log f(ω) = log σ2 − log |1− φeiω|2.

Thus

1

2π

∫ 2π

0
log f(ω)dω =

1

2π

∫ 2π

0
log σ2dω︸ ︷︷ ︸

=log σ2

− 1

2π

∫ 2π

0
log |1− φeiω|2dω︸ ︷︷ ︸

=0

.

There are various ways to prove that the second term is zero. Probably the simplest is to use basic

results in complex analysis. By making a change of variables z = eiω we have

1

2π

∫ 2π

0
log |1− φeiω|2dω =

1

2π

∫ 2π

0
log(1− φeiω)dω +

1

2π

∫ 2π

0
log(1− φe−iω)dω

=
1

2π

∫ 2π

0

∞∑
j=1

[
φjeijω

j
+
φje−ijω

j

]
dω = 0.

From this we immediately prove (7.30).

7.14 Appendix: Prediction coefficients for an AR(p)

model

Define the p-dimension random vector X ′t = (Xt, . . . , Xt−p+1). We define the causal VAR(1) model

in the vector form as

Xt = ΦXt−1 + εt
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where ε′t = (εt, 0, . . . , 0) and

Φ =



φ1 φ2 . . . φp−1 φp

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . . 0 0

0 0 . . . 1 0


. (7.31)

Lemma 7.14.1 Let Φ be defined as in (7.31) where parameters φ are such that the roots of φ(z) =

1−
∑p

j=1 φjz
j lie outside the unit circle. Then

[Φ|τ |+1Xp](1) =

p∑
`=1

X`

p−∑̀
s=0

φ`+sψ|τ |−s. (7.32)

where {ψj} are the coefficients in the expansion (1−
∑p

j=1 φje
−ijω)−1 =

∑∞
j=0 ψse

−isω.

PROOF. The proof is based on the observation that the jth row of Φm (m ≥ 1) is the (j − 1)th

row of Φm−1 (due to the structure of A). Let (φ1,m, . . . , φp,m) denote the first row of Φm. Using

this notation we have
φ1,m φ2,m . . . φp,m

φ1,m−1 φ2,m−1 . . . φp,m−1

...
...

. . .
...

φ1,m−p+1 φ2,m−p+1 . . . φp,m−p+1

 =


φ1 φ2 . . . φp−1 φp

1 0 . . . 0 0

0 1 . . . 0 0

0 0 . . . 1 0




φ1,m−1 φ2,m−1 . . . φp,m−1

φ1,m−2 φ2,m−2 . . . φp,m−2

...
...

. . .
...

φ1,m−p φ2,m−p . . . φp,m−p

 .

From the above we observe that φ`,m satisfies the system of equations

φ`,m = φ`φ1,m−1 + φ`+1,m−1 1 ≤ ` ≤ p− 1

φp,m = φpφ1,m−1. (7.33)

Our aim is to obtain an expression for φ`,m in terms of {φj}pj=1 and {ψj}∞j=0 which we now define.

Since the roots of φ(·) lies outside the unit circle the function (1 −
∑p

j=1 φjz
j)−1 is well defined

for |z| ≤ 1 and has the power series expansion (1 −
∑p

i=1 φiz)
−1 =

∑∞
i=0 ψiz

i for |z| ≤ 1. We use

the well know result [Φm]1,1 = φ1,m = ψm. Using this we obtain an expression for the coefficients
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{φ`,m; 2 ≤ ` ≤ p} in terms of {φi} and {ψi}. Solving the system of equations in (7.33), starting

with φ1,1 = ψ1 and recursively solving for φp,m, . . . , φ2,m we have

φp,r = φpψr−1 m− p ≤ r ≤ m

φ`,r = φ`φ1,r−1 + φ`+1,r−1 1 ≤ ` ≤ p− 1, m− p ≤ r ≤ m

This gives φp,m = φpψm−1, for ` = p− 1

φp−1,m = φp−1φ1,m−1 + φp,m−1

= φp−1ψm−1 + ψpψm−2

φp−2,m = φp−2φ1,m−1 + φp−1,m−1

= φp−2ψm−1 + φp−1ψm−2 + ψpψm−3

up to

φ1,m = φ1φ1,m−1 + φ2,m−1

=

p−1∑
s=0

φ1+sψm−1−s = (ψm).

This gives the general expression

φp−r,m =

r∑
s=0

φp−r+sψm−1−s 0 ≤ r ≤ p− 1.

In the last line of the above we change variables with ` = p− r to give for m ≥ 1

φ`,m =

p−∑̀
s=0

φ`+sψm−1−s 1 ≤ ` ≤ p,

where we set ψ0 = 1 and for t < 0, ψt = 0. Therefore

[Φ|τ |+1Xp](1) =

p∑
`=1

X`

p−∑̀
s=0

φ`+sψ|τ |−s.
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Thus we obtain the desired result. �

A proof of Durbin-Levinson algorithm based on symmetric Toeplitz matrices

We now give an alternative proof which is based on properties of the (symmetric) Toeplitz matrix.

We use (7.15), which is a matrix equation where

Σt


φt,1

...

φt,t

 = rt, (7.34)

with

Σt =


c(0) c(1) c(2) . . . c(t− 1)

c(1) c(0) c(1) . . . c(t− 2)
...

...
. . .

...
...

c(t− 1) c(t− 2)
...

... c(0)

 and rt =


c(1)

c(2)
...

c(t)

 .

The proof is based on embedding rt−1 and Σt−1 into Σt−1 and using that Σt−1φt−1
= rt−1.

To do this, we define the (t − 1) × (t − 1) matrix Et−1 which basically swops round all the

elements in a vector

Et−1 =


0 0 0 . . . 0 1

0 0 0 . . . 1 0
...

...
...

...
...

1 0
... 0 0 0

 ,

(recall we came across this swopping matrix in Section 6.2). Using the above notation, we have the

interesting block matrix structure

Σt =

 Σt−1 Et−1rt−1

r′t−1Et−1 c(0)


and rt = (r′t−1, c(t))

′.
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Returning to the matrix equations in (7.34) and substituting the above into (7.34) we have

Σtφt = rt, ⇒

 Σt−1 Et−1rt−1

r′t−1Et−1 c(0)

 φ
t−1,t

φt,t

 =

 rt−1

c(t)

 ,

where φ′
t−1,t

= (φ1,t, . . . , φt−1,t). This leads to the two equations

Σt−1φt−1,t
+ Et−1rt−1φt,t = rt−1 (7.35)

r′t−1Et−1φt−1,t
+ c(0)φt,t = c(t). (7.36)

We first show that equation (7.35) corresponds to the second equation in the Levinson-Durbin

algorithm. Multiplying (7.35) by Σ−1
t−1, and rearranging the equation we have

φ
t−1,t

= Σ−1
t−1rt−1︸ ︷︷ ︸
=φ

t−1

−Σ−1
t−1Et−1rt−1︸ ︷︷ ︸
=Et−1φt−1

φt,t.

Thus we have

φ
t−1,t

= φ
t−1
− φt,tEt−1φt−1

. (7.37)

This proves the second equation in Step 2 of the Levinson-Durbin algorithm.

We now use (7.36) to obtain an expression for φt,t, which is the first equation in Step 1.

Substituting (7.37) into φ
t−1,t

of (7.36) gives

r′t−1Et−1

(
φ
t−1
− φt,tEt−1φt−1

)
+ c(0)φt,t = c(t). (7.38)

Thus solving for φt,t we have

φt,t =
c(t)− c′t−1Et−1φt−1

c(0)− c′t−1φ
′
t−1

. (7.39)

Noting that r(t) = c(0) − c′t−1φ
′
t−1

. (7.39) is the first equation of Step 2 in the Levinson-Durbin

equation.

Note from this proof we do not need that the (symmetric) Toeplitz matrix is positive semi-

definite. See Pourahmadi (2001), Chapter 7.
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Prediction for ARMA models

Proof of equation (7.16) For the proof, we define the variables {Wt}, where Wt = Xt for 1 ≤ t ≤ p

and for t > max(p, q) let Wt = εt +
∑q

i=1 θiεt−i (which is the MA(q) part of the process). Since

Xp+1 =
∑p

j=1 φjXt+1−j +Wp+1 and so forth it is clear that sp(X1, . . . , Xt) = sp(W1, . . . ,Wt) (i.e.

they are linear combinations of each other). To prove the result we use the following steps:

PXt,...,X1(Xt+1) =

p∑
j=1

φj PXt,...,X1(Xt+1−j)︸ ︷︷ ︸
Xt+1−j

+

q∑
i=1

θiPXt,...,X1(εt+1−i)

=

p∑
j=1

φjXt+1−j +

q∑
i=1

θi PXt−Xt|t−1,...,X2−X2|1,X1(εt+1−i)︸ ︷︷ ︸
=PWt−Wt|t−1,...,W2−W2|1,W1

(εt+1−i)

=

p∑
j=1

φjXt+1−j +

q∑
i=1

θiPWt−Wt|t−1,...,W2−W2|1,W1(εt+1−i)

=

p∑
j=1

φjXt+1−j +

q∑
i=1

θi PWt+1−i−Wt+1−i|t−i,...,Wt−Wt|t−1
(εt+1−i)︸ ︷︷ ︸

since εt+1−iis independent of Wt+1−i−j ;j≥1

=

p∑
j=1

φjXt+1−j +

q∑
i=1

θi

i−1∑
s=0

PWt+1−i+s−Wt+1−i+s|t−i+s(εt+1−i)︸ ︷︷ ︸
since Wt+1−i+s−Wt+1−i+s|t−i+s are uncorrelated

=

p∑
j=1

φjXt+1−j +

q∑
i=1

θt,i (Wt+1−i −Wt+1−i|t−i)︸ ︷︷ ︸
=Xt+1−i−Xt+1−i|t−i

=

p∑
j=1

φjXt+1−j +

q∑
i=1

θt,i(Xt+1−i −Xt+1−i|t−i),

this gives the desired result.

We prove (7.18) for the ARMA(1, 2) model We first note that sp(X1, Xt, . . . , Xt) = sp(W1,W2, . . . ,Wt),

where W1 = X1 and for t ≥ 2 Wt = θ1εt−1+θ2εt−2+εt. The corresponding approximating predictor

is defined as Ŵ2|1 = W1, Ŵ3|2 = W2 and for t > 3

Ŵt|t−1 = θ1[Wt−1 − Ŵt−1|t−2] + θ2[Wt−2 − Ŵt−2|t−3].

Note that by using (7.17), the above is equivalent to

X̂t+1|t − φ1Xt︸ ︷︷ ︸
Ŵt+1|t

= θ1 [Xt − X̂t|t−1]︸ ︷︷ ︸
=(Wt−Ŵt|t−1)

+θ2 [Xt−1 − X̂t−1|t−2]︸ ︷︷ ︸
=(Wt−1−Ŵt−1|t−2)

.
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By subtracting the above from Wt+1 we have

Wt+1 − Ŵt+1|t = −θ1(Wt − Ŵt|t−1)− θ2(Wt−1 − Ŵt−1|t−2) +Wt+1. (7.40)

It is straightforward to rewrite Wt+1 − Ŵt+1|t as the matrix difference equation

 Wt+1 − Ŵt+1|t

Wt − Ŵt|t−1


︸ ︷︷ ︸

=ε̂t+1

= −

 θ1 θ2

−1 0


︸ ︷︷ ︸

=Q

 Wt − Ŵt|t−1

Wt−1 − Ŵt−1|t−2


︸ ︷︷ ︸

=ε̂t

+

 Wt+1

0


︸ ︷︷ ︸

W t+1

We now show that εt+1 and Wt+1− Ŵt+1|t lead to the same difference equation except for some

initial conditions, it is this that will give us the result. To do this we write εt as function of {Wt}

(the irreducible condition). We first note that εt can be written as the matrix difference equation

 εt+1

εt


︸ ︷︷ ︸

=εt+1

= −

 θ1 θ2

−1 0


︸ ︷︷ ︸

Q

 εt

εt−1


︸ ︷︷ ︸

εt

+

 Wt+1

0


︸ ︷︷ ︸

W t+1

(7.41)

Thus iterating backwards we can write

εt+1 =
∞∑
j=0

(−1)j [Qj ](1,1)Wt+1−j =
∞∑
j=0

b̃jWt+1−j ,

where b̃j = (−1)j [Qj ](1,1) (noting that b̃0 = 1) denotes the (1, 1)th element of the matrix Qj (note

we did something similar in Section ??). Furthermore the same iteration shows that

εt+1 =

t−3∑
j=0

(−1)j [Qj ](1,1)Wt+1−j + (−1)t−2[Qt−2](1,1)ε3

=

t−3∑
j=0

b̃jWt+1−j + (−1)t−2[Qt−2](1,1)ε3. (7.42)

Therefore, by comparison we see that

εt+1 −
t−3∑
j=0

b̃jWt+1−j = (−1)t−2[Qt−2ε3]1 =

∞∑
j=t−2

b̃jWt+1−j .

We now return to the approximation prediction in (7.40). Comparing (7.41) and (7.41) we see
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that they are almost the same difference equations. The only difference is the point at which the

algorithm starts. εt goes all the way back to the start of time. Whereas we have set initial values

for Ŵ2|1 = W1, Ŵ3|2 = W2, thus ε̂′3 = (W3 −W2,W2 −W1).Therefore, by iterating both (7.41) and

(7.41) backwards, focusing on the first element of the vector and using (7.42) we have

εt+1 − ε̂t+1 = (−1)t−2[Qt−2ε3]1︸ ︷︷ ︸
=
∑∞
j=t−2 b̃jWt+1−j

+(−1)t−2[Qt−2ε̂3]1

We recall that εt+1 = Wt+1 +
∑∞

j=1 b̃jWt+1−j and that ε̂t+1 = Wt+1 − Ŵt+1|t. Substituting this

into the above gives

Ŵt+1|t −
∞∑
j=1

b̃jWt+1−j =

∞∑
j=t−2

b̃jWt+1−j + (−1)t−2[Qt−2ε̂3]1.

Replacing Wt with Xt − φ1Xt−1 gives (7.18), where the bj can be easily deduced from b̃j and φ1.

We now state a few results which will be useful later.

Lemma 7.14.2 Suppose {Xt} is a stationary time series with spectral density f(ω). Let Xt =

(X1, . . . , Xt) and Σt = var(Xt).

(i) If the spectral density function is bounded away from zero (there is some γ > 0 such that

infω f(ω) > 0), then for all t, λmin(Σt) ≥ γ (where λmin and λmax denote the smallest and

largest absolute eigenvalues of the matrix).

(ii) Further, λmax(Σ−1
t ) ≤ γ−1.

(Since for symmetric matrices the spectral norm and the largest eigenvalue are the same, then

‖Σ−1
t ‖spec ≤ γ−1).

(iii) Analogously, supω f(ω) ≤M <∞, then λmax(Σt) ≤M (hence ‖Σt‖spec ≤M).

PROOF. See Chapter 10. �

Remark 7.14.1 Suppose {Xt} is an ARMA process, where the roots φ(z) and and θ(z) have

absolute value greater than 1 + δ1 and less than δ2, then the spectral density f(ω) is bounded

by var(εt)
(1− 1

δ2
)2p

(1−( 1
1+δ1

)2p
≤ f(ω) ≤ var(εt)

(1−( 1
1+δ1

)2p

(1− 1
δ2

)2p
. Therefore, from Lemma 7.14.2 we have that

λmax(Σt) and λmax(Σ−1
t ) is bounded uniformly over t.
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7.15 Appendix: Proof of the Kalman filter

In this section we prove the recursive equations used to define the Kalman filter. The proof is

straightforward and used the multi-stage projection described in Section 5.1.4 (which has been

already been used to prove the Levinson-Durbin algorithm and forms the basis of the Burg algo-

rithm).

The Kalman filter construction is based on the state space equation

Xt = FXt−1 + Vt

where {Xt}t is an unobserved time series, F is a known matrix, var[Vt] = Q and {Vt}t are indepen-

dent random variables that are independent of Xt−1. The observed equation

Yt = HXt−1 +Wt

where {Yt}t is the observed time series, var[Wt] = R, {Wt}t are independent that are independent

of Xt−1. Moreover {Vt}t and {Wt} are jointly independent. The parameters can be made time-

dependent, but this make the derivations notationally more cumbersome.

The derivation of the Kalman equations are based on the projections discussed in Section 5.3.

In particular, suppose that X,Y, Z are random variables then

PY,Z(X) = PY (X) + αX(Z − PY (Z)) (7.43)

where

αX =
cov(X,Z − PY (Z))

var(Z − PY (Z))

and

var[X − PY,Z(X)] = cov[X,X − PY,Z(X)], (7.44)

these properties we have already used a number of time.

The standard notation is X̂t+1|t = PY1,...,Yt(Xt+1) and Pt+1|t = var[Xt+1 − X̂t+1|t] (predictive)

and X̂t+1|t+1 = PY1,...,Yt(Xt+1) and Pt+1|t+1 = var[Xt+1 − X̂t+1|t+1] (update).
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The Kalman equations

(i) Prediction step

The conditional expectation

X̂t+1|t = FX̂t|t

and the corresponding mean squared error

Pt+1|t = FPt|tF
∗ +Q.

(ii) Update step

The conditional expectation

X̂t+1|t+1 = X̂t+1|t +Kt+1

(
Yt+1 −HX̂t+1|t

)
.

where

Kt+1 = Pt+1|tH
∗[HPt+1|tH

∗ +R]−1

and the corresponding mean squared error

Pt+1|t+1 = Pt+1|t −KtHPt+1|t = (I −KtH)Pt+1|t

(iii) There is also a smoothing step (which we ignore for now).

The Kalman filter iteratively evaluates step (i) and (ii) for t = 2, 3, . . .. We start with X̂t−1|t−1

and Pt−1|t−1.

Derivation of predictive equations The best linear predictor:

X̂t+1|t = PY1,...,Yt(Xt+1) = PY1,...,Yt(FXt + Vt+1)

= PY1,...,Yt(FXt) + PY1,...,Yt(Vt+1) = FPY1,...,Yt(Xt) = FX̂t|t.
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The mean squared error

Pt+1|t = var[Xt+1 − X̂t+1|t] = var[FXt + Vt+1 − FX̂t|t]

= var[F (Xt − X̂t|t) + Vt+1]

= var[F (Xt − X̂t|t)] + var[Vt+1]

= Fvar[Xt − X̂t|t]F
∗ + var[Vt+1] = FPt|tF

∗ +Q.

This gives the two predictors from the previous update equations. Next the update equations

(which is slightly more tricky).

Derivation of the update equations Now we expand the projection space from sp(Y1, . . . , Yt) to

sp(Y1, . . . , Yt, Yt+1). But as the recursion uses sp(Y1, . . . , Yt) we represent

sp(Y1, . . . , Yt, Yt+1) = sp(Y1, . . . , Yt, Yt+1 − PY1,...,Yt(Yt+1)).

Note that

Yt+1 − PY1,...,Yt(Yt+1) = Yt+1 − PY1,...,Yt(HXt+1 +Wt+1)

= Yt+1 −HX̂t+1|t.

Thus by using (7.43) we have

X̂t+1|t+1 = PY1,...,Yt,Yt+1(Xt+1) = X̂t+1|t + α
(
Yt+1 −HX̂t+1|t

)
where

α = var(Yt+1 −HX̂t+1|t)
−1cov(Xt+1, Yt+1 −HX̂t+1|t).

We now find an expression for α = Kt+1 (Kt+1 is the typical notation). We recall that Yt+1 =

HXt+1 +Wt+1, thus Yt+1 −HX̂t+1|t = H(Xt+1 −Xt+1|t) +Wt+1. Thus

cov(Xt+1, Yt+1 −HX̂t+1|t) = cov(Xt+1, H(Xt+1 −Xt+1|t) +Wt+1)

= cov(Xt+1, H(Xt+1 −Xt+1|t)) = cov(Xt+1 −Xt+1|t, Xt+1)H∗

= var(Xt+1 −Xt+1|t) = Pt+1|tH
∗ (7.45)
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and

var(Yt+1 −HX̂t+1|t) = var(H(Xt+1 −Xt+1|t) +Wt+1)

= Hvar(Xt+1 −Xt+1|t)H
∗ + var(Wt+1)

= HPt+1|tH
∗ +R.

Therefore, altogether

Kt+1 = Pt+1|tH
∗[HPt+1|tH

∗ +R]−1

X̂t+1|t+1 = X̂t+1|t +Kt+1

(
Yt+1 −HX̂t+1|t

)
.

Often Kt+1 or Kt+1

(
Yt+1 −HX̂t+1|t

)
is referred to as the Kalman gain, which the “gain” when

including the additional term Yt+1 in the prediction. Finally we calculate the variance. Again using

(7.44) we have

Pt+1|t+1 = var[Xt+1 − X̂t+1|t+1] = cov[Xt+1, Xt+1 − X̂t+1|t+1]

= cov
[
Xt+1, Xt+1 − X̂t+1|t −Kt

(
Yt+1 −HX̂t+1|t

)]
= cov

[
Xt+1, Xt+1 − X̂t+1|t

]
− cov

[
Xt+1,Kt

(
Yt+1 −HX̂t+1|t

)]
= Pt+1|t −KtHPt+1|t = (I −KtH)Pt+1|t

where the above follows from (7.45). I have a feeling the above may be a little wrong in terms of

of brackets.
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Chapter 8

Estimation of the mean and

covariance

Objectives

• To derive the sample autocovariance of a time series, and show that this is a positive definite

sequence.

• To show that the variance of the sample covariance involves fourth order cumulants, which

can be unwielding to estimate in practice. But under linearity the expression for the variance

greatly simplifies.

• To show that under linearity the correlation does not involve the fourth order cumulant. This

is the Bartlett formula.

• To use the above results to construct a test for uncorrelatedness of a time series (the Port-

manteau test). And understand how this test may be useful for testing for independence in

various different setting. Also understand situations where the test may fail.

Here we summarize the Central limit theorems we will use in this chapter. The simplest is the

case of iid random variables. The first is the classical central limit theorem. Suppose that {Xi} are

iid random variables with mean µ and variance σ2 <∞. Then

1√
n

n∑
i=1

(Xi − µ)
D→ N (0, σ2).
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A small variant on the classical CLT is the case that {Xi} are independent random variables (but

not identically distributed). Suppose E[Xi] = µi, var[Xi] = σ2
i <∞ and for every ε > 0

1

s2
n

n∑
i=1

E
(
(Xi − µi)2I(s−1

n |Xi − µi| > ε)
)
→ 0

where s2
n =

∑n
i=1 σ

2
i , which is the variance of

∑n
i=1Xi (the above condition is called the Lindeberg

condition). Then

1√∑n
i=1 σ

2
i

n∑
i=1

(Xi − µi)
D→ N (0, 1).

The Lindeberg condition looks unwieldy, however by using Chebyshev’s and Hölder inequality it

can be reduced to simple bounds on the moments.

Remark 8.0.1 (The aims of the Lindeberg condition) The Lindeberg condition essential re-

quires a uniform bound in the tails for all the random variables {Xi} in the sum. For example,

suppose Xi are t-distributed random variables where Xi is distributed with a t-distribution with

(2 + i−1) degrees of freedom. We know that the number of df (which can be non-integer-valued) gets

thicker the lower the df. Furthermore, E[X2
i ] < ∞ only if Xi has a df greater than 2. Therefore,

the second moments of Xi exists. But as i gets larger, Xi has thicker tails. Making it impossible (I

believe) to find a uniform bound such that Lindeberg’s condition is satisified.

Note that the Lindeberg condition generalizes to the conditional Lindeberg condition when

dealing with martingale differences.

We now state a generalisation of this central limit to triangular arrays. Suppose that {Xt,n}

are independent random variables with mean zero. Let Sn =
∑n

t=1Xt,n we assume that var[Sn] =∑n
t=1 var[Xt,n] = 1. For example, in the case that {Xt} are iid random variables and Sn =

1√
n

∑n
t=1[Xt − µ] =

∑n
t=1Xt,n, where Xt,n = σ−1n−1/2(Xt − µ). If for all ε > 0

n∑
t=1

E
(
X2
t,nI(|Xt,n| > ε)

)
→ 0,

then Sn
D→ N (0, 1).
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8.1 An estimator of the mean

Suppose we observe {Yt}nt=1, where

Yt = µ+Xt,

where µ is the finite mean, {Xt} is a zero mean stationary time series with absolutely summable

covariances (
∑

k |cov(X0, Xk)| < ∞). Our aim is to estimate the mean µ. The most obvious

estimator is the sample mean, that is Ȳn = n−1
∑n

t=1 Yt as an estimator of µ.

8.1.1 The sampling properties of the sample mean

We recall from Example 3.3.1 that we obtained an expression for the sample mean. We showed

that

var(Ȳn) =
1

n
c(0) +

2

n

n∑
k=1

(n− k
n

)
c(k).

Furthermore, if
∑

k |c(k)| <∞, then in Example 3.3.1 we showed that

var(Ȳn) ≈ 1

n
c(0) +

2

n

∞∑
k=1

c(k).

Thus if the time series has sufficient decay in its correlation structure a mean squared consistent

estimator of the sample mean can be achieved. However, one drawback is that the dependency

means that one observation will influence the next, and if the influence is positive (seen by a positive

covariance), the resulting estimator may have a (much) larger variance than the iid case.

The above result does not require any more conditions on the process, besides second order

stationarity and summability of its covariance. However, to obtain confidence intervals we require

a stronger result, namely a central limit theorem for the sample mean. The above conditions are

not enough to give a central limit theorem. To obtain a CLT for sums of the form
∑n

t=1Xt we

need the following main ingredients:

(i) The variance needs to be finite.

(ii) The dependence between Xt decreases the further apart in time the observations. However,

this is more than just the correlation, it really means the dependence.
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The above conditions are satisfied by linear time series, if the cofficients φj decay sufficient fast.

However, these conditions can also be verified for nonlinear time series (for example the (G)ARCH

and Bilinear model described in Chapter 13).

We now state the asymptotic normality result for linear models.

Theorem 8.1.1 Suppose that Xt is a linear time series, of the form Xt =
∑∞

j=−∞ ψjεt−j, where εt

are iid random variables with mean zero and variance one,
∑∞

j=−∞ |ψj | <∞ and
∑∞

j=−∞ ψj 6= 0.

Let Yt = µ+Xt, then we have

√
n
(
Ȳn − µ

)
= N (0, V )

where V = c(0) + 2
∑∞

k=1 c(k).

PROOF. Later in this course we will give precise details on how to prove asymptotic normality of

several different type of estimators in time series. However, we give a small flavour here by showing

asymptotic normality of Ȳn in the special case that {Xt}nt=1 satisfy an MA(q) model, then explain

how it can be extended to MA(∞) processes.

The main idea of the proof is to transform/approximate the average into a quantity that we

know is asymptotic normal. We know if {εt}nt=1 are iid random variables with mean µ and variance

one then

√
n(ε̄n − µ)

D→ N (0, 1). (8.1)

We aim to use this result to prove the theorem. Returning to Ȳn by a change of variables (s = t−j)

we can show that

1

n

n∑
t=1

Yt = µ+
1

n

n∑
t=1

Xt = µ+
1

n

n∑
t=1

q∑
j=0

ψjεt−j

= µ+
1

n

n−q∑
s=1

εs

 q∑
j=0

ψj

+

0∑
s=−q+1

εs

 q∑
j=q−s

ψj

+

n∑
s=n−q+1

εs

n−s∑
j=0

ψj


= µ+

n− q
n

 q∑
j=0

ψj

 1

n− q

n−q∑
s=1

εs +
1

n

0∑
s=−q+1

εs

 q∑
j=q+s

ψj

+
1

n

n∑
s=n−q+1

εs

n−s∑
j=0

ψj


:= µ+

(n− q)Ψ
n

ε̄n−q + E1 + E2, (8.2)
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where Ψ =
∑q

j=0 ψj . It is straightforward to show that E|E1| ≤ Cn−1 and E|E2| ≤ Cn−1.

Finally we examine (n−q)Ψ
n ε̄n−q. We note that if the assumptions are not satisfied and

∑q
j=0 ψj =

0 (for example the process Xt = εt − εt−1), then

1

n

n∑
t=1

Yt = µ+
1

n

0∑
s=−q+1

εs

 q∑
j=q−s

ψj

+
1

n

n∑
s=n−q+1

εs

n−s∑
j=0

ψj

 .

This is a degenerate case, since E1 and E2 only consist of a finite number of terms and thus if εt are

non-Gaussian these terms will never be asymptotically normal. Therefore, in this case we simply

have that 1
n

∑n
t=1 Yt = µ+O( 1

n) (this is why in the assumptions it was stated that Ψ 6= 0).

On the other hand, if Ψ 6= 0, then the dominating term in Ȳn is ε̄n−q. From (8.1) it is

clear that
√
n− qε̄n−q

P→ N (0, 1) as n → ∞. However, for finite q,
√

(n− q)/n P→ 1, therefore
√
nε̄n−q

P→ N (0, 1). Altogether, substituting E|E1| ≤ Cn−1 and E|E2| ≤ Cn−1into (8.2) gives

√
n
(
Ȳn − µ

)
= Ψ
√
nε̄n−q +Op(

1

n
)
P→ N

(
0,Ψ2

)
.

With a little work, it can be shown that Ψ2 = V .

Observe that the proof simply approximated the sum by a sum of iid random variables. In the

case that the process is a MA(∞) or linear time series, a similar method is used. More precisely,

we have

√
n
(
Ȳn − µ

)
=

1√
n

n∑
t=1

∞∑
j=0

ψjεt−j =
1√
n

∞∑
j=0

ψj

n−j∑
s=1−j

εs

=
1√
n

∞∑
j=0

ψj

n∑
t=1

εt +Rn

where

Rn =
1√
n

∞∑
j=0

ψj

 n−j∑
s=1−j

εs −
n∑
s=1

εs


=

1√
n

n∑
j=0

ψj

 0∑
s=1−j

εs −
n∑

s=n−j
εs

+
1√
n

∞∑
j=n+1

ψj

 n−j∑
s=1−j

εs −
n∑
s=1

εs


:= Rn1 +Rn2 +Rn3 +Rn4.
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We will show that E[R2
n,j ] = o(1) for 1 ≤ j ≤ 4. We start with Rn,1

E[R2
n,1] =

1

n

n∑
j1,j2=0

ψj1ψj2cov

 0∑
s1=1−j1

εs1 ,

0∑
s2=1−j2

εs2


=

1

n

n∑
j1,j2=0

ψj1ψj2 min[j1 − 1, j2 − 1]

=
1

n

n∑
j=0

ψ2
j (j − 1) +

2

n

n∑
j1=0

ψj1 ,

j1−1∑
j2=0

ψj2 min[j2 − 1]

≤ 1

n

n∑
j=0

ψ2
j (j − 1) +

2Ψ

n

n∑
j1=0

|j1ψj1 |.

Since
∑∞

j=0 |ψj | <∞ and, thus,
∑∞

j=0 |ψj |2 <∞, then by dominated convegence
∑n

j=0[1−j/n]ψj →∑∞
j=0 ψj and

∑n
j=0[1 − j/n]ψ2

j →
∑∞

j=0 ψ
2
j as n → ∞. This implies that

∑n
j=0(j/n)ψj → 0 and∑n

j=0(j/n)ψ2
j → 0. Substituting this into the above bounds for E[R2

n,1] we immediately obtain

E[R2
n,1] = o(1). Using the same argument we obtain the same bound for Rn,2, Rn,3 and Rn,4. Thus

√
n
(
Ȳn − µ

)
= Ψ

1√
n

n∑
j=1

εt + op(1)

and the result then immediately follows. �

Estimation of the so called long run variance (given in Theorem 8.1.1) can be difficult. There

are various methods that can be used, such as estimating the spectral density function (which we

define in Chapter 10) at zero. Another approach proposed in Lobato (2001) and Shao (2010) is to

use the method of so called self-normalization which circumvents the need to estimate the long run

mean, by privotalising the statistic.

8.2 An estimator of the covariance

Suppose we observe {Yt}nt=1, to estimate the covariance we can estimate the covariance c(k) =

cov(Y0, Yk) from the the observations. A plausible estimator is

ĉn(k) =
1

n

n−|k|∑
t=1

(Yt − Ȳn)(Yt+|k| − Ȳn), (8.3)
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since E[(Yt − Ȳn)(Yt+|k| − Ȳn)] ≈ c(k). Of course if the mean of Yt is known to be zero (Yt = Xt),

then the covariance estimator is

ĉn(k) =
1

n

n−|k|∑
t=1

XtXt+|k|. (8.4)

The eagle-eyed amongst you may wonder why we don’t use 1
n−|k|

∑n−|k|
t=1 XtXt+|k|, when ĉn(k) is a

biased estimator, whereas 1
n−|k|

∑n−|k|
t=1 XtXt+|k| is not. However ĉn(k) has some very nice properties

which we discuss in the lemma below. The sample autocorrelation is the ratio

ρ̂n(r) =
ĉn(r)

ĉn(0)
.

Most statistical software will have functions that evaluate the sample autocorrelation.

Lemma 8.2.1 Suppose we define the empirical covariances

ĉn(k) =

 1
n

∑n−|k|
t=1 XtXt+|k| |k| ≤ n− 1

0 otherwise

then {ĉn(k)} is a positive definite sequence. Therefore, using Lemma 3.4.1 there exists a stationary

time series {Zt} which has the covariance ĉn(k).

PROOF. There are various ways to show that {ĉn(k)} is a positive definite sequence. One method

uses that the spectral density corresponding to this sequence is non-negative, we give this proof in

Section 10.4.1.

Here we give an alternative proof. We recall a sequence is semi-positive definite if for any vector

a = (a1, . . . , ar)
′ we have

r∑
k1,k2=1

ak1ak2 ĉn(k1 − k2) =
n∑

k1,k2=1

ak1ak2 ĉn(k1 − k2) = a′Σ̂na ≥ 0

where

Σ̂n =


ĉn(0) ĉn(1) ĉn(2) . . . ĉn(n− 1)

ĉn(1) ĉn(0) ĉn(1) . . . ĉn(n− 2)
...

...
. . .

...
...

ĉn(n− 1) ĉn(n− 2)
...

... ĉn(0)

 ,
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noting that ĉn(k) = 1
n

∑n−|k|
t=1 XtXt+|k|. However, ĉn(k) = 1

n

∑n−|k|
t=1 XtXt+|k| has a very interesting

construction, it can be shown that the above convariance matrix is Σ̂n = XnX
′
n, where Xn is a

n× 2n matrix with

Xn =


0 0 . . . 0 X1 X2 . . . Xn−1 Xn

0 0 . . . X1 X2 . . . Xn−1 Xn 0
...

...
...

...
...

...
...

...
...

X1 X2 . . . Xn−1 Xn 0 . . . . . . 0


Using the above we have

a′Σ̂na = a′XnX
′
na = ‖X′a‖22 ≥ 0.

This this proves that {ĉn(k)} is a positive definite sequence.

Finally, by using Theorem 3.4.1, there exists a stochastic process with {ĉn(k)} as its autoco-

variance function. �

8.2.1 Asymptotic properties of the covariance estimator

The main reason we construct an estimator is either for testing or constructing a confidence interval

for the parameter of interest. To do this we need the variance and distribution of the estimator. It

is impossible to derive the finite sample distribution, thus we look at their asymptotic distribution.

Besides showing asymptotic normality, it is important to derive an expression for the variance.

In an ideal world the variance will be simple and will not involve unknown parameters. Usually

in time series this will not be the case, and the variance will involve several (often an infinite)

number of parameters which are not straightforward to estimate. Later in this section we show

that the variance of the sample covariance can be extremely complicated. However, a substantial

simplification can arise if we consider only the sample correlation (not variance) and assume linearity

of the time series. This result is known as Bartlett’s formula (you may have come across Maurice

Bartlett before, besides his fundamental contributions in time series he is well known for proposing

the famous Bartlett correction). This example demonstrates, how the assumption of linearity can

really simplify problems in time series analysis and also how we can circumvent certain problems

in which arise by making slight modifications of the estimator (such as going from covariance to

correlation).
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The following theorem gives the asymptotic sampling properties of the covariance estimator

(8.3). One proof of the result can be found in Brockwell and Davis (1998), Chapter 8, Fuller

(1995), but it goes back to Bartlett (indeed its called Bartlett’s formula). We prove the result in

Section ??.

Theorem 8.2.1 Suppose {Xt} is a mean zero linear stationary time series where

Xt = µ+

∞∑
j=−∞

ψjεt−j ,

where
∑

j |ψj | < ∞, {εt} are iid random variables with E(εt) = 0 and E(ε4
t ) < ∞. Suppose we

observe {Xt : t = 1, . . . , n} and use (8.3) as an estimator of the covariance c(k) = cov(X0, Xk).

Define ρ̂n(r) = ĉn(r)/ĉn(0) as the sample correlation. Then for each h ∈ {1, . . . , n}

√
n(ρ̂n(h)− ρ(h))

D→ N (0,Wh) (8.5)

where ρ̂n(h) = (ρ̂n(1), . . . , ρ̂n(h)), ρ(h) = (ρ(1), . . . , ρ(h)) and

(Wh)ij =
∞∑

k=−∞

{
ρ(k + i)ρ(k + j) + ρ(k − i)ρ(k + j) + 2ρ(i)ρ(j)ρ2(k)

−2ρ(i)ρ(k)ρ(k + j)− 2ρ(j)ρ(k)ρ(k + i)

}
. (8.6)

Equation (8.6) is known as Bartlett’s formula.

In Section 8.3 we apply the method for checking for correlation in a time series. We first show

how the expression for the asymptotic variance is obtained.

8.2.2 The asymptotic properties of the sample autocovariance and

autocorrelation

In order to show asymptotic normality of the autocovariance and autocorrelation we require the

following result. For any coefficients {αrj}dj=0 ∈ Rd+1 (such that σ2
α, defined below, is non-zero) we

have

√
n

 d∑
j=0

αrj
1

n

n−|rj |∑
t=1

XtXt+rj −
d∑
j=0

αrjc(rj)

 D→ N
(
0, σ2

α

)
, (8.7)

251



for some σ2
α <∞. This result can be proved under a whole host of conditions including

• The time series is linear, Xt =
∑

j ψjεt−j , where {εt} are iid,
∑

j |ψj | <∞ and E[ε4
t ] <∞.

• α and β-mixing with sufficient mixing rates and moment conditions (which are linked to the

mixing rates).

• Physical dependence

• Other dependence measures.

All these criterions essentially show that the time series {Xt} becomes “increasingly independent”

the further apart the observations are in time. How this dependence is measured depends on the

criterion, but it is essential for proving the CLT. We do not prove the above. Our focus in this

section will be on the variance of the estimator.

Theorem 8.2.2 Suppose that condition (8.7) is satisfied (and
∑

h∈Z |c(h)| <∞ and∑
h1,h2,h3

|κ4(h1, h2, h3)| <∞; this is a cumulant, which we define in the section below), then

√
n


ĉn(0)− c(0)

ĉn(r1)− c(r1)
...

ĉn(rd)− c(rd)


P→ N (0, Vd+1)

where

(Vd+1)i,j =

∞∑
k=−∞

c(k)c(k + ri−1 − rj−1) +

∞∑
k=−∞

c(k + ri−1 − 1)c(k − rj−1 − 1) +

∞∑
k=−∞

κ4(ri−1 − 1, k, k + rj−1 − 1) (8.8)

where we set r0 = 0.

PROOF. The first part of the proof simply follows from (8.7). The derivation for Vd+1 is given in

Section 8.2.3, below. �

In order to prove the results below, we partition Vd+1 into a term which contains the covariances

and the term which contains the fourth order cumulants (which we have yet to define). Let Vd+1 =
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Cd+1 +Kd+1, where

(Cd+1)i,j =

∞∑
k=−∞

c(k)c(k + ri−1 − rj−1) +

∞∑
k=−∞

c(k + ri−1)c(k − rj−1)

(Kd+1)i,j =
∞∑

k=−∞
κ4(ri−1, k, k + rj−1). (8.9)

and set r0 = 0. So far we have not defined κ4. However, it is worth bearing in mind that if the

time series {Xt} is Gaussian, then this term is zero i.e. Kd+1 = 0. Thus estimation of the variance

of the sample covariance for Gaussian time series is relatively straightforward as it only depends

on the covariance.

We now derive the sampling properties of the sample autocorrelation.

Lemma 8.2.2 Suppose that conditions in Theorem 8.2.2 hold. Then

√
n


ρ̂n(r1)− ρ(r1)

...

ρ̂n(rd)− ρ(rd)

 P→ N
(
0, G(Cd+1 +Kd+1)G′

)

where rj 6= 0, Cd+1 and Kd+1 are defined as in equation (8.9) and G is a d× (d+ 1) dimensional

matrix where

G =
1

c(0)


−ρ(r1) 1 0 . . . 0

−ρ(r2) 0 1 . . . 0
...

... . . .
. . . 0

−ρ(rd) 0 . . . . . . 1


PROOF. We define the g : Rd+1 → Rd vector function

g(x0, x1, . . . , xd) =

(
x1

x0
, . . . ,

xd
x0

)
.
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We observe that (ρ̂(r1), . . . , ρ̂(rd)) = g(ĉn(0), ĉn(r1), . . . , ĉn(rd)). Thus

∇g(c(0), . . . , c(rd)) =


− c(r1)
c(0)2

1
c(0) 0 . . . 0

− c(r2)
c(0)2

0 1
c(0) . . . 0

...
... . . .

. . . 0

− c(rd)
c(0)2

0 . . . . . . 1
c(0)

 = G.

Therefore, by using Theorem 8.2.2 together with the continuous mapping theorem we obtain the

result. �

Comparing Theorem 8.2.2 to the asymptotically pivotal result
√
nρ

h,n

D→ N (0, Ih) in (??) it is clear

that additional assumptions are required for the result to be pivotal. Therefore, in the following

theorem we consider the case that {Xt} is a linear time series, which includes the special case that

{Xt} are iid random variables. First, we make some observations about G and GCd+1G
′. Note

that the assumption of linearity of a time series can be checked (see, for example, Subba Rao and

Gabr (1980)).

Remark 8.2.1 (i) Basic algebra gives

(GCd+1G
′)r1,r2 =

∞∑
k=−∞

{
ρ(k + r1)ρ(k + r2) + ρ(k − r1)ρ(k + r2) + 2ρ(r1)ρ(r2)ρ2(k)

−2ρ(r1)ρ(k)ρ(k + r2)− 2ρ(r2)ρ(k)ρ(k + r1)

}
. (8.10)

(ii) Though it may not seem directly relevant. It is easily seen that the null space of the matrix

G is

N (G) =
{
αcd+1;α ∈ R

}
where c′d+1 = (c(0), c(r1), . . . , c(rd)). This property will be useful in proving Bartlett’s formula

(below).

Theorem 8.2.3 Suppose {Xt} is a mean zero linear stationary time series where

Xt =

∞∑
j=−∞

ψjεt−j ,
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with
∑

j |ψj | < ∞, {εt} are iid random variables with E(εt) = 0 and E(ε4
t ) < ∞. Suppose we

observe {Xt : t = 1, . . . , n} and use (8.3) as an estimator of the covariance c(k) = cov(X0, Xk).

Then we have

√
n


ρ̂n(r1)− ρ(r1)

...

ρ̂n(rd)− ρ(rd)

 P→ N
(
0, GCd+1G

′) ,

where an explicit expression for GCd+1G
′ is given in (8.10) (this is called Bartlett’s formula).

PROOF. To prove the result we use Lemma 8.2.2. However, we observe that the term GKd+1G
′

has disappeared. In Section 8.2.3 we show that for (univariate) linear processes GKd+1G
′ = 0. �

Remark 8.2.2 • Under linearity of the time series, Brockwell and Davis (2002), Theorem

7.2.2 show that the above theorem also holds for linear time series whose fourth moment does

not exist. This result requires slightly stronger assumptions on the coefficients {ψj}.

• This allusive fourth cumulant term does not disappear for vector linear processes.

Using Theorem 8.2.3, we can prove (??) for iid time series. Since iid random variables are a

special case of a linear time series (φj = 0 for all j 6= 0) with c(r) = 0 for all r 6= 0. Substituting

this into Theorem 8.2.3 gives

√
n


ρ̂n(1)

...

ρ̂n(h)

 D→ N (0, Ih).

Using this result we obtain the critical values in the ACF plots and the Box-Pierce test. How-

ever, from Lemma 8.2.2 we observe that the results can be misleading for time series which are

uncorrelated but not necessarily iid. Before discussing this, we first prove the above results. These

calculations are a little tedious, but they are useful in understanding how to deal with many different

types of statistics of a time series (not just the sample autocovariances).

8.2.3 The covariance of the sample autocovariance

Our aim in this section is to derive an expression for cov (ĉn(r1), ĉn(r2)). To simply notation we

focus on the variance (r1 = r2), noting that the same calculations carry over to the covariance.
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Approach 1 Use the moment expansion of a covariance

var[ĉn(r)] =
1

n2

n−|r|∑
t,τ=1

cov(XtXt+r, XτXτ+r)

=
1

n2

n−|r|∑
t,τ=1

(E(XtXt+r, XτXτ+r)− E(XtXt+r)E(XτXτ+r))

=
1

n2

n−|r|∑
t,τ=1

(
E(XtXt+r, XτXτ+r)− c(r)2

)
.

Studying the above and comparing it to the expansion of var(X̄) when the {Xt} are iid, we would

expect that var[ĉn(r)] = O(n−1). But it is difficult to see what is happening with this expansion.

Though it is possible to use this method. We use an alternative expansion in terms of cumulants.

Approach 2 Use an expansion of the covariance of products in terms of products of cumulants.

Suppose A, B, C and D are zero mean (real) random variables. Then

cov︸︷︷︸
=cum

(AB,CD) = cov︸︷︷︸
=cum

(A,C) cov︸︷︷︸
=cum

(B,D) + cov︸︷︷︸
=cum

(A,D) cov︸︷︷︸
=cum

(B,C) + cum(A,B,C,D). (8.11)

This result can be generalized to higher order cumulants, see Brillinger (2001).

Below, we formally define a cumulant and explain why it is a useful tool in time series.

Background: What are cumulants?

To understand what they are and why they are used, we focus the following discussion for fourth

order cumulants.

The joint cumulant of Xt, Xt+k1 , Xt+k2 , Xt+k3 (denoted as cum(Xt, Xt+k1 , Xt+k2 , Xt+k3)) is the

coefficient of the term s1s2s3s4 in the power series expansion of

K(s1, s2, s3, s4) = log E[eis1Xt+is2Xt+k1+is3Xt+k2+is4Xt+k4 ].

Thus

cum(Xt, Xt+k1 , Xt+k2 , Xt+k3) =
∂4K(s1, s2, s3, s4)

∂s1∂s1∂s3∂s4
cs1,s2,s3,s4=0

It looks very similar to the definition of moments and there is a one to one correpondence between
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the moments and the cumulants. It can be shown that the cumulant corresponding to coefficient

of sisj is cum(Xt+ki , Xt+kj ) (the covariance is often called the second order cumulant).

Properties

• If Xt is independent of Xt+k1 , Xt+k2 , Xt+k3 then

cum (Xt, Xt+k1 , Xt+k2 , Xt+k3) = 0.

This is because the log of the corresponding characteristic function is

log E[eis1Xt+is2Xt+k1+is3Xt+k2+is4Xt+k4 ] = log E[eis1Xt ] + log[E[eis2Xt+k1+is3Xt+k2+is4Xt+k4 ].

Differentiating the above with respect to s1s2s3s4 gives zero.

• If Xt, Xt+k1 , Xt+k2 , Xt+k3 is multivariate Gaussian, then all cumulants higher than order 2

are zero. This is easily seen, by recalling that the characteristic function of a multivariate

normal distribution is

C(s1, s2, s3, s4) = exp(iµ′s− 1

2
s′Σs)

where µ and Σ are the mean and variance of Xt, Xt+k1 , Xt+k2 , Xt+k3 respectively. Based on

the above, we observe that logC(s1, s2, s3, s4) is an order two multivariate polynomial.

Note that this property can be used to prove CLTs.

• Cumulants satisfy the follow multilinear property

cum (aX1 + bY1 + c,X2, X3, X4)

= acum (X1, X2, X3, X4) + bcum (Y1, X2, X3, X4)

where a, b and c are scalars.

• The influence of stationarity:

From the definition of the characteristic function, if the time series {Xt} is strictly stationary.

Then

log E[eis1Xt+is2Xt+k1+is3Xt+k2+is4Xt+k4 ] = log E[eis1X0+is2Xk1+is3Xk2+is4Xk4 ].
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Thus, analogous to covariances, cumulants are invariant to shift

cum(Xt, Xt+k1 , Xt+k2 , Xt+k3) = cum(X0, Xk1 , Xk2 , Xk3) = κ4(k1, k2, k3).

Comparisons between the covariance and higher order cumulants

(a) The covariance is invariant to ordering cov[Xt, Xt+k] = cov[Xt+k, Xt].

Like the covariance, the joint cumulant cum[Xt, Xt+k1 , Xt+k2 , Xt+k3 ] is also invariant to order.

(b) The covariance cov[Xt, Xt+k] is a measure of linear dependence between Xt and Xt+k.

The cumulant is measuring the dependence between cum[Xt, Xt+k1 , Xt+k2 , Xt+k3 ] in “three

directions” (though as far as I am aware, unlike the covariance it has no clear geometric

interpretation). For example, if {Xt} is a zero mean time series then

cum[Xt, Xt+k1 , Xt+k2 , Xt+k3 ]

= E[XtXt+k1Xt+k2Xt+k3 ]− E[XtXt+k1 ]E[Xt+k2Xt+k3 ]

−E[XtXt+k2 ]E[Xt+k1Xt+k3 ]− E[XtXt+k3 ]E[Xt+k1Xt+k2 ]. (8.12)

Unlike the covariance, the cumulants do not seem to satisfy any non-negative definite condi-

tions.

(c) In time series we usually assume that the covariance decays over time i.e. if k > 0

|cov[Xt, Xt+k]| ≤ α(k)

where α(k) is a positive sequence such that
∑

k α(k) < ∞. This can easily be proved for

linear time series with
∑

j |ψj | <∞1.

For a large class of time series, the analogous result is true for cumulants. I.e. if k1 ≤ k2 ≤ k3

1This is easily shown by noting that if Xt =
∑

j ψjεt−j then cov(Xt, Xt+h) = σ2
∑

j ψjψj+h. Thus

∞∑
h=−∞

|c(h)| = σ2
∞∑

h=−∞

∣∣∣∣∣∣
∑
j

ψjψj+h

∣∣∣∣∣∣ ≤ σ2

 ∞∑
j=−∞

|ψj |

2

<∞.
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then

|cum[Xt, Xt+k1 , Xt+k2 , Xt+k3 ]| ≤ α(k1)α(k2 − k1)α(k3 − k2) (8.13)

where
∑∞

k=−∞ α(k) <∞.

(d) Often in proofs we use the assumption
∑

r |c(r)| < ∞. An analogous assumption for fourth

order cumulants is
∑

k1,k2,k3
|κ4(k1, k2, k3)| <∞. Based on the inequality (8.13), this assump-

tion is often reasonable (such assumptions are often called Brillinger-type mixing conditions).

Point (c) and (d) are very important in the derivation of sampling properties of an estimator.

Example 8.2.1 • We illustrate (d) for the causal AR(1) model Xt = φXt−1 + εt (where {εt}

are iid random variables with finite fourth order cumulant κ4 = cum(εt, εt, εt, εt)). By using

the MA(∞) representation
∑∞

j=0 φ
jεt−j (assuming 0 ≤ k1 ≤ k2 ≤ k3) we have

cum[Xt, Xt+k1 , Xt+k2 , Xt+k3 ] =
∞∑

j0,j1,j2,j3=0

φj0+j1+j2+j3cum [εt−j0 , εt+k1−j1 , εt+k2−j2 , εt+k3−j3 ]

= κ4

∞∑
j=0

φjφj+k1φj+k2φj+k3 = κ4
φk1+k2+k3

1− φ4
.

The fourth order dependence decays as the lag increases. And this rate of decay is faster than

the general bound |cum[Xt, Xt+k1 , Xt+k2 , Xt+k3 ]| ≤ α(k1)α(k2 − k1)α(k3 − k2).

• If {Xt}t are martingale differences and tj are all different, then using (8.12) (the expansion

of the fourth order cumulant in terms of moments) we have

cum[Xt1 , Xt2 , Xt3 , Xt4 ] = 0.

Remark 8.2.3 (Cumulants and dependence measures) The summability of cumulants can

be shown under various mixing and dependent type conditions. We mention a few below.

• Conditions for summability of cumulants for mixing processes are given in Statulevicius and

Jakimavicius (1988) and Lahiri (2003).

• Conditions for summability of cumulants for physical dependence processes are given in Shao

and Wu (2007), Theorem 4.1.
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Proof of equation (8.8) in Theorem 8.2.2

Our aim is to show

var


√
n


ĉn(0)

ĉn(r1)
...

ĉn(rd)



→ Vd+1

where

(Vd+1)i,j =

∞∑
k=−∞

c(k)c(k + ri−1 − rj−1) +

∞∑
k=−∞

c(k + ri−1 − 1)c(k − rj−1 − 1) +

∞∑
k=−∞

κ4(ri−1 − 1, k, k + rj−1 − 1). (8.14)

To simplify notation we start by considering the variance

var[
√
nĉn(r)] =

1

n

n−|r|∑
t,τ=1

cov(XtXt+r, XτXτ+r).

To prove the result, we use the identity (8.11); if A,B,C and D are mean zero random variables,

then cov[AB,CD] = cov[A,C]cov[B,D]+cov[A,D]cov[B,C]+cum[A,B,C,D]. Using this identity

we have

var[ĉn(r)]

=
1

n2

n−|r|∑
t,τ=1

(
cov(Xt, Xτ )︸ ︷︷ ︸

=c(t−τ)

cov(Xt+r, Xτ+r) + cov(Xt, Xτ+r)cov(Xt+r, Xτ ) + cum(Xt, Xt+r, Xτ , Xτ+r)︸ ︷︷ ︸
κ4(r,τ−t,t+r−τ)

)

=
1

n

n−|r|∑
t,τ=1

c(t− τ)2 +
1

n

n−|r|∑
t,τ=1

c(t− τ − r)c(t+ r − τ) +
1

n

n−|r|∑
t,τ=1

k4(r, τ − t, τ + r − t)

:= In + IIn + IIIn,

where the above is due to strict stationarity of the time series. The benefit of using a cumulant

expansion rather than a moment expansion is now apparent. Since cumulants act like a covariances,

they do decay as the time gaps grow. This allows us to analysis each term In, IIn and IIIn

individually. This simplifies the analysis.
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We first consider In. Either (i) by changing variables and letting k = t− τ and thus changing

the limits of the summand in an appropriate way or (ii) observing that
∑n−|r|

t,τ=1 c(t− τ)2 is the sum

of the elements in the Toeplitz matrix


c(0)2 c(1)2 . . . c(n− 1)2

c(−1)2 c(0)2 . . . c(n− 2)2

...
...

. . .
...

c((n− 1))2 c((n− 2))2 . . . c(0)2

 ,

(noting that c(−k) = c(k)) the sum I can be written as

In =
1

n

n−|r|∑
t,τ=1

c(t− τ)2 =
1

n

(n−1)∑
k=−(n−1)

c(k)2

n−|k|∑
t=1

1 =
n−1∑

k=−(n−1)

(
n− |k|
n

)
c(k)2.

To obtain the limit of the above we use dominated convergence. Precisely, since for all k, (1 −

|k|/n)c(k)2 → c(k)2 and |
∑n−|r|

k=−(n−|r|)(1 − |k|/n)c(k)2| ≤
∑

k∈Z c(k)2 < ∞, by dominated conver-

gence In =
∑n−1

k=−(n−1)(1 − |k|/n)c(k)2 →
∑∞

k=−∞ c(k)2. Using a similar argument we can show

that

lim
n→∞

IIn =
∞∑

k=−∞
c(k + r)c(k − r).

To derive the limit of IIIn, we change variables k = τ − t to give

IIIn =

n−|r|∑
k=−(n−|r|)

(
n− |r| − |k|

n

)
k4(r, k, k + r).

Again we use dominated convergence. Precisely, for all k, (1− |k|/n)k4(r, k, k+ r)→ k4(r, k, k+ r)

and |
∑n−|r|

k=−(n−|r|)(1− |k|/n)k4(r, k, k + r)| ≤
∑

k∈Z |k4(r, k, k + r)| <∞ (by assumption). Thus by

dominated convergence we have IIIn =
∑n

k=−(n−|r|)(1− |k|/n)k4(r, k, k+ r)→
∑∞

k=−∞ k4(r, k, k+

r). Altogether the limits of In, IIn and IIIn give

lim
n→∞

var[
√
nĉn(r)] =

∞∑
k=−∞

c(k)2 +

∞∑
k=−∞

c(k + r)c(k − r) +

∞∑
k=−∞

κ4(r, k, k + r).
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Using similar set of arguments we obtain

lim
n→∞

cov[
√
nĉn(r1),

√
nĉn(r2)]

→
∞∑

k=−∞
c(k)c(k + r1 − r2) +

∞∑
k=−∞

c(k − r1)c(k + r2) +
∞∑

k=−∞
κ4(r1, k, k + r2).

This result gives the required variance matrix Vd+1 in Theorem 8.2.2.

Below, we show that under linearity the fourth order cumulant term has a simpler form. We

will show

√
n


ρ̂n(r1)− ρ(r1)

...

ρ̂n(rd)− ρ(rd)

 P→ N
(
0, GCd+1G

′) .

We have already shown that in the general case the limit distribution of the sample correlations is

G(Cd+1 +Kd+1)G′. Thus our objective here is to show that for linear time series the fourth order

cumulant term is GKd+1G
′ = 0.

Proof of Theorem 8.2.3 and the case of the vanishing fourth order cumulant

So far we have not used the structure of the time series to derive an expression for the variance of

the sample covariance. However, to prove GKd+1G
′ = 0 we require an explicit expression for Kd+1.

The following result only holds for linear, univariate time series. We recall that

(Kd+1)i,j =

∞∑
k=−∞

κ4(ri−1, k, k + rj−1).

By definition κ4(ri−1, k, k+ rj−1) = cum(X0, Xri−1 , Xk, Xk+rj−1
). Further, we consider the specific

case that Xt is a linear time series, where

Xt =

∞∑
j=−∞

ψjεt−j
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∑
j |ψj | < ∞, {εt} are iid, E(εt) = 0, var(εt) = σ2 and κ4 = cum4(εt). To find an expression for

(Kd+1)i,j , consider the general sum

∞∑
k=−∞

cum(X0, Xr1 , Xk, Xk+r2)

=
∞∑

k=−∞
cum

 ∞∑
j1=−∞

ψj1ε−j1 ,
∞∑

j2=−∞
ψj2εr1−j2 ,

∞∑
j3=−∞

ψj3εk−j3 ,
∞∑

j4=−∞
ψj4εk+r2−j1


=

∞∑
k=−∞

∑
j1,...,j4=−∞

ψj1ψj2ψj3ψj4cum (ε−j1 , εr1−j2 , εk−j3 , εk+r2−j1) .

We recall from Section 8.2.3, if one of the variables above is independent of the other, then

cum (ε−j1 , εr1−j2 , εk−j3 , εk+r2−j1) = 0. This reduces the number of summands from five to two

∞∑
k=−∞

cum(X0, Xr1 , Xk, Xk+r2) = κ4

∞∑
k=−∞

∞∑
j=−∞

ψjψj−r1ψj−kψj−r2−k.

Changing variables j1 = j and j2 = j − k we have

∞∑
k=−∞

cum(X0, Xr1 , Xk, Xk+r2) = κ4

( ∞∑
j1=−∞

ψjψj−r1
)( ∞∑

j2=−∞
ψj2ψj2−r2

)
= κ4

c(r1)

σ2

c(r2)

σ2
=
κ4

σ4
c(r1)c(r2),

recalling that cov(Xt, Xt+r) = σ2
∑∞

j=−∞ ψjψj+r. Thus for linear time series

(Kd+1)i,j =

∞∑
k=−∞

κ4(ri−1, k, k + rj−1) =
κ4

σ2
c(ri−1)c(ji−1)

and the matrix Kd+1 is

Kd+1 =
κ4

σ4
cd+1c

′
d+1

where c′d+1 = (c(0), c(r1), . . . , c(rd)). Substituting this representation of Kd+1 into GKd+1G
′ gives

GKd+1G
′ =

κ4

σ4
Gcd+1c

′
d+1G

′.

We recall from Remark 8.2.1 that G is a d× (d + 1) dimension matrix with null space cd+1. This

immediately gives Gcd+1 = 0 and the result.
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Exercise 8.1 Under the assumption that {Xt} are iid random variables show that ĉn(1) is asymp-

totically normal.

Hint: Let m = n/(B + 1) and partition the sum
∑n−1

k=1 XtXt+1 as follows

n−1∑
t=1

XtXt+1 =
B∑
t=1

XtXt+1 +XB+1XB+2 +
2B+1∑
t=B+2

XtXt+1 +X2B+2X2B+3 +

3B+2∑
t=2B+3

XtXt+1 +X3B+3X3B+4 +
4B+3∑
t=3B+4

XtXt+1 + . . .

=

m−1∑
j=0

Um,j +

m−1∑
j=0

X(j+1)(B+1)X(j+1)(B+1)+1

where Um,j =
∑j(B+1)+B

t=j(B+1)+1XtXt+1. Show that the second term in the above summand is asymp-

totically negligible and show that the classical CLT for triangular arrays can be applied to the first

term.

Exercise 8.2 Under the assumption that {Xt} is a MA(1) process, show that ĉn(1) is asymptoti-

cally normal.

Exercise 8.3 The block bootstrap scheme is a commonly used method for estimating the finite

sample distribution of a statistic (which includes its variance). The aim in this exercise is to see

how well the bootstrap variance approximates the finite sample variance of a statistic.

(i) In R write a function to calculate the autocovariance ĉn(1) = 1
n

∑n−1
t=1 XtXt+1.

Remember the function is defined as cov1 = function(x){...}

(ii) Load the library boot library("boot") into R. We will use the block bootstrap, which parti-

tions the data into blocks of lengths l and then samples from the blocks n/l times to construct

a new bootstrap time series of length n. For each bootstrap time series the covariance is

evaluated and this is done R times. The variance is calculated based on these R bootstrap

estimates.

You will need to use the function tsboot(tseries,statistic,R=100,l=20,sim="fixed").

tseries refers to the original data, statistic to the function you wrote in part (i) (which should

only be a function of the data), R=is the number of bootstrap replications and l is the length

of the block.
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Note that tsboot(tseries,statistic,R=100,l=20,sim="fixed")$t will be vector of length

R = 100 which will contain the bootstrap statistics, you can calculate the variance of this

vector.

(iii) Simulate the AR(2) time series arima.sim(list(order = c(2, 0, 0), ar = c(1.5,−0.75)), n =

128) 500 times. For each realisation calculate the sample autocovariance at lag one and also

the bootstrap variance.

(iv) Calculate the mean of the bootstrap variances and also the mean squared error (compared

with the empirical variance), how does the bootstrap perform?

(iv) Play around with the bootstrap block length l. Observe how the block length can influence the

result.

Remark 8.2.4 The above would appear to be a nice trick, but there are two major factors that

lead to the cancellation of the fourth order cumulant term

• Linearity of the time series

• Ratio between ĉn(r) and ĉn(0).

Indeed this is not a chance result, in fact there is a logical reason why this result is true (and is

true for many statistics, which have a similar form - commonly called ratio statistics). It is easiest

explained in the Fourier domain. If the estimator can be written as

1

n

∑n
k=1 φ(ωk)In(ωk)
1
n

∑n
k=1 In(ωk)

,

where In(ω) is the periodogram, and {Xt} is a linear time series, then we will show later that the

asymptotic distribution of the above has a variance which is only in terms of the covariances not

higher order cumulants. We prove this result in Section 11.5.

8.3 Checking for correlation in a time series

Bartlett’s formula if commonly used to check by ‘eye; whether a time series is uncorrelated (there

are more sensitive tests, but this one is often used to construct CI in for the sample autocovariances

in several statistical packages). This is an important problem, for many reasons:
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• Given a data set, we need to check whether there is dependence, if there is we need to analyse

it in a different way.

• Suppose we fit a linear regression to time series data. We may to check whether the residuals

are actually uncorrelated, else the standard errors based on the assumption of uncorrelated-

ness would be unreliable.

• We need to check whether a time series model is the appropriate model. To do this we fit

the model and estimate the residuals. If the residuals appear to be uncorrelated it would

seem likely that the model is correct. If they are correlated, then the model is inappropriate.

For example, we may fit an AR(1) to the data, estimate the residuals εt, if there is still

correlation in the residuals, then the AR(1) was not the correct model, since Xt − φ̂Xt−1 is

still correlated (which it would not be, if it were the correct model).

We now apply Theorem 8.2.3 to the case that the time series are iid random variables. Suppose {Xt}

are iid random variables, then it is clear that it is trivial example of a (not necessarily Gaussian)

linear process. We use (8.3) as an estimator of the autocovariances.

To derive the asymptotic variance of {ĉn(r)}, we recall that if {Xt} are iid then ρ(k) = 0 for

k 6= 0. Then by using Bartlett’s formula we have

(Wh)ij =

 1 i = j

0 i 6= j

In other words,
√
nρ̂n

D→ N (0, Ih). Hence the sample autocovariances at different lags are asymp-

totically uncorrelated and have variance one. This allows us to easily construct error bars for the

sample autocovariances under the assumption of independence. If the vast majority of the sample

autocovariance lie inside the error bars there is not enough evidence to suggest that the data is

a realisation of a iid random variables (often called a white noise process). An example of the

empirical ACF and error bars is given in Figure 8.1. We see that the empirical autocorrelations of

the realisation from iid random variables all lie within the error bars. In contrast in Figure 8.2

we give a plot of the sample ACF of an AR(2). We observe that a large number of the sample

autocorrelations lie outside the error bars.

Of course, simply checking by eye means that we risk misconstruing a sample coefficient that

lies outside the error bars as meaning that the time series is correlated, whereas this could simply
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Figure 8.1: The sample ACF of an iid sample with error bars (sample size n = 200).
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Figure 8.2: Top: The sample ACF of the AR(2) process Xt = 1.5Xt−1 + 0.75Xt−2 + εt with
error bars n = 200. Bottom: The true ACF.
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be a false positive (due to multiple testing). To counter this problem, we construct a test statistic

for testing uncorrelatedness. We test the hypothesis H0 : c(r) = 0 for all r against HA : at least

one c(r) 6= 0.

A popular method for measuring correlation is to use the squares of the sample correlations

Sh = n
h∑
r=1

|ρ̂n(r)|2. (8.15)

Since under the null
√
n(ρ̂n(h)− ρ(h))

D→ N (0, I), under the null Sh asymptotically will have a χ2-

distribution with h degrees of freedom, under the alternative it will be a non-central (generalised)

chi-squared. The non-centrality is what makes us reject the null if the alternative of correlatedness

is true. This is known as the Box-Pierce (or Portmanteau) test. The Ljung-Box test is a variant

on the Box-Pierce test and is defined as

Sh = n(n+ 2)

h∑
r=1

|ρ̂n(r)|2

n− r
. (8.16)

Again under the null of no correlation, asymptotically, Sh
D→ χ2

h. Generally, the Ljung-Box test is

suppose to give more reliable results than the Box-Pierce test.

Of course, one needs to select h. In general, we do not have to use large h since most correlations

will arise when the lag is small, However the choice of h will have an influence on power. If h is too

large the test will loose power (since the mean of the chi-squared grows as h → ∞), on the other

hand choosing h too small may mean that certain correlations at higher lags are missed. How to

selection h is discussed in several papers, see for example Escanciano and Lobato (2009).

Remark 8.3.1 (Do’s and Don’t of the Box-Jenkins or Ljung-Box test) There is tempta-

tion to estimate the residuals from a model and test for correlation in the estimated residuals.

• Example 1 Yt =
∑p

j=1 αjxj,t+ εt. Suppose we want to know if the errors {εt}t are correlated.

We test H0 : errors are uncorrelated vs HA : errors are correlated.

Suppose H0 is true. {εt} are unobserved, but they can be estimated from the data. Then on

the estimated residuals {ε̂t}t we can test for correlation. We estimate the correlation based
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on the estimated residuals ρ̃(r) = c̃n(r)/c̃n(0), where

c̃n(r) =
1

n

n−|r|∑
t=1

ε̂tε̂t+r.

It can be shown that
√
nρ̃n(r) ∼ N(0, 1) and the Box-Jenkins or Ljung-Box test can be used.

I.e. Sh ∼ χ2
h even when using the estimated residuals.

• Example 2 This example is a word of warning. Suppose Yt = φYt−1 + εt. We want to test

H0 :errors are uncorrelated vs HA : errors are uncorrelated.

Suppose H0 is true. {εt} are unobserved, but they can be estimated from the data. We

estimate the correlation based on the estimated residuals (ε̂t = Yt−φ̂Yt−1), ρ̃(r) = c̃n(r)/c̃n(0),

where

c̃n(r) =
1

n

n−|r|∑
t=1

ε̂tε̂t+r.

ρ̃n(r) is estimating zero but
√
nρ̃n(r) is not a standard normal. Thus Sh does not follow a

standard chi-square distribution. This means the estimated residuals cannot be used to check

for uncorrelatedness.

To understand the difference between the two examples see Section 8.6.

8.3.1 Relaxing the assumptions: The robust Portmanteau test

(advanced)

One disadvantage of the Box-Pierce/Portmanteau test described above is that it requires under the

null that the time series is independent not just uncorrelated. Even though the test statistic can

only test for correlatedness and not dependence. As an illustration of this, in Figure ?? we give the

QQplot of the S2 (using an ARCH process as the time series) against a chi-square distribution. We

recall that despite the null being true, the test statistic deviates considerably from a chi-square. For

this time series, we would have too many false positive despite the time series being uncorrelated.

Thus the Box-Pierce test only gives reliable results for linear time series.
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In general, under the null of no correlation we have

cov
(√
nĉn(r1),

√
nĉn(r2)

)
=


∑

k κ4(r1, k, k + r2) r1 6= r2

c(0)2 +
∑

k κ4(r, k, k + r) r1 = r2 = (r)

Thus despite ĉn(r) being asymptotically normal we have

√
n
ĉn(r)

c(0)

D→ N
(
0, 1 +GK2G

′) ,
where the cumulant term GK2G tends to be positive. This results in the Box-Pierce test underes-

timating the variance, and the true quantiles of S2 (see Figure ??) being larger than the chi square

quantiles.

However, there is an important subset of uncorrelated time series, which are dependent, where

a slight modification of the Box-Pierce test does give reliable results. This subset includes the

aforementioned ARCH process and is a very useful test in financial applications. As mentioned in

(??) ARCH and GARCH processes are uncorrelated time series which are martingale differences.

We now describe the robust Portmanteau test, which is popular in econometrics as it is allows for

uncorrelated time series which are martingale differences and an additional joint moment condition

which we specify below (so long as it is stationary and its fourth moment exists).

We recall that {Xt}t is a martingale difference if

E(Xt|Xt−1, Xt−2, Xt−3, . . .) = 0.

Martingale differences include independent random variables as a special case. Clearly, from this

definition {Xt} is uncorrelated since for r > 0 and by using the definition of a martingale difference

we have

cov(Xt, Xt+r) = E(XtXt+r)− E(Xt)E(Xt+r)

= E(XtE(Xt+r|Xt))− E(E(Xt|Xt−1))E(E(Xt+r|Xt+r−1)) = 0.

Thus a martingale difference sequence is an uncorrelated sequence. However, martingale differences

have more structure than uncorrelated random variables, thus allow more flexibility. For a test to

be simple we would like that the sample covariance between different lags is asymptotically zero.
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This can be achieved for martinagle differences plus an important additional condition:

E[X2
tXs1Xs2 ] = 0 t > s1 6= s2. (8.17)

To understand why, consider the sample covariance

cov
(√
nĉn(r1),

√
nĉn(r2)

)
=

1

n

∑
t1,t2

cov (Xt1Xt1+r1 , Xt2Xt2+r2)

Under the null, the above is

cov
(√
nĉn(r1),

√
nĉn(r2)

)
=

1

n

∑
t1,t2

E (Xt1Xt1+r1Xt2Xt2+r2) .

We show that under the null hypothesis, many of the above terms are zero (when r1 6= r2), however

there are some exceptions, which require the additional moment condition.

For example, if t1 6= t2 and suppose for simplicity t2 + r2 > t2, t1, t1 + r1. Then

E(Xt1Xt1+r1Xt2Xt2+r2) = E (Xt1Xt1+r2Xt2E(Xt2+r2 |Xt1 , Xt1+r2 , Xt2)) = 0 (8.18)

and if r1 6= r2 (assume r2 > r1) by the same argument

E(XtXt+r1XtXt+r2) = E

X2
tXt+r1E(Xt+r2 | X2

t , Xt+r1︸ ︷︷ ︸
⊂σ(Xt+r2−1,Xt+r2−2,...)

)

 = 0.

However, in the case that t1 + r1 = t2 + r2 (r1 6= r2 ≥ 0, since r1 6= r2, then this implies t1 6= t2)

we have

E(X2
t1+r1Xt1Xt2) 6= 0,

even whenXt are martingale arguments. Consequently, we do not have that cov(Xt1Xt1+r1 , Xt2Xt2+r2) =

0. However, by including the additional moment condition that E[X2
tXs1Xs2 ] = 0 for t > s1, 6= s2,

then we have cov(Xt1Xt1+r1 , Xt2Xt2+r2) = 0 for all t1 and t2 when r1 6= r2.

The above results can be used to show that the variance of ĉn(r) (under the assumption that
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the time series martingale differences and E[X2
tXs1Xs2 ] = 0 for t > s1, s2) has a very simple form

var
(√
nĉn(r)

)
=

1

n

n∑
t1,t2=1

cov (Xt1Xt1+r, Xt2Xt2+r)

=
1

n

n∑
t1,t2=1

E (Xt1Xt1+rXt2Xt2+r) =
1

n

n∑
t=1

E
(
X2
tX

2
t+r

)
= E(X2

0X
2
r )︸ ︷︷ ︸

by stationarity

and if r1 6= r2 then cov(ĉn(r1), ĉn(r2)) = 0. Let σ2
r = E

(
X2

0X
2
r

)
. Then we have that under the null

hypothesis (and suitable conditions to ensure normality) that

√
n


ĉn(1)/σ1

ĉn(2)/σ2

...

ĉn(h)/σh


D→ N (0, Ih) .

It is straightforward to estimate the σ2
r with

σ̂2
r =

1

n

n∑
t=1

X2
tX

2
t+r.

Thus a similar squared distance as the Box-Pierce test is used to define the Robust Portmanteau

test, which is defined as

Rh = n

h∑
r=1

|ĉn(r)|2

σ̂2
r

.

Under the null hypothesis (assuming stationarity and martingale differences) asymptotically Rh
D→

χ2
h (for h kept fixed).

Remark 8.3.2 (ARCH and the Robust Portmanteau test) If I remember correctly the rea-

son the above condition holds for ARCH models is (we assume wlog s2 > s1)

E[X2
tXs1Xs2 ] = E[η2

t ]E[σ2
t σs1σs1ηs2ηs1 ]

= E[η2
t ]E[ηs2ηs1E[σ2

t σs2σs1 |Fs1−1]]

= E[ηs1 ]E[ηs2 ]E[σ2
t σs2σs1 |Fs1−1]] = 0,
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Figure 8.3: Using ARCH(1) time series over 200 replications Left: S2 against the quantiles
of a chi-square distribution with 2df for an ARCH process. Right: R2 against the quantiles
of a chi-square distribution with 2df for an ARCH process.

To see how this test performs, in the right hand plot in Figure 8.3 we give the quantile quantile

plot of Rh against the chi-squared distribution. We observe that it lies pretty much on the x = y

line. Moreover, the test results at the 5% level are given in Table 8.1. We observe that it is close

to the stated 5% level and performs far better than the classical Box-Pierce test.

ARCH Box-Pierce 26%
ARCH Robust Portmanteau 4.5%

Table 8.1: Proportion of rejections under the null hypothesis. Test done at the 5% level over
200 replications.

The robust Portmanteau test is a useful generalisation of the Box-Pierce test, however it still

requires that the time series under the null satisfies the martingale difference property and the

moment condition. These conditions cannot be verified. Consider for example the uncorrelated

time series

Xt+1 =

∞∑
j=0

φjεt−j −
φ

1− φ2
εt+1

where {εt} are uncorrelated random variables from the ARCH process εt = Ztσt and σ2
t = a0 +

a1ε
2
t−1. Despite εt being martingale differences, Xt are not martingale differences. Thus the robust

Portmanteau test will not necessarily give satisfactory results for this uncorrelated time series.
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Methods have been developed for these general time series methods, including:

• The robust test for white noise proposed in Dalla et al. (2019).

• Bootstrap methods. These include the block bootstrap (Künsch (1989), Liu and Singh (1992)

and Lahiri (2003)), the stationary bootstrap (Politis and Romano (1994)), the sieve bootstrap

(Kreiss (1992) and Kreiss et al. (2011)) and the spectral bootstrap (Hurvich and Zeger (1987),

Franke and Härdle (1992), Dahlhaus and Janas (1996) and Dette and Paparoditis (2009)).

Please keep in mind that this is an incomplete list.

• Estimating the variance of the sample covariance using spectral methods or long-run variance

methods (together with fixed-b asymptotics have been used to obtain a more reliable finite

sample estimator of the distribution).

Finally a few remarks about ACF plots in general

• It is clear that the theoretical autocorrelation function of an MA(q) process is such that

ρ(r) = 0 if |r| > q. Thus from the theoretical ACF we can determine the order of the

process. By a similar argument the variance matrix of an MA(q) will be bandlimited, where

the band is of order q.

However, we cannot determine the order of an moving average process from the empirical

ACF plot. The critical values seen in the plot only correspond to the case the process is iid,

they cannot be used as a guide for determining order.

• Often a model is fitted to a time series and the residuals are evaluated. To see if the model was

appropriate, and ACF plot of empirical correlations corresponding to the estimated residuals.

Even if the true residuals are iid, the variance of the empirical residuals correlations will not

be (??). Li (1992) shows that the variance depends on the sampling properties of the model

estimator.

• Misspecification, when the time series contains a time-dependent trend.

8.4 Checking for partial correlation

We recall that the partial correlation of a stationary time series at lag t is given by the last coefficient

of the best linear predictor of Xm+1 given {Xj}mj=1 i.e. φm where X̂m+1|m =
∑m

j=1 φjXm+1−j . Thus
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φm can be estimated using the Yule-Walker estimator or least squares (more of this later) and the

sampling properties of the estimator are determined by the sampling properties of the estimator of

an AR(m) process. We state these now. We assume {Xt} is a AR(p) time series of the form

Xt =

p∑
j=1

φjXt−j + εt

where {εt} are iid random variables with mean zero and variance σ2. Suppose an AR(m) model is

fitted to the data using the Yule-Walker estimator, we denote this estimator as φ̂m = Σ̂−1
m rm. Let

φ̂m = (φ̂m1, . . . , φ̂mm), the estimator of the partial correlation at lag m is φ̂mm. Assume m ≥ p.

Then by using Theorem 9.2.1 (see also Theorem 8.1.2, Brockwell and Davis (1998)) we have

√
n
(
φ̂m − φm

)
P→ N(0, σ2Σ−1

m ).

where φm are the true parameters. If m > p, then φm = (φ1, . . . , φp, 0, . . . , 0) and the last coefficient

has the marginal distribution

√
nφ̂mm

P→ N(0, σ2Σmm).

Since m > p, we can obtain a closed for expression for Σmm. By using Remark 6.3.1 we have

Σmm = σ−2, thus

√
nφ̂mm

P→ N(0, 1).

Therefore, for lags m > p the partial correlations will be asymptotically pivotal. The errors bars in

the partial correlations are [−1.96n−1/2, 1.96n−1/2] and these can be used as a guide in determining

the order of the autoregressive process (note there will be dependence between the partial correlation

at different lags).

This is quite a surprising result and very different to the behaviour of the sample autocorrelation

function of an MA(p) process.

Exercise 8.4

(a) Simulate a mean zero invertible MA(1) process (use Gaussian errors). Use a reasonable sample

size (say n = 200). Evaluate the sample correlation at lag 2, r̂hon(2). Note the sample correlation
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at lag two is estimating 0. Do this 500 times.

• Calculate of proportion of sample covariances |ρ̂n(2)| > 1.96/
√
n

• Make a QQplot of ρ̂n(2)/
√
n against a standard normal distribution. What do you observe?

(b) Simulate a causal, stationary AR(1) process (use Gaussian errors). Use a reasonable sample

size (say n = 200). Evaluate the sample partial correlation at lag 2, φ̂n(2). Note the sample partial

correlation at lag two is estimating 0. Do this 500 times.

• Calculate of proportion of sample partial correlations |φ̂n(2)| > 1.96/
√
n

• Make a QQplot of φ̂n(2)/
√
n against a standard normal distribution. What do you observe?

8.5 The Newey-West (HAC) estimator

In this section we focus on the estimation of the variance of

θ̂n =
1

n

n∑
t=1

utεt,

where {ut}t are deterministic regressors and {εt} is a time series. Quantities of the form θ̂n arise in

several applications. One important application is in linear regression, which we summarize below.

In Section 3.2.1 we showed that the least squares estimator of the cofficients in

Yt = β0 +

p∑
j=1

βjut,j + εt = β′ut + εt,

is

β̂n = arg minLn(β) = (

n∑
t=1

utu
′
t)
−1

n∑
t=1

Ytut.

The variance of β̂n is derived using

[
β̂n − β

]′ n∑
t=1

utu
′
t =

n∑
t=1

u′tεt

⇒
[
β̂n − β

]
=

(
n∑
t=1

utu
′
t

)−1 n∑
t=1

utεt =

(
1

n

n∑
t=1

utu
′
t

)−1
1

n

n∑
t=1

utεt.
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Using this expression we have

var
[
β̂n

]
=

(
1

n

n∑
t=1

utu
′
t

)−1

var

(
1

n

n∑
t=1

utεt

)(
1

n

n∑
t=1

utu
′
t

)−1

.

Hence the variance of β̂n is based on var
(

1
n

∑n
t=1 utεt

)
which is

var

(
1

n

n∑
t=1

utεt

)
=

1

n2

n∑
t,τ=1

cov[εt, ετ ]utu
′
τ

=
1

n2

n∑
t=1

var[εt]utu
′
t +

1

n2

n∑
t=1

n∑
τ 6=t

cov[εt, ετ ]utu
′
τ

=
1

n2

n∑
t=1

n∑
τ=1

cov[εt, ετ ]utu
′
τ .

In the case of stationarity of {εt}t, the above reduces

nvar

(
1

n

n∑
t=1

utεt

)
=

1

n

n∑
t=1

n∑
τ=1

c(t− τ)utu
′
τ , (8.19)

where c(t− τ) = cov[εt, ετ ].

We start by motivating the estimator of (8.20), we start with the special case that ut = 1 for

all t. In this case (8.20) reduces to

nvar

(
1

n

n∑
t=1

utεt

)
=

1

n

n∑
t=1

n∑
τ=1

c(t− τ). (8.20)

Since E[εtετ ] = c(t− τ), as an estimator of the above we can potentially replace c(t− τ) with εtετ

to give the estimator

σ̂2
n,n =

1

n

n∑
t=1

n∑
τ=1

εtετ =
n∑

r=−n
ĉr︸ ︷︷ ︸

due to a change of variables

,

where ĉr = n−1
∑n−|r|

t=1 εtεt+r. We recall that in Section 8.2.1 we studied the sampling properties of

ĉr and showed that var[ĉr] = O(1/n). As 1
n

∑n
r=−n ĉr consists of the sum of all n sample covariances,

this would suggest var[α̂n] = O(
∑n

r=1 n
−1) = O(1). Thus α̂n is an inconsistent estimator of the

variance. Calculations show that this is indeed the case. We discuss a very similar issue in Section
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11.3 when estimating the spectral density function.

However, σ̂2
n,n suggests an alternative approach to estimation. As the autocovariance decays

as the lag r grows, it is not necessary to estimate all the covariance and instead to truncate the

number of covariances to be estimated i.e. use

σ̂2
m,n =

m∑
r=−m

λm(r)ĉr =
1

n

n∑
t=1

m∑
τ=1

λm(t− τ)εtετ , (8.21)

where λm(r) is a a so called lagged window which is zero for |r| > m. It can be shown that this

truncation technique induces a bias in the estimation scheme (i.e. E[σ̂2
m,n] 6= nvar

(
1
n

∑n
t=1 εt

)
) but

the variance converges to zero (E[σ̂2
m,n] = O(m/n)). By balancing the bias and variance we can

mind suitable choice of m such that σ̂2
m,n is a consistent estimator of σ2.

The estimator σ̂2
m,n can be generalized to include the case ut 6= 1 and nonstationary errors {εt}.

We recall that

nvar

(
1

n

n∑
t=1

utεt

)
=

1

n

n∑
t=1

n∑
τ=1

cov[εt, ετ ]utu
′
τ . (8.22)

We assume that |cov[εt, ετ ]| ≤ |t−τ |−κ (where κ > 1). Since εtετ can be treated as a “preestimator”

(an initial estimator) of cov[εt, ετ ] we replace cov[εt, ετ ] in (8.22) with εtετ and weight it with λm(·)

to yield the Newey-West/HAC estimator

σ̂2
m,n =

1

n

n∑
t=1

n∑
τ=1

λm,n(t− τ)εtετutu
′
τ . (8.23)

Choices of weight functions are discussed in Section 11.3.1. The estimator (8.23) is closely related

to spectral density estimation at frequency zero. The sampling properties of σ̂2
m,n are similar to

those of spectral density estimation and can be found in (11.3.1). Further details can be found in

Andrews (1990).

8.6 Checking for Goodness of fit (advanced)

To check for adequency of a model, after fitting a model to the data the sample correlation of the

estimated residuals is evaluated. If there appears to be no correlation in the estimated residuals

(so the residuals are near uncorrelated) then the model is determined to adequately fit the data.
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Consider the general model

Xt = g(Yt, θ) + εt

where {εt} are iid random variables and εt is independent of Yt, Yt−1, . . .. Note Yt can be a vector,

such as Yt−1 = (Xt−1, Xt−2, . . . , Xt−p) and examples of models which satisfy the above include the

AR(p) process. We will assume that {Xt, Yt} is a stationary ergodic process. Further to simplify

the discussion we will assume that θ is univariate, it is straightforward to generalize the discussion

below to the multivariate case.

Let θ̂ denote the least squares estimator of θ i.e.

θ̂ = arg min
n∑
t=1

(Xt − g(Yt, θ))
2 . (8.24)

Using the “usual” Taylor expansion methods (and assuming all the usual conditions are satisfied,

such as |θ̂ − θ| = Op(n
−1/2) etc) then it can be shown that

√
n
(
θ̂ − θ

)
= I−1 1√

n

n∑
t=1

εt
∂g(Yt, θ)

∂θ
+ op(1) where I = E

(
∂g(Yt, θ)

∂θ

)2

.

{εt ∂g(Yt,θ)∂θ } are martingale differences, which is why
√
n
(
θ̂ − θ

)
is asymptotically normal, but more

of this in the next chapter. Let Ln(θ) denote the least squares criterion. Note that the above is

true because

∂Ln(θ)

∂θ
= −2

n∑
t=1

[Xt − g(Yt, θ)]
∂g(Yt, θ)

∂θ

and

∂2Ln(θ)

∂θ2
= −2

n∑
t=1

[Xt − g(Yt, θ)]
∂2g(Yt, θ)

∂θ2
+ 2

n∑
t=1

(
∂g(Yt, θ)

∂θ

)2

,

thus at the true parameter, θ,

1

n

∂2Ln(θ)

∂θ2

P→ 2I.
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Based on (8.24) we estimate the residuals using

ε̂t = Xt − g(Yt, θ̂)

and the sample correlation with ρ̂(r) = ĉ(r)/ĉ(0) where

ĉ(r) =
1

n

n−|r|∑
t=1

∑
t

ε̂tε̂t+r.

Often it is (wrongly) assumed that one can simply apply the results in Section 8.3 when checking

for adequacy of the model. That is make an ACF plot of ρ̂(r) and use [−n−1/2, n1/2] as the error

bars. However, since the parameters have been estimated the size of the error bars will change. In

particular, under the null that the model is correct we will show that

√
nρ̂(r) = N

0, 1︸︷︷︸
iid part

− σ2

c(0)
JrI−1Jr︸ ︷︷ ︸

due to parameter estimation



where c(0) = var[Xt], σ
2 = var(εt) and Jr = E[∂g(Yt+r,θ)∂θ εt] and I = E

(
∂g(Yt,θ)
∂θ

)2
(see, for example,

Li (1992)). Thus the error bars under the null are

[
±
(

1√
n

[
1− σ2

c(0)
JrI−1Jr

])]
.

Estimation of the parameters means the inclusion of the term σ2

c(0)JrI
−1Jr. If the lag r is not too

small then Jr will be close to zero and the [±1/
√
n] approximation is fine, but for small r, JrI−1Jr

can be large and positive, thus the error bars, ±n−1/2, are too wide. Thus one needs to be a little

cautious when interpreting the ±n−1/2 error bars. Note if there is no dependence between εt and

Yt+r then using the usual error bars is fine.

Remark 8.6.1 The fact that the error bars get narrower after fitting a model to the data seems

a little strange. However, it is far from unusual. One explanation is that the variance of the

estimated residuals tend to be less than the true residuals (since the estimated residuals contain

less information about the process than the true residuals). The most simplest example are iid

observations {Xi}ni=1 with mean µ and variance σ2. The variance of the “estimated residual”

Xi − X̄ is (n− 1)σ2/n.
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We now derive the above result (using lots of Taylor expansions). By making a Taylor expansion

similar to (??) we have

√
n [ρ̂n(r)− ρ(r)]

√
n

[ĉn(r)− c(r)]
c(0)

−
√
n [ĉn(0)− c(0)]

c(r)

c(0)2
+Op(n

−1/2).

However, under the “null” that the correct model was fitted to the data we have c(r) = 0 for |r| > 0,

this gives

√
nρ̂n(r) =

√
n
ĉn(r)

c(0)
+ op(1),

thus the sampling properties of ρ̂n(r) are determined by ĉn(r), and we focus on this term. It is

easy to see that

√
nĉn(r) =

1√
n

n−r∑
t=1

(
εt + g(θ, Yt)− g(θ̂, Yt)

)(
εt+r + g(θ, Yt+r)− g(θ̂, Yt+r)

)
.

Heuristically, by expanding the above, we can see that

√
nĉn(r) ≈ 1√

n

n−r∑
t=1

εtεt+r +
1√
n

n∑
t=1

εt+r

(
g(θ, Yt)− g(θ̂, Yt)

)
+

1√
n

n∑
t=1

εt

(
g(θ, Yt+r)− g(θ̂, Yt+r)

)
,

then by making a Taylor expansion of g(θ̂, ·) about g(θ, ·) (to take (θ̂ − θ) out of the sum)

√
nĉn(r) ≈ 1√

n

n−r∑
t=1

εtεt+r +
(θ̂ − θ)√

n

[
n∑
t=1

εt+r
∂g(θ, Yt)

∂θ
+ εt

∂g(θ, Yt+r)

∂θ

]
+ op(1)

=
1√
n

n−r∑
t=1

εtεt+r +
√
n(θ̂ − θ) 1

n

[
n∑
t=1

εt+r
∂g(θ, Yt)

∂θ
+ εt

∂g(θ, Yt+r)

∂θ

]
+ op(1).

We make this argument precise below. Making a Taylor expansion we have

√
nĉn(r) =

1√
n

n−r∑
t=1

(
εt − (θ̂ − θ)∂g(θ, Yt)

∂θ
+

(θ̂ − θ)2

2

∂2g(θ̄t, Yt)

∂θ2

)
×(

εt+r − (θ̂ − θ)∂g(θ, Yt+r)

∂θ
+

(θ̂ − θ)2

2

∂2g(θ̄t+r, Yt+r)

∂θ2

)

=
√
nc̃n(r)−

√
n(θ̂ − θ) 1

n

n−r∑
t=1

(
εt
∂g(θ, Yt+r)

∂θ
+ εt+r

∂g(θ, Yt)

∂θ

)
+Op(n

−1/2)(8.25)
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where θt lies between θ̂ and θ and

c̃n(r) =
1

n

n−r∑
t=1

εtεt+r.

We recall that by using ergodicity we have

1

n

n−r∑
t=1

(
εt
∂g(θ, Yt+r)

∂θ
+ εt+r

∂g(θ, Yt)

∂θ

)
a.s.→ E

(
εt
∂g(θ, Yt+r)

∂θ

)
= Jr,

where we use that εt+r and ∂g(θ,Yt)
∂θ are independent. Subsituting this into (8.25) gives

√
nĉn(r) =

√
nc̃n(r)−

√
n(θ̂ − θ)Jr + op(1)

=
√
nc̃n(r)− I−1Jr

1√
n

n−r∑
t=1

∂g(Yt, θ)

∂θ
εt︸ ︷︷ ︸

=−
√
n
2
∂Ln(θ)
∂θ

+op(1).

Asymptotic normality of
√
nĉn(r) can be shown by showing asymptotic normality of the bivariate

vector
√
n(c̃n(r), ∂Ln(θ)

∂θ ). Therefore all that remains is to obtain the asymptotic variance of the

above (which will give the desired result);

var

[√
nc̃n(r) +

√
n

2
I−1Jr

∂Ln(θ)

∂θ

]
var
(√
nc̃n(r)

)︸ ︷︷ ︸
=1

+2I−1Jrcov

(√
nc̃n(r),

√
n

2

∂Ln(θ)

∂θ

)
+ I−2J 2

r var

(√
n

2

∂Ln(θ)

∂θ

)
(8.26)

We evaluate the two covariance above;

cov

(√
nc̃n(r),−

√
n

2

∂Ln(θ)

∂θ

)
=

1

n

n−r∑
t1,t2=1

[
cov

{
εt1εt1+r, εt2

∂g(Yt2 , θ)

∂θ

}]

=
1

n

n−r∑
t1,t2=1

[
cov {εt1 , εt2} cov

{
εt1+r,

∂g(Yt2 , θ)

∂θ

}
+ cov {εt1+r, εt2} cov

{
εt1 ,

∂g(Yt2 , θ)

∂θ

}
+cum

{
εt1 , εt1+r, εt2 ,

∂g(Yt2 , θ)

∂θ

}]
= σ2E

[
εt
∂g(Yt+r, θ)

∂θ

]
= σ2Jr.

Similarly we have

var

(√
n

2

∂Ln(θ)

∂θ

)
=

1

n

n∑
t1,t2=1

cov

(
εt1
∂g(Yt1 , θ)

∂θ
, εt2

∂g(Yt2 , θ)

∂θ

)
= σ2E

(
∂g(Yt1 , θ)

∂θ

)2

= σ2I.
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Substituting the above into (8.26) gives the asymptotic variance of
√
nĉ(r) to be

1− σ2JrI−1Jr.

Thus we obtain the required result

√
nρ̂(r) = N

(
0, 1− σ2

c(0)
JrI−1Jr

)
.

8.7 Long range dependence (long memory) versus changes

in the mean

A process is said to have long range dependence if the autocovariances are not absolutely summable,

i.e.
∑

k |c(k)| =∞. A nice historical background on long memory is given in this paper.

From a practical point of view data is said to exhibit long range dependence if the autocovari-

ances do not decay very fast to zero as the lag increases. Returning to the Yahoo data considered

in Section 13.1.1 we recall that the ACF plot of the absolute log differences, given again in Figure

8.4 appears to exhibit this type of behaviour. However, it has been argued by several authors that

0 5 10 15 20 25 30 35

0.0
0.2

0.4
0.6

0.8
1.0

Lag

AC
F

Series  abs(yahoo.log.diff)

Figure 8.4: ACF plot of the absolute of the log differences.

the ‘appearance of long memory’ is really because of a time-dependent mean has not been corrected

for. Could this be the reason we see the ‘memory’ in the log differences?

We now demonstrate that one must be careful when diagnosing long range dependence, because

a slow/none decay of the autocovariance could also imply a time-dependent mean that has not been

corrected for. This was shown in Bhattacharya et al. (1983), and applied to econometric data in
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Mikosch and Stărică (2000) and Mikosch and Stărică (2003). A test for distinguishing between long

range dependence and change points is proposed in Berkes et al. (2006).

Suppose that Yt satisfies

Yt = µt + εt,

where {εt} are iid random variables and the mean µt depends on t. We observe {Yt} but do not

know the mean is changing. We want to evaluate the autocovariance function, hence estimate the

autocovariance at lag k using

ĉn(k) =
1

n

n−|k|∑
t=1

(Yt − Ȳn)(Yt+|k| − Ȳn).

Observe that Ȳn is not really estimating the mean but the average mean! If we plotted the empirical

ACF {ĉn(k)} we would see that the covariances do not decay with time. However the true ACF

would be zero and at all lags but zero. The reason the empirical ACF does not decay to zero is

because we have not corrected for the time dependent mean. Indeed it can be shown that

ĉn(k) =
1

n

n−|k|∑
t=1

(Yt − µt + µt − Ȳn)(Yt+|k| − µt+k + µt+k − Ȳn)

≈ 1

n

n−|k|∑
t=1

(Yt − µt)(Yt+|k| − µt+k) +
1

n

n−|k|∑
t=1

(µt − Ȳn)(µt+k − Ȳn)

≈ c(k)︸︷︷︸
true autocovariance=0

+
1

n

n−|k|∑
t=1

(µt − Ȳn)(µt+k − Ȳn)︸ ︷︷ ︸
additional term due to time-dependent mean

Expanding the second term and assuming that k << n and µt ≈ µ(t/n) (and is thus smooth) we
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have

1

n

n−|k|∑
t=1

(µt − Ȳn)(µt+k − Ȳn)

≈ 1

n

n∑
t=1

µ2
t −

(
1

n

n∑
t=1

µt

)2

+ op(1)

=
1

n2

n∑
s=1

n∑
t=1

µ2
t −

(
1

n

n∑
t=1

µt

)2

+ op(1)

=
1

n2

n∑
s=1

n∑
t=1

µt (µt − µs) =
1

n2

n∑
s=1

n∑
t=1

(µt − µs)2 +
1

n2

n∑
s=1

n∑
t=1

µs (µt − µs)︸ ︷︷ ︸
=− 1

n2

∑n
s=1

∑n
t=1 µt(µt−µs)

=
1

n2

n∑
s=1

n∑
t=1

(µt − µs)2 +
1

2n2

n∑
s=1

n∑
t=1

µs (µt − µs)−
1

2n2

n∑
s=1

n∑
t=1

µt (µt − µs)

=
1

n2

n∑
s=1

n∑
t=1

(µt − µs)2 +
1

2n2

n∑
s=1

n∑
t=1

(µs − µt) (µt − µs) =
1

2n2

n∑
s=1

n∑
t=1

(µt − µs)2 .

Therefore

1

n

n−|k|∑
t=1

(µt − Ȳn)(µt+k − Ȳn) ≈ 1

2n2

n∑
s=1

n∑
t=1

(µt − µs)2 .

Thus we observe that the sample covariances are positive and don’t tend to zero for large lags.

This gives the false impression of long memory.

It should be noted if you study a realisation of a time series with a large amount of dependence,

it is unclear whether what you see is actually a stochastic time series or an underlying trend. This

makes disentangling a trend from data with a large amount of correlation extremely difficult.
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Chapter 9

Parameter estimation

Prerequisites

• The Gaussian likelihood.

Objectives

• To be able to derive the Yule-Walker and least squares estimator of the AR parameters.

• To understand what the quasi-Gaussian likelihood for the estimation of ARMA models is,

and how the Durbin-Levinson algorithm is useful in obtaining this likelihood (in practice).

Also how we can approximate it by using approximations of the predictions.

• Understand that there exists alternative methods for estimating the ARMA parameters,

which exploit the fact that the ARMA can be written as an AR(∞).

We will consider various methods for estimating the parameters in a stationary time series.

We first consider estimation parameters of an AR and ARMA process. It is worth noting that we

will look at maximum likelihood estimators for the AR and ARMA parameters. The maximum

likelihood will be constructed as if the observations were Gaussian. However, these estimators

‘work’ both when the process is Gaussian is also non-Gaussian. In the non-Gaussian case, the

likelihood simply acts as a contrast function (and is commonly called the quasi-likelihood). In time

series, often the distribution of the random variables is unknown and the notion of ‘likelihood’ has

little meaning. Instead we seek methods that give good estimators of the parameters, meaning that

they are consistent and as close to efficiency as possible without placing too many assumption on
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the distribution. We need to ‘free’ ourselves from the notion of likelihood acting as a likelihood

(and attaining the Crámer-Rao lower bound).

9.1 Estimation for Autoregressive models

Let us suppose that {Xt} is a zero mean stationary time series which satisfies the AR(p) represen-

tation

Xt =

p∑
j=1

φjXt−j + εt,

where E(εt) = 0, var(εt) = σ2 and the roots of the characteristic polynomial 1 −
∑p

j=1 φjz
j lie

outside the unit circle. We will assume that the AR(p) is causal (the techniques discussed in this

section cannot consistently estimate the parameters in the case that the process is non-causal, they

will only consistently estimate the corresponding causal model). If you use the ar function in R to

estimate the parameters, you will see that there are several different estimation methods that one

can use to estimate {φj}. These include, the Yule-Walker estimator, Least squares estimator, the

Gaussian likelihood estimator and the Burg algorithm. Our aim in this section is to motivate and

describe these several different estimation methods.

All these methods are based on their correlation structure. Thus they are only designed to

estimate stationary, causal time series. For example, if we fit the AR(1) model Xt = φXt−1 + εt.

The methods below cannot consistently estimate non-casual parameters (when |φ| > 1). However,

depending the method used, the estimator may be non-causal. For example, the classical least

squares can yield estimators where |φ| > 1. This does not mean the true model is non-causal, it

simply means the minimum of the least criterion lies outside the parameter space (−1, 1). Similarly,

unless the parameter space of the MLE is constrained to only search for maximums inside [1, 1] it

can be give a maximum outside the natural parameter space. For the AR(1) estimator constraining

the parameter space is quite simple. However, for higher order autoregressive models. Constraining

the parameter space can be quite difficult.

On the other hand, both the Yule-Walker estimator and Burg’s algorithm will always yield a

causal estimator for any AR(p) model. There is no need to constrain the parameter space.
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9.1.1 The Yule-Walker estimator

The Yule-Walker estimator is based on the Yule-Walker equations derived in (6.8) (Section 6.1.4).

We recall that the Yule-Walker equation state that if an AR process is causal, then for i > 0

we have

E(XtXt−i) =

p∑
j=1

φjE(Xt−jXt−i),⇒ c(i) =

p∑
j=1

φjc(i− j). (9.1)

Putting the cases 1 ≤ i ≤ p together we can write the above as

rp = Σpφp, (9.2)

where (Σp)i,j = c(i − j), (rp)i = c(i) and φ′
p

= (φ1, . . . , φp). Thus the autoregressive parameters

solve these equations. It is important to observe that φ
p

= (φ1, . . . , φp) minimise the mean squared

error

E[Xt+1 −
p∑
j=1

φjXt+1−j ]
2,

(see Section 5.5).

The Yule-Walker equations inspire the method of moments estimator called the Yule-Walker

estimator. We use (9.2) as the basis of the estimator. It is clear that r̂p and Σ̂p are estimators of

rp and Σp where (Σ̂p)i,j = ĉn(i− j) and (r̂p)i = ĉn(i). Therefore we can use

φ̂
p

= Σ̂−1
p r̂p, (9.3)

as an estimator of the AR parameters φ′
p

= (φ1, . . . , φp). We observe that if p is large this involves

inverting a large matrix. However, we can use the Durbin-Levinson algorithm to calculate φ̂
p

by

recursively fitting lower order AR processes to the observations and increasing the order. This way

an explicit inversion can be avoided. We detail how the Durbin-Levinson algorithm can be used to

estimate the AR parameters below.

Step 1 Set φ̂1,1 = ĉn(1)/ĉn(0) and r̂n(2) = ĉn(0)− φ̂1,1ĉn(1).
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Figure 9.1: Top: The sample partial autocorrelation plot of the AR(2) process Xt =
1.5Xt−1 + 0.75Xt−2 + εt with error bars n = 200.

Step 2 For 2 ≤ t ≤ p, we define the recursion

φ̂t,t =
ĉn(t)−

∑t−1
j=1 φ̂t−1,j ĉn(t− j)
r̂n(t)

φ̂t,j = φ̂t−1,j − φ̂t,tφ̂t−1,t−j 1 ≤ j ≤ t− 1,

and r̂n(t+ 1) = r̂n(t)(1− φ̂2
t,t).

Step 3 We recall from (7.11) that φt,t is the partial correlation between Xt+1 and X1, therefore φ̂tt

are estimators of the partial correlation between Xt+1 and X1.

As mentioned in Step 3, the Yule-Walker estimators have the useful property that the partial

correlations can easily be evaluated within the procedure. This is useful when trying to determine

the order of the model to fit to the data. In Figure 9.1 we give the partial correlation plot corre-

sponding to Figure 8.1. Notice that only the first two terms are outside the error bars. This rightly

suggests the time series comes from an autoregressive process of order two.

In previous chapters it was frequently alluded to that the autocovariance is “blind” to non-

causality and that any estimator based on estimating the covariance will always be estimating the

causal solution. In Lemma 9.1.1 we show that the Yule-Walker estimator has the property that the

parameter estimates {φ̂j ; j = 1, . . . , p} correspond to a causal AR(p), in other words, the roots cor-

responding to φ̂(z) = 1−
∑p

j=1 φ̂jz
j lie outside the unit circle. A non-causal solution cannot arise.

The proof hinges on the fact that the Yule-Walker estimator is based on the sample autocovariances
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{ĉn(r)} which are a positive semi-definite sequence (see Lemma 8.2.1).

Remark 9.1.1 (Fitting an AR(1) using the Yule-Walker) We generalize this idea to general

AR(p) models below. However, it is straightforward to show that the Yule-Walker estimator of the

AR(1) parameter will always be less than or equal to one. We recall that

φ̂YW =

∑n−1
t=1 XtXt+1∑n

t=1X
2
t

.

By using Cauchy-Schwarz we have

|φ̂YW | ≤
∑n−1

t=1 |XtXt+1|∑n
t=1X

2
t

≤
[
∑n−1

t=1 X
2
t ]1/2[

∑n−1
t=1 X

2
t+1]∑n

t=1X
2
t

1/2

≤
[
∑n

t=1X
2
t ]1/2[

∑n−1
t=0 X

2
t+1]1/2∑n

t=1X
2
t

= 1.

We use a similar idea below, but the proof hinges on the fact that the sample covariances forms a

positive semi-definite sequence.

An alternative proof using that {ĉn(r)} is the ACF of a stationary time series {Zt}. Then

φ̂YW =
ĉn(1)

ĉn(0)
=

cov(Zt, Zt+1)

var(Zt)
=

cov(Zt, Zt+1)√
var(Zt)var(Zt+1)

,

which is a correlation and thus lies between [−1, 1].

Lemma 9.1.1 Let us suppose Zp+1 = (Z1, . . . , Zp+1) is a zero mean random vector, where var[Z]p+1 =

(Σp+1)i,j = cn(i − j) (which is Toeplitz). Let Zp+1|p be the best linear predictor of Zp+1 given

Zp, . . . , Z1, where φ
p

= (φ1, . . . , φp) = Σ−1
p rp are the coefficients corresponding to the best linear

predictor. Then the roots of the corresponding characteristic polynomial φ(z) = 1 −
∑p

j=1 φjz
j lie

outside the unit circle.

PROOF. The proof is based on the following facts:

(i) Any sequence {φj}pj=1 has the following reparameterisation. There exists parameters {aj}pj=1

and λ such that a1 = 1, for 2 ≤ j ≤ p− 2, aj −λaj−1 = φj and λap = φp. Using {aj}pj=1 and

λ, for rewrite the linear combination {Zj}p+1
j=1 as

Zp+1 −
p∑
j=1

φjZp+1−j =

p∑
j=1

ajZp+1−j − λ
p∑
j=1

ajZp−j .
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(ii) If φ
p

= (φ1, . . . , φp)
′ = Σ−1

p rp, then φ
p

minimises the mean square error i.e. for any {bj}pj=1

EΣp+1

Zp+1 −
p∑
j=1

φjZp+1−j

2

≤ EΣp+1

Zp+1 −
p∑
j=1

bjZp+1−j

2

(9.4)

where Σp+1 = var[Zp+1] and Zp+1 = (Zp+1, . . . , Z1).

We use these facts to prove the result. Our objective is to show that the roots of φ(B) = 1 −∑p
j=1 φjB

j lie outside the unit circle. Using (i) we factorize φ(B) = (1 − λB)a(B) where a(B) =∑p
j=1 ajB

j . Suppose by contraction |λ| > 1 (thus at least one root of φ(B) lies inside the unit

circle). We will show if this were true, then by the Toeplitz nature of Σp+1, φ
p

= (φ1, . . . , φp)

cannot be the best linear predictor.

Let

Yp+1 =

p∑
j=1

ajB
jZt+2 =

p∑
j=1

ajZp+2−j and Yp = BYp+1 = B

p∑
j=1

ajB
jZt+2 =

p∑
j=1

ajZp+1−j .

By (i) is clear that Zp+1 −
∑p

j=1 φjZp+1−j = Yp+1 − λYp. Furthermore, since {φj} minimises the

mean squared error in (9.4), then λYp must be the best linear predictor of Yp+1 given Yp i.e. λ

must minimise the mean squared error

λ = arg min
β

EΣp+1 (Yp+1 − βYp)2 ,

that is λ =
E[Yp+1Yp]

E[Y 2
p ]

. However, we now show that |E[Yp+1Yp]
E[Y 2

p ]
| ≤ 1 which leads to a contradiction.

We recall that Yp+1 is a linear combination of a stationary sequence, thus BYp+1 has the same

variance as Yp+1. I.e. var(Yp+1) = var(Yp). It you want to see the exact calculation, then

E[Y 2
p ] = var[Yp] =

p∑
j1,j2=1

aj1aj2cov[Yp+1−j1 , Yp+1−j2 ] =

p∑
j1,j2=1

aj1aj2c(j1 − j2)

= var[Yp+1] = E[Y 2
p+1].

In other words, since Σp+1 is a Toeplitz matrix, then E[Y 2
p ] = E[Y 2

p+1] and

λ =
E[Yp+1Yp]

(E[Y 2
p ]E[Y 2

p+1])1/2
.

This means λ measures the correlation between Yp and Yp+1 and must be less than or equal to one.
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Thus leading to a contradiction.

Observe this proof only works when Σp+1 is a Toeplitz matrix. If it is not we do not have

E[Y 2
p ] = E[Y 2

p+1] and that λ can be intepretated as the correlation. �

From the above result we can immediately see that the Yule-Walker estimators of the AR(p)

coefficients yield a causal solution. Since the autocovariance estimators {ĉn(r)} form a positive semi-

definite sequence, there exists a vector Y p where var
Σ̂p+1

[Y p+1] = Σ̂p+1 with (Σ̂p+1) = ĉn(i − j),

thus by the above lemma we have that Σ̂−1
p r̂p are the coefficients of a Causal AR process.

Remark 9.1.2 (The bias of the Yule-Walker estimator) The Yule-Walker tends to have larger

bias than other other estimators when the sample size is small and the spectral density correspond-

ing to the underlying time series is has a large pronounced peak (see Shaman and Stine (1988) and

Ernst and Shaman (2019)). The large pronounced peak in the spectral density arises when the roots

of the underlying characteristic polynomial lie close to the unit circle.

9.1.2 The tapered Yule-Walker estimator

Substantial improvements to the Yule-Walker estimator can be obtained by tapering the original

time series (tapering dates back to Tukey, but its application for AR(p) estimation was first proposed

and proved in Dahlhaus (1988)).

Tapering is when the original data is downweighted towards the ends of the time series. This

is done with a positive function h : [0, 1] → R that satisfies certain smoothness properties and is

such that h(0) = h(1) = 0. And the tapered time series is h( tn)Xt. An illustration is given below:

In R, this can be done with the function spec.taper(x,p=0.1) where x is the time series, p is

the proportion to be tapered). Replacing Xt with h(t/n)Xt we define the tapered sample covariance

as

ĉT,n(r) =
1∑n

t=1 h(t/n)2

n−|r|∑
t=1

h

(
t

n

)
Xth

(
t+ r

n

)
Xt+r.
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We now use {ĉT,n(r)} to define the Yule-Walker estimator for the AR(p) parameters.

9.1.3 The Gaussian likelihood

Our object here is to obtain the maximum likelihood estimator of the AR(p) parameters. We recall

that the maximum likelihood estimator is the parameter which maximises the joint density of the

observations. Since the log-likelihood often has a simpler form, we will focus on the log-likelihood.

We note that the Gaussian MLE is constructed as if the observations {Xt} were Gaussian, though it

is not necessary that {Xt} is Gaussian when doing the estimation. In the case that the innovations

are not Gaussian, the estimator may be less efficient (may not obtain the Cramer-Rao lower bound)

then the likelihood constructed as if the distribution were known.

Suppose we observe {Xt; t = 1, . . . , n} where Xt are observations from an AR(p) process. Let

us suppose for the moment that the innovations of the AR process are Gaussian, this implies that

Xn = (X1, . . . , Xn) is a n-dimension Gaussian random vector, with the corresponding log-likelihood

Ln(a) = − log |Σn(a)| −X′nΣn(a)−1Xn, (9.5)

where Σn(a) the variance covariance matrix of Xn constructed as if Xn came from an AR process

with parameters a. Of course, in practice, the likelihood in the form given above is impossible to

maximise. Therefore we need to rewrite the likelihood in a more tractable form.

We now derive a tractable form of the likelihood under the assumption that the innovations come

from an arbitrary distribution. To construct the likelihood, we use the method of conditioning,

to write the likelihood as the product of conditional likelihoods. In order to do this, we derive

the conditional distribution of Xt+1 given Xt−1, . . . , X1. We first note that the AR(p) process is

p-Markovian (if it is causal), therefore if t ≥ p all the information about Xt+1 is contained in the

past p observations, therefore

P(Xt+1 ≤ x|Xt, Xt−1, . . . , X1) = P(Xt+1 ≤ x|Xt, Xt−1, . . . , Xt−p+1), (9.6)

by causality. Since the Markov property applies to the distribution function it also applies to the

density

f(Xt+1|Xt, . . . , X1) = f(Xt+1|Xt, . . . , Xt−p+1).
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By using the (9.6) we have

P(Xt+1 ≤ x|Xt, . . . , X1) = P(Xt+1 ≤ x|Xt, . . . , X1) = Pε(ε ≤ x−
p∑
j=1

ajXt+1−j), (9.7)

where Pε denotes the distribution of the innovation. Differentiating Pε with respect to Xt+1 gives

f(Xt+1|Xt, . . . , Xt−p+1) =
∂Pε(ε ≤ Xt+1 −

∑p
j=1 ajXt+1−j)

∂Xt+1
= fε

Xt+1 −
p∑
j=1

ajXt+1−j

 . (9.8)

Example 9.1.1 (AR(1)) To understand why (9.6) is true consider the simple case that p = 1

(AR(1) with |φ| < 1). Studying the conditional probability gives

P(Xt+1 ≤ xt+1|Xt = xt, . . . , X1 = x1) = P( φXt + εt ≤ xt+1︸ ︷︷ ︸
all information contained in Xt

|Xt = xt, . . . , X1 = x1)

= Pε(εt ≤ xt+1 − φxt) = P(Xt+1 ≤ xt+1|Xt = xt),

where Pε denotes the distribution function of the innovation ε.

Using (9.8) we can derive the joint density of {Xt}nt=1. By using conditioning we obtain

f(X1, X2, . . . , Xn) = f(X1, . . . , Xp)
n−1∏
t=p

f(Xt+1|Xt, . . . , X1) (by repeated conditioning)

= f(X1, . . . , Xp)

n−1∏
t=p

f(Xt+1|Xt, . . . , Xt−p+1) (by the Markov property)

= f(X1, . . . , Xp)

n−1∏
t=p

fε(Xt+1 −
p∑
j=1

ajXt+1−j) (by (9.8)).

Therefore the log likelihood is

log f(X1, X2, . . . , Xn)︸ ︷︷ ︸
Full log-likelihood Ln(a;Xn)

= log f(X1, . . . , Xp)︸ ︷︷ ︸
initial observations

+
n−1∑
t=p

log fε(Xt+1 −
p∑
j=1

ajXt+1−j)︸ ︷︷ ︸
conditional log-likelihood=Ln(a;Xn)

.

In the case that the sample sizes are large n >> p, the contribution of initial observations

log f(X1, . . . , Xp) is minimal and the conditional log-likelihood and full log-likelihood are asymp-

totically equivalent.

So far we have not specified the distribution of {εt}t. From now on we shall assume that it is
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Gaussian. Thus log f(X1, . . . , Xn;φ) and log f(X1, . . . , Xp;φ) are multivariate normal with mean

zero (since we are assuming, for convenience, that the time series has zero mean) and variance

Σn(φ) and Σp(φ) respectively, where by stationarity Σn(φ) and Σp(φ) are Toeplitz matrices. Based

on this the (negative) log-likelihood is

Ln(a) = log |Σn(a)|+X ′pΣn(a)−1Xp

= log |Σp(a)|+X ′pΣp(a)−1Xp + Ln(a;X)︸ ︷︷ ︸
conditional likelihood

. (9.9)

The maximum likelihood estimator is

φ̂
n

= arg max
a∈Θ
Ln(a). (9.10)

The parameters in the model are ‘buried’ within the covariance. By constraining the parameter

space, we can ensure the estimator correspond to a causal AR process (but find suitable parameter

space is not simple). Analytic expressions do exist for X ′pΣp(a)−1Xp and log |Σp(a)| but they are

not so simple. This motivates the conditional likelihood described in the next section.

9.1.4 The conditional Gaussian likelihood and least squares

The conditonal likelihood focusses on the conditonal term of the Gaussian likelihood and is defined

as

Ln(a;X) = −(n− p) log σ2 − 1

σ2

n−1∑
t=p

Xt+1 −
p∑
j=1

ajXt+1−j

2

,

is straightforward to maximise. Since the maximum of the above with respect to {aj} does not

depend on σ2. The conditional likelihood estimator of {φj} is simply the least squares estimator

φ̃
p

= arg min
n−1∑
t=p

Xt+1 −
p∑
j=1

ajXt+1−j

2

= Σ̃−1
p r̃p,

where (Σ̃p)i,j = 1
n−p

∑n
t=p+1Xt−iXt−j and (r̃n)i = 1

n−p
∑n

t=p+1XtXt−i.

Remark 9.1.3 (A comparison of the Yule-Walker and least squares estimators) Comparing
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the least squares estimator φ̃
p

= Σ̃−1
p r̃p with the Yule-Walker estimator φ̂

p
= Σ̂−1

p r̂p we see that

they are very similar. The difference lies in Σ̃p and Σ̂p (and the corresponding r̃p and r̂p). We see

that Σ̂p is a Toeplitz matrix, defined entirely by the positive definite sequence ĉn(r). On the other

hand, Σ̃p is not a Toeplitz matrix, the estimator of c(r) changes subtly at each row. This means

that the proof given in Lemma 9.1.1 cannot be applied to the least squares estimator as it relies

on the matrix Σp+1 (which is a combination of Σp and rp) being Toeplitz (thus stationary). Thus

the characteristic polynomial corresponding to the least squares estimator will not necessarily have

roots which lie outside the unit circle.

Example 9.1.2 (Toy Example) To illustrate the difference between the Yule-Walker and least

squares estimator (at least for example samples) consider the rather artifical example that the time

series consists of two observations X1 and X2 (we will assume the mean is zero). We fit an AR(1)

model to the data, the least squares estimator of the AR(1) parameter is

φ̂LS =
X1X2

X2
1

whereas the Yule-Walker estimator of the AR(1) parameter is

φ̂YW =
X1X2

X2
1 +X2

2

.

It is clear that φ̂LS < 1 only if X2 < X1. On the other hand φ̂YW < 1. Indeed since (X1−X2)2 > 0,

we see that φ̂YW ≤ 1/2.

Exercise 9.1 (i) In R you can estimate the AR parameters using ordinary least squares (ar.ols),

yule-walker (ar.yw) and (Gaussian) maximum likelihood (ar.mle).

Simulate the causal AR(2) model Xt = 1.5Xt−1− 0.75Xt−2 + εt using the routine arima.sim

(which gives Gaussian realizations) and also innovations which from a t-distribution with

4df. Use the sample sizes n = 100 and n = 500 and compare the three methods through a

simulation study.

(ii) Use the `1-norm defined as

Ln(φ) =
t∑

t=p+1

∣∣∣∣∣∣Xt −
p∑
j=1

φjXt−j

∣∣∣∣∣∣ ,
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with φ̂n = arg minLn(φ) to estimate the AR(p) parameters.

You may need to use a Quantile Regression package to minimise the `1 norm. I suggest using

the package quantreg and the function rq where we set τ = 0.5 (the median).

Note that so far we have only considered estimation of causal AR(p) models. Breidt et. al. (2001)

propose a method for estimating parameters of a non-causal AR(p) process (see page 18).

9.1.5 Burg’s algorithm

Burg’s algorithm is an alternative method for estimating the AR(p) parameters. It is closely related

to the least squares estimator but uses properties of second order stationarity in its construction.

Like the Yule-Walker estimator it has the useful property that its estimates correspond to a causal

characteristic function. Like the Yule-Walker estimator it can recursively estimate the AR(p)

parameters by first fitting an AR(1) model and then recursively increasing the order of fit.

We start with fitting an AR(1) model to the data. Suppose that φ1,1 is the true best fitting

AR(1) parameter, that is

Xt = PXt−1(Xt) + ε1,t = φ1,1Xt−1 + ε1,t.

Then the least squares estimator is based on estimating the projection by using the φ1,1 that

minimises

n∑
t=2

(Xt − φXt−1)2.

However, the same parameter φ1,1 minimises the projection of the future into the past

Xt = PXt+1(Xt) + δ1,t = φ1,1Xt+1 + δ1,t.

Thus by the same argument as above, an estimator of φ1,1 is the parameter which minimises

n−1∑
t=1

(Xt − φXt+1)2.
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We can combine these two least squares estimators to find the φ which minimises

φ̂1,1 = arg min

[
n∑
t=2

(Xt − φXt−1)2 +
n−1∑
t=1

(Xt − φXt+1)2

]
.

Differentiating the above wrt φ and solving gives the explicit expression

φ̂1,1 =

∑n−1
t=1 XtXt+1 +

∑n
t=2XtXt−1

2
∑n−1

t=2 X
2
t +X2

1 +X2
n

=
2
∑n−1

t=1 XtXt+1

2
∑n−1

t=2 X
2
t +X2

1 +X2
n

.

Unlike the least squares estimator φ̂1,1 is guaranteed to lie between [−1, 1]. Note that φ1,1 is the

partial correlation at lag one, thus φ̂1,1 is an estimator of the partial correlation. In the next step we

estimate the partial correlation at lag two. We use the projection argument described in Sections

5.1.4 and 7.5.1. That is

PXt−2,Xt−1(Xt) = PXt−1(Xt) + ρ
(
Xt−2 − PXt−1(Xt−2)

)
and

Xt = PXt−2,Xt−1(Xt) + ε2,t = PXt−1(Xt) + ρ
(
Xt−2 − PXt−1(Xt−2)

)
+ ε2,t

= φ1,1Xt−1 + ρ (Xt−2 − φ1,1Xt−1) + ε2,t.

Thus we replace φ1,1 in the above with φ̂1,1 and estimate ρ by minimising least squares criterion

n∑
t=3

[
Xt − φ̂1,1Xt−1 − ρ

(
Xt−2 − φ̂1,1Xt−1

)]
.

However, just as in the estimation scheme of φ1,1 we can estimate ρ by predicting into the past

PXt+2,Xt+1(Xt) = PXt+1(Xt) + ρ
(
Xt+2 − PXt+1(Xt+2)

)
to give

Xt = φ1,1Xt+1 + ρ (Xt+2 − φ1,1Xt+1) + δ2,t.
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This leads to an alternative estimator of ρ that minimises

n−2∑
t=1

[
Xt − φ̂1,1Xt+1 − ρ

(
Xt+2 − φ̂1,1Xt+1

)]
.

The Burg algorithm estimator of ρ minimises both the forward and backward predictor simultane-

ously

ρ̂2 = arg min
ρ

(
n∑
t=3

[
Xt − φ̂1,1Xt−1 − ρ

(
Xt−2 − φ̂1,1Xt−1

)]
+
n−2∑
t=1

[
Xt − φ̂1,1Xt+1 − ρ

(
Xt+2 − φ̂1,1Xt+1

)])
.

Differentiating the above wrt ρ and solving gives an explicit solution for ρ̂2. Moreover we can show

that |ρ̂2| ≤ 1. The estimators of the best fitting AR(2) parameters (φ1,2, φ2,2) are

φ̂1,2 =
(
φ̂1,1 − ρ̂2φ̂1,1

)
and φ̂2,2 = ρ̂2.

Using the same method we can obtain estimators for {φ̂r,r}r which can be used to construct the

estimates of the best fitting AR(p) parameters {φ̂j,p}pj=1. It can be shown that the parameters

{φ̂j,p}pj=1 correspond to a causal AR(p) model.

Proof that 0 ≤ |φ̂1,1| ≤ 1 To prove the result we pair the terms in the estimator

φ̂1,1 =
2 [X1X2 +X2X3 + . . .+Xn−1Xn]

(X2
1 +X2

2 ) + (X2
2 +X2

3 ) + . . .+ (X2
n−2 +X2

n−1) + (X2
n−1 +X2

n)
.

Each term in the numerator can be paired with the term in the denominator i.e. using that

(|Xt| − |Xt+1|)2 ≥ 0 we have

2|XtXt+1| ≤ X2
t +X2

t+1 1 ≤ t ≤ (n− 1).

Thus the absolute of the numerator is smaller that the denominator and we have

|φ̂1,1| =
2 [|X1X2|+ |X2X3|+ . . .+ |Xn−1Xn|]

(X2
1 +X2

2 ) + (X2
2 +X2

3 ) + . . .+ (X2
n−2 +X2

n−1) + (X2
n−1 +X2

n)
≤ 1.

This proves the claim. �
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9.1.6 Sampling properties of the AR regressive estimators

Both the Yule-Walker, least squares and Gaussian likelihood estimator have the same asymptotic

sampling properties (under the assumption of stationarity) (the estimator for the tapered Yule-

Walker is a little different). Suppose that {Xt} has a causal AR(p0) representation

Xt =

p0∑
j=1

φjXt−j + εt

where {εt} are iid random variables with var[εt] = σ2 and E[|εt|2+δ] <∞ for some δ > 0.

Suppose the AR(p) model is fitted to the time series, using either least squares or Yule-Walker

estimator. We denote this estimator as φ̂p. If p ≥ p0, then

√
n(φ̂

p
− φ

p
)
D→ N

(
0, σ2Σ−1

p

)
,

where Σp = var[Xp] and Xp = (X1, . . . , Xp).

Remark 9.1.4 We note that the assumption E|ε2+δ
t | < ∞ implies that E[|Xt|2+δ] < ∞. In the

proof below we use the stronger assumption E(ε4
t ) <∞ to make the proof easier to follow.

Tools to prove the result: Martingale central limit theorem (advanced)

We summarize the result, see Billingsley (1995) Hall and Heyde (1980) (Theorem 3.2 and Corollary

3.1) for the details.

Definition 9.1.1 The random variables {Zt} are called martingale differences if

E(Zt|Zt−1, Zt−2, . . .) = 0.

The sequence {Sn}n, where

Sn =

n∑
t=1

Zt

are called martingales if {Zt} are martingale differences. Observe that E[Sn|Sn−1] = Sn−1.

Remark 9.1.5 (Martingales and covariances) We observe that if {Zt} are martingale differ-
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ences then

E[Zt] = E[E[Zt|Ft−1]] = 0,

where Fs = σ(Zs, Zs−1, . . .) and for t > s and

cov(Zs, Zt) = E(ZsZt) = E
(
E(ZsZt|Fs)

)
= E

(
ZsE(Zt|Fs)

)
= E(Zs × 0) = 0.

Hence martingale differences are uncorrelated.

Example 9.1.3 Suppose that Xt = φXt−1 + εt, where {εt} are iid r.v. with E(εt) = 0 and |φ| < 1.

Then {εtXt−1}t are martingale differences. To see why note that

E [εtXt−1|εt−jXt−j−1; j ≥ 1] = E [E (εtXt−1|εt−j ; j ≥ 1) |εt−jXt−j−1; j ≥ 1]

= E [Xt−1E (εt|εt−j ; j ≥ 1) |εt−jXt−j−1; j ≥ 1] = 0, a.s

since σ(εt−jXt−j−1; j ≥ 1) ⊆ σ(εt−j ; j ≥ 1). In general, if Xt is a causal time series then {εtXt−j}t

are martingale differences (j > 0).

Let

Sn =
1

n

n∑
t=1

Zt, (9.11)

and Ft = σ(Zt, Zt−1, . . .), E(Zt|Ft−1) = 0 and E(Z2
t ) <∞. We shall show asymptotic normality of

√
n(Sn−E(Sn)). The reason for normalising by

√
n, is that (Sn−E(Sn))

P→ 0 as n→∞, hence in

terms of distributions it converges towards the point mass at zero. Therefore we need to increase

the magnitude of the difference. If it can show that var(Sn) = O(n−1), then
√
n(Sn−E(S0) = O(1).

Theorem 9.1.1 Let Sn be defined as in (14.16). Further suppose

1

n

n∑
t=1

Z2
t
P→ σ2, (9.12)

where σ2 is a finite constant, for all η > 0,

1

n

n∑
t=1

E(Z2
t I(|Zt| > η

√
n)|Ft−1)

P→ 0, (9.13)
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(this is known as the conditional Lindeberg condition) and

1

n

n∑
t=1

E(Z2
t |Ft−1)

P→ σ2. (9.14)

Then we have

n1/2Sn
D→ N (0, σ2). (9.15)

Remark 9.1.6 (The conditional likelihood and martingales) It is interesting to note that

the derivative of conditional log-likelihood of a time series at the true parameter is a martingale so

long as the likelihood is correctly specified. In other works, using that

log f(Xn, . . . , X1|X1; θ) =
n∑
t=2

log f(Xt|Xt−1, . . . , X1; θ),

then ∂ log f(Xt|Xt−1,...,X1;θ)
∂θ is a martingale difference. To see why, note that if we can take the

derivative outside the integral then

E

[
∂ log f(Xt|Xt−1, . . . , X1; θ)

∂θ

∣∣Xt−1, . . . , X1

]
=

∫
∂ log f(Xt|Xt−1, . . . , X1; θ)

∂θ
f(Xt|Xt−1, . . . , X1; θ)dXt

=

∫
∂f(Xt|Xt−1, . . . , X1; θ)

∂θ
dXt =

∂

∂θ

∫
f(Xt|Xt−1, . . . , X1; θ)dXt = 0.

Asymptotic normality of the least squares estimator of the AR(1) parameter

In this section we show asymptotic normality of the least squares estimator of the AR(1), where

φ̂n = arg max Ln(a) and

Ln(a) =
1

n− 1

n∑
t=2

(Xt − aXt−1)2.
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The first and the second derivative (at the true parameter) is

∇Ln(a)ca=φ =
−2

n− 1

n∑
t=2

Xt−1 (Xt − φXt−1)︸ ︷︷ ︸
=εt

=
−2

n− 1

n∑
t=2

Xt−1εt

and ∇2Ln(a) =
2

n− 1

n∑
t=2

X2
t−1 (does not depend on unknown parameters).

Thus it is clear that

(φ̂n − φ) = −
(
∇2Ln

)−1∇Ln(φ). (9.16)

Since {X2
t } are ergodic random variables, by using the ergodic theorem we have ∇2Ln

a.s.→ 2E(X2
0 ).

This, together with (9.16), implies

√
n(φ̂n − φ) =

∑n
t=2XtXt−1∑n
t=2X

2
t−1

− φ

=

∑n
t=2Xt−1(Xt − φXt−1)∑n

t=2X
2
t−1

=

∑n
t=2Xt−1εt∑n
t=2X

2
t−1

= −
(
∇2Ln

)−1︸ ︷︷ ︸
a.s.→ (2E(X2

0 ))−1

√
n∇Ln(φ) = −Σ−1

1

√
nSn +Op(n

−1/2),

where Sn = 1
n−1

∑n
t=2Xt−1εt. Thus to show asymptotic normality of

√
n(φ̂n − φ), will need only

show asymptotic normality of
√
nSn. Sn is the sum of martingale differences, since E(Xt−1εt|Xt−1) =

Xt−1E(εt|Xt−1) = Xt−1E(εt) = 0, therefore we apply the martingale central limit theorem (sum-

marized in the previous section).

To show that
√
nSn is asymptotically normal, we need to verify conditions (9.12)-(9.14). We

note in our example that Zt := Xt−1εt, and that the series {Xt−1εt}t is an ergodic process (this

simply means that sample means converge almost surely to their expectation, so it is a great tool

to use). Furthermore, since for any function g, E(g(Xt−1εt)|Ft−1) = E(g(Xt−1εt)|Xt−1), where

Ft−1 = σ(Xt−1, Xt−2, . . .) we need only to condition on Xt−1 rather than the entire sigma-algebra

Ft−1. To simplify the notation we let Sn = 1
n

∑n
t=1 εtXt−1 (included an extra term here).

Verification of conditions
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C1 : By using the ergodicity of {Xt−1εt}t we have

1

n

n∑
t=1

Z2
t =

1

n

n∑
t=1

X2
t−1ε

2
t
P→ E(X2

t−1) E(ε2
t )︸ ︷︷ ︸

=1

= σ2c(0).

C2 : We now verify the conditional Lindeberg condition.

1

n

n∑
t=1

E(Z2
t I(|Zt| > η

√
n)|Ft−1) =

1

n− 1

n∑
t=1

E(X2
t−1ε

2
t I(|Xt−1εt| > η

√
n)|Xt−1).

We now use the Cauchy-Schwartz inequality for conditional expectations to split X2
t−1ε

2
t and

I(|Xt−1εt| > ε) (see the conditional Hölder inequality). We recall that the Cauchy-Schwartz

inequality for conditional expectations is E(XtZt|G) ≤ [E(X2
t |G)E(Z2

t |G)]1/2 almost surely.

Therefore

1

n

n∑
t=1

E(Z2
t I(|Zt| > ε

√
n)|Ft−1) (use the conditional Cauchy-Schwartz to split these terms)

≤ 1

n

n∑
t=1

{
E(X4

t−1ε
4
t |Xt−1)E(I(|Xt−1εt| > η

√
n)2|Xt−1)

}1/2

≤ 1

n

n∑
t=1

X2
t−1E(ε4

t )
1/2
{

E(I(|Xt−1εt| > η
√
n)2|Xt−1)

}1/2
, (9.17)

almost surely. We note that rather than use the conditional Cauchy-Schwartz inequality we

can use a generalisation of it called the conditional Hölder inequality. The Hölder inequality

states that if p−1 + q−1 = 1, then E(XY |F) ≤ {E(Xp|F)}1/p{E(Y q|F)}1/q almost surely.

The advantage of using this inequality is that one can reduce the moment assumptions on

Xt.

Returning to (9.17), and studying E(I(|Xt−1εt| > ε)2|Xt−1) we use that E(I(A)2) = E(I(A)) =

P(A) and the Chebyshev inequality to show

E
(
I(|Xt−1εt| > η

√
n)2|Xt−1

)
= E

(
I(|Xt−1εt| > η

√
n)|Xt−1

)
= E

(
I

(
|εt| >

η
√
n

Xt−1

)
|Xt−1

)
= Pε

(
|εt| >

η
√
n

Xt−1

)
≤
X2
t−1var(εt)

η2n
. (9.18)
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Substituting (9.18) into (9.17) we have

1

n

n∑
t=1

E
(
Z2
t I(|Zt| > η

√
n)|Ft−1

)
≤ 1

n

n∑
t=1

X2
t−1E(ε4

t )
1/2

{
X2
t−1var(εt)

η2n

}1/2

≤ E(ε4
t )

1/2

ηn3/2

n∑
t=1

|Xt−1|3E(ε2
t )

1/2

≤ E(ε4
t )

1/2E(ε2
t )

1/2

ηn1/2

1

n

n∑
t=1

|Xt−1|3.

If E(ε4
t ) <∞, then E(X4

t ) <∞, therefore by using the ergodic theorem we have 1
n

∑n
t=1 |Xt−1|3

a.s.→

E(|X0|3). Since almost sure convergence implies convergence in probability we have

1

n

n∑
t=1

E(Z2
t I(|Zt| > η

√
n)|Ft−1) ≤ E(ε4

t )
1/2E(ε2

t )
1/2

ηn1/2︸ ︷︷ ︸
→0

1

n

n∑
t=1

|Xt−1|3︸ ︷︷ ︸
P→E(|X0|3)

P→ 0.

Hence condition (9.13) is satisfied.

C3 : Finally, we need to verify that

1

n

n∑
t=1

E(Z2
t |Ft−1)

P→ σ2.

Since {Xt}t is an ergodic sequence we have

1

n

n∑
t=1

E(Z2
t |Ft−1) =

1

n

n∑
t=1

E(X2
t−1ε

2
t |Xt−1)

=
1

n

n∑
t=1

X2
t−1E(ε2

t |Xt−1) = E(ε2
t )

1

n

n∑
t=1

X2
t−1︸ ︷︷ ︸

a.s.→E(X2
0 )

a.s.→ E(ε2)E(X2
0 ) = σ2Σ1,

hence we have verified condition (9.14).

Altogether conditions C1-C3 imply that

√
n∇Ln(φ) =

1√
n

n∑
t=1

Xt−1εt
D→ N (0, σ2Σ1). (9.19)

305



Therefore

√
n(φ̂n − φ) =

(
1

2
∇2Ln

)−1

︸ ︷︷ ︸
a.s.→ (E(X2

0 ))−1

√
nSn︸ ︷︷ ︸

D→N (0,σ2c(0))

. (9.20)

Using that E(X2
0 ) = c(0), this implies that

√
n(φ̂n − φ)

D→ N (0, σ2Σ−1
1 ). (9.21)

Thus we have derived the limiting distribution of φ̂n.

Remark 9.1.7 We recall that

(φ̂n − φ) = −
(
∇2Ln

)−1∇Ln(φ) =
1

n−1

∑n
t=2 εtXt−1

1
n−1

∑n
t=2X

2
t−1

, (9.22)

and that var( 1
n−1

∑n
t=2 εtXt−1) = 1

n−1

∑n
t=2 var(εtXt−1) = O( 1

n). This implies

(φ̂n − φ) = Op(n
−1/2).

Indeed the results also holds almost surely

(φ̂n − φ) = O(n−1/2). (9.23)

The same result is true for autoregressive processes of arbitrary finite order. That is

√
n(φ̂

n
− φ)

D→ N (0, σ2Σ−1
p ). (9.24)

9.2 Estimation for ARMA models

Let us suppose that {Xt} satisfies the ARMA representation

Xt −
p∑
i=1

φiXt−i = εt +

q∑
j=1

θjεt−j ,
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and θ = (θ1, . . . , θq), φ = (φ1, . . . , φp) and σ2 = var(εt). We will suppose for now that p and

q are known. The objective in this section is to consider various methods for estimating these

parameters.

9.2.1 The Gaussian maximum likelihood estimator

We now derive the Gaussian maximum likelihood estimator (GMLE) to estimate the parameters θ

and φ. Let X ′n = (X1, . . . , Xn). The criterion (the GMLE) is constructed as if {Xt} were Gaussian,

but this need not be the case. The likelihood is similar to the likelihood given in (9.5), but just as

in the autoregressive case it can be not directly maximised, i.e.

Ln(φ, θ, σ) = − log det(Σn(φ, θ, σ))−X ′nΣn(φ, θ, σ)−1Xn, (9.25)

where Σn(φ, θ, σ) the variance covariance matrix of Xn. However, the above can be written in a

tractable way by using conditioning

Ln(ζ) = log f(X1; ζ) +

n−1∑
t=1

log f(Xt+1|Xt, . . . , X1; ζ) (by repeated conditioning)

where for simplicity we set ζ = (θ, φ, σ). Note that f(Xt+1|X1, . . . , Xt, ζ) is the conditional den-

sity of Xt+1 given X1, . . . , Xt. Under the assumption the process is Gaussian, the conditional

distribution of Xt+1 conditioned on the past is Gaussian where

Xt+1|Xt, . . . , X1 ∼ N (PX1,...,Xt(Xt+1, ζ), var[Xt+1|Xt, . . . , X1, ζ]) .

and var[Xt+1|Xt, . . . , X1, ζ] = Eζ [Xt+1−PX1,...,Xt(Xt+1; ζ)]2. We recall from Sections 7.5.1 and (7.8)

and equation (7.5.1) that the coefficients of PX1,...,Xt(Xt+1) are the best fitting AR(t) parameters

based on the autocovariance {c(r; ζ)}r which implictly depends on the ARMA parameters ζ. Thus

PX1,...,Xt(Xt+1; ζ) = Xt+1|t =
t∑

j=1

aj,t(ζ)Xt+1−j

and

Eζ [Xt+1 − PX1,...,Xt(Xt+1; ζ)]2 = r(t+ 1; ζ) = c(0; ζ)− rt(ζ)′Σt(ζ)−1rt(ζ).
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The above looks cumbersome but it can be evaluated using the Levinson-Durbin algorithm. Further,

if t > max(p, q), then by using equation (7.8)

Xt+1|t(ζ) =
t∑

j=1

aj,t(ζ)Xt+1−j =

p∑
j=1

φj(ζ)Xt+1−j +

q∑
i=1

θt,i(ζ)(Xt+1−i −Xt+1−i|t−i(ζ)).

Thus under Gaussianity

f(Xt+1|Xt, . . . , X1; ζ) =
1√

2πr(t+ 1; ζ)
exp

(
−

(Xt+1 −Xt+1|t(ζ))2

2r(t+ 1; ζ)

)

and

log f(Xt+1|Xt, . . . , X1; ζ) ∝ − log r(t+ 1; ζ)−
(Xt+1 −Xt+1|t(ζ))2

r(t+ 1; ζ)
.

Substituting this into Ln(ζ) gives

Ln(ζ) = −
n∑
t=1

log r(t; ζ)− X2
1

r(1; ζ)
−
n−1∑
t=1

(Xt+1 −
∑t

j=1 φt+1,j(ζ)Xt+1−j)
2

r(t+ 1; ζ)
.

An alternative but equivalent derivation of the above is to use the Cholesky decomposition of Σn(ζ)

(see Section 7.5.3, equation (7.14)). For each set of parameters ζ and r(t+1; ζ) and Xt+1−i|t−i(ζ) can

be evaluated. Thus the maximum likelihood estimators are the parameters ζ̂n = arg maxζ Ln(ζ).

The above can be a little difficult to evaluate. We give describe some popular approximations

below.

9.2.2 The approximate Gaussian likelihood

We obtain an approximation to the log-likelihood which simplifies the estimation scheme. We recall

in Section 7.8 we approximated Xt+1|t with X̂t+1|t. This motivates the approximation where we

replace Xt+1|t in L̂n(ζ) with X̂t+1|t, where X̂t+1|t is defined in (7.21)

X̂t+1|t =

p∑
j=1

φjXt+1−j +

q∑
i=1

θi(Xt+1−i − X̂t−i(1)) =

t∑
s=1

ajXt+1−s +

max(p,q)∑
s=1

bsXs.
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and r(t; ζ) with σ2. This gives the approximate Gaussian log-likelihood

L̂n(ζ) = −
n∑
t=1

log σ2 −
n∑
t=2

[Xt − X̂t|t−1(ζ)]2

σ2

= −
n∑
t=1

log σ2 −
n∑
t=2

[(θ(B)−1φ(B))[t]Xt]
2

σ2

where (θ(B)−1φ(B))[t] denotes the approximation of the polynomial in B to the tth order. The

approximate likelihood greatly simplifies the estimation scheme because the derivatives (which is

the main tool used in the maximising it) can be easily obtained. To do this we note that

d

dθi

φ(B)

θ(B)
Xt = −B

iφ(B)

θ(B)2
Xt = − φ(B)

θ(B)2
Xt−i (9.26)

d

dφj

φ(B)

θ(B)
Xt = − Bj

θ(B)2
Xt = − 1

θ(B)2
Xt−j

therefore

d

dθi

(
φ(B)

θ(B)
Xt

)2

= −2

(
φ(B)

θ(B)
Xt

)(
φ(B)

θ(B)2
Xt−i

)
and

d

dφj

(
φ(B)

θ(B)
Xt

)2

= −2

(
φ(B)

θ(B)
Xt

)(
1

θ(B)2
Xt−j

)
.

(9.27)

Substituting this into the approximate likelihood gives the derivatives

∂L̂

∂θi
= − 2

σ2

n∑
t=2

[(
θ(B)−1φ(B)

)
[t]
Xt

] [( φ(B)

θ(B)2

)
[t−i]

Xt−i

]
∂L̂

∂φj
= − 2

σ2

n∑
t=1

[(
θ(B)−1φ(B)

)
[t]
Xt

] [( 1

θ(B)

)
[t−j]

Xt−j

]
∂L̂

∂σ2
=

1

σ2
− 1

nσ4

n∑
t=1

[(
θ(B)−1φ(B)

)
[t]
Xt

]2
. (9.28)

We then use the Newton-Raphson scheme to maximise the approximate likelihood.

It should be mentioned that such approximations are very common in time series, though as

with all approximation, they can be slightly different. Lütkepohl (2005), Section 12.2 gives a very

similar approximation, but uses the variance/covariance matrix of the time series Xn as the basis

of the approximation. By approximating the variance/covariance he finds an approximation of the

likelihood.
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9.2.3 Estimation using the Kalman filter

We now state another approximation using the Kalman filter. We recall from Section 7.9 that the

ARMA model satisfies the recursion

X(t+ 1|t+ 1)

X(t+ 2|t+ 1)

X(t+ 3|t)
...

X(t+m− 1|t+ 1)

X(t+m|t+ 1)


=



0 1 0 . . . 0 0

0 0 1 . . . 0 0

0 0 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1

φm φm−1 φm−2 . . . φ2 φ1





X(t|t)

X(t+ 1|t)

X(t+ 2|t)
...

X(t+m− 2|t)

X(t+m− 1|t)


+ εt+1



1

ψ1

ψ2

...

ψm−2

ψm−1


Zt+1 = FZt + V t+1

for t ∈ Z. The observation model is the ARMA(p, q) process where

Xt+1 = (1, 0, . . . , 0)Zt+1 where t ∈ Z.

Q(ζ) = var(εt)ψ
′
m
ψ
m

, R = 0, H = (1, 0, . . . , 0)

The Kalman equations

(1) Start with an initial value Z0|0. This part is where the approximation comes into play because

Y0 is not observed. This part causes me quite a lot of trauma because it means the likelihood

based on the Kalman equations is also an approximation (though it rarely is stated that it

is). Typically we set Z0|0 = (0, . . . , 0) and recommendations for P0|0 are given in Jones (1980)

and Akaiki (1978). Then for t > 0 iterate on steps (2) and (3) below.

(2) Prediction step

Ẑt+1|t(ζ) = F (ζ)Ẑt|t(ζ)

and the corresponding mean squared error

Pt+1|t(ζ) = F (ζ)Pt|tF (ζ)∗ +Q(ζ).
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(3) Update step The conditional expectation

Ẑt+1|t+1(ζ) = Ẑt+1|t(ζ) +Kt+1(ζ)
(
Xt+1 −HẐt+1|t(ζ)

)
.

where

Kt+1(ζ) =
Pt+1|t(ζ)H∗

HPt+1|t(ζ)H∗

and the corresponding mean squared error

Pt+1|t+1(ζ) = Pt+1|t(ζ)−Kt(ζ)HPt+1|t(ζ) = (I −Kt(ζ)H)Pt+1|t(ζ).

Thus Ẑt+1|t(ζ)(1) ≈ Xt+1|t(ζ) and Pt+1|t(ζ) ≈ r(t + 1|ζ) thus an approximation of the Gaussian

likeilhood is

L̂n(ζ) = −
n∑
t=1

logPt|t−1(ζ)−
n∑
t=1

(Xt − Ẑt|t−1(ζ)(1))
2

Pt|t−1(ζ)
.

In order to maximise the above (using the Newton Raphson scheme) the derivative of the above

needs to be evaluated with respect to ζ. How exactly this is done is not so clear to me. Ẑt|t−1(ζ)

could be evaluated by defining a new set of state space equations for (Zt+1(ζ),∇ζZt+1(ζ)) but I

not so sure how this can be done for Pt|t−1(ζ). Nevertheless somehow it is done successfully used

to maximise the likelihood.

9.2.4 Sampling properties of the ARMA maximum likelihood es-

timator

It can be shown that the approximate likelihood is close to the actual true likelihood and asymp-

totically both methods are equivalent.

Theorem 9.2.1 Let us suppose that Xt has a causal and invertible ARMA representation

Xt −
p∑
j=1

φjXt−j = εt +

q∑
i=1

θiεt−i

where {εt} are iid random variables with mean zero and var[εt] = σ2 (we do not assume Gaussian-
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ity). Then the (quasi)-Gaussian

√
n

 φ̂
n
− φ

θ̂n − θ

 D→ N (0, σ2Λ−1),

with

Λ =

 E(UtU
′
t) E(VtU

′
t)

E(UtV
′
t) E(VtV

′
t)


and Ut = (Ut, . . . , Ut−p+1) and Vt = (Vt, . . . , Vt−q+1), where {Ut} and {Vt} are autoregressive

processes which satisfy φ(B)Ut = εt and θ(B)Vt = εt.

We do not give the proof in this section, however it is possible to understand where this result

comes from. We recall that that the maximum likelihood and the approximate likelihood are

asymptotically equivalent. They are both approximations of the unobserved likelihood

L̃n(θ) = −
n∑
t=1

log σ2 −
n−1∑
t=2

[Xt+1 −Xt(1;θ)]2

σ2
= −

n∑
t=1

log σ2 −
n−1∑
t=2

[θ(B)−1φ(B)Xt+1]2

σ2
,

where θ = (φ, θ, σ2). This likelihood is infeasible in the sense that it cannot be maximised since

the finite past X0, X1, . . . is unobserved, however is a very convenient tool for doing the asymptotic

analysis. Using Lemma 7.8.1 we can show that all three likelihoods Ln, L̂n and L̃n are all asymp-

totically equivalent. Therefore, to obtain the asymptotic sampling properties of Ln or L̂n we can

simply consider the unobserved likelihood L̃n.

To show asymptotic normality (we assume here that the estimators are consistent) we need to

consider the first and second derivative of L̃n (since the asymptotic properties are determined by

Taylor expansions). In particular we need to consider the distribution of ∂L̃n∂θ at its true parameters

and the expectation of ∂2L̃n
∂θ2

at it’s true parameters. We note that by using (9.27) we have

∂L̃

∂θi
= − 2

σ2

n∑
t=1

[(
θ(B)−1φ(B)

)
Xt

] [( φ(B)

θ(B)2

)
Xt−i

]
∂L̃

∂φj
= − 2

σ2

n∑
t=1

[(
θ(B)−1φ(B)

)
Xt

] [( 1

θ(B)

)
Xt−j

]
(9.29)

Since we are considering the derivatives at the true parameters we observe that
(
θ(B)−1φ(B)

)
Xt =
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εt,

φ(B)

θ(B)2
Xt−i =

φ(B)

θ(B)2

θ(B)

φ(B)
εt−i =

1

θ(B)
εt−i = Vt−i

and

1

θ(B)
Xt−j =

1

θ(B)

θ(B)

φ(B)
εt−j =

1

φ(B)
εt−j = Ut−j .

Thus φ(B)Ut = εt and θ(B)Vt = εt are autoregressive processes (compare with theorem). This

means that the derivative of the unobserved likelihood can be written as

∂L̃

∂θi
= − 2

σ2

n∑
t=1

εtUt−i and
∂L̃

∂φj
= − 2

σ2

n∑
t=1

εtVt−j (9.30)

Note that by causality εt, Ut−i and Vt−j are independent. Again like many of the other estimators we

have encountered this sum is ‘mean-like’ so can show normality of it by using a central limit theorem

designed for dependent data. Indeed we can show asymptotically normality of { ∂L̃∂θi ; i = 1, . . . , q},

{ ∂L̃∂φj ; j = 1, . . . , p} and their linear combinations using the Martingale central limit theorem, see

Theorem 3.2 (and Corollary 3.1), Hall and Heyde (1980) - note that one can also use m-dependence.

Moreover, it is relatively straightforward to show that n−1/2( ∂L̃∂θi ,
∂L̃
∂φj

) has the limit variance matrix

∆. Finally, by taking second derivative of the likelihood we can show that E[n−1 ∂2L̂
∂θ2

] = ∆. Thus

giving us the desired result.

9.2.5 The Hannan-Rissanen AR(∞) expansion method

The methods detailed above require good initial values in order to begin the maximisation (in order

to prevent convergence to a local maximum).

We now describe a simple method first propose in Hannan and Rissanen (1982) and An et al.

(1982). It is worth bearing in mind that currently the ‘large p small n problem’ is a hot topic.

These are generally regression problems where the sample size n is quite small but the number of

regressors p is quite large (usually model selection is of importance in this context). The methods

proposed by Hannan involves expanding the ARMA process (assuming invertibility) as an AR(∞)

process and estimating the parameters of the AR(∞) process. In some sense this can be considered

as a regression problem with an infinite number of regressors. Hence there are some parallels
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between the estimation described below and the ‘large p, small n problem’.

As we mentioned in Lemma 4.10.1, if an ARMA process is invertible it is can be represented as

Xt =

∞∑
j=1

bjXt−j + εt. (9.31)

The idea behind Hannan’s method is to estimate the parameters {bj}, then estimate the innovations

εt, and use the estimated innovations to construct a multiple linear regression estimator of the

ARMA paramters {θi} and {φj}. Of course in practice we cannot estimate all parameters {bj} as

there are an infinite number of them. So instead we do a type of sieve estimation where we only

estimate a finite number and let the number of parameters to be estimated grow as the sample size

increases. We describe the estimation steps below:

(i) Suppose we observe {Xt}nt=1. Recalling (9.31), will estimate {bj}pnj=1 parameters. We will

suppose that pn →∞ as n→∞ and pn << n (we will state the rate below).

We use Yule-Walker to estimate {bj}pnj=1, where

b̂pn = Σ̂−1
pn r̂pn ,

where

(Σ̂pn)i,j =
1

n

n−|i−j|∑
t=1

(Xt − X̄)(Xt+|i−j| − X̄) and (r̂pn)j =
1

n

n−|j|∑
t=1

(Xt − X̄)(Xt+|j| − X̄).

(ii) Having estimated the first {bj}pnj=1 coefficients we estimate the residuals with

ε̃t = Xt −
pn∑
j=1

b̂j,nXt−j .

(iii) Now use as estimates of φ
0

and θ0 φ̃n, θ̃n where

φ̃
n
, θ̃n = arg min

n∑
t=pn+1

(Xt −
p∑
j=1

φjXt−j −
q∑
i=1

θiε̃t−i)
2.

We note that the above can easily be minimised. In fact

(φ̃
n
, θ̃n) = R̃−1

n s̃n

314



where

R̃n =
1

n

n∑
t=max(p,q)

Ỹ tỸ
′
t and s̃n =

1

n

n∑
t=max(p,q)

Ỹ tXt,

Ỹ
′
t = (Xt−1, . . . , Xt−p, ε̃t−1, . . . , ε̃t−q).

9.3 The quasi-maximum likelihood for ARCH processes

In this section we consider an estimator of the parameters a0 = {aj : j = 0, . . . , p} given the

observations {Xt : t = 1, . . . , N}, where {Xt} is a ARCH(p) process. We use the conditional log-

likelihood to construct the estimator. We will assume throughout that E(Z2
t ) = 1 and

∑p
j=1 αj =

ρ < 1.

We now construct an estimator of the ARCH parameters based on Zt ∼ N (0, 1). It is worth

mentioning that despite the criterion being constructed under this condition it is not necessary

that the innovations Zt are normally distributed. In fact in the case that the innovations are not

normally distributed but have a finite fourth moment the estimator is still good. This is why it

is called the quasi-maximum likelihood , rather than the maximum likelihood (similar to the how

the GMLE estimates the parameters of an ARMA model regardless of whether the innovations are

Gaussian or not).

Let us suppose that Zt is Gaussian. Since Zt = Xt/
√
a0 +

∑p
j=1 ajX

2
t−j , E(Xt|Xt−1, . . . , Xt−p) =

0 and var(Xt|Xt−1, . . . , Xt−p) = a0 +
∑p

j=1 ajX
2
t−j , then the log density of Xt given Xt−1, . . . , Xt−p

is

log(a0 +

p∑
j=1

ajX
2
t−j) +

X2
t

a0 +
∑p

j=1 ajX
2
t−j

.

Therefore the conditional log density of Xp+1, Xp+2, . . . , Xn given X1, . . . , Xp is

n∑
t=p+1

(
log(a0 +

p∑
j=1

ajX
2
t−j) +

X2
t

a0 +
∑p

j=1 ajX
2
t−j

)
.

This inspires the the conditional log-likelihood

Ln(α) =
1

n− p

n∑
t=p+1

(
log(α0 +

p∑
j=1

αjX
2
t−j) +

X2
t

α0 +
∑p

j=1 αjX
2
t−j

)
.
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To obtain the estimator we define the parameter space

Θ = {α = (α0, . . . , αp) :

p∑
j=1

αj ≤ 1, 0 < c1 ≤ α0 ≤ c2 <∞, c1 ≤ αj}

and assume the true parameters lie in its interior a = (a0, . . . , ap) ∈ Int(Θ). We let

ân = arg min
α∈Θ
Ln(α). (9.32)

The method for estimation of GARCH parameters parallels the approximate likelihood ARMA

estimator given in Section 9.2.1.

Exercise 9.2 The objective of this question is to estimate the parameters of a random autoregres-

sive process of order one

Xt = (φ+ ξt)Xt−1 + εt,

where, |φ| < 1 and {ξt}t and {εt}t are zero mean iid random variables which are independent of

each other, with σ2
ξ = var[ξt] and σ2

ε = var[εt].

Suppose that {Xt}nt=1 is observed. We will assume for parts (a-d) that ξt and εt are Gaussian

random variables. In parts (b-c) the objective is to construct an initial value estimator which is

easy to obtain but not optimal in (d) to obtain the maximum likelihood estimator.

(a) What is the conditional expectation (best predictor) of Xt given the past?

(b) Suppose that {Xt}nt=1 is observed. Use your answer in part (a) to obtain an explicit expression

for estimating φ.

(c) Define residual as ξtXt−1 + εt. Use your estimator in (b) to estimate the residuals.

Evaluate the variance of ξtXt−1 + εt conditioned on Xt−1. By using the estimated residuals

explain how the conditional variance can be used to obtain an explicit expression for estimating

σ2
ξ and σ2

ε .

(d) By conditioning on X1 obtain the log-likelihood of X2, . . . , Xn under the assumption of Guas-

sianity of ξt and εt. Explain the role that (b) and (c) plays in your maximisation algorithm.

(e) Bonus question (only attempt if you really want to)
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Show that the expectation of the conditional log-likelihood is maximised at the true parameters

(φ0, σ
2
0,ξ and σ2

0,ε) even when ξt and εt are not Gaussian.

Hint: You may want to use that the function g(x) = − log x+ x is minimum at x = 1 where

g(1) = 1 and let

x =
σ2

0,ε + σ2
0,ξX

2
t−1

σ2
ε + σ2

ξX
2
t−1

.
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Chapter 10

Spectral Representations

Prerequisites

• Knowledge of complex numbers.

• Have some idea of what the covariance of a complex random variable (we do define it below).

• Some idea of a Fourier transform (a review is given in Section A.3).

• The very useful result on the discrete Fourier transform:

n∑
t=1

exp

(
it

2πj

n

)
=

 0 j 6= nZ

n j ∈ Z
. (10.1)

Objectives

• Know the definition of the spectral density.

• The spectral density is always non-negative and this is a way of checking that a sequence is

actually non-negative definite (is a autocovariance).

• The DFT of a second order stationary time series is almost uncorrelated.

• The spectral density of an ARMA time series, and how the roots of the characteristic poly-

nomial of an AR may influence the spectral density function.

• There is no need to understand the proofs of either Bochner’s (generalised) theorem or the

spectral representation theorem, just know what these theorems are. However, you should
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know the proof of Bochner’s theorem in the simple case that
∑

r |rc(r)| <∞.

10.1 How we have used Fourier transforms so far

We recall in Section 2.5 that we considered models of the form

Xt = A cos (ωt) +B sin (ωt) + εt t = 1, . . . , n. (10.2)

where εt are iid random variables with mean zero and variance σ2 and ω is unknown. We estimated

the frequency ω by taking the Fourier transform Jn(ω) = 1√
n

∑n
t=1Xte

itω and using as an estimator

of ω, the value which maximised |Jn(ω)|2. As the sample size grows the peak (which corresponds

the frequency estimator) grows in size. Besides the fact that this corresponds to the least squares

estimator of ω, we note that

1√
n
Jn(ωk) =

1

2πn

n∑
t=1

Xt exp(itωk)

=
1

2πn

n∑
t=1

µ(
t

n
) exp(itωk)︸ ︷︷ ︸

=O(1)

+
1

2πn

n∑
t=1

εt exp(itωk)︸ ︷︷ ︸
=Op(n−1/2) compare with 1

n

∑n
t=1 εt

(10.3)

where ωk = 2πk
n , is an estimator the the Fourier transform of the deterministic mean at frequency k.

In the case that the mean is simply the sin function, there is only one frequency which is non-zero.

A plot of one realization (n = 128), periodogram of the realization, periodogram of the iid noise

and periodogram of the sin function is given in Figure 10.1. Take careful note of the scale (y-

axis), observe that the periodogram of the sin function dominates the the periodogram of the noise

(magnitudes larger). We can understand why from (10.3), where the asymptotic rates are given and

we see that the periodogram of the deterministic signal is estimating n×Fourier coefficient, whereas

the periodgram of the noise is Op(1). However, this is an asymptotic result, for small samples sizes

you may not see such a big difference between deterministic mean and the noise. Next look at the

periodogram of the noise we see that it is very erratic (we will show later that this is because it is

an inconsistent estimator of the spectral density function), however, despite the erraticness, the

amount of variation overall frequencies seems to be same (there is just one large peak - which could

be explained by the randomness of the periodogram).

Returning again to Section 2.5, we now consider the case that the sin function has been cor-
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Figure 10.1: Top Left: Realisation of (2.18) (2 sin(2πt

8
)) with iid noise, Top Right: Pe-

riodogram of sin + noise. Bottom Left: Periodogram of just the noise. Bottom Right:
Periodogram of just the sin function.

rupted by colored noise, which follows an AR(2) model

εt = 1.5εt−1 − 0.75εt−2 + εt. (10.4)

A realisation and the corresponding periodograms are given in Figure 10.2. The results are different

to the iid case. The peak in the periodogram no longer corresponds to the period of the sin function.

From the periodogram of the just the AR(2) process we observe that it erratic, just as in the iid

case, however, there appears to be varying degrees of variation over the frequencies (though this

is not so obvious in this plot). We recall from Chapters 2 and 3, that the AR(2) process has

a pseudo-period, which means the periodogram of the colored noise will have pronounced peaks

which correspond to the frequencies around the pseudo-period. It is these pseudo-periods which

are dominating the periodogram, which is giving a peak at frequency that does not correspond to

the sin function. However, asymptotically the rates given in (10.3) still hold in this case too. In

other words, for large enough sample sizes the DFT of the signal should dominate the noise. To see

that this is the case, we increase the sample size to n = 1024, a realisation is given in Figure 10.3.

We see that the period corresponding the sin function dominates the periodogram. Studying the

periodogram of just the AR(2) noise we see that it is still erratic (despite the large sample size),

320



but we also observe that the variability clearly changes over frequency.
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Figure 10.2: Top Left: Realisation of (2.18) (2 sin(2πt
8

)) with AR(2) noise (n = 128), Top
Right: Periodogram. Bottom Left: Periodogram of just the AR(2) noise. Bottom Right:
Periodogram of the sin function.
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Figure 10.3: Top Left: Realisation of (2.18) (2 sin(2πt
8

)) with AR(2) noise (n = 1024), Top
Right: Periodogram. Bottom Left: Periodogram of just the AR(2) noise. Bottom Right:
Periodogram of the sin function.

From now on we focus on the constant mean stationary time series (eg. iid noise and the AR(2))

321



(where the mean is either constant or zero). As we have observed above, the periodogram is the

absolute square of the discrete Fourier Transform (DFT), where

Jn(ωk) =
1√
2πn

n∑
t=1

Xt exp(itωk). (10.5)

This is simply a (linear) transformation of the data, thus it easily reversible by taking the inverse

DFT

Xt =

√
2π√
n

n∑
t=1

Jn(ωk) exp(−itωk). (10.6)

Therefore, just as one often analyzes the log transform of data (which is also an invertible trans-

form), one can analyze a time series through its DFT.

In Figure 10.4 we give plots of the periodogram of an iid sequence and AR(2) process defined

in equation (10.4). We recall from Chapter 3, that the periodogram is an inconsistent estimator

of the spectral density function f(ω) = (2π)−1
∑∞

r=−∞ c(r) exp(irω) and a plot of the spectral

density function corresponding to the iid and AR(2) process defined in (??). We will show later

that by inconsistent estimator we mean that E[|Jn(ωk)|2] = f(ωk) +O(n−1) but var[|Jn(ωk)|2] 9 0

as n → ∞. this explains why the general ‘shape’ of |Jn(ωk)|2 looks like f(ωk) but |Jn(ωk)|2 is

extremely erratic and variable.
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Figure 10.4: Left: Periodogram of iid noise. Right: Periodogram of AR(2) process.

Remark 10.1.1 (Properties of the spectral density function) The spectral density function

was first introduced in in Section 3.4. We recall that given an autoregressive process {c(k)}, the
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Figure 10.5: Left: Spectral density of iid noise. Right: Spectral density of AR(2), note that
the interval [0, 1] corresponds to [0, 2π] in Figure 10.5

spectral density is defined as

f(ω) =
1

2π

∞∑
r=−∞

c(r) exp(2πir).

And visa versa, given the spectral density we can recover the autocovariance via the inverse trans-

form c(r) =
∫ 2π

0 f(ω) exp(−2πirω)dω. We recall from Section 3.4 that the spectral density function

can be used to construct a valid autocovariance function since only a sequence whose Fourier trans-

form is real and positive can be positive definite.

In Section 7.8 we used the spectral density function to define conditions under which the variance

covariance matrix of a stationary time series had minimum and maximim eigenvalues. Now from

the discussion above we observe that the variance of the DFT is approximately the spectral density

function (note that for this reason the spectral density is sometimes called the power spectrum).

We now collect some of the above observations, to summarize some of the basic properties of

the DFT:

(i) We note that Jn(ωk) = Jn(ωn−k), therefore, all the information on the time series is contain

in the first n/2 frequencies {Jn(ωk); k = 1, . . . , n/2}.

(ii) If the time series E[Xt] = µ and k 6= 0 then

E[Jn(ωk)] =
1√
n

n∑
t=1

µ exp(itωk) = 0.
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If k = 0 then

E[Jn(ω0)] =
1√
n

n∑
t=1

µ =
√
nµ.

In other words, the mean of the DFT (at non-zero frequencies) is zero regardless of whether

the time series has a zero mean (it just needs to have a constant mean).

(iii) However, unlike the original stationary time series, we observe that the variance of the DFT

depends on frequency (unless it is a white noise process) and that for k 6= 0, var[Jn(ωk)] =

E[|Jn(ωk)|2] = f(ωk) +O(n−1).

The focus of this chapter will be on properties of the spectral density function (proving some

of the results we stated previously) and on the so called Cramer representation (or spectral repre-

sentation) of a second order stationary time series. However, before we go into these results (and

proofs) we give one final reason why the analysis of a time series is frequently done by transforming

to the frequency domain via the DFT. Above we showed that there is a one-to-one correspondence

between the DFT and the original time series, below we show that the DFT almost decorrelates

the stationary time series. In other words, one of the main advantages of working within the

frequency domain is that we have transformed a correlated time series into something that it al-

most uncorrelated (this also happens to be a heuristic reason behind the spectral representation

theorem).

10.2 The ‘near’ uncorrelatedness of the DFT

Let Xn = {Xt; t = 1, . . . , n} and Σn = var[Xn]. It is clear that Σ
−1/2
n Xn is an uncorrelated

sequence. This means to formally decorrelate Xn we need to know Σ
−1/2
n . However, if Xt is a

second order stationary time series, something curiously, remarkable happens. The DFT, almost

uncorrelates the Xn. The implication of this is extremely useful in time series, and we shall be

using this transform in estimation in Chapter 11.

We start by defining the Fourier transform of {Xt}nt=1 as

Jn(ωk) =
1√
2πn

n∑
t=1

Xt exp(ik
2πt

n
) k = 1, . . . , n,

where the frequences ωk = 2πk/n are often called the fundamental, Fourier frequencies. Note that
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in R
∑n

t=1Xt exp(−ik 2πt
n ) is evaluated with the fft function for k = 0, 1 . . . , n − 1, where we

observe that k = 0 is the same as k = n. To evaluate
∑n

t=1Xt exp(ik 2πt
n ) for k = 0, 1, . . . , n − 1

one needs to use the function fft(x,inverse = TRUE). Keep in mind that

Jn(ωk) = Jn(ωn−k),

so it does not matter which definition one uses.

Below we state some of its properties.

Lemma 10.2.1 Suppose {Xt} is a second order stationary time series, where
∑

r |rc(r)| < ∞.

Then we have

cov(Jn(
2πk1

n
), Jn(

2πk2

n
)) =

 f(2πk
n ) +O( 1

n) k1 = k2

O( 1
n) 1 ≤ k1 6= k2 ≤ n/2

where f(ω) = 1
2π

∑∞
r=−∞ c(r) exp(irω). If one wants to consider the real and imaginary parts of

Jn(ωk) then

cov(Jn,C(
2πk1

n
), Jn,C(

2πk2

n
)) =

 f(2πk
n ) +O( 1

n) k1 = k2

O( 1
n) 1 ≤ k1 6= k2 ≤ n/2

cov(Jn,S(
2πk1

n
), Jn,S(

2πk2

n
)) =

 f(2πk
n ) +O( 1

n) k1 = k2

O( 1
n) 1 ≤ k1 6= k2 ≤ n/2

and cov[Jn,C(2πk1
n ), Jn,S(2πk2

n )] = O(n−1) for 1 ≤ k1, k2 ≤ n/2, where

Jn,C(ωk) =
1√
2πn

n∑
t=1

Xt cos(tωk), Jn,S(ωk) =
1√
2πn

n∑
t=1

Xt sin(tωk).

We prove the result in Section 10.2.2.

10.2.1 Testing for second order stationarity: An application of the

near decorrelation property

We evaluate the DFT using the following piece of code (note that we do not standardize by
√

2π)
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dft <- function(x){

n=length(x)

dft <- fft(x)/sqrt(n)

return(dft)

}

We have shown above that {Jn(ωk)}k are close to uncorrelated and have variance close to f(ωk).

This means that the ratio Jn(ωk)/f(ωk)
1/2 are close to uncorrelated with variance close to one. Let

us treat

Zk =
Jn(ωk)√
f(ωk)

,

as the transformed random variables, noting that {Zk} is complex, our aim is to show that the acf

corresponding to {Zk} is close to zero. Of course, in practice we do not know the spectral density

function f , therefore we estimate it using the piece of code (where test is the time series)

k<-kernel("daniell",6)

temp2 <-spec.pgram(test,k, taper=0, log = "no")$spec

n <- length(temp2)

temp3 <- c(temp2[c(1:n)],temp2[c(n:1)])

temp3 simply takes a local average of the periodogram about the frequency of interest (however

it is worth noting that spec.pgram does not do precisely this, which can be a bit annoying). In

Section 11.3 we explain why this is a consistent estimator of the spectral density function. Notice

that we also double the length, because the estimator temp2 only gives estimates in the interval

[0, π]. Thus our estimate of {Zk}, which we denote as Ẑk = Jn(ωk)/f̂n(ωk)
1/2 is

temp1 <- dft(test); temp4 <- temp1/sqrt(temp3)

We want to evaluate the covariance of {Ẑk} over various lags

Ĉn(r) =
1

n

n∑
k=1

ẐkẐk+r =
1

n

n∑
k=1

Jn(ωk)Jn(ωk+r)√
f̂n(ωk)f̂n(ωk+r)

To speed up the evaluation, we use we can exploit the speed of the FFT, Fast Fourier Transform.
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A plot of the AR(2) model

εt = 1.5εt−1 − 0.75εt−2 + εt.

together with the real and imaginary parts of its DFT autocovariance is given in Figure 10.6. We

observe that most of the correlations lie between [−1.96, 1.96] (which corresponds to the 2.5% limits

of a standard normal). Note that the 1.96 corresponds to the 2.5% limits, however this bound only

holds if the time series is Gaussian. If the time series is non-Gaussian some corrections have to be

made (see Dwivedi and Subba Rao (2011) and Jentsch and Subba Rao (2014)).

Exercise 10.1 (a) Simulate an AR(2) process and run the above code using the sample size

(i) n = 64 (however use k<-kernel("daniell",3))

(ii) n = 128 (however use k<-kernel("daniell",4))

Does the ‘near decorrelation property’ hold when the sample size is very small. Explain your

answer by looking at the proof of the lemma.

(b) Simulate a piecewise stationary time series (this is a simple example of a nonstationary time

series) by stringing two stationary time series together. One example is

ts1 = arima.sim(list(order=c(2,0,0), ar = c(1.5, -0.75)), n=128);

ts2 = arima.sim(list(order=c(1,0,0), ar = c(0.7)), n=128)

test = c(ts1/sd(ts1),ts2/sd(ts2))

Make a plot of this time series. Calculate the DFT covariance of this time series, what do

you observe in comparison to the stationary case?
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Figure 10.6: Top: Realization. Middle: Real and Imaginary of
√
nĈn(r) plotted against the

‘lag’ r. Bottom: QQplot of the real and imaginary
√
nĈn(r) against a standard normal.

10.2.2 Proof of Lemma 10.2.1

We will calculate cov(Jn(2πk1
n ), Jn(2πk2

n )). The important aspect of this proof is that if we can

isolate the exponentials, then we can use (10.1). It is this that gives rise to the near uncorrelatedness
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property. Furthermore, since

exp(i
2π

n
jk) = exp(ijωk) = exp(ikωj),

hence we can interchange the above terms. The proof hinges on the zeroing property of the DFT

n∑
t=1

exp

(
it

2πj

n

)
=

 0 j /∈ nZ

n j ∈ nZ
.

It is possible to prove this result separating the complex variable into sines and cosines, but the

proof is cumbersome. Instead, we summarize some well known properties of covariances of complex

random variables. Suppose A is a complex random variables, then var[A] must be positive (not

complex!), thus we define

var[A] = E
[
(A− E[A])(A− E[A])

]
= E[AA]− |E[A]|2.

Based on this definition the covariance between two complex random variables is

cov[A,B] = cov
[
(A− E[A])(B − E[B])

]
= E[AB]− E[A]E[B].

Note that cov[A,B] = cov[B,A].

Using this definitions we can write the covariance between two DFTs as

cov

(
Jn(

2πk1

n
), Jn(

2πk2

n
)

)
=

1

n

n∑
t,τ=1

cov(Xt, Xτ ) exp

(
i(tk1 − τk2)

2π

n

)
.

Next we change variables with r = t− τ , this gives (for 0 ≤ k1, k2 < n)

cov

(
Jn(

2πk1

n
), Jn(

2πk2

n
)

)

=
1

n

n−1∑
r=−(n−1)

c(r) exp

(
−ir2πk2

n

) n−|r|∑
t=1

exp

(
2πit(k1 − k2)

n
)

)
.

Observe, if the limits of the inner sum were replaced with
∑n−|r|

t=1 , then we can use the zero property
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of the DFTs. Thus in the next step we replace the limits of sum

cov

(
Jn(

2πk1

n
), Jn(

2πk2

n
)

)
=

n−1∑
r=−(n−1)

c(r) exp

(
ir

2πk2

n

)
1

n

n∑
t=1

exp

(
2πit(k1 − k2)

n

)
︸ ︷︷ ︸

δk1 (k2)

−Rn.

The remainder is what is additional term added to sum and is

Rn =
1

n

n−1∑
r=−(n−1)

c(r) exp

(
−ir2πk2

n

) n∑
t=n−|r|+1

exp

(
2πit(k1 − k2)

n
)

)

Thus |Rn| ≤ 1
n

∑
|r|≤n |rc(r)| = O(n−1). Therefore

cov

(
Jn(

2πk1

n
), Jn(

2πk2

n
)

)

=
1

n

n−1∑
r=−(n−1)

c(r) exp

(
−ir2πk2

n

) n−|r|∑
t=1

exp

(
2πit(k1 − k2)

n
)

)
.

Observe, if the limits of the inner sum were replaced with
∑n

t=1, then we can use the zero property

of the DFTs. Thus in the next step we replace the limits of sum

cov

(
Jn(

2πk1

n
), Jn(

2πk2

n
)

)
=

n−1∑
r=−(n−1)

c(r) exp

(
ir

2πk2

n

)
δk1(k2)−Rn

= fn(ωk1)δk1(k2) +O(n−1),

thus proving the result. �

10.2.3 The DFT and complete decorrelation

The proof above is very “hands on”. But it does not adequately answer the question of where the

O(n−1) actually comes from. Nor how it can be removed. It transpires that by using simple ideas

from linear prediction (as described in Chapters 6 and 7), one can obtain a deep understanding on

the role of the DFT in the analysis of stationary time series. These insights allow us to connect

time domain estimation methods to the frequency domain estimation (described in Chapter 11).

The ideas presented here are based on work done jointly with Junho Yang (see Subba Rao and

Yang (2020)).

As in the previous section, the derivations are based following simple identity on the special
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zeroing property of sums of DFTs:

1

n

n∑
t=1

exp (itωk1−k2) =

 0 k1 − k2 /∈ nZ

1 k1 − k2 ∈ nZ
.

Let us return to the very simple calculations in the previous section. In particular, the product of

the DFTs

Jn

(
2πk1

n

)
Jn

(
2πk2

n

)
=

1

n

n∑
t,τ=1

XtXτe
itωk1−iτωk2

=
1

n

n∑
t=1

eit(ωk1−ωk2 )Xt

n∑
τ=1

Xτe
i(t−τ)ωk2 . (10.7)

Thus the covariance between the DFTs is

cov

[
Jn(

2πk1

n
), Jn(

2πk2

n
)

]
=

1

n

n∑
t=1

eit(ωk1−ωk2 )
n∑
τ=1

c(t− τ)ei(t−τ)ωk2 .

If the inner sum of the above were replaced with
∑∞

τ=−∞ c(t − τ)ei(t−τ)ωk2 = f(ωk2), then we

immediately have the decorrelation property; this is because the inner sum would not depend on t

and the inner and outer sums can be separated out.

A graphic for the inner summand in the term above is given Figure 10.7. The terms show

what has been missed. The omission of these terms give rise to the O(n−1) error. Furthermore,

we observe that when t = 1, there is large error as the term n−1
∑0

τ=−∞ c(1− τ)ei(1−τ)ωk has been

omitted. However, if t is more central and far from the boundaries, then only the far left and

right tails are omitted and the resulting error term is small. To remove the error term, we need a

method for correcting for the red terms c(t− τ) for all τ outside the observed domain of observation

[1, 2, . . . , n− 1, n]. Of course, Xτ is unknown outside the interval of observation. Nevertheless, one

can still construct variables which yield c(t− τ). To find these we review what we have learnt from

linear prediction.

We return to some results in Section 5.1.5. Define the space X, where X = sp(X1, . . . , Xn)

and PX(Y ) denote the linear projection of the random variable Y onto X. Then equation (5.6) in

Section 5.1.5 shows

cov (PX(Y ), X`) = cov(Y,X`) 1 ≤ ` ≤ n.
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Figure 10.7: An illustration of the correlation between two DFTs (with n = 5). The red
terms are terms that have been omitted and contribute to the O(n−1) error.

The above is a general result, we now apply it to the above problem. Suppose {Xt} be a second

order stationary time series and set X = sp(X1, . . . , Xn), these are the random variables in the

domain of observation. We define the random variables outside the domain of observation and let

Y = Xτ for τ 6= {1, . . . , n}. By using the above result we have

cov (PX(Xτ ), Xt) = cov(Xτ , Xt) = c(τ − t) 1 ≤ t ≤ n. (10.8)

Now PX(Xτ ) ∈ sp(X1, . . . , Xn), this tells us we can correct the boundary by including random

variables that belong the domain of observation.

Worked Example: AR(1) Suppose that Xt = φXt−1 +εt where |φ| < 1. We have learn from Section

6.2.2 (on partial covariance of a time series) that second order stationarity of a time series implies

that the coefficients for forecasting into the future and forecasting into the past are the same.

Further, we have shown in Section 7.2 that prediction/forecasting for AR(p) models are simply the

AR(p) coefficients. Using these two facts the best linear predictor of Xτ given {Xt}nt=1 is

PX(Xn+1) = φXn and PX(Xn+r) = φrXn for r ≥ 1 (10.9)

PX(X0) = φX1 and PX(X1−r) = φ|r|X1 for r ≥ 1.

See Figure 10.8 for a graphic of the above.
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Figure 10.8

It is straightfoward to verify (10.8) for the AR(1) model. We have shown in Section 6.1.2 for r ≥ 1

that

cov (Xn, Xn+r) =
φ|r|

1− φ2
.

On the other hand using the predictor in (10.9) we have

cov (Xn, PX(Xn+r)) = φ|r|var[Xn] =
φ|r|

1− φ2
.

And we observe the two expression match. �

The above calculations show PX(Xτ ) is a “proxy” for Xτ , that is only in terms of the observed

data, but also contains all the required information on Xτ . Thus turning to (10.7) we replace one

of the DFTs

1

n

n∑
t=1

eit(ωk1−ωk2 )Xt

n∑
τ=1

Xτe
i(t−τ)ωk2

with

1

n

n∑
t=1

eit(ωk1−ωk2 )Xt

n∑
τ=1

Xτe
i(t−τ)ωk2 +

1

n

n∑
t=1

eit(ωk1−ωk2 )Xt

∑
τ 6={1,...,n}

PX(Xτ )ei(t−τ)ωk2

=
1

n

n∑
t=1

eit(ωk1−ωk2 )Xt

∞∑
τ=−∞

PX(Xτ )ei(t−τ)ωk2 ,

where we note that the last line of the above is the best linear predictor PX(Xτ ) = Xτ if τ ∈

{1, . . . , n}. The above can be written as a product:

1

n

n∑
t=1

eit(ωk1−ωk2 )Xt

∞∑
τ=−∞

PX(Xτ )ei(t−τ)ωk2 =

(
1√
n

n∑
t=1

Xte
itωk1

)(
1√
n

∞∑
τ=−∞

PX(Xτ )e−iτωk1

)
.
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The first term on the right hand side of the above is the regular DFT. The second term is a variant

of the regular DFT which includes the regular DFT but linearly predicts outside the boundary (we

call this the complete DFT):

J̃n(ω; f) = Jn(ω) +
1√
n

∑
τ 6={1,2,...,n}

PX(Xτ )eiτω =
1√
n

∞∑
τ=−∞

PX(Xτ )eiτω.

The calculations above show that

cov[Jn(ωk1), J̃n(ωk2 ; f)] =
1

n

n∑
t=1

eit(ωk1−ωk2 )f(ωk2)

= f(ωk2)
1

n

n∑
t=1

eit(ωk1−ωk2 ) = f(ωk2)δk1(k2).

We summarize the result in the following Lemma.

Lemma 10.2.2 Suppose {Xt} is a second order stationary time series, where
∑

r |rc(r)| <∞ and

f =
∑
∈Z c(r) exp(irω). Then we have

cov

[
Jn

(
2πk1

n

)
, Jn

(
2πk2

n
; f

)]
=

 f(2πk
n ) k1 = k2

0 1 ≤ k1 6= k2 ≤ n/2
.

Worked Example: AR(1) For the AR(1) model, it can easily be shown that

J̃n(ω; f) = Jn(ω) +
φ√
n

(
1

φ(ω)
X1 +

ei(n+1)ω

φ(ω)
Xn

)
,

where φ(ω) = 1− φe−iω. We observe that the predictive contribution is actually rather small (if n

is large). �

As the contribution of the prediction term in the complete DFT is actually quite small O(n−1/2).

It is this that allows us to focus the time series analysis on just the regular DFT (with the cost of

a O(n−1) bias).
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10.3 Summary of spectral representation results

In this section we summarize some spectral properties. We do this by considering the DFT of the

data {Jn(ωk)}nk=1. It is worth noting that to calculate {Jn(ωk)}nk=1 is computationally very fast and

requires only O(n log n) computing operations (see Section A.5, where the Fast Fourier Transform

is described).

10.3.1 The spectral (Cramer’s) representation theorem

We observe that for any sequence {Xt}nt=1 that it can be written as the inverse transform for

1 ≤ t ≤ n

Xt =
1√
n

n∑
k=1

Jn(ωk) exp(−itωk), (10.10)

which can be written as an integral

Xt =

n∑
k=2

exp(−itωk) [Zn(ωk)− Zn(ωk−1)] =

∫ 2π

0
exp(−itω)dZn(ω), (10.11)

where Zn(ω) = 1√
n

∑b ω
2π
nc

k=1 Jn(ωk).

The second order stationary property of Xt means that the DFT Jn(ωk) is close to an uncorre-

lated sequence or equivalently the process Zn(ω) has near ‘orthogonal’ increments, meaning that for

any two non-intersecting intervals [ω1, ω2] and [ω3, ω4] that Zn(ω2)−Zn(ω1) and Zn(ω4)−Zn(ω3).

The spectral representation theorem generalizes this result, it states that for any second order

stationary time series {Xt} there exists an a process {Z(ω);ω ∈ [0, 2π]} where for all t ∈ Z

Xt =

∫ 2π

0
exp(−itω)dZ(ω) (10.12)

and Z(ω) has orthogonal increments, meaning that for any two non-intersecting intervals [ω1, ω2]

and [ω3, ω4] E[Z(ω2)− Z(ω1)][Z(ω2)− Z(ω1)] = 0.

We now explore the relationship between the DFT with the orthogonal increment process.
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Using (10.12) we see that

Jn(ωk) =
1√
2πn

n∑
t=1

Xt exp(itωk) =
1√
2πn

∫ 2π

0

(
n∑
t=1

exp(it[ωk − ω])

)
dZ(ω)

=
1√
2πn

∫ 2π

0

(
ei(n+1)(ωk−ω0)/2Dn/2(ωk − ω)

)
dZ(ω),

where Dn/2(x) = sin[((n + 1)/2)x]/ sin(x/2) is the Dirichlet kernel (see Priestley (1983), page

419). We recall that the Dirichlet kernel limits to the Dirac-delta function, therefore very crudely

speaking we observe that the DFT is an approximation of the orthogonal increment localized about

ωk (though mathematically this is not strictly correct).

10.3.2 Bochner’s theorem

This is a closely related result that is stated in terms of the so called spectral distribution. First the

heuristics. We see that from Lemma 10.2.1 that the DFT Jn(ωk), is close to uncorrelated. Using

this and inverse Fourier transforms we see that for 1 ≤ t, τ ≤ n we have

c(t− τ) = cov(Xt, Xτ ) =
1

n

n∑
k1=1

n∑
k2=1

cov (Jn(ωk1), Jn(ωk2)) exp(−itωk1 + iτωk2)

≈ 1

n

n∑
k=1

var(Jn(ωk)) exp(−i(t− τ)ωk). (10.13)

Let Fn(ω) = 1
n

∑b ω
2π
nc

k=1 var[Jn(ωk)], then the above can be written as

c(t− τ) ≈
∫ 2π

0
exp(−i(t− τ)ω)dFn(ω),

where we observe that Fn(ω) is a positive function which in non-decreasing over ω. Bochner’s

theorem is an extension of this is states that for any autocovariance function {c(k)} we have the

representation

c(t− τ) =

∫ 2π

0
exp(−i(t− τ)ω)f(ω)dω =

∫ 2π

0
exp(−i(t− τ)ω)dF (ω).

where F (ω) is a positive non-decreasing bounded function. Moreover, F (ω) = E(|Z(ω)|2). We note

that if the spectral density function exists (which is only true if
∑

r |c(r)|2 < ∞) then F (ω) =∫ ω
0 f(λ)dλ.
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Remark 10.3.1 The above results hold for both linear and nonlinear time series, however, in the

case that Xt has a linear representation

Xt =

∞∑
j=−∞

ψjεt−j ,

then Xt has the particular form

Xt =

∫
A(ω) exp(−ikω)dZ(ω), (10.14)

where A(ω) =
∑∞

j=−∞ ψj exp(ijω) and Z(ω) is an orthogonal increment process, but in addition

E(|dZ(ω)|2) = dω ie. the variance of increments do not vary over frequency (as this varying has

been absorbed by A(ω), since F (ω) = |A(ω)|2).

We mention that a more detailed discussion on spectral analysis in time series is give in Priestley

(1983), Chapters 4 and 6, Brockwell and Davis (1998), Chapters 4 and 10, Fuller (1995), Chapter

3, Shumway and Stoffer (2006), Chapter 4. In many of these references they also discuss tests for

periodicity etc (see also Quinn and Hannan (2001) for estimation of frequencies etc.).

10.4 The spectral density and spectral distribution

10.4.1 The spectral density and some of its properties

Finally, having made ourselves familiar with the DFT and the spectral density function we can prove

Theorem 3.4.2, which relates the autocovariance with the positiveness of its Fourier transform. In

the following lemma we consider absolutely summable autocovariances, in a later theorem (called

Bochner’s theorem) we show that any valid autocovariance has this representation.

Theorem 10.4.1 (Positiveness of the spectral density) Suppose the coefficients {c(k)} are

absolutely summable (that is
∑

k |c(k)| <∞). Then the sequence {c(k)} is positive semi-definite if

an only if the function f(ω), where

f(ω) =
1

2π

∞∑
k=−∞

c(k) exp(ikω)
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is nonnegative. Moreover

c(k) =

∫ 2π

0
exp(−ikω)f(ω)dω. (10.15)

It is worth noting that f is called the spectral density corresponding to the covariances {c(k)}.

PROOF. We first show that if {c(k)} is a non-negative definite sequence, then f(ω) is a nonnegative

function. We recall that since {c(k)} is non-negative then for any sequence x = (x1, . . . , xN ) (real

or complex) we have
∑n

s,t=1 xsc(s − t)x̄s ≥ 0 (where x̄s is the complex conjugate of xs). Now we

consider the above for the particular case x = (exp(iω), . . . , exp(inω)). Define the function

fn(ω) =
1

2πn

n∑
s,t=1

exp(isω)c(s− t) exp(−itω).

Thus by definition fn(ω) ≥ 0. We note that fn(ω) can be rewritten as

fn(ω) =
1

2π

(n−1)∑
k=−(n−1)

(
n− |k|
n

)
c(k) exp(ikω).

Comparing f(ω) = 1
2π

∑∞
k=−∞ c(k) exp(ikω) with fn(ω) we see that

∣∣f(ω)− fn(ω) ≤ 1

2π

∣∣ ∑
|k|≥n

c(k) exp(ikω)
∣∣+

1

2π

∣∣ (n−1)∑
k=−(n−1)

|k|
n
c(k) exp(ikω)

∣∣
:= In + IIn.

Since
∑∞

k=−∞ |c(k)| <∞ it is clear that In → 0 as n→∞. Using Lemma A.1.1 we have IIn → 0

as n→∞. Altogether the above implies

∣∣f(ω)− fn(ω)
∣∣→ 0 as n→∞. (10.16)

Now it is clear that since for all n, fn(ω) are nonnegative functions, the limit f must be nonnegative

(if we suppose the contrary, then there must exist a sequence of functions {fnk(ω)} which are not

necessarily nonnegative, which is not true). Therefore we have shown that if {c(k)} is a nonnegative

definite sequence, then f(ω) is a nonnegative function.

We now show the converse, that is the Fourier coefficients of any non-negative `2 function f(ω) =

1
2π

∑∞
k=−∞ c(k) exp(ikω), is a positive semi-definite sequence. Writing c(k) =

∫ 2π
0 f(ω) exp(ikω)dω
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we substitute this into Definition 3.4.1 to give

n∑
s,t=1

xsc(s− t)x̄s =

∫ 2π

0
f(ω)

{ n∑
s,t=1

xs exp(i(s− t)ω)x̄s
}
dω =

∫ 2π

0
f(ω)

∣∣∣∣∣
n∑
s=1

xs exp(isω)

∣∣∣∣∣
2

dω ≥ 0.

Hence we obtain the desired result. �

The above theorem is very useful. It basically gives a simple way to check whether a sequence

{c(k)} is non-negative definite or not (hence whether it is a covariance function - recall Theo-

rem 3.4.1). See Brockwell and Davis (1998), Corollary 4.3.2 or Fuller (1995), Theorem 3.1.9, for

alternative explanations.

Example 10.4.1 Consider the empirical covariances (here we gives an alternative proof to Remark

8.2.1) defined in Chapter 8

ĉn(k) =

 1
n

∑n−|k|
t=1 XtXt+|k| |k| ≤ n− 1

0 otherwise
,

we give an alternative proof to Lemma 8.2.1 to show that {ĉn(k)} is non-negative definite sequence.

To show that the sequence we take the Fourier transform of ĉn(k) and use Theorem 10.4.1. The

Fourier transform of {ĉn(k)} is

(n−1)∑
k=−(n−1)

exp(ikω)ĉn(k) =

(n−1)∑
k=−(n−1)

exp(ikω)
1

n

n−|k|∑
t=1

XtXt+|k| =
1

n

∣∣ n∑
t=1

Xt exp(itω)
∣∣ ≥ 0.

Since the above is non-negative, this means that {ĉn(k)} is a non-negative definite sequence.

We now state a useful result which relates the largest and smallest eigenvalue of the variance

of a stationary process to the smallest and largest values of the spectral density (we recall we used

this in Lemma 7.14.2).

Lemma 10.4.1 Suppose that {Xk} is a stationary process with covariance function {c(k)} and

spectral density f(ω). Let Σn = var(Xn), where Xn = (X1, . . . , Xn). Suppose infω f(ω) ≥ m > 0

and supω f(ω) ≤M <∞ Then for all n we have

λmin(Σn) ≥ inf
ω
f(ω) and λmax(Σn) ≤ sup

ω
f(ω).

339



PROOF. Let e1 be the eigenvector with smallest eigenvalue λ1 corresponding to Σn. Then using

c(s− t) =
∫
f(ω) exp(i(s− t)ω)dω we have

λmin(Σn) = e′1Σne1 =
n∑

s,t=1

ēs,1c(s− t)et,1 =

∫
f(ω)

n∑
s,t=1

ēs,1 exp(i(s− t)ω)et,1dω =

=

∫ 2π

0
f(ω)

∣∣∣∣∣
n∑
s=1

es,1 exp(isω)

∣∣∣∣∣
2

dω ≥ inf
ω
f(ω)

∫ 2π

0

∣∣∣∣∣
n∑
s=1

es,1 exp(isω)

∣∣∣∣∣
2

dω = inf
ω
f(ω),

since by definition
∫
|
∑n

s=1 es,1 exp(isω)|2dω =
∑n

s=1 |es,1|2 = 1 (using Parseval’s identity). Using

a similar method we can show that λmax(Σn) ≤ sup f(ω). �

We now state a version of the above result which requires weaker conditions on the autocovari-

ance function (only that they decay to zero).

Lemma 10.4.2 Suppose the covariance {c(k)} decays to zero as k → ∞, then for all n, Σn =

var(Xn) is a non-singular matrix (Note we do not require the stronger condition the covariances

are absolutely summable).

PROOF. See Brockwell and Davis (1998), Proposition 5.1.1. �

10.4.2 The spectral distribution and Bochner’s (Hergoltz) theo-

rem

Theorem 10.4.1 hinges on the result that fn(ω) =
∑(n−1)

r=−(n−1)(1 − |r|/n)eirω has a well defined

pointwise limit as n → ∞, this only holds when the sequence {c(k)} is absolutely summable. Of

course this may not always be the case. An extreme example is the time series Xt = Z. Clearly

this is a stationary time series and its covariance is c(k) = var(Z) = 1 for all k. In this case the

autocovariance sequence {c(k) = 1; k ∈ Z}, is not absolutely summable, hence the representation

of the covariance in Theorem 10.4.1 does not apply. The reason is because the Fourier transform

of the infinite sequence {c(k) = 1; k ∈ Z} is not well defined (clearly {c(k) = 1}k does not belong

to `1).

However, we now show that Theorem 10.4.1 can be generalised to include all non-negative

definite sequences and stationary processes, by considering the spectral distribution rather than

the spectral density.
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Theorem 10.4.2 A function {c(k)} is non-negative definite sequence if and only if

c(k) =

∫ 2π

0
exp(−ikω)dF (ω), (10.17)

where F (ω) is a right-continuous (this means that F (x+h)→ F (x) as 0 < h→ 0), non-decreasing,

non-negative, bounded function on [−π, π] (hence it has all the properties of a distribution and it

can be consider as a distribution - it is usually called the spectral distribution). This representation

is unique.

This is a very constructive result. It shows that the Fourier coefficients of any distribution function

form a non-negative definite sequence, and thus, if c(k) = c(−k) (hence is symmetric) correspond

to the covarance function of a random process. In Figure 10.9 we give two distribution functions.

the top plot is continuous and smooth, therefore it’s derivative will exist, be positive and belong

to `2. So it is clear that its Fourier coefficients form a non-negative definite sequence. The inter-

esting aspect of Thereom 10.4.2 is that the Fourier coefficients corresponding to the distribution

function in the second plot also forms a non-negative definite sequence even though the derivative

of this distribution function does not exist. However, this sequence will not belong to `2 (ie. the

correlations function will not decay to zero as the lag grows).

Figure 10.9: Both plots are of non-decreasing functions, hence are valid distribution func-
tions. The top plot is continuous and smooth, thus its derivative (the spectral density
function) exists. Whereas the bottom plot is not (spectral density does not exist).
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Example 10.4.2 Using the above we can construct the spectral distribution for the (rather silly)

time series Xt = Z. Let F (ω) = 0 for ω < 0 and F (ω) = var(Z) for ω ≥ 0 (hence F is the step

function). Then we have

cov(Xt, Xt+k) = var(Z) =

∫
exp(−ikω)dF (ω).

Example 10.4.3 Consider the second order stationary time series

Xt = U1 cos(λt) + U2 sin(λt),

where U1 and U2 are iid random variables with mean zero and variance σ2 and λ the frequency. It

can be shown that

cov(Xt, Xt+k) =
σ2

2
[exp(iλk) + exp(−iλk)] .

Observe that this covariance does not decay with the lag k. Then

cov(Xt, Xt+k) = var(Z) =

∫ 2π

0
exp(−ikω)dF (ω).

where

F (ω) =


0 ω < −λ

σ2/2 −λ ≤ ω < λ

σ2 λ ≥ ω.

10.5 The spectral representation theorem

We now state the spectral representation theorem and give a rough outline of the proof.

Theorem 10.5.1 If {Xt} is a second order stationary time series with mean zero, and spectral

distribution F (ω), and the spectral distribution function is F (ω), then there exists a right contin-

uous, orthogonal increment process {Z(ω)} (that is E[(Z(ω1) − Z(ω2)(Z(ω3)− Z(ω4))] = 0, when

the intervals [ω1, ω2] and [ω3, ω4] do not overlap) such that

Xt =

∫ 2π

0
exp(−itω)dZ(ω), (10.18)
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where for ω1 ≥ ω2, E|Z(ω1) − Z(ω2)|2 = F (ω1) − F (ω2) (noting that F (0) = 0). (One example

of a right continuous, orthogonal increment process is Brownian motion, though this is just one

example, and usually Z(ω) will be far more general than Brownian motion).

Heuristically we see that (10.18) is the decomposition of Xt in terms of frequencies, whose

amplitudes are orthogonal. In other words Xt is decomposed in terms of frequencies exp(itω)

which have the orthogonal amplitudes dZ(ω) ≈ (Z(ω + δ)− Z(ω)).

Remark 10.5.1 Note that so far we have not defined the integral on the right hand side of (10.18).

It is known as a stochastic integral. Unlike many deterministic functions (functions whose derivative

exists), one cannot really suppose dZ(ω) ≈ Z ′(ω)dω, because usually a typical realisation of Z(ω)

will not be smooth enough to differentiate. For example, it is well known that Brownian is quite

‘rough’, that is a typical realisation of Brownian motion satisfies |B(t1, ω̄)−B(t2, ω̄)| ≤ K(ω̄)|t1 −

tt|γ, where ω̄ is a realisation and γ ≤ 1/2, but in general γ will not be larger. The integral∫
g(ω)dZ(ω) is well defined if it is defined as the limit (in the mean squared sense) of discrete

sums. More precisely, let Zn(ω) =
∑n

k=1 Z(ωk)Iωnk−1,ωnk
(ω) =

∑bnω/2πc
k=1 [Z(ωk)− Z(ωk−1)], then

∫
g(ω)dZn(ω) =

n∑
k=1

g(ωk){Z(ωk)− Z(ωk−1)}.

The limit of
∫
g(ω)dZn(ω) as n→∞ is

∫
g(ω)dZ(ω) (in the mean squared sense, that is E[

∫
g(ω)dZ(ω)−∫

g(ω)dZn(ω)]2). Compare this with our heuristics in equation (10.11).

For a more precise explanation, see Parzen (1959), Priestley (1983), Sections 3.6.3 and Section

4.11, page 254, and Brockwell and Davis (1998), Section 4.7. For a very good review of elementary

stochastic calculus see Mikosch (1999).

A very elegant explanation on the different proofs of the spectral representation theorem is given

in Priestley (1983), Section 4.11. We now give a rough outline of the proof using the functional

theory approach.

Remark 10.5.2 We mention that the above representation applies to both stationary and nonsta-

tionary time series. What makes the exponential functions {exp(ikω)} special is if a process is

stationary then the representation of c(k) := cov(Xt, Xt+k) in terms of exponentials is guaranteed:

c(k) =

∫ 2π

0
exp(−ikω)dF (ω). (10.19)
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Therefore there always exists an orthogonal random function {Z(ω)} such that

Xt =

∫
exp(−itω)dZ(ω).

Indeed, whenever the exponential basis is used in the definition of either the covariance or the

process {Xt}, the resulting process will always be second order stationary.

Brockwell and Davis (1998), Proposition 4.8.2 states an interesting consequence of the spectral

representation theorem. Suppose that {Xt} is a second order stationary time series with spectral

distribution F (ω). If F (ω) has a discontinuity at λ0, then Xt almost surely has the representation

Xt =

∫ 2π

0
eitωdZ(ω) + eitλ0

(
Z(λ+

0 )− Z(λ−0 )
)

where Z(λ−0 ) and Z(λ+
0 ) denote the left and right limit. This result means that discontinuities in

the spectral distribution mean that the corresponding time series contains a deterministic sinusoid

functions i.e.

Xt = A cos(λ0t) +B sin(λ0t) + εt

where εt is a stationary time series. We came across this “feature” in Section 2.5. If the spectral

distribution contains a discontinuity, then “formally” the spectral density (which is the derivative

of the spectral distribution) is the dirac-delta function at the discontinuity. The periodogram is a

“crude” (inconsistent) estimator of the spectral density function, however it captures the general

features of the underlying spectral density. Look at Figures 2.11-2.13, observe that there is a large

peak corresponding the deterministic frequency and that this peak grows taller as the sample size

n grows. This large peak is limiting to the dirac delta function.

Finally we state Brockwell and Davis (1998), Proposition 4.9.1, which justifies our use of the

DFT. Brockwell and Davis (1998), Proposition 4.9.1 states that if {Xt} is a second order stationary

time series with spectral distribution F and ν1 and ν2 are continuity points of F then

1

2π

∑
|t|≤n

Xt

∫ ν2

ν1

exp(itω)dω → Z(ν2)− Z(ν1),

where the convergence is in mean squared.

344



Let ωk = 2πk/n, then using this result we have

1

2π
√
n

∑
|t|≤n

Xt exp(itωk) ≈
√
n
∑
|t|≤n

Xt

∫ ωk+1

ωk

exp(itω)dω ≈
√
n [Z(ωk+1)− Z(ωk)] ,

without the scaling factor
√
n, the above would limit to zero. Thus as claimed previously, the DFT

estimates the “increments”.

10.6 The spectral density functions of MA, AR and

ARMA models

We obtain the spectral density function for MA(∞) processes. Using this we can easily obtain the

spectral density for ARMA processes. Let us suppose that {Xt} satisfies the representation

Xt =
∞∑

j=−∞
ψjεt−j (10.20)

where {εt} are iid random variables with mean zero and variance σ2 and
∑∞

j=−∞ |ψj | < ∞. We

recall that the covariance of above is

c(k) = E(XtXt+k) =

∞∑
j=−∞

ψjψj+k. (10.21)

Since
∑∞

j=−∞ |ψj | <∞, it can be seen that

∑
k

|c(k)| ≤
∑
k

∞∑
j=−∞

|ψj | · |ψj+k| <∞.

Hence by using Theorem 10.4.1, the spectral density function of {Xt} is well defined. There

are several ways to derive the spectral density of {Xt}, we can either use (10.21) and f(ω) =

1
2π

∑
k c(k) exp(ikω) or obtain the spectral representation of {Xt} and derive f(ω) from the spectral

representation. We prove the results using the latter method.
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10.6.1 The spectral representation of linear processes

Since {εt} are iid random variables, using Theorem 10.5.1 there exists an orthogonal random

function {Z(ω)} such that

εt =

∫ 2π

0
exp(−itω)dZε(ω).

Since E(εt) = 0 and E(ε2
t ) = σ2 multiplying the above by εt, taking expectations and noting that

due to the orthogonality of {Zε(ω)} we have E(dZε(ω1)dZε(ω2)) = 0 unless ω1 = ω2 we have that

E(|dZε(ω)|2) = σ2dω, hence fε(ω) = (2π)−1σ2.

Using the above we obtain the following spectral representation for {Xt}, where Xt is a linear

time series

Xt =

∞∑
j=∞

ψjεt−j

∫ 2π

0


∞∑

j=−∞
ψj exp(ijω)

 exp(−itω)dZε(ω).

Hence

Xt =

∫ 2π

0
A(ω) exp(−itω)dZε(ω) =

∫ 2π

0
exp(−itω)dZX(ω) (10.22)

where A(ω) =
∑∞

j=−∞ ψj exp(ijω) and ZX(ω) = A(ω)Zε(ω). We note that this is the unique

spectral representation of Xt.

Definition 10.6.1 (The Cramer Representation) We mention that the representation in (10.22)

of a stationary process is usually called the Cramer representation of a stationary process, where

Xt =

∫ 2π

0
A(ω) exp(−itω)dZ(ω),

where {Z(ω) : 0 ≤ ω ≤ 2π} are orthogonal functions.

Exercise 10.2 (i) Suppose that {Xt} has an MA(1) representation Xt = θεt + εt−1. What is

its Cramer’s representation?

(ii) Suppose that {Xt} has a causal AR(1) representation Xt = φXt−1 +εt. What is its Cramer’s

representation?
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10.6.2 The spectral density of a linear process

Multiplying (10.22) by Xt+k and taking expectations gives

E(XtXt+k) = c(k) =

∫ 2π

0
A(ω1)A(−ω2) exp(−i(t+ k)ω1 + itω2)E(dZ(ω1)dZ(ω2)).

Due to the orthogonality of {Z(ω)} we have E(dZ(ω1)dZ(ω2)) = 0 unless ω1 = ω2, altogether this

gives

E(XtXt+k) = c(k) =

∫ 2π

0
|A(ω)|2 exp(−ikω)E(|dZ(ω)|2) =

∫ 2π

0
f(ω) exp(−ikω)dω,

where f(ω) = σ2

2π |A(ω)|2. Comparing the above with (10.15) we see that f(·) is the spectral density

function.

The spectral density function corresponding to the linear process defined in (10.20) is

f(ω) =
σ2

2π
|
∞∑

j=−∞
ψj exp(−ijω)|2.

Remark 10.6.1 (An alternative, more hands on proof) An alternative proof which avoids

the Cramer representation is to use that the acf of a linear time series is c(r) = σ2
∑

k ψjψj+r (see

Lemma 6.1.1). Thus by definition the spectral density function is

f(ω) =
1

2π

∞∑
r=−∞

c(r) exp(irω)

=
σ2

2π

∞∑
r=−∞

∞∑
j=−∞

ψjψj+r exp(irω).

Now make a change of variables s = j + r this gives

f(ω) =
σ2

2π

∞∑
s=−∞

∞∑
j=−∞

ψjψs exp(i(s− j)ω) =
σ2

2π

∣∣∣∣∣∣
∞∑

j=−∞
ψje

ijω

∣∣∣∣∣∣
2

=
σ2

2π
|A(ω)|2.

Example 10.6.1 Let us suppose that {Xt} is a stationary ARMA(p, q) time series (not necessarily

invertible or causal), where

Xt −
p∑
j=1

ψjXt−j =

q∑
j=1

θjεt−j ,

347



{εt} are iid random variables with E(εt) = 0 and E(ε2
t ) = σ2. Then the spectral density of {Xt} is

f(ω) =
σ2

2π

|1 +
∑q

j=1 θj exp(ijω)|2

|1−
∑q

j=1 φj exp(ijω)|2

We note that because the ARMA is the ratio of trignometric polynomials, this is known as a rational

spectral density.

Remark 10.6.2 The roots of the characteristic function of an AR process will have an influence

on the location of peaks in its corresponding spectral density function. To see why consider the

AR(2) model

Xt = φ1Xt−1 + φ2Xt−2 + εt,

where {εt} are iid random variables with zero mean and E(ε2) = σ2. Suppose the roots of the

characteristic polynomial φ(B) = 1 − φ1B − φ2B
2 lie outside the unit circle and are complex

conjugates where λ1 = r exp(iθ) and λ2 = r exp(−iθ). Then the spectral density function is

f(ω) =
σ2

|1− r exp(i(θ − ω))|2|1− r exp(i(−θ − ω)|2

=
σ2

[1 + r2 − 2r cos(θ − ω)][1 + r2 − 2r cos(θ + ω)]
.

If r > 0, the f(ω) is maximum when ω = θ, on the other hand if, r < 0 then the above is maximum

when ω = θ − π. Thus the peaks in f(ω) correspond to peaks in the pseudo periodicities of the

time series and covariance structure (which one would expect), see Section 6.1.2. How pronounced

these peaks are depend on how close r is to one. The close r is to one the larger the peak. We

can generalise the above argument to higher order Autoregressive models, in this case there may be

multiple peaks. In fact, this suggests that the larger the number of peaks, the higher the order of the

AR model that should be fitted.
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10.6.3 Approximations of the spectral density to AR and MA

spectral densities

In this section we show that the spectral density

f(ω) =
1

2π

∞∑
r=−∞

c(r) exp(irω)

can be approximated to any order by the spectral density of an AR(p) or MA(q) process.

We do this by truncating the infinite number of covariances by a finite number, however, this

does not necessarily lead to a positive definite spectral density. This can easily be proven by noting

that

f̃m(ω) =
m∑

r=−m
c(r) exp(irω) =

∫ 2π

0
f(λ)Dm(ω − λ)dλ,

where Dm(λ) = sin[(n+ 1/2)λ]/ sin(λ/2). Observe that Dm(·) can be negative, which means that

f̃m(ω) can be negative despite f being positive.

Example 10.6.2 Consider the AR(1) process Xt = 0.75Xt−1 + εt where var[εt] = 1. In Lemma

6.1.1 we showed that the autcovariance corresponding to this model is c(r) = [1− 0.752]−10.75|r|.

Let us define a process whose autocorrelation is c̃(0) = [1 − 0.752]−1, c(1) = c(−1) = [1 −

0.752]−10.75 and c̃(r) = 0 for |r| > 1. The ‘spectral density’ of this process is

f̃m(ω) =
1

1− 0.752

(
1 + 2× 3

4
cos[ω]

)
.

It is clear that this function can be zero for some values of ω. This means that {c̃(r)} is not a well

defined covariance function, hence there does not exist a time series with this covariance structure.

In other words, simply truncating an autocovariance is not enough to guarantee that it positive

definite sequence.

Instead we consider a slight variant on this and define

1

2π

m∑
r=−m

(
1− |r|

m

)
c(r) exp(irω)

which is positive.
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Remark 10.6.3 We note that fm is known as a Cesáro sum because it can be written as

fm(ω) =
1

2π

m∑
r=−m

(
1− |r|

m

)
c(r) exp(irω) =

1

m

m∑
n=0

f̃n(ω), (10.23)

where f̃n(·) = 1
2π

∑n
r=−n c(r) exp(irω). Strangely, there is no guarantee that the truncated Fourier

transform f̃n is not negative, however fn(·) is definitely positive. There are are a few ways to prove

this:

(i) The first method we came across previously, var[Jn(ω)] = fn(ω), it is clear that using this

construction infω fn(ω) ≥ 0.

(ii) By using (10.23) we can write fm(·) as

fm(ω) =

∫ 2π

0
f(λ)Fm(ω − λ)dλ,

where Fm(λ) = 1
m

∑m
r=−mDr(λ) = 1

m

(
sin(nλ/2)
sin(λ/2)

)2
and Dr(λ) =

∑r
j=−r exp(ijω) (these are

the Fejer and Dirichlet kernels respectively). Since both f and Fm are positive, then fm has

to be positive.

The Cesaro sum is special in the sense that

sup
ω
|fm(ω)− f(ω)| → 0, as m→∞. (10.24)

Thus for a large enough m, fm(ω) will be within δ of the spectral density f . Using this we can

prove the results below.

Lemma 10.6.1 Suppose that
∑

r |c(r)| < ∞, f is the spectral density of the covariances and

infω∈[0,2π] f(ω) > 0. Then for every δ > 0, there exists a m such that |f(ω) − fm(ω)| < δ and

fm(ω) = σ2|ψ(ω)|2, where ψ(ω) =
∑m

j=0 ψj exp(ijω). Thus we can approximate the spectral density

of f with the spectral density of a MA.

PROOF. We show that there exists an MA(m) which has the spectral density fm(ω), where fm is

defined in (10.23). Thus by (10.24) we have the result.

Before proving the result we note that if a “polynomial” is of the form

p(z) = a0 +
m∑
j=1

aj
(
z + z−1

)
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then it has the factorization p(z) = C
∏m
j=1[1 − λjz][1 − λ−1

j z], where λj is such that |λj | < 1.

Furthermore, if {aj}mj=0 are real and zmp(z) has no roots on the unit circle, then the coefficients of

the polynomial
∏m
j=1[1− λjz] are real. The above claims are true because

(i) To prove that p(z) = C
∏m
j=1[1−λjz][1−λ−1

j z], we note that zmp(z) is a 2m-order polynomial.

Thus it can be factorized. If there exists a root λ whose inverse is not a root, then the resulting

polynomial will have not have the symmetric structure.

(ii) By the complex conjugate theorem, since zmp(z) has real coefficients, then its complex roots

must be conjugates. Moreover, since no roots lie on the unit circle, then no conjugates lie on

the unit circle. Thus the coefficients of
∏m
j=1[1− λjz] are real (if it did lie on the unit circle,

then we can distribute the two roots between the two polynomials).

Thus setting z = eiω

m∑
r=−m

ar exp(irω) = C
m∏
j=1

[1− λj exp(iω)]
[
1− λ−1

j exp(−iω)
]
.

for some finite constant C. We use the above result. Since inf fm(ω) > 0 and setting ar =

[1− |r|n−1]c(r), we can write fm as

fm(ω) = K

 m∏
j=1

(1− λ−1
j exp(iω))

 m∏
j=1

(1− λj exp(−iω))


= A(ω)A(−ω) = |A(ω)|2,

where

A(z) =

m∏
j=1

(1− λ−1
j z).

Since A(z) is an mth order polynomial where all the roots are greater than 1, we can always

construct an MA(m) process which has A(z) as its ‘transfer’ function. Thus there exists an MA(m)

process which has fm(ω) as its spectral density function. �

Remark 10.6.4 (i) The above result requires that infω f(ω) > 0, in order to ensure that fm(ω)

is strictly positive. This assumption can be relaxed (and the proof becomes a little more

complicated), see Brockwell and Davis (1998), Theorem 4.4.3.
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(ii)

Lemma 10.6.2 Suppose that
∑

r |c(r)| < ∞ and f is corresponding the spectral density function

where infω f(ω) > 0. Then for every δ > 0, there exists a m such that |f(ω) − gm(ω)| < δ and

gm(ω) = σ2|φ(ω)−1|2, where φ(ω) =
∑m

j=0 φj exp(ijω) and the roots of φ(z) lie outside the unit

circle. Thus we can approximate the spectral density of f with the spectral density of a causal

autoregressive process.

PROOF. We first note that we can write

∣∣f(ω)− gm(ω)
∣∣ = f(ω)|gm(ω)−1 − f(ω)−1|gm(ω).

Since f(·) ∈ L2 and is bounded away from zero, then f−1 ∈ L2 and we can write f−1 as

f−1(ω) =

∞∑
r=∞

dr exp(irω),

where dr are the Fourier coefficients of f−1. Since f is positive and symmetric, then f−1 is pos-

itive and symmetric such that f−1(ω) =
∑∞

r=−∞ dre
irω and {dr} is a positive definite symmetric

sequence. Thus we can define the positive function gm where

g−1
m (ω) =

∑
|r|≤m

(
1− |r|

m

)
dr exp(irω)

and is such that |g−1
m (ω)− f−1(ω)| < δ, which implies

∣∣f(ω)− gm(ω)
∣∣ ≤ [

∑
r

|c(r)|]2δ.

Now we can apply the same arguments to prove to Lemma 10.6.1 we can show that g−1
m can be

factorised as g−1
m (ω) = C|φm(ω)|2 (where φm is an mth order polynomial whose roots lie outside

the unit circle). Thus gm(ω) = C|φm(ω)|−2 and we obtain the desired result. �

10.7 Cumulants and higher order spectrums

We recall that the covariance is a measure of linear dependence between two random variables.

Higher order cumulants are a measure of higher order dependence. For example, the third order
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cumulant for the zero mean random variables X1, X2, X3 is

cum(X1, X2, X3) = E(X1X2X3)

and the fourth order cumulant for the zero mean random variables X1, X2, X3, X4 is

cum(X1, X2, X3, X4) = E(X1X2X3X4)− E(X1X2)E(X3X4)− E(X1X3)E(X2X4)− E(X1X4)E(X2X3).

From the definition we see that if X1, X2, X3, X4 are independent then cum(X1, X2, X3) = 0 and

cum(X1, X2, X3, X4) = 0.

Moreover, if X1, X2, X3, X4 are Gaussian random variables then cum(X1, X2, X3) = 0 and

cum(X1, X2, X3, X4) = 0. Indeed all cumulants higher than order two is zero. This comes from

the fact that cumulants are the coefficients of the power series expansion of the logarithm of the

characteristic function of {Xt}, which is

gX(t) = i µ′︸︷︷︸
mean

t− 1

2
t′ Σ︸︷︷︸

cumulant

t.

Since the spectral density is the Fourier transform of the covariance it is natural to ask whether

one can define the higher order spectral density as the fourier transform of the higher order cumu-

lants. This turns out to be the case, and the higher order spectra have several interesting properties.

Let us suppose that {Xt} is a stationary time series (notice that we are assuming it is strictly sta-

tionary and not second order). Let κ3(t, s) = cum(X0, Xt, Xs), κ3(t, s, r) = cum(X0, Xt, Xs, Xr)

and κq(t1, . . . , tq−1) = cum(X0, Xt1 , . . . , Xtq) (noting that like the covariance the higher order cu-

mulants are invariant to shift). The third, fourth and the general qth order spectras is defined

as

f3(ω1, ω2) =

∞∑
s=−∞

∞∑
t=−∞

κ3(s, t) exp(isω1 + itω2)

f4(ω1, ω2, ω3) =
∞∑

s=−∞

∞∑
t=−∞

∞∑
r=−∞

κ4(s, t, r) exp(isω1 + itω2 + irω3)

fq(ω1, ω2, . . . , ωq−1) =

∞∑
t1,...,tq−1=−∞

κq(t1, t2, . . . , tq−1) exp(it1ω1 + it2ω2 + . . .+ itq−1ωq−1).

Example 10.7.1 (Third and Fourth order spectral density of a linear process) Let us sup-
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pose that {Xt} satisfies

Xt =
∞∑

j=−∞
ψjεt−j

where
∑∞

j=−∞ |ψj | < ∞, E(εt) = 0 and E(ε4
t ) < ∞. Let A(ω) =

∑∞
j=−∞ ψj exp(ijω). Then it is

straightforward to show that

f(ω) = σ2|A(ω)|2

f3(ω1, ω2) = κ3A(ω1)A(ω2)A(−ω1 − ω2)

f4(ω1, ω2, ω3) = κ4A(ω1)A(ω2)A(ω3)A(−ω1 − ω2 − ω3),

where κ3 = cum(εt, εt, εt) and κ4 = cum(εt, εt, εt, εt).

We see from the example, that unlike the spectral density, the higher order spectras are not

necessarily positive or even real.

A review of higher order spectra can be found in Brillinger (2001). Higher order spectras have

several applications especially in nonlinear processes, see Subba Rao and Gabr (1984). We will

consider one such application in a later chapter.

Using the definition of the higher order spectrum we can now generalise Lemma 10.2.1 to higher

order cumulants (see Brillinger (2001), Theorem 4.3.4).

Proposition 10.7.1 {Xt} is a strictly stationary time series, where for all 1 ≤ i ≤ q − 1 we

have
∑∞

t1,...,tq−1=∞ |(1 + ti)κq(t1, . . . , tq−1)| < ∞ (note that this is simply a generalization of the

covariance assumption
∑

r |rc(r)| <∞). Then we have

cum(Jn(ωk1), . . . , Jn(ωkq)) =
1

nq/2
fq(ωk2 , . . . , ωkq)

n∑
j=1

exp(ij(ωk1 − . . .− ωkq)) +O(
1

nq/2
)

=

 1
n(q−1)/2 fq(ωk2 , . . . , ωkq) +O( 1

nq/2
)
∑q

i=1 ki = nZ

O( 1
nq/2

) otherwise

where ωki = 2πki
n .

354



10.8 Extensions

10.8.1 The spectral density of a time series with randomly missing

observations

Let us suppose that {Xt} is a second order stationary time series. However {Xt} is not observed at

everytime point and there are observations missing, thus we only observe Xt at {τk}k. Thus what is

observed is {Xτk}. The question is how to deal with this type of data. One method was suggested

in ?. He suggested that the missingness mechanism {τk} be modelled stochastically. That is define

the random process {Yt} which only takes the values {0, 1}, where Yt = 1 if Xt is observed, but

Yt = 0 if Xt is not observed. Thus we observe {XtYt}t = {Xtk} and also {Yt} (which is the time

points the process is observed). He also suggests modelling {Yt} as a stationary process, which is

independent of {Xt} (thus the missingness mechanism and the time series are independent).

The spectral densities of {XtYt}, {Xt} and {Yt} have an interest relationship, which can be

exploited to estimate the spectral density of {Xt} given estimators of the spectral densities of {XtYt}

and {Xt} (which we recall are observed). We first note that since {Xt} and {Yt} are stationary,

then {XtYt} is stationary, furthermore

cov(XtYt, XτYτ ) = cov(Xt, Xτ )cov(Yt, Yτ ) + cov(Xt, Yτ )cov(Yt, Xτ ) + cum(Xt, Yt, Xτ , Yτ )

= cov(Xt, Xτ )cov(Yt, Yτ ) = cX(t− τ)cY (t− τ)

where the above is due to independence of {Xt} and {Yt}. Thus the spectral density of {XtYt} is

fXY (ω) =
1

2π

∞∑
r=−∞

cov(X0Y0, XrYr) exp(irω)

=
1

2π

∞∑
r=−∞

cX(r)cY (r) exp(irω)

=

∫
fX(λ)fY (ω − λ)dω,

where fX(λ) = 1
2π

∑∞
r=−∞ cX(r) exp(irω) and fY (λ) = 1

2π

∑∞
r=−∞ cY (r) exp(irω) are the spectral

densities of the observations and the missing process.
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10.9 Appendix: Some proofs

PROOF of Theorem 10.4.2. We first show that if {c(k)} is non-negative definite sequence, then

we can write c(k) =
∫ 2π

0 exp(ikω)dF (ω), where F (ω) is a distribution function.

To prove the result we adapt some of the ideas used to prove Theorem 10.4.1. As in the proof

of Theorem 10.4.1 define the (nonnegative) function

fn(ω) = var[Jn(ω)] =
1

2πn

n∑
s,t=1

exp(isω)c(s− t) exp(−itω) =
1

2π

(n−1)∑
k=−(n−1)

(
n− |k|
n

)
c(k) exp(ikω).

If {c(k)} is not absolutely summable, the limit of fn(ω) is no longer well defined. Instead we consider

its integral, which will always be a distribution function (in the sense that it is nondecreasing and

bounded). Let us define the function Fn(ω) whose derivative is fn(ω), that is

Fn(ω) =

∫ ω

0
fn(λ)dλ =

ω

2π
c(0) +

2

2π

n−1∑
r=1

(
1− r

n

)
c(r)

sin(ωr)

r
0 ≤ λ ≤ 2π.

Since fn(λ) is nonnegative, Fn(ω) is a nondecreasing function. Furthermore it is bounded since

Fn(2π) =

∫ 2π

0
fn(λ)dλ = c(0).

Hence Fn satisfies all properties of a distribution and can be treated as a distribution function.

This means that we can apply Helly’s theorem to the sequence {Fn}n. We first recall that if {xn}

are real numbers defined on a compact set X ⊂ R, then there exists a subsequence {xnm}m which

has a limit in the set X (this is called the Bolzano-Weierstrass theorem). An analogous result

exists for measures, this is called Helly’s theorem (see Ash (1972), page 329). It states that for

any sequence of distributions {Gn} defined on [0, 2π], were Gn(0) = 0 and supnGn(2π) < M <∞,

there exists a subsequence {nm}m where Gnm(x)→ G(x) as m→∞ for each x ∈ [0, 2π] at which

G is continuous. Furthermore, since Gnm(x) → G(x) (pointwise as m → ∞), this implies (see

Varadhan, Theorem 4.1 for equivalent forms of convergence) that for any bounded sequence h we

have that

∫
h(x)dGnm(x)→

∫
h(x)dG(x) as m→∞.

We now apply this result to {Fn}n. Using Helly’s theorem there exists a subsequence of distributions
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{Fnm}m which has a pointwise limit F . Thus for any bounded function h we have

∫
h(x)dFnm(x)→

∫
h(x)dF (x) as m→∞. (10.25)

We focus on the function h(x) = exp(−ikω). It is clear that for every k and n we have

∫ 2π

0
exp(−ikω)dFn(ω) =

∫ 2π

0
exp(ikω)fn(ω)dω =

 (1− |k|n )c(k) |k| ≤ n

0 |k| ≥ n
(10.26)

Define the sequence

dn,k =

∫ 2π

0
exp(ikω)dFn(ω) =

(
1− |k|

n

)
c(k).

We observe that for fixed k, {dn,k;n ∈ Z} is a Cauchy sequence, where

dn,k → dk = c(k) (10.27)

as n→∞.

Now we use (10.25) and focus on the convergent subsequence {nm}m. By using (10.25) we have

dnm,k =

∫
exp(−ikx)dFnm(x)→

∫
exp(−ikx)dF (x) as m→∞

and by (10.27) dnm,k → c(k) as m→∞. Thus

c(k) =

∫
exp(−ikx)dF (x).

This gives the first part of the assertion.

To show the converse, that is {c(k)} is a non-negative definite sequence when c(k) is defined as

c(k) =
∫

exp(ikω)dF (ω), we use the same method given in the proof of Theorem 10.4.1, that is

n∑
s,t=1

xsc(s− t)x̄s =

∫ 2π

0

{ n∑
s,t=1

xs exp(−i(s− t)ω)x̄s
}
dF (ω)

=

∫ 2π

0

∣∣∣∣∣
n∑
s=1

xs exp(−isω)

∣∣∣∣∣
2

dF (ω) ≥ 0,

since F (ω) is a distribution.
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Finally, if {c(k)} were absolutely summable, then we can use Theorem 10.4.1 to write c(k) =∫ 2π
0 exp(−ikω)dF (ω), where F (ω) =

∫ ω
0 f(λ)dλ and f(λ) = 1

2π

∑∞
k=−∞ c(k) exp(ikω). By using

Theorem 10.4.1 we know that f(λ) is nonnegative, hence F (ω) is a distribution, and we have the

result. �

Rough PROOF of the Spectral Representation Theorem To prove the result we first

define two Hilbert spacesH1 andH2, whereH1 one contains deterministic functions andH2 contains

random variables.

First we define the space

H1 = sp{eitω; t ∈ Z}

with inner-product

〈f, g〉 =

∫ 2π

0
f(x)g(x)dF (x) (10.28)

(and of course distance 〈f − g, f − g〉 =
∫ 2π

0 |f(x)− g(x)|2dF (x)) it is clear that this inner product

is well defined because 〈f, f〉 ≥ 0 (since F is a measure). It can be shown (see Brockwell and Davis

(1998), page 144) that H1 =
{
g;
∫ 2π

0 |g(ω)|2dF (ω) <∞
}

1. We also define the space

H2 = sp{Xt; t ∈ Z}

with inner-product cov(X,Y ) = E[XY ]− E[X]E[Y ].

Now let us define the linear mapping T : H1 → H2

T (

n∑
j=1

aj exp(ikω)) =

n∑
j=1

ajXk, (10.29)

for any n (it is necessary to show that this can be extended to infinite n, but we won’t do so here).

We will shown that T defines an isomorphism (ie. it is a one-to-one linear mapping that preserves

norm). To show that it is a one-to-one mapping see Brockwell and Davis (1998), Section 4.7. It is

clear that it is linear, there all that remains is to show that the mapping preserves inner-product.

1Roughly speaking it is because all continuous functions on [0, 2π] are dense in L2([0, 2π],B, F ) (using
the metric ‖f − g‖ = 〈f − g, f − g〉 and the limit of Cauchy sequences). Since all continuous function can be
written as linear combinations of the Fourier basis, this gives the result.
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Suppose f, g ∈ H1, then there exists coefficients {fj} and {gj} such that f(x) =
∑

j fj exp(ijω)

and g(x) =
∑

j gj exp(ijω). Hence by definition of T in (10.29) we have

〈Tf, Tg〉 = cov(
∑
j

fjXj ,
∑
j

gjXj) =
∑
j1,j2

fj1gj2cov(Xj1 , Xj2) (10.30)

Now by using Bochner’s theorem (see Theorem 10.4.2) we have

〈Tf, Tg〉 =

∫ 2π

0

(∑
j1,j2

fj1gj2 exp(i(j1 − j2)ω)
)
dF (ω) =

∫ 2π

0
f(x)g(x)dF (x) = 〈f, g〉.

(10.31)

Hence < Tf, Tg >=< f, g >, so the inner product is preserved (hence T is an isometry).

Altogether this means that T defines an isomorphism betwenH1 andH2. Therefore all functions

which are in H1 have a corresponding random variable in H2 which has similar properties.

For all ω ∈ [0, 2π], it is clear that the identity functions I[0,ω](x) ∈ H1. Thus we define the

random function {Z(ω); 0 ≤ ω ≤ 2π}, where T (I[0,ω](·)) = Z(ω) ∈ H2 (since T is an isomorphism).

Since that mapping T is linear we observe that

T (I[ω1,ω2]) = T (I[0,ω1] − I[0,ω2]) = T (I[0,ω1])− T (I[0,ω2]) = Z(ω1)− Z(ω2).

Moreover, since T preserves the norm for any non-intersecting intervals [ω1, ω2] and [ω3, ω4] we have

cov ((Z(ω1)− Z(ω2), (Z(ω3)− Z(ω4)) = 〈T (I[ω1,ω2]), T (I[ω3,ω4])〉 = 〈I[ω1,ω2], I[ω3,ω4]〉

=

∫
I[ω1,ω2](ω)I[ω3,ω4](ω)dF (ω) = 0.

Therefore by construction {Z(ω); 0 ≤ ω ≤ 2π} is an orthogonal increment process, where

E|Z(ω2)− Z(ω1)|2 = < T (I[ω1,ω2]), T (I[ω1,ω2]) >=< I[ω1,ω2], I[ω1,ω2] >

=

∫ 2π

0
I[ω1,ω2]dF (ω) =

∫ ω2

ω1

dF (ω) = F (ω2)− F (ω1).

Having defined the two spaces which are isomorphic and the random function {Z(ω); 0 ≤ ω ≤

2π} and function I[0,ω](x) which have orthogonal increments, we can now prove the result. Since

dI[0,ω](s) = δω(s)ds, where δω(s) is the dirac delta function, any function g ∈ L2[0, 2π] can be

359



represented as

g(ω) =

∫ 2π

0
g(s)dI[ω,2π](s).

Thus for g(ω) = exp(−itω) we have

exp(−itω) =

∫ 2π

0
exp(−its)dI[ω,2π](s).

Therefore

T (exp(−itω)) = T

(∫ 2π

0
exp(−its)dI[ω,2π](s)

)
=

∫ 2π

0
exp(−its)T [dI[ω,2π](s)]

=

∫ 2π

0
exp(−its)dT [I[ω,2π](s)],

where the mapping goes inside the integral due to the linearity of the isomorphism. Using that

I[ω,2π](s) = I[0,s](ω) we have

T (exp(−itω)) =

∫ 2π

0
exp(−its)dT [I[0,s](ω)].

By definition we have T (I[0,s](ω)) = Z(s) which we substitute into the above to give

Xt =

∫ 2π

0
exp(−its)dZ(s),

which gives the required result.

Note that there are several different ways to prove this result. �

It is worth taking a step back from the proof and see where the assumption of stationarity crept

in. By Bochner’s theorem we have that

c(t− τ) =

∫
exp(−i(t− τ)ω)dF (ω),

where F is a distribution. We use F to define the space H1, the mapping T (through {exp(ikω)}k),

the inner-product and thus the isomorphism. However, it was the construction of the orthogonal

random functions {Z(ω)} that was instrumental. The main idea of the proof was that there are

functions {φk(ω)} and a distribution H such that all the covariances of the stochastic process {Xt}
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can be written as

E(XtXτ ) = c(t, τ) =

∫ 2π

0
φt(ω)φτ (ω)dH(ω),

where H is a measure. As long as the above representation exists, then we can define two spaces

H1 and H2 where {φk} is the basis of the functional space H1 and it contains all functions f such

that
∫
|f(ω)|2dH(ω) <∞ and H2 is the random space defined by sp(Xt; t ∈ Z). From here we can

define an isomorphism T : H1 → H2, where for all functions f(ω) =
∑

k fkφk(ω) ∈ H1

T (f) =
∑
k

fkXk ∈ H2.

An important example is T (φk) = Xk. Now by using the same arguments as those in the proof

above we have

Xt =

∫
φt(ω)dZ(ω)

where {Z(ω)} are orthogonal random functions and E|Z(ω)|2 = H(ω). We state this result in the

theorem below (see Priestley (1983), Section 4.11).

Theorem 10.9.1 (General orthogonal expansions) Let {Xt} be a time series (not necessarily

second order stationary) with covariance {E(XtXτ ) = c(t, s)}. If there exists a sequence of functions

{φk(·)} which satisfy for all k

∫ 2π

0
|φk(ω)|2dH(ω) <∞

and the covariance admits the representation

c(t, s) =

∫ 2π

0
φt(ω)φs(ω)dH(ω), (10.32)

where H is a distribution then for all t we have the representation

Xt =

∫
φt(ω)dZ(ω) (10.33)

where {Z(ω)} are orthogonal random functions and E|Z(ω)|2 = H(ω). On the other hand if Xt
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has the representation (10.33), then c(s, t) admits the representation (10.32).
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Chapter 11

Spectral Analysis

Prerequisites

• The Gaussian likelihood.

• The approximation of a Toeplitz by a Circulant (covered in previous chapters).

Objectives

• The DFTs are close to uncorrelated but have a frequency dependent variance (under station-

arity).

• The DFTs are asymptotically Gaussian.

• For a linear time series the DFT is almost equal to the transfer function times the DFT of

the innovations.

• The periodograms is the square of the DFT, whose expectation is approximately equal to the

spectral density. Smoothing the periodogram leads to an estimator of the spectral density as

does truncating the covariances.

• The Whittle likelihood and how it is related to the Gaussian likelihood.

• Understand that many estimator can be written in the frequency domain.

• Calculating the variance of an estimator.
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11.1 The DFT and the periodogram

In the previous section we motivated transforming the stationary time series {Xt} into it’s discrete

Fourier transform

Jn(ωk) =
1√
2πn

n∑
t=1

Xt exp(ik
2πt

n
)

=

(
1√
2πn

n∑
t=1

Xt cos(k
2πt

n
) + i

1√
2πn

n∑
t=1

Xt sin(k
2πt

n
)

)
k = 0, . . . , n/2

(frequency series) as an alternative way of analysing the time series. Since there is a one-to-one

mapping between the two, nothing is lost by making this transformation. Our principle reason

for using this transformation is given in Lemma 10.2.1, where we showed that {Jn(ωk)}
n/2
n=1 is an

almost uncorrelated series. However, there is a cost to the uncorrelatedness property, that is unlike

the original stationary time series {Xt}, the variance of the DFT varies over the frequencies, and

the variance is the spectral density at that frequency. We summarise this result below, but first we

recall the definition of the spectral density function

f(ω) =
1

2π

∞∑
r=−∞

c(r) exp(irω) ω ∈ [0, 2π]. (11.1)

We summarize some of the results derived in Chapter 10 here.

Lemma 11.1.1 Suppose that {Xt} is a zero second order stationary time series, where cov(X0, Xr) =

c(r) and
∑

r |c(r)| <∞. Define ωk = 2πk
n . Then

(i)

|Jn(ω)|2 =
1

2π

n−1∑
r=−(n−1)

ĉn(r) exp(irω), (11.2)

where ĉn(r) is the sample autocovariance.

(ii) for k 6= 0 we have E[Jn(ωk)] = 0,

∣∣E(|Jn(ω)|2)− f(ω)
∣∣ ≤ 1

2π

( ∑
|r|≥n

|c(r)|+ 1

n

∑
|r|≤n

|rc(r)|
)
→ 0 (11.3)

as n→∞,
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(iii)

cov

[
Jn(

2πk1

n
), Jn(

2πk2

n
)

]
=

 f(2πk
n ) + o(1) k1 = k2

o(1) k1 6= k2

where f(ω) is the spectral density function defined in (11.1). Under the stronger condition
∑

r |rc(r)| <

∞ the o(1) above is replaced with O(n−1).

In addition if we have higher order stationarity (or strict stationarity), then we also can find

expressions for the higher order cumulants of the DFT (see Proposition 10.7.1).

It should be noted that even if the mean of the stationary time series {Xt} is not zero (ie. E(Xt) =

µ 6= 0), so long as ωk 6= 0 E(Jn(ωk)) = 0 (even without centering Xt, with Xt − X̄).

Since there is a one-to-one mapping between the observations and the DFT, it is not surprising

that classical estimators can be written in terms of the DFT. For example, the sample covariance

can be rewritten in terms of the DFT

ĉn(r) + ĉn(n− r) =
1

n

n∑
k=1

|Jn(ωk)|2 exp(−irωk). (11.4)

(see Appendix A.3(iv)). Since ĉn(n − r) = 1
n

∑n
t=|n−r|XtXt+|n−r|, for small r (relative to T ) this

term is negligible, and gives

ĉn(r) ≈ 1

n

n∑
k=1

|Jn(ωk)|2 exp(−irωk). (11.5)

The modulo square of the DFT plays such an important role in time series analysis that it has

it’s own name, the periodogram, which is defined as

In(ω) = |Jn(ω)|2 =
1

2π

n−1∑
r=−(n−1)

ĉn(r) exp(irω). (11.6)

By using Lemma 11.1.1 or Theorem 10.7.1 we have E(In(ω)) = f(ω) + O( 1
n). Moreover, (11.4)

belongs to a general class of integrated mean periodogram estimators which have the form

A(φ, In) =
1

n

n∑
k=1

In(ωk)φ(ωk). (11.7)

Replacing the sum by an integral and the periodogram by its limit, it is clear that these are
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estimators of the integrated spectral density

A(f, φ) =

∫ 2π

0
f(ω)φ(ω)dω.

Before we consider these estimators (in Section 11.5). We analyse some of the properties of the

DFT.

11.2 Distribution of the DFT and Periodogram under

linearity

An interesting aspect of the DFT, is that under certain conditions the DFT is asymptotically

normal. We can heuristically justify this by noting that the DFT is a (weighted) sample mean. In

fact at frequency zero, it is the sample mean (Jn(0) =
√

n
2π X̄). In this section we prove this result,

and a similar result for the periodogram. We do the proof under linearity of the time series, that is

Xt =
∞∑

j=−∞
ψjεt−j ,

however the result also holds for nonlinear time series (but is beyond this course).

The DFT of the innovations Jε(ωk) = 1√
2πn

∑n
t=1 εte

itωk is a very simple object to deal with it.

First the DFT is an orthogonal transformation and the orthogonal transformation of iid random

variables leads to uncorrelated random variables. In other words, {Jε(ωk)} is completely uncor-

related as are its real and imaginary parts. Secondly, if {εt} are Gaussian, then {Jε(ωk)} are

independent and Gaussian. Thus we start by showing the DFT of a linear time series is approxi-

mately equal to the DFT of the innovations multiplied by the transfer function. This allows us to

transfer results regarding Jε(ωk) to Jn(ωk).

We will use the assumption that
∑

j |j1/2ψj | < ∞, this is a slightly stronger assumption than∑
j |ψj | <∞ (which we worked under in Chapter 4).

Lemma 11.2.1 Let us suppose that {Xt} satisfy Xt =
∑∞

j=−∞ ψjεt, where
∑∞

j=−∞ |j1/2ψj | <∞,

and {εt} are iid random variables with mean zero and variance σ2. Let

Jε(ω) =
1√
2πn

n∑
t=1

εt exp(itω).
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Then we have

Jn(ω) =
{∑

j

ψj exp(ijω)
}
Jε(ω) + Yn(ω), (11.8)

where Yn(ω) = 1√
2πn

∑
j ψj exp(ijω)Un,j, with Un,j =

∑n−j
t=1−j exp(itω)εt −

∑n
t=1 exp(itω)εt and

E(Yn(ω))2 ≤ ( 1
n1/2

∑∞
j=−∞ |ψj |min(|j|, n)1/2)2 = O( 1

n).

PROOF. We note that

Jn(ω) =
∞∑

j=−∞
ψj exp(ijω)

1√
2πn

n∑
t=1

εt−j exp(itω)

=

∞∑
j=−∞

ψj exp(ijω)
1√
2πn

n−j∑
s=1−j

εs exp(isω)

=

 1√
2πn

∑
j

ψj exp(ijω)

 Jε(ω) +
∑
j

ψj exp(ijω)

 n−j∑
t=1−j

exp(itω)εt −
n∑
t=1

exp(itω)εt


︸ ︷︷ ︸

=Yn(ω)

.

We will show that Yn(ω) is negligible with respect to the first term. We decompose Yn(ω) into

three terms

Yn(ω) =
1√
2πn

−n∑
j=−∞

ψje
ijω

 n−j∑
t=1−j

exp(itω)εt −
n∑
t=1

exp(itω)εt


︸ ︷︷ ︸

no terms in common

+

1√
2πn

n∑
j=−n

ψje
ijω

 n−j∑
t=1−j

exp(itω)εt −
n∑
t=1

exp(itω)εt


︸ ︷︷ ︸

(n−j) terms in common, 2j terms not in common

+

1√
2πn

∞∑
j=n+1

ψje
ijω

 n−j∑
t=1−j

exp(itω)εt −
n∑
t=1

exp(itω)εt


︸ ︷︷ ︸

no terms in common

= I + II + II.

If we took the expectation of the absolute of Yn(ω) we find that we require the condition
∑

j |jψj | <

∞ (and we don’t exploit independence of the innovations). However, by evaluating E|Yn(ω)|2 we
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exploit to independence of {εt}, ie.

[E(I2)]1/2 ≤ 1√
2πn

−n∑
j=−∞

|ψj |

E

 n−j∑
t=1−j

exp(itω)εt −
n∑
t=1

exp(itω)εt

21/2

≤ 1√
2πn

−n∑
j=−∞

|ψj |
[
2nσ2

]1/2 ≤ 1√
2πn

−n∑
j=−∞

|j1/2ψj | ≤
1√
2πn

∞∑
j=−∞

|j1/2ψj |

similarly, III = O(n−1/2) and

[E(I2)]1/2 ≤ 1√
2πn

n∑
j=−n

|ψj |

E

 n−j∑
t=1−j

exp(itω)εt −
n∑
t=1

exp(itω)εt

21/2

≤ 1√
2πn

−n∑
j=−n

|ψj |
[
2jσ2

]1/2 ≤ 1√
2πn

−n∑
j=−∞

|j1/2ψj | ≤
1√
2πn

∞∑
j=−∞

|j1/2ψj |.

Thus we obtain the desired result. �

The above shows that under linearity and the condition
∑

j |j1/2ψj | <∞ we have

Jn(ω) =
{∑

j

ψj exp(ijω)
}
Jε(ω) +Op(

1√
n

). (11.9)

This implies that the distribution of Jn(ω) is determined by the DFT of the innovations Jε(ω). We

generalise the above result to the periodogram.

Lemma 11.2.2 Let us suppose that {Xt} is a linear time series Xt =
∑∞

j=−∞ ψjεt−j, where∑∞
j=−∞ |j1/2ψj | < ∞, and {εt} are iid random variables with mean zero, variance σ2 E(ε4

t ) < ∞.

Then we have

In(ω) =

∣∣∣∣∣∣
∑
j

ψj exp(ijω)

∣∣∣∣∣∣
2

|Jε(ω)|2 +Rn(ω), (11.10)

where E(supω |Rn(ω)|) = O( 1
n).

PROOF. See Priestley (1983), Theorem 6.2.1 or Brockwell and Davis (1998), Theorem 10.3.1. �
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To summarise the above result, for a general linear process Xt =
∑∞

j=−∞ ψjεt−j we have

In(ω) = |
∑
j

ψj exp(ijω)|2|Jε(ω)|2 +Op(
1

n
) = 2πf(ω)Iε(ω) +Op(

1

n
), (11.11)

where we assume w.l.o.g. that var(εt) = 1 and f(ω) = 1
2π |
∑

j ψj exp(ijω)|2 is the spectral density

of {Xt}.

The asymptotic normality of Jn(ω) follows from asymptotic normality of Jε(ω), which we prove

in the following proposition.

Proposition 11.2.1 Suppse {εt} are iid random variables with mean zero and variance σ2. We

define Jε(ω) = 1√
2πn

∑n
t=1 εt exp(itω) and Iε(ω) = 1

2πn

∣∣∑n
t=1 εt exp(itω)

∣∣2. Then we have

Jε(ω) =

 <Jε(ω)

=Jε(ω)

 D→ N
(

0,
σ2

2(2π)
I2

)
, (11.12)

where I2 is the identity matrix. Furthermore, for any finite m

(Jε(ωk1)′, . . . , Jε(ωkm)′)
D→ N

(
0,

σ2

2(2π)
I2m

)
, (11.13)

Iε(ω)/σ2 D→ χ2(2)/2 (which is equivalent to the exponential distribution with mean one) and

cov(|Jε(ωj)|2, |Jε(ωk)|2) =


κ4

(2π)2n
j 6= k

κ4
(2π)2n

+ 2σ4

(2π)2
j = k

(11.14)

where ωj = 2πj/n and ωk = 2πk/n (and j, k 6= 0 or n).

PROOF. We first show (11.15). We note that <(Jε(ωk)) = 1√
2πn

∑n
t=1 αt,n and =(Jε(ωk)) =

1√
2πn

∑n
t=1 βt,n where αt,n = εt cos(2kπt/n) and βt,n = εt sin(2kπt/n). We note that <(Jε(ωk)) =

1√
2πn

∑n
t=1 αt,n and =(Jε(ωk)) = 1√

2πn

∑n
t=1 βt,n are the weighted sum of iid random variables,

hence {αt,n} and {βt,n} are martingale differences. Therefore, to show asymptotic normality, we

will use the martingale central limit theorem with the Cramer-Wold device to show that (11.15).

We note that since {αt,n} and {βt,n} are independent random variables we an prove the same result

using a CLT for independent, non-identically distributed variables. However, for practice we will

use a martingale CLT. To prove the result we need to verify the three conditions of the martingale
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CLT. First we consider the conditional variances

1

2πn

n∑
t=1

E
(
|αt,n|2

∣∣εt−1, εt−2, . . . , ε1

)
=

1

2πn

n∑
t=1

cos(2kπt/n)2ε2
t
P→ σ2

2π

1

2πn

n∑
t=1

E
(
|βt,n|2

∣∣εt−1, εt−2, . . . , ε1

)
=

1

2πn

n∑
t=1

sin(2kπt/n)2ε2
t
P→ σ2

2π

1

2πn

n∑
t=1

E
(
αt,nβt,n

∣∣εt−1, εt−2, . . . , ε1

)
=

1

2πn

n∑
t=1

cos(2kπt/n) sin(2kπt/n)ε2
t
P→ 0,

where the above follows from basic calculations using the mean and variance of the above. Finally

we need to verify the Lindeberg condition, we only verify it for 1√
2πn

∑n
t=1 αt,n, the same argument

holds true for 1√
2πn

∑n
t=1 βt,n. We note that for every ε > 0 we have

1

2πn

n∑
t=1

E
(
|αt,n|2I(|αt,n| ≥ 2π

√
nε)
∣∣εt−1, εt−2, . . .

)
=

1

2πn

n∑
t=1

E
[
|αt,n|2I(|αt,n| ≥ 2π

√
nε)
]
.

By using |αt,n| = | cos(2πt/n)εt| ≤ |εt| the above can be bounded by

1

2πn

n∑
t=1

E
[
|αt,n|2I(|αt,n| ≥ 2π

√
nε)]

≤ 1

2πn

n∑
t=1

E
[
|εt|2I(|εt| ≥ 2π

√
nε)
]

= E
[
|εt|2I(|εt| ≥ 2π

√
nε)
] P→ 0 as n→∞,

the above is true because E(ε2
t ) < ∞. Hence we have verified Lindeberg condition and we obtain

(11.15). The proof of (11.13) is similar, hence we omit the details. Because Iε(ω) = <(Jε(ω))2 +

=(Jε(ω))2, from (11.15) we have Iε(ω)/σ2 ∼ χ2(2)/2 (which is the same as an exponential with

mean one).

To prove (11.14) we can either derive it from first principles or by using Proposition 10.7.1.

Here we do it from first principles. We observe

cov(Iε(ωj), Iε(ωk)) =
1

(2π)2n2

∑
k1

∑
k2

∑
t1

∑
t2

cov(εt1εt1+k1 , εt2εt2+k2).

Expanding the covariance gives

cov(εt1εt1+k1 , εt2εt2+k2) = cov(εt1 , εt2+k2)cov(εt2 , εt1+k1) + cov(εt1 , εt2)cov(εt1+k1 , εt2+k2) +

cum(εt1 , εt1+k1 , εt2 , εt2+k2).
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Since {εt} are iid random variables, for most t1, t2, k1 and k2 the above covariance is zero. The

exceptions are when t1 = t2 and k1 = k2 or t1 = t2 and k1 = k2 = 0 or t1−t2 = k1 = −k2. Counting

all these combinations we have

cov(|Jε(ωj)|2, |Jε(ωk)|2) =
2σ4

(2π)2n2

∑
k

∑
t

∑
t

exp(ik(ωj − ωk)) +
1

(2π)2n2

∑
t

κ4

where σ2 = var(εt) and κ4 = cum4(ε) = cum(εt, εt, εt, εt). We note that for j 6= k,
∑

t exp(ik(ωj −

ωk)) = 0 and for j = k,
∑

t exp(ik(ωj − ωk)) = n, substutiting this into cov(|Jε(ωj)|2, |Jε(ωk)|2)

gives us the desired result. �

By using (11.9) the following result follows immediately from Lemma 11.2.1, equation (11.15).

Corollary 11.2.1 Let us suppose that {Xt} is a linear time series Xt =
∑∞

j=−∞ ψjεt−j, where∑∞
j=−∞ |j1/2ψj | < ∞, and {εt} are iid random variables with mean zero, variance σ2 E(ε4

t ) < ∞.

Then we have  <Jn(ω)

=Jn(ω)

 D→ N
(

0,
1

2
f(ω)I2

)
, (11.15)

Using (11.11) we see that In(ω) ≈ f(ω)|Jε(ω)|2. This suggest that most of the properties which

apply to |Jε(ω)2 also apply to In(ω). Indeed in the following theorem we show that the asympototic

distribution of In(ω) is exponential with asymptotic mean f(ω) and variance f(ω)2 (unless ω = 0

in which case it is 2f(ω)2).

By using Lemma 11.2.1 we now generalise Proposition 11.2.1 to linear processes. We show

that just like the DFT the Periodogram is also ‘near uncorrelated’ at different frequencies. This

result will be useful when motivating and deriving the sampling of the spectral density estimator

in Section 11.3.

Theorem 11.2.1 Suppose {Xt} is a linear time series Xt =
∑∞

j=−∞ ψjεt−j, where
∑∞

j=−∞ |j1/2ψj | <

∞ with E[εt] = 0, var[εt] = σ2 and E[ε4
t ] < ∞. Let In(ω) denote the periodogram associated with

{X1, . . . , Xn} and f(·) be the spectral density. Then

(i) If f(ω) > 0 for all ω ∈ [0, 2π] and 0 < ω1, . . . , ωm < π, then

(
In(ω1)/f(ω1), . . . , In(ωm)/f(ωm)

)
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converges in distribution (as n → ∞) to a vector of independent exponential distributions

with mean one.

(ii) Furthermore, for ωj = 2πj
n and ωk = 2πk

n we have

cov(In(ωk), In(ωj)) =


2f(ωk)

2 +O(n−1/2) ωj = ωk = 0 or π

f(ωk)
2 +O(n−1/2) 0 < ωj = ωk < π

O(n−1) ωj 6= ωk

where the bound is uniform in ωj and ωk.

Remark 11.2.1 (Summary of properties of the periodogram) (i) The periodogram is non-

negative and is an asymptotically an unbiased estimator of the spectral density (when
∑

j |ψj | <

∞).

(ii) It symmetric about zero, In(ω) = In(ω + π), like the spectral density function.

(iii) At the fundemental frequencies {In(ωj)} are asymptotically uncorrelated.

(iv) If 0 < ω < π, In(ω) is asymptotically exponentially distributed with mean f(ω).

It should be mentioned that Theorem 11.2.1 also holds for several nonlinear time series too.

11.3 Estimating the spectral density function

There are several explanations as to why the raw periodogram can not be used as an estimator of

the spectral density function, despite its mean being approximately equal to the spectral density.

One explanation is a direct consequence of Theorem 11.2.1, where we showed that the distribution

of the periodogram standardized with the spectral density function is an exponential distribution,

from here it is clear it will not converge to the mean, however large the sample size. An alternative,

explanation is that the periodogram is the Fourier transform of the autocovariances estimators

at n different lags. Typically the variance for each covariance ĉn(k) will be about O(n−1), thus,

roughly speaking, the variance of In(ω) will be the sum of these n O(n−1) variances which leads to

a variance of O(1), this clearly does not converge to zero.

Both these explanations motivate estimators of the spectral density function, which turn out to

be the same. It is worth noting that Parzen (1957) proposed a consistent estimator of the spectral
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density. These results not only lead to a revolution in spectral density estimation but also the

usual density estimation that you may have encountered in nonparametric statistics (one of the

first papers on density estimation is Parzen (1962)).

We recall that Jn(ωk) are zero mean uncorrelated random variables whose variance is almost

equal to f(ωk). This means that E|Jn(ωk)|2 = E[In(ωn)] ≈ f(ωk).

Remark 11.3.1 (Smoothness of the spectral density and decay of the autocovariances)

We observe that

f (s)(ω) =
1

(2π)

∑
r∈Z

(ir)sc(r) exp(irω).

Therefore, the smoothness of the spectral density function is determined by finiteness of
∑

r |rsc(r)|,

in other words how fast the autocovariance function converges to zero. We recall that the acf of

ARMA processes decay exponential fast to zero, thus f is extremely smooth (all derivatives exist).

11.3.1 Spectral density estimation using a lagged window approach

To motivate the lagged window approach we recall that

In(ω) =
1

2π

n−1∑
k=−(n−1)

ĉn(k) exp(ikω),

where ĉn(r) = n−1
∑n−|r|

t=1 XtXt+r. Observe it is the sum of n autocovariance estimators. As

explained above, this estimator is not a consistent estimator of f(·) because it uses “too many”

coefficient estimators to estimate f .

The population autocovariances decay to zero for large lags, this suggests that we do not use

all the sample covariances in the estimator, just some of them. This motivates the estimator of the

spectral density based on truncating the sample autocovariances:

f̃m,n(ω) =
1

2π

m∑
r=−m

ĉn(r) exp(irω), (11.16)

where ĉn(r) = n−1
∑n−|r|

t=1 XtXt+r. The important feature of this estimator is that not all the

sample covariances are used, just the first (2m+ 1) sample covariances.

A generalised version of this which down weights the sample autocovariances at larger lags is
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the scaled lag kernel estimator

f̃m,n(ω) =
1

2π

n−1∑
r=−(n−1)

λ
( r
m

)
ĉn(r) exp(irω), (11.17)

where λ : R→ R is the so called lag window. There are two types of scaled lagged kernels:

• The truncated scaled lag kernel λ : [−1, 1] → R where λ(x) = 0 for x /∈ [−1, 1]. In this case

(11.17) reduces to

f̃m,n(ω) =
1

2π

m∑
r=−m

λ
( r
m

)
ĉn(r) exp(irω). (11.18)

• The non-truncated scaled lag kernel where λ(s/m) does not “vanish” after some point. Ex-

amples include the Bartlett kernel of the form λm(s) = (πs/m)−1 sin(πs/m)). For such

kernels m should not be treated as a truncation parameter that truncates the number of

sample autocovariances. Indeed if a truncation were applied one could not truncate at m

and would require a far larger truncation to obtain a near approximation.

Often non-truncated scaled lag kernels will correspond to a truncated spectral kernel in the

frequency domain i.e. have the form

f̃m,n(ω) =
1

2π

∫ 1/m

−1/m
In(λ)Wm(ω − λ)dω.

1 We discuss this in more detail below.

To understand why f̃m,n(ω) is estimating f we rewrite in the frequency domain (in terms of

the periodogram). Using the inverse Fourier transform we have

ĉn(r) =

∫ 2π

0
In(ω) exp(−irω)dω.

Replacing ĉn(r) in (11.17) with the above yields the convolution

f̃m,n(ω) =
1

2π

∫
In(λ)

n−1∑
k=−(n−1)

λ(
k

m
) exp(ik(ω − λ))dλ =

1

2π

∫
In(λ)Wm(ω − λ)dω,(11.19)

1It is important to remember that truncation over covariance means that truncation over frequency is
not possible and vice versa. This is famously due to the Heisenberg uncertainty principle; that one cannot
have simultaneously time and frequency localisation.
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where Wm(ω) = 1
2π

∑n−1
k=−(n−1) λ( km) exp(ikω). f̃n(ω) is a convolution/weighted integral average

between the periodogam and Wm(ω). If Wm(ω − λ) is largest at ω = λ, it gives most weight to

periodogram at frequency λ. At the extreme end if Wm(ω − λ) were the Dirac delta function (you

can think of this as the indicator variable which zero everywhere but ω = λ), then (11.19) simply

returns the periodogram. The precise result is given below.

Lemma 11.3.1 (Expectation of lagged window estimator) Suppose {Xt} is a stationary time

series with absolutely summable covariance
∑

r |r|K |c(r)| <∞ and fourth order cumulants∑
r1,r2,r3

|cum(X0, Xr1 , Xr2 , Xr3)| <∞. If λ(·) is a truncated lagged window, then

E[f̃m,n(ω)] =
1

2π

∫
f(ω)Wm(ω − λ)dω +O(n−1)

=
1

2π

n−1∑
k=−(n−1)

λ

(
k

m

)
c(r) exp(irω) +O(n−1)

= f(ω) +O
(
m−K

)
and

var[f̃m,n(ω)] =
1

n

∫ π

−π
Wm(ω − λ)2f(λ)2dλ+

1

n

∫ π

−π
Wm(ω − λ)Wm(ω + λ− 2π)f(λ)2dλ︸ ︷︷ ︸

if ω is far from zero ≈ 0.

+o(m/n)

= O(m/n).

See Section 6.2.4 in Priestley (1983)2.

The lemma above tells us that if the truncation parameter m is such that m/n → ∞ as n and

m→ 0 then the variance of the spectral density estimator will improve as the sample size grows.

Below we list some lag windows and their corresponding spectral window Wm(ω). For some

examples an exact analytic expression for Wm(ω) cannot be derived. However by using the Possion

summation formula we have

Wm(ω) = m

∞∑
j=−∞

K(m(ω + 2πj))

2Recall the variance of the sample mean of iid random variables is var[X̄] = σ2/n = O(n−1). The variance

of f̃n(ω) will be larger because it is the sum of many averages.
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where

K(ω) =
1

2π

∫ ∞
−∞

λ(u) exp(−iuω)du.

Example 11.3.1 (Examples of Lag windows) Below are examples of lag windows.

1. Truncated Periodogram lag window λ(u) = I[−1,1](u), where {λ(k/m)} corresponds to

Wm(x) =
1

2π

m∑
k=−m

eikω =
1

2π

sin[(m+ 1/2)x]

sin(x/2)
,

which is the Dirichlet kernel and

K(ω) =
1

2π

∫ 1

−1
exp(−iuω)du =

1

π

sin(ω)

ω
.

Note that the Dirchlet kernel is negative at some frequencies, thus we can see from (11.19)

that f̃n can be negative. Which is one potential drawback of this estimator (see Example

10.6.2).

2. The Bartlett lag window λ(x) = (1− |x|)I[−1,1](x), where {λ(k/m)} corresponds to

Wm(x) =
1

2π

m∑
k=−m

(
1− |k|

m

)
eikω =

1

2πn

(
sin(mx/2)

sin(x/2)

)2

which is the Fejer kernel and

K(ω) =
1

2π

∫ 1

−1
(1− |u|) exp(−iuω)du =

1

2π

(
sin(ω/2)

ω/2

)2

.

We can immediately see that one advantage of the Bartlett window is that it corresponds to

a spectral density estimator which is positive.

Note that in the case that m = n (the sample size), the truncated periodogram window

estimator corresponds to
∑
|r|≤n c(r)e

irω and the Bartlett window estimator corresponds to∑
|r|≤n[1− |r|/n]c(r)eirω.
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3. The Parzen lag window

λ(x) =


1− 6x2 + 6|x|3 |x| ≤ 1/2

2(1− |x|)3 1/2 < |x| ≤ 1

0 otherwise

No analytic expression for Wm(·) exists, however

K(ω) =
1

2π

∫ ∞
−∞

λ(u) exp(−iuω)du =
3

8π

(
sin(ω/4)

ω/4

)

4. The Danielll (non-truncated) lag window

λ(x) =
sin(πu)

πu
.

and

K(ω) =

 1/(2π) |ω| ≤ π

0 |ω| > 0
.

5. The Bartlett-Priestley (non-truncated) lag window

λ(x) =
3

πx2

(
sinπx

πx
− cos(πx)

)
.

and

K(ω) =

 3
4π (1− (ω/π)2) |ω| ≤ π

0 |ω| > 0
.

Observe that K(·) has a compact support for both the Daniell and Bartlett-Priestley kernel. Thus

for these kernels

Wm(ω) = mK(mθ).

Different lag windows lead to different biases and variances. A list of the variance and bias of each

window is given on page 463 in Priestley (1983).

377



11.3.2 Spectral density estimation by using a discrete average pe-

riodogram approach

In this section we focus on an alternative approach for estimating the spectral density function

which is closely related to the non-truncated lagged window estimators.

To motivate this approach we note that from Theorem 11.2.1, that {In(ωk)} are close to un-

correlated and In(ωk)/f(ωk) is 2−1χ2
2. Therefore we can write In(ωk) as

In(ωk) = E(In(ωk)) + [In(ωk)− E(In(ωk))]

≈ f(ωk) + f(ωk)Uk, k = 1, . . . , n, (11.20)

where {Uk} is sequence of mean zero and constant variance almost uncorrelated random variables.

In the remark below we briefly review nonparametric regression methods and then compare

equation (11.20) to the classical nonparametric regression equation.

Remark 11.3.2 (Nonparametric Kernel estimation) Let us suppose that we observe Yi where

Yi = g

(
i

n

)
+ εi 1 ≤ i ≤ n, (11.21)

and {εi} are iid random variables and g(·) is a ‘smooth’ function. The kernel density estimator of

ĝn( in)

ĝn

(
j

n

)
=
∑
i

1

bn
W

(
j − i
bn

)
Yi,

where W (·) is a smooth kernel function of your choosing, such as the Gaussian kernel, etc.

Comparing (11.21) with (11.20) motivates the following nonparametric estimator of f(ω).

f̂b,n(ωj) =
∑
k

1

bn
W

(
j − k
bn

)
In(ωk), (11.22)

where W : [−1, 1] → R is a spectral window which satisfies the condition
∫ 1
−1W (x)dx = 1 and∫ 1

−1W (x)2dx <∞. We observe that f̂b,n(ωj) resembles the lagged window estimator representation

given in (11.19), where the integral is replaced with a sum. The main difference is (i) the support

that the limits of the sum/integral are from [−nb, nb] (or −1/b, 1/b) whereas for the general lag
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window in (11.19) the integral is from [−1, 1] (ii) Wm(·) cannot be written as a rescaled W (·).

The exceptions are the non-truncated lag windows which can be written as (11.22), in this case

b−1 = m, i.e.

f̂b,n(ωj) =
1

n

n∑
t=1

n∑
τ=1

XtXτλt−τ,1/b exp(i(t− τ)ωj)

where λt−τ,1/b = 1
bn

∑
jW (

ωk−ωj
b ) exp(i(t− τ)ωk−j) = 1

bn

∑
jW (ωsb ) exp(i(t− τ)ωs)

Example 11.3.2 (Spectral windows) Here we give examples of spectral windows (see Section

6.2.3, page 437 in Priestley (1983)).

(i) The Daniell spectral Window is the local average

W (x) =

 1/2 |x| ≤ 1

0 |x| > 1

This window leads to the estimator

f̂b,n(ωj) =
1

bn

j+bn/2∑
k=j−bn/2

In(ωk).

A plot of the periodgram, spectral density and different estimators (using Daniell kernel with

bn = 2 and bn = 10) of the AR(2) process Xt = 1.5Xt−1 − 0.75Xt−2 + εt is given in Figure

11.1. We observe that too small b leads to undersmoothing but too large b leads to over

smoothing of features. There are various methods for selecting the bandwidth, one commonly

method based on the Kullbach-Leibler criterion is proposed in Beltrao and Bloomfield (1987).

(ii) The Bartlett-Priestley spectral Window

W (x) =

 3
4

(
1− x2

)
|x| ≤ 1

0 |x| > 1

This spectral window was designed to reduce the mean squared error of the spectral density

estimator (under certain smoothness conditions).

We now analyze the sampling properties of the spectral density estimator. It is worth noting
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Figure 11.1: Using a realisation of the AR(2): Xt = 1.5Xt−1− 0.75Xt−2 + εt where n = 256.
Top left: Periodogram, Top Right: True spectral density function. Bottom left: Spectral
density estimator with bn = 2 and Bottom right: Spectral density estimator with bn = 10.

that the analysis is very similar to the analysis of nonparametric kernel regression estimator ĝn( jn) =

1
bn

∑
iW ( j−ibn )Yi, where Yi = g( in) + g( in)εi and {εi} are iid random variables. This is because the

periodogram {In(ω)}k is ‘near uncorrelated’. However, still some care needs to be taken in the

proof to ensure that the errors in the near uncorrelated term does not build up.

Theorem 11.3.1 Suppose {Xt} is a stationary time series that satisfies the conditions
∑

r∈Z |rc(r)| <

∞ and
∑

r1,r2,r3
|cum(X0, Xr1 , Xr2 , Xr3)| < ∞. Let f̂b,n(ω) be the spectral estimator defined in

(11.22). Then

∣∣E(f̂b,n(ωj))− f(ωj)
∣∣ ≤ C ( 1

n
+ b

)
(11.23)

and

var[f̂b,n(ωj)]→

 1
bnf(ωj)

2 0 < ωj < π

2
bnf(ωj)

2 ωj = 0 or π
, (11.24)

bn→∞, b→ 0 as n→∞.

PROOF. The proof of both (11.23) and (11.24) are based on the spectral window W (x/b) becom-

ing narrower as b → 0, hence there is increasing localisation as the sample size grows (just like

380



nonparametric regression).

We first note that since
∑

r |rc(r)| <∞, then |f ′(ω)| ≤
∑

r |rc(r)| <∞. Hence f is continuous

with a bounded first derivative.

To prove (11.23) we take expections

∣∣∣E(f̂b,n(ωj))− f(ωj)
∣∣∣ =

∣∣∣∣∣∑
k

1

bn
W

(
k

bn

){
E
[
I(ωj−k)

]
− f(ωj)

}∣∣∣∣∣
=

∑
k

1

bn

∣∣∣∣W (
k

bn

)∣∣∣∣ ∣∣E[I(ωj−k)
]
− f(ωj−k)

∣∣+
∑
k

1

bn

∣∣∣∣W (
k

bn

)∣∣∣∣ |f(ωj)− f(ωj−k)|

:= I + II.

Using Lemma 11.1.1 we have

I =
∑
k

1

bn

∣∣∣∣W (
k

bn

)
|
∣∣∣∣ ∣∣E(I(ωj−k)

)
− f(ωj−k)

∣∣
≤ C

(
1

bn

∑
k

|W (
k

bn
)|

)∑
|k|≥n

|c(k)|+ 1

n

∑
|k|≤n

|kc(k)|

 = O(
1

n
).

To bound II we use that |f(ω1)− f(ω2)| ≤ sup |f ′(ω)| · |ω1 − ω2|, this gives

II =
∣∣∑
k

1

bn
K(

k

bn
)
{
f(ωj)− f(ωj−k)

}∣∣ = O(b).

Altogether this gives I = O(n−1) and II = O(b) as bn → ∞, b → 0 and n → ∞. The above two

bounds mean give (11.23).

We will use Theorem 11.2.1 to prove (11.24). We first assume that j 6= 0 or n. To prove the

result we use that

cov(|Jn(ωk1)|2, |Jn(ωk2)|2) =

[f(ωk1)I(k1 = k2) +O(
1

n
)]2 + [f(ωk1)I(k1 = n− k2) +O(

1

n
)][f(ωk1)I(n− k1 = k2) +O(

1

n
)]

+[
1

n
f4(ω1,−ω1, ω2) +O(

1

n2
)].
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where the above follows from Proposition 10.7.1. This gives

var(f̂b,n(ωj))

=
∑
k1,k2

1

(bn)2
W

(
j − k1

bn

)
W

(
j − k2

bn

)
cov(I(ωk1), I(ωk1))

=
∑
k1,k2

1

(bn)2
W

(
j − k1

bn

)
W

(
j − k2

bn

)
([
f(ωk1)I(k1 = k2) +O(

1

n
)
]2

+
[
f(ωk1)I(k1 = n− k2) +O(

1

n
)][f(ωk1)I(n− k1 = k2) +O(

1

n
)
]

+
[ 1

n
f4(ω1,−ω1, ω2) +O(

1

n2
)
])

=

n∑
k=1

1

(bn)2
W

(
j − k1

bn

)2

f(ω2
k)

+
n∑
k=1

1

(bn)2
W

(
j − k1

bn

)
W

(
j − (n− k1)

bn

)
f(ω2

k) +O(
1

n
)

=
1

2πnb

∫
1

b
W

(
ωj − ω
b

)2

f(ω)2dω +
1

2πnb

∫
1

b
W

(
ωj − 2π + ω

b

)
W

(
ωj − ω
b

)
f(ω)dω︸ ︷︷ ︸

→0

+O(
1

n
)

=
1

2πnb
f(ωj)

2

∫
1

b
W
(ω
b

)2
dω +O(

1

n
)

where the above is using the integral approximation of the sum. A similar proof can be used to

prove the case j = 0 or n. �

The above result means that the mean squared error of the estimator

E
[
f̂b,n(ωj)− f(ωj)

]2 → 0,

where bn→∞ and b→ 0 as n→∞. Moreover

E
[
f̂b,n(ωj)− f(ωj)

]2
= O

(
1

bn
+ b2

)
.

11.3.3 The sampling properties of the spectral density estimator

The χ2 approximation (mainly heuristics)

Using that the periodogram In(ω)/f(ω) is asymptotically exponentially distributed and uncorre-

lated at the fundemental frequencies, we can heuristically deduce the limiting distribution of f̂n(ω).
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Here we consider the distribution with the rectangular spectral window

f̂n(ωj) =
1

bn

j+bn/2∑
k=j−bn/2

I(ωk).

Since I(ωk)/f(ωk) are approximately χ2(2)/2, then since the sum
∑j+bn/2

k=j−bn/2 I(ωk) is taken over a

local neighbourhood of ωj , we have that f(ωj)
−1
∑j+bn/2

k=j−bn/2 I(ωk) is approximately χ2(2bn)/2.

Gaussian approximation of the spectral density estimator

In general, to prove normality of the spectral density estimator we rewrite it as a quadratic form3.

We first consider the truncated lagged window estimator of the form

f̃m,n(ω) =
1

2π

m∑
r=−m

λ
( r
m

)
ĉn(r) exp(irω)

=
1

2πn

n∑
t=1

n∑
τ=1

λ

(
t− τ
m

)
XtXτ exp(i(t− τ)ω)

=
1

2πn

n∑
t=1

min(n−t,m)∑
`=max(−t+1,−m)

λ

(
`

M

)
XtXt+` exp(i`ω)

There are various methods to show the above is asymptotically Gaussian depending on whether

one assumes the process is linear, mixing, physical dependent etc. But the classical method is to

rewrite the sum over
∑n

t=1 into large and small blocks of the form

f̃m,n(ω)− E[f̃m,n(ω)] =

kn−1∑
j=0

Lj,n +

kn∑
j=−1

Sj,n,

3It is also possible to show asymptotic normality using the average of periodogram representation under
the assumption of Gaussianity or absolute summability of cumulants of all orders.
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Lj,n =
1

n

(j+1)rn∑
t=jrn+qn+1

m∑
`=−m

(XtXt+` − E[XtXt+`])λ

(
`

m

)
exp(i`ω) for 0 ≤ j ≤ kn − 1

Sj,n =
1

n

jrn+qn∑
t=jrn+1

m∑
`=−m

(XtXt+` − E[XtXt+`])λ

(
`

m

)
exp(i`ω) for 0 ≤ j ≤ kn − 1

S−1,n =
1

n

m∑
t=1

1∑
`=−t+1

(XtXt+` − E[XtXt+`])λ

(
`

m

)
exp(i`ω)

Skn,n =
1

n

n∑
t=n−m

n−t∑
`=1

(XtXt+` − E[XtXt+`])λ

(
`

m

)
exp(i`ω),

with rn = pn + qn, kn = n/rn and pn > qn > m. Under certain conditions it can be shown that

√
n

m

(
f̃m,n(ω)− E[f̃m,n(ω)]

)
=

kn−1∑
j=0

Lj,n +R

where E[R2] = qn/(pn + qn). Thus if the size of the large block is order of magnitude larger

than the size of the small block f̃m,n(ω) can be approximated by the sum of large blocks. The

key ingredient in this approximation is that the large blocks Lj,n do not contain an common Xts,

thus if the time series were independent random variable then {Lj,n}kn−1
j=0 would be the sum of kn-

independent random variables and a Lindeberg-Levy central limit theorem could be used to prove

asymptotic normality of f̃m,n(ω). Of course, {Xt}s are a time series so we cannot immediately

apply the Lindeberg-Levy central limit theorem and one more approximation is necessary. Let

Sn =
∑kn−1

j=0 Lj,n. Given Lj,n and Sn, we start by defining auxillary variables {L̃j,n}j that are

independent and define the sum S̃n =
∑kn−1

j=0 L̃j,n. There are then two different strategies on how

to proceed:

• If we assume the time series satisfies a linear or physical dependence condition (a notion

developed by Wei Bao Wu) we can define an “m-dependent” sequence L̂j,n associated with

Lj,n such that {L̃j,n}j are independent and show that (n/m)E|Sn − S̃n|2 = o(1). We can

then show that S̃n satisfies the conditions of the Lindeberg-Levy central limit theorem. Since

(n/m)E|Sn − S̃n|2 = o(1) this would prove asymptotic normality of Sn and thus f̃m,n(ω).

• An alternative route is to work under mixing (say α-mixing). To replace Uj,n with Ũj,n where

the random variable Ũj,n has the same distribution as Uj,n but is independent over j. Then to

show that the characteristic functions of Sn and S̃n asymptotically converge (under mixing).

Using this we proceed as before by applying the conditions of the Lindeberg-Levy central
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limit theorem to show asymptotic normality of S̃n.

Therefore under suitable conditions it can be shown that from this asymptotic normality can be

derived, where

σm,n(ω)−1
[
f̃m,n(ω)− E[f̃m,n(ω)]

]
≈ N (0, 1)

and

σm,n(ω)2 =
1

n

∫ π

−π
WM (ω − λ)2f(λ)2dλ+

1

n

∫ π

−π
Wm(ω − λ)Wm(ω + λ− 2π)f(λ)2dλ

as m,n→∞.

The outline of the proof described above is for the truncated lagged window estimator. For

the averaged periodogram estimator or equivalently the non-truncated lagged window estimator

the proof requires a slight modification. We recall that the average periodogram estimator can be

written as

f̂b,n(ωj) =
1

n

n∑
t=1

n∑
τ=1

XtXτλt−τ,1/b exp(i(t− τ)ωj)

where λt−τ,1/b = 1
bn

∑
jW (

ωk−ωj
b ) exp(i(t − τ)ωk−j) = 1

bn

∑
jW (ωsb ) exp(i(t − τ)ωs). Unlike the

truncated lagged window estimator λt−τ,1/b is non-zero for most lags. Thus we cannot divide the

sum
∑n

t=1

∑n
τ=1 into sums which do not overlap. Thus to derive the sampling properties of f̂b,n(ωj)

we truncate λt−τ,1/b by setting to zero large lags. The following lemma (due to Lemma A.2 in ?)

allows us to obtain a bound on this approximation.

Lemma 11.3.2 Suppose the kernel W : [−1, 1]→ C has a bounded derivative. Then

bn∑
s=−bn

W
( s
bn

)
exp

(
ir2πs

n

)
=

 O(bn) |r| ≤ nb or n− b−1 ≤ |r| ≤ n

O
(

n
min(|r|,n−|r|)

)
b−1 ≤ |r| ≤ n− b−1

The above lemma implies that

λr,1/b =

 O(1) |r| ≤ b−1 or n− b−1 ≤ |r| ≤ n

O
(

1
bmin(|r|,n−|r|)

)
b−1 ≤ |r| ≤ n− b−1

We observe that λr,1/b declines as we r becomes large. Thus it should be possible to truncate λr,1/b
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for a sufficiently large r and thus approximate f̂b,n(ωj) with a truncated lag window to a sufficient

degree. Let

f̃b,n,B(ωj) =
1

n

n∑
t=1

min(n−t,Bbn)∑
`=max(−t+1,−Bbn)

XtXt+`λt−τ,1/b exp(i(t− τ)ωj)

where 1 < B < 1/b. By using Lemma 11.3.2 it can be shown that

(nb)E[f̂b,n(ωj)− f̃b,n,B(ωj)]
2 = O

(
log n

B

)
.

Thus if we allow B →∞ as nb and n→∞, then the approximate truncated lag window estimator

has the sample asymptotic distribution as the averaged periodogram estimator. Note that B simply

plays the role as a dummy variable and has no role in the estimation scheme.

Using these approximations we can use asymptotic normality of the truncated lagged window

periodogram estimator (as described above) to give

σb,n(ω)−1
[
f̂b,n(ω)− E[f̂b,n(ω)]

]
≈ N (0, 1)

and

σb,n(ω)2 =
1

n

∫ π

−π
W

(
(ω − λ)

b

)2

f(λ)2dλ+
1

n

∫ π

−π
Wb

(
ω − λ
b

)
Wm

(
ω + λ− 2π

b

)
f(λ)2dλ

as b→ 0 and n→∞.

11.4 The Whittle Likelihood

In Chapter 8 we considered various methods for estimating the parameters of an ARMA process.

The most efficient method (in terms of Fisher efficiency), when the errors are Gaussian is the

Gaussian maximum likelihood estimator. This estimator was defined in the time domain, but it is

interesting to note that a very similar estimator which is asymptotically equivalent to the GMLE

estimator can be defined within the frequency domain. We start by using heuristics to define the

Whittle likelihood. We then show how it is related to the Gaussian maximum likelihood.

To motivate the method let us return to the Sunspot data considered in Exercise 5.1. The
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Periodogram and the spectral density corresponding to the best fitting autoregressive model,

f(ω) = (2π)−1

∣∣∣∣1− 1.1584eiω − 0.3890ei2ω − 0.1674ei3ω − 0.1385ei4ω − 0.1054ei5ω − 0.0559ei6ω −

0.0049ei7ω − 0.0572ei8ω − 0.2378eω
∣∣∣∣−2

,

is given in Figure 11.2. We see that the spectral density of the best fitting AR process closely

follows the shape of the periodogram (the DFT modulo square). This means that indirectly the

autoregressive estimator (Yule-Walker) chose the AR parameters which best fitted the shape of

the periodogram. The Whittle likelihood estimator, that we describe below, does this directly. By

selecting the parametric spectral density function which best fits the periodogram. The Whittle
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Figure 11.2: The periodogram of sunspot data (with the mean removed, which is necessary
to prevent a huge peak at zero) and the spectral density of the best fitting AR model.

likelihood measures the distance between In(ω) and the parametric spectral density function using

the Kullbach-Leibler criterion

Lwn (θ) =

n∑
k=1

(
log fθ(ωk) +

In(ωk)

fθ(ωk)

)
, ωk =

2πk

n
,

and the parametric model which minimises this ‘distance’ is used as the estimated model. The choice

of this criterion over the other distance criterions may appear to be a little arbitrary, however there

are several reasons why this is considered a good choice. Below we give some justifications as to
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why this criterion is the prefered one.

First let us suppose that we observe {Xt}nt=1, where Xt satisfies the ARMA representation

Xt =

p∑
j=1

φjXt−j +

q∑
j=1

ψjεt−j + εt,

and {εt} are iid random variables. We will assume that {φj} and {ψj} are such that the roots

of their corresponding characteristic polynomial are greater than 1 + δ. Let θ = (φ, θ). As we

mentioned in Section 10.2 if
∑

r |rc(r)| <∞, then

cov(Jn(ωk1), Jn(ωk2)) =

 f(ωk1) +O( 1
n) k1 = k2

O( 1
n) k1 6= k2,

 .

where

f(ω) =
σ2|1 +

∑q
j=1 θj exp(ijω)|2

2π|1 +
∑p

j=1 φj exp(ijω)|2
.

In other words, if the time series satisfies an ARMA presentation the DFT is ‘near’ uncorrelated,

its mean is zero and its variance has a well specified parametric form. Using this information

we can define a criterion for estimating the parameters. We motivate this criterion through the

likelihood, however there are various other methods for motivating the criterion for example the

Kullbach-Leibler criterion is an alternative motivation, we comment on this later on.

If the innovations are Gaussian then <Jn(ω) and =Jn(ω) are also Gaussian, thus by using above

we approximately have

Jn =



<Jn(ω1)

=Jn(ω1)
...

<Jn(ωn/2)

=Jn(ωn/2)


∼ N (0,diag(f(ω1), f(ω1), . . . , f(ωn/2), f(ωn/2))).

In the case that the innovations are not normal then, by Corollary 11.2.1, the above holds asymp-

totically for a finite number of frequencies. Here we construct the likelihood under normality of the

innovations, however, this assumption is not required and is only used to motivate the construction.

Since Jn is normally distributed random vector with mean zero and ‘approximate’ diagonal
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matrix variance matrix diag(f(ω1), . . . , f(ωn)), the negative log-likelihood of Jn is approximately

Lwn (θ) =
n∑
k=1

(
log |fθ(ωk)|+

|JX(ωk)|2

fθ(ωk)

)
.

To estimate the parameter we would choose the θ which minimises the above criterion, that is

θ̂
w

n = arg min
θ∈Θ

Lwn (θ), (11.25)

where Θ consists of all parameters where the roots of the corresponding characteristic polynomial

have absolute value greater than (1 + δ) (note that under this assumption all spectral densities

corresponding to these parameters will be bounded away from zero).

Example 11.4.1 Fitting an ARMA(1, 1) model to the data To fit an ARMA model to the data

using the Whittle likelihood we use the criterion

Lwn (θ) =

n/2∑
k=1

(
log

σ2|1 + θeiωk |2

2π|1− φeiωk |
+ In(ωk)

2π|1− φeiωk |2

σ2|1 + θeiωk |2

)
.

By differentiating Lωn with respect to φ, σ2 and θ we solve these three equations (usually numeri-

cally), this gives us the Whittle likelihood estimators.

Whittle (1962) showed that the above criterion is an approximation of the GMLE. The correct

proof is quite complicated and uses several matrix approximations due to Grenander and Szegö

(1958). Instead we give a heuristic proof which is quite enlightening.

11.4.1 Connecting the Whittle and Gaussian likelihoods

We now give the details of a derivation which explicitly connects the Whittle and the Gaussian like-

lihood. The details can be found in Subba Rao and Yang (2020). To understand the construction,

we review some results from likelihoods of independent random variables and Principal Component

analysis.

Background First suppose that Y ′n = (Y1, . . . , Yn) is a random vector comprised of independent

random variables where var[Yj ] = σ2. Let ∆n = var[Y n]. It is easy to show

Y ′n∆−1
n Y n =

n∑
j=1

Y 2
j

σ2
j

.
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We show below that any random vector can be written in the above form (even when the variance

is not a diagonal matrix).

Suppose X ′n = (X1, . . . , Xn) is a n-dimension random vector with mean zero and variance Σn.

Let us suppose that Σn is non-singular. Since Σn is symmetric and positive definite it has the

spectral decomposition

Σn = Un∆nU
′
n,

where U−1
n = U ′n and ∆n = diag(λ1, . . . , λn). This means

Σ−1
n = Un∆−1

n U ′n.

The matrix Un is built of orthogonal vectors but has the additional property that it decorrelates

the random vector Xn. To see why, let Un = (u1, . . . , un) define the transformed vector Y n = U ′nXn,

where the jth entry in the vector is

Yj = 〈uj , Xn〉 = u′jXn =
n∑
s=1

uj,sXs.

We observe

var[Y n] = var
[
U ′nXn

]
= U ′nvar[Xn]Un

= U ′nUn∆nU
′
nUn = ∆n,

where we recall ∆n = diag(λ1, . . . , λn). This means that the entries of the transformed random

vector Y ′n = (Y1, Y2, . . . , Yn) are uncorrelated:

cov [Yj1 , Yj2 ] = 0 if j1 6= j2 and var [Yj ] = λj for j = 1, . . . , n.

Using the inverse transform Xn = (U ′n)−1Y n = UnY n we can represent Xn as

Xn =

n∑
j=1

Yjuj .
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Returning to X ′nΣ−1
n Xn we have

X ′nΣ−1
n Xn = X ′nUn∆−1

n U ′nXn

= Y ′n∆−1
n Y n

=
n∑
j=1

Y 2
j

λ2
j

.

However, the above expansion is very specific to the spectral decomposition of Σn, which is unique.

We now describe an analogous result, which can apply to any unique pairing of matrices.

Biorthogonal transforms and Likelihoods Let us return to the eigenvector matrix Un. It has the

unique property that its vectors {uj} are orthogonal and var[UnXn] is a diagonal matrix. We now

define a more general concept (called a biorthogonal transform) that yields a similar result. For

any transform matrix Un (it does not need to be such that UnU
′
n = In), there exists a matrix Vn

such that cov[UnXn, VnXn] = Λn (where Λn = diag(δ1, . . . , δn) is a diagonal matrix). Un and Vn

are called biorthogonal transforms. By definition of the biorthogonal transform we have

cov [UnXn, VnXn] = Unvar[Xn]V ∗n = Λn.

Rearranging the above gives

var[Xn] = U−1
n Λn(V ∗n )−1

next inverting it gives

var[Xn]−1 = V ∗nΛ−1
n Un.

Now we define two transformed random vectors Y n = UnXn and Zn = VnXn. Let Y ′n =

(Y1, . . . , Yn) and Z ′n = (Z1, . . . , Zn). Then the biorthogonality properties means

cov[Zj1 , Yj2 ] = 0 if j1 6= j2 and cov[Zj , Yj ] = δj .
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Thus

X ′nΣ−1
n Xn = X ′nV

∗
nΛ−1

n UnXn = ZnΛ−1
n Y n

=

n∑
j=1

ZnYn
δn

. (11.26)

It is this identity that will link the Gaussian and Whittle likelihood.

The Whittle likelihood We recall that the Whittle likelihood is

Ln(θ) =
n∑
k=1

|Jn(ωk)|2

f(ωk; θ)

where for simplicity we have ignored the log f(ωk; θ) term. The DFT vector

Y ′n = (Jn(ω1), . . . , Jn(ωn))′

is a linear transform of the observed time series X ′n = (X1, . . . , Xn). Let Fn be the DFT matrix

with (Fn)k,t = n−1/2 exp(itωk), then Y n = FnXn. Then we can write Ln(θ) as

Ln(θ) =
n∑
k=1

|(FnXn)k|2

f(ωk; θ)
.

The biorthogonal transform of Y n will give a representation of the Gaussian likelihood in terms

of Y n. In particular, if Vn is the biorthogonal transform of Fn with respect the variance matrix

Γn(fθ) then by using (11.26) we have

X ′nΣn(fθ)
−1Xn =

n∑
k=1

(F ∗nXn)k(VnXn)k
δk

.

But in Section 10.2.3 we have already encountered the biorthogonal transform to the DFT Jn(ωk)

it is simply the complete DFT

J̃n(ω; f) = Jn(ω) +
1√
n

∑
τ 6={1,2,...,n}

PX(Xτ )eiτω =
1√
n

∞∑
τ=−∞

PX(Xτ )eiτω.

where PX(Xτ ) denotes the projection of Xτ onto {Xt}nt=1. Let Z ′n = (J̃n(ω1; f), . . . , J̃n(ωn; f)). By
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using the results in Section 10.2.3 we have the biorthogonality

cov[Jn(ωk1), J̃n(ωk2 ; f)] = 0 if k1 6= k2 and cov[Jn(ωk), J̃n(ωk; f)] = f(ωk) for k = 1, . . . , n.

Thus

X ′nΣn(fθ)
−1Xn =

n∑
k=1

Jn(ωk1)J̃n(ωk2 ; fθ)

fθ(ωk)
.

This places the Gaussian likelihood within the frequency domain and shows that the difference

between the Gaussian and Whittle likelihood is

X ′nΣn(fθ)
−1Xn −

n∑
k=1

|Jn(ωk)|2

f(ωk; θ)

=
n∑
k=1

Jn(ωk1)Ĵn(ωk2 ; fθ)

fθ(ωk)
,

where

Ĵn(ω; f) =
1√
n

∑
τ 6={1,2,...,n}

PX(Xτ )eiτω.

This result allows us to rewrite the Gaussian likelihood in the frequency domain and understand

how precisely the two likelihoods are connected.

11.4.2 Sampling properties of the Whittle likelihood estimator

Lemma 11.4.1 (Consistency) Suppose that {Xt} is a causal ARMA process with parameters θ

whose roots lie outside the (1 + δ)-circle (where δ > 0 is arbitrary). Let θ̂
w

be defined as in (11.25)

and suppose that E(ε4
t ) <∞. Then we have

θ̂
w P→ θ.

PROOF. To show consistency we need to show pointwise convergence and equicontinuity of 1
nLn.

Let

Lw(θ) =
1

2π

∫ 2π

0

(
log fθ(ω) +

fθ0(ω)

fθ(ω)

)
dω.
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It is straightforward to show that E( 1
nL

w
n (θ))→ L̃n(θ). Next we evaluate the variance, to do this

we use Proposition 10.7.1 and obtain

var

[
1

n
Lwn (θ)

]
=

1

n2

n∑
k1,k2=1

1

fθ(ωk1)fθ(ωk2)
cov(|Jn(ωk1)|2, |Jn(ωk2)|2) = O(

1

n
).

Thus we have

1

n
Lwn (θ)

P→ Lw(θ).

To show equicontinuity we apply the mean value theorem to 1
nL

w
n . We note that because the

parameters (φ, θ) ∈ Θ, have characteristic polynomial whose roots are greater than (1 + δ) then

fθ(ω) is bounded away from zero (there exists a δ∗ > 0 where infω,θ fθ(ω) ≥ δ∗). Hence it can be

shown that there exists a random sequence {Kn} such that | 1nL
w
n (θ1)− 1

nL
w
n (θ2))| ≤ Kn(‖θ1−θ2‖)

and Kn converges almost surely to a finite constant as n → ∞. Therefore 1
nLn is stochastically

equicontinuous. Since the parameter space Θ is compact, the three standard conditions are satisfied

and we have consistency of the Whittle estimator. �

To show asymptotic normality we note that 1
nL

w
n (θ) can be written as a quadratic form

1

n
Lwn (θ) =

∫ 2π

0
log fθ(ωk) +

1

n

n−1∑
r=−(n−1)

dn(r;θ)

n−|r|∑
k=1

XkXk+r

where

dn(r;θ) =
1

n

n∑
k=1

fθ(ωk)
−1 exp(irωk).

Using the above quadratic form and it’s derivatives wrt θ one can show normality of the Whittle

likelihood under various dependence conditions on the time series. Using this result, in the following

theorem we show asymptotic normality of the Whittle estimator. Note, this result not only applies

to linear time series, but several types of nonlinear time series too.

Theorem 11.4.1 Let us suppose that {Xt} is a strictly stationary time series with a sufficient

dependence structure (such as linearity, mixing at a certain rate, etc.) with spectral density function
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fθ(ω) and E|X4
t | <∞. Let

Lwn (θ) =
n∑
k=1

(
log |fθ(ωk)|+

|Jn(ωk)|2

fθ(ωk)

)
,

θ̂n = arg min
θ∈Θ

Lwn (θ) θ = arg min
θ∈Θ

Lw(θ)

Then we have

√
n
(
θ̂n − θ

) D→ N (0, 2V −1 + V −1WV −1)

where

V =
1

2π

∫ 2π

0

(
∇θfθ(ω)

fθ(ω)

)(
∇θfθ(ω)

fθ(ω)

)′
dω

W =
2

(2π)2

∫ 2π

0

∫ 2π

0

(
∇θfθ(ω1)−1

) (
∇θfθ(ω2)−1

)′
f4,θ0(ω1,−ω1, ω2)dω1dω2,

and f4,θ0(ω1, ω2, ω3) is the fourth order spectrum of {Xt}.

We now apply the above result to the case of linear time series. We now show that in this case,

in the fourth order cumulant term, W , falls out. This is due to the following lemma.

Lemma 11.4.2 Suppose that the spectral density has the form f(ω) = σ2|1 +
∑∞

j=1 ψj exp(ijω)|2

and inf f(ω) > 0. Then we have

1

2π

∫ 2π

0
log f(ω)dω = log σ2

PROOF. Since f(z) is non-zero for |z| ≤ 1, then log f(z) has no poles in {z; |z| ≤ 1}. Thus we have

1

2π

∫ 2π

0
log f(ω)dω =

1

2π

∫ 2π

0
log σ2dω +

1

2π

∫ 2π

0
log |1 +

∞∑
j=1

ψj exp(ijω)|2dω

=
1

2π

∫ 2π

0
log σ2dω +

1

2π

∫
|z|=1

log |1 +
∞∑
j=1

ψjz|2dz

=
1

2π

∫ 2π

0
log σ2dω.

An alternative proof is that since f(z) is analytic and does not have any poles for |z| ≤ 1, then
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log f(z) is also analytic in the region |z| ≤ 1, thus for |z| ≤ 1 we have the power series expansion

log |1 +
∑∞

j=1 ψj exp(ijω)|2 =
∑∞

j=1 bjz
j (a Taylor expansion about log 1). Using this we have

1

2π

∫ 2π

0
log |1 +

∞∑
j=1

ψj exp(ijω)|2dω =
1

2π

∫ 2π

0

∞∑
j=1

bj exp(ijω)dω

=
1

2π

∞∑
j=1

bj

∫ 2π

0
exp(ijω)dω = 0,

and we obtain the desired result. �

Lemma 11.4.3 Suppose that {Xt} is a linear ARMA time series Xt−
∑p

j=1 φjXt−j =
∑q

i=1 θiεt−i+

εt, where E[εt] = 0, var[εt] = σ2 and E[ε4
t ] <∞. Let θ = ({φj , θj}), then we have W = 0 and

√
n
(
θ̂
w

n − θ
)
D→ N (0, 2V −1).

PROOF. The result follows from Theorem 11.4.1, however we need to show that in the case of

linearity that W = 0.

We use Example 10.7.1 for linear processes to give f4,θ(ω1, ω1,−ω2) = κ4|A(ω1)|2|A(ω2)|2 =

κ4
σ4 f(ω1)f(ω2). Substituting this into W gives

W =
1

2π

∫ 2π

0

∫ 2π

0

(
∇θfθ(ω1)−1

)(
∇θfθ(ω2)−1

)′
f4,θ0(ω1,−ω1, ω2)dω1dω2

=
κ4

σ4

(
1

2π

∫ 2π

0

∇θfθ(ω)

fθ(ω)2
fθ(ω)dω

)2

=
κ4

σ4

(
1

2π

∫ 2π

0

∇θfθ(ω)

fθ(ω)
dω

)2

=
κ4

σ4

(
1

2π

∫ 2π

0
∇θ log fθ(ω)dω

)2

=
κ4

σ4

(
1

2π
∇θ
∫ 2π

0
log fθ(ω)dω

)2

=
κ4

σ4

(
∇θ log

σ2

2π

)2

= 0,

where by using Lemma 11.4.2 we have
∫ 2π

0 log fθ(ω)dω = 2π log σ2

2π and since θ does not include

σ2 we obtain the above. Hence for linear processes the higher order cumulant does not play an

asymptotic role in the variance thus giving the result. �

On first appearances there does not seem to be a connection between the Whittle likelihood

and the sample autocorrelation estimator defined in Section 8.2.1. However, we observe that the

variance of both estimators, under linearity, do not contain the fourth order cumulant (even for

non-Gaussian linear time series). In Section 11.5 we explain there is a connection between the two,
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and it is this connection that explains away this fourth order cumulant term.

Remark 11.4.1 Under linearity, the GMLE and the Whittle likelihood are asymptotically equiva-

lent, therefore they have the same asymptotic distributions. The GMLE has the asymptotic distri-

bution
√
n(φ̂

n
− φ, θ̂n − θ)

D→ N (0,Λ−1), where

Λ =

 E(UtU
′
t) E(VtU

′
t)

E(UtV
′
t ) E(VtV

′
t )


and {Ut} and {Vt} are autoregressive processes which satisfy φ(B)Ut = εt and θ(B)Vt = εt.

By using the similar derivatives to those given in (9.26) we can show that

 E(UtU
′
t) E(VtU

′
t)

E(UtV
′
t ) E(VtV

′
t )

 =
1

2π

∫ 2π

0

(
∇θfθ(ω)

fθ(ω)

)(
∇θfθ(ω)

fθ(ω)

)′
dω.

11.5 Ratio statistics in Time Series

We recall from (11.4) that the covariance can be written as a general periodogram mean which has

the form

A(φ, In) =
1

n

n∑
k=1

In(ωk)φ(ωk). (11.27)

The variance of this statistic is

var(A(φ, In)) =
1

n2

n∑
k1,k2=1

φ(ωk1)φ(ωk1)cov(|Jn(ωk1)|2, |Jn(ωk2)|2)

=
1

n2

n∑
k1,k2=1

φ(ωk1)φ(ωk1)

[
cov(Jn(ωk1), Jn(ωk2))cov(Jn(ωk1), Jn(ωk2))

+cov(Jn(ωk1), Jn(ωk2))cov(Jn(ωk1), Jn(ωk2))

+cum(Jn(ωk1), Jn(ωk2), Jn(ωk2), Jn(ωk2)

]
. (11.28)
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By using Proposition 10.7.1 we have

cov(|Jn(ωk1)|2, |Jn(ωk2)|2) =[
f(ωk1)I(k1 = k2) +O

(
1

n

)]2

+

[
f(ωk1)I(k1 = n− k2) +O

(
1

n

)][
f(ωk1)I(n− k1 = k2) +O

(
1

n

)]
+

1

n
f4(ω1,−ω1, ω2) +O

(
1

n2

)
. (11.29)

Substituting (11.29) into (11.28) the above gives

var(A(φ, In))

=
1

n2

n∑
k=1

|φ(ωk)|2f(ωk)
2 +

1

n2

n∑
k=1

φ(ωk)φ(ωn−k)f(ωk)
2

+
1

n3

n∑
k1,k2=1

φ(ωk1)φ(ωk2)f4(ωk1 ,−ωk1 , ωk2) +O(
1

n2
)

=
1

n

∫ 2π

0
|φ(ω)|2f(ω)2dω +

1

n

∫ 2π

0
φ(ω)φ(2π − ω)f(ω)2dω

+
1

n

∫ 2π

0

∫ 2π

0
φ(ω1)φ(ω2)f4(ω1,−ω1, ω2)dω1dω2 +O(

1

n2
), (11.30)

where f4 is the fourth order cumulant of {Xt}. From above we see that unless φ satisfies some

special conditions, var(A(φ, In)) contains the fourth order spectrum, which can be difficult to

estimate. There are bootstrap methods which can be used to estimate the variance or finite sample

distribution, but simple bootstrap methods, such as the frequency domain bootstrap, cannot be

applied to A(φ, In), since it is unable to capture the fourth order cumulant structure. However, in

special cases the fourth order structure is disappears, we consider this case below and then discuss

how this case can be generalised.

Lemma 11.5.1 Suppose {Xt} is a linear time series, with spectral density f(ω). Let A(φ, In) be

defined as in (11.27) and suppose the condition

A(φ, f) =

∫
φ(ω)f(ω)dω = 0 (11.31)

holds, then

var(A(φ, In)) =
1

n

∫ 2π

0
|φ(ω)|2f(ω)2dω +

1

n

∫ 2π

0
φ(ω)φ(2π − ω)f(ω)2dω.
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PROOF. By using (11.30) we have

var(A(φ, In))

=
1

n

∫ 2π

0
|φ(ω)|2f(ω)2dω +

1

n

∫ 2π

0
φ(ω)φ(2π − ω)f(ω)2dω

1

n

∫ 2π

0

∫ 2π

0
φ(ω1)φ(ω2)f4(ω1,−ω1, ω2) +O(

1

n2
).

But under linearity f4(ω1,−ω1, ω2) = κ4
σ4 f(ω1)f(ω2), substituting this into the above gives

var(A(φ, In))

=
1

n

∫ 2π

0
|φ(ω)|2f(ω)2dω +

1

n

∫ 2π

0
φ(ω)φ(2π − ω)f(ω)2dω

κ4

σ4

1

n

∫ 2π

0

∫ 2π

0
φ(ω1)φ(ω2)f(ω1)f(ω2)dω1dω2 +O

(
1

n2

)
=

1

n

∫ 2π

0
|φ(ω)|2f(ω)2dω +

1

n

∫ 2π

0
φ(ω)φ(2π − ω)f(ω)2dω

+
κ4

σ4

1

n

∣∣∣∣∫ 2π

0
φ(ω)f(ω)dω

∣∣∣∣2 +O

(
1

n2

)
.

Since
∫
φ(ω)f(ω)dω = 0 we have the desired result. �

Example 11.5.1 (The Whittle likelihood) Let us return to the Whittle likelihood in the case

of linearity. In Lemma 11.4.3 we showed that the fourth order cumulant term does not play a role

in the variance of the ARMA estimator. We now show that condition (11.31) holds.

Consider the partial derivative of the Whittle likelihood

∇θLwn (θ) =
n∑
k=1

(
∇θfθ(ωk)

fθ(ωk)
− In(ωk)

fθ(ωk)2
∇θfθ(ωk)

)
.

To show normality we consider the above at the true parameter θ, this gives

∇θLwn (θ) =

n∑
k=1

(
∇θfθ(ωk)

fθ(ωk)
− In(ωk)

fθ(ωk)2
∇θfθ(ωk)

)
.

Only the second term of the above is random, therefore it is only this term that yields the variance.

Let

A(f−2
θ ∇θfθ, In) =

1

n

n∑
k=1

In(ωk)

fθ(ωk)2
∇θfθ(ωk).
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To see whether this term satisfies the conditions of Lemma 11.5.1 we evaluate

A(f−2
θ ∇θfθ, fθ) =

∫ 2π

0

fθ(ω)

fθ(ω)2
∇θfθ(ω)

=

∫ 2π

0
∇θ log fθ(ω)

= ∇θ
∫ 2π

0
log fθ(ω) = ∇θ

1

2π

∫ 2π

0
log fθ(ω)dω = 0,

by using Lemma 11.4.2. Thus we see that the derivative of the Whittle likelhood satisfies the

condition (11.31). Therefore the zero cumulant term is really due to this property. �

The Whittle likelihood is a rather special example. However we now show that any statistic of

the form A(φ, In) can be transformed such that the resulting transformed statistic satisfies condition

(11.31). To find the suitable transformation we recall from Section 8.2.1 that the variance of ĉn(r)

involves the fourth order cumulant, but under linearity the sample correlation ρ̂n(r) = ĉn(r)/ĉn(0)

does given not. Returning to the frequency representation of the autocovariance given in (11.5) we

observe that

ρ̂n(r) =
1

ĉn(0)

1

n

n/2∑
k=1

In(ωk) exp(irωk) ≈
1

ĉn(0)

1

n

n∑
k=1

In(ωk) exp(irωk),

(it does not matter whether we sum over n or n/2 for the remainder of this section we choose the

case of summing over n). Motivated by this example we define the so called ‘ratio’ statistic

Ã(φ, In) =
1

n

n∑
k=1

In(ωk)φ(ωk)

ĉn(0)
=

1

n

n∑
k=1

In(ωk)φ(ωk)

F̂n(2π)
, (11.32)

where F̂n(2π) = 1
n

∑n
k=1 In(ωk) = 1

n

∑n
t=1X

2
t = ĉn(0). We show in the following lemma that

Ã(φ, In) can be written in a form that ‘almost’ satisfies condition (11.31).

Lemma 11.5.2 Let us suppose that Ã(φ, In) satisfies (11.32) and

Ã(φ, f) =
1

n

n∑
k=1

f(ωk)φ(ωk)

Fn(2π)
,
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where Fn(2π) = 1
n

∑n
j=1 f(ωk). Then we can represent Ã(φ, In) as

Ã(φ, In)− Ã(φ, f) =
1

F (2π)F̂n(2π)

1

n

n∑
k=1

ψn(ωk)In(ωk),

where

ψn(ωk) = φ(ωk)Fn(2π)− 1

n

n∑
j=1

φ(ωj)f(ωj) and
1

n

n∑
k=1

ψ(ωk)f(ωk) = 0. (11.33)

PROOF. Basic algebra gives

Ã(φ, In)− Ã(φ, f) =
1

n

n∑
k=1

(
φ(ωk)In(ωk)

F̂n(2π)
− φ(ωk)f(ωk)

Fn(2π)

)

=
1

n

n∑
k=1

(
φ(ωk)Fn(2π)In(ωk)− φ(ωk)F̂n(2π)f(ωk)

Fn(2π)F̂n(2π)

)

=
1

n

n∑
k=1

(
φ(ωk)Fn(2π)− 1

n

n∑
k=1

φ(ωk)f(ωk)

)
In(ωk)

Fn(2π)F̂n(2π)

=
1

n

n∑
k=1

ψ(ωk)In(ωk)

Fn(2π)F̂n(2π)
,

where Fn(2π) and ψ are defined as above. To show (11.33), again we use basic algebra to give

1

n

n∑
k=1

ψ(ωk)f(ωk) =
1

n

n∑
k=1

(
φ(ω)Fn(2π)− 1

n

n∑
j=1

φ(ωj)f(ωj)

)
f(ωk)

=
1

n

n∑
k=1

φ(ωk)f(ωk)Fn(2π)− 1

n

n∑
k=1

φ(ωk)f(ωk)
1

n

n∑
j=1

f(ωj) = 0.

�

From the lemma above we see that Ã(φ, In)− Ã(φ, f) almost seems to satisfy the conditions in

Lemma 11.5.1, the only difference is the random term ĉn(0) = F̂n(2π) in the denominator. We now

show that that we can replace F̂n(2π) with it’s limit and that error is asymptotically negligible.

Let

Ã(φ, In)− Ã(φ, f) =
1

Fn(2π)F̂n(2π)

1

n

n∑
k=1

ψn(ωk)In(ωk) := B̃(ψ, In)

401



and

B(ψn, In) =
1

Fn(2π)2

1

n

n∑
k=1

ψ(ωk)In(ωk).

By using the mean value theorem (basically the Delta method) and expanding B̃(ψn, In) about

B(ψn, In) (noting that B(φn, f) = 0) gives

B̃(ψ, In)−B(ψ, In)

=
(
F̂n(2π)− Fn(2π)

)︸ ︷︷ ︸
Op(n−1/2)

1

Fn(2π)
3

1

n

n∑
k=1

ψn(ωk)In(ωk)︸ ︷︷ ︸
Op(n−1/2)

= Op(
1

n
),

where Fn(2π) lies between Fn(2π) and F̂n(2π). Therefore the limiting distribution variance of

Ã(φ, In)− Ã(φ, f) is determined by

Ã(φ, In)− Ã(φ, f) = B(ψn, In) +Op(n
−1/2).

B(ψn, In) does satisfy the conditions in (11.31) and the lemma below immediately follows.

Lemma 11.5.3 Suppose that {Xt} is a linear time series, then

var(B(ψn, In)) =
1

n

∫ 2π

0
|ψ(ω)|2f(ω)2dω +

1

n

∫ 2π

0
ψ(ω)ψ(2π − ω)f(ω)2dω +O(

1

n2
),

where

ψ(ω) = φ(ω)F (2π)− 1

2π

∫ 2π

0
φ(ω)f(ω)dω.

Therefore, the limiting variance of Ã(φ, In) is

1

n

∫ 2π

0
|ψ(ω)|2f(ω)2dω +

1

n

∫ 2π

0
ψ(ω)ψ(2π − ω)f(ω)2dω +O(

1

n2
).

This is a more elegant explanation as to why under linearity the limiting variance of the correlation

estimator does not contain the fourth order cumulant term. It also allows for a general class of

statistics.
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Remark 11.5.1 (Applications) As we remarked above, many statistics can be written as a ra-

tio statistic. The advantage of this is that the variance of the limiting distribution is only in

terms of the spectral densities, and not any other higher order terms (which are difficult to esti-

mate). Another perk is that simple schemes such as the frequency domain bootstrap can be used

to estimate the finite sample distributions of statistics which satisfy the assumptions in Lemma

11.5.1 or is a ratio statistic (so long as the underlying process is linear), see Dahlhaus and Janas

(1996) for the details. The frequency domain bootstrap works by constructing the DFT from the

data {Jn(ω)} and dividing by the square root of either the nonparametric estimator of f or a

parametric estimator, ie. {Jn(ω)/

√
f̂n(ω)}, these are close to constant variance random variables.

{Ĵε(ωk) = Jn(ωk)/

√
f̂n(ωk)} is bootstrapped, thus J∗n(ωk) = Ĵ∗ε (ωk)

√
f̂n(ωk) is used as the bootstrap

DFT. This is used to construct the bootstrap estimator, for example

• The Whittle likelihood estimator.

• The sample correlation.

With these bootstrap estimators we can construct an estimator of the finite sample distribution.

The nature of frequency domain bootstrap means that the higher order dependence structure is

destroyed, eg. cum∗(J∗n(ωk1), J∗n(ωk2), . . . , J∗n(ωkr)) = 0 (where cum∗ is the cumulant with respect

to the bootstrap measure) if all the kis that are not the same. However, we know from Proposition

10.7.1 that for the actual DFT this is not the case, there is still some ‘small’ dependence, which

can add up. Therefore, the frequency domain bootstrap is unable to capture any structure beyond

the second order. This means for a linear time series which is not Gaussian the frequency domain

bootstrap cannot approximate the distribution of the sample covariance (since it is asymptotically

with normal with a variance which contains the forth order cumulant), but it can approximate the

finite sample distribution of the correlation.

Remark 11.5.2 (Estimating κ4 in the case of linearity) Suppose that {Xt} is a linear time

series

Xt =

∞∑
j=−∞

ψjεt−j ,

with E(εt) = 0, var(εt) = σ2 and cum4(εt) = κ4. Then we can use the spectral density estimator to

estimate κ4 without any additional assumptions on {Xt} (besides linearity). Let f(ω) denote the
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spectral density of {Xt} and g2(ω) the spectral density of {X2
t }, then it can be shown that

κ4 =
2πg2(0)− 4π

∫ 2π
0 f(ω)2dω( ∫ 2π

0 f(ω)dω
)2 .

Thus by estimating f and g2 we can estimate κ4.

Alternatively, we can use the fact that for linear time series, the fourth order spectral density

f4(ω1, ω2, ω3) = κ4A(ω1)A(ω2)A(ω3)A(−ω1 − ω2 − ω3). Thus we have

κ4 =
σ4f4(ω1,−ω1, ω2)

f(ω1)f(ω2)
.

This just demonstrates, there is no unique way to solve a statistical problem!

11.6 Goodness of fit tests for linear time series models

As with many other areas in statistics, we often want to test the appropriateness of a model. In this

section we briefly consider methods for validating whether, say an ARMA(p, q), is the appropriate

model to fit to a time series. One method is to fit the model to the data and the estimate the

residuals and conduct a Portmanteau test (see Section 6, equation (8.15)) on the estimated residuals.

It can be shown that if model fitted to the data is the correct one, the estimated residuals behave

almost like the true residuals in the model and the Portmanteau test statistic

Sh = n
h∑
r=1

|ρ̂n(r)|2,

where ρ̂n(r) = ĉn(r)/ĉn(0)

ĉn(r) =
1

n

n−|r|∑
t=1

ε̂tε̂t+r

should be asymptotically a chi-squared. An alternative (but somehow equivalent) way to do the

test, is through the DFTs. We recall if the time series is linear then (11.11) is true, thus

IX(ω)

fθ(ω)
= |Jε(ω)|2 + op(1).
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Therefore, if we fit the correct model to the data we would expect that

IX(ω)

fθ̂(ω)
= |Jε(ω)|2 + op(1).

where θ̂ are the model parameter estimators. Now |Jε(ω)|2 has the special property that not only is

it almost uncorrelated at various frequencies, but it is constant over all the frequencies. Therefore,

we would expect that

1

2π
√
n

n/2∑
k=1

(IX(ω)

fθ̂(ω)
− 2
) D→ N(0, 1)

Thus, as an alternative to the goodness fit test based on the portmanteau test statistic we can use

the above as a test statistic, noting that under the alternative the mean would be different.

11.7 Appendix

Returning the the Gaussian likelihood for the ARMA process, defined in (9.25), we rewrite it as

Ln(θ) = −
(
det |Rn(θ)|+ X′nRn(θ)−1Xn

)
= −

(
det |Rn(fθ)|+ X′nRn(fθ)−1Xn

)
, (11.34)

where Rn(fθ)s,t =
∫
fθ(ω) exp(i(s − t)ω)dω and X′n = (X1, . . . , Xn). We now show that Ln(θ) ≈

−Lwn (θ).

Lemma 11.7.1 Suppose that {Xt} is a stationary ARMA time series with absolutely summable

covariances and fθ(ω) is the corresponding spectral density function. Then

det |Rn(fθ)|+ X′nRn(fθ)−1Xn =
n∑
k=1

(
log |fθ(ωk)|+

|Jn(ωk)|2

fθ(ωk)

)
+O(1),

for large n.

PROOF. There are various ways to precisely prove this result. All of them show that the Toeplitz

matrix can in some sense be approximated by a circulant matrix. This result uses Szegö’s identity

(Grenander and Szegö (1958)). The main difficulty in the proof is showing that Rn(fθ)−1 ≈

Un(f−1
θ ), where Un(f−1

θ )s,t =
∫
fθ(ω)−1 exp(i(s − t)ω)dω. An interesting derivation is given in

Brockwell and Davis (1998), Section 10.8. The main ingredients in the proof are:
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1. For a sufficiently large m, Rn(fθ)−1 can be approximated by Rn(gm)−1, where gm is the

spectral density of an mth order autoregressive process (this follows from Lemma 10.6.2),

and showing that

X ′nRn(fθ)−1Xn −X ′nRn(gm)−1Xn = X ′n
[
Rn(fθ)−1 −Rn(gm)−1

]
Xn

= X ′nRn(gm)−1 [Rn(gm)−Rn(fθ)]Rn(f−1
θ )Xn → 0.

2. From Section 6.3, we recall if gm is the spectral density of an AR(m) process, then for

n >> m, Rn(gm)−1 will be bandlimited with most of its rows a shift of the other (thus with

the exception of the first m and last m rows it is close to circulant).

3. We approximate Rn(gm)−1 with a circulant matrix, showing that

X ′n
[
Rn(gm)−1 − Cn(g−1

m )
]
Xn → 0,

where Cn(g−2
m ) is the corresponding circulant matrix (where for 0 < |i−j| ≤ m and either i or

j is greater than m, (Cn(g−1))ij = 2
∑m

k=|i−j| φm,kφm,k−|i−j|+1−φm,|i−j|) with the eigenvalues

{gm(ωk)
−1}nk=1.

4. These steps show that

X ′n
[
Rn(fθ)−1 − Un(g−1

m )
]
Xn → 0

as m→∞ as n→∞, which gives the result.

�

Remark 11.7.1 (A heuristic derivation) We give a heuristic proof. Using the results in Sec-

tion 10.2 we have see that Rn(fθ) can be approximately written in terms of the eigenvalue and

eigenvectors of the circulant matrix associated with Rn(fθ), that is

Rn(fθ) ≈ Fn∆(fθ)F̄n thus Rn(fθ)−1 ≈ F̄n∆(fθ)−1Fn, (11.35)

where ∆(fθ) = diag(f
(n)
θ (ω1), . . . , f

(n)
θ (ωn)), f

(n)
θ (ω) =

∑(n−1)
j=−(n−1) cθ(k) exp(ikω) → fθ(ω) and
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ωk = 2πk/n. Basic calculations give

XnF̄n = (Jn(ω1), . . . , Jn(ωn)). (11.36)

Substituting (11.36) and (11.35) into (11.37) yields

1

n
Ln(θ) ≈ − 1

n

n∑
k=1

(
log fθ(ωk) +

|Jn(ωk)|2

fθ(ωk)

)
=

1

n
Lw(θ). (11.37)

Hence using the approximation in (11.35) leads to a heuristic equivalence between the Whittle and

Gaussian likelihood.
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Chapter 12

Multivariate time series

Objectives

•

12.1 Background

12.1.1 Preliminaries 1: Sequences and functions

Suppose the sequence a = (. . . , a−2, a−1, a0, a1, . . .) satisfies the property that ‖a‖22 =
∑

j∈Z |aj |2 <

∞. Using a we define the function

A(ω) =
∑
j∈Z

aj exp(ijω).

A(ω) is defined on [0, 2π) and has wrapping. In the sense A(0) = A(2π). Further A(ω) = A(−ω) =

A(2π − ω). We can extract ar from A(ω) using the inverse Fourier transform:

ar =
1

2π

∫ 2π

0
A(ω)e−irωdω.

To understand why use (12.1) below.
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12.1.2 Preliminaries 2: Convolution

We state some well known results on the convolution of sequences, which will be very useful when

analysing multivariate time series.

Let `2 denote the space of square summable sequences. This means if the sequence a =

(. . . , a−2, a−1, a0, a1, . . .) is such that ‖a‖22 =
∑

j∈Z |aj |2 < ∞, then a ∈ `2. Examples of sequences

in `2 is the short memory autocovariance function which is absolutely summable (
∑

r∈Z |c(r)| <∞)

Suppose a, b ∈ `2, and define the convolution

∑
j∈Z

ajbj−k.

The convolution can be represented in the Fourier domain. Define

A(λ) =
∑
j∈Z

aj exp(−ijλ) and B(λ) =
∑
j∈Z

bj exp(−ijλ).

Then

∑
j∈Z

ajbj−k =
1

2π

∫ 2π

0
A(λ)B(λ) exp(−ikλ)dλ.

Proof of identity We use the property

1

2π

∫ 2π

0
exp(ijλ)dλ =

 1 j = 0

0 j ∈ Z/{0}
. (12.1)

Expanding the integral gives

1

2π

∫ 2π

0
A(λ)B(λ) exp(−ikλ)dλ =

∑
j1∈Z

∑
j2∈Z

aj1bj2
1

2π

∫ 2π

0
e−i(−j1+j2+k)λdλ︸ ︷︷ ︸

=0 unless j2=j1−k

=
∑
j∈Z

ajbj−k,

this proves the identity.
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12.1.3 Preliminaries 3: Spectral representations and mean squared

errors

Univariate times series

We state some useful identities for mean squared errors, first in the univariate case, then in the

multivariate case. First we recall the spectral representation of a second order stationary time

series (described in Section 10.3.1). Suppose that {Xt} is a second order stationary time series.

Then it has the representation

Xt =
1

2π

∫ 2π

0
exp(itω)dZ(ω),

where {Z(ω);ω ∈ [0, 2π]} is a complex random function that satisfies the orthogonal increment

property. We will use the follow properties. If A and B are zero mean, complex random variables,

then cov[A,B] = E[AB] and var[A] = cov(A,A) = E[AA] = E|A|2. Using this we have

• If (ω1, ω2) and (ω3, ω4) are non-intersection intervals, then cov[Z(ω2)−Z(ω1), Z(ω4)−Z(ω3)] =

0.

• Thus var[Z(ω)] = E[|Z(ω)|2] = F (ω), where F is the spectral distribution function (positive

non-decreasing function). If {Xt} is purely non-deterministic and its autocovariance belongs

to `2, then F ′ = f(ω), where f(ω) = (2π)−1
∑

r∈Z c(r)e
irω.

• Using the above E[|dZ(ω)|2] = E[dZ(ω)dZ(ω)] = dF (ω) = f(ω)dω and E[dZ(ω1)dZ(ω2)] = 0

if ω1 6= ω2.

Mean squared errors Our aim is to rewrite the mean squared error

E

Xt −
∑
j 6=0

ajXt−j

2

using the spectral representation. To do so, we replace Xt−j in the above with

Xt−j =
1

2π

∫ 2π

0
exp(i(t− j)ω)dZ(ω).

We will use the fact that if A is a real random variables then E(A) = E(AA), which will simplify
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the calculations. This gives

E

Xt −
∑
j 6=0

ajXt−j

2

= E

∣∣∣∣∣∣ 1

2π

∫ 2π

0
exp(itω)dZ(ω)−

∑
j 6=0

aj
1

2π

∫ 2π

0
exp(i(t− j)ω)dZ(ω)

∣∣∣∣∣∣
2

= E

∣∣∣∣∣∣ 1

2π

∫ 2π

0
exp(itω)dZ(ω)−

∑
j 6=0

aj
1

2π

∫ 2π

0
exp(i(t− j)ω)dZ(ω)

∣∣∣∣∣∣
2

= E

∣∣∣∣∣∣ 1

2π

∫ 2π

0
eitω

1−
∑
j 6=0

aje
−ijω

 dZ(ω)

∣∣∣∣∣∣
2

= E

(
1

(2π)2

∫ 2π

0

∫ 2π

0
A(ω1)A(ω2)dZ(ω1)dZ(ω2)

)

where we setA(ω) = 1−
∑

j 6=0 aje
−ijω. Now we use the property that E[|dZ(ω)|2] = E[dZ(ω)dZ(ω)] ==

dF (ω) = f(ω)dω and E[dZ(ω1)dZ(ω2)] = 0 if ω1 6= ω2 this gives

E

Xt −
∑
j 6=0

ajXt−j

2

=
1

(2π)2

∫ 2π

0

∫ 2π

0
A(ω1)A(ω2)E

(
dZ(ω1)dZ(ω2)

)
=

1

(2π)

∫ 2π

0
|A(ω)|2E|dZ(ω)|2 =

1

(2π)

∫ 2π

0
|A(ω)|2f(ω)d(ω).

Observe that |A(ω)|2 ≥ 0 for all ω.

Multivariate times series

Suppose U ′t = (Xt, Y
′
t) (column vector) is a d-dimensional, zero mean, second order stationary mul-

tivariate time series. Second order stationarity in the multivariate set-up is similar to second order

stationarity for univariate time series. But there are some important differences. A multivariate

time series is second order stationary if for all t ∈ Z and h ∈ Z we have

cov
(
U t, U t+h

)
= C(h), (12.2)

where C(h) is a d × d matrix. However, unlike univariate time series, C(h) = C(−h) does not

necessarily hold. Similar to univariate time series, the spectral density matrix is defined as

Σ(ω) =
∑
h∈Z

C(h) exp(ihω).
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The matrix Σ(ω) looks like

Σ(ω) =


f11(ω) f12(ω) . . . f1d(ω)

f21(ω) f22(ω) . . . f2d(ω)

. . . . . .
. . . . . .

fd1(ω) fd2(ω) . . . fdd(ω)

 .

The diagonal of Σ(ω) is simply the regular univariate spectral density, i.e. faa(ω) is the spectral

density of the stationary time series {X(a)
t }t. The off-diagonal gives cross dependence information.

For example by using (12.2) we can see that

fab(ω) =
∑
h∈Z

cab(h) exp(ihω),

where cab(h) = cov(X
(a)
t , X

(b)
t+h). Thus fab(ω) is a frequency measure of cross dependence between

two time series. With a litte thought one can see that

fba(ω) = fab(ω) = fab(2π − ω).

In other words, Σ(ω) = Σ(ω)∗ (where A∗ denotes the conjugate transpose of A).

The vectors time series {U t} has the representation

U t =
1

2π

∫ 2π

0
exp(itω)dZU (ω), (12.3)

where ZU (ω) is an orthogonal increment process, which has similar properties to the univariate

orthogonal increment process. Under summability conditions on the autocovariance matrix we have

for ω1 6= ω2

E
(
dZU (ω1)dZU (ω2)

)
= 0

and

E
(
dZU (ω)dZU (ω)

′)
= E (dZU (ω)dZU (ω)∗) = Σ(ω)dω,

where V ∗ denotes the conjugation and transpose of the vector V .
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We write the spectral matrix as the block matrix below

Σ(ω) =

 fXX(ω) fX,Y (ω)

fY,X(ω) fY Y (ω)

 .

Spectral representations of linear sums Using (12.3) we have

V t =
∑
j∈Z

BjY t−j =
∑
j∈Z

Bj
1

2π

∫ 2π

0
ei(t−j)ωdZY (ω)

=
1

2π

∫ 2π

0
eitω

∑
j∈Z

Bje
−ijω

 dZY (ω)

=
1

2π

∫ 2π

0
eitωB(ω)dZY (ω).

Using the same arguments as in the univariate case we have

cov[V t, V t+h] = E[V tV
′
t+h] =

1

2π

∫ 2π

0
e−ihωB(ω)fY Y (ω)B(ω)∗dω.

Therefore, by the uniqueness of Fourier transforms the spectral density of {V t} isB(ω)fY Y (ω)B(ω)∗.

In order to obtain best linear predictors in a multivariate time series we note that by using the

above we can write Xt −
∑

j∈ZA
′
jY t−j

Xt −
∑
j∈Z

A′jY t−j =
1

2π

∫ 2π

0
eitω

[
dZX(ω)−A(ω)′dZY (ω)

]
, (12.4)

where A(ω) =
∑

j∈ZAje
−ijω. This will be our focus below.

Mean squared errors Our aim is to rewrite the mean squared error

E

Xt −
∑
j∈Z

A′jY t−j

2
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using the spectral representation. To do this, we substitute (12.4) into the above to give

E

Xt −
∑
j∈Z

A′jY t−j

2

= E

∣∣∣∣ 1

2π

∫ 2π

0
eitω

[
dZX(ω)−A(ω)′dZY (ω)

]∣∣∣∣2

=
1

(2π)2

∫ 2π

0

∫ 2π

0
eit(ω1−ω2)

[
dZX(ω1)−A(ω1)′dZY (ω1)

] [
dZX(ω2)−A(ω2)∗dZY (ω2)

]
=

1

(2π)

∫ 2π

0
E
[
dZX(ω)−A(ω)′dZY (ω1)

] [
dZX(ω)−A(ω)∗dZY (ω)

]
,

where in the last equality of the above we use that E
(
dZU (ω1)dZU (ω2)

)
= 0 if ω1 6= ω2. We note

that E [dZX(ω)−A(ω)′dZY (ω1)]
[
dZX(ω)−A(ω)∗dZY (ω)

]
is positive and can be written as

E
[
dZX(ω)−A(ω)′dZY (ω)

] [
dZX(ω)−A(ω)∗dZY (ω)

]
= E

[
|dZX(ω)|2 −A(ω)′dZY (ω)

] [
dZX(ω)−A(ω)∗dZY (ω)

]
=

[
fXX(ω)−A(ω)′fY,X(ω)− fX,Y (ω)A(ω) +A(ω)′fY Y (ω)A(ω)

]
dω.

Substituting this into the integral gives

E

Xt −
∑
j∈Z

A′jY t−j

2

=
1

(2π)

∫ 2π

0

[
fXX(ω)−A(ω)′fY,X(ω)− fX,Y (ω)A(ω) +A(ω)′fY Y (ω)A(ω)

]
dω.

By using a similar argument we have that

cov

Xt −
∑
j∈Z

A′jY t−j , Xτ −
∑
j∈Z

A′jY τ−j


=

1

(2π)

∫ 2π

0
exp(i(t− τ)ω)

[
fXX(ω)−A(ω)′fY,X(ω)− fX,Y (ω)A(ω) +A(ω)′fY Y (ω)A(ω)

]
dω.

Thus by the uniqueness of Fourier transforms

[
fXX(ω)−A(ω)′fY,X(ω)− fX,Y (ω)A(ω) +A(ω)′fY Y (ω)A(ω)

]
is the spectral density of the transformed time series {Xt −

∑
j∈ZA

′
jY t−j}t.
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12.2 Multivariate time series regression

Suppose that {X(a)
t } is a univariate (for simplicity) time series and {Y t} a multivariate time series,

where {X(a)
t , Y t}t∈Z is jointly second order stationary. Let Σ(·) denote the spectral density matrix

Σ(ω) =

 fXX(ω) fX,Y (ω)

fY,X(ω) fY Y (ω)


corresponding to {X(a)

t , Y t}t∈Z. Our aim is to project X
(a)
t onto the space spanned by {Y t−j}t−j .

This is not a model but simply a projection. Since {X(a)
t , Y t} is second order stationary the

regressions will be invariant to shift. That is

X
(a)
t =

∑
j∈Z

A′jY t−j + ε
(a)
t , (12.5)

where cov[ε
(a)
t , Y t−j ] = 0 and the d-dimension vectors Aj do not depend on t. Let

A(ω) =
∑
j∈Z

A′j exp(−ijω).

Wiener showed that the A(ω) which gave the equation (12.5) could easily be solved in the frequency

domain with

A(ω) = fY Y (ω)−1fY,X(ω), (12.6)

and by inverting A(ω) we can obtain the coefficients {Aj};

Aj =
1

2π

∫ 2π

0
A(ω) exp(−ijω)dω.

Using this identity, one can easily obtain an estimator of A(ω) by estimating fY Y (·) and fY,X(·)

and using these estimators to estimate A(ω). We prove (12.6) in Section ??. We start with some

implications and applications of the regression (12.5).
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12.2.1 Conditional independence

In this section we discuss some of the notable features of projecting X
(a)
t onto {Y t} where Y ′t =

(X
(1)
t , . . . , X

(d)
t ). We recall that

X
(a)
t =

∑
j∈Z

A′jY t−j + ε
(a)
t

=
∑
j∈Z

d∑
`=1

Aj,`X
(`)
t−j + ε

(a)
t

Remark 12.2.1 (Special case) Suppose Aj,s = 0 for all j. This means the contribution of the

time series {X(s)
t }t in “predicting” X

(a)
t is zero. In other words, after projecting on the remain-

ing time series, the vector Y ′t,−s = (X
(1)
t , . . . , X

(s−1)
t , X

(s+1)
t , . . . , X

(d)
t ), {X(s)

t }t is conditionally

uncorrelated (or independent if Gaussian) with {X(a)
t }.

The regression is one-sided. But we know in the multivariate set-up the regression coefficients

are related to the partial correlation though the expression identity

βij = ρij

√
var(εi)

var(εj)
. (12.7)

We now show a similar expression holds in the context of partial correlation. However, we first

need to define the notion of partial correlation and coherency of a time series.

12.2.2 Partial correlation and coherency between time series

We now define the notion of partial correlation between time series and relate it to the regression

coefficients in time series, mentioned above.

Typically this is defined in terms of elements in one large vector time series, but to simplify

notation suppose {(X(a)
t , X

(b)
t , Y ′t)}t is a (d+ 2)-dimension second order stationary time series. Let

Σ(ω) =


faa(ω) fab(ω) fa,Y (ω)

fba(ω) fbb(ω) fb,Y (ω)

fY,a(ω) fY,b(ω) fY Y (ω)


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denote the spectral density matrix. Let

ε
(a)
t,Y = X

(a)
t −

∞∑
j=−∞

(A
(a)
j )′Y t−j

ε
(b)
t,Y = X

(b)
t −

∞∑
j=−∞

(A
(b)
j )′Y t−j

where {A(a)
j }j and {A(b)

j }j are the coefficients which minimise the MSE and by using (12.6)

A(a)(ω) = fY Y (ω)−1fY,a(ω) and A(b)(ω) = fY Y (ω)−1fY,b(ω) (12.8)

with A(a)(ω) =
∑

j∈ZA
(a)
j exp[(ijω) and A(b)(ω) =

∑
j∈ZA

(b)
j exp[(ijω). We define the partial

covariance between {ε(a)
t,Y }t and {ε(b)

t,Y }t as

cov
[
ε

(a)
t,Y , ε

(a)
τ,Y

]
= ca,b|Y (t− τ).

Observe that because the original time series is second order stationary, ε
(a)
t,Y are also second order

stationary (as it is a linear combination of a second order stationary time series time series).

As in the case the regression coefficient is zero for all lags (as discussed in the previous section).

If ca,b|Y (h) = 0 for all h, then {X(a)
t } and {X(b)

t } are conditonally independent (when conditioned

on {Y }t).

12.2.3 Cross spectral density of {ε(a)
t,Y , ε

(a)
t,Y }: The spectral partial

coherency function

We now evaluate the cross spectral density function of {(ε(a)
t,Y , ε

(a)
t,Y )}t which is the Fourier transform

of {ca,b|Y (h)}h.

Remark 12.2.2 (What to look out for) If ca,b|Y (h) = 0 for all h then its spectral density will

be zero too.

To calculate this we use the representations in Section 12.1.3. In particular equation (12.4),
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with

X
(a)
t −

∑
j∈Z

(A
(a)
j )′Y t−j =

1

2π

∫ 2π

0
eitω

[
dZa(ω)−A(a)(ω)′dZY (ω)

]
X

(b)
t −

∑
j∈Z

(A
(b)
j )′Y t−j =

1

2π

∫ 2π

0
eitω

[
dZb(ω)−A(b)(ω)′dZY (ω)

]
,

where {Za(ω), Zb(ω), Zb(ω)} is an orthogonal increment vector process. Thus by using the result

in Section 12.1.3 we have

ca,b|Y (t− τ) =
1

(2π)2

∫ 2π

0

∫ 2π

0
eitω1−iτω2E

([
dZb(ω1)−A(b)(ω1)′dZY (ω1)

] [
dZb(ω2)−A(b)(ω2)′dZY (ω2)

])
=

1

2π

∫ 2π

0

∫ 2π

0
ei(t−τ)ωE

([
dZb(ω)−A(b)(ω)′dZY (ω)

] [
dZb(ω)−A(b)(ω)′dZY (ω)

])
.

Now we focus on evaluating

E
([
dZb(ω)−A(b)(ω)′dZY (ω)

] [
dZa(ω)−A(a)(ω)′dZY (ω)

])
= E[dZa(ω)dZb(ω)]− E[dZa(ω)dZY (ω)

′
]A(a)(ω)∗ −A(b)(ω)′E[dZY (ω)dZa(ω)] +

A(b)(ω)′E[dZY (ω)dZY (ω)
′
]A(a)(ω)∗.

Substituting (12.8) into the above gives

E
([
dZb(ω)−A(b)(ω)′dZY (ω)

] [
dZa(ω)−A(a)(ω)′dZY (ω)

])
=

[
fab(ω)− fa,Y (ω)fY (ω)−1fY,b(ω)

]
dω.

Altogether this gives the decomposition

ca,b|Y (h) =
1

2π

∫ 2π

0

∫ 2π

0
e−ihω

[
fab(ω)− fa,Y (ω)fY (ω)−1fY,b(ω)

]
dω.

Thus by the uniqueness of the spectral density function, the spectral density of {ca,b|Y (h)} is

fa,b|Y (ω) =
∑
h∈Z

ca,b|Y (h) exp(ihω) = fab(ω)− fa,Y (ω)fY (ω)−1fY,b(ω).
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The standardized version of fa,b|Y (ω):

ρa,b|Y (ω) =
fab(ω)− fa,Y (ω)fY (ω)−1fY,b(ω)√

fa,a|Y (ω)fb,b|Y (ω)

is often called the spectral partial coherence in multivariate time series.

12.3 Properties of the inverse of the spectral density

matrix

We now show that results analogous to those in multivariate analysis, also apply to the inverse

spectral density matrix. In particular, the linear regression A(ω) and partial coherency fa,b|Y are

found within the inverse spectral density matrix. To do this we write everything in terms of the

multivariate time series {Y t}t.

The important results that we will use is that if Σ is a positive definite matrix and Γ = Σ−1 (it

can be complex). Then

• The diagonal

Γaa =
1

Σaa − Σa,−aΣ−i,−iΣ′a,−a
,

where Σa,−a denotes the ath row of Σ with the ath column removed.

• The off-diagonal For a 6= b we have

Γab = −βa,bΓaa

where

βa = (βa,1, . . . , βa,d)
′ = [Σ−a,−a]

−1Σ−a,a. (12.9)

• The formula for partial correlation. The partial covariance is

γa,b = Σa,b − Σ′a,−(a,b)[Σ−(a,b)]
−1Σa,−(a,b). (12.10)
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Thus the partial correlation is

ρa,b =
γa,b√
γaaγbb

.

The regression coefficients and partial correlations are linked by ρa,b = βa,b

√
Γaa
Γbb

. Using this

we can represent the partial correlation as

ρa,b = −
Γa,b√
ΓaaΓbb

.

We will compare the above formulas with the time series regression coefficients (the Fourier

transform) and spectral coherency. We will show that these quantities are hidden in the inverse

of the spectral density matrix. Let us suppose that {Y t}t is a second order stationary time series,

where Y ′t = (X
(1)
t , . . . , X

(d)
t ). The corresponding spectral density matrix is

Σ(ω) =


f11(ω) f12(ω) . . . f1d(ω)

f21(ω) f22(ω) . . . f2d(ω)

. . . . . .
. . . . . .

fd1(ω) fd2(ω) . . . fdd(ω)

 .

We let Γ(ω) = Σ(ω)−1.

Formulas for time series regression coefficients and spectral coherency:

• The best linear predictor of X
(a)
t given {Y (−a)

t }t is

X
(a)
t =

∑
`∈Z

(A
(a)
` )′Y

(−a)
t−` + ε

(a)
t .

Let A(a)(ω) =
∑

`∈ZA
(a)
` exp(i`ω), then

A(a)(ω) = [Σ(ω)−a,−a]
−1Σ(ω)−a,a, (12.11)

where Σ(ω)−a,−a is Σ(ω) but with the jth column and row removed.

• Formulas for spectral coherency (Fourier transform of partial covariance) between {X(a)
t }t
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and {X(b)
t }t given {Y −(a,b)

t }t is

fa,b|−(a,b)(ω) = Σab(ω)− Σa,−(a,b)(ω)[Σ−(a,b),−(a,b)(ω)]−1Σ−(a,b),b(ω) (12.12)

where Σa,−(a,b)(ω) is the ath row of Σ(ω) but with the (a, b)th column removed. Using the

above we define

ρa,b(ω) =
fab(ω)− fa,−(a,b)(ω)f−(a,b)(ω)−1f−(a,b),b(ω)√

fa,a|−(a,b)(ω)fb,b|−(a,b)(ω)
.

Making the comparison Comparing (12.9) with (12.11), we observe that

Γ(ω)a,a = − 1

f−a(ω)
where f−a(ω) = Σ(ω)a,a − Σ(ω)a,−a[Σ(ω)−a,−a]

−1Σa,−a(ω)′.

For a 6= b

Γ(ω)a,b = −[A(a)(ω)]bΓ(ω)a,a. (12.13)

Comparing f−a(ω) with Section 12.1.3 it can be seen that f−a(ω) is the spectral density of the

residual time series {X(a)
t −

∑
`(A

(a)
j )′Y

(−a)
t−` }. This links the regression coefficients in time series

with those of the precision matrix.

We now turn to partial spectral coherency. Again comparing (12.10) with (12.12) we can see

that

ρa,b(ω) = −
Γ(ω)a,b√

Γ(ω)aaΓ(ω)bb
. (12.14)

In conclusion we have shown that all the formulas which connect the precision matrix to linear

regression and partial correlation in multivariate analysis transfer to the precision spectral density

matrix in stationary time series. However, the results derived above are based simply on a compar-

ision of formulas. Below we give an intuition why these must hold using the orthogonal increment

process {Z(ω);ω ∈ [0, 2π)}.
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A heuristic understanding in terms of the orthogonal increment process

Let Y ′t = (X
(1)
t , . . . , X

(d)
t ), and suppose {Y t}t is a second order stationary time series. Then it has

the spectral representation

Y t =
1

2π

∫ 2π

0
exp(itω)dZY (ω),

where ZY (ω) is an orthogonal increment process. Very roughly speaking (and totally ignoring Ito

Calculus) this means we can treat the increments/segments {∆k}
2π/δ−1
k=0 where ∆k = Z((k+ 1)δ)−

Z(kδ) as roughly uncorrelated (but not identically distributed) random vectors. The random vector

∆k has mean zero and variance that is

var[∆k] = Σ((k + 1)δ)− Σ(kδ) ≈ δΣ(kδ).

Now we can apply all the results in multivariate analysis to the random vector ∆k (regression and

partial correlation) and obtain the formulas above.

12.4 Proof of equation (12.6)

We recall in equation (12.5) we stated that the best linear predictor of X
(a)
t given Y t is

X
(a)
t =

∑
j∈Z

A′jY t−j + ε
(a)
t ,

where

A(ω) = fY Y (ω)−1fY,X(ω),

A(ω) =
∑

j∈ZA
′
j exp(−ijω). We now prove this result. There are various method but in this

section we use the spectral representation which reduces the mean squared error

E

Xt −
∑
j∈Z

A′jY t−j

2

.
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By using the results in Section 12.1.3 we can write the MSE as

E

Xt −
∑
j∈Z

A′jY t−j

2

= E

∣∣∣∣ 1

2π

∫ 2π

0
eitω

[
dZX(ω)−A(ω)′dZY (ω)

]∣∣∣∣2

=
1

(2π)

∫ 2π

0
E
[
dZX(ω)−A(ω)′dZY (ω1)

] [
dZX(ω)−A(ω)∗dZY (ω)

]
,

where

E
[
dZX(ω)−A(ω)′dZY (ω)

] [
dZX(ω)−A(ω)∗dZY (ω)

]
=

[
fXX(ω)−A(ω)′fY,X(ω)− fX,Y (ω)A(ω) +A(ω)′fY Y (ω)A(ω)

]
dω.

Substituting this into the integral gives

E

Xt −
∑
j∈Z

A′jY t−j

2

=
1

(2π)

∫ 2π

0

[
fXX(ω)−A(ω)′fY,X(ω)− fX,Y (ω)A(ω) +A(ω)′fY Y (ω)A(ω)

]
dω. (12.15)

Studying the above expansion we observe that the term inside the integral

L(A;ω) =
[
fXX(ω)−A(ω)′fY,X(ω)− fX,Y (ω)A(ω) +A(ω)′fY Y (ω)A(ω)

]
is non-negative. Thus we can find the A(ω) which minimises (12.15) by finding the A(ω) which

minimises L(A;ω) for each ω ∈ [0, π] (since A(ω) = A(2π−ω)). We first note that the vector A(ω)

is a complex vector, thus we partition it in terms of its real and imaginary parts

A(ω) = a(ω) + ib(ω).

Substituting this into L(A;ω) and differentiating with respect to the entries in a(ω) and b(ω) gives

∇aL(A;ω) = −fY,a(ω)− fa,Y (ω)∗ + fY Y (ω)A(ω) + (A(ω)∗fY Y (ω))∗

∇bL(A;ω) = −ifY,a(ω) + ifa,Y (ω)∗ + ifY Y (ω)A(ω)− i(A(ω)∗fY Y (ω))∗.
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Equating the derivatives to zero and solving for a(ω) and b(ω) gives

A(ω) = fY Y (ω)−1fY,X(ω).

Thus we have proved the required result.

An alternative proof involves the normal equations (derivatives of the MSE):

E

Xt −
∑
j∈Z

A′jY t−j

Y t−`

2

.

This avoids going immediately going into the frequency domain (we have done above) and thus

the need to take complex derivatives. One then replaces the autocovariances in the above with the

spectral density function. It has the advantage of avoiding the need to consider the derivatives of

real and imaginary parts (or their complex derivatives). We leave the details as a exercise.
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Chapter 13

Nonlinear Time Series Models

Prerequisites

• A basic understanding of expectations, conditional expectations and how one can use condi-

tioning to obtain an expectation.

Objectives:

• Use relevant results to show that a model has a stationary, solution.

• Derive moments of these processes.

• Understand the differences between linear and nonlinear time series.

So far we have focused on linear time series, that is time series which have the representation

Xt =
∞∑

j=−∞
ψjεt−j , (13.1)

where {εt} are iid random variables. Such models are extremely useful, because they are designed

to model the autocovariance structure and are straightforward to use for forecasting. These are

some of the reasons that they are used widely in several applications. Note that all stationary

Gaussian time series have a linear form (of the type given in (13.1)), where the innovations {εt}

are Gaussian.

A typical realisation from a linear time series, will be quite regular with no suddent bursts

or jumps. This is due to the linearity of the system. However, if one looks at financial data, for

example, there are sudden bursts in volatility (variation) and extreme values, which calm down
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after a while. It is not possible to model such behaviour well with a linear time series. In order to

capture ‘nonlinear behaviour several nonlinear models have been proposed. The models typically

consists of products of random variables which make possible the sudden irratic bursts seen in

the data. Over the past 30 years there has been a lot research into nonlinear time series models.

Probably one of the first nonlinear models proposed for time series analysis is the bilinear model,

this model is used extensively in signal processing and engineering. A popular model for modelling

financial data are (G)ARCH-family of models. Other popular models are random autoregressive

coefficient models and threshold models, to name but a few (see, for example, Subba Rao (1977),

Granger and Andersen (1978), Nicholls and Quinn (1982), Engle (1982), Subba Rao and Gabr

(1984), Bollerslev (1986), Terdik (1999), Fan and Yao (2003), Straumann (2005) and Douc et al.

(2014)).

Once a model has been defined, the first difficult task is to show that it actually has a solution

which is almost surely finite (recall these models have dynamics which start at the −∞, so if they

are not well defined they could be ‘infinite’), with a stationary solution. Typically, in the nonlinear

world, we look for causal solutions. I suspect this is because the mathematics behind existence of

non-causal solution makes the problem even more complex.

We state a result that gives sufficient conditions for a stationary, causal solution of a certain

class of models. These models include ARCH/GARCH and Bilinear models. We note that the

theorem guarantees a solution, but does not give conditions for it’s moments. The result is based

on Brandt (1986), but under stronger conditions.

Theorem 13.0.1 (Brandt (1986)) Let us suppose that {Xt} is a d-dimensional time series de-

fined by the stochastic recurrence relation

Xt = AtXt−1 +Bt, (13.2)

where {At} and {Bt} are iid random matrices and vectors respectively. If E log ‖At‖ < 0 and

E log ‖Bt‖ <∞ (where ‖ · ‖ denotes the spectral norm of a matrix), then

Xt = Bt +

∞∑
k=1

(
k−1∏
i=0

At−i

)
Bt−k (13.3)

converges almost surely and is the unique strictly stationary causal solution.

Note: The conditions given above are very strong and Brandt (1986) states the result under
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which weaker conditions, we outline the differences here. Firstly, the assumption {At, Bt} are iid

can be relaxed to their being Ergodic sequences. Secondly, the assumption E log ‖At‖ < 0 can be

relaxed to E log ‖At‖ <∞1 and that {At} has a negative Lyapunov exponent, where the Lyapunov

exponent is defined as limn→∞
1
n‖
∏n
j=1Aj‖ = γ, with γ < 0 (see Brandt (1986)).

The conditions given in the above theorem may appear a little cryptic. However, the condition

E log |At| < 0 (in the unvariate case) becomes quite clear if you compare the SRE model with

the AR(1) model Xt = ρXt−1 + εt, where |ρ| < 1 (which is the special case of the SRE, where

the coefficients is deterministic). We recall that the solution of the AR(1) is Xt =
∑∞

k=1 ρ
jεt−j .

The important part in this decomposition is that |ρj | decays geometrically fast to zero. Now let

us compare this to (13.3), we see that ρj plays a similar role to
∏k−1
i=0 At−i. Given that there are

similarities between the AR(1) and SRE, it seems reasonable that for (13.3) to converge,
∏k−1
i=0 At−i

should converge geometrically too (at least almost surely). However analysis of a product is not

straight forward, therefore we take logarithms to turn it into a sum

1

k
log

k−1∏
i=0

At−i =
1

k

k−1∑
i=0

logAt−i
a.s.→ E[logAt] := γ,

since it is the sum of iid random variables. Thus taking anti-logs

k−1∏
i=0

At−i ≈ exp[kγ],

which only converges to zero if γ < 0, in other words E[logAt] < 0. Thus we see that the condition

E log |At| < 0 is quite a logical conditional afterall.

13.0.1 Examples

The AR(1) model

It is straightforward to see that the causal, stationary AR(1) model satisfies the conditions in

Theorem 13.0.1. Observe that since

Xt = φXt−1 + εt

has a stationary causal solution when |φ| < 1, then E[log |φ|] = log |φ| < 0 (since |φ < 1|).
1Usually we use the spectral norm, which is defined as the

√
λmax(A′A)
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The AR(2) model

Things become a little tricker with the AR(2) case. We recall from Section ?? that the causal

AR(2) model

Xt = φ1Xt−1 + φ2Xt−2 + εt

can be written as an VAR(1) model

Xt = AXt−1 + εt =
∞∑
j=0

Ajεt−j (13.4)

where  φ1 φ2

1 0

 , (13.5)

and ε′t = (εt, 0). For the process to be causal the eigenvalues of the matrix A should be less than

one. Thus in the above example φ1 = a+ b and φ2 = −ab, for some |a|, |b| < 1. This implies that

the eigenvalues of A will be less than one, however the eigenvalues of A′A may not be less than

one. For example consider the AR(2) model

Xt = 2× 0.2Xt−1 − 0.22Xt−2 + εt

which correspond to A with the eigenvalues 0.2 and 0.2.

A = matrix(c(2*phi,-phi**2,1,0),byrow =T, ncol = 2)

>eigen(A)

eigen() decomposition

$values

[1] 0.2+0i 0.2-0i

> eigen(A%*%t(A))

eigen() decomposition

$values

[1] 1.160220952 0.001379048

From the code above, we see that the spectral radius of A (largest eigenvalue of A) is 0.2, but
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‖A‖spec = 1.16. However, if we evaluate the spectral norm of A2, it is less than one;

> A2 = A%*%A

> eigen(A2%*%t(A2))

eigen() decomposition

$values

[1] 1.762415e-01 1.452553e-05

In this example we see that ‖A2‖spec =
√

0.176. Since we can group the product Ak into the

products of A2, this is what gives the contraction. This will happen for any matrix, A, whose

eigenvalues are less than one. For a large enough k, the spectral norm of Ak will be less than one2.

Therefore the conditions of Theorem 13.0.1 are not satisfied. But the weaker conditions (given

below the main conditions of the theorem) is satisfied.

Nonlinear Time series models There are many other (nonlinear) models that have the representa-

tion in (13.2). The purpose of this chapter is to introduce and motivate some of these models.

13.1 Data Motivation

13.1.1 Yahoo data from 1996-2014

We consider here the closing share price of the Yahoo daily data downloaded from https://uk.

finance.yahoo.com/q/hp?s=YHOO. The data starts from from 10th April 1996 to 8th August 2014

(over 4000 observations). A plot is given in Figure 13.1. Typically the logarithm of such data

taken, and in order to remove linear and/or stochastic trend the first difference of the logarithm

is taken (ie. Xt = logSt − logSt−1). The hope is that after taking differences the data has been

stationarized (see Example 4.7). However, the data set spans almost 20 years and this assumption

is rather precarious and will be investigated later. A plot of the data after taking first differences

together with the QQplot is given in Figure 13.2. From the QQplot in Figure 13.2, we observe that

log differences {Xt} appears to have very thick tails, which may mean that higher order moments

of the log returns do not exist (not finite).

In Figure 13.3 we give the autocorrelation (ACF) plots of the log differences, absolute log

2This result is due to Gelfand’s lemma
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Figure 13.1: Plot of daily closing Yahoo share price 1996-2014
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Figure 13.2: Plot of log differences of daily Yahoo share price 1996-2014 and the correspond-
ing QQplot

differences and squares of the log differences. Note that the sample autocorrelation is defined as

ρ̂(k) =
ĉ(k)

ĉ(0)
, where ĉ(k) =

1

T

T−|k|∑
t=1

(Xt − X̄)(Xt+k − X̄). (13.6)

The dotted lines are the errors bars (the 95% confidence of the sample correlations constructed

under the assumption the observations are independent, see Section 8.2.1). From Figure 13.3a

we see that there appears to be no correlation in the data. More precisely, most of the sample

correlations are within the errors bars, the few that are outside it could be by chance, as the

error bars are constructed pointwise. However, Figure 13.3b the ACF plot of the absolutes gives

significant large correlations. In contrast, in Figure 13.3c we give the ACF plot of the squares,

where there does not appear to be any significant correlations.

To summarise, {Xt} appears to be uncorrelated (white noise). However, once absolutes have
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(a) ACF plot of the log differ-
ences
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(b) ACF plot of the absolute
of the log differences
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(c) ACF plot of the square of
the log differences

Figure 13.3: ACF plots of the transformed Yahoo data

been taken there does appear to be dependence. This type of behaviour cannot be modelled with

a linear model. What is quite interesting is that there does not appear to be any significant

correlation in the squares. However, on explanation for this can be found in the QQplot. The data

has extremely thick tails which suggest that the forth moment of the process may not exist (the

empirical variance of Xt will be extremely large). Since correlation is defined as (13.6) involves

division by ĉ(0), which could be extremely large, this would ‘hide’ the sample covariance.

R code for Yahoo data

Here we give the R code for making the plots above.

yahoo <- scan("~/yahoo304.96.8.14.txt")

yahoo <- yahoo[c(length(yahoo):1)] # switches the entries to ascending order 1996-2014

yahoo.log.diff <- log(yahoo[-1]) - log(yahoo[-length(yahoo)])

# Takelog differences

par(mfrow=c(1,1))

plot.ts(yahoo)

par(mfrow=c(1,2))

plot.ts(yahoo.log.diff)

qqnorm(yahoo.log.diff)

qqline(yahoo.log.diff)

par(mfrow=c(1,3))

acf(yahoo.log.diff) # ACF plot of log differences
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acf(abs(yahoo.log.diff)) # ACF plot of absolute log differences

acf((yahoo.log.diff)**2) # ACF plot of square of log differences

13.1.2 FTSE 100 from January - August 2014

For completeness we discuss a much shorter data set, the daily closing price of the FTSE 100

from 20th January - 8th August, 2014 (141 observations). This data was downloaded from http:

//markets.ft.com/research//Tearsheets/PriceHistoryPopup?symbol=FTSE:FSI.

Exactly the same analysis that was applied to the Yahoo data is applied to the FTSE data and

the plots are given in Figure 13.4-13.6.
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Figure 13.4: Plot of daily closing FTSE price Jan-August, 2014
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Figure 13.5: Plot of log differences of daily FTSE price Jan-August, 2014 and the corre-
sponding QQplot

We observe that for this (much shorter) data set, the marginal observations do not appear to

deviate much from normality (note just because the marginal is Gaussian does not mean the entire
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Figure 13.6: ACF plots of the transformed FTSE data

time series is Gaussian). Furthermore, the ACF plot of the log differences, absolutes and squares

do not suggest any evidence of correlation. Could it be, that after taking log differences, there is

no dependence in the data (the data is a realisation from iid random variables). Or that there is

dependence but it lies in a ‘higher order structure’ or over more sophisticated transformations.

Comparing this to the Yahoo data, may be we ‘see’ dependence in the Yahoo data because it

is actually nonstationary. The mystery continues (we look into this later). It would be worth while

conducting a similar analysis on a similar portion of the Yahoo data.

13.2 The ARCH model

During the early 80s Econometricians were trying to find a suitable model for forecasting stock

prices. They were faced with data similar to the log differences of the Yahoo data in Figure 13.2.

As Figure 13.3a demonstrates, there does not appear to be any linear dependence in the data,

which makes the best linear predictor quite useless for forecasting. Instead, they tried to predict

the variance of future prices given the past, var[Xt+1|Xt, Xt−1, . . .]. This called for a model that

has a zero autocorrelation function, but models the conditional variance.

To address this need, Engle (1982) proposed the autoregressive conditionally heteroskadastic

(ARCH) model (note that Rob Engle, together with Clive Granger, in 2004, received the Noble prize

for Economics for Cointegration). He proposed the ARCH(p) which satisfies the representation

Xt = σtZt σ2
t = a0 +

p∑
j=1

ajX
2
t−j ,
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where Zt are iid random variables where E(Zt) = 0 and var(Zt) = 1, a0 > 0 and for 1 ≤ j ≤ p

aj ≥ 0.

Before, worrying about whether a solution of such a model exists, let us consider the reasons

behind why this model was first proposed.

13.2.1 Features of an ARCH

Let us suppose that a causal, stationary solution of the ARCH model exists (Xt is a function of

Zt, Zt−1, Zt−1, . . .) and all the necessary moments exist. Then we obtain the following.

(i) The first moment:

E[Xt] = E[Ztσt] = E[E(Ztσt|Xt−1, Xt−2, . . .)] = E[σtE(Zt|Xt−1, Xt−2, . . .)]︸ ︷︷ ︸
σt function of Xt−1,...,Xt−p

= E[σt E(Zt)︸ ︷︷ ︸
by causality

] = E[0 · σt] = 0.

Thus the ARCH process has a zero mean.

(ii) The conditional variance:

var(Xt|Xt−1, Xt−2, . . . , Xt−p) = E(X2
t |Xt−1, Xt−2, . . . , Xt−p)

= E(Z2
t σ

2
t |Xt−1, Xt−2, . . . , Xt−p) = σ2

tE[Z2
t ] = σ2

t .

Thus the conditional variance is σ2
t = a0 +

∑p
j=1 ajX

2
t−j (a weighted sum of the squared

past).

(iii) The autocovariance function:

Without loss of generality assume k > 0

cov[Xt, Xt+k] = E[XtXt+k] = E[XtE(Xt+k|Xt+k−1, . . . , Xt)]

= E[Xtσt+kE(Zt+k|Xt+k−1, . . . , Xt)] = E[Xtσt+kE(Zt+k)] = E[Xtσt+k · 0] = 0.

The autocorrelation function is zero (it is a white noise process).

(iv) We will show in Section 13.2.2 that E[X2d] <∞ iff [
∑p

j=1 aj ]E[Z2d
t ]1/d < 1. It is well known

that even for Gaussian innovations E[Z2d
t ]1/d grows with d, therefore if any of the aj are
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non-zero (recall all need to be positive), there will exist a d0 such that for all d ≥ d0 E[Xd
t ]

will not be finite. Thus the we see that the ARCH process has thick tails.

Usually we measure the thickness of tails in data using the Kurtosis measure (see wiki).

Points (i-iv) demonstrate that the ARCH model is able to model many of the features seen in the

stock price data.

In some sense the ARCH model can be considered as a generalisation of the AR model. That

is the squares of ARCH model satisfy

X2
t = σ2Z2

t = a0 +

p∑
j=1

ajX
2
t−j + (Z2

t − 1)σ2
t , (13.7)

with characteristic polynomial φ(z) = 1−
∑p

j=1 ajz
j . It can be shown that if

∑p
j=1 aj < 1, then the

roots of the characteristic polynomial φ(z) lie outside the unit circle (see Exercise 4.2). Moreover,

the ‘innovations’ εt = (Z2
t −1)σ2

t are martingale differences (see wiki). This can be shown by noting

that

E[(Z2
t − 1)σ2

t |Xt−1, Xt−2, . . .] = σ2
tE(Z2

t − 1|Xt−1, Xt−2, . . .) = σ2
t E(Z2

t − 1)︸ ︷︷ ︸
=0

= 0.

Thus cov(εt, εs) = 0 for s 6= t. Martingales are a useful asymptotic tool in time series, we demon-

strate how they can be used in Chapter 14.

To summarise, in many respects the ARCH(p) model resembles the AR(p) except that the

innovations {εt} are martingale differences and not iid random variables. This means that despite

the resemblence, it is not a linear time series.

We show that a unique, stationary causal solution of the ARCH model exists and derive con-

ditions under which the moments exist.

13.2.2 Existence of a strictly stationary solution and second order

stationarity of the ARCH

To simplify notation we will consider the ARCH(1) model

Xt = σtZt σ2
t = a0 + a1X

2
t−1. (13.8)
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It is difficult to directly obtain a solution of Xt, instead we obtain a solution for σ2
t (since Xt can

immediately be obtained from this). Using that X2
t−1 = σ2

t−1Z
2
t−1 and substituting this into (13.8)

we obtain

σ2
t = a0 + a1X

2
t−1 = (a1Z

2
t−1)σ2

t−1 + a0. (13.9)

We observe that (13.9) can be written in the stochastic recurrence relation form given in (13.2)

with At = a1Z
2
t−1 and Bt = a0. Therefore, by using Theorem 13.0.1, if E[log a1Z

2
t−1] = log a1 +

E[logZ2
t−1] < 0, then σ2

t has the strictly stationary causal solution

σ2
t = a0 + a0

∞∑
k=1

ak1

k∏
j=1

Z2
t−j .

The condition for existence using Theorem 13.0.1 and (13.9) is

E[log(a1Z
2
t )] = log a1 + E[logZ2

t ] < 0, (13.10)

which is immediately implied if a1 < 1 (since E[logZ2
t ] ≤ log E[Z2

t ] = 0), but it is also satisfied

under weaker conditions on a1.

To obtain the moments of X2
t we use that it has the solution is

X2
t = Z2

t

a0 + a0

∞∑
k=1

ak1

k∏
j=1

Z2
t−j

 , (13.11)

therefore taking expectations we have

E[X2
t ] = E[Z2

t ]E

a0 + a0

∞∑
k=1

ak1

k∏
j=1

Z2
t−j

 = a0 + a0

∞∑
k=1

ak1.

Thus E[X2
t ] < ∞ if and only if a1 < 1 (heuristically we can see this from E[X2

t ] = E[Z2
2 ](a0 +

a1E[X2
t−1])).

By placing stricter conditions on a1, namely a1E(Z2d
t )1/d < 1, we can show that E[X2d

t ] < ∞

(note that this is an iff condition). To see why consider the simple case d is an integer, then by
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using (13.11) we have

X2d
t ≥ Z2d

t a
d
0

∞∑
k=1

adk1

 k∏
j=1

Z2
t−j

2d

⇒ E[X2d
t ] ≥ E[Z2d

t ]ad0

∞∑
k=1

adk1

k∏
j=1

E[Z2d
t−j ] = E[Z2d

t ]ad0

∞∑
k=1

adk1 E[Z2d
t ]k

= E[Z2d
t ]ad0

∞∑
k=1

(
ad1E[Z2d

t ]
)k
.

It is immediately clear the above is only finite if a1E[Z2d
t ]1/d < 1.

The ARCH(p) model

We can generalize the above results to ARCH(p) processes (but to show existence of a solution we

need to write the ARCH(p) process as a vector process similar to the Vector AR(1) representation

of an AR(p) given in Section ??). It can be shown that under sufficient conditions on the coefficients

{aj} that the stationary, causal solution of the ARCH(p) model is

X2
t = a0Z

2
t +

∑
k≥1

mt(k) (13.12)

where mt(k) =
∑

j1,...,jk≥1

a0

( k∏
r=1

ajr
) k∏
r=0

Z2
t−

∑r
s=0 js

(j0 = 0).

The above solution belongs to a general class of functions called a Volterra expansion. We note

that E[X2
t ] <∞ iff

∑p
j=1 aj < 1.

13.3 The GARCH model

A possible drawback of the ARCH(p) model is that the conditional variance only depends on finite

number of the past squared observations/log returns (in finance, the share price is often called

the return). However, when fitting the model to the data, analogous to order selection of an

autoregressive model (using, say, the AIC), often a large order p is selected. This suggests that

the conditional variance should involve a large (infinite?) number of past terms. This observation

motivated the GARCH model (first proposed in Bollerslev (1986) and Taylor (1986)), which in

many respects is analogous to the ARMA. The conditional variance of the GARCH model is a
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weighted average of the squared returns, the weights decline with the lag, but never go completely

to zero. The GARCH class of models is a rather parsimonous class of models and is extremely

popular in finance. The GARCH(p, q) model is defined as

Xt = σtZt σ2
t = a0 +

p∑
j=1

ajX
2
t−j +

q∑
i=1

biσ
2
t−i (13.13)

where Zt are iid random variables where E(Zt) = 0 and var(Zt) = 1, a0 > 0 and for 1 ≤ j ≤ p

aj ≥ 0 and 1 ≤ i ≤ q bi ≥ 0.

Under the assumption that a causal solution with sufficient moments exist, the same properties

defined for the ARCH(p) in Section 13.2.1 also apply to the GARCH(p, q) model.

It can be shown that under suitable conditions on {bj} that Xt satisfies an ARCH(∞) represen-

tation. Formally, we can write the conditional variance σ2
t (assuming that a stationarity solution

exists) as

(1−
q∑
i=1

biB
i)σ2

t = (a0 +

p∑
j=1

ajX
2
t−j),

where B denotes the backshift notation defined in Chapter 4. Therefore if the roots of b(z) =

(1−
∑q

i=1 biz
i) lie outside the unit circle (which is satisfied if

∑
i bi < 1) then

σ2
t =

1

(1−
∑q

j=1 bjB
j)

(a0 +

p∑
j=1

ajX
2
t−j) = α0 +

∞∑
j=1

αjX
2
t−j , (13.14)

where a recursive equation for the derivation of αj can be found in Berkes et al. (2003). In other

words the GARCH(p, q) process can be written as a ARCH(∞) process. This is analogous to the

invertibility representation given in Definition 4.5.2. This representation is useful when estimating

the parameters of a GARCH process (see Berkes et al. (2003)) and also prediction. The expansion

in (13.14) helps explain why the GARCH(p, q) process is so popular. As we stated at the start of

this section, the conditional variance of the GARCH is a weighted average of the squared returns,

the weights decline with the lag, but never go completely to zero, a property that is highly desirable.

Example 13.3.1 (Inverting the GARCH(1, 1)) If b1 < 1, then we can write σ2
t as

σ2
t =

 ∞∑
j=0

bjBj

 · [a0 + a1X
2
t−1

]
=

a0

1− b
+ a1

∞∑
j=0

bjX2
t−1−j .
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This expansion offers us a clue as to why the GARCH(1, 1) is so popular in finance. In finance one

important objective is to predict future volatility, this is the variance of say a stock tomorrow given

past information. Using the GARCH model this is σ2
t , which we see is

σ2
t =

a0

1− b
+ a1

∞∑
j=0

bjX2
t−1−j .

This can be viewed as simply an exponentially weighted average of X2
t−j. Some researchers argue

that other models can lead to the same predictor of future volatility and there is nothing intrinsically

specially about the GARCH process. We discuss this in more detail in Chapter 5.

In the following section we derive conditions for existence of the GARCH model and also it’s

moments.

13.3.1 Existence of a stationary solution of a GARCH(1, 1)

We will focus on the GARCH(1, 1) model as this substantially simplifies the conditions. We recall

the conditional variance of the GARCH(1, 1) can be written as

σ2
t = a0 + a1X

2
t−1 + b1σ

2
t−1 =

(
a1Z

2
t−1 + b1

)
σ2
t−1 + a0. (13.15)

We observe that (13.15) can be written in the stochastic recurrence relation form given in (13.2)

with At = (a1Z
2
t−1+b1) and Bt = a0. Therefore, by using Theorem 13.0.1, if E[log(a1Z

2
t−1+b1)] < 0,

then σ2
t has the strictly stationary causal solution

σ2
t = a0 + a0

∞∑
k=1

k∏
j=1

(a1Z
2
t−j + b1). (13.16)

These conditions are relatively weak and depend on the distribution of Zt. They are definitely

satisfied if a1 + b1 < 1, since E[log(a1Z
2
t−1 + b1)] ≤ log E[a1Z

2
t−1 + b1] = log(a1 + b1). However

existence of a stationary solution does not require such a strong condition on the coefficients (and

there can still exist a stationary solution if a1 + b1 > 1, so long as the distribution of Z2
t is such

that E[log(a1Z
2
t + b1)] < 0).
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By taking expectations of (13.16) we can see that

E[X2
t ] = E[σ2

t ] = a0 + a0

∞∑
k=1

k∏
j=1

(a1 + b1) = a0 + a0

∞∑
k=1

(a1 + b1)k.

Thus E[X2
t ] < ∞ iff a1 + b1 < 1 (noting that a1 and b1 are both positive). Expanding on this

argument, if d > 1 we can use Minkowski inequality to show

(E[σ2d
t ])1/d ≤ a0 + a0

∞∑
k=1

(E[
k∏
j=1

(a1Z
2
t−j + b1)]d)1/d ≤ a0 + a0

∞∑
k=1

(
k∏
j=1

E[(a1Z
2
t−j + b1)d])1/d.

Therefore, if E[(a1Z
2
t−j + b1)d] < 1, then E[X2d

t ] < ∞. This is an iff condition, since from the

definition in (13.15) we have

E[σ2d
t ] = E[a0 + (a1Z

2
t−1 + b1)σ2

t−1︸ ︷︷ ︸
every term is positive

]d ≥ E[(a1Z
2
t−1 + b1)σ2

t−1]d = E[(a1Z
2
t−1 + b1)d]E[σ2d

t−1],

since σ2
t−1 has a causal solution, it is independent of Z2

t−1. We observe that by stationarity and if

E[σ2d
t ] <∞, then E[σ2d

t ] = E[σ2d
t−1]. Thus the above inequality only holds if E[(a1Z

2
t−1 + b1)d] < 1.

Therefore, E[X2d
t ] <∞ iff E[(a1Z

2
t−1 + b1)d] < 1.

Indeed in order for E[X2d
t ] < ∞ a huge constraint needs to be placed on the parameter space

of a1 and b1.

Exercise 13.1 Suppose {Zt} are standard normal random variables. Find conditions on a1 and

b1 such that E[X4
t ] <∞.

The above results can be generalised to GARCH(p, q) model. Conditions for existence of a

stationary solution hinge on the random matrix corresponding to the SRE representation of the

GARCH model (see Bougerol and Picard (1992a) and Bougerol and Picard (1992b)), which are

nearly impossible to verify. Sufficient and necessary conditions for both a stationary (causal)

solution and second order stationarity (E[X2
t ] < ∞) is

∑p
j=1 aj +

∑q
i=1 bi < 1. However, many

econometricians believe this condition places an unreasonable constraint on the parameter space of

{aj} and {bj}. A large amount of research has been done on finding consistent parameter estimators

under weaker conditions. Indeed, in the very interesting paper by Berkes et al. (2003) (see also

Straumann (2005)) they derive consistent estimates of GARCH parameters on far milder set of

conditions on {aj} and {bi} (which don’t require E(X2
t ) <∞).
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Definition 13.3.1 The IGARCH model is a GARCH model where

Xt = σtZt σ2
t = a0 +

p∑
j=1

ajX
2
t−j +

q∑
i=1

biσ
2
t−i (13.17)

where the coefficients are such that
∑p

j=1 aj +
∑q

i=1 bi = 1. This is an example of a time series

model which has a strictly stationary solution but it is not second order stationary.

Exercise 13.2 Simulate realisations of ARCH(1) and GARCH(1, 1) models. Simulate with both iid

Gaussian and t-distribution errors ({Zt} where E[Z2
t ] = 1). Remember to ‘burn-in’ each realisation.

In all cases fix a0 > 0. Then

(i) Simulate an ARCH(1) with a1 = 0.3 and a1 = 0.9.

(ii) Simulate a GARCH(1, 1) with a1 = 0.1 and b1 = 0.85, and a GARCH(1, 1) with a1 = 0.85

and b1 = 0.1. Compare the two behaviours.

13.3.2 Extensions of the GARCH model

One criticism of the GARCH model is that it is ‘blind’ to negative the sign of the return Xt. In

other words, the conditional variance of Xt only takes into account the magnitude of Xt and does

not depend on increases or a decreases in St (which corresponds to Xt being positive or negative).

In contrast it is largely believed that the financial markets react differently to negative or positive

Xt. The general view is that there is greater volatility/uncertainity/variation in the market when

the price goes down.

This observation has motivated extensions to the GARCH, such as the EGARCH which take

into account the sign of Xt. Deriving conditions for such a stationary solution to exist can be

difficult task, and the reader is refered to Straumann (2005) and more the details.

Other extensions to the GARCH include an Autoregressive type model with GARCH innova-

tions.

13.3.3 R code

install.packages("tseries"), library("tseries") recently there have been a new package

developed library("fGARCH").
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13.4 Bilinear models

The Bilinear model was first proposed in Subba Rao (1977) and Granger and Andersen (1978) (see

also Subba Rao (1981)). The general Bilinear (BL(p, q, r, s)) model is defined as

Xt −
p∑
j=1

φjXt−j = εt +

q∑
i=1

θiεt−i +
r∑

k=1

s∑
k′=1

bk,k′Xt−kεt−k′ ,

where {εt} are iid random variables with mean zero and variance σ2.

To motivate the Bilinear model let us consider the simplest version of the model BL(1, 0, 1, 1)

Xt = φ1Xt−1 + b1,1Xt−1εt−1 + εt = [φ1 + b1,1εt−1]Xt−1 + εt. (13.18)

Comparing (13.20) with the conditional variane of the GARCH(1, 1) in (13.15) we see that they are

very similar, the main differences are that (a) the bilinear model does not constrain the coefficients

to be positive (whereas the conditional variance requires the coefficients to be positive) (b) the

εt−1 depends on Xt−1, whereas in the GARCH(1, 1) Z2
t−1 and σ2

t−1 are independent coefficients

and (c) the innovation in the GARCH(1, 1) model is deterministic, whereas in the innovation in

the Bilinear model is random. (b) and (c) makes the analysis of the Bilinear more complicated

than the GARCH model. From model (13.20) we observe that when εt−1 and Xt−1 “couple” (both

are large, mainly because εt−1 is large) it leads to large burst in Xt. We observe this from the

simulations below. Therefore this model has been used to model seismic activity etc.

13.4.1 Features of the Bilinear model

In this section we assume a causal, stationary solution of the bilinear model exists, the appropriate

number of moments and that it is invertible in the sense that there exists a function g such that

εt = g(Xt−1, Xt−2, . . .).

Under the assumption that the Bilinear process is invertible we can show that

E[Xt|Xt−1, Xt−2, . . .] = E[(φ1 + b1,1εt−1)Xt−1|Xt−1, Xt−2, . . .] + E[εt|Xt−1, Xt−2, . . .]

= (φ1 + b1,1εt−1)Xt−1, (13.19)

thus unlike the autoregressive model the conditional expectation of the Xt given the past is a

nonlinear function of the past. It is this nonlinearity that gives rise to the spontaneous peaks that
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we see a typical realisation.

To see how the bilinear model was motivated in Figure 13.7 we give a plot of

Xt = φ1Xt−1 + b1,1Xt−1εt−1 + εt, (13.20)

where φ1 = 0.5 and b1,1 = 0, 0.35, 0.65 and −0.65. and {εt} are iid standard normal random

variables. We observe that Figure 13.7a is a realisation from an AR(1) process and the subsequent

plots are for different values of b1,1. Figure 13.7a is quite ‘regular’, whereas the sudden bursts in

activity become more pronounced as b1,1 grows (see Figures 13.7b and 13.7c). In Figure 13.7d

we give a plot realisation from a model where b1,1 is negative and we see that the fluctation has

changed direction.
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(d) φ1 = 0.5 and b1,1 = −0.65

Figure 13.7: Realisations from different BL(1, 0, 1, 1) models
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Remark 13.4.1 (Markov Bilinear model) Some authors define the BL(1, 0, 1, 1) as

Yt = φ1Yt−1 + b1,1Yt−1εt + εt = [φ1 + b11εt]Yt−1 + εt.

The fundamental difference between this model and (13.20) is that the multiplicative innovation

(using εt rather than εt−1) does not depend on Yt−1. This means that E[Yt|Yt−1, Yt−2, . . .] = φ1Yt−1

and the autocovariance function is the same as the autocovariance function of an AR(1) model

with the same AR parameter. Therefore, it is unclear the advantage of using this version of the

model if the aim is to forecast, since the forecast of this model is the same as a forecast using the

corresponding AR(1) process Xt = φ1Xt−1 + εt. Forecasting with this model does not take into

account its nonlinear behaviour.

13.4.2 Solution of the Bilinear model

We observe that (13.20) can be written in the stochastic recurrence relation form given in (13.2) with

At = (φ1 + b11εt−1) and Bt = a0. Therefore, by using Theorem 13.0.1, if E[log(φ1 + b11εt−1)2] < 0

and E[εt] <∞, then Xt has the strictly stationary, causal solution

Xt =
∞∑
k=1

k−1∏
j=1

(φ1 + b1,1εt−j)

 · [(φ1 + b1,1εt−k)εt−k] + εt. (13.21)

To show that it is second order stationary we require that E[X2
t ] <∞, which imposes additional

conditions on the parameters. To derive conditions for E[X2
t ] we use (13.22) and the Minkowski

inequality to give

(E[X2
t ])1/2 ≤

∞∑
k=1

E

k−1∏
j=1

(φ1 + b1,1εt−j)

21/2

·
(

E [(φ1 + b11εt−k)εt−k]
2
)1/2

=
∞∑
k=1

k−1∏
j=1

E
(

[(φ1 + b1,1εt−j)]
2
)1/2

·
(

E [(φ1 + b1,1εt−k)εt−k]
2
)1/2

. (13.22)

Therefore if E[ε4
t ] <∞ and

E [(φ1 + b1,1εt)]
2 = φ2 + b211var(εt) < 1,

then E[X2
t ] <∞ (note that the above equality is due to E[εt] = 0).
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Remark 13.4.2 (Inverting the Bilinear model) We note that

εt = −(bXt−1)εt−1 + [Xt − φXt−1],

thus by iterating backwards with respect to εt−j we have

εt =
∞∑
j=0

(
(−b)j−1

j∏
i=0

Xt−1−j

)
[Xt−j − φXt−j−1].

This invertible representation is useful both in forecasting and estimation (see Section 7.10.3).

Exercise 13.3 Simulate the BL(2, 0, 1, 1) model (using the AR(2) parameters φ1 = 1.5 and φ2 =

−0.75). Experiment with different parameters to give different types of behaviour.

Exercise 13.4 The random coefficient AR model is a nonlinear time series proposed by Barry

Quinn (see Nicholls and Quinn (1982) and Aue et al. (2006)). The random coefficient AR(1)

model is defined as

Xt = (φ+ ηt)Xt−1 + εt

where {εt} and {ηt} are iid random variables which are independent of each other.

(i) State sufficient conditions which ensure that {Xt} has a strictly stationary solution.

(ii) State conditions which ensure that {Xt} is second order stationary.

(iii) Simulate from this model for different φ and var[ηt].

13.4.3 R code

Code to simulate a BL(1, 0, 1, 1) model:

# Bilinear Simulation

# Bilinear(1,0,1,1) model, we use the first n0 observations are burn-in

# in order to get close to the stationary solution.

bilinear <- function(n,phi,b,n0=400) {

y <- rnorm(n+n0)
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w <- rnorm(n + n0)

for (t in 2:(n+n0)) {

y[t] <- phi * y[t-1] + b * w[t-1] * y[t-1] + w[t]

}

return(y[(n0+1):(n0+n)])

}

13.5 Nonparametric time series models

Many researchers argue that fitting parametric models can lead to misspecification and argue that

it may be more realistic to fit nonparametric or semi-parametric time series models instead. There

exists several nonstationary and semi-parametric time series (see Fan and Yao (2003) and Douc

et al. (2014) for a comprehensive summary), we give a few examples below. The most general

nonparametric model is

Xt = m(Xt−1, . . . , Xt−p, εt),

but this is so general it looses all meaning, especially if the need is to predict. A slight restriction

is make the innovation term additive (see Jones (1978))

Xt = m(Xt−1, . . . , Xt−p) + εt,

it is clear that for this model E[Xt|Xt−1, . . . , Xt−p] = m(Xt−1, . . . , Xt−p). However this model has

the distinct disadvantage that without placing any structure on m(·), for p > 2 nonparametric

estimators of m(·) are lousy (as the suffer from the curse of dimensionality).

Thus such a generalisation renders the model useless. Instead semi-parametric approaches have

been developed. Examples include the functional AR(p) model defined as

Xt =

p∑
j=1

φj(Xt−p)Xt−j + εt

the semi-parametric AR(1) model

Xt = φXt−1 + γ(Xt−1) + εt,
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the nonparametric ARCH(p)

Xt = σtZt σ2
t = a0 +

p∑
j=1

aj(X
2
t−j).

In the case of all these models it is not easy to establish conditions in which a stationary solution

exists. More often then not, if conditions are established they are similar in spirit to those that

are used in the parametric setting. For some details on the proof see Vogt (2013) (also here), who

considers nonparametric and nonstationary models (note the nonstationarity he considers is when

the covariance structure changes over time, not the unit root type). For example in the case of the

the semi-parametric AR(1) model, a stationary causal solution exists if |φ+ γ′(0)| < 1.

Remark 13.5.1 There are several other parametric nonlinear models that are of interest. A no-

table example, is the Markov Switching (Vector) Autorregressive model, which is popular in econo-

metrics.

This model generalises the classical autoregressive model in the sense that Xt has the presenta-

tion

Xt =

p∑
j=1

φj(St)Xt−1 + εt

where St ∈ {1, . . . ,M} is a discrete Markov process that is unobserved and {φj(s)}pj=1 are the

AR(p) parameters in state s. Note that for these models we are only interested in causal solutions

(i.e. those which are generated from the past)

One fascinating aspect of this model, is that unlike the classical AR(p) process, in order for Xt

to have a well defined solution, the characteristic function corresponding to {φj(s)}pj=1 need not

have roots which lie outside the unit circle. If the switch into the state s is “short enough” the roots

of {φj(s)}pj=1 can lie within the unit circle (and a short explosion can occur), see ? for further

details.
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Chapter 14

Consistency and and asymptotic

normality of estimators

In the previous chapter we considered estimators of several different parameters. The hope is that

as the sample size increases the estimator should get ‘closer’ to the parameter of interest. When we

say closer we mean to converge. In the classical sense the sequence {xk} converges to x (xk → x),

if |xk − x| → 0 as k →∞ (or for every ε > 0, there exists an n where for all k > n, |xk − x| < ε).

Of course the estimators we have considered are random, that is for every ω ∈ Ω (set of all out

comes) we have an different estimate. The natural question to ask is what does convergence mean

for random sequences.

14.1 Modes of convergence

We start by defining different modes of convergence.

Definition 14.1.1 (Convergence) • Almost sure convergence We say that the sequence

{Xt} converges almost sure to µ, if there exists a set M ⊂ Ω, such that P(M) = 1 and for

every ω ∈ N we have

Xt(ω)→ µ.
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In other words for every ε > 0, there exists an N(ω) such that

|Xt(ω)− µ| < ε, (14.1)

for all t > N(ω). Note that the above definition is very close to classical convergence. We

denote Xt → µ almost surely, as Xt
a.s.→ µ.

An equivalent definition, in terms of probabilities, is for every ε > 0 Xt
a.s.→ µ if

P (ω;∩∞m=1 ∪∞t=m {|Xt(ω)− µ| > ε}) = 0.

It is worth considering briefly what ∩∞m=1 ∪∞t=m {|Xt(ω) − µ| > ε} means. If ∩∞m=1 ∪∞t=m
{|Xt(ω)− µ| > ε} 6= �, then there exists an ω∗ ∈ ∩∞m=1 ∪∞t=m {|Xt(ω)− µ| > ε} such that for

some infinite sequence {kj}, we have |Xkj (ω
∗)−µ| > ε, this means Xt(ω

∗) does not converge

to µ. Now let ∩∞m=1∪∞t=m {|Xt(ω)−µ| > ε} = A, if P (A) = 0, then for ‘most’ ω the sequence

{Xt(ω)} converges.

• Convergence in mean square

We say Xt → µ in mean square (or L2 convergence), if E(Xt − µ)2 → 0 as t→∞.

• Convergence in probability

Convergence in probability cannot be stated in terms of realisations Xt(ω) but only in terms

of probabilities. Xt is said to converge to µ in probability (written Xt
P→ µ) if

P (|Xt − µ| > ε)→ 0, t→∞.

Often we write this as |Xt − µ| = op(1).

If for any γ ≥ 1 we have

E(Xt − µ)γ → 0 t→∞,

then it implies convergence in probability (to see this, use Markov’s inequality).

• Rates of convergence:

(i) Suppose at → 0 as t → ∞. We say the stochastic process {Xt} is |Xt − µ| = Op(at),

449



if the sequence {a−1
t |Xt − µ|} is bounded in probability (this is defined below). We see

from the definition of boundedness, that for all t, the distribution of a−1
t |Xt − µ| should

mainly lie within a certain interval.

(ii) We say the stochastic process {Xt} is |Xt − µ| = op(at), if the sequence {a−1
t |Xt − µ|}

converges in probability to zero.

Definition 14.1.2 (Boundedness) (i) Almost surely bounded If the random variable X

is almost surely bounded, then for a positive sequence {ek}, such that ek → ∞ as k → ∞

(typically ek = 2k is used), we have

P (ω; {∪∞k=1{|X(ω)| ≤ ek}}) = 1.

Usually to prove the above we consider the complement

P ((ω; {∪∞k=1{|X| ≤ ek}})c) = 0.

Since (∪∞k=1{|X| ≤ ek})c = ∩∞k=1{|X| > ek} ⊂ ∩∞k=1 ∪∞m=k {|X| > ek}, to show the above we

show

P (ω : {∩∞k=1 ∪∞m=k {|X(ω)| > ek}}) = 0. (14.2)

We note that if (ω : {∩∞k=1 ∪∞m=k {|X(ω)| > ek}}) 6= �, then there exists a ω∗ ∈ Ω and an

infinite subsequence kj, where |X(ω∗)| > ekj , hence X(ω∗) is not bounded (since ek →∞). To

prove (14.2) we usually use the Borel Cantelli Lemma. This states that if
∑∞

k=1 P (Ak) <∞,

the events {Ak} occur only finitely often with probability one. Applying this to our case,

if we can show that
∑∞

m=1 P (ω : {|X(ω)| > em|}) < ∞, then {|X(ω)| > em|} happens

only finitely often with probability one. Hence if
∑∞

m=1 P (ω : {|X(ω)| > em|}) < ∞, then

P (ω : {∩∞k=1 ∪∞m=k {|X(ω)| > ek}}) = 0 and X is a bounded random variable.

It is worth noting that often we choose the sequence ek = 2k, in this case
∑∞

m=1 P (ω :

{|X(ω)| > em|}) =
∑∞

m=1 P (ω : {log |X(ω)| > log 2k|}) ≤ CE(log |X|). Hence if we can

show that E(log |X|) <∞, then X is bounded almost surely.

b

(ii) Sequences which are bounded in probability A sequence is bounded in probability,
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written Xt = Op(1), if for every ε > 0, there exists a δ(ε) <∞ such that P (|Xt| ≥ δ(ε)) < ε.

Roughly speaking this means that the sequence is only extremely large with a very small

probability. And as the ‘largeness’ grows the probability declines.

14.2 Sampling properties

Often we will estimate the parameters by maximising (or minimising) a criterion. Suppose we have

the criterion Ln(a) (eg. likelihood, quasi-likelihood, Kullback-Leibler etc) we use as an estimator

of a0, ân where

ân = arg max
a∈Θ
Ln(a)

and Θ is the parameter space we do the maximisation (minimisation) over. Typically the true

parameter a should maximise (minimise) the ‘limiting’ criterion L.

If this is to be a good estimator, as the sample size grows the estimator should converge (in

some sense) to the parameter we are interesting in estimating. As we discussed above, there are

various modes in which we can measure this convergence (i) almost surely (ii) in probability and

(iii) in mean squared error. Usually we show either (i) or (ii) (noting that (i) implies (ii)), in time

series its usually quite difficult to show (iii).

Definition 14.2.1 (i) An estimator ân is said to be almost surely consistent estimator of a0, if

there exists a set M ⊂ Ω, where P(M) = 1 and for all ω ∈M we have

ân(ω)→ a.

(ii) An estimator ân is said to converge in probability to a0, if for every δ > 0

P (|ân − a| > δ)→ 0 T →∞.

To prove either (i) or (ii) usually involves verifying two main things, pointwise convergence and

equicontinuity.
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14.3 Showing almost sure convergence of an estimator

We now consider the general case where Ln(a) is a ‘criterion’ which we maximise. Let us suppose

we can write Ln as

Ln(a) =
1

n

n∑
t=1

`t(a), (14.3)

where for each a ∈ Θ, {`t(a)}t is a ergodic sequence. Let

L(a) = E(`t(a)), (14.4)

we assume that L(a) is continuous and has a unique maximum in Θ. We define the estimator α̂n

where α̂n = arg mina∈Θ Ln(a).

Definition 14.3.1 (Uniform convergence) Ln(a) is said to almost surely converge uniformly

to L(a), if

sup
a∈Θ
|Ln(a)− L(a)| a.s.→ 0.

In other words there exists a set M ⊂ Ω where P (M) = 1 and for every ω ∈M ,

sup
a∈Θ
|Ln(ω, a)− L(a)| → 0.

Theorem 14.3.1 (Consistency) Suppose that ân = arg maxa∈Θ Ln(a) and a0 = arg maxa∈Θ L(a)

is the unique maximum. If supa∈Θ |Ln(a)−L(a)| a.s.→ 0 as n→∞ and L(a) has a unique maximum.

Then Then ân
a.s.→ a0 as n→∞.

PROOF. We note that by definition we have Ln(a0) ≤ Ln(ân) and L(ân) ≤ L(a0). Using this

inequality we have

Ln(a0)− L(a0) ≤ Ln(ân)− L(a0) ≤ Ln(ân)− L(ân).

Therefore from the above we have

|Ln(âT )− L(a0)| ≤ max {|Ln(a0)− L(a0)|, |Ln(âT )− L(ân)|} ≤ sup
a∈Θ
|Ln(a)− L(a)|.
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Hence since we have uniform converge we have |Ln(ân) − L(a0)| a.s.→ 0 as n → ∞. Now since L(a)

has a unique maximum, we see that |Ln(ân)− L(a0)| a.s.→ 0 implies ân
a.s.→ a0. �

We note that directly establishing uniform convergence is not easy. Usually it is done by assum-

ing the parameter space is compact and showing point wise convergence and stochastic equiconti-

nuity, these three facts imply uniform convergence. Below we define stochastic equicontinuity and

show consistency under these conditions.

Definition 14.3.2 The sequence of stochastic functions {fn(a)}n is said to be stochastically equicon-

tinuous if there exists a set M ∈ Ω where P (M) = 1 and for every ω ∈ M and and ε > 0, there

exists a δ and such that for every ω ∈M

sup
|a1−a2|≤δ

|fn(ω, a1)− fn(ω, a2)| ≤ ε,

for all n > N(ω).

A sufficient condition for stochastic equicontinuity of fn(a) (which is usually used to prove

equicontinuity), is that fn(a) is in some sense Lipschitz continuous. In other words,

sup
a1,a2∈Θ

|fn(a1)− fn(a2)| < Kn‖a1 − a2‖,

where kn is a random variable which converges to a finite constant as n → ∞ (Kn
a.s.→ K0 as

n → ∞). To show that this implies equicontinuity we note that Kn
a.s.→ K0 means that for every

ω ∈ M (P (M) = 1) and γ > 0, we have |Kn(ω) − K0| < γ for all n > N(ω). Therefore if we

choose δ = ε/(K0 + γ) we have

sup
|a1−a2|≤ε/(K0+γ)

|fn(ω, a1)− fn(ω, a2)| < ε,

for all n > N(ω).

In the following theorem we state sufficient conditions for almost sure uniform convergence. It

is worth noting this is the Arzela-Ascoli theorem for random variables.

Theorem 14.3.2 (The stochastic Ascoli Lemma) Suppose the parameter space Θ is compact,

for every a ∈ Θ we have Ln(a)
a.s.→ L(a) and Ln(a) is stochastic equicontinuous. Then supa∈Θ |Ln(a)−

L(a)| a.s.→ 0 as n→∞.
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We use the theorem below.

Corollary 14.3.1 Suppose that ân = arg maxa∈Θ Ln(a) and a0 = arg maxa∈Θ L(a), moreover L(a)

has a unique maximum. If

(i) We have point wise convergence, that is for every a ∈ Θ we have Ln(a)
a.s.→ L(a).

(ii) The parameter space Θ is compact.

(iii) Ln(a) is stochastic equicontinuous.

then ân
a.s.→ a0 as n→∞.

PROOF. By using Theorem 14.3.2 three assumptions imply that | supθ∈Θ ||Ln(θ)−L(θ)| → 0, thus

by using Theorem 14.3.1 we obtain the result.

We prove Theorem 14.3.2 in the section below, but it can be omitted on first reading.

14.3.1 Proof of Theorem 14.3.2 (The stochastic Ascoli theorem)

We now show that stochastic equicontinuity and almost pointwise convergence imply uniform con-

vergence. We note that on its own, pointwise convergence is a much weaker condition than uniform

convergence, since for pointwise convergence the rate of convergence can be different for each pa-

rameter.

Before we continue a few technical points. We recall that we are assuming almost pointwise

convergence. This means for each parameter a ∈ Θ there exists a set Na ∈ Ω (with P (Na) = 1)

such that for all ω ∈ Na Ln(ω, a)→ L(a). In the following lemma we unify this set. That is show

(using stochastic equicontinuity) that there exists a set N ∈ Ω (with P (N) = 1) such that for all

ω ∈ N Ln(ω, a)→ L(a).

Lemma 14.3.1 Suppose the sequence {Ln(a)}n is stochastically equicontinuous and also pointwise

convergent (that is Ln(a) converges almost surely to L(a)), then there exists a set M ∈ Ω where

P (M̄) = 1 and for every ω ∈ M̄ and a ∈ Θ we have

|Ln(ω, a)− L(a)| → 0.

PROOF. Enumerate all the rationals in the set Θ and call this sequence {ai}i. Since we have almost

sure convergence, this implies for every ai there exists a set Mai where P (Mai) = 1 and for every
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ω ∈Mai we have |LT (ω, ai)−L(ai)| → 0. Define M = ∩Mai , since the number of sets is countable

P (M) = 1 and for every ω ∈M and ai we have Ln(ω, ai)→ L(ai).

Since we have stochastic equicontinuity, there exists a set M̃ where P (M̃) = 1 and for every

ω ∈ M̃ , {Ln(ω, ·)} is equicontinuous. Let M̄ = M̃ ∩ {∩Mai}, we will show that for all a ∈ Θ and

ω ∈ M̄ we have Ln(ω, a)→ L(a). By stochastic equicontinuity for every ω ∈ M̄ and ε/3 > 0, there

exists a δ > 0 such that

sup
|b1−b2|≤δ

|Ln(ω, b1)− Ln(ω, b2)| ≤ ε/3, (14.5)

for all n > N(ω). Furthermore by definition of M̄ for every rational aj ∈ Θ and ω ∈ N̄ we have

|Ln(ω, ai)− L(ai)| ≤ ε/3, (14.6)

where n > N ′(ω). Now for any given a ∈ Θ, there exists a rational ai such that ‖a−aj‖ ≤ δ. Using

this, (14.5) and (14.6) we have

|Ln(ω, a)− L(a)| ≤ |Ln(ω, a)− Ln(ω, ai)|+ |Ln(ω, ai)− L(ai)|+ |L(a)− L(ai)| ≤ ε,

for n > max(N(ω), N ′(ω)). To summarise for every ω ∈ M̄ and a ∈ Θ, we have |Ln(ω, a)−L(a)| →

0. Hence we have pointwise covergence for every realisation in M̄ . �

We now show that equicontinuity implies uniform convergence.

Proof of Theorem 14.3.2. Using Lemma 14.3.1 we see that there exists a set M̄ ∈ Ω with

P (M̄) = 1, where Ln is equicontinuous and also pointwise convergent. We now show uniform

convergence on this set. Choose ε/3 > 0 and let δ be such that for every ω ∈ M̄ we have

sup
|a1−a2|≤δ

|LT (ω, a1)− LT (ω, a2)| ≤ ε/3, (14.7)

for all n > n(ω). Since Θ is compact it can be divided into a finite number of open sets. Construct

the sets {Oi}pi=1, such that Θ ⊂ ∪pi=1Oi and supx,y,i ‖x− y‖ ≤ δ. Let {ai}pi=1 be such that ai ∈ Oi.

We note that for every ω ∈ M̄ we have Ln(ω, ai) → L(ai), hence for every ε/3, there exists an

ni(ω) such that for all n > ni(ω) we have |LT (ω, ai)−L(ai)| ≤ ε/3. Therefore, since p is finite (due
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to compactness), there exists a ñ(ω) such that

max
1≤i≤p

|Ln(ω, ai)− L(ai)| ≤ ε/3,

for all n > ñ(ω) = max1≤i≤p(ni(ω)). For any a ∈ Θ, choose the i, such that open set Oi such that

a ∈ Oi. Using (14.7) we have

|LT (ω, a)− LT (ω, ai)| ≤ ε/3,

for all n > n(ω). Altogether this gives

|LT (ω, a)− L(a)| ≤ |LT (ω, a)− LT (ω, ai)|+ |LT (ω, ai)− L(ai)|+ |L(a)− L(ai)| ≤ ε,

for all n ≥ max(n(ω), ñ(ω)). We observe that max(n(ω), ñ(ω)) and ε/3 does not depend on a,

therefore for all n ≥ max(n(ω), ñ(ω)) and we have supa |Ln(ω, a)− L(a)| < ε. This gives for every

ω ∈ M̄ (P(M̄) = 1), supa |Ln(ω, a)−L(a)| → 0, thus we have almost sure uniform convergence. �

14.4 Toy Example: Almost sure convergence of the

least squares estimator for an AR(p) process

In Chapter ?? we will consider the sampling properties of many of the estimators defined in Chapter

8. However to illustrate the consistency result above we apply it to the least squares estimator of

the autoregressive parameters.

To simply notation we only consider estimator for AR(1) models. Suppose that Xt satisfies

Xt = φXt−1 + εt (where |φ| < 1). To estimate φ we use the least squares estimator defined below.

Let

Ln(a) =
1

n− 1

n∑
t=2

(Xt − aXt−1)2, (14.8)

we use φ̂n as an estimator of φ, where

φ̂n = arg min
a∈Θ
LT (a), (14.9)
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where Θ = [−1, 1].

How can we show that this is consistent?

• In the case of least squares for AR processes, âT has the explicit form

φ̂n =
1

n−1

∑n
t=2XtXt−1

1
n−1

∑T−1
t=1 X2

t

.

By just applying the ergodic theorem to the numerator and denominator we get φ̂n
a.s.→ φ.

It is worth noting, that unlike the Yule-Walker estimator
∣∣ 1
n−1

∑n
t=2XtXt−1

1
n−1

∑n−1
t=1 X

2
t

∣∣ < 1 is not neces-

sarily true.

• Here we will tackle the problem in a rather artifical way and assume that it does not have an

explicit form and instead assume that φ̂n is obtained by minimising Ln(a) using a numerical

routine.

• In order to derive the sampling properties of φ̂n we need to directly study the least squares

criterion Ln(a). We will do this now in the least squares case.

We will first show almost sure convergence, which will involve repeated use of the ergodic

theorem. We will then demonstrate how to show convergence in probability. We look at almost

sure convergence as its easier to follow. Note that almost sure convergence implies convergence in

probability (but the converse is not necessarily true).

The first thing to do it let

`t(a) = (Xt − aXt−1)2.

Since {Xt} is an ergodic process (recall Example ??(ii)) by using Theorem ?? we have for a, that

{`t(a)}t is an ergodic process. Therefore by using the ergodic theorem we have

Ln(a) =
1

n− 1

n∑
t=2

`t(a)
a.s.→ E(`0(a)).

In other words for every a ∈ [−1, 1] we have that Ln(a)
a.s.→ E(`0(a)) (almost sure pointwise conver-

gence).

Since the parameter space Θ = [−1, 1] is compact and a is the unique minimum of `(·) in the
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parameter space, all that remains is to show show stochastic equicontinuity. From this we deduce

almost sure uniform convergence.

To show stochastic equicontinuity we expand LT (a) and use the mean value theorem to obtain

Ln(a1)− Ln(a2) = ∇LT (ā)(a1 − a2), (14.10)

where ā ∈ [min[a1, a2],max[a1, a2]] and

∇Ln(ā) =
−2

n− 1

n∑
t=2

Xt−1(Xt − āXt−1).

Because ā ∈ [−1, 1] we have

|∇Ln(ā)| ≤ Dn, where Dn =
2

n− 1

n∑
t=2

(|Xt−1Xt|+X2
t−1).

Since {Xt}t is an ergodic process, then {|Xt−1Xt| + X2
t−1} is an ergodic process. Therefore, if

var(εt) <∞, by using the ergodic theorem we have

Dn
a.s.→ 2E(|Xt−1Xt|+X2

t−1).

Let D := 2E(|Xt−1Xt|+X2
t−1). Therefore there exists a set M ∈ Ω, where P(M) = 1 and for every

ω ∈M and ε > 0 we have

|DT (ω)−D| ≤ δ∗,

for all n > N(ω). Substituting the above into (14.10) we have

|Ln(ω, a1)− Ln(ω, a2)| ≤ Dn(ω)|a1 − a2| ≤ (D + δ∗)|a1 − a2|,

for all n ≥ N(ω). Therefore for every ε > 0, there exists a δ := ε/(D + δ∗) such that

sup
|a1−a2|≤ε/(D+δ∗)

|Ln(ω, a1)− Ln(ω, a2)| ≤ ε,

for all n ≥ N(ω). Since this is true for all ω ∈M we see that {Ln(a)} is stochastically equicontin-

uous.
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Theorem 14.4.1 Let φ̂n be defined as in (14.9). Then we have φ̂n
a.s.→ φ.

PROOF. Since {Ln(a)} is almost sure equicontinuous, the parameter space [−1, 1] is compact and

we have pointwise convergence of Ln(a)
a.s.→ L(a), by using Theorem 14.3.1 we have that φ̂n

a.s.→ a,

where a = mina∈Θ L(a). Finally we need to show that a = φ. Since

L(a) = E(`0(a)) = −E(X1 − aX0)2,

we see by differentiating L(a) with respect to a, that it is minimised at a = E(X0X1)/E(X2
0 ), hence

a = E(X0X1)/E(X2
0 ). To show that this is φ, we note that by the Yule-Walker equations

Xt = φXt−1 + εt ⇒ E(XtXt−1) = φE(X2
t−1) + E(εtXt−1)︸ ︷︷ ︸

=0

.

Therefore φ = E(X0X1)/E(X2
0 ), hence φ̂n

a.s.→ φ. �

We note that by using a very similar methods we can show strong consistency of the least

squares estimator of the parameters in an AR(p) model.

14.5 Convergence in probability of an estimator

We described above almost sure (strong) consistency (âT
a.s.→ a0). Sometimes its not possible to show

strong consistency (eg. when ergodicity cannot be verified). As an alternative, weak consistency

where âT
P→ a0 (convergence in probability), is shown. This requires a weaker set of conditions,

which we now describe:

(i) The parameter space Θ should be compact.

(ii) Probability pointwise convergence: for every a ∈ Θ Ln(a)
P→ L(a).

(iii) The sequence {Ln(a)} is equicontinuous in probability. That is for every ε > 0 and η > 0

there exists a δ such that

lim
n→∞

P

(
sup

|a1−a2|≤δ
|Ln(a1)− Ln(a2)| > ε

)
< η. (14.11)

If the above conditions are satisified we have âT
P→ a0.
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Verifying conditions (ii) and (iii) may look a little daunting but by using Chebyshev’s (or

Markov’s) inequality it can be quite straightforward. For example if we can show that for every

a ∈ Θ

E(Ln(a)− L(a))2 → 0 T →∞.

Therefore by applying Chebyshev’s inequality we have for every ε > 0 that

P (|Ln(a)− L(a)| > ε) ≤ E(Ln(a)− L(a))2

ε2
→ 0 T →∞.

Thus for every a ∈ Θ we have Ln(a)
P→ L(a).

To show (iii) we often use the mean value theorem Ln(a). Using the mean value theorem we

have

|Ln(a1)− Ln(a2)| ≤ sup
a
‖∇aLn(a)‖2‖a1 − a2‖.

Now if we can show that supn E supa ‖∇aLn(a)‖2 <∞ (in other words it is uniformly bounded in

probability over n) then we have the result. To see this observe that

P

(
sup

|a1−a2|≤δ
|Ln(a1)− Ln(a2)| > ε

)
≤ P

(
sup
a∈Ω
‖∇aLn(a)‖2|a1 − a2| > ε

)
≤ supn E(|a1 − a2| supa∈Ω ‖∇aLn(a)‖2)

ε
.

Therefore by a careful choice of δ > 0 we see that (14.11) is satisfied (and we have equicontinuity

in probability).

14.6 Asymptotic normality of an estimator

Once consistency of an estimator has been shown this paves the way to showing normality. To

make the derivations simple we will assume that θ is univariate (this allows to easily use Taylor

expansion) . We will assume that that the third derivative of the contrast function, Ln(θ), exists,

its expectation is bounded and it’s variance converges to zero as n→∞. If this is the case we have

have the following result
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Lemma 14.6.1 Suppose that the third derivative of the contrast function Ln(θ) exists, for k =

0, 1, 2 E(∂
kLn(θ)
∂thetak

) = ∂kL
∂θk

and var(∂
kLn(θ)
∂thetak

) → 0 as n → ∞ and ∂3Ln(θ)
∂theta3

is bounded by a random

variable Zn which is independent of n where E(Zn) <∞ and var(Zn)→ 0. Then we have

(θ̂n − θ0) = V (θ)−1∂Ln(θ)

∂θ θ=θ0
+ op(1)

∂Ln(θ)

∂θ θ=θ0
,

where V (θ0) = ∂2L(θ)
∂θ2 θ0

.

PROOF. By the mean value theorem we have

∂Ln(θ)

∂θ θ=θ0
=

∂Ln(θ)

∂θ θ=θ̂n
− (θ̂n − θ0)

∂2Ln(θ)

∂θ2 θ=θ̄n
= −(θ̂n − θ0)

∂2Ln(θ)

∂θ2 θ=θ̄n
(14.12)

where θ̄n lies between θ0 and θ̂n. We first study ∂2Ln(θ)
∂θ2 θ=θ̄n

. By using the man value theorem we

have

∂2Ln(θ)

∂θ2 θ=θ̄n
=
∂2Ln(θ)

∂θ2 θ0
+ (θ̄n − θ0)

∂2Ln(θ)

∂θ2 θ=θ̃n

where θ̃n lies between θ0 and θ̄n. Since ∂2Ln(θ)
∂θ2 θ0

→ ∂2L(θ)
∂θ2 θ0

= V (θ0), under the stated assumptions

we have

∣∣∂2L
∂θ2 θ=θ̄n

− V (θ0)
∣∣ ≤ |θ̄n − θ0|

∣∣∂2Ln(θ)

∂θ2 θ=θ̃n

∣∣ ≤ |θ̄n − θ0|Wn.

Therefore, by consistency of the estimator it is clear that ∂2L
∂θ2 θ=θ̄n

P→ V (θ0). Substituting this into

(14.12) we have

∂L
∂θ θ=θ0

= −(θ̂n − θ0)(V (θ0) + o(1)),

since V (θ0) is bounded away from zero we have [∂
2L
∂θ2 θ=θ̄n

]−1 = V (θ0)−1 + op(1) and we obtain the

desired result. �

The above result means that the distribution of (θ̂n − θ0) is determined by ∂L
∂θ θ=θ0

. In the

following section we show to show asymptotic normality of ∂L
∂θ θ=θ0

.
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14.6.1 Martingale central limit theorem

Remark 14.6.1 We recall that

(φ̂n − φ) = −
(
∇2Ln

)−1∇Ln(φ) =
−2
n−1

∑n
t=2 εtXt−1

2
n−1

∑n
t=2X

2
t−1

, (14.13)

and that var( −2
n−1

∑n
t=2 εtXt−1) = −2

n−1

∑n
t=2 var(εtXt−1) = O( 1

n). This implies

(φ̂n − φ) = Op(n
−1/2).

Indeed the results also holds almost surely

(φ̂n − φ) = O(n−1/2). (14.14)

The same result is true for autoregressive processes of arbitrary finite order. That is

√
n(φ̂

n
− φ)

D→ N (0,E(Γp)
−1σ2). (14.15)

14.6.2 Example: Asymptotic normality of the weighted periodogram

Previously we have discussed the weight peiodogram, here we show normality of it, in the case

that the time series Xt is zero mean linear time series (has the representation Xt =
∑

j ψjεt−j).

Recalling Lemma 11.2.2 we have

A(φ, In) =
1

n

n∑
k=1

φ(ωk)In(ωk)

=
1

n

n∑
k=1

φ(ωk)|A(ωk)
2|Iε(ωk) + o(

1

n
).

Therefore we will show asymptotic normality of 1
n

∑n
k=1 φ(ωk)|A(ωk)

2|Iε(ωk), which will give asymp-

totic normality of A(φ, In). Expanding |Iε(ωk) and substituting this into

1
n

∑n
k=1 φ(ωk)|A(ωk)

2|Iε(ωk) gives

1

n

n∑
k=1

φ(ωk)|A(ωk)
2|Iε(ωk) =

1

n

n∑
t,τ=1

εtετ
1

n

n∑
k=1

φ(ωk)|A(ωk)
2 exp(iωk(t− τ)) =

1

n

n∑
t,τ=1

εtετgn(t− τ)
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where

gn(t− τ) =
1

n

n∑
k=1

φ(ωk)|A(ωk)
2 exp(iωk(t− τ)) =

1

2π

∫ 2π

0
φ(ω)|A(ω)|2 exp(iω(t− τ))dω +O(

1

n2
),

(the rate for the derivative exchange is based on assuming that the second derivatives of A(ω) and

φ exist and φ(0) = φ(2π)). We can rewrite 1
n

∑n
t,τ=1 εtετgn(t− τ) as

1

n

n∑
t,τ=1

[εtετ − E(εtετ )]gn(t− τ)

=
1

n

n∑
t=1

(
[(ε2

t − E(ε2
t )]gn(0) + εt

(∑
τ<t

ετ [gn(t− τ)− gn(τ − t)]
))

:=
1

n

n∑
t=1

Zt,n

where it is straightforward to show that {Zt,n} are the sum of martingale differences. Thus we can

show that

1√
n

n∑
t,τ=1

εtετgn(t− τ)− E
( 1√

n

n∑
t,τ=1

εtετgn(t− τ)
)

=
1√
n

n∑
t=1

Zt,n

satisfies the conditions of the martingale central limit theorem, which gives asymptotic normality

of 1
n

∑n
t,τ=1 εtετgn(t− τ) and thus A(φ, In).

In the remainder of this chapter we obtain the sampling properties of the ARMA estimators

defined in Sections 9.2.1 and 9.2.5.

14.7 Asymptotic properties of the Hannan and Rissa-

nen estimation method

In this section we will derive the sampling properties of the Hannan-Rissanen estimator. We will

obtain an almost sure rate of convergence (this will be the only estimator where we obtain an almost

sure rate). Typically obtaining only sure rates can be more difficult than obtaining probabilistic

rates, moreover the rates can be different (worse in the almost sure case). We now illustrate why

that is with a small example. Suppose {Xt} are iid random variables with mean zero and variance
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one. Let Sn =
∑n

t=1Xt. It can easily be shown that

var(Sn) =
1

n
therefore Sn = Op(

1√
n

). (14.16)

However, from the law of iterated logarithm we have for any ε > 0

P (Sn ≥ (1 + ε)
√

2n log logn infinitely often) = 0P (Sn ≥ (1− ε)
√

2n log logn infinitely often) = 1.(14.17)

Comparing (14.16) and (14.17) we see that for any given trajectory (realisation) most of the time

1
nSn will be within the O( 1√

n
) bound but there will be excursions above when it to the O( log logn√

n

bound. In other words we cannot say that 1
nSn = ( 1√

n
) almost surely, but we can say that This

basically means that

1

n
Sn = O(

√
2 log log n√

n
) almost surely.

Hence the probabilistic and the almost sure rates are (slightly) different. Given this result is true

for the average of iid random variables, it is likely that similar results will hold true for various

estimators.

In this section we derive an almost sure rate for Hannan-Rissanen estimator, this rate will

be determined by a few factors (a) an almost sure bound similar to the one derived above (b)

the increasing number of parameters pn (c) the bias due to estimating only a finite number of

parameters when there are an infinite number in the model.

We first recall the algorithm:

(i) Use least squares to estimate {bj}pnj=1 and define

b̂n = R̂−1
n r̂n, (14.18)

where b̂′n = (b̂1,n, . . . , b̂pn,n),

R̂n =

n∑
t=pn+1

Xt−1X
′
t−1 r̂n =

T∑
t=pn+1

XtXt−1

and X′t−1 = (Xt−1, . . . , Xt−pn).
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(ii) Estimate the residuals with

ε̃t = Xt −
pn∑
j=1

b̂j,nXt−j .

(iii) Now use as estimates of φ
0

and θ0 φ̃n, θ̃n where

φ̃
n
, θ̃n = arg min

n∑
t=pn+1

(Xt −
p∑
j=1

φjXt−j −
q∑
i=1

θiε̃t−i)
2. (14.19)

We note that the above can easily be minimised. In fact

(φ̃
n
, θ̃n) = R̃−1

n s̃n

where

R̃n =
1

n

n∑
t=pn+1

ỸtỸt s̃n =
1

T

n∑
t=pn+1

ỸtXt,

Ỹ′t = (Xt−1, . . . , Xt−p, ε̃t−1, . . . , ε̃t−q). Let ϕ̂n = (φ̃n, θ̃n).

We observe that in the second stage of the scheme where the estimation of the ARMA parameters

are done, it is important to show that the empirical residuals are close to the true residuals. That

is ε̃t = εt + o(1). We observe that from the definition of ε̃t, this depends on the rate of convergence

of the AR estimators b̂j,n

ε̃t = Xt −
pn∑
j=1

b̂j,nXt−j

= εt +

pn∑
j=1

(b̂j,n − bj)Xt−j −
∞∑

j=pn+1

bjXt−j . (14.20)

Hence

∣∣ε̂t − εt∣∣ ≤ ∣∣ pn∑
j=1

(b̂j,n − bj)Xt−j
∣∣+
∣∣ ∞∑
j=pn+1

bjXt−j
∣∣. (14.21)

Therefore to study the asymptotic properties of ϕ̃ = φ̂
n
, θ̂n we need to

• Obtain a rate of convergence for supj |b̂j,n − bj |.
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• Obtain a rate for |ε̂t − εt|.

• Use the above to obtain a rate for ϕ̃n = (φ̂
n
, θ̂n).

We first want to obtain the uniform rate of convergence for supj |b̂j,n − bj |. Deriving this is

technically quite challanging. We state the rate in the following theorem, an outline of the proof

can be found in Section 14.7.1. The proofs uses results from mixingale theory which can be found

in Chapter B.

Theorem 14.7.1 Suppose that {Xt} is from an ARMA process where the roots of the true char-

acteristic polynomials φ(z) and θ(z) both have absolute value greater than 1 + δ. Let b̂n be defined

as in (14.18), then we have almost surely

‖b̂n − bn‖2 = O

(
p2
n

√
(log log n)1+γ log n

n
+
p3
n

n
+ pnρ

pn

)

for any γ > 0.

PROOF. See Section 14.7.1.

Corollary 14.7.1 Suppose the conditions in Theorem 14.7.1 are satisfied. Then we have

∣∣ε̃t − εt∣∣ ≤ pn max
1≤j≤pn

|b̂j,n − bj |Zt,pn +KρpnYt−pn , (14.22)

where Zt,pn = 1
pn

∑pn
t=1 |Xt−j | and Yt =

∑pn
t=1 ρ

j |Xt|,

1

n

n∑
t=pn+1

∣∣ε̃t−iXt−j − εt−iXt−j
∣∣ = O(pnQ(n) + ρpn) (14.23)

1

n

n∑
t=pn+1

∣∣ε̃t−iε̃t−j − εt−iε̃t−j∣∣ = O(pnQ(n) + ρpn) (14.24)

where Q(n) = p2
n

√
(log logn)1+γ logn

n + p3n
n + pnρ

pn.

PROOF. Using (14.21) we immediately obtain (14.22).
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To obtain (14.23) we use (14.21) to obtain

1

n

n∑
t=pn+1

∣∣ε̃t−iXt−j − εt−iXt−j
∣∣ ≤ 1

n

n∑
t=pn+1

|Xt−j |
∣∣ε̃t−i − εt−i∣∣

≤ O(pnQ(n))
1

n

n∑
t=pn+1

|Xt||Zt,pn |+O(ρpn)
1

n

n∑
t=pn+1

|Xt||Yt−pn |

= O(pnQ(n) + ρpn).

To prove (14.24) we use a similar method, hence we omit the details. �

We apply the above result in the theorem below.

Theorem 14.7.2 Suppose the assumptions in Theorem 14.7.1 are satisfied. Then

∥∥ϕ̃n −ϕ0

∥∥
2

= O

(
p3
n

√
(log log n)1+γ log n

n
+
p4
n

n
+ p2

nρ
pn

)
.

for any γ > 0, where ϕ̃n = (φ̃
n
, θ̃n) and ϕ0 = (φ

0
, θ0).

PROOF. We note from the definition of ϕ̃n that

(
ϕ̃n −ϕ0

)
= R̃−1

n

(
s̃n − R̃nϕ̃0

)
.

Now in the R̃n and s̃n we replace the estimated residuals ε̃n with the true unobserved residuals.

This gives us

(
ϕ̃n −ϕ0

)
= R−1

n

(
sn −Rnϕ0

)
+ (R−1

n sn − R̃−1
n s̃n) (14.25)

Rn =
1

n

n∑
t=max(p,q)

YtYt sn =
1

n

n∑
t=max(p,q)

YtXt,

Y′t = (Xt−1, . . . , Xt−p, εt−1, . . . , εt−q) (recalling that Y′t = (Xt−1, . . . , Xt−p, ε̃t−1, . . . , ε̃t−q). The

error term is

(R−1
n sn − R̃−1

n s̃n) = R−1
n (R̃n −Rn)R̃−1

n sn + R̃−1
n (sn − s̃n).

Now, almost surely R−1
n , R̃−1

n = O(1) (if E(Rn) is non-singular). Hence we only need to obtain a
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bound for R̃n −Rn and sn − s̃n. We recall that

R̃n −Rn =
1

n

∑
t=pn+1

(ỸtỸ
′
t −YtY

′
t),

hence the terms differ where we replace the estimated ε̃t with the true εt, hence by using (14.23)

and (14.24) we have almost surely

|R̃n −Rn| = O(pnQ(n) + ρpn) and |s̃n − sn| = O(pnQ(n) + ρpn).

Therefore by substituting the above into (14.26) we obtain

(
ϕ̃n −ϕ0

)
= R−1

n

(
sn −Rnϕ0

)
+O(pnQ(n) + ρpn). (14.26)

Finally using straightforward algebra it can be shown that

sn −Rnϕn =
1

n

n∑
t=max(p,q)

εtYt.

By using Theorem 14.7.3, below, we have sn −Rnϕn = O((p+ q)

√
(log logn)1+γ logn

n ). Substituting

the above bound into (??), and noting that O(Q(n)) dominates O(

√
(log logn)1+γ logn

n ) gives

∥∥ϕ̃n −ϕn∥∥2
= O

(
p3
n

√
(log log n)1+γ log n

n
+
p4
n

n
+ p2

nρ
pn

)

and the required result. �

14.7.1 Proof of Theorem 14.7.1 (A rate for ‖b̂T − bT‖2)

We observe that

b̂n − bn = R−1
n

(
r̂n − R̂nbn

)
+
(
R̂−1
n −R−1

n

)(
r̂n − R̂nbn

)
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where b, Rn and rn are deterministic, with bn = (b1 . . . , bpn), (Rn)i,j = E(XiXj) and (rn)i =

E(X0X−i). Evaluating the Euclidean distance we have

‖b̂n − bn‖2 ≤ ‖R−1
n ‖spec

∥∥r̂n − R̂nbn∥∥2
+ ‖R−1

n ‖spec‖R̂−1
n ‖spec

∥∥R̂n −Rn∥∥2

∥∥r̂n − R̂nbn∥∥2
,(14.27)

where we used that R̂−1
n − R̂−1

n = R̂−1
n (Rn − R̂n)R−1

n and the norm inequalities. Now by using

Lemma 7.14.2 we have λmin(R−1
n ) > δ/2 for all T . Thus our aim is to obtain almost sure bounds

for ‖r̂n − R̂nbn‖2 and ‖R̂n −Rn‖2, which requires the lemma below.

Theorem 14.7.3 Let us suppose that {Xt} has an ARMA representation where the roots of the

characteristic polynomials φ(z) and θ(z) lie are greater than 1 + δ. Then

(i)

1

n

n∑
t=r+1

εtXt−r = O(

√
(log log n)1+γ log n

n
) (14.28)

(ii)

1

n

n∑
t=max(i,j)

Xt−iXt−j = O(

√
(log log n)1+γ log n

n
). (14.29)

for any γ > 0.

PROOF. The result is proved in Chapter B.2. �

To obtain the bounds we first note that if the there wasn’t an MA component in the ARMA pro-

cess, in other words {Xt} was an AR(p) process with pn ≥ p, then r̂n− R̂nbn = 1
n

∑n
t=pn+1 εtXt−r,

which has a mean zero. However because an ARMA process has an AR(∞) representation and we

are only estimating the first pn parameters, there exists a ‘bias’ in r̂n− R̂nbn. Therefore we obtain

the decomposition

(r̂n − R̂nbn)r =
1

n

n∑
t=pn+1

(
Xt −

∞∑
j=1

bjXt−j
)
Xt−r +

1

n

n∑
t=pn+1

∞∑
j=pn+1

bjXt−jXt−r (14.30)

=
1

n

n∑
t=pn+1

εtXt−r︸ ︷︷ ︸
stochastic term

+
1

n

n∑
t=pn+1

∞∑
j=pn+1

bjXt−jXt−r︸ ︷︷ ︸
bias

(14.31)

469



Therefore we can bound the bias with

∣∣∣∣(r̂n − R̂nbn)r −
1

n

n∑
t=pn+1

εtXt−r

∣∣∣∣ ≤ Kρpn 1

n

n∑
t=1

|Xt−r|
∞∑
j=1

ρj |Xt−pn−j |. (14.32)

Let Yt =
∑∞

j=1 ρ
j |Xt−j and Sn,k,r = 1

n

∑n
t=1 |Xt−r|

∑∞
j=1 ρ

j |Xt−k−j |. We note that {Yt} and {Xt}

are ergodic sequences. By applying the ergodic theorm we can show that for a fixed k and r,

Sn,k,r
a.s.→ E(Xt−rYt−k). Hence Sn,k,r are almost surely bounded sequences and

ρpn
1

n

n∑
t=1

|Xt−r|
∞∑
j=1

ρj |Xt−pn−j | = O(ρpn).

Therefore almost surely we have

‖r̂n − R̂nbn‖2 = ‖ 1

n

n∑
t=pn+1

εtXt−1‖2 +O(pnρ
pn).

Now by using (14.28) we have

‖r̂n − R̂nbn‖2 = O

(
pn

{√
(log log n)1+γ log n

n
+ ρpn

})
. (14.33)

This gives us a rate for r̂n − R̂nbn. Next we consider R̂n. It is clear from the definition of R̂n that

almost surely we have

(R̂n)i,j − E(XiXj) =
1

n

n∑
t=pn+1

Xt−iXt−j − E(XiXj)

=
1

n

n∑
t=min(i,j)

[Xt−iXt−j − E(XiXj)]−
1

n

pn∑
t=min(i,j)

Xt−iXt−j +
min(i, j)

n
E(XiXj)

=
1

n

T∑
t=min(i,j)

[Xt−iXt−j − E(XiXj)] +O(
pn
n

).

Now by using (14.29) we have almost surely

|(R̂n)i,j − E(XiXj)| = O(
pn
n

+

√
(log log n)1+γ log n

n
).
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Therefore we have almost surely

‖R̂n −Rn‖2 = O

(
p2
n

{
pn
n

+

√
(log log n)1+γ log n

n

})
. (14.34)

We note that by using (14.27), (14.33) and (14.34) we have

‖b̂n − bn‖2 ≤ ‖R−1
n ‖spec‖R̂−1

n ‖specO

(
p2
n

√
(log log n)1+γ log n

n
+
p2
n

n
+ pnρ

pn

)
.

As we mentioned previously, because the spectrum of Xt is bounded away from zero, λmin(Rn)

is bounded away from zero for all T . Moreover, since λmin(R̂n) ≥ λmin(Rn) − λmax(R̂n − Rn) ≥

λmin(Rn)−tr((R̂n−Rn)2), which for a large enough n is bounded away from zero. Hence we obtain

almost surely

‖b̂n − bn‖2 = O

(
p2
n

√
(log log n)1+γ log n

n
+
p3
n

n
+ pnρ

pn

)
, (14.35)

thus proving Theorem 14.7.1 for any γ > 0.

14.8 Asymptotic properties of the GMLE

Let us suppose that {Xt} satisfies the ARMA representation

Xt −
p∑
i=1

φ
(0)
i Xt−i = εt +

q∑
j=1

θ
(0)
j εt−j , (14.36)

and θ0 = (θ
(0)
1 , . . . , θ

(0)
q ), φ0 = (φ

(0)
1 , . . . , φ

(0)
p ) and σ2

0 = var(εt). In this section we consider the

sampling properties of the GML estimator, defined in Section 9.2.1. We first recall the estimator.

We use as an estimator of (θ0, φ0
), φ̂n = (θ̂n, φ̂n, σ̂n) = arg min(θ,φ)∈Θ Ln(φ, θ, σ), where

1

n
Ln(φ, θ, σ) =

1

n

n−1∑
t=1

log rt+1(σ, φ, θ) +
1

n

n−1∑
t=1

(Xt+1 −X(φ,θ)
t+1|t)

2

rt+1(σ, φ, θ)
. (14.37)

To show consistency and asymptotic normality we will use the following assumptions.

Assumption 14.8.1 (i) Xt is both invertible and causal.
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(ii) The parameter space should be such that all φ(z) and θ(z) in the parameter space have roots

whose absolute value is greater than 1 + δ. φ0(z) and θ0(z) belong to this space.

Assumption 14.8.1 means for for some finite constant K and 1
1+δ ≤ ρ < 1, we have |φ(z)−1| ≤

K
∑∞

j=0 |ρj ||zj | and |φ(z)−1| ≤ K
∑∞

j=0 |ρj ||Zj |.

To prove the result, we require the following approximations of the GML. Let

X̃
(φ,θ)
t+1|t,... =

t∑
j=1

bj(φ, θ)Xt+1−j . (14.38)

This is an approximation of the one-step ahead predictor. Since the likelihood is constructed from

the one-step ahead predictors, we can approximated the likelihood 1
nLn(φ, θ, σ) with the above and

define

1

n
L̃n(φ, θ, σ) = log σ2 +

1

nσ2

T−1∑
t=1

(Xt+1 − X̃(φ,θ)
t+1|t,...)

2. (14.39)

We recall that X̃
(φ,θ)
t+1|t,... was derived from X

(φ,θ)
t+1|t,... which is the one-step ahead predictor of Xt+1

given Xt, Xt−1, . . ., this is

X
(φ,θ)
t+1|t,... =

∞∑
j=1

bj(φ, θ)Xt+1−j . (14.40)

Using the above we define a approximation of 1
nLn(φ, θ, σ) which in practice cannot be obtained

(since the infinite past of {Xt} is not observed). Let us define the criterion

1

n
Ln(φ, θ, σ) = log σ2 +

1

nσ2

T−1∑
t=1

(Xt+1 −X(φ,θ)
t+1|t,...)

2. (14.41)

In practice 1
nLn(φ, θ, σ) can not be evaluated, but it proves to be a convenient tool in obtaining

the sampling properties of φ̂n. The main reason is because 1
nLn(φ, θ, σ) is a function of {Xt} and

{X(φ,θ)
t+1|t,... =

∑∞
j=1 bj(φ, θ)Xt+1−j} both of these are ergodic (since the ARMA process is ergodic

when its roots lie outside the unit circle and the roots of φ, θ ∈ Θ are such that they lie outside

the unit circle). In contrast looking at Ln(φ, θ, σ), which is comprised of {Xt+1|t}, which not an

ergodic random variable because Xt+1 is the best linear predictor of Xt+1 given Xt, . . . , X1 (see the

number of elements in the prediction changes with t). Using this approximation really simplifies

the proof, though it is possible to prove the result without using these approximations.
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First we obtain the result for the estimators ϕ̂∗n = (θ∗n, φ
∗
n
, σ̂n) = arg min(θ,φ)∈Θ Ln(φ, θ, σ) and

then show the same result can be applied to ϕ̂n.

Proposition 14.8.1 Suppose {Xt} is an ARMA process which satisfies (14.36), and Assumption

14.8.1 is satisfied. Let X
(φ,θ)
t+1|t, X̃

(φ,θ)
t+1|t,... and X

(φ,θ)
t+1|t,... be the predictors defined in (??), (14.38) and

(14.40), obtained using the parameters φ = {φj} and θ = {θi}, where the roots the corresponding

characteristic polynomial φ(z) and θ(z) have absolute value greater than 1 + δ. Then

∣∣X(φ,θ)
t+1|t − X̃

(φ,θ)
t+1|t,...

∣∣ ≤ ρt

1− ρ

t∑
i=1

ρi|Xi|, (14.42)

E(X
(φ,θ)
t+1|t − X̃

(φ,θ)
t+1|t,...)

2 ≤ Kρt, (14.43)

∣∣X̃t+1|t,...(1)−Xt+1|t,...
∣∣ =

∣∣ ∞∑
j=t+1

bj(φ, θ)Xt+1−j
∣∣ ≤ Kρt ∞∑

j=0

ρj |X−j |, (14.44)

E(X
(φ,θ)
t+1|t,... − X̃

(φ,θ)
t+1|t,...)

2 ≤ Kρt (14.45)

and

|rt(σ, φ, θ)− σ2| ≤ Kρt (14.46)

for any 1/(1 + δ) < ρ < 1 and K is some finite constant.

PROOF. The proof follows closely the proof of Proposition 14.8.1. First we define a separate

ARMA process {Yt}, which is driven by the parameters θ and φ (recall that {Xt} is drive by the

parameters θ0 and φ0). That is Yt satisfies Yt −
∑p

j=1 φjYt−j = εt +
∑q

j=1 θjεt−j . Recalling that

Xφ,θ
t+1|t is the best linear predictor of Xt+1 given Xt, . . . , X1 and the variances of {Yt} (noting that

it is the process driven by θ and φ), we have

Xφ,θ
t+1|t =

t∑
j=1

bj(φ, θ)Xt+1−j +
( ∞∑
j=t+1

bj(φ, θ)r
′
t,j(φ, θ)Σt(φ, θ)

−1
)
Xt, (14.47)
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where Σt(φ, θ)s,t = E(YsYt), (rt,j)i = E(Yt−iY−j) and X ′t = (Xt, . . . , X1). Therefore

Xφ,θ
t+1|t − X̃t+1|t,... =

( ∞∑
j=t+1

bjr
′
t,jΣt(φ, θ)

−1
)
Xt.

Since the largest eigenvalue of Σt(φ, θ)
−1 is bounded (see Lemma 7.14.2) and |(rt,j)i| = |E(Yt−iY−j)| ≤

Kρ|t−i+j| we obtain the bound in (14.42). Taking expectations, we have

E(Xφ,θ
t+1|t − X̃

φ,θ
t+1|t,...)

2 =
( ∞∑
j=t+1

bjr
′
t,j

)
Σt(φ, θ)

−1Σt(φ0, θ0)Σt(φ, θ)
−1
( ∞∑
j=t+1

bt+jrt,j
)
.

Now by using the same arguments given in the proof of (7.23) we obtain (14.43).

To prove (14.45) we note that

E(X̃t+1|t,...(1)−Xt+1|t,...)
2 = E(

∞∑
j=t+1

bj(φ, θ)Xt+1−j)
2 = E(

∞∑
j=1

bt+j(φ, θ)X−j)
2,

now by using (4.23), we have |bt+j(φ, θ)| ≤ Kρt+j , for 1
1+δ < ρ < 1, and the bound in (14.44).

Using this we have E(X̃t+1|t,...(1)−Xt+1|t,...)
2 ≤ Kρt, which proves the result. �

Using εt = Xt −
∑∞

j=1 bj(φ0,θ0)Xt−j and substituting this into Ln(φ,θ, σ) gives

1

n
Ln(φ,θ, σ) = log σ2 +

1

nσ2

(
Xt −

∞∑
j=1

bj(φ, θ)Xt+1−j
)2

=
1

n
Ln(φ, θ, σ) log σ2 +

1

nσ2

T−1∑
t=1

{
θ(B)−1φ(B)Xt

}{
θ(B)−1φ(B)Xt

}
= log σ2 +

1

nσ2

n∑
t=1

ε2
t +

2

n

n∑
t=1

εt
( ∞∑
j=1

bj(φ,θ)Xt−j
)

+
1

n

n∑
t=1

( ∞∑
j=1

(bj(φ,θ)− bj(φ0,θ0))Xt−j
)2
.

Remark 14.8.1 (Derivatives involving the Backshift operator) Consider the transformation

1

1− θB
Xt =

∞∑
j=0

θjBjXt =
∞∑
j=0

θjXt−j .

Suppose we want to differentiate the above with respect to θ, there are two ways this can be done.

Either differentiate
∑∞

j=0 θ
jXt−j with respect to θ or differentiate 1

1−θB with respect to θ. In other
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words

d

dθ

1

1− θB
Xt =

−B
(1− θB)2

Xt =

∞∑
j=0

jθj−1Xt−j .

Often it is easier to differentiate the operator. Suppose that θ(B) = 1 +
∑p

j=1 θjB
j and φ(B) =

1−
∑q

j=1 φjB
j, then we have

d

dθj

φ(B)

θ(B)
Xt = −B

jφ(B)

θ(B)2
Xt = − φ(B)

θ(B)2
Xt−j

d

dφj

φ(B)

θ(B)
Xt = − Bj

θ(B)2
Xt = − 1

θ(B)2
Xt−j .

Moreover in the case of squares we have

d

dθj
(
φ(B)

θ(B)
Xt)

2 = −2(
φ(B)

θ(B)
Xt)(

φ(B)

θ(B)2
Xt−j),

d

dφj
(
φ(B)

θ(B)
Xt)

2 = −2(
φ(B)

θ(B)
Xt)(

1

θ(B)2
Xt−j).

Using the above we can easily evaluate the gradient of 1
nLn

1

n
∇θiLn(φ,θ, σ) = − 2

σ2

n∑
t=1

(θ(B)−1φ(B)Xt)
φ(B)

θ(B)2
Xt−i

1

n
∇φjLn(φ,θ, σ) = − 2

nσ2

n∑
t=1

(θ(B)−1φ(B)Xt)
1

θ(B)
Xt−j

1

n
∇σ2Ln(φ,θ, σ) =

1

σ2
− 1

nσ4

n∑
t=1

(
Xt −

∞∑
j=1

bj(φ,θ)Xt−j
)2
. (14.48)

Let ∇ = (∇φi ,∇θj ,∇σ2). We note that the second derivative ∇2Ln can be defined similarly.

Lemma 14.8.1 Suppose Assumption 14.8.1 holds. Then

sup
φ,θ∈Θ

‖ 1

n
∇Ln‖2 ≤ KSn sup

φ,θ∈Θ
‖ 1

n
∇3Ln‖2 ≤ KSn (14.49)

for some constant K,

Sn =
1

n

max(p,q)∑
r1,r2=0

n∑
t=1

Yt−r1Yt−r2 (14.50)
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where

Yt = K

∞∑
j=0

ρj · |Xt−j |.

for any 1
(1+δ) < ρ < 1.

PROOF. The proof follows from the the roots of φ(z) and θ(z) having absolute value greater than

1 + δ. �

Define the expectation of the likelihood L(φ,θ, σ)) = E( 1
nLn(φ,θ, σ)). We observe

L(φ,θ, σ)) = log σ2 +
σ2

0

σ2
+

1

σ2
E(Zt(φ,θ)2)

where

Zt(φ,θ) =

∞∑
j=1

(bj(φ,θ)− bj(φ0,θ0))Xt−j

Lemma 14.8.2 Suppose that Assumption 14.8.1 are satisfied. Then for all θ, φ, θ ∈ Θ we have

(i) 1
n∇

iLn(φ,θ, σ))
a.s.→ ∇iL(φ,θ, σ)) for i = 0, 1, 2, 3.

(ii) Let Sn defined in (14.50), then Sn
a.s.→ E(

∑max(p,q)
r1,r2=0

∑n
t=1 Yt−r1Yt−r2).

PROOF. Noting that the ARMA process {Xt} are ergodic random variables, then {Zt(φ,θ)} and

{Yt} are ergodic random variables, the result follows immediately from the Ergodic theorem.

We use these results in the proofs below.

Theorem 14.8.1 Suppose that Assumption 14.8.1 is satisfied. Let (θ̂
∗
n, φ̂

∗
n
, σ̂∗n) = arg minLn(θ, φ, σ)

(noting the practice that this cannot be evaluated). Then we have

(i) (θ̂
∗
n, φ̂

∗
n
, σ̂∗n)

a.s.→ (θ0, φ0
, σ0).

(ii)
√
n(θ̂
∗
n − θ0, φ̂

∗
n
− θ0)

D→ N (0, σ2
0Λ−1), where

Λ =

 E(UtU
′
t) E(VtU

′
t)

E(UtV
′
t ) E(VtV

′
t )


and {Ut} and {Vt} are autoregressive processes which satisfy φ0(B)Ut = εt and θ0(B)Vt = εt.
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PROOF. We prove the result in two stages below. �

PROOF of Theorem 14.8.1(i) We will first prove Theorem 14.8.1(i). Noting the results in

Section 14.3, to prove consistency we recall that we must show (a) the (φ
0
, θ0, σ0) is the unique

minimum of L(·) (b) pointwise convergence 1
T L(φ,θ, σ))

a.s.→ L(φ,θ, σ)) and (b) stochastic equicon-

tinuity (as defined in Definition 14.3.2). To show that (φ
0
, θ0, σ0) is the minimum we note that

L(φ,θ, σ))− L(φ0,θ0, σ0)) = log(
σ2

σ2
0

) +
σ2

σ2
0

− 1 + E(Zt(φ,θ)2).

Since for all positive x, log x+ x− 1 is a positive function and E(Zt(φ,θ)2) = E(
∑∞

j=1(bj(φ,θ)−

bj(φ0,θ0))Xt−j)
2 is positive and zero at (φ

0
, θ0, σ0) it is clear that φ0,θ0, σ0 is the minimum of

L. We will assume for now it is the unique minimum. Pointwise convergence is an immediate

consequence of Lemma 14.8.2(i). To show stochastic equicontinuity we note that for any ϕ1 =

(φ1,θ1, σ1) and ϕ2 = (φ2,θ2, σ2) we have by the mean value theorem

Ln(φ1,θ1, σ1)− Ln(φ2,θ2, σ2)) = (ϕ1 −ϕ2)∇Ln(φ̄, θ̄, σ̄).

Now by using (14.49) we have

Ln(φ1,θ1, σ1)− Ln(φ2,θ2, σ2)) ≤ ST ‖(φ1 − φ2), (θ1 − θ2), (σ1 − σ2)‖2.

By using Lemma 14.8.2(ii) we have Sn
a.s.→ E(

∑max(p,q)
r1,r2=0

∑n
t=1 Yt−r1Yt−r2), hence {Sn} is almost surely

bounded. This implies that Ln is equicontinuous. Since we have shown pointwise convergence and

equicontinuity of Ln, by using Corollary 14.3.1, we almost sure convergence of the estimator. Thu

proving (i). �

PROOF of Theorem 14.8.1(ii) We now prove Theorem 14.8.1(i) using the Martingale central

limit theorem (see Billingsley (1995) and Hall and Heyde (1980)) in conjunction with the Cramer-

Wold device (see Theorem 9.1.1).

Using the mean value theorem we have

(
ϕ̂∗n −ϕ0

)
= ∇2L∗n(ϕ̄n)−1∇L∗n(φ0,θ0, σ0)

where ϕ̂∗n = (φ̂
∗
n, θ̂

∗
n, σ̂

∗
n), ϕ0 = (φ0,θ0, σ0) and ϕ̄n = φ̄, θ̄, σ̄ lies between ϕ̂∗n and ϕ0.
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Using the same techniques given in Theorem 14.8.1(i) and Lemma 14.8.2 we have pointwise

convergence and equicontinuity of ∇2Ln. This means that ∇2Ln(ϕ̄n)
a.s.→ E(∇2Ln(φ0,θ0, σ0)) =

1
σ2 Λ (since by definition of ϕ̄n ϕ̄n

a.s.→ ϕ0). Therefore by applying Slutsky’s theorem (since Λ is

nonsingular) we have

∇2Ln(ϕ̄n)−1 a.s.→ σ2Λ−1. (14.51)

Now we show that ∇Ln(ϕ0) is asymptotically normal. By using (14.48) and replacing Xt−i =

φ0(B)−1θ0(B)εt−i we have

1

n
∇θiLn(φ0,θ0, σ0) =

2

σ2n

n∑
t=1

εt
(−1)

θ0(B)
εt−i =

−2

σ2n

n∑
t=1

εtVt−i i = 1, . . . , q

1

n
∇φjLn(φ0,θ0, σ0) =

2

σ2n

n∑
t=1

εt
1

φ0(B)
εt−j =

2

σ2n

T∑
t=1

εtUt−j j = 1, . . . , p

1

n
∇σ2Ln(φ0,θ0, σ0) =

1

σ2
− 1

σ4n

T∑
t=1

ε2 =
1

σ4n

T∑
t=1

(σ2 − ε2),

where Ut = 1
φ0(B)εt and Vt = 1

θ0(B)εt. We observe that 1
n∇Ln is the sum of vector martingale

differences. If E(ε4
t ) < ∞, it is clear that E((εtUt−j)

4) = E((ε4
t )E(Ut−j)

4) < ∞, E((εtVt−i)
4) =

E((ε4
t )E(Vt−i)

4) < ∞ and E((σ2 − ε2
t )

2) < ∞. Hence Lindeberg’s condition is satisfied (see the

proof given in Section 9.1.6, for why this is true). Hence we have

√
n∇Ln(φ0,θ0, σ0)

D→ N (0,Λ).

Now by using the above and (14.51) we have

√
n
(
ϕ̂∗n −ϕ0

)
=
√
n∇2Ln(ϕ̄n)−1∇Ln(ϕ0)⇒

√
n
(
ϕ̂∗n −ϕ0

) D→ N (0, σ4Λ−1).

Thus we obtain the required result. �

The above result proves consistency and asymptotically normality of (θ̂
∗
n, φ̂

∗
n
, σ̂∗n), which is based

on Ln(θ, φ, σ), which in practice is impossible to evaluate. However we will show below that the

gaussian likelihood, Ln(θ, φ, σ) and is derivatives are sufficiently close to Ln(θ, φ, σ) such that

the estimators (θ̂
∗
n, φ̂

∗
n
, σ̂∗n) and the GMLE, (θ̂n, φ̂n, σ̂n) = arg minLn(θ, φ, σ) are asymptotically

equivalent. We use Lemma 14.8.1 to prove the below result.
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Proposition 14.8.2 Suppose that Assumption 14.8.1 hold and Ln(θ, φ, σ), L̃n(θ, φ, σ) and Ln(θ, φ, σ)

are defined as in (14.37), (14.39) and (14.41) respectively. Then we have for all (θ, φ) ∈ Theta we

have almost surely

sup
(φ,θ,σ)

1

n
|∇(k)L̃(φ,θ, σ)−∇kLn(φ,θ, σ)| = O(

1

n
) sup

(φ,θ,σ)

1

n
|L̃n(φ,θ, σ)− L(φ,θ, σ)| = O(

1

n
),

for k = 0, 1, 2, 3.

PROOF. The proof of the result follows from (14.42) and (14.44). We show that result for

sup(φ,θ,σ)
1
n |L̃(φ,θ, σ)− Ln(φ,θ, σ)|, a similar proof can be used for the rest of the result.

Let us consider the difference

Ln(φ, θ)− Ln(φ, θ) =
1

n
(In + IIn + IIIn),

where

In =
n−1∑
t=1

{
rt(φ, θ, σ)− σ2

}
, IIn =

n−1∑
t=1

1

rt(φ, θ, σ)
(X

(φ,θ)
t+1 −X

(φ,θ)
t+1|t)

2

IIIn =
n−1∑
t=1

1

σ2

{
2Xt+1(X

(φ,θ)
t+1|t − X̃

(φ,θ)
t+1|t,...) + ((X

(φ,θ)
t+1|t)

2 − (X̃
(φ,θ)
t+1|t,...)

2)
}
.

Now we recall from Proposition 14.8.1 that

∣∣X(φ,θ)
t+1|t − X̃

(φ,θ)
t+1|t,...

∣∣ ≤ K · Vt ρt

(1− ρ)

where Vt =
∑t

i=1 ρ
i|Xi|. Hence since E(X2

t ) < ∞ and E(V 2
t ) < ∞ we have that supn E|In| < ∞,

supn E|IIn| <∞ and supn E|IIIn| <∞. Hence the sequence {|In + IIn + IIIn|}n is almost surely

bounded. This means that almost surely

sup
φ,θ,σ

∣∣Ln(φ, θ)− Ln(φ, θ)
∣∣ = O(

1

n
).

Thus giving the required result. �

Now by using the above proposition the result below immediately follows.

Theorem 14.8.2 Let (θ̂, φ̂) = arg minLT (θ, φ, σ) and (θ̃, φ̂) = arg min L̃T (θ, φ, σ)
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(i) (θ̂, φ̂)
a.s.→ (θ0, φ0

) and (θ̃, φ̃)
a.s.→ (θ0, φ0

).

(ii)
√
T (θ̂T − θ0, φ̂T − θ0)

D→ N (0, σ4
0Λ−1)

and
√
T (θ̃T − θ0, φ̃T − θ0)

D→ N (0, σ4
0Λ−1).

PROOF. The proof follows immediately from Proposition 14.8.1. �
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Chapter 15

Residual Bootstrap for estimation in

autoregressive processes

In Chapter ?? we consider the asymptotic sampling properties of the several estimators including

the least squares estimator of the autoregressive parameters and the gaussian maximum likelihood

estimator used to estimate the parameters of an ARMA process. The asymptotic distributions

are often used for statistical testing and constructing confidence intervals. However the results

are asymptotic, and only hold (approximately), when the sample size is relatively large. When

the sample size is smaller, the normal approximation is not valid and better approximations are

sought. Even in the case where we are willing to use the asymptotic distribution, often we need to

obtain expressions for the variance or bias. Sometimes this may not be possible or only possible

with a excessive effort. The Bootstrap is a power tool which allows one to approximate certain

characteristics. To quote from Wikipedia ‘Bootstrap is the practice of estimating properties of an

estimator (such as its variance) by measuring those properties when sampling from an approximat-

ing distribution’. Bootstrap essentially samples from the sample. Each subsample is treated like

a new sample from a population. Using these ‘new’ multiple realisations one can obtain approx-

imations for CIs and variance estimates for the parameter estimates. Of course in reality we do

not have multiple-realisations, we are sampling from the sample. Thus we are not gaining more

as we subsample more. But we do gain some insight into the finite sample distribution. In this

chapter we will details the residual bootstrap method, and then show that the asymptotically the

bootstrap distribution coincides with asymptotic distribution.

The residual bootstrap method was first proposed by J. P. Kreiss (Kreiss (1997) is a very nice
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review paper on the subject), (see also Franke and Kreiss (1992), where an extension to AR(∞)

processes is also given here). One of the first theoretical papers on the bootstrap is Bickel and

Freedman (1981). There are several other boostrapping methods for time series, these include

bootstrapping the periodogram, block bootstrap, bootstrapping the Kalman filter (Stoffer and

Wall (1991), Stoffer and Wall (2004) and Shumway and Stoffer (2006)). These methods have not

only been used for variance estimation but also determining orders etc. At this point it is worth

mentioning methods Frequency domain approaches are considered in Dahlhaus and Janas (1996)

and Franke and Härdle (1992) (a review of subsampling methods can be found in Politis et al.

(1999)).

15.1 The residual bootstrap

Suppose that the time series {Xt} satisfies the stationary, causal AR process

Xt =

p∑
j=1

φjXt−j + εt,

where {εt} are iid random variables with mean zero and variance one and the roots of the charac-

teristic polynomial have absolute value greater than (1 + δ). We will suppose that the order p is

known.

The residual bootstrap for autoregressive processes

(i) Let

Γ̂p =
1

n

n∑
t=p+1

Xt−1X
′
t−1 and γ̂p =

1

n

n∑
t=p+1

Xt−1Xt, (15.1)

where X′t = (Xt, . . . , Xt−p+1). We use φ̂
n

= (φ̂1, . . . , φ̂p)
′ == Γ̂−1

p γ̂p as an estimator of

φ = (φ1, . . . , φp).

(ii) We create the bootstrap sample by first estimating the residuals {εt} and sampling from the

residuals. Let

ε̂t = Xt −
p∑
j=1

φjXt−j .
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(iii) Now create the empirical distribution function based on ε̂t. Let

F̂n(x) =
1

n− p

n∑
t=p+1

I(−∞,ε̂t](x).

we notice that sampling from the distribution F̂n(x), means observing ε̂t with probability

(n− p)−1.

(iv) Sample independently from the distribution F̂n(x) n times. Label this sample as {ε+
k }.

(v) Let Xk = ε+
k for 1 ≤ k ≤ p and

X+
k =

p∑
j=1

φjX
+
k−j + εk, p < k ≤ n.

(vi) We call {X+
k }. Repeating step (vi,v) N times gives us N bootstrap samples. To distinguish

each sample we can label each bootstrap sample as ({(X+
k )(i)}; i = p+ 1, . . . , n).

(vii) For each bootstrap sample we can construct a bootstrap matrix, vector and estimator (Γ+
p )(i),

(γ+
p )(i) and (φ̂

+

n
)(i) = ((Γ+

p )(i))−1(γ+
p )(i).

(viii) Using (φ̂
+

n
)(i) we can estimate the variance of φ̂

n
− φ with 1

n

∑n
j=1((φ̂

+

n
)(i) − φ̂

n
) and the

distribution function of φ̂
n
− φ.

15.2 The sampling properties of the residual bootstrap

estimator

In this section we show that the distribution of
√
n(φ̂

+

n
− φ̂

n
) and

√
n(φ̂

n
− φ) asymptotically

coincide. This means that using the bootstrap distribution is no worse than using the asymptotic

normal approximation. However it does not say the bootstrap distribution better approximates

the finite sample distribution of (φ̂
n
−φ), to show this one would have to use Edgeworth expansion

methods.

In order to show that the distribution of the bootstrap sample
√
n(φ̂

+

n
−φ̂

n
) asymptotically coin-

cides with the asymptotic distribution of
√
n(φ̂

n
−φ), we will show convergence of the distributions
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under the following distance

dp(H,G) = inf
X∼H,Y∼G

{E(X − Y )p}1/p,

where p > 1. Roughly speaking, if dp(Fn, Gn) → 0, then the limiting distributions of Fn and Gn

are the same (see Bickel and Freedman (1981)). The case that p = 2 is the most commonly used p,

and for p = 2, this is called Mallows distance. The Mallows distance between the distribution H

and G is defined as

d2(H,G) = inf
X∼H,Y∼G

{E(X − Y )2}1/2,

we will use the Mallow distance to prove the results below. It is worth mentioning that the

distance is zero when H = G are the same (as a distance should be). To see this, set the joint

distribution between X and Y to be F (x, y) == G(x) when y = x and zero otherwise, then it

clear that d2(H,G) = 0. To reduce notation rather than specify the distributions, F and G, we let

dp(X,Y ) = dp(H,G), where the random variables X and Y have the marginal distributions H and

G, respectively. We mention that distance dp satisfies the triangle inequality.

The main application of showing that dp(Fn, Gn) → 0 is stated in the following lemma, which

is a version of Lemma 8.3, Bickel and Freedman (1981).

Lemma 15.2.1 Let α, αn be two probability measures then dp(αn, α)→ 0 if and only if

Eαn(|X|p) =

∫
|x|pαn(dx)→ Eα(|X|p) =

∫
|x|pα(dx) n→∞.

and the distribution αn converges weakly to the distribution α.

Our aim is to show that

d2

(√
n(φ̂

+

n
− φ̂

n
),
√
n(φ̂

n
− φ

)
→ 0,

which implies that their distributions asymptotically coincide. To do this we use

(
√
n(φ̂

n
− φ) =

√
nΓ̂−1

p (γ̂p − Γ̂pφ)

(
√
n(φ̂

+

n
− φ̂) =

√
n(Γ+

p )−1(γ+
p − Γ+

p φ̂n).
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Studying how Γ̂p, γ̂p, Γ+
p and γ+

p are constructed, we see as a starting point we need to show

d2(X+
t , Xt)→ 0 t, n→∞, d2(Z+

t , Zt)→ 0 n→∞.

We start by showing that d2(Z+
t , Zt)→ 0

Lemma 15.2.2 Suppose ε+
t is the bootstrap residuals and εt are the true residuals. Define the

discrete random variable J = {p+ 1, . . . , n} and let P (J = k) = 1
n−p . Then

E
(
(ε̂J − εJ)2|X1, . . . , Xn

)
= Op(

1

n
) (15.2)

and

d2(F̂n, F ) ≤ d2(F̂n, Fn) + d2(Fn, F )→ 0 as →∞, (15.3)

where Fn = 1
n−1

∑n
t=p+1 I(−∞,εt)(x), F̂n(x) = 1

n−p
∑n

t=p+1 I(−∞,ε̂t](x) are the empirical distribution

function based on the residuals {εt}np and estimated residuals {ε̂t}np , and F is the distribution

function of the residual εt.

PROOF. We first show (15.2). From the definition of ε̂+
J and εJ we have

E(|ε̂J − εJ |2|X1, . . . , Xn) =
1

n− p

n∑
t=p+1

(ε̂t − εt)2

=
1

n− p

n∑
t=p+1

(

p∑
j=1

[φ̂j − φj ]Xt−j)
2

=

p∑
j1,j2=1

[φ̂j1 − φj1 ][φ̂j2 − φj2 ]
1

n− p

n∑
t=p+1

Xt−j1Xt−j2 .

Now by using (14.14) we have sup1≤j≤p |φ̂j − φj | = Op(n
−1/2), therefore we have E|ε̂J − εJ |2 =

Op(n
−1/2).

We now prove (15.3). We first note by the triangle inequality we have

d2(F, Fn) ≤ d2(F, Fn) + d2(F̂n, Fn).

By using Lemma 8.4, Bickel and Freedman (1981), we have that d2(Fn, F )→ 0. Therefore we need

to show that d2(F̂n, Fn) → 0. It is clear by definition that d2(F̂n, Fn) = d2(ε+
t , ε̃t), where ε+

t is
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sampled from F̂n = 1
n−1

∑n
t=p+1 I(−∞,ε̂t)(x) and ε̃t is sampled from Fn = 1

n−1

∑n
t=p+1 I(−∞,εt)(x).

Hence, ε̃t ε̃
+
t have the same distribution as εJ and ε̂J . We now evaluate d2(ε+

t , ε̃t). To evaluate

d2(ε+
t , ε̃t) = infε+t ∼F̂n,ε̃t∼Fn

E|ε+
t − ε̃t| we need that the marginal distributions of (ε+

t , ε̃t) are F̂n and

Fn, but the infimum is over all joint distributions. It is best to choose a joint distribution which

is highly dependent (because this minimises the distance between the two random variables). An

ideal candidate is to suppose that ε+
t = ε̂J and ε̃t = εJ , since these have the marginals F̂n and Fn

respectively. Therefore

d2(F̂n, Fn)2 = inf
ε+t ∼F̂n,ε̃t∼Fn

E|ε+
t − ε̃t|2 ≤ E

(
(ε̂J − εJ)2|X1, . . . , Xn

)
= Op(

1

n
),

where the above rate comes from (15.2). This means that d2(F̂n, Fn)
P→ 0, hence we obtain (15.3).

�

Corollary 15.2.1 Suppose ε+
t is the bootstrapped residual. Then we have

EF̂n((ε+
t )2|X1, . . . , Xn)

P→ EF (ε2
t )

PROOF. The proof follows from Lemma 15.2.1 and Lemma 15.2.2. �

We recall that since Xt is a causal autoregressive process, there exists some coefficients {aj}

such that

Xt =

∞∑
j=0

ajεt−j ,

where aj = aj(φ) = [A(φ)j ]1,1 = [Aj ]1,1 (see Lemma 4.5.1). Similarly using the estimated parame-

ters φ̂
n

we can write X+
t as

X+
t =

t∑
j=0

aj(φ̂n)ε+
t−j ,

where aj(φ̂n) = [A(φ̂
n
)j ]1,1. We now show that d2(X+

t , Xt)→ 0 as n→∞ and t→∞.

Lemma 15.2.3 Let Jp+1, . . . , Jn be independent samples from {n−p+1, . . . , n} with P (Ji = k) =
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1
n−p . Define

Y +
t =

t∑
j=p+1

aj(φ̂n)ε+
Jt−j

, Ỹ +
t =

t∑
j=p+1

aj(φ̂n)ε+
Jt−j

, Ỹt =

t∑
j=p+1

ajεJt−j , Yt = Ỹt +

∞∑
j=t+p+1

ajεt−j ,

where εJj is a sample from {εp+1, . . . , εn} and ε̂J is a sample from {ε̂p+1, . . . , ε̂n}. Then we have

E
(
(Y +
t − Ỹ

+
t )2|X1, . . . , Xn

)
= Op(

1

n
), d2(Y +

t , Ỹ
+
t )→ 0 n→∞, (15.4)

E
(
(Ỹ +
t − Ỹt)2|X1, . . . , Xn

)
= Op(

1

n
), d2(Ỹ +

t , Ỹt)→ 0 n→∞, (15.5)

and

E
(
(Ỹt − Yt)2|X1, . . . , Xn

)
≤ Kρt, d2(Ỹt, Yt)→ 0 n→∞. (15.6)

PROOF. We first prove (15.4). It is clear from the definitions that

E
(
(Y +
t − Ỹ

+
t )2| X1, . . . , Xn

)
≤

t∑
j=0

([A(φ)j ]1,1 − [A(φ̂
n
)j ]1,1)2E((ε+

j )2|X1, . . . , Xn). (15.7)

Using Lemma 15.2.1 we have that E((ε+
j )2|X1, . . . , Xn) is the same for all j and E((ε+

j )2|X1, . . . , Xn)
P→

E(ε2
t ), hence we will consider for now ([A(φ)j ]1,1− [A(φ̂

n
)j ]1,1)2. Using (14.14) we have (φ̂

n
− φ) =

Op(n
−1/2), therefore by the mean value theorem we have [A(φ)− A(φ̂

n
)| = (φ̂

n
− φ)D ≈ K

nD (for

some random matrix D). Hence

A(φ̂
n
)j = (A(φ) +

K

n
D)j = A(φ)j

(
1 +A(φ)−1K

n

)j
(note these are heuristic bounds, and this argument needs to be made precise). Applying the mean

value theorem again we have

A(φ)j
(

1 +A(φ)−1K

n
D

)j
= A(φ)j +

K

n
DA(φ)j(1 +A(φ)−1K

n
B)j ,
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where B is such that ‖B‖spec ≤ ‖KnD‖. Altogether this gives

|[A(φ)j −A(φ̂
n
)j ]1,1| ≤

K

n
DA(φ)j(1 +A(φ)−1K

n
B)j .

Notice that for large enough n, (1 + A(φ)−1K
nB)j is increasing slower (as n → ∞) than A(φ)j is

contracting. Therefore for a large enough n we have

∣∣[A(φ)j −A(φ̂
n
)j ]1,1

∣∣ ≤ K

n1/2
ρj ,

for any 1
1+δ < ρ < 1. Subsituting this into (15.7) gives

E
(
(Y +
t − Ỹ

+
t )2|X1, . . . , Xn

)
≤ K

n1/2
E((ε+

t )2)
t∑

j=0

ρj = Op(
1

n
)→ 0 n→∞.

hence d2(Ỹ +
t , Y

+
t )→ 0 as n→∞.

We now prove (15.5). We see that

E
(
(Ỹ +
t − Ỹt)2|X1, . . . , Xn

)
=

t∑
j=0

a2
jE(ε̂Jt−j − εJt−j )2 = E(ε̂Jt−j − εJt−j )2

t∑
j=0

a2
j . (15.8)

Now by substituting (15.2) into the above we have E(Ỹ +
t − Ỹt)2 = O(n−1), as required. This means

that d2(Ỹ +
t , Ỹt)→ 0.

Finally we prove (15.6). We see that

E
(
(Ỹt − Yt)2|X1, . . . , Xn

)
=

∞∑
j=t+1

a2
jE(ε2

t ). (15.9)

Using (4.21) we have E(Ỹt − Yt)2 ≤ Kρt, thus giving us (15.6). �

We can now almost prove the result. To do this we note that

(γ̂p − Γ̂pφ) =
1

n− p

n∑
t=p+1

εtXt−1, (γ+
p − Γ+

p φ̂n) =
1

n− p

n∑
t=p+1

ε+
t X+

t−1. (15.10)

Lemma 15.2.4 Let Yt, Y
+
t , Ỹ +

t and Ỹt, be defined as in Lemma 15.2.3. Define Γ̄p and Γ̄+
p , γ̄p

and γ+
p in the same way as Γ̂p and γ̂p defined in (15.1), but using Yt and Y +

t defined in Lemma
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15.2.3, rspectively, rather than Xt. We have that

d2(Yt, Y
+
t ) ≤ {E(Yt − Y +

t )2}1/2 = Op(K(n−1/2 + ρt), (15.11)

d2(Yt, Xt)→ 0, n→∞, (15.12)

and

d2

(√
n(γ̄p − Γ̄pφ),

√
n(γ̄+

p − Γ̄+
p φ̂n)

)
≤ nE

(
(γ̄p − Γ̄pφ)− (γ̄+

p − Γ̄+
p φ̂n)

)2 → 0 n→∞, (15.13)

where Γ̄p, Γ̄+
p , γ̄p and γ̄+

p are defined in the same was as Γ̂p, Γ+
p , γ̂p and γ+

p , but with {Yt} replacing

Xt in Γ̄p and γ̄p and {Y +
t } replacing X+

t in Γ̄+
p and γ̄+

p . Furthermore we have

E|Γ̄+
p − Γ̄p| → 0, (15.14)

d2

(
(γ̄p − Γ̄pφ), (γp − Γpφ)

)
→ 0, E|Γ̄p − Γ̂p| → 0 n→∞. (15.15)

PROOF. We first prove (15.11). Using the triangle inequality we have

{E
(
(Ỹt − Y +

t )2|X1, . . . , Xn

)
}1/2 ≤ {

(
E(Yt − Ỹt)2|X1, . . . , Xn

)
}1/2 + {

(
E(Ỹt − Ỹ +

t )2|X1, . . . , Xn

)
}1/2

+{E
(
(Ỹ +
t − Y

+
t )2|X1, . . . , Xn

)
}1/2 = O(n−1/2 + ρt),

where we use Lemma 15.2.3 we get the second inequality above. Therefore by definition of

d2(Xt, X
+
t ) we have (15.11). To prove (15.12) we note that the only difference between Yt and

Xt is that the {εJk} in Yt, is sampled from {εp+1, . . . , εn} hence sampled from Fn, where as the

{εt}nt=p+1 in Xt are iid random variables with distribution F . Since d2(Fn, F ) → 0 (Bickel and

Freedman (1981), Lemma 8.4) it follows that d2(Yt, Xt)→ 0, thus proving (15.12).

To prove (15.13) we consider the difference (γ̄p − Γ̄pφ)− (γ̄+
p − Γ̄+

p φ̂n) and use (15.10) to get

1

n

n∑
t=p+1

{
εtYt−1 − ε+

t Y+
t−1

}
=

1

n

n∑
t=p+1

{
(εt − ε+

t )Yt−1 + ε+
t (Yt−1 −Y+

t−1)

}
,

where we note that Y+
t−1 = (Y +

t−1, . . . , Y
+
t−p)

′ and Yt−1 = (Yt−1, . . . , Yt−p)
′. Using the above,

489



and taking conditional expectations with respect to {X1, . . . , Xn} and noting that conditioned on

{X1, . . . , Xn}, (εt − ε+
t ) are independent of Xk and X+

k for k < t we have

{
1

n
E

( n∑
t=p+1

{
εtYt−1 − ε+

t Y+
t−1

})2

|X1, . . . , Xn

}1/2

≤ I + II

where

I =
1

n

n∑
t=p+1

{E
(
(εt − ε+

t )2|X1, . . . , Xn

)
}1/2{E(Y2

t−1|X1, . . . , Xn)}1/2

= {E
(
(εt − ε+

t )2|X1, . . . , Xn

)
}1/2 1

n

n∑
t=p+1

{E((Y2
t−1|X1, . . . , Xn)}1/2

II =
1

n

n∑
t=p+1

{E((ε+
t )2|X1, . . . , Xn)}1/2{E((Yt−1 −Y+

t−1)2|X1, . . . , Xn}1/2

= {E((ε+
t )2|X1, . . . , Xn)}1/2 1

n

n∑
t=p+1

{E((Yt−1 −Y+
t−1)2|X1, . . . , Xn)}1/2.

Now by using (15.2) we have I ≤ Kn−1/2, and (15.13) and Corollary 15.2.1 we obtain II ≤ Kn−1/2,

hence we have (15.13). Using a similar technique to that given above we can prove (15.14).

(15.15) follows from (15.13), (15.14) and (15.12). �

Corollary 15.2.2 Let Γ+
p , Γ̂p, γ̂p and γ+

p be defined in (15.1). Then we have

d2

(√
n(γ̂p − Γ̂pφ),

√
n(γ+

p − Γ+
p φ̂n)

)
→ 0 (15.16)

d1(Γ+
p , Γ̂p)→ 0, (15.17)

as n→∞.

PROOF. We first prove (15.16). Using (15.13), (15.15) and the triangular inequality gives (15.16).

To prove (15.17) we use (15.14) and (15.15) and the triangular inequality and (15.16) immediately

follows. �

Now by using (15.17) and Lemma 15.2.1 we have

Γ+
p
P→ E(Γp),
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and by using (15.16), the distribution of
√
n(γ+

p − Γ+
p φ̂n converges weakly to the distribution of

√
n(γ̂p − Γ̂pφ). Therefore

√
n(φ̂

+

n
− φ̂

n
)
D→ N (0, 2Γ−1

p ),

hence the distributions of
√
n(γ̂p−Γ̂pφ) and

√
n(γ+

p −Γ+
p φ̂n) aymptotically coincide. From (14.15) we

have
√
n(φ̂

n
−φ)

D→ N (0, σ2Γ−1
p ). Thus we see that the distribution of

√
n(φ̂

n
−φ) and

√
n(φ̂

+

n
−φ̂

n
)

asymptotically coincide.
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Appendix A

Background

A.1 Some definitions and inequalities

• Some norm definitions.

The norm of an object, is a postive numbers which measure the ‘magnitude’ of that object.

Suppose x = (x1, . . . , xn) ∈ Rn, then we define ‖x‖1 =
∑n

j=1 |xj | and ‖x‖2 = (
∑n

j=1 |x2
j )

1/2

(this is known as the Euclidean norm). There are various norms for matrices, the most

popular is the spectral norm ‖ · ‖spec: let A be a matrix, then ‖A‖spec = λmax(AA′), where

λmax denotes the largest eigenvalue.

• Z denotes the set of a integers {. . . ,−1, 0, 1, 2, . . .}. R denotes the real line (−∞,∞).

• Complex variables.

i =
√
−1 and the complex variable z = x+ iy, where x and y are real.

Often the radians representation of a complex variable is useful. If z = x + iy, then it can

also be written as r exp(iθ), where r =
√
x2 + y2 and θ = tan−1(y/x).

If z = x+ iy, its complex conjugate is z̄ = x− iy.

• The roots of a rth order polynomial a(z), are those values λ1, . . . , λr where a(λi) = 0 for

i = 1, . . . , r.

• Let λ(A) denote the spectral radius of the the matrix A (the largest eigenvalue in absolute

terms). Then for any matrix norm ‖A‖ we have limj→∞ ‖Aj‖1/j = λ(A) (see Gelfand’s
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formula). Suppose λ(A) < 1, then Gelfand’s formula implies that for any λ(A) < ρ < 1,

there exists a constant, C, (which only depends A and ρ), such that ‖Aj‖ ≤ CA,ρρj .

• The mean value theorem.

This basically states that if the partial derivative of the function f(x1, x2, . . . , xn) has a

bounded in the domiain Ω, then for x = (x1, . . . , xn) and y = (y1, . . . , yn)

f(x1, x2, . . . , xn)− f(y1, y2, . . . , yn) =
n∑
i=1

(xi − yi)
∂f

∂xi
cx=x∗

where x∗ lies somewhere between x and y.

• The Taylor series expansion.

This is closely related to the mean value theorem and a second order expansion is

f(x1, x2, . . . , xn)− f(y1, y2, . . . , yn) =
n∑
i=1

(xi − yi)
∂f

∂xi
+

n∑
i,j=1

(xi − yi)(xj − yj)
∂f2

∂xi∂xj
cx=x∗

• Partial Fractions.

We use the following result mainly for obtaining the MA(∞) expansion of an AR process.

Suppose that |gi| > 1 for 1 ≤ i ≤ n. Then if g(z) =
∏n
i=1(1 − z/gi)ri , the inverse of g(z)

satisfies

1

g(z)
=

n∑
i=1

{ ri∑
j=1

gi,j
(1− z

gi
)j
}
,

where gi,j = ..... Now we can make a polynomial series expansion of (1− z
gi

)−j which is valid

for all |z| ≤ 1.

• Dominated convergence.

Suppose a sequence of functions fn(x) is such that pointwise fn(x)→ f(x) and for all n and

x, |fn(x)| ≤ g(x), then
∫
fn(x)dx→

∫
f(x)dx as n→∞.

We use this result all over the place to exchange infinite sums and expectations. For example,
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if
∑∞

j=1 |aj |E(|Zj |) <∞, then by using dominated convergence we have

E(
∞∑
j=1

ajZj) =
∞∑
j=1

ajE(Zj).

• Dominated convergence can be used to prove the following lemma. A more hands on proof

is given below the lemma.

Lemma A.1.1 Suppose
∑∞

k=−∞ |c(k)| <∞, then we have

1

n

(n−1)∑
k=−(n−1)

|kc(k)| → 0

as n→∞. Moreover, if
∑∞

k=−∞ |kc(k)| <∞, then 1
n

∑(n−1)
k=−(n−1) |kc(k)| = O( 1

n).

PROOF. The proof is straightforward in the case that
∑∞

k=∞ |kc(k)| <∞ (the second asser-

tion), in this case
∑(n−1)

k=−(n−1)
|k|
n |c(k)| = O( 1

n). The proof is slightly more tricky in the case

that
∑∞

k=∞ |c(k)| < ∞. First we note that since
∑∞

k=−∞ |c(k)| < ∞ for every ε > 0 there

exists a Nε such that for all n ≥ Nε,
∑
|k|≥n |c(k)| < ε. Let us suppose that n > Nε, then we

have the bound

1

n

(n−1)∑
k=−(n−1)

|kc(k)| ≤ 1

n

(Nε−1)∑
k=−(Nε−1)

|kc(k)|+ 1

n

∑
Nε≤|k|≤n

|kc(k)|

≤ 1

2πn

(Nε−1)∑
k=−(Nε−1)

|kc(k)|+ ε.

Hence if we keep Nε fixed we see that 1
n

∑(Nε−1)
k=−(Nε−1) |kc(k)| → 0 as n → ∞. Since this is

true for all ε (for different thresholds Nε) we obtain the required result. �

• Cauchy Schwarz inequality.

In terms of sequences it is

|
∞∑
j=1

ajbj | ≤ (

∞∑
j=1

a2
j )

1/2(

∞∑
j=1

b2j )
1/2
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. For integrals and expectations it is

E|XY | ≤ E(X2)1/2E(Y 2)1/2

• Holder’s inequality.

This is a generalisation of the Cauchy Schwarz inequality. It states that if 1 ≤ p, q ≤ ∞ and

p+ q = 1, then

E|XY | ≤ E(|X|p)1/pE(|Y |q)1/q

. A similar results is true for sequences too.

• Martingale differences. Let Ft be a sigma-algebra, where Xt, Xt−1, . . . ∈ Ft. Then {Xt} is a

sequence of martingale differences if E(Xt|Ft−1) = 0.

• Minkowski’s inequality.

If 1 < p <∞, then

(E(
n∑
i=1

Xi)
p)1/p ≤

n∑
i=1

(E(|Xi|p))1/p.

• Doob’s inequality.

This inequality concerns martingale differences. Let Sn =
∑n

t=1Xt, then

E(sup
n≤N
|Sn|2) ≤ E(S2

N ).

• Burkhölder’s inequality.

Suppose that {Xt} are martingale differences and define Sn =
∑n

k=1Xt. For any p ≥ 2 we

have

{E(Spn)}1/p ≤
(
2p

n∑
k=1

E(Xp
k)2/p

)1/2
.

An application, is to the case that {Xt} are identically distributed random variables, then

we have the bound E(Spn) ≤ E(Xp
0 )2(2p)p/2np/2.

It is worthing noting that the Burkhölder inequality can also be defined for p < 2 (see
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Davidson (1994), pages 242). It can also be generalised to random variables {Xt} which are

not necessarily martingale differences (see Dedecker and Doukhan (2003)).

• Riemann-Stieltjes Integrals.

In basic calculus we often use the basic definition of the Riemann integral,
∫
g(x)f(x)dx, and if

the function F (x) is continuous and F ′(x) = f(x), we can write
∫
g(x)f(x)dx =

∫
g(x)dF (x).

There are several instances where we need to broaden this definition to include functions F

which are not continuous everywhere. To do this we define the Riemann-Stieltjes integral,

which coincides with the Riemann integral in the case that F (x) is continuous.∫
g(x)dF (x) is defined in a slightly different way to the Riemann integral

∫
g(x)f(x)dx.

Let us first consider the case that F (x) is the step function F (x) =
∑n

i=1 aiI[xi−1,xi], then∫
g(x)dF (x) is defined as

∫
g(x)dF (x) =

∑n
i=1(ai − ai−1)g(xi) (with a−1 = 0). Already

we see the advantage of this definition, since the derivative of the step function is not

well defined at the jumps. As most functions can be written as the limit of step func-

tions (F (x) = limk∞ Fk(x), where Fk(x) =
∑nk

i=1 ai,nkI[xik−1−1,xik
]
), we define

∫
g(x)dF (x) =

limk→∞
∑nk

i=1(ai,nk − ai−1,nk)g(xik).

In statistics, the function F will usually be non-decreasing and bounded. We call such

functions distributions.

Theorem A.1.1 (Helly’s Theorem) Suppose that {Fn} are a sequence of distributions with

Fn(−∞) = 0 and supn Fn(∞) ≤ M < ∞. There exists a distribution F , and a subsequence

Fnk such that for each x ∈ R Fnk → F and F is right continuous.

A.2 Martingales

Definition A.2.1 A sequence {Xt} is said to be a martingale difference if E[Xt|Ft−1], where

Ft=1 = σ(Xt−1, Xt−2, . . .). In other words, the best predictor of Xt given the past is simply zero.

Martingales are very useful when proving several results, including central limit theorems.

Martingales arise naturally in several situations. We now show that if correct likelihood is

used (not the quasi-case), then the gradient of the conditional log likelihood evaluated at the true

parameter is the sum of martingale differences. To see why, let BT =
∑T

t=2 log fθ(Xt|Xt−1, . . . , X1)
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be the conditonal log likelihood and CT (θ) its derivative, where

CT (θ) =
T∑
t=2

∂ log fθ(Xt|Xt−1, . . . , X1)

∂θ
.

We want to show that CT (θ0) is the sum of martingale differences. By definition if CT (θ0) is the

sum of martingale differences then

E

(
∂ log fθ(Xt|Xt−1, . . . , X1)

∂θ
cθ=θ0

∣∣∣∣Xt−1, Xt−2, . . . , X1

)
= 0,

we will show this. Rewriting the above in terms of integrals and exchanging derivative with integral

we have

E

(
∂ log fθ(Xt|Xt−1, . . . , X1)

∂θ
cθ=θ0

∣∣∣∣Xt−1, Xt−2, . . . , X1

)
=

∫
∂ log fθ(xt|Xt−1, . . . , X1)

∂θ
cθ=θ0fθ0(xt|Xt−1, . . . , X1)dxt

=

∫
1

fθ0(xt|Xt−1, . . . , X1)

∂fθ(xt|Xt−1, . . . , X1)

∂θ
cθ=θ0fθ0(xt|Xt−1, . . . , X1)dxt

=
∂

∂θ

(∫
fθ(xt|Xt−1, . . . , X1)dxt

)
cθ=θ0 = 0.

Therefore {∂ log fθ(Xt|Xt−1,...,X1)
∂θ cθ=θ0}t are a sequence of martingale differences and Ct(θ0) is the sum

of martingale differences (hence it is a martingale).

A.3 The Fourier series

The Fourier transform is a commonly used tool. We recall that {exp(2πijω); j ∈ Z} is an orthogonal

basis of the space L2[0, 1]. In other words, if f ∈ L2[0, 1] (ie,
∫ 2

0 f(ω)2dω <∞) then

fn(u) =
n∑

j=−n
cje

iju2π cj =

∫ 1

0
f(u) exp(i2πju)du,

where
∫
|f(u)− fn(u)|2du→ 0 as n→∞. Roughly speaking, if the function is continuous then we

can say that

f(u) =
∑
j∈Z

cje
iju.
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An important property is that f(u) ≡constant iff cj = 0 for all j 6= 0. Moreover, for all n ∈ Z

f(u+ n) = f(u) (hence f is periodic).

Some relations:

(i) Discrete Fourier transforms of finite sequences

It is straightforward to show (by using the property
∑n

j=1 exp(i2πk/n) = 0 for k 6= 0) that if

dk =
1√
n

n∑
j=1

xj exp(i2πjk/n),

then {xr} can be recovered by inverting this transformation

xr =
1√
n

n∑
k=1

dk exp(−i2πrk/n),

(ii) Fourier sums and integrals

Of course the above only has meaning when {xk} is a finite sequence. However suppose that

{xk} is a sequence which belongs to `2 (that is
∑

k x
2
k <∞), then we can define the function

f(ω) =
1√
2π

∞∑
k=−∞

xk exp(ikω),

where
∫ 2π

0 f(ω)2dω =
∑

k x
2
k, and we we can recover {xk} from f(ω), through

xk =
1√
2π

∫ 2π

0
f(ω) exp(−ikω).

(iii) Convolutions. Let us suppose that
∑

k |ak|2 < ∞ and
∑

k |bk|2 < ∞ and we define the

Fourier transform of the sequences {ak} and {bk} as A(ω) = 1√
2π
ak exp(ikω) and B(ω) =

1√
2π

∑
k bk exp(ikω) respectively. Then

∞∑
j=−∞

ajbk−j =

∫ 2π

0
A(ω)B(−ω) exp(−ikω)dω

∞∑
j=−∞

ajbj exp(ijω) =

∫ 2π

0
A(λ)B(ω − λ)dλ. (A.1)
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The proof of the above follows from

∞∑
j=−∞

ajbj exp(ijω) =

∞∑
r=−∞

∫ 2π

0

∫ 2π

0
A(λ1)B(λ2) exp(−ir(λ1 + λ2)) exp(ijω)

=

∫ ∫
A(λ1)B(λ2)

∞∑
r=−∞

exp(ir(ω − λ1 − λ2))︸ ︷︷ ︸
=δω(λ1+λ2)

dλ1dλ2

=

∫ 2π

0
A(λ)B(ω − λ)dλ.

(iv) Using the DFT to calculate convolutions. Our objective is calculate
∑n

j=k ajbj−s for

all s = 0, . . . , n− 1 in as few computing computing operations. This is typically done via the

DFT. Examples in time series where this is useful is in calculating the sample autocovariance

function.

Suppose we have two sequences a = (a1, . . . , an) and b = (b1, . . . , bn). Let An(ωk,n) =∑n
j=1 aj exp(ijωk,n) and Bn(ωk,n) =

∑n
j=1 bj exp(ijωk,n) where ωk,n = 2πk/n. It is straight-

forward to show that

1

n

n∑
k=1

An(ωk,n)Bn(ωk,n) exp(−isωk,n) =

n∑
j=s

ajbj−s +

s−1∑
j=1

ajbj−s+n,

this is very fast to compute (requiring only O(n log n) operations using first the FFT and

then inverse FFT). The only problem is that we don’t want the second term.

By padding the sequences and definingAn(ωk,2n) =
∑n

j=1 aj exp(ijωk,2n) =
∑2n

j=1 aj exp(ijωk,2n),

with ωk,2n = 2πk/2n (where we set aj = 0 for j > 0) and analogously Bn(ωk,2n) =∑n
j=1 bj exp(ijωk,2n), we are able to remove the second term. Using the same calculations

we have

1

n

2n∑
k=1

An(ωk,2n)Bn(ωk,2n) exp(−isωk,2n) =

n∑
j=s

ajbj−s +

s−1∑
j=1

ajbj−s+2n︸ ︷︷ ︸
=0

.

This only requires O(2n log(2n)) operations to compute the convolution for all 0 ≤ k ≤ n−1.

(v) The Poisson Summation Formula Suppose we do not observe the entire function and

observe a sample from it, say ft,n = f( tn) we can use this to estimate the Fourier coefficient
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cj via the Discrete Fourier Transform:

cj,n =
1

n

n∑
t=1

f(
t

n
) exp(ij

2πt

n
).

The Poisson Summation formula is

cj,n = cj +
∞∑
k=1

cj+kn +
∞∑
k=1

cj−kn,

which we can prove by replacing f( tn) with
∑

j∈Z cje
ij2πt/n. In other words, cj,n cannot

disentangle frequency eijω from it’s harmonics ei(j+n)ω (this is aliasing).

(vi) Error in the DFT By using the Poisson summation formula we can see that

|cj,n − cj | ≤
∞∑
k=1

|cj+kn|+
∞∑
k=1

|cj−kn|

It can be shown that if a function f(·) is (p+1) times differentiable with bounded derivatives

or that fp(·) is bounded and piecewise montonic then the corresponding Fourier coefficients

satisfy

|cj | ≤ C|j|−(p+1).

Using this result and the Poisson summation formula we can show that for |j| ≤ n/2 that

if if a function f(·) is (p + 1) times differentiable with bounded derivatives or that fp(·) is

piecewise montonic and p ≥ 1 then

|cj,n − cj | ≤ Cn−(p+1), (A.2)

where C is some finite constant. However, we cannot use this result in the case that f is

bounded and piecewise monotone, however it can still be shown that

|cj,n − cj | ≤ Cn−1, (A.3)

see Section 6.3, page 189, Briggs and Henson (1997).

500



A.4 Application of Burkholder’s inequality

There are two inequalities (one for 1 < p ≤ 2). Which is the following:

Theorem A.4.1 Suppose that Yk are martingale differences and that Sn =
∑n

j=1 Yk, then for

0 < q ≤ 2

E|Sn|q ≤ 2

n∑
j=1

E(Xq
k), (A.4)

See for example Davidson (p. 242, Theorem 15.17).

And one for (p ≥ 2), this is the statement for the Burkölder inequality:

Theorem A.4.2 Suppose {Si : Fi} is a martingale and 1 < p < ∞. Then there exists constants

C1, C2 depending only on p such that

C1E

(
m∑
i=1

X2
i

)p/2
≤ E|Sn|p ≤ C2E

(
m∑
i=1

X2
i

)p/2
. (A.5)

An immediately consequence of the above for p ≥ 2 is the following corollary (by using Hölder’s

inequality):

Corollary A.4.1 Suppose {Si : Fi} is a martingale and 2 ≤ p < ∞. Then there exists constants

C1, C2 depending only on p such that

‖Sn‖Ep ≤

(
C

2/p
2

m∑
i=1

‖X2
i ‖Ep/2

)1/2

. (A.6)

PROOF. By using the right hand side of (A.5) we have

{
E|Sn|p

}1/p ≤


C2E

(
m∑
i=1

X2
i

)p/22/p


1/2

=

C2/p
2

∥∥∥∥∥
m∑
i=1

X2
i

∥∥∥∥∥
E

p/2

1/2

. (A.7)
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By using Hölder inequality we have

{
E|Sn|p

}1/p ≤

[
C

2/p
2

m∑
i=1

‖X2
i ‖Ep/2

]1/2

. (A.8)

Thus we have the desired result. �

We see the value of the above result in the following application. Suppose Sn = 1
n

∑n
k=1Xk

and ‖Xk‖Ep ≤ K. Then we have

E

(
1

n

n∑
k=1

Xk

)p
≤

[
1

n
C

2/p
2

n∑
k=1

‖X2
k‖Ep/2

]p/2

≤ C2

np

[
n∑
k=1

‖X2
k‖Ep/2

]p/2
≤ C2

np

[
n∑
k=1

K2

]p/2
= O(

1

np/2
). (A.9)

Below is the result that that Moulines et al (2004) use (they call it the generalised Burkholder

inequality) the proof can be found in Dedecker and Doukhan (2003). Note that it is for p ≥ 2,

which I forgot to state in what I gave you.

Lemma A.4.1 Suppose {φk : k = 1, 2, . . .} is a stochastic process which satisfies E(φk) = 0 and

E(φpk) <∞ for some p ≥ 2. Let Fk = σ(φk, φk−1, . . .). Then we have that

∥∥∥∥∥
s∑

k=1

φk

∥∥∥∥∥
E

p

≤

2p

s∑
k=1

‖φk‖Ep
s∑

j=k

‖E(φj |Fk)‖Ep

1/2

. (A.10)

We note if
∑s

j=k ‖E(φj |Fk)‖Ep <∞, then we (A.11) is very similar to (A.6), and gives the same

rate as (A.9).

But I think one can obtain something similar for 1 ≤ p ≤ 2. I think the below is correct.

Lemma A.4.2 Suppose {φk : k = 1, 2, . . .} is a stochastic process which satisfies E(φk) = 0 and

E(φqk) <∞ for some 1 < q ≤ 2. Let Fk = σ(φk, φk−1, . . .). Further, we suppose that there exists a

0 < ρ < 1, and 0 < K <∞ such that ‖E(φt|Ft−j)‖q < Kρj. Then we have that

∥∥∥∥∥
s∑

k=1

akφk

∥∥∥∥∥
E

q

≤ K∗

1− ρ

(
s∑

k=1

|ak|q
)1/q

, (A.11)

502



where K∗ is a finite constant.

PROOF. Let Ej(φk) = E(φk|Fk−j). We note that by definition {φk} is a mixingale (see, for

example, Davidson (1997), chapter 16), therefore amost surely φk satisfies the representation

φk =
∞∑
j=0

[Ek−j(φk)− Ek−j−1(φk)]. (A.12)

By substituting the above into the sum
∑s

k=1 akφk we obtain

s∑
k=1

akφk =

s∑
k=1

∞∑
j=0

[Ek−j(φk)− Ek−j−1(φk)] =

∞∑
j=0

(
s∑

k=1

[Ek−j(φk)− Ek−j−1(φk)]

)
. (A.13)

Keeping j constant, we see that {Ek−j(φk) − Ek−j−1(φk)}k is a martingale sequence. Hence∑s
k=1[Ek−j(φk) − Ek−j−1(φk)] is the sum of martingale differences. This implies we can apply

(A.4) to (A.13), and get

∥∥∥∥∥
s∑

k=1

akφk

∥∥∥∥∥
E

q

≤
∞∑
j=0

∥∥∥∥∥
s∑

k=1

|ak|[Ek−j(φk)− Ek−j−1(φk)]

∥∥∥∥∥
E

q

≤
∞∑
j=0

(
2

s∑
k=1

|ak|(‖Ek−j(φk)− Ek−j−1(φk)‖Eq )q

)1/q

Under the stated assumption ‖Ek−j(φk)−Ek−j−1(φk)‖Eq ≤ 2Kρj . Substituting this inequality into

the above gives

∥∥∥∥∥
s∑

k=1

akφk

∥∥∥∥∥
E

q

≤
∞∑
j=0

(
2

s∑
k=1

|ak|q(2Kρj)q
)1/q

≤ 21+1/qK

∞∑
j=0

ρj

(
s∑

k=1

|ak|q
)1/q

.

Thus we obtain the desired result. �

A.5 The Fast Fourier Transform (FFT)

The Discrete Fourier transform is used widely in several disciplines. Even in areas its use may

not be immediately obvious (such as inverting Toeplitz matrices) it is still used because it can be

evalated in a speedy fashion using what is commonly called the fast fourier transform (FFT). It is

an algorithm which simplifies the number of computing operations required to compute the Fourier
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transform of a sequence of data. Given that we are in the age of ‘big data’ it is useful to learn what

one of most popular computing algorithms since the 60s actually does.

Recalling the notation in Section ?? the Fourier transform is the linear transformation

FnXn = (Jn(ω0), . . . , Jn(ωn−1)).

If this was done without any using any tricks this requires O(n2) computing operations. By using

some neat factorizations, the fft reduces this to n log n computing operations.

To prove this result we will ignore the standardization factor (2πn)−1/2 and consider just the

Fourier transform

d(ωk,n) =
n∑
t=1

xt exp (itωk,n)︸ ︷︷ ︸
k different frequencies

,

where ωk,n = 2πk
n . Here we consider the proof for general n, later in Example A.5.1 we consider

the specific case that n = 2m. Let us assume that n is not a prime (if it is then we simply pad the

vector with one zero and increase the length to n+ 1), then it can be factorized as n = pq. Using

these factors we write t as t = t1p + tmodp where t1 is some integer value that lies between 0 to

q − 1 and t0 = tmodp lies between 0 to p− 1. Substituting this into d(ωk) gives

d(ωk) =

n∑
t=1

xt exp [i(t1p+ tmodp)ωk,n]

=

p−1∑
t0=0

q−1∑
t1=0

xt1p+t0 exp [i(t1p+ t0)ωk,n] =

p−1∑
t0=0

exp [it0ωk,n]

q−1∑
t1=0

xt1p+t0 exp [it1pωk,n]

It is straightforward to see that t1pωk,n = 2πt1pk
n = 2πt1k

q = t1ωk,q and that exp(it1pωk,n) =
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exp(it1ωk,q) = exp(it1ωkmodq,q). This means d(ωk) can be simplified as

d(ωk) =

p−1∑
t0=0

exp [it0ωk,n]

q−1∑
t1=0

xt1p+t0 exp [it1ωkmodq,q]

=

p−1∑
t0=0

exp [it0ωk,n]

q−1∑
t1=0

xt1p+t0 exp [it1ωk0,q]︸ ︷︷ ︸
embedded Fourier transform

=

p−1∑
t0=0

exp [it0ωk,n]A(t0, kmodq)︸ ︷︷ ︸
q frequencies

,

where k0 = kmodq can take values from 0, . . . , q − 1. Thus to evaluate d(ωk) we need to evaluate

A(t0, kmodq) for 0 ≤ t0 ≤ p − 1, 0 ≤ k0 ≤ q − 1. To evaluate A(t0, kmodq) requires q computing

operations, to evaluate it for all t0 and kmodq requires pq2 operations. Note, the key is that less

frequencies need to be evaluated when calculating A(t0, kmodq), in particular q frequencies rather

than N . After evaluating {A(t0, k0); 0 ≤ t0 ≤ p − 1, 0 ≤ k0 ≤ q − 1} we then need to take the

Fourier transform of this over t0 to evaluate d(ωk) which is p operations and this needs to be done

n times (to get all {d(ωk)}k) this leads to np. Thus in total this leads to

p2q︸︷︷︸
evaluation of all A

+ np︸︷︷︸
evaluation of the transforms of A

= pq2 + pn = n(q + p). (A.14)

Observe that n(p+ q) is a lot smaller than n2.

Looking back at the above calculation we observe that q2 operations were required to calculate

A(t0, kmodq) = A(t0, k0) for all 0 ≤ k0 ≤ q − 1. However A(t0, k0) is a Fourier transform

A(t0, k0) =

q−1∑
t1=0

xt1p+t0 exp [it1ωk0,q] .

Therefore, we can use the same method as was used above to reduce this number. To do this we
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need to factorize q into p = p1q1 and using the above method we can write this as

A(t0, k0) =

p1−1∑
t2=0

q1−1∑
t3=0

x(t2+t3p1)p+t0 exp [i(t2 + t3p1)ωk0,q ]

=

p1−1∑
t2=0

exp [it2ωk0,q ]

q1−1∑
t3=0

x(t2+t3p1)p+t0 exp [it3p1ωk0,q ]

=

p1−1∑
t2=0

exp [it2ωk0,q ]

q1−1∑
t3=0

x(t2+t3p1)p+t0 exp [it3ωk0modq1,q1 ] .

We note that k0modq1 = (kmod(p1q1)modq1) = kmodq1, substituting this into the above we have

A(t0, k0) =

p1−1∑
t2=0

exp [it2ωk0,q ]

q1−1∑
t3=0

x(t2+t3p1)p+t0 exp [it3ωk0modq1,q1 ]

=

p1−1∑
t2=0

exp [it2ωk0,q ]A(t0, t2, k0modq1)︸ ︷︷ ︸
q1 frequencies

.

Thus we see that q1 computing operations are required to calculate A(t0, t2, k0modq1) and to cal-

culate A(t0, t2, kmodq1) for all 0 ≤ t2 ≤ p1 − 1 and 0 ≤ kmodq1 ≤ q1 − 1 requires in total q2
1p1

computing operations. After evaluating {A(t0, t2, k0modq1); 0 ≤ t2 ≤ q2 − 1, 0 ≤ kmodq1 ≤ q1 − 1}

we then need to take its Fourier transform over t2 to evaluate A(t0, k0), which is p1 operations.

Thus in total to evaluate A(t0, k0) over all k0 we require q2
1p1 + p1q operations. Thus we have

reduced the number of computing operations for A(t0, k0) from q2 to q(p1 + q1), substituting this

into (A.14) gives the total number of computing operations to calculate {d(ωk)}

pq(p1 + q1) + np = n(p+ p1 + q1).

In general the same idea can be used to show that given the prime factorization of n =
∏m
s=1 ps,

then the number of computing operations to calculate the DFT is n(
∑m

s=1 ps).
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Example A.5.1 Let us suppose that n = 2m then we can write d(ωk) as

d(ωk) =
n∑
t=1

xt exp(itωk) =

n/2∑
t=1

X2t exp(i2tωk) +

(n/2)−1∑
t=0

X2t+1 exp(i(2t+ 1)ωk)

=

n/2∑
t=1

X2t exp(i2tωk) + exp(iωk)

(n/2)−1∑
t=0

X2t+1 exp(i2tωk)

= A(0, kmod(n/2)) + exp(iωk)A(1, kmod(n/2)),

since
∑n/2

t=1X2t exp(i2tωk) and
∑n/2

t=1X2t+1 exp(i2tωk) are the Fourier transforms of {Xt} on a

coarser scale, therefore we can only identify the frequencies on a coarser scale. It is clear from the

above that the evaluation of A(0, kmod(n/2)) for 0 ≤ kmod(n/2) ≤ n/2 requires (n/2)2 operations

and same for A(1, kmod(n/2)). Thus to evaluate both A(0, kmod(n/2)) and A(1, kmod(n/2)) re-

quires 2(n/2)2 operations. Then taking the Fourier transform of these two terms over all 0 ≤ k ≤

n− 1 is an additional 2n operations leading to

2(n/2)2 + 2n = n2/2 + 2n operations < n2.

We can continue this argument and partition

A(0, kmod(n/2)) =

n/2∑
t=1

X2t exp(i2tωk)

=

n/4∑
t=1

X4t exp(i4tωk) + exp(i2ωk)

(n/4)−1∑
t=0

X4t+2 exp(i4tωk).

Using the same argument as above the calculation of this term over all k requires 2(n/4)2+2(n/2) =

n2/8+n operations. The same decomposition applies to A(1, kmod(n/2)). Thus calculation of both

terms over all k requires 2[n2/8 + n] = n2/4 + 2n operations. In total this gives

(n2/4 + 2n+ 2n)operations.

Continuing this argument gives mn = n log2 n operations, which is the often cited rate.

Typically, if the sample size is not of order 2m zeros are added to the end of the sequence (called

padding) to increase the length to 2m.
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Appendix B

Mixingales and physical depedendence

In this section we prove some of the results stated in the previous sections using mixingales.

We first define a mixingale, noting that the definition we give is not the most general definition.

Definition B.0.1 (Mixingale) Let Ft = σ(Xt, Xt−1, . . .), {Xt} is called a mixingale if it satisfies

ρt,k =

{
E

(
E(Xt|Ft−k)− E(Xt)

)2}1/2

,

where ρt,k → 0 as k →∞. We note if {Xt} is a stationary process then ρt,k = ρk.

Lemma B.0.1 Suppose {Xt} is a mixingale. Then {Xt} almost surely satisfies the decomposition

Xt =

∞∑
j=0

{
E(Xt|Ft−j−1)− E(Xt|Ft−j−1)

}
. (B.1)

PROOF. We first note that by using a telescoping argument that

Xt − E(Xt) =
m∑
k=0

{
E(Xt|Ft−k)− E(Xt|Ft−k−1)

}
+
{

E(Xt|Ft−m−1)− E(Xt)
}
.

By definition of a martingale E
(
E(Xt|Ft−m−1)−E(Xt)

)2 → 0 as k →∞, hence the remainder term

in the above expansion becomes negligable as m→∞ and we have almost surely

Xt − E(Xt)

=
∞∑
k=0

{
E(Xt|Ft−k)− E(Xt|Ft−k−1)

}
.
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Thus giving the required result. �

We observe that (B.1) resembles the Wold decomposition. The difference is that the Wolds

decomposition decomposes a stationary process into elements which are the errors in the best linear

predictors. Whereas the result above decomposes a process into sums of martingale differences.

It can be shown that functions of several ARCH-type processes are mixingales (where ρt,k ≤ Kρk

(rho < 1)), and Subba Rao (2006) and Dahlhaus and Subba Rao (2007) used these properties to

obtain the rate of convergence for various types of ARCH parameter estimators. In a series of

papers, Wei Biao Wu considered properties of a general class of stationary processes which satisfied

Definition B.0.1, where
∑∞

k=1 ρk <∞.

In Section B.2 we use the mixingale property to prove Theorem 14.7.3. This is a simple illus-

tration of how useful mixingales can be. In the following section we give a result on the rate of

convergence of some random variables.

B.1 Obtaining almost sure rates of convergence for

some sums

The following lemma is a simple variant on a result proved in Móricz (1976), Theorem 6.

Lemma B.1.1 Let {ST } be a random sequence where E(sup1≤t≤T |St|2) ≤ φ(T ) and {phi(t)} is a

monotonically increasing sequence where φ(2j)/φ(2j−1) ≤ K < ∞ for all j. Then we have almost

surely

1

T
ST = O

(√φ(T )(log T )(log log T )1+δ

T

)
.

PROOF. The idea behind the proof is to that we find a subsequence of the natural numbers and

define a random variables on this subsequence. This random variable, should ‘dominate’ (in some

sense) ST . We then obtain a rate of convergence for the subsequence (you will see that for the

subsequence its quite easy by using the Borel-Cantelli lemma), which, due to the dominance, can

be transfered over to ST . We make this argument precise below.

Define the sequence Vj = supt≤2j |St|. Using Chebyshev’s inequality we have

P (Vj > ε) ≤ φ(2j)

ε
.
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Let ε(t) =
√
φ(t)(log log t)1+δ log t. It is clear that

∞∑
j=1

P (Vj > ε(2j)) ≤
∞∑
j=1

Cφ(2j)

φ(2j)(log j)1+δj
<∞,

where C is a finite constant. Now by Borel Cantelli, this means that almost surely Vj ≤ ε(2j). Let

us now return to the orginal sequence ST . Suppose 2j−1 ≤ T ≤ 2j , then by definition of Vj we have

ST
ε(T )

≤ Vj
ε(2j−1)

a.s
≤ ε(2j)

ε(2j−1)
<∞

under the stated assumptions. Therefore almost surely we have ST = O(ε(T )), which gives us the

required result. �

We observe that the above result resembles the law of iterated logarithms. The above result

is very simple and nice way of obtaining an almost sure rate of convergence. The main problem

is obtaining bounds for E(sup1≤t≤T |St|2). There is on exception to this, when St is the sum

of martingale differences then one can simply apply Doob’s inequality, where E(sup1≤t≤T |St|2) ≤

E(|ST |2). In the case that ST is not the sum of martingale differences then its not so straightforward.

However if we can show that ST is the sum of mixingales then with some modifications a bound

for E(sup1≤t≤T |St|2) can be obtained. We will use this result in the section below.

B.2 Proof of Theorem 14.7.3

We summarise Theorem 14.7.3 below.

Theorem 1 Let us suppose that {Xt} has an ARMA representation where the roots of the char-

acteristic polynomials φ(z) and θ(z) lie are greater than 1 + δ. Then

(i)

1

n

n∑
t=r+1

εtXt−r = O(

√
(log log n)1+γ log n

n
) (B.2)

(ii)

1

n

n∑
t=max(i,j)

Xt−iXt−j = O(

√
(log log n)1+γ log n

n
). (B.3)
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for any γ > 0.

By using Lemma ??, and that
∑n

t=r+1 εtXt−r is the sum of martingale differences, we prove

Theorem 14.7.3(i) below.

PROOF of Theorem 14.7.3. We first observe that {εtXt−r} are martingale differences,

hence we can use Doob’s inequality to give E(supr+1≤s≤T (
∑s

t=r+1 εtXt−r)
2) ≤ (T − r)E(ε2

t )E(X2
t ).

Now we can apply Lemma ?? to obtain the result. �

We now show that

1

T

T∑
t=max(i,j)

Xt−iXt−j = O(

√
(log log T )1+δ log T

T
).

However the proof is more complex, since {Xt−iXt−j} are not martingale differences and we cannot

directly use Doob’s inequality. However by showing that {Xt−iXt−j} is a mixingale we can still

show the result.

To prove the result let Ft = σ(Xt, Xt−1, . . .) and Gt = σ(Xt−iXt−j , Xt−1−iXt−j−i, . . .). We

observe that if i > j, then Gt ⊂ Ft−i.

Lemma B.2.1 Let Ft = σ(Xt, Xt−1, . . .) and suppose Xt comes from an ARMA process, where

the roots are greater than 1 + δ. Then if E(ε4
t ) <∞ we have

E
(
E(Xt−iXt−j |Ft−min(i,j)−k)− E(Xt−iXt−j)

)2 ≤ Cρk.
PROOF. By expanding Xt as an MA(∞) process we have

E(Xt−iXt−j |Ft−min(i,j)−k)− E(Xt−iXt−j)

=

∞∑
j1,j2=0

aj1aj2
{

E(εt−i−j1εt−j−j2 |Ft−k−min(i,j))− E(εt−i−j1εt−j−j2)
}
.

Now in the case that t−i−j1 > t−k−min(i, j) and t−j−j2 > t−k−min(i, j), E(εt−i−j1εt−j−j2 |Ft−k−min(i,j)) =

E(εt−i−j1εt−j−j2). Now by considering when t−i−j1 ≤ t−k−min(i, j) or t−j−j2 ≤ t−k−min(i, j)

we have have the result. �

Lemma B.2.2 Suppose {Xt} comes from an ARMA process. Then
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(i) The sequence {Xt−iXt−j}t satisfies the mixingale property

E
(
E(Xt−iXt−j |Ft−min(i,j)−k)− E(Xt−iXt−j |Ft−k−1)

)2 ≤ Kρk, (B.4)

and almost surely we can write Xt−iXt−j as

Xt−iXt−j − E(Xt−iXt−j) =

∞∑
k=0

n∑
t=min(i,j)

Vt,k (B.5)

where Vt,k = E(Xt−iXt−j |Ft−k−min(i,j))−E(Xt−iXt−j |Ft−k−min(i,j)−1), are martingale differ-

ences.

(ii) Furthermore E(V 2
t,k) ≤ Kρk and

E
{

sup
min(i,j)≤s≤n

( s∑
t=min(i,j)

{Xt−iXt−j − E(Xt−iXt−j)})2
}
≤ Kn, (B.6)

where K is some finite constant.

PROOF. To prove (i) we note that by using Lemma B.2.1 we have (B.4). To prove (B.5) we use

the same telescoping argument used to prove Lemma B.0.1.

To prove (ii) we use the above expansion to give

E
{

sup
min(i,j)≤s≤n

( s∑
t=min(i,j)

{Xt−iXt−j − E(Xt−iXt−j)})2
}

(B.7)

= E
{

sup
min(i,j)≤s≤n

( ∞∑
k=0

s∑
t=min(i,j)

Vt,k
)2}

= E
{ ∞∑
k1=0

∞∑
k2=0

sup
min(i,j)≤s≤n

∣∣ s∑
t=min(i,j)

Vt,k1
∣∣× ∣∣ s∑

t=min(i,j)

Vt,k2
∣∣}

=

( ∞∑
k=0

{
E

(
sup

min(i,j)≤s≤n

∣∣ s∑
t=min(i,j)

Vt,k1
∣∣2)}1/2)2

Now we see that {Vt,k}t = {E(Xt−iXt−j |Ft−k−min(i,j)) − E(Xt−iXt−j |Ft−k−min(i,j)−1)}t, therefore

{Vt,k}t are also martingale differences. Hence we can apply Doob’s inequality to E
{

supmin(i,j)≤s≤n
(∑s

t=min(i,j) Vt,k
)2}
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and by using (B.4) we have

E
{

sup
min(i,j)≤s≤n

( s∑
t=min(i,j)

Vt,k
)2} ≤ E

( n∑
t=min(i,j)

Vt,k
)2

=
n∑

t=min(i,j)

E(V 2
t,k) ≤ K · nρk.

Therefore now by using (B.7) we have

E
{

sup
min(i,j)≤s≤n

( s∑
t=min(i,j)

{Xt−iXt−j − E(Xt−iXt−j)})2
}
≤ Kn.

Thus giving (B.6). �

We now use the above to prove Theorem 14.7.3(ii).

PROOF of Theorem 14.7.3(ii). To prove the result we use (B.6) and Lemma B.1.1. �

B.3 Basic properties of physical dependence

Classical results, any L2 time series {Xt} almost surely has the telescoping representation

Xt =

∞∑
j=0

(E[Xt|Xt−j , Xt−j−1 . . .]− E[Xt|Xt−j−1, Xt−j−2, . . .]) .

This is an extremely useful representation (a) because the sum is a martingale (b) ‖E[Xt|Xt−j , Xt−j−1 . . .]−

E[Xt|Xt−j−1, Xt−j−2, . . .]‖p has the mixing rate (see Chapter 16, Davidson).

Physical dependence is a notion developed in a series of papers by Wei Bao Wu (from 2005

onward; https://www.stat.uchicago.edu/~wbwu/). In the physical dependence realm the condi-

tioning set is in general not Xt, Xt−1 but the actual independent innovations εt, εt−1, . . .. This will

lead to some subtle differences that we describe below. It will also lead to an alternative telescoping

representation that can be used to bound m-dependent approximations.

We assume the time series {Xk}k has the causal representation:

Xk = Gk(εk, εk−1, . . .)

where {εk} are independent, identically distributed (iid, this is an important condition) random
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variables. Using the above representation we define the following quantities

m-dependent X̃k = E[Gk(εk, εk−1, . . .)|εk, . . . , εk−m]

coupled Xk|{k−j} = Gk(εk, εk−1, . . . , εk−j+1, ε̃k−j , εk−j−1, . . .)

m-dependent, coupled X̃k|{k−j} = E[Gk(εk, εk−1, . . .)|εk, . . . , ε̃k−j , . . . , εt−m],

where {εk, ε̃k}k are all iid random variables. The latter two definitions are the coupled versions of

Xk and X̃k. The main assumption in physical dependence is that

δj,p = sup
k
‖Xk −Xk|{k−j}‖p → 0 (B.8)

at a certain rate. Let ∆m,p =
∑∞

j=m+1 δj,p and Ψm,p = (
∑∞

j=m+1 δ
2
j,p)

1/2. The above definition

matches with equation (5) in Dahlhaus et. al. (2019) (https://arxiv.org/pdf/1704.02860.pdf).

There are several examples in time series where the difference Xk − Xk|{k−j} will be close in

Lp-norm (see the papers by Wei Bao Wu and his collaborators). The benefit of the coupled version

Xk|{k−j} is that is the conditional expectation of Xk given the conditioning set εt can be transfered

to the conditional expectation of Xk|{k−j}. Define the sigma-algebras Fk−j,k = σ(εk−j , . . . , εk)

and Fk = σ(εk, εk−1, . . .). It is important to observe that neither the sigma-algebras Fk−j,k or Fk
contain the coupled random variables {ε̃t}t.

Using the m-dependent approximation of Xk and representing Xk as the sum of martingales,

we can apply classical m-dependent and martingale methods to physical dependent processes.

Useful identities:

(A) Linking Xk to m-dependence: Xk ∈ Fk and for m-dependence X̃k = E[Xk|Fk−m,k].

(B) Linking Xk to its coupled version Xk|{k−j} through conditioning:

E[Xk|{k−j}|Fk−j ] = E[Xk|Fk−j+1]

E[Xk|Fk−j+1,k] = E[Xk|{k−j}|Fk−j,k].

The above holds because ε̃k−j /∈ Fk−j,k and ε̃k−j /∈ Fk−j .

Linking X̃k to its m-dependent coupled version through conditioning

X̃k|{k−j} = E[Xk|{k−j}|Fk−m, ε̃k−j ].
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(C) Linking the Xk and X̃k through the conditioning set Fk−j,k: Using (D), below, we have

Xk − X̃k =
∞∑

j=m+1

(E[Xk|Fk−j,k]− E[Xk|Fk−j+1,k]) .

To reduce cumbersome notation we define Dk−j,k = E[Xk|Fk−j,k]−E[Xk|Fk−j+1,k], then the

above is

Xk − X̃k =
∞∑

j=m+1

Dk−j,k.

(D) Useful telescope sums: Almost surely we have the representations

Xt =

∞∑
j=0

(E[Xt|Ft−j ]− E[Xt|Ft−j−1])

=
∞∑
j=0

(E[Xt|Ft−j,t]− E[Xt|Ft−j+1,t]) .

The latter telescope sum is not possible using the more classical conditioning set based on

{Xt−j}j . Note that the second sum gives the equality in (C).

(E) Commonly used inequalities:

Jensen’s inequality for p ≥ 1: ‖E[Y |F ]‖p ≤ [E(E(|Y |p|F))]1/p = ‖Y ‖p.

Burkholder’s inequality: If {Yk}k are martingale differences, then for p ≥ 2 we have

∥∥∥∥∥
n∑
k=1

Yk

∥∥∥∥∥
p

≤

(
n∑
k=1

‖Yk‖2p

)1/2

.

We use the above to obtain useful bounds between Xk and X̃k, these bounds and the techniques

used are widely in physical dependence related methods.

Important norming techniques:
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(I) Bound on a martingale difference

‖Dk−j,k‖p = ‖E[Xk|Fk−j,k]− E[Xk|Fk−j+1,k]‖p

=
∥∥E[Xk|Fk−j,k]− E[Xk|{k−j}|Fk−j,k]

∥∥
p

(by (B))

≤
∥∥Xk −Xk|{k−j}

∥∥
p
≤ δj,p (by (E)).

Thus

sup
k
‖Dk−j,k‖ ≤ δj,p.

(II) Difference between Xk and X̃k. Assuming p ≥ 2 and using Burkholder’s inequality we have

‖Xk − X̃k‖p ≤

 ∞∑
j=m+1

‖E[Xk|Fk−j,k]− E[Xk|Fk−j+1,k]‖2p

1/2

(by (C))

=

 ∞∑
j=m+1

∥∥E[Xk|Fk−j,k]− E[Xk|{k−j}|Fk−j,k]
∥∥2

p

1/2

(by (B))

≤

 ∞∑
j=m+1

∥∥Xk −Xk|{k−j}
∥∥2

p

1/2

(by (E))

≤ (
∞∑

j=m+1

δ2
j,p)

1/2 = Ψm+1,p,

The above shows that in `p-norm the difference between Xk and its m-dependent approxi-

mation decreases as m grows.

As εk−j and ε̃k−j are identically distributed then

‖Xk − X̃k‖p = ‖Xk|{k−j} − X̃k|{k−j}‖p ≤ Ψm,p.

(III) Difference between X̃k and its coupled version (if j ≤ m, otherwise X̃k = X̃k|{k−j})

‖X̃k − X̃k|{k−j}‖p = ‖E(Xk −Xk|{k−j}|Fk−m, ε̃t−j)‖p (by identity (B))

≤ E(|Xk −Xk|{k−j}|p|Fk−m, ε̃t−j) (by (D))

≤ ‖Xk −Xk|{k−j}‖p ≤ δj,p
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Hence in general

‖X̃k − X̃k|{k−j}‖p ≤

 δj,p j ≤ m

0 j > m.

(IV) Bound on martingale difference E[Xt|Ft−j ]−E[Xt|Ft−j−1] = E[Xt−Xt|{t−j}Xt−Xt|{t−j}|Ft−j ].

Thus by Jensen’s inequality for p ≥ 1 we have

(E|E[Xt|Ft−j ]− E[Xt|Ft−j−1]|p)1/p ≤ (E|Xt −Xt|{t−j}|p)1/p ≤ δp,j .

One important advantage of physical dependence is that it allows us to bound the difference

between an estimator and its m-dependent analogue. Define the weighted average

µ̂n =

n∑
k=1

akXk

and the m-dependent weighted average

˜̂µn =
n∑
k=1

akXk,m

in the following lemma we bound the difference between the two.

Lemma B.3.1 Suppose (B.8) holds. If p ≥ 2, then

∥∥∥∥∥
n∑
k=1

ak(Xk − X̃k)

∥∥∥∥∥
p

≤

(
n∑
k=1

|ak|2
)1/2

∆m,p (B.9)

and for p ≥ 1 ∥∥∥∥∥
n∑
k=1

ak(X
2
k − X̃2

k)

∥∥∥∥∥
p

≤ 2

(
n∑
k=1

|ak|

)(
sup
k
‖Xk‖2p

)
Ψm,2p. (B.10)

PROOF By simply using (II) we obtain the sub-optimal bound∥∥∥∥∥
n∑
k=1

ak(Xk − X̃k)

∥∥∥∥∥
p

≤
n∑
k=1

|ak|‖Xk − X̃k‖p ≤

(
n∑
k=1

|ak|

)
Ψm,p. (B.11)

This bound simply uses m-dependent approximation of a time series, but does not exploit that
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sums of weakly dependent variables tend to concentrate more about zero (if the mean is zero).

We would expect that bounds for Xk − X̃k together with the sum of weakly dependent random

variables could improve the bound. Physical dependence gives a bound on margingale differences

(see (I)) using this bound together with Burkholder’s inequality a tighter bound can be achieved

(which would be similar to one obtained for linear time series). By using (C) we have

∥∥∥∥∥
n∑
k=1

ak(Xk − X̃k)

∥∥∥∥∥
p

=

∥∥∥∥∥∥
n∑
k=1

ak

 ∞∑
j=m+1

Dk−j,k

∥∥∥∥∥∥
p

(B.12)

Next we use that {Dk−j,k}nk=1 is a martingale difference when conditioned on Fk−j,k, thus by

Burkholder’s inequality we have

‖
n∑
k=1

akDk−j,k‖p ≤

(
n∑
k=1

|ak|2 · ‖Dk−j,k‖2p

)1/2

≤ δj,p

(
n∑
k=1

|ak|2
)1/2

(by (I)).

Substituting the above into (B.12) gives

∥∥∥∥∥
n∑
k=1

ak(Xk − X̃k)

∥∥∥∥∥
p

≤
∞∑

j=m+1

δj,p

(
n∑
k=1

|ak|2
)1/2

=

(
n∑
k=1

|ak|2
)1/2

∆m+1,p. (B.13)

This proves (B.9).

Unlike mixing bounds, the bound in (B.8) does not easily transfer over to transformations of

functions of Xk. For example, unlike (I), I could not find a simple bound for

∥∥E[X2
k |Fk−j,k]− E[X2

k |Fk−j+1,k]
∥∥
p

=
∥∥∥E[X2

k |Fk−j,k]− E[X2
k|{k−j}|Fk−j,k]

∥∥∥
p

≤ ‖X2
k −X2

k|{k−j}‖p.

Of course, X̃2
k 6= E[X2

k |Fk−m,k], but this is a separate issue.

Thus the only bound I think that is feasible is to simply use a bound between difference between

Xk and its m-approximation. Since

n∑
k=1

ak(X
2
k − X̃2

k) =
n∑
k=1

ak(Xk − X̃k)(Xk + X̃k),
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we have

‖
n∑
k=1

ak(X
2
k − X̃2

k)‖p ≤
n∑
k=1

|ak| · ‖Xk − X̃k‖2p(‖Xk‖+ ‖X̃k‖2p)

≤ 2

(
n∑
k=1

|ak|

)(
sup
k
‖Xk‖2p

)
Ψm,2p.

This gives (B.10). �

The lemma above can be used as an intermediate step for proving Gaussian approximations/central

limit theorems.
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pages 439–459. Birkhäuser, Boston, 2003.
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