April 11th, 2011

NAME:

Total number of Marks: /25

Answer all the questions (questions are on <u>both</u> sides of the paper).

Marks will be given for clarity of the solution.

Write your solutions in the question paper.

Good Luck!

(1) Suppose that Z is a Weibull random variable with density $f(x; \phi, \alpha) = \left(\frac{\alpha}{\phi}\right) \left(\frac{x}{\phi}\right)^{\alpha-1} \exp(-(x/\phi)^{\alpha})$. Show that

$$\mathbb{E}(Z^r) = \phi^r \Gamma\left(1 + \frac{r}{\alpha}\right).$$
[3]

Hint: Use

$$\int x^a \exp(-x^b) dx = \frac{1}{b} \Gamma(\frac{a}{b} + \frac{1}{b}) \qquad a, b > 0.$$

This result may be useful in the questions below.

(2) Let us suppose that the random variable X is a mixture of Weibull distributions

$$f(x;\theta) = p(\frac{\alpha_1}{\phi_1})(\frac{x}{\phi_1})^{\alpha_1 - 1} \exp(-(x/\phi_1)^{\alpha_1}) + (1-p)(\frac{\alpha_2}{\phi_2})(\frac{x}{\phi_2})^{\alpha_2 - 1} \exp(-(x/\phi_2)^{\alpha_2}).$$

[3]

(i) Derive the mean and variance of X.

(ii) Obtain the exponential distribution which best fits the above mixture Weibull according to the Kullbach-Lieber criterion (recall that the exponential is $g(x; \lambda) = \frac{1}{\lambda} \exp(-x/\lambda)$). [3]

- (3) Let us suppose that $\{T_i\}_i$ are the survival times of lightbulbs. We will assume that $\{T_i\}$ are iid random variables with the density $f(\cdot; \theta_0)$ and survival function $\mathcal{F}(\cdot; \theta_0)$, where θ_0 is unknown. The survival times are censored, and $Y_i = \min(T_i, c)$ and δ_i are observed (c > 0), where $\delta_i = 1$ if $Y_i = T_i$ and is zero otherwise.
 - (a) (i) State the log-likelihood of $\{(Y_i, \delta_i)\}_i$.

(ii) We denote the above log-likelihood as $\mathcal{L}_T(\theta)$. Show that

$$-\mathbb{E}\left(\frac{\partial^{2}\mathcal{L}_{T}(\theta)}{\partial\theta^{2}}\rfloor_{\theta=\theta_{0}}\right)=\mathbb{E}\left(\frac{\partial\mathcal{L}_{T}(\theta)}{\partial\theta}\rfloor_{\theta=\theta_{0}}\right)^{2},$$

stating any important assumptions that you may use.

[3]

[1]

- (b) Let us suppose that the above survival times satisfy a Weibull distribution $f(x; \phi, \alpha) = (\frac{\alpha}{\phi})(\frac{x}{\phi})^{\alpha-1} \exp(-(x/\phi)^{\alpha})$ and as in part (a) we observe and $Y_i = \min(T_i, c)$ and δ_i , where c > 0.
 - (i) Using your answer in part 2a(i), give the log-likelihood of $\{(Y_i, \delta_i)\}_i$ for this particular distribution (we denote this as $\mathcal{L}_T(\alpha, \phi)$) and derive the profile likelihood of α (profile out the nusiance parameter ϕ).

Suppose you wish to test H_0 : $\alpha = 1$ against H_A : $\alpha \neq 1$ using the loglikelihood ratio test, what is the limiting distribution of the test statistic under the null? [3] (ii) Let $\hat{\phi}_T$, $\hat{\alpha}_T = \arg \max \mathcal{L}_T(\alpha, \phi)$ (maximum likelihood estimators involving the censored likelihood). Do the estimators $\hat{\phi}_T$ and $\hat{\alpha}_T$ converge to the true parameters ϕ and α (you can assume that $\hat{\phi}_T$ and $\hat{\alpha}_T$ converge to some parameters, and your objective is to find whether these parameters are ϕ and α). [3]

(iii) Obtain the (expected) Fisher information matrix of maximum likelihood estimators.

(iv) Using your answer in part 2b(iii) derive the limiting variance of the maximum likelihood estimator of $\hat{\alpha}_T$. [3]