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 SUMMARY

 Suppose that data y1, Yn are observed according to the model yi = f(( i - 2-) /n) + Ei, i=
 1, . . ., n, where f is a smooth function and {E1, . . . } en I is a samplb from a zero-mean,
 covariance stationary time series. The problem of objectively choosing the bandwidth of a
 kernel estimate forf is addressed. It is shown both theoretically and by simulation that cross-
 validation produces extremely rough kernel estimates when the data are sufficiently posi-
 tively correlated. This makes it inadvisable to use residuals from a cross-validated kernel
 estimate as a means of estimating the covariance function of the errors. Alternative methods
 of estimating the covariance function are proposed. In a simulation study, incorporating
 these estimated covariances into a risk estimation procedure leads to more efficient
 smoothing of positively correlated data.

 Keywords: AUTOREGRESSIVE PROCESS; BANDWIDTH SELECTION; MEAN AVERAGE-SQUARED
 ERROR; MEAN-SQUARED ERROR; SPECTRUM

 1. INTRODUCTION

 A vast literature now exists on using kernel-type smoothers to estimate regression
 functions nonparametrically. Practically all this literature is based on the assumption
 that the observed data are uncorrelated. In essence, this assumption implies that any
 observed trends, whether long or short term, are either deterministic in nature or
 simply anomalous chance occurrences. Such an implication is clearly undesirable.
 There are many settings, such as in time series analysis, where it is reasonable to model
 slowly varying trends deterministically, but to explain any other regular behaviour in
 the data by means of a correlation model. Furthermore, kernel estimators are some-
 times used to smooth data which result from processing uncorrelated data. Such pro-
 cessing can introduce correlation into the data to be smoothed. An example of the
 latter phenomenon occurs in the estimation of heteroscedasticity in regression (see
 Muller and Stadtmuller (1987)).

 In what follows it is assumed that univariate data y1, ..., Yn are observed, and that

 yi =f ) + , i= ,...,n, (1.1)

 wherefis a smooth function defined on [0, 1] and {Ei, ..., 'en } is a sample from a zero-
 mean, covariance stationary process. Subsequent theoretical results do not depend in
 any crucial way on the fact that the design in model (1.1) is evenly spaced. The Gasser
 and Muller (1984) kernel estimator of the functionf is defined by

 tAddress for correspondence: Department of Statistics, Texas A&M University, College Station, TX 77843-3143,
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 iln
 n

 fh(x) = h-E Yi d du, x E (0, 1), (1.2)
 i1 (i- 1)/n

 where h > 0 and K is a function (often a density) whose properties will be specified
 later. The main objectives of this paper are twofold. First, it will be shown that
 positively correlated data have a disastrous effect on cross-validatory methods of
 choosing the bandwidth h of fh. When n is large, cross-validation has a strong
 tendency to choose a kernel estimate that virtually interpolates the data. The
 surprising aspect of this result is that the correlation can be quite weak and still destroy
 the usual optimality property of cross-validation. For example, a first-order moving
 average error structure with a correlation of 0.25 is sufficient to yield the interpolation
 result. Our theorem in this regard provides theoretical backing for the empirical
 findings of Diggle (1985) and Hart and Wehrly (1986). The second objective of the
 paper is to describe and analyse a way of improving smoothing methods when the data
 are correlated. The essence of the new method is that it allows some of the smoothness
 in the data to be due to correlation. The lowest frequency components in the data are
 filtered out by differencing, and the covariance function of the error process is
 estimated from the periodogram of the differenced data. The estimated covariance
 function is then incorporated into a risk estimation criterion for choosing the band-
 width of fh. This new methodology is illustrated using both simulated data and the
 time series composed of the Beveridge wheat price index from the year 1500 to 1869.
 (See, for example, Anderson (1971).)

 Before continuing, it is worth mentioning some very recent work concerned with
 smoothing correlated data. Diggle and Hutchinson (1989) propose a method for
 choosing the smoothing parameters of cubic spline regression estimators in the
 presence of correlated errors. Also, on completing the first version of this paper, the
 author learned of unpublished manuscripts by Chiu (Rice University, USA) and by
 Altman (Cornell University, USA) that draw conclusions similar to those in this
 paper.

 The rest of the paper will proceed as follows. In the next section a large sample
 approximation to the mean-squared error (MSE) offh(x) is given. This result shows in
 a simple way how the efficiency of kernel estimators is affected by serial correlation.
 Section 3 is devoted to the result mentioned earlier concerning the failure of cross-
 validation with positively correlated data. Finally, the new methodology and
 numerical results are presented in, respectively, Sections 4 and 5.

 2. MEAN-SQUARED ERROR PROPERTIES OF KERNEL ESTIMATORS

 For convenience, here we present some assumptions and notation concerning the
 kernel K. The assumptions will be implicit throughout the remainder of the paper.

 (a) K vanishes outside ( - 1, 1);
 (b) K is symmetric about zero;

 (c) I '-IK(y) dy = ;
 (d) K is Lipschitz continuous.

 We also define two functionals of K:
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 (a) JK = X, 1 IK2(y) dy;
 (b) aK = I 1 I y2K(y) dy.
 To demonstrate in a simple way how correlation affects kernel estimators, it is of

 interest to investigate the behaviour of E(fh(x) - f(x))2 when n is large. In doing so it
 will be assumed that equation (1.1) holds and that {IE, ... ,,en} is covariance
 stationary, i.e.

 COV(Ei, ji+k) = cn(k), IkI = 0, 1 .... (2.1)

 To study the asymptotic MSE offhA(x), it is still necessary to specify the nature of cn as
 n -c 00. There are two main cases of interest. Let { kn(u)} be a sequence of positive
 integers such that limn, kn(u)/n = u e [0, 11. Then, for large n, cn(kn(u)) is the
 covariance between data values whose design points differ by about u. Now, the two
 main cases are (with a2 > 0)

 (a) lim cn(kn(u)) = a2 p(u) (2.2)
 nf- Oo

 (b) lim cn(kn(u)) = o2I{o}(u) (2.3)
 fl-boo

 for each u E [0, 1], where p is a real-valued characteristic function.
 In the first of these cases, the observed data are a sample from a continuous process

 on [0, 1]. In this case kernel estimators will not be consistent forf as n - oo . (See Hart
 and Wehrly (1986).) It still makes perfect sense to use kernel estimates to smooth the
 sample paths of continuous processes. Doing so amounts simply to passing the data
 through a linear filter, which has been a persistent theme in time series analysis.

 The following theorem indicates the asymptotic behaviour of the MSE of fh(x)
 when the covariance function cn (k) satisfies

 cn(k) = c(k) n 1, fkj=0,1, (2.4)
 This covariance structure is a special case of equation (2.3) and is essentially the same
 model used by Hirdle and Tuan (1986) in their study of M-smoothing of time series.
 The proof of theorem 1 is given in Hart (1987) and is thus omitted here.

 Theorem 1. Let equation (1.1) hold and assume thatf has two continuous deriva-
 tives on [0, 1]. Assume also that the covariance model (2.4) holds, where c(0) < Xo and
 4'Ik=ikIc(k)I <00. Now, as n -+ 00 and h -+ 0, the following statement holds
 uniformly in xe (h, 1 -h):

 1I 00 h,4r4
 E(fh(x) -f(X))2 = -h sc(0) +2 E] c(i)} JK + 4 {fK (X)}22+ o((nh) + h4).

 A practical situation where model (2.4) arises may be described as follows. Suppose
 that the data zi, i = 1, . . ., n, follow a regression model with independent errors. If the
 data available for analysis are a smoothed version of the zi, namely

 i+m

 Yi = E zj/(2m+1), i= m+19 ...,n-m,
 j=i-m

 then the covariance structure of theyi will satisfy model (2.4) as long as m is a constant
 (independent of n). Such data smoothing operations are quite common in chemical
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 applications. (See, for example, the interpolation scheme in Brereton (1987), p. 179.)
 In other situations, such as kriging (see, for example, Stein (1987)), correlation is an
 intrinsic property of the observations and not merely a by-product of processing the
 data. In these situations, the correlation is usually taken to be (independently of n) a
 function of the distance in space or time between data values, and hence model (2.2) is
 more reasonable than model (2.4). Technically, theorem 1 does not describe what
 happens under model (2.2). However, in practice the sample size is always finite and
 the only relevant question then is how good the approximation provided by an

 asymptotic result is. Roughly, the MSE approximation in theorem 1 is good when n is

 large and kn/n is sufficiently small, where kn is such that I cn(k)/cn(O) I 0 for
 k > kn. These conditions will often be met even when the data are a sample from a
 continuous process.

 We close this section with the following remarks.

 (a) If c(j) = 0 for j = 1, 2, . . ., then theorem 1 gives the standard result for the
 MSE of fh(x) (see Gasser and Muller (1984)). The asymptotically optimum
 bandwidth is (for f" (x) ? 0)

 hn= [BK {c(O) +2 E c(j)] / {f(x)} ] 1 n -15,

 where BK = JK/uK. We see that hn is at least as big as the bandwidth for uncor-
 related data if c(j) > 0 for all j > 1. The quantity c(O) + 2Ej 1 c(j) is
 proportional to Se(0), where Se(X) is the spectrum of the error process.

 (b) We can remedy boundary effects using the boundary kernels of Gasser and
 Muller (1979). The correlation in the data is not important in this regard since
 boundary effects are a bias phenomenon.

 (c) Suppose that boundary kernels are used so that the bias of fh(x) is 0(h2),
 uniformly in x e [0, 1]. Then the mean integrated squared error (MISE) of fh
 is, under the conditions of theorem 1,

 (nh)- {c(O) + 2 E c(J)1 K+ if | {f"(x)}2 dx+ o((nh)- + h4)-

 If follows from this expression that the Epanechnikov kernel K(y) =

 0.75(1-Y2)(_-, 1)(Y) is asymptotically MISE optimum among non-negative
 kernels, just as in the uncorrelated data case.

 (d) Hart (1987) gives an asymptotic approximation for the MISE under a special

 case of equation (2.3) in which cn(k)/cn(0) -+ 1 as n -+ oo. In addition to
 allowing for stronger dependence than in equation (2.4), the approximation
 allows for unequally spaced design points.

 3. FAILURE OF CROSS-VALIDATION WHEN DATA ARE POSITIVELY
 CORRELATED

 Diggle and Hutchinson (1989) and Hart and Wehrly (1986) provide examples in
 which traditional automatic smoothing methods, such as cross-validation, perform
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 poorly with correlated data. Further evidence of this will be seen in the simulation
 study of the next section. The purpose of this section is to show in a precise way when
 cross-validation can be expected to yield poor estimates of f.

 Assuming that equation (1.1) holds, define the cross-validation curve C, by

 n( )h nJ S Yi3 IOb, Ib)( (3.1)
 wherefh (x) is the estimate (1.2) calculated without thejth observation and 0 < b < 2
 The indicator function in equation (3.1) is used to avoid problems with boundary

 effects. Let hn be the minimizer of Cn(h) for n -1+6 < h < n (6 > 0). Hardle et al.
 (1988) investigated the performance of hn when the data are independent and showed
 that hn is asymptotic to hn the minimizer of the loss function

 Ln (h)=4 Z f(h f( I)3 (1 2)b n j=1 l n ) tn )3Ib-)(n)
 The following theorem concerns the behaviour of Cn(h) under the covariance

 structure defined by model (2.4). We reiterate that such a model for the covariance
 does not cover all the cases of practical interest. However, the main concern here is to
 establish an existence result on the extent to which the traditional form of cross-
 validation fails when the data are correlated.

 Theorem 2. Let the conditions of theorem 1 hold, and suppose that {,Ei} is fourth
 order stationary. Define K4(s - t, r, 0) to be the fourth joint cumulant of the distribu-

 tion of (E, 'E+r,E 's, Es+r) and assume that I K4(m, r, 0) I < m for all m and r, where
 EM00 [Om < ??. (If the Ei are Gaussian, K4 0.) Suppose also that

 JK{c(0)+2 Z c(j)} < 2K(0){c(1)+2 E c(i)3 (3.2)

 Let Cn(h) be as in equation (3.1) with b = Bn- 15, where B is arbitrarily large but
 fixed. Let Sn be a set of cardinality [ Cn 0J (C, / > 0) whose elements are in the interval
 [n -1, Bn -1/5]. If hn is the minimizer of Cn(h) among h E Sn and if / < oe < 4 , then

 lim P(hn < n,-+t) = 1.
 n-4 0

 For the proof of this theorem see Appendix A.

 Theorem 2 shows that, when the data are sufficiently positively correlated, cross-
 validation will choose a kernel estimate that very nearly interpolates the data. This
 phenomenon is explained quite simply by considering

 E(Cn(h)) = E[f2JZI, {-()f( ) b() ] ( n( )) L[n J= t n ) (n ) (bl)(n )
 + nb a2 - CT(h),

 n

 where nb is the number of non-zero terms in the sum and
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 CT(h) = covlfhj ( , n 'E I(b,l-b)I n 2

 Now, when the Ej are uncorrelated, CT(h) = 0 and the minimizer of ECn (h) is essen-
 tially the minimizer of the risk function ELn(h). However, when the Ej are positively
 correlated, CT(h) is positive. If the correlation is sufficiently strong for condition

 (3.2) to hold, then as nhn ?? oo and nh5 -+ 0

 E(Cn(h)) -a2 + c/nhn,

 where c < 0. Thus, when n is sufficiently large, ECn(h) will be minimized at a value of
 h that is very near zero. Alternatively, theorem 2 may be explained by first noting that
 cross-validation is designed to yield good predictors of the observations Yl, . . *, Yn.
 When the data are uncorrelated, the best mean-squared error predictor of yj given yl,
 * *,Yj-1,Yj+ ... ***, Yn is simplyfj = f((j- ')/n), and so it is not surprising that cross-
 validation tends to pick a kernel smoother that is a good estimate off. However, when

 the data are correlated, the best predictor of yj will depend on neighbouring data as
 well as onfj. For example, if the errors follow a first-order autoregressive process, the
 minimum MSE predictor of yj given the other data is equal to f1 + c (E_ -1 + Ej+ l),
 where cp = p/(l + p2). When p > 0 and is sufficiently large, this predictor is well
 approximated by fg((j - 2)/n) with h very small.

 To give an indication of when condition (3.2) will be met, suppose that c(k) =

 U22pIkI, IkI = O, 1, . . ., where IPI < 1. In this case the errors have the covariance
 function of a first-order autoregressive process. It may be verified that, for the
 Epanechnikov kernel, condition (3.2) is equivalent to p > 0. 164, while, for the quartic

 kernel K(y) = (1 5/16)(1 -y_2)2( ' l)(Y), condition (3.2) becomes p > 0.155. Suppose
 now that the errors have the covariance function of a first-order moving average
 process, i.e. c(1) = o2p ( I P I < 0.5) and c(k) = 0 for k > 2. In this case condition
 (3.2) holds for the Epanechnikov kernel if and only if p > 0.227, and for the quartic
 kernel if and only if p > 0.170. The latter example shows that the most innocent of
 correlation structures can cause cross-validation to perform very poorly.

 4. INCORPORATING COVARIANCE ESTIMATES INTO CHOICE OF

 BANDWIDTH

 Correlation in the data can be accounted for in the bandwidth selection problem by
 using a risk estimation procedure. Define the mean average-squared error (MASE)
 curve by

 M(h) =E[Z {(i) f (h-)32]

 = E [-RSS(h)] -c(0) + 2n wo(h) c(0) + 2 .wj(h) c (j) (4.1)

 where

 RSS(h) = Vfh (1-) -AYi
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 (j+ 2+)/nh

 wj(h) = (n-j) K(y) dy,
 (i-2)/nh

 and n(h) is the largest integer less than nh+-. (If boundary kernels are used, the

 definition of the wj(h) changes.) If the errors are uncorrelated, Rice (1984) proposes
 that M(h) be estimated by

 1/2nh

 M(h) = n RSS(h) I--2 K(y) dy (4.2)
 - 1/2nh)

 where a' = (2n)'1 E/2(Yi-Yi- )2 Rice's criterion can be modified to account for
 correlation if we know or have estimates of the covariances c(k), k = 0, 1, .... For a
 general covariance function c, define

 M(h; c) =- RSS(h) - c(0) + 2n - { wo(h) e(0) + 2 Z wj(h) e(j)}. (4.3)
 n ~~~~~~~~~~j=1

 As suggested by Hart and Wehrly (1986), it is natural to estimate M(h) by M(h; 8),
 where 2(k) is some estimate of c(k).

 If selection of the bandwidth is to remain an objective procedure, it will be neces-
 sary to estimate c(k) without having knowledge of f. Doing so is straightforward in
 the setting of Hart and Wehrly (1986), who consider a case where independent copies
 of a process are observed. If instead a single datum is recorded at each design point,
 estimating c(k) without having a model for f becomes more difficult. By contrast,
 when f is in a parametric family, c(k) can be well estimated without having an
 efficient estimate of f. Solo (1981) gives conditions on the error process under which
 ordinary least squares estimates of regression parameters are strongly consistent.
 Residuals from the ordinary least squares fit may be used to estimate the covariance
 function of the errors. In the Cochrane and Orcutt (1949) and Prais-Winsten pro-
 cedures, this method of estimating c(k) is used, and then the regression function is
 re-estimated using generalized least squares based on c(k). See Rao and Griliches
 (1969), Spitzer (1979) and Kramer (1980) for more on these two-stage and other
 procedures.

 It is reasonable to regard ordinary cross-validation as the nonparametric analogue
 of parametric ordinary least squares. Theorem 2, however, is a good argument against
 carrying the analogy a step further by using ordinary cross-validation to obtain the
 initialf from which c(k) is estimated. The residuals from such a rough estimate of f
 will be poor substitutes for the E.

 We now propose a way in which c(k) can be estimated without having an initial
 estimate off. The method involves differencing the data Yl, . . ., Yn . Some theoretical
 aspects of the methodology are pursued in Hart (1989). Here we shall merely describe
 the method of estimating c(k). Define

 ,A = Y 2y + y j = 2, . . ., n

 Since f" is continuous,

 Aj = n - 2f"(x) + dj, (4.4)
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 where (j - 3)/n < xj (j + ')/n and dj = - 2Ej + Ej- 1. Now, if model (2.4) holds,
 var(dj) is constant for all n, and so A1j = dj when n is large. This suggests that the
 spectrum Se of the process {Ej } can be consistently estimated from the data Aj,] = 2,
 .. . n- 1, since

 Sd( II)= Il-eiw IS4SE), (Ce[-r,,

 where Sd is the spectrum of { c1 }. Muller and Stadtmuller (1988) have used differences
 to estimate c(k) when the errors form a moving average process. Gasser et al. (1986)

 propose the use of {lAj} to estimate the variance function in a heteroscedastic
 regression model.

 The first step in the proposed method of estimating c(k) is to compute the
 periodogram

 1 n-I 2
 'A(C~)=y ZAPe -iwj co e[-7r, irJ,

 T@ j=2

 where

 T= 2j7r 2 2(n)

 and t is a twice differentiable function that vanishes at zero and unity. See Hart (1989)
 for a discussion of the benefits of using the taper t. If a parametric model, S(c; 0), is
 assumed for Se (X), then, following Rice (1979), we can estimate 0 by the maximizer of
 the approximate log-likelihood

 2 -r

 Ln(0) = -- {log S(cj;0)+Je(Wj)/S(wj;0)}, (4.5)
 wje A

 where e (co) = I1 - e'w I A4(O), Cj = 2 7rj/n, A = [6, 7rI and 6 > 0. Owing to the one-
 to-one correspondence between c(k) and Se, estimating 0 yields an estimate of c(k).
 Differencing the data does not (in general) completely eliminate the effect off. There-
 fore, if 6 is taken too small the estimate of 0 will be biased because of the low frequency
 contribution off to the periodogram.

 A somewhat different approach to estimating 0 is to use non-linear regression to fit

 the model I 1 - eiw 14 S(Co; 0) to I(j),j = 1, . . ., [n/2J. An advantage of this approach
 is that it is not nearly so important as before to choose 6 since the periodogram IJ(W)
 need not be multiplied by the factor I 1 - eiw 1 -4 before fitting a model. In either
 approach to estimating 0, it is advisable to difference the data more than twice and to
 repeat the estimation procedure. If 0 changes little, one feels confident that the deter-
 ministic component, f, has effectively been eliminated.

 Before proceeding to a numerical study, a few comments are in order concerning
 the assumption of a parametric model for c(k). This assumption may seem incon-
 sistent with the notion that cross-validation should provide a completely objective
 way of estimating the mean function. However, it is inevitable that some assumption
 has to be made about the error process; otherwise the model composed off and c(k)
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 is not even identifiable. We can also argue that the smoothing algorithm defined by
 the assumption that c(k) = c(k; 0) will lead to reasonable estimates off for a much
 wider class of covariance functions than just c(k; 0). Finally, when the data are
 correlated, any allowance for correlation is preferable to using the ordinary form of
 cross-validation, as evidenced by theorem 2.

 5. SIMULATION STUDY AND DATA ANALYSIS

 A simulation study was undertaken to investigate the methodology presented in the
 previous section. The function considered wasf(x) = 16x2(1 - X)2 for 0 < x < 1, and
 the error process was taken to be first order autoregressive, i.e. El - N(O, a2) and Ei =
 pEi- I + zi, i = 2, . . ., n, where the zi are independently and identically distributed
 N(0, U2(1 _ p2)). Six combinations of p and a (p = 0, 0.35, 0.70; a(= 0.05, 0.20) and the
 two sample sizes n = 100 and n = 300 were investigated. For each combination of n, p
 and a, 100 independent sets of data were generated. For each set of data, three
 estimates of the covariance function were calculated. The three estimates were of the
 form c^(k) = &2p k, k > 0, where &6 and pa were obtained by maximizing equation
 (4.5) for three choices of 6. For both sample sizes the choices for 6 were 0.05 7r, 0. 107r
 and 0.1 57r. In calculating I(co), the taper

 {10(lOu)3 -15(lOu)4 + 6(IOu)5, 0 < u < 0.1,

 t(u) = 1, 0.1 < u < 0.5,
 t(1-u), 0.5 < u < 1,

 was used throughout the study.
 Having obtained a covariance function estimate c^, the criterion M(h; c^) was

 calculated for 101 equally spaced values of h in [1 /n, 1/2], where the kernel employed

 was K(y) = 0.75(1 -y2) I(_ 1,1)(y). Three bandwidths, each the approximate
 minimizer of an estimated MASE curve, were thereby obtained for each data set. In
 addition, the approximate minimizer of M(h), the criterion that assumes the data are
 uncorrelated, was determined. Finally, to see how well the various bandwidths
 performed, the minimizer of

 Ln(h) = n fh k(n) f(n)
 over 101 equally spaced values of h in [1/n, 1/2] was determined for each set of data.

 The results of the simulation are summarized in Tables 1 and 2. The nomenclature
 used in the ensuing discussion is explained in Table 1. One remarkable aspect of the
 study is how poorly the procedure UC performed when the data were correlated. The
 performance of UC (relative to the optimum) deteriorates with

 (a) increasing p for n and a fixed,
 (b) increasing a for n and p > 0 and
 (c) increasing n for a and p > 0 fixed.

 It is encouraging that each of the covariance-based criteria outperformed UC when
 the data were correlated. This suggests that using an even somewhat inefficient c in
 M(h; c) is preferable to using M(h) when the data are correlated. Also encouraging is
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 TABLE 1

 Means and standard deviations of various bandwidths obtained in the simulation study t

 Bandwidth type Means and standard deviations (x 10000) for the following values of a and p:
 a = 0.05 a=0.2

 p p
 0 0.35 0.70 0 0.35 0.70

 n = 100
 OPT 687 (107) 838 (138) 943 (218) 1309 (275) 1487 (285) 1673 (337)
 UC 731 (113) 418 (99) 356 (32) 1150 (352) 358 (222) 254 (28)
 C1 765 (102) 904 (136) 1014 (288) 1311 (256) 1596 (346) 1882 (744)
 C2 744 (111) 871 (142) 1058 (360) 1258 (297) 1550 (393) 2118 (1112)
 C3 729 (115) 855 (172) 1067 (367) 1247 (312) 1483 (437) 2116 (1136)

 n=300
 OPT 600 (87) 668 (107) 792 (122) 995 (166) 1158 (201) 1405 (265)
 UC 555 (112) 161 (55) 102 (25) 955 (225) 101 (37) 83 (0)
 C1 562 (90) 654 (117) 806 (178) 977 (223) 1093 (295) 1368 (453)
 C2 565 (103) 633 (151) 1105 (923) 974 (252) 1038 (352) 1463 (994)
 C3 543 (121) 602 (187) 1151 (1065) 962 (239) 983 (386) 1610 (1380)

 tThe standard deviations are in parentheses. OPT denotes the minimizer of the loss Ln (h). The other bandwidths
 minimizeM(h; e) for some c. C1, C2 and C3 use the parametric method of Rice for estimating c(k) with, respectively,
 ( = 0.057r, ( =0. 107r and 6 =0.157r. UC is the criterion which assumes that the data are uncorrelated.

 TABLE 2

 Medians and 75th percentiles of I hf- ho I from the simulation study t

 Bandwidth type Medians and 75th percentiles (x 10000) for the following values of a and p:
 a=0.05 a=0.20
 p p

 0 0.35 0.70 0 0.35 0.70

 n = 100

 UC 99 (198) 446 (545) 594 (743) 297 (631) 1139 (1386) 1436 (1634)
 Cl 99 (198) 99 (198) 198 (347) 248 (495) 396 (644) 495 (978)
 C2 99 (198) 99 (235) 297 (483) 272 (495) 446 (681) 644 (1250)
 C3 99 (198) 149 (248) 322 (495) 248 (545) 495 (693) 718 (1349)

 n = 300

 UC 99 (199) 497 (596) 695 (783) 199 (348) 1043 (1192) 1291 (1490)
 Cl 99 (149) 99 (199) 149 (298) 199 (348) 298 (497) 447 (745)
 C2 99 (199) 99 (199) 248 (348) 199 (385) 323 (546) 646 (894)
 C3 99 (199) 149 (298) 323 (546) 199 (385) 397 (546) 844 (1130)

 TThe 75th percentiles are in parentheses. The quantity ho is the minimizer of Ln (h) for a given set of data while his the
 minimizer of either M(h) or M(h; e). See Table 1 for an explanation of bandwidth types.

 that, when the data were uncorrelated, the procedures C1, C2 and C3 performed
 about the same as UC. Except when p was 0.7, the covariance-based procedure was
 relatively insensitive to the choice of 8. Too large a choice for 6 at p = 0.7 led to some-
 what oversmoothed kernel estimates rather than to drastically undersmoothed
 estimates as in the UC method.

 To illustrate the methodology presented in Section 4 further, we shall apply it to a
 time series consisting of the Beveridge (1921) index of wheat prices from the year 1500
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 1500 1600 1700 1800

 (a)

 1500 1600 1700 1800

 (b)

 1500 1600 1700 1800

 (c)

 Fig. 1. Kernel estimates from the Beveridge wheat price index data: the horizontal axes are in years and
 each vertical axis is the natural logarithm of the price index; the bandwidths for (a) (h = 37) and (b)
 (h = 24. 1) minimize equation (4.3) for covariance estimates based on, respectively, AR(1) and AR(2)
 models; the bandwidth for (c) (h = 2. 1) is obtained on the assumption that the data are uncorrelated
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 to 1869 (see Anderson (1971)). These data are an annual index of prices at which wheat
 was sold in European markets. The data used for analysis were the natural logarithms
 of the Beveridge indices. This transformation was done to correct for hetero-
 scedasticity in the original series. As can be seen from Fig. 1, the time series is clearly
 non-stationary. It is reasonable to account for the trend in the data by means of a
 kernel smoother. Having done so, we can then carefully analyse residuals to try to
 detect periodicities in the stationary part of the series. A boundary-modified Epane-
 chnikov kernel was used in the analysis of the Beveridge data. (The Epanechnikov
 kernel was multiplied by an appropriate linear function for each point x within a
 bandwidth of either end of the interval [1499.5, 1869.5]. See Gasser and Muller (1979)
 for the details.)

 Non-linear regression was used to fit AR(1) and AR(2) spectra to the periodograms
 of the second-, third- and fourth-differenced data. The fitted models were only
 trivially different for the three degrees of differencing, and hence the models obtained
 from the second differences were used to estimate the MASE. Two MASE estimates
 of the form (4.3) were calculated, one for each of the two autoregressive models. The
 covariance estimates were of the form c(k) = &2p(k; ) where p(k; k) is the cor-
 relation function corresponding to an autoregression model with autoregressive
 parameters 'k ' is the estimate of the autoregressive parameters from the differences
 analysis and

 n

 = (2n) 1 E (yi_yi_j)2/{j -p(I;)}.
 i=2

 This variance estimate was chosen to make the procedure more analogous to Rice's
 criterion in the setting of uncorrelated data.

 The bandwidths minimizing the MASE estimates were 37 and 24 for, respectively,
 the AR(1) and AR(2) correlation models. The kernel estimates corresponding to these
 two bandwidths are shown in Fig. 1. The minimizer of equation (4.2) was also deter-
 mined. Visually, the two correlation-based kernel estimates are little different from
 each other. The estimate based on the assumption of no correlation is very rough.
 Essentially, the latter estimate provides a good kernel interpolator of the data. This
 would be useful for estimating missing values in the time series. In contrast, the other
 two kernel estimates describe the most slowly varying part of the series.

 Before concluding, a few remarks should be made about the methodology that has
 been proposed in this paper. The author has found this methodology to be a useful
 guide in arriving at an estimate of a mean function when the data are correlated.
 However, it should be clear that dependence in the data calls for a good deal of inter-
 action between the analyst and the data. Under the most general assumptions on the
 mean function and the error process, no solely data-based procedure will be able to
 estimate consistently both the function and the error structure. Even when the data
 are independent, the results of Hardle et al. (1988) indicate that cross-validated band-
 widths converge very slowly to the optimum bandwidth. Thus, under the best of
 circumstances it seems advisable to maintain a healthy scepticism about the answers
 obtained from automated procedures.
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 APPENDIX A: PROOF OF THEOREM 2

 Let bn = log n + 1. In what follows we assume that n > no, where bn < n" for all n > nO.
 Then P(hn < n ) > P(nfhEr, {Cn(bn/n) < Cn(h)}), where rn = Sn n [n +a, Bn - 15].
 Define

 n

 OMn(h) = C"(h) - (1/n) E Ej2Inj = Cn(h) -n2
 j=l

 whee I j= IBn ,5l-B-15)((j ')In). It follows thatp(n I{n(nn) < C"(h)}) >, P(En),
 whereEn = { bnOn(bn/n) < -q + E} nf {supherbn Il a(h)I < 1 - e } and O < <v. We have

 P(En) > P(supherP bn Ifl(h)I <71-E) + P(bnjIn(bn/n) < -1 + 6)- 1.

 Now, I On(h) I < An (h) + 2& {An(h)} 12 where

 n

 A"(h) = (I /n) E {.fPh((j - 1 )/n) -f((j - )/n)} I2n,j.
 j=1

 By relatingAn(h) to Ln(h) and using lemma 1 in Hart (1987), it is now straightforward to show
 that suph6r bn I On (h) I converges to zero in probability.

 Since X can be chosen arbitrarily small, theorem 2 will be proven if we can show that
 bnO,3(bn/n) converges in probability to a negative number. It can be shown that, as nh -+ oo
 and h 0,

 M(h) = ASE(h)- an(h) + op(nh)-, (A.1)

 where

 ASE(h) = - [(-: f(2)]I
 () n fE =(* n ) (n )3n

 and

 ne(h)= n Yi* n )In,j

 Using equation (A. 1), theorem 1 and techniques similar to those used to prove theorem 2 in
 Hart (1987), we have

 bn E(Orn(bnln)) -*JK{c(O)+2Z c(j)} -2K(O){c(1)+2Z c(j)}.

 Since this quantity is negative under condition (3.2), the theorem will be proven if we show
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 bn {ASE(bn /n) - E(ASE(bn /n))} + O

 and

 bn {on(bn/n) - E(cn(bn/n))} 4O

 Since the two cases are handled similarly, we only consider the second. We can write a (h) as

 1 n

 7Yn(h) + - Ej jZj,n, hInj I (A.2)
 n j=1

 where TyM(h) = (2/n)jn=1 Ejfh((j-?)/n)In,j, Zj,n,h = (nh)f-2= -lwkj(n,h)yj+k, and the
 wkj(n, h) are constants bounded uniformly in k, j, n and h. We have

 'y~~(h)n=- n (~IZ~E +f I

 nh i=-n(h) (i)n J n)J

 and hence

 n(h) n

 nh {tYn (h) -E(Yn ( h ))} = E K(z;) ! (c(i) -E( ( i)) +- 1 j 2 nj
 i= -n(h) n j-i \f /

 where e1(i) = (1/n)Ejn= 1EjijYIn,j. To show that nh{'IT(h)-E(Yn(h))} converges to zero in
 probability it is sufficient to show that

 E [{var( 1(l/2 + var I)i)3 j (A.3) i= -n(h) L n \= nl /
 tends to zero as nh -+ oo and h - 0. By the conditions imposed on c(k), the two variances in
 expression (A.3) are bounded uniformly in i byA/n for some A > 0 (see Priestley (1981)), and
 so expression (A.3) is Q(hln). From this it is clear that bn { 'y(bn/n) - E(-yn(bn/n))} tends to
 zero in probability. The second term in expression (A.2) is handled similarly and so the proof is
 complete.
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