(1) $\left\{X_{i} ; i=1, \ldots, n\right\}$ are iid Gaussian random variables and $\left\{Y_{j} ; j=1, \ldots, m\right\}$ are iid exponential random variables with densities

$$
\begin{aligned}
f_{X}\left(x ; \mu, \sigma^{2}\right) & =\left(2 \sigma^{2} \pi\right)^{-1 / 2} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right), \quad x \in \mathbb{R} \\
f_{Y}(y ; \theta) & =\theta^{-1} \exp (-y / \theta) \quad y>0
\end{aligned}
$$

respectively $\left(\mu \in \mathbb{R}, \sigma^{2}, \theta>0\right)$. $\left\{X_{i} ; i=1, \ldots, n\right\}$ and $\left\{Y_{j} ; j=1, \ldots, m\right\}$ are independent of each other.
(i) State the joint $\log$ likelihood of $\left\{X_{i} ; i=1, \ldots, n\right\}$ and $\left\{Y_{j} ; j=1, \ldots, m\right\}$.
(ii) Obtain the sufficient statistics of $\mu, \sigma^{2}$ and $\theta$.
(iii) Suppose $\mu=\gamma, \sigma^{2}=\gamma^{2}$ and $\theta=\gamma$ obtain the maximum likelihood estimator of $\gamma$.

Hint: Use good notation and think carefully about the solution to use.
(2) $\left\{Y_{i} ; i=1, \ldots, n\right\}$ are iid random variables with mean $\mu(\theta)$ and variance $V(\theta)$. We test the hypothesis $H_{0}: \theta=\theta_{0}$ against $H_{A}: \theta \neq \theta_{0}$ using the test statistic

$$
T=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{Y_{i}-\mu\left(\theta_{0}\right)}{\sqrt{V\left(\theta_{0}\right)}} .
$$

(i) What is the asymptotic distribution of $T$ under the null hypothesis?

Hint: Use the classical CLT.
(ii) Obtain the power function of $T$ under the alternative hypothesis.

Hint: Use the alternative $\theta_{1}=\theta_{0}+\phi / \sqrt{n}$.
(3) $\left\{X_{i}\right\}$ are iid random variables where

$$
X_{i}= \begin{cases}U_{i} & \text { if } U_{i} \leq V_{i} \\ V_{i} & \text { if } U_{i}>V_{i}\end{cases}
$$

(i) Let $F_{U}$ denote the distribution of $U$ and $f_{V}$ denote the density of $V$. Show that the distribution of $Y=U-V$ is

$$
F_{U-V}(y)=\int_{-\infty}^{\infty} F_{U}(y+v) f_{V}(v) d v
$$

(i) Suppose that $U$ and $V$ are exponential distributed with density $\theta_{1} \exp \left(-\theta_{1} u\right)$ and $\theta_{2} \exp \left(-\theta_{2} v\right)\left(u, v, \theta_{1}, \theta_{2} \geq 0\right)$ obtain the density of $X$.

You may use that the distribution function of the density $\theta^{-1} \exp (-x / \theta)$ is $\exp (-x / \theta)$.
(iii) Show how the EM-algorithm can be utilized to obtain the maximum likelihood estimators of $\theta_{1}$ and $\theta_{2}$.
(4) $Y_{i}$ are independent random variables with mean $\mathbb{E}\left[Y_{i}\right]=g\left(\beta x_{i}\right)$ (where $x_{i}$ is an observed regressor, $g$ is a known function and $\beta$ is an unknown parameter). Suppose $\operatorname{var}\left[Y_{i}\right]=$ $V\left(\beta x_{i}\right)$. We define the estimator

$$
\widehat{\beta}=\arg \min _{\beta \in \Theta} \sum_{i=1}^{n}\left[Y_{i}-g\left(\beta x_{i}\right)\right]^{2}
$$

(i) Assuming that $\widehat{\beta}$ consistently estimates $\beta$, derive the asymptotic distribution of $\widehat{\beta}$.
Hint: There are some technical issues in solving this question; this can be ignored. You may use the result that if $\left\{X_{i}\right\}$ are independent mean zero random variables that are not necessarily identically distributed and $\left[\sum_{i=1}^{n} \operatorname{var}\left[X_{i}\right]\right]^{-1} \xrightarrow{P} 0$ as $n \rightarrow$ $\infty$ (you can assume this condition holds true), then

$$
\frac{1}{\sqrt{\sum_{i=1}^{n} \operatorname{var}\left[X_{i}\right]}} \sum_{i=1}^{n} X_{i} \xrightarrow{D} N(0,1) .
$$

(ii) Briefly outline how you would estimate the "asymptotic" variance of $\widehat{\beta}$.

