
Chapter 7

The Expectation-Maximisation

Algorithm

7.1 The EM algorithm - a method for maximising

the likelihood

Let us suppose that we observe Y = {Yi}ni=1. The joint density of Y is f(Y ; ✓0), and ✓0 is

an unknown parameter. Our objective is to estimate ✓0. The log-likelihood of Y is

Ln(Y ; ✓) = log f(Y ; ✓),

Observe, that we have not specified that {Yi} are iid random variables. This is because

the procedure that we will describe below is very general and the observations do not

need to be either independent or identically distributed (indeed an interesting extension

of this procedure, is to time series with missing data first proposed in Shumway and Sto↵er

(1982) and Engle and Watson (1982)). Our objective is to estimate ✓0, in the situation

where either evaluating the log-likelihood Ln or maximising Ln is di�cult. Hence an

alternative means of maximising Ln is required. Often, there may exist unobserved data

{U = {Ui}mi=1}, where the likelihood of (Y , U) can be ‘easily’ evaluated. It is through

these unobserved data that we find an alternative method for maximising Ln.

The EM-algorithm was specified in its current form in Dempster, Laird and Run-

bin (1977)(https://www.jstor.org/stable/pdf/2984875.pdf) however it was applied

previously to several specific models.
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Example 7.1.1 (i) Suppose that {fj(·; ✓); ✓}mj=1 are a sequence of densities from m

exponential classes of densities. In Sections 1.6 and 1.6.5 we showed that it was

straightforward to maximise each of these densities. However, let us suppose that

each fj(·; ✓) corresponds to one subpopulation. All the populations are pooled together

and given an observation Xi it is unknown which population it comes from. Let �i

denote the subpopulation the individual Xi comes from i.e. �i 2 {1, . . . ,m} where

P (�i = j) = pj.

The density of all these mixtures of distribution is

f(x; ✓) =
m
X

j=1

f(Xi = x|�i = j)P (�i = j) =
m
X

j=1

pjfj(x; ✓)

where
Pm

j=1 pj = 1. Thus the log-likelihood of {Xi} is

n
X

i=1

log

 

m
X

j=1

pjfj(Xi; ✓)

!

.

Of course we require that
Pm

j=1 pj = 1, thus we include a lagrange multiplier to the

likelihood to ensure this holds

n
X

i=1

log

 

m
X

j=1

pjfj(Xi; ✓)

!

+ �

 

m
X

j=1

pj � 1

!

.

It is straightforward to maximise the likelihood for each individual subpopulation,

however, it is extremely di�cult to maximise the likelihood of this mixture of distri-

butions.

The data {Xi} can be treated as missing, since the information {�i} about the which

population each individual belongs to is not there. If �i were known the likelihood of

{Xi, �i} is

m
Y

j=1

n
Y

i=1

(pjfj(Xi; ✓))
I(�

i

=j) =
n
Y

i=1

p�
i

f�
i

(Xi; ✓)

which leads to the log-likelihood of {Xi, �i} which is

n
X

i=1

log p�
i

f�
i

(Xi; ✓) =
n
X

i=1

(log p�
i

+ log f�
i

(Xi; ✓))
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which is far easier to maximise. Again to ensure that
Pm

j=1 pj = 1 we include a

Lagrange multiplier

n
X

i=1

log p�
i

f�
i

(Xi; ✓) =
n
X

i=1

(log p�
i

+ log f�
i

(Xi; ✓)) + �

 

m
X

j=1

pj � 1

!

.

It is easy to show that bpj = n�1
Pn

i=1 I(�i = j).

(ii) Let us suppose that {Ti}n+m
i=1 are iid survival times, with density f(x; ✓0). Some of

these times are censored and we observe {Yi}n+m
i=1 , where Yi = min(Ti, c). To simplify

notation we will suppose that {Yi = Ti}ni=1, hence the survival time for 1  i  n,

is observed but Yi = c for n + 1  i  n + m. Using the results in Section the

log-likelihood of Y is

Ln(Y ; ✓) =

✓ n
X

i=1

log f(Yi; ✓)

◆

+

✓ n+m
X

i=n+1

logF(Yi; ✓)

◆

.

The observations {Yi}n+m
i=n+1 can be treated as if they were missing. Define the ‘com-

plete’ observations U = {Ti}n+m
i=n+1, hence U contains the unobserved survival times.

Then the likelihood of (Y , U) is

Ln(Y , U ; ✓) =
n+m
X

i=1

log f(Ti; ✓).

If no analytic express exists for the survival function F , it is easier to maximise

Ln(Y , U) than Ln(Y ).

We now formally describe the EM-algorithm. As mentioned in the discussion above

it is often easier to maximise the joint likelihood of (Y , U) than with the likelihood of Y

itself. the EM-algorithm is based on maximising an approximation of (Y , U) based on

the data that is observed Y .

Let us suppose that the joint likelihood of (Y , U) is

Ln(Y , U ; ✓) = log f(Y , U ; ✓).

This likelihood is often called the complete likelihood, we will assume that if U were

known, then this likelihood would be easy to obtain and di↵erentiate. We will assume
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that the density f(U |Y ; ✓) is also known and is easy to evaluate. By using Bayes theorem

it is straightforward to show that

log f(Y , U ; ✓) = log f(Y ; ✓) + log f(U |Y ; ✓) (7.1)

) Ln(Y , U ; ✓) = Ln(Y ; ✓) + log f(U |Y ; ✓).

Of course, in reality log f(Y , U ; ✓) is unknown, because U is unobserved. However, let us

consider the expected value of log f(Y , U ; ✓) given what we observe Y . That is

Q(✓0, ✓) = E

✓

log f(Y , U ; ✓)
�

�Y , ✓0

◆

=

Z

✓

log f(Y , u; ✓)

◆

f(u|Y , ✓0)du, (7.2)

where f(u|Y , ✓0) is the conditional distribution of U given Y and the unknown parameter

✓0. Hence if f(u|Y , ✓0) were known, then Q(✓0, ✓) can be evaluated.

Remark 7.1.1 It is worth noting that Q(✓0, ✓) = E
�

log f(Y , U ; ✓)
�

�Y , ✓0
�

can be viewed

as the best predictor of the complete likelihood (involving both observed and unobserved

data - (Y , U)) given what is observed Y . We recall that the conditional expectation is

the best predictor of U in terms of mean squared error, that is the function of Y which

minimises the mean squared error: E(U |Y ) = argming E(U � g(Y ))2.

The EM algorithm is based on iterating Q(·) in such a way that at each step we

obtaining an estimator which gives a larger value of Q(·) (and as we will show later, this

gives a larger Ln(Y ; ✓)). We describe the EM-algorithm below.

The EM-algorithm:

(i) Define an initial value ✓1 2 ⇥. Let ✓⇤ = ✓1.

(ii) The expectation step (The (k+1)-step),

For a fixed ✓⇤ evaluate

Q(✓⇤, ✓) = E

✓

log f(Y , U ; ✓)

�

�

�

�

Y , ✓⇤

◆

=

Z

�

log f(Y , u; ✓)
�

f(u|Y , ✓⇤)du,

for all ✓ 2 ⇥.

(iii) The maximisation step

Evaluate ✓k+1 = argmax✓2⇥ Q(✓⇤, ✓).
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We note that the maximisation can be done by finding the solution of

E

✓

@ log f(Y , U ; ✓)

@✓

�

�

�

�

Y , ✓⇤

◆

= 0.

(iv) If ✓k and ✓k+1 are su�ciently close to each other stop the algorithm and set b✓n = ✓k+1.

Else set ✓⇤ = ✓k+1, go back and repeat steps (ii) and (iii) again.

We use ✓̂n as an estimator of ✓0. To understand why this iteration is connected to the

maximising of Ln(Y ; ✓) and, under certain conditions, gives a good estimator of ✓0 (in

the sense that ✓̂n is close to the parameter which maximises Ln) let us return to (7.1).

Taking the expectation of log f(Y , U ; ✓), conditioned on Y we have

Q(✓⇤, ✓) = E

✓

log f(Y , U ; ✓)
�

�Y , ✓⇤

◆

= E
⇥

log f(Y ; ✓) + log f(U |Y ; ✓)
�

�Y , ✓⇤
⇤

= log f(Y ; ✓) + E



log f(U |Y ; ✓)
�

�Y , ✓⇤

�

. (7.3)

Define

D(✓⇤, ✓) = E

✓

log f(U |Y ; ✓)
�

�Y , ✓⇤

◆

=

Z

⇥

log f(u|Y ; ✓)
⇤

f(u|Y , ✓⇤)du.

Substituting D(✓⇤, ✓) into (7.3) gives

Q(✓⇤, ✓) = Ln(✓) +D(✓⇤, ✓), (7.4)

we use this in expression in the proof below to show that Ln(✓k+1) > Ln(✓k). First we

that at the (k+1)th step iteration of the EM-algorithm, ✓k+1 maximises Q(✓k, ✓) over all

✓ 2 ⇥, hence Q(✓k, ✓k+1) � Q(✓k, ✓k) (which will also be used in the proof).

In the lemma below we show that Ln(✓k+1) � Ln(✓k), hence at each iteration of the

EM-algorthm we are obtaining a ✓k+1 which increases the likelihood over the previous

iteration.

Lemma 7.1.1 When running the EM-algorithm the inequality Ln(✓k+1) � Ln(✓k) always

holds.

Furthermore, if ✓k ! b✓ and for every iteration @Q(✓1,✓2)
@✓2

c(✓1,✓2)=(✓
k

,✓
k+1) = 0, then

@L
n

(✓)
@✓

c✓=b✓ = 0 (this point can be a saddle point, a local maximum or the sought after

global maximum).
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PROOF. From (7.4) it is clear that

Q(✓k, ✓k+1)�Q(✓k, ✓k) =
⇥

Ln(✓k+1)� Ln(✓k)
⇤

+
⇥

D(✓k, ✓k+1)�D(✓k, ✓k)
⇤

, (7.5)

where we recall

D(✓1, ✓) = E

✓

log f(U |Y ; ✓)
�

�Y , ✓1

◆

=

Z

⇥

log f(u|Y ; ✓)
⇤

f(u|Y , ✓1)du.

We will show that
⇥

D(✓k, ✓k+1)�D(✓k, ✓k)
⇤

 0, the result follows from this. We observe

that

⇥

D(✓k, ✓k+1)�D(✓k, ✓k)
⇤

=

Z

log
f(u|Y , ✓k+1)

f(u|Y , ✓k)
f(u|Y , ✓k)du.

By using the Jenson’s inequality (which we have used several times previously)

⇥

D(✓k, ✓k+1)�D(✓k, ✓k)
⇤

 log

Z

f(u|Y , ✓k+1)du = 0.

Therefore,
⇥

D(✓k, ✓k+1)�D(✓k, ✓k)
⇤

 0. Note that if ✓ uniquely identifies the distribution

f(u|Y , ✓) then equality only happens when ✓k+1 = ✓k. Since
⇥

D(✓k, ✓k+1)�D(✓k, ✓k)
⇤

 0

by (7.5) we have

⇥

Ln(✓k+1)� Ln(✓k)
⇤

� Q(✓k, ✓k+1)�Q(✓k, ✓k) � 0.

and we obtain the desired result (Ln(✓k+1) � Ln(✓k)).

To prove the second part of the result we will use that for all ✓ 2 ⇥

@D(✓1, ✓2)

@✓2
c(✓1,✓2)=(✓,✓) =

Z

@ log f(u|Y ; ✓)

@✓
f(u|Y , ✓)du =

@

@✓

Z

f(u|Y , ✓)du = 0. (7.6)

We will to show that the derivative of the likelihood is zero at ✓⇤ i.e. @L
@✓
c✓=✓⇤ = 0. To

show this we use the identity

Ln(✓k+1) = Q(✓k, ✓k+1)�D(✓k, ✓k+1).

Taking derivatives with respect to ✓k+1 gives

@Ln(✓)

@✓
c✓=✓

k+1
=

@Q(✓1, ✓2)

@✓2
c(✓1,✓2)=(✓

k

,✓
k+1) �

@D(✓1, ✓2)

@✓2
c(✓1,✓2)=(✓

k

,✓
k+1).

By definition of ✓k+1,
@Q(✓1,✓2)

@✓2
c(✓1,✓2)=(✓

k

,✓
k+1) = 0, thus we have

@Ln(✓)

@✓
c✓=✓

k+1
= �@D(✓1, ✓2)

@✓2
c(✓1,✓2)=(✓

k

,✓
k+1).
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Furthermore, since by assumption ✓k ! b✓ this implies that as k ! 1 we have

@Ln(✓)

@✓
c✓=b✓ = �@D(✓1, ✓2)

@✓2
c(✓1,✓2)=(b✓,b✓) = 0,

which follows from (7.6), thus giving the required result. ⇤
Further information on convergence can be found in Boyles (1983) (http://www.

jstor.org/stable/pdf/2345622.pdf?_=1460485744796) andWu (1983) (https://www.

jstor.org/stable/pdf/2240463.pdf?_=1460409579185).

Remark 7.1.2 Note that the EM algorithm will converge to a b✓ where @L
n

(✓)
@✓ ✓=b✓ = 0.

The reason can be seen from the identity

Q(✓⇤, ✓) = Ln(✓) +D(✓⇤, ✓).

The derivative of the above with respect to ✓ is

@Q(✓⇤, ✓)

@✓
=

@Ln(✓)

@✓
+

@D(✓⇤, ✓)

@✓
. (7.7)

Observe that D(✓⇤, ✓) is maximum only when ✓ = ✓⇤ (for all ✓⇤, this is clear from the

proof above), thus @D(✓⇤,✓)
@✓ ✓=✓⇤

which for ✓⇤ = b✓ implies @D(b✓,✓)
@✓ ✓=b✓ = 0. Furthermore, by

definition @Q(b✓,✓)
@✓ ✓=b✓ = 0.

Since @Q(b✓,✓)
@✓ ✓=b✓ = 0 and @D(b✓,✓)

@✓ ✓=b✓ = 0 by using (7.7) this implies @L
n

(✓)
@✓ ✓=b✓ = 0.

In order to prove the results in the following section we use the following identities.

Since

Q(✓1, ✓2) = L(✓2) +D(✓1, ✓2)

) @2Q(✓1, ✓2)

@✓22
=

@2L(✓2)
@✓2

+
@2D(✓1, ✓2)

@✓2

) @2Q(✓1, ✓2)

@✓22
c(✓1,✓2)=(✓,✓) =

@2L(✓2)
@✓22

c(✓1,✓2)=(✓,✓) +
@2D(✓1, ✓2)

@✓22
c(✓1,✓2)=(✓,✓)

) �@2L(✓2)
@✓22

c(✓1,✓2)=(✓,✓) = �@2Q(✓1, ✓2)

@✓22
c(✓1,✓2)=(✓,✓) +

@2D(✓1, ✓2)

@✓22
c(✓1,✓2)=(✓,✓) (7.8)

We observe that the LHS of the above is the observed Fisher information matrix I(✓|Y ),

�@2Q(✓1, ✓2)

@✓22
c(✓1,✓2)=(✓,✓) = IC(✓|Y ) = �

Z

@2 log f(u, Y ; ✓)

@✓2
f(u|Y , ✓)du (7.9)
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is the complete Fisher information conditioned on what is observed and

�@2D(✓1, ✓2)

@✓22
c(✓1,✓2)=(✓,✓) = IM(✓|Y ) = �

Z

@2 log f(u|Y ; ✓)

@✓2
f(u|Y , ✓)du (7.10)

is the Fisher information matrix of the unobserved data conditioned on what is observed.

Thus

I(✓|Y ) = IC(✓|Y )� IM(✓|Y ).

7.1.1 Speed of convergence of ✓
k

to a stable point

When analyzing an algorithm it is instructive to understand how fast it takes to converge

to the limiting point. In the case of the EM-algorithm, this means what factors determine

the rate at which ✓k converges to a stable point b✓ (note this has nothing to do with the rate

of convergence of an estimator to the true parameter, and it is important to understand

this distinction).

The rate of convergence of an algorithm is usually measured by the ratio of the current

iteration with the previous iteration:

R = lim
k!1

 

✓k+1 � b✓

✓k � b✓

!

,

if the algorithm converges to a limit in a finite number of iterations we place the above

limit to zero. Thus the smaller R the faster the rate of convergence (for example if (i)

✓k � b✓ = k�1 then R = 1 if (ii) ✓k � b✓ = ⇢k then R = ⇢, assuming |⇢| < 1). Note that

since (✓k+1 � b✓) =
Qk

j=1

⇣

✓
j+1�b✓
✓
j

�b✓

⌘

, then typically |R|  1.

To obtain an approximation of R we will make a Taylor expansion of @Q(✓1,✓2)
@✓2

around

the limit (✓1, ✓2) = (b✓, b✓). To do this we recall that for a bivariate function f : R2 ! R
for (x0, y0) “close” to (x, y) we have the Taylor expansion

f(x, y) = f(x0, y0) + (x� x0)
@f(x, y)

@x
c(x,y)=(x0,y0) + (y � y0)

@f(x, y)

@y
c(x,y)=(x0,y0) + lower order terms.

Applying the above to @Q(✓1,✓2)
@✓2

gives

@Q(✓1, ✓2)

@✓2
c(✓1,✓2)=(✓

k

,✓
k+1)

⇡ @Q(✓1, ✓2)

@✓2
c(✓1,✓2)=(b✓,b✓) + (✓k+1 � b✓)

@2Q(✓1, ✓2)

@✓22
c(✓1,✓2)=(b✓,b✓) + (✓k � b✓)

@2Q(✓1, ✓2)

@✓1@✓2
c(✓1,✓2)=(b✓,b✓).
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Since ✓k+1 maximises Q(✓k, ✓) and b✓ maximises Q(b✓, ✓) within the interior of the parameter

space then

@Q(✓1, ✓2)

@✓2
c(✓1,✓2)=(✓

k

,✓
k+1) = 0 and

@Q(✓1, ✓2)

@✓2
c(✓1,✓2)=(b✓,b✓) = 0

This implies that

(✓k+1 � b✓)
@2Q(✓1, ✓2)

@✓22
c(✓1,✓2)=(b✓,b✓) + (✓k � b✓)

@2Q(✓1, ✓2)

@✓1@✓2
c(✓1,✓2)=(b✓,b✓) = 0.

Thus

lim
k!1

 

✓k+1 � b✓

✓k � b✓

!

= �
✓

@2Q(✓1, ✓2)

@✓22
c(✓1,✓2)=(b✓,b✓)

◆�1 @2Q(✓1, ✓2)

@✓1@✓2
c(✓1,✓2)=(b✓,b✓). (7.11)

This result shows that the rate of convergence depends on the ratio of gradients ofQ(✓1, ✓2)

around (✓1, ✓2) = (b✓, b✓). Some further simplifications can be made by noting that

Q(✓1, ✓2) = Ln(✓2) +D(✓1, ✓2) ) @2Q(✓1, ✓2)

@✓1@✓2
=

@2D(✓1, ✓2)

@✓1@✓2
.

Substituting this into (7.11) gives

lim
k!1

 

✓k+1 � b✓

✓k � b✓

!

= �
✓

@2Q(✓1, ✓2)

@✓22
c(✓1,✓2)=(b✓,b✓)

◆�1 @2D(✓1, ✓2)

@✓1@✓2
c(✓1,✓2)=(b✓,b✓). (7.12)

To make one further simplification, we note that

@2D(✓1, ✓2)

@✓1@✓2
c(✓1,✓2)=(b✓,b✓) =

Z

1

f(u|Y , ✓2)

@f(u|Y , ✓2)

@✓2

@f(u|Y , ✓1)

@✓1
c(✓1,✓2)=(b✓,b✓)du

=

Z

1

f(u|Y , ✓)

✓

@f(u|Y , ✓)

@✓

◆2

c✓=b✓du

= �
Z

@2 log f(u|Y , ✓)

@✓2
f(u|Y , ✓)c✓=b✓du (7.13)

were the last line of the above follows from the identity

Z

1

f(x; ✓)

✓

@f(x; ✓)

@✓

◆2

dx+

Z

@2 log f(x; ✓)

@✓2
f(x; ✓)dx = 0

(see the proof of Corollary 1.3.1). Substituting (7.12) into (7.13) gives

lim
k!1

 

✓k+1 � b✓

✓k � b✓

!

=

✓

@2Q(✓1, ✓2)

@✓22
c(✓1,✓2)=(b✓,b✓)

◆�1 @2D(✓1, ✓2)

@✓22
c(✓1,✓2)=(b✓,b✓). (7.14)
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Substituting (7.9) and (7.10) into the above gives

lim
k!1

 

✓k+1 � b✓

✓k � b✓

!

= IC(✓|Y )�1IM(✓|Y ) (7.15)

Hence the rate of convergence of the algorithm depends on on the ratio IC(✓|Y )�1IM(✓|Y ).

The closer the largest eigenvalue of IC(✓|Y )�1IM(✓|Y ) to one, the slower the rate of

convergence, and a larger number of iterations are required. The heuristic of this result is

that if the missing information is a large proportion of the complete or total information

than this ratio will be large.

Further details can be found in Dempster et. al. (1977) pages 9-10 and Meng and Ru-

bin (1994) (http://www.sciencedirect.com/science/article/pii/0024379594903638).

7.2 Applications of the EM algorithm

7.2.1 Censored data

Let us return to the example at the start of this section, and construct the EM-algorithm

for censored data. We recall that the log-likelihoods for censored data and complete data

are

Ln(Y ; ✓) =

✓ n
X

i=1

log f(Yi; ✓)

◆

+

✓ n+m
X

i=n+1

logF(Yi; ✓)

◆

.

and

Ln(Y , U ; ✓) =

✓ n
X

i=1

log f(Yi; ✓)

◆

+

✓ n+m
X

i=n+1

log f(Ti; ✓)

◆

.

To implement the EM-algorithm we need to evaluate the expectation step Q(✓⇤, ✓). It is

easy to see that

Q(✓⇤, ✓) = E

✓

Ln(Y , U ; ✓)
�

�Y , ✓⇤

◆

=

✓ n
X

i=1

log f(Yi; ✓)

◆

+

✓ n+m
X

i=n+1

E
�

log f(Ti; ✓)|Y , ✓⇤
�

◆

.

To obtain E
�

log f(Ti; ✓)|Y , ✓⇤
�

(i � n+ 1) we note that

E
�

log f(Ti; ✓)|Y , ✓⇤
�

= E(log f(Ti; ✓)|Ti � c)

=
1

F(c; ✓)

Z 1

c

⇥

log f(Ti; ✓)
⇤

f(u; ✓⇤)du.
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Therefore we have

Q(✓⇤, ✓) =

✓ n
X

i=1

log f(Yi; ✓)

◆

+
m

F(c; ✓⇤)

Z 1

c

⇥

log f(Ti; ✓)
⇤

f(u; ✓⇤)du.

We also note that the derivative of Q(✓⇤, ✓) with respect to ✓ is

@Q(✓⇤, ✓)

@✓
=

✓ n
X

i=1

1

f(Yi; ✓)

@f(Yi; ✓)

@✓

◆

+
m

F(c; ✓⇤)

Z 1

c

1

f(u; ✓)

@f(u; ✓)

@✓
f(u; ✓⇤)du.

Hence for this example, the EM-algorithm is

(i) Define an initial value ✓1 2 ⇥. Let ✓⇤ = ✓1.

(ii) The expectation step:

For a fixed ✓⇤ evaluate

@Q(✓⇤, ✓)

@✓
=

✓ n
X

i=1

1

f(Yi; ✓)

@f(Yi; ✓)

@✓

◆

+
m

F(c; ✓⇤)

Z 1

c

1

f(u; ✓)

@f(u; ✓)

@✓
f(u; ✓⇤)du.

(iii) The maximisation step:

Solve for @Q(✓⇤,✓)
@✓

. Let ✓k+1 be such that @Q(✓⇤,✓)
@✓

c✓=✓
k

= 0.

(iv) If ✓k and ✓k+1 are su�ciently close to each other stop the algorithm and set ✓̂n = ✓k+1.

Else set ✓⇤ = ✓k+1, go back and repeat steps (ii) and (iii) again.

7.2.2 Mixture distributions

We now consider a useful application of the EM-algorithm, to the estimation of parameters

in mixture distributions. Let us suppose that {Yi}ni=1 are iid random variables with density

f(y; ✓) = pf1(y; ✓1) + (1� p)f2(y; ✓2),

where ✓ = (p, ✓1, ✓2) are unknown parameters. For the purpose of identifiability we will

suppose that ✓1 6= ✓2, p 6= 1 and p 6= 0. The log-likelihood of {Yi} is

Ln(Y ; ✓) =
n
X

i=1

log
�

pf1(Yi; ✓1) + (1� p)f2(Yi; ✓2)
�

. (7.16)

Now maximising the above can be extremely di�cult. As an illustration consider the

example below.
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Example 7.2.1 Let us suppose that f1(y; ✓1) and f2(y; ✓1) are normal densities, then the

log likelihood is

Ln(Y ; ✓) =
n
X

i=1

log

✓

p
1

p

2⇡�2
1

exp(� 1

2�2
1

(Yi � µ1)
2) + (1� p)

1
p

2⇡�2
2

exp(� 1

2�2
2

(Yi � µ2)
2)

◆

.

We observe this is extremely di�cult to maximise. On the other hand if Yi were simply

normally distributed then the log-likelihood is extremely simple

Ln(Y ; ✓) / �
n
X

i=1

✓

log �2
1 +

1

2�2
1

(Yi � µ1)
2)

◆

. (7.17)

In other words, the simplicity of maximising the log-likelihood of the exponential family of

distributions (see Section 1.6) is lost for mixtures of distributions.

We use the EM-algorithm as an indirect but simple method of maximising (7.17). In

this example, it is not clear what observations are missing. However, let us consider one

possible intepretation of the mixture distribution. Let us define the random variables �i

and Yi, where �i 2 {1, 2},

P (�i = 1) = p and P (�i = 2) = (1� p)

and the density of Yi|�i = 1 is f1 and the density of Yi|�i = 1 is f2. Based on this definition,

it is clear from the above that the density of Yi is

f(y; ✓) = f(y|� = 1, ✓)P (� = 1) + f(y|� = 2, ✓)P (� = 2) = pf1(y; ✓1) + (1� p)f2(y; ✓2).

Hence, one interpretation of the mixture model is that there is a hidden unobserved

random variable which determines the state or distribution of Yi. A simple example, is

that Yi is the height of an individual and �i is the gender. However, �i is unobserved and

only the height is observed. Often a mixture distribution has a physical interpretation,

similar to the height example, but sometimes it can be used to parametrically model a

wide class of densities.

Based on the discussion above, U = {�i} can be treated as the missing observations.

The likelihood of (Yi, Ui) is

�

p1f1(Yi; ✓1)
 I(�

i

=1)�
p2f2(Yi; ✓2)

 I(�
i

=2)
= p�

i

f�
i

(Yi; ✓�
i

).
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where we set p2 = 1� p. Therefore the log likelihood of {(Yi, �i)} is

Ln(Y , U ; ✓) =
n
X

i=1

(log p�
i

+ log f�
i

(Yi; ✓�
i

)) .

We now need to evaluate

Q(✓⇤, ✓) = E
�

Ln(Y , U ; ✓)|Y , ✓⇤
�

=
n
X

i=1

⇥

E
�

log p�
i

|Yi, ✓⇤
�

+ E
�

log f�
i

(Yi; ✓�
i

)|Yi, ✓⇤
�⇤

.

We see that the above expectation is taken with respect the distribution of �i conditioned

on Yi and the parameter ✓⇤ Thus, in general,

E (A(Y, �)|Y, ✓⇤) =
X

j

A(Y, � = j)P (� = j|Yi, ✓
⇤),

which we apply to Q(✓⇤, ✓) to give

Q(✓⇤, ✓) =
X

j

n
X

i=1

[log p�
i

=j + log f�
i

=j(Yi; ✓)]P (�i = j|Yi, ✓
⇤).

Therefore we need to obtain P (�i = j|Yi, ✓⇤). By using conditioning arguments it is easy

to see that 1

P (�i = 1|Yi = y, ✓⇤) =
P (�i = 1, Yi = y; ✓⇤)

P (Yi = y; ✓⇤)
=

p⇤f1(y, ✓1,⇤)

p⇤f1(y, ✓1,⇤) + (1� p⇤)f2(y, ✓2,⇤)

:= w1(✓⇤, y)

P (�i = 2|Yi = y, ✓⇤) =
p⇤f2(y, ✓2,⇤)

p⇤f1(y, ✓1,⇤) + (1� p⇤)f2(y, ✓2,⇤)

:= w2(✓⇤, y) = 1� w1(✓⇤, y).

Therefore

Q(✓⇤, ✓) =
n
X

i=1

✓

log p+ log f1(Yi; ✓1)

◆

w1(✓⇤, Yi) +
n
X

i=1

✓

log(1� p) + log f2(Yi; ✓2)

◆

w2(✓⇤, Yi).

Now maximising the above with respect to p, ✓1 and ✓2 in general will be much easier than

maximising Ln(Y ; ✓). For this example the EM algorithm is

(i) Define an initial value ✓1 2 ⇥. Let ✓⇤ = ✓1.

1To see why note that P (�i = 1 and Yi 2 [y � h/2, y + h/2]|✓⇤) = hp⇤f1(y) and P (Yi 2 [y � h/2, y +

h/2]|✓⇤) = h (p⇤f1(y) + (1� p⇤)f2(y)).
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(ii) The expectation step:

For a fixed ✓⇤ evaluate

Q(✓⇤, ✓) =
n
X

i=1

✓

log p+ log f1(Yi; ✓1)

◆

w1(✓⇤, Yi) +
n
X

i=1

✓

log(1� p) + log f2(Yi; ✓2)

◆

w2(✓⇤, Yi).

(iii) The maximisation step:

Evaluate ✓k+1 = argmax✓2⇥ Q(✓⇤, ✓) by di↵erentiatingQ(✓⇤, ✓) wrt to ✓ and equating

to zero. Since the parameters p and ✓1, ✓2 are in separate subfunctions, they can be

maximised separately.

(iv) If ✓k and ✓k+1 are su�ciently close to each other stop the algorithm and set ✓̂n = ✓k+1.

Else set ✓⇤ = ✓k+1, go back and repeat steps (ii) and (iii) again.

Example 7.2.2 (Normal mixtures and mixtures from the exponential family) (i)

We briefly outline the algorithm in the case of a mixture two normal distributions.

In this case

Q(✓⇤, ✓) = �1

2

2
X

j=1

n
X

i=1

wj(✓⇤, Yi)
�

��2
j (Yi � µj)

2 + log �2
j

�

+
n
X

i=1

wj(✓⇤, Yi) (log p+ log(1� p)) .

By di↵erentiating the above wrt to µj, �2
j (for j = 1 and 2) and p it is straightforward

to see that the µj, �2
j and p which maximises the above is

bµj =

Pn
i=1 wj(✓⇤, Yi)Yi

Pn
i=1 wj(✓⇤, Yi)

and b�2
j =

Pn
i=1 wj(✓⇤, Yi)(Yi � bµj)2
Pn

i=1 wj(✓⇤, Yi)

and

bp =

Pn
i=1 w1(✓⇤, Yi)

n
.

Once these estimators are obtained we let ✓⇤ = (bµ1, bµ2, b�2
1, b�

2
2, bp). The quantities

wj(✓⇤, Yi) are re-evaluated and Q(✓⇤, ✓) maximised with respect to the new weights.

(ii) In general if Y is a mixture from the exponential family with density

f(y; ✓) =
m
X

j=1

pj exp (y✓j � j(✓j) + cj(y))
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the corresponding Q(✓⇤, ✓) is

Q(✓⇤, ✓) =
m
X

j=1

n
X

i=1

wj(✓⇤, Yi) [Yi✓j � j(✓j) + cj(Yi) + log pj] ,

where

wj(✓⇤, Yi) =
p⇤j exp

�

Yi✓⇤j � j(✓⇤j ) + cj(Yi)
�

Pm
k=1 p

⇤
k exp (Yi✓⇤k � k(✓⇤k) + ck(Yi))

subject to the constraint that
Pm

j=1 pj = 1. Thus for 1  j  m, Q(✓⇤, ✓) is

maximised for

b✓j = µ�1
j

✓

Pn
i=1 wj(✓⇤, Yi)Yi

Pn
i=1 wj(✓⇤, Yi)

◆

where µj = 0
j (we assume all parameter for each exponential mixture is open) and

bpj =

Pn
i=1 wj(✓⇤, Yi)

n
.

Thus we set ✓⇤ = ({b✓j, bpj}mj=1) and re-evaluate the weights.

Remark 7.2.1 Once the algorithm is terminated, we can calculate the chance that any

given observation Yi is in subpopulation j since

bP (�i = j|Yi) =
bpjfj(Y ; b✓)

P2
j=1 bpjfj(Y ; b✓)

.

This allows us to obtain a classifier for each observation Yi.

It is straightforward to see that the arguments above can be generalised to the case

that the density of Yi is a mixture of m di↵erent densities. However, we observe that the

selection of m can be quite adhoc. There are methods for choosing m, these include the

reversible jump MCMC methods.

7.2.3 Problems

Example 7.2.3 Question: Suppose that the regressors xt are believed to influence the

response variable Yt. The distribution of Yt is

P (Yt = y) = p
�y
t1 exp(��t1y)

y!
+ (1� p)

�y
t2 exp(��t2y)

y!
,

where �t1 = exp(�0
1xt) and �t2 = exp(�0

2xt).
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(i) State minimum conditions on the parameters, for the above model to be identifiable?

(ii) Carefully explain (giving details of Q(✓⇤, ✓) and the EM stages) how the EM-algorithm

can be used to obtain estimators of �1, �2 and p.

(iii) Derive the derivative of Q(✓⇤, ✓), and explain how the derivative may be useful in

the maximisation stage of the EM-algorithm.

(iv) Given an initial value, will the EM-algorithm always find the maximum of the like-

lihood?

Explain how one can check whether the parameter which maximises the EM-algorithm,

maximises the likelihood.

Solution

(i) 0 < p < 1 and �1 6= �2 (these are minimum assumptions, there could be more which

is hard to account for given the regressors xt).

(ii) We first observe that P (Yt = y) is a mixture of two Poisson distributions where

each has the canonical link function. Define the unobserved variables, {Ut}, which
are iid and where P (Ut = 1) = p and P (Ut = 2) = (1� p) and P (Y = y|Ui = 1) =
�y

t1 exp(��
t1y)

y!
and P (Y = y)|Ui = 2) = �y

t2 exp(��
t2y)

y!
. Therefore, we have

log f(Yt, Ut, ✓) =

✓

Yt�
0
u
t

xt � exp(�0
u
t

xt) + log Yt! + log p

◆

,

where ✓ = (�1, �2, p). Thus, E(log f(Yt, Ut, ✓)|Yt, ✓⇤) is

E(log f(Yt, Ut, ✓)|Yt, ✓⇤) =

✓

Yt�
0
1xt � exp(�0

1xt) + log Yt! + log p

◆

⇡(✓⇤, Yt)

+

✓

Yt�
0
2xt � exp(�0

2xt) + log Yt! + log p

◆

(1� ⇡(✓⇤, Yt)).

where P (Ui|Yt, ✓⇤) is evaluated as

P (Ui = 1|Yt, ✓
⇤) = ⇡(✓⇤, Yt) =

pf1(Yt, ✓⇤)

pf1(Yt, ✓⇤) + (1� p)f2(Yt, ✓⇤)
,

with

f1(Yt, ✓⇤) =
exp(�0

⇤1xtYt) exp(�Yt exp(�0
⇤1xt))

Yt!
f1(Yt, ✓⇤) =

exp(�0
⇤1xtYt) exp(�Yt exp(�0

⇤1xt)

Yt!
.
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Thus Q(✓⇤, ✓) is

Q(✓⇤, ✓) =
T
X

t=1

✓

Yt�
0
1xt � exp(�0

1xt) + log Yt! + log p

◆

⇡(✓⇤, Yt)

+

✓

Yt�
0
2xt � exp(�0

2xt) + log Yt! + log(1� p)

◆

(1� ⇡(✓⇤, Yt)).

Using the above, the EM algorithm is the following:

(a) Start with an initial value which is an estimator of �1, �2 and p, denote this as

✓⇤.

(b) For every ✓ evaluate Q(✓⇤, ✓).

(c) Evaluate argmax✓ Q(✓⇤, ✓). Denote the maximum as ✓⇤ and return to step (b).

(d) Keep iterating until the maximums are su�ciently close.

(iii) The derivative of Q(✓⇤, ✓) is

@Q(✓⇤, ✓)

@�1

=
T
X

t=1

✓

Yt � exp(�0
1xt)

◆

xt⇡(✓⇤, Yt)

@Q(✓⇤, ✓)

@�2

=
T
X

t=1

✓

Yt � exp(�0
2xt)

◆

xt(1� ⇡(✓⇤, Yt))

@Q(✓⇤, ✓)

@p
=

T
X

t=1

✓

1

p
⇡(✓⇤, Yt)�

1

1� p
(1� ⇡(✓⇤, Yt)

◆

.

Thus maximisation of Q(✓⇤, ✓) can be achieved by solving for the above equations

using iterative weighted least squares.

(iv) Depending on the initial value, the EM-algorithm may only locate a local maximum.

To check whether we have found the global maximum, we can start the EM-

algorithm with several di↵erent initial values and check where they converge.

Example 7.2.4 Question

(2) Let us suppose that F1(t) and F2(t) are two survival functions. Let x denote a

univariate regressor.

(i) Show that F(t; x) = pF1(t)exp(�1x) + (1 � p)F2(t)exp(�2x) is a valid survival

function and obtain the corresponding density function.
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(ii) Suppose that Ti are survival times and xi is a univariate regressor which ex-

erts an influence an Ti. Let Yi = min(Ti, c), where c is a common cen-

soring time. {Ti} are independent random variables with survival function

F(t; xi) = pF1(t)exp(�1x
i

) + (1 � p)F2(t)exp(�2x
i

), where both F1 and F2 are

known, but p, �1 and �2 are unknown.

State the censored likelihood and show that the EM-algorithm together with

iterative least squares in the maximisation step can be used to maximise this

likelihood (su�cient details need to be given such that your algorithm can be

easily coded).

Solution

i) Since F1 and F2 are monotonically decreasing positive functions where F1(0) =

F2(0) = 1 and F1(1) = F2(1) = 0, then it immediately follows that

F(t, x) = pF1(t)
e�1x + (1� p)F2(t)

e�2x

satisfies the same conditions. To obtain the density we di↵erential wrt x

@F(t, x)

@t
= �pe�1xf1(t)F1(t)

e�1x�1 � (1� p)e�2xf2(t)F2(t)
e�2x�1

) f(t; x) = pe�1xf1(t)F1(t)
e�1x�1

+ (1� p)e�2xf2(t)F2(t)
e�2x�1

,

where we use that
dF(t)

dt
= �f(t).

ii) The censored log likelihood is

Ln(�1, �2, p) =
n
X

i=1

[�i log f(Yi; �1, �2, p) + (1� �i) logF(Yi; �1, �2, p)].

Clearly, directly maximizing the above is extremely di�cult. Thus we look for an

alternative method via the EM algorithm.

We first define the indicator variable (which corresponds to the missing variables)

which denotes the state 1 or 2

Ii =

(

1 with P (Ii = 1) = p = p1

2 with P (Ii = 2) = (1� p) = p2.
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Then the joint density of (Yi, �i, Ii) is

pI
i

⇣

e�I

i

x
ifI

i

(t)FI
i

(t)e
�

I

i

x

i

�1
⌘⇣

FI
i

(t)e
�

I

i

x

i

⌘1��
i

which gives the log-density

�i
�

log pI
i

+ �I
i

xi + log fI
i

(Yi) + (e�I

i

x
i � 1) logFI

i

(Yi)
 

+ (1� �i)
�

log pI
i

+ (e�I

i

x
i) logFI

i

(Yi)
 

.

Thus the complete log likelihood of (Yi, �i, Ii) is

Ln(Y, �, Ii; �1, �2, p) =
n
X

i=1

{�i[log pI
i

+ �I
i

xi + log fI
i

(Yi) + (e�I

i

x
i � 1) logFI

i

(Yi)

+(1� �i)[log pI
i

+ (e�I

i

x
i) logFI

i

(Yi)])}

Next we need to calculate P (Ii = 1|Yi, �i, ✓⇤) and P (Ii = 2|Yi, �i, ✓⇤);

!�
i

=1
i (1) = P (Ii = 1|Yi, �i = 1, p⇤, �⇤

1 , �
⇤
2)

=
p⇤e�

⇤
1xif1(Yi)F1(Yi)e

�

⇤
1x

i�1

p⇤e�
⇤
1xif1(Yi)F1(Yi)e

�

⇤
1x

i�1 + (1� p⇤)e�
⇤
2xif2(Yi)F2(Yi)e

�

⇤
2x

i

�1

!�
i

=0
i (1) = P (Ii = 1|Yi, �i = 0, p⇤, �⇤

1 , �
⇤
2)

=
p⇤F1(Yi)e

�

⇤
1x

i

p⇤F1(Yi)e
�

⇤
1x

i + (1� p⇤)F2(Yi)e
�

⇤
2x

i

and !�
i

=1
i (2) = 1�!�

i

=1
i (1) and !�

i

=0
i (2) = 1�!�

i

=0
i (1). Let p1 = p and p2 = 1� p.

Therefore the complete likelihood conditioned on what we observe is

Q(✓⇤, ✓) =
2
X

s=1

n
X

i=1

{�i!�
i

=1
i (s)[log ps + �1xi + log fs(Yi) + (e�s

x
i � 1) logFs(Yi)]

+(1� �i)!
�
i

=0
i (s)

⇥

log ps + e�s

x
i logFs(Yi)

⇤

}

=
2
X

s=1

n
X

i=1

⇢

{�i!�
i

=1
i (s)[�1xi + log fs(Yi) + (e�s

x
i � 1) logFs(Yi)]

+e�s

x
i logFs(Yi)

�

+
2
X

s=1

n
X

i=1

�

�i!
�
i

=1
i (s) log ps + (1� �i)!

�
i

=0
i (s) log ps

 

= Q(✓⇤, �1) +Q(✓⇤, �2) +Q(✓⇤, p1, p2)
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The conditional likelihood, above, looks unwieldy. However, the parameter estima-

tors can to be separated. First, di↵erentiating with respect to p gives

@Q

@p
=

@Q(✓⇤, p, 1� p)

@p

=
n
X

i=1

�i!
�
i

=1
i (1)

1

p
+

n
X

i=1

!�
i

=0
i (1)(1� �i)

1

p
�

n
X

i=1

�i!
�
i

=1
i (2)

1

1� p
�

n
X

i=1

!�
i

=0
i (2)(1� �i)

1

1� p
.

Equating the above to zero we have the estimator p̂ = a
a+b

, where

a =
n
X

i=1

�i!
�
i

=1
i (1) +

n
X

i=1

!�
i

=0
i (1)(1� �i)

b =
n
X

i=1

�i!
�
i

=1
i (2) +

n
X

i=1

!�
i

=0
i (2)(1� �i).

Next we consider the estimates of �1 and �2 at the ith iteration step. Di↵erentiating

Q wrt to �1 and �2 gives for s = 1, 2

@Q

@�s

=
@Qs(✓⇤, �s)

@�s

=
n
X

i=1

�

�i!
�
i

=1
i (s)

⇥

1 + e�s

x
i logFs(Yi)

⇤

+ (1� �i)!
�
i

=0
i (s)e�s

x
i logFs(Yi)

 

xi

@2Q(✓⇤, ✓)

@�2
s

=
@2Qs(✓⇤, �s)

@�s

=
n
X

i=1

�

�i!
�
i

=1
i (s)e�s

x
i logFs(Yi) + (1� �i)!

�
i

=0
i (s)e�s

x
i logFs(Yi)

 

x2
i

@2Q(✓⇤; ✓)

@�1@�2

= 0.

Observe that setting the first derivative to zero, we cannot obtain an explicit expres-

sion for the estimators at each iteration. Thus we need to use the Newton-Rapshon

scheme but in a very simply set-up. To estimate (�1, �2) at the jth iteration we use

"

�(j)
1

�(j)
2

#

=

"

�(j�1)
1

�(j�1)
2

#

+

2

4

@2Q
@�2

1
0

0 @2Q
@�2

1

3

5

�1

�(j�1)

"

@Q
@�1

@Q
@�2

#

�(j�1)
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Thus for s = 1, 2 we have �(j)
s = �(j�1)

s +
⇣

@2Q
@�2

s

⌘�1
@Q
@�

s

c�(j�1) .

We can rewrite the above Newton Raphson scheme as something that resembles

weighted least squares. We recall the weighted least squares estimator are the

parameters ↵ which minimise the weighted least squares criterion
n
X

i=1

Wii (Yi � x0
i↵)

2 .

The ↵ which minimises the above is

b↵ = (X 0WX)�1X 0WY .

The Newtons-Raphson scheme can be written as

�(j)
s = �(j�1)

s �
✓

@Q2

@�2
s

◆�1 @Q

@�s

c�(j�1)

= �(j�1)
s � (X 0W (j�1)

s X)�1XS(j�1)
s

where

X 0 = (x1, x2, . . . , xn),

W (j�1)
s = diag[!(j�1)

1 (s), . . . ,!(j�1)
n (s)],

S(j�1)
s =

2

6

6

4

S(j�1)
s1
...

S(j�1)
sn

3

7

7

5

,

where the elements of the above are

!(j�1)
si = �i!

�
i

=1
i e�

(j�1)
s logFs(Yi) + (1� �i)!

�
i

=0
i e�

(j�1)
s

x
i logFs(Yi)

S(j�1)
si = �i!

�
i

=1
i [1 + e�

(j�1)
s

x
i logFs(Yi)] + (1� �i)!

�
i

=0
i e�

(j�1)
s

x
i logFs(Yi)].

By using algebraic manipulations we can rewrite the iteration as an iterated weighted

least squared algorithm

�(j)
s = �(j�1)

s �
✓

@Q2

@�2
s

◆�1 @Q

@�s

c�(j�1)

= �(j�1)
s � (X 0!(j�1)

s X)�1X 0S(j�1)
s

= (X 0W (j�1)
s X)�1(X 0W (j�1)

s X)�(j�1)
s � (X 0W (j�1)

s X)�1XS(j�1)
s

= (X 0W (j�1)
s X)�1X 0W (j�1)

s X�(j�1)
s � (X 0W (j�1)

s X)�1XW (j�1)
s [W (j�1)

s ]�1S(j�1)
s

213



Now we rewrite the above in weighted least squares form. Define

Z(j�1)
s = X�(j�1)

s � [W (j�1)
s ]�1S(j�1)

s

this “acts” as our pseudo y-variable. Using this notation we have

�(j)
s = (X 0W (j�1)

s X)�1X 0W (j�1)
s Z(j�1)

s .

Thus at each step of the Newton-Raphson iteration we minimise the weighted least

equation

n
X

i=1

!(j�1)
si

�

Z(j�1)
s � �xi

�2
for s = 1, 2.

Thus altogether in the EM-algorithm we have:

Start with initial value �0
1 , �

0
2 , p

0

Step 1 Set (�1,r�1, �2,r�1, pr�1) = (�⇤
1 , �

⇤
2 , p

⇤). Evaluate !�
i

i and !1��
i

i (these proba-

bilies/weights stay the same throughout the iterative least squares).

Step 2 Maximize Q(✓⇤, ✓) by using the algorithm pr = a
r

a
r

+b
r

where ar, br are defined

previously. Now evaluate for s = 1, 2

�(j)
s = (X 0W (j�1)

s X)�1X 0W (j�1)
s Z(j�1)

s .

Iterate until convergence of the parameters.

Step 3 Go back to step 1 until convergence of the EM algorithm.

7.2.4 Exercises

Exercise 7.1 Consider the linear regression model

Yi = ↵0xi + �i"i

where "i follows a standard normal distribution (mean zero and variance 1) and �2
i follows

a Gamma distribution

f(�2;�) =
�2(�1)� exp(���2)

�()
, �2 � 0,
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with  > 0.

Let us suppose that ↵ and � are unknown parameters but  is a known parameter. We

showed in Exercise 1.1 that directly maximising the log-likelihood was extremely di�cult.

Derive the EM-algorithm for model. In your derivation explain what quantities will

have to be evaluated numerically.

Exercise 7.2 Consider the following shifted exponential mixture distribution

f(x;�1,�2, p, a) = p
1

�1

exp(�x/�1)I(x � 0) + (1� p)
1

�2

exp(�(x� a)/�2)I(x � a),

where p,�1,�2 and a are unknown.

(i) Make a plot of the above mixture density.

Considering the cases x � a and x < a separately, calculate the probability of

belonging to each of the mixtures, given the observation Xi (i.e. Define the variable

�i, where P (�i = 1) = p and f(x|�i = 1) = 1
�1

exp(�x/�1) and calculate P (�i|Xi)).

(ii) Show how the EM-algorithm can be used to estimate a, p,�1,�2. At each iteration

you should be able to obtain explicit solutions for most of the parameters, give as

many details as you can.

Hint: It may be beneficial for you to use profiling too.

(iii) From your knowledge of estimation of these parameters, what do you conjecture the

rates of convergence to be? Will they all be the same, or possibly di↵erent?

Exercise 7.3 Suppose {Zi}ni=1 are independent random variables, where Zi has the den-

sity

fZ(z; �0, �1, µ,↵, ui) = ph(z; �0, �1, ui) + (1� p)g(z;↵, µ),

g(x;↵, µ) = (↵
µ
)(x

µ
)↵�1 exp(�(x/µ)↵)I(0,1)(x) (the Weibull distribution) and h(x; �0, �1, ui) =

1
�
i

exp(�x/�i)I(0,1)(x) (the exponential distribution), with �i = �0 exp(�1ui) and {ui}ni=1

are observed regressors.

The parameters p, �0, �1, µ and ↵ are unknown and our objective in this question is to

estimate them.

(a) What is the log-likelihood of {Zi}? (Assume we also observe the deterministic re-

gressors {ui}.)
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(b) By defining the correct dummy variable �i derive the steps of the EM-algorithm to

estimate the parameters p, �0, �1, µ,↵ (using the method of profiling if necessary).

7.3 Hidden Markov Models

Finally, we consider applications of the EM-algorithm to parameter estimation in Hidden

Markov Models (HMM). This is a model where the EM-algorithm pretty much surpasses

any other likelihood maximisation methodology. It is worth mentioning that the EM-

algorithm in this setting is often called the Baum-Welch algorithm.

Hidden Markov models are a generalisation of mixture distributions, however unlike

mixture distibutions it is di�cult to derive an explicit expression for the likelihood of a

Hidden Markov Models. HMM are a general class of models which are widely used in

several applications (including speech recongition), and can easily be generalised to the

Bayesian set-up. A nice description of them can be found on Wikipedia.

In this section we will only briefly cover how the EM-algorithm can be used for HMM.

We do not attempt to address any of the issues surrounding how the maximisation is

done, interested readers should refer to the extensive literature on the subject.

The general HMM is described as follows. Let us suppose that we observe {Yt}, where
the rvs Yt satisfy the Markov property P (Yt|Yt�1, Yt�1, . . .) = P (Yt|Yt�1). In addition to

{Yt} there exists a ‘hidden’ unobserved discrete random variables {Ut}, where {Ut} satis-

fies the Markov property P (Ut|Ut�1, Ut�2, . . .) = P (Ut|Ut�1) and ‘drives’ the dependence

in {Yt}. In other words P (Yt|Ut, Yt�1, Ut�1, . . .) = P (Yt|Ut). To summarise, the HMM is

described by the following properties:

(i) We observe {Yt} (which can be either continuous or discrete random variables) but

do not observe the hidden discrete random variables {Ut}.

(ii) Both {Yt} and {Ut} are time-homogenuous Markov random variables that is P (Yt|Yt�1, Yt�1, . . .) =

P (Yt|Yt�1) and P (Ut|Ut�1, Ut�1, . . .) = P (Ut|Ut�1). The distributions of P (Yt),

P (Yt|Yt�1), P (Ut) and P (Ut|Ut�1) do not depend on t.

(iii) The dependence between {Yt} is driven by {Ut}, that is P (Yt|Ut, Yt�1, Ut�1, . . .) =

P (Yt|Ut).
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There are several examples of HMM, but to have a clear intepretation of them, in this

section we shall only consider one classical example of a HMM. Let us suppose that the

hidden random variable Ut can take N possible values {1, . . . , N} and let pi = P (Ut = i)

and pij = P (Ut = i|Ut�1 = j). Moreover, let us suppose that Yt are continuous random

variables where (Yt|Ut = i) ⇠ N (µi, �2
i ) and the conditional random variables Yt|Ut and

Y⌧ |U⌧ are independent of each other. Our objective is to estimate the parameters ✓ =

{pi, pij, µi, �2
i } given {Yi}. Let fi(·; ✓) denote the normal distribution N (µi, �2

i ).

Remark 7.3.1 (HMM and mixture models) Mixture models (described in the above

section) are a particular example of HMM. In this case the unobserved variables {Ut} are

iid, where pi = P (Ut = i|Ut�1 = j) = P (Ut = i) for all i and j.

Let us denote the log-likelihood of {Yt} as LT (Y ; ✓) (this is the observed likelihood).

It is clear that constructing an explicit expression for LT is di�cult, thus maximising the

likelihood is near impossible. In the remark below we derive the observed likelihood.

Remark 7.3.2 The likelihood of Y = (Y1, . . . , YT ) is

LT (Y ; ✓) = f(YT |YT�1, YT�2, . . . ; ✓) . . . f(Y2|Y1; ✓)P (Y1; ✓)

= f(YT |YT�1; ✓) . . . f(Y2|Y1; ✓)f(Y1; ✓).

Thus the log-likelihood is

LT (Y ; ✓) =
T
X

t=2

log f(Yt|Yt�1; ✓) + f(Y1; ✓).

The distribution of f(Y1; ✓) is simply the mixture distribution

f(Y1; ✓) = p1f(Y1; ✓1) + . . .+ pNf(Y1; ✓N),

where pi = P (Ut = i). The conditional f(Yt|Yt�1) is more tricky. We start with

f(Yt|Yt�1; ✓) =
f(Yt, Yt�1; ✓)

f(Yt�1; ✓)
.

An expression for f(Yt; ✓) is given above. To evaluate f(Yt, Yt�1; ✓) we condition on
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Ut, Ut�1 to give (using the Markov and conditional independent propery)

f(Yt, Yt�1; ✓) =
X

i,j

f(Yt, Yt�1|Ut = i, Ut�1 = j)P (Ut = i, Ut�1 = j)

=
X

i,j

f(Yt|Ut = i)P (Yt�1|Ut�1 = j)P (Ut = i|Ut�1 = j)P (Ut�1 = i)

=
X

i,j

fi(Yt; ✓i)fj(Yt�1; ✓j)pijpi.

Thus we have

f(Yt|Yt�1; ✓) =

P

i,j fi(Yt; ✓i)fj(Yt�1; ✓j)pijpi
P

i pif(Yt�1; ✓i)
.

We substitute the above into LT (Y ; ✓) to give the expression

LT (Y ; ✓) =
T
X

t=2

log

✓

P

i,j fi(Yt; ✓i)fj(Yt�1; ✓j)pijpi
P

i pif(Yt�1; ✓i)

◆

+ log

 

N
X

i=1

pif(Y1; ✓i)

!

.

Clearly, this is extremely di�cult to maximise.

Instead we seek an indirect method for maximising the likelihood. By using the EM al-

gorithm we can maximise a likelihood which is a lot easier to evaluate. Let us suppose that

we observe {Yt, Ut}. Since P (Y |U) = P (YT |YT�1, . . . , Y1, U)P (YT�1|YT�2, . . . , Y1, U) . . . P (Y1|U) =
QT

t=1 P (Yt|Ut), and the distribution of Yt|Ut is N (µU
t

, �2
U
t

), then the complete likelihood

of {Yt, Ut} is

✓ T
Y

t=1

f(Yt|Ut; ✓)

◆

pU1

T
Y

t=2

pU
t

|U
t�1 .

Thus the log-likelihood of the complete observations {Yt, Ut} is

LT (Y , U ; ✓) =
T
X

t=1

log f(Yt|Ut; ✓) +
T
X

t=2

log pU
t

|U
t�1 + log pU1 .

Of course, we do not observe the complete likelihood, but the above can be used in order

to define the function Q(✓⇤, ✓) which is maximised in the EM-algorithm. It is worth

mentioning that given the transition probabilities of a discrete Markov chain (that is

{pi,j}ij) the marginal/stationary probabilities {pi} can be obtained by solving ⇡ = ⇡P ,

where P is the transition matrix. Thus it is not necessary to estimate the marginal
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probabilities {pi} (note that the exclusion of {pi} in the log-likelihood, above, gives the

conditional complete log-likelihood).

We recall that to maximise the observed likelihood LT (Y ; ✓) using the EM algorithm

involves evaluating Q(✓⇤, ✓), where

Q(✓⇤, ✓) = E

✓ T
X

t=1

log f(Yt|Ut; ✓) +
T
X

t=2

log pU
t

|U
t�1 + log pU1

�

�

�

�

Y , ✓⇤

◆

=
X

U2{1,...,N}T

✓ T
X

t=1

log f(Yt|Ut; ✓) +
T
X

t=2

log pU
t

|U
t�1 + log pU1

◆

p(U |Y , ✓⇤).

Note that each step in the algorithm the probability p(U |Y , ✓⇤) needs to be evaluated.

This is done by using conditioning

p(U |Y , ✓⇤) = p(U1|Y , ✓⇤)
T
Y

t=2

P (Ut|Ut�1, . . . , U1Y ; ✓⇤)

= p(U1|Y , ✓⇤)
T
Y

t=2

P (Ut|Ut�1, Y ; ✓⇤) using the Markov property.

Evaluation of the above is not simple (mainly because one is estimating the probability

of being in state Ut based on Ut�1 and the observation information Yt in the past, present

and future). This is usually done using the so called forward backward algorithm (and is

related to the idea of Kalman filtering).

For this example the EM algorithm is

(i) Define an initial value ✓1 2 ⇥. Let ✓⇤ = ✓1.

(ii) The expectation step,

For a fixed ✓⇤ evaluate P (Ut, Y , ✓⇤), P (Ut|Ut�1, Y , ✓⇤) and Q(✓⇤, ✓).

(iii) The maximisation step

Evaluate ✓k+1 = argmax✓2⇥ Q(✓⇤, ✓) by di↵erentiatingQ(✓⇤, ✓) wrt to ✓ and equating

to zero.

(iv) If ✓k and ✓k+1 are su�ciently close to each other stop the algorithm and set ✓̂n = ✓k+1.

Else set ✓⇤ = ✓k+1, go back and repeat steps (ii) and (iii) again.
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Since P (U1|Y , ✓⇤) = P (U1, Y , ✓⇤)/P (Y , ✓⇤) and P (Ut, Ut�1|Y , ✓⇤) = P (Ut, Ut�1, Y , ✓⇤)/P (Y , ✓⇤);

P (Y , ✓⇤) is common to all U in {1, . . . , N}T and is independent of ✓⇤, Thus rather than

maximising Q(✓⇤, ✓) one can equvalently maximise

eQ(✓⇤, ✓) =
X

U2{1,...,N}T

✓ T
X

t=1

log f(Yt|Ut; ✓) +
T
X

t=2

log pU
t

|U
t�1 + log pU1

◆

p(U, Y , ✓⇤),

noting that eQ(✓⇤, ✓) / Q(✓⇤, ✓) and the maximum of Q̃(✓⇤, ✓) with respect to ✓ is the same

as the maximum of Q(✓⇤, ✓).
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