STAT 613 Midterm (1 hour 30 minutes) March 23rd, 2016

Marks will be given for clarity of the solution.

Good Luck!

(1a) (i) Suppose the distribution of the random variable Y can be parametrized in terms of the natural exponential family

$$
\log f(y ; \omega)=y \theta(\omega)-\kappa(\theta)+g(y)
$$

Derive an expression for the Fisher information of the univariate parameter ω (note that $\theta=\theta(\omega)$).
(ii) Y is a discrete random variable with the geometric distribution $P(Y=k ; \pi)=$ $\pi^{k-1}(1-\pi)$.
Y is not observed when $Y=j$. Obtain the condition distribution of $Y \mid Y \neq j$ and show that it has a natural exponential family representation.
(iii) Suppose we observe $\left\{U_{i}\right\}_{i=1}^{n}$ where $U_{i}=Y_{i} \mid Y_{i} \neq j$. Give the log-likelihood of U_{i}.
(iv) What are the minimal sufficient statistics associated with the distribution in (iii).
(v) Explain why computationally it is straightforward to maximise the likelihood associated with $\left\{U_{i}\right\}$.
(b) Y is a discrete value random variable with the geometric distribution $P(Y=k ; \pi)=$ $\pi^{k-1}(1-\pi)$ and δ is a binary random variable with $P(\delta=0)=1-p$ and $P(\delta=1)=p$. Define the random variable

$$
V=\delta Y+(1-\delta) \theta
$$

where θ is an unknown parameter taking only integer values $\theta \in \mathbb{Z}^{+}, \delta$ and Y are independent of each other. Our aim is to estimate θ, p and π where $\theta \in \mathbb{Z}^{+}$(positive integers), $p \in[0,1]$ and $\pi \in[0,1]$.
(i) Obtain the distribution of V.
(ii) What is the log-likelihood of $\left\{V_{i}\right\}_{i=1}^{n}$.
(iii) Suppose θ is known. Obtain "good" initial values for π and p such that the likelihood in (ii) can be easily maximised for a given θ.
(iv) Use your answer in (iii) to explain how θ, p and π can be estimated using the profile likelihood.
(2) Suppose that $\left\{X_{i}\right\}$ are iid normal random variables with mean μ and variance σ^{2}. We want to test the hypothesis $H_{0}: \mu^{2}=\sigma^{2}$ against $H_{A}: \mu^{2} \neq \sigma^{2}$.
(i) Give the log-likelihood ratio statistic for testing the above hypothesis.
(ii) What is the limiting distribution of log-likelihood ratio test statistic (under the null hypothesis). Carefully explain your answer.
(3) Suppose that $\left\{X_{i}\right\}_{i=1}^{n}$ are iid random variables with mean μ and variance σ^{2} and finite fourth order moment (they are not necessarily normal). Denote the third and fourth order cumulants as κ_{3} and κ_{4}.

Let $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ and $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$.
(i) The delta method states that if $\sqrt{n}(\bar{X}-\mu) \xrightarrow{D} N\left(0, \sigma^{2}\right)$ then $\sqrt{n}(g(\bar{X})-g(\mu)) \xrightarrow{D}$ $N\left(0, \sigma^{2}\left[g^{\prime}(\mu)\right]^{2}\right)$.
Using the delta method or otherwise obtain the limiting distribution of \bar{X}^{2}.
Besides the finiteness of the fourth moment of X_{i}, what is the most important condition for this result to hold?
(ii) Suppose that the vector $\sqrt{n}\left(\bar{X}^{2}, s^{2}\right)$ is asymptotically normal. Obtain the asymptotic variance of the vector $\sqrt{n}\left(\bar{X}^{2}, s^{2}\right)$. Negligible (lower order) terms can be ignored.

Denote this matrix as Σ.
(iii) Use your answer in (ii) to obtain the limiting distribution of the statistic

$$
T_{n}=\sqrt{n}\left(\frac{\bar{X}^{2}}{s^{2}}-1\right)
$$

under the null $H_{0}: \mu^{2}=\sigma^{2}\left(\sigma^{2} \neq 0\right)$.
Note if you do not have (ii). Then simply use the matrix Σ.
(iv) For small finite samples will T_{n} be close to normal?

Useful information for answering part (i,ii) is given overleaf:

$$
\begin{aligned}
\operatorname{cov}[A B, C]= & \operatorname{cov}[A, C] \mathbb{E}[B]+\operatorname{cov}[B, C] \mathbb{E}[C]+\operatorname{cum}(A, B, C)+\mathbb{E}[A] \mathbb{E}[B] \mathbb{E}[C] \\
\operatorname{cov}[A B, C D]= & \operatorname{cov}[A, C] \operatorname{cov}[B, D]+\operatorname{cov}[A, D] \operatorname{cov}[B, C]+\operatorname{cov}[A, C] \mathbb{E}[B] \mathbb{E}[D] \\
& +\operatorname{cov}[A, D] \mathbb{E}[B] \mathbb{E}[C]+\mathbb{E}[A] \mathbb{E}[C] \operatorname{cov}[B, D]+\mathbb{E}[A] \mathbb{E}[D] \operatorname{cov}[B, C] \\
& +\mathbb{E}[A] \operatorname{cum}[B, C, D]+\mathbb{E}[B] \operatorname{cum}[A, C, D] \\
& +\mathbb{E}[D] \operatorname{cum}[A, B, C]+\mathbb{E}[C] \operatorname{cum}[A, B, D]+\operatorname{cum}[A, B, C, D] \\
\operatorname{cum}[A+B, C, D]= & \operatorname{cum}[A, C, D]+\operatorname{cum}[B, C, D] \\
\operatorname{cum}[A+B, C, D, E]= & \operatorname{cum}[A, C, D, E]+\operatorname{cum}[B, C, D, E] .
\end{aligned}
$$

If A is independent of (B, C) then cum $[A, B, C]=0$ (a similar result holds true for the fourth order cumulant).

