
Chapter 6

Survival Analysis

6.1 An introduction to survival analysis

6.1.1 What is survival data?

Data where a set of ‘individuals’ are observed and the failure time or lifetime of that

individual is recordered is usually called survival data. We note that individual does not

necessarily need to be a person but can be an electrical component etc. Examples include:

• Lifetime of a machine component.

• Time until a patient’s cure, remission, passing.

• Time for a subject to perform a task.

• Duration of an economic cycle.

• Also it may not be ‘time’ we are interested in but:

– Length of run of a particle.

– Amount of usage of a machine, eg. amount of petrol used etc.

In the case that we do not observe any regressors (explanatory variables) which influence

the survival time (such as gender/age of a patient etc), we can model the survival times

as iid random variables. If the survival times are believed to have the density f(x; ✓0),

where f(x; ✓) is known but ✓0 is unknown, then the maximum likelihood can be used to
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estimate ✓. The standard results discussed in Section 2.2 can be easily applied to this

type of data.

6.1.2 Definition: The survival, hazard and cumulative hazard

functions

Let T denote the survival time of an individual, which has density f . The density f

and the distribution function F (x) =
R x

0
f(u)du are not particularly informative about

the chance of survival at a given time point. Instead, the survival, hazard and cumlative

hazard functions, which are functions of the density and distribution function, are used

instead.

• The survival function.

This is F(x) = 1�F (x). It is straightforward to see that F(x) = P (T > x) (observe

that the strictly greater than sign is necessary). Therefore, F(x) is the probability

of survival over x.

• The hazard function

The hazard function is defined as

h(x) = lim
�x!0

P (x < T  x+ �x|T > x)

�x
= lim

�x!0

P (x < T  x+ �x)

�xP (T > x)

=
1

F(x)
lim
�x!0

F (x+ �x)� F (x)

�x
=

f(x)

F(x)
= �d logF(x)

dx
.

We can see from the definition the hazard function is the ‘chance’ of failure (though

it is a normalised probability, not a probability) at time x, given that the individual

has survived until time x.

We see that the hazard function is similar to the density in the sense that it is a

positive function. However it does not integrate to one. Indeed, it is not integrable.

• The cumulative Hazard function

This is defined as

H(x) =

Z x

�1
h(u)du.
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It is straightforward to see that

H(x) =

Z x

�1
�d logF(x)

dx
cx=udu = � logF(x).

This is just the analogue of the distribution function, however we observe that unlike

the distribution function, H(x) is unbounded.

It is straightforward to show that f(x) = h(x) exp(�H(x)) and F(x) = exp(�H(x)).

It is useful to know that given any one of f(x), F (x), H(x) and h(x), uniquely defines the

other functions. Hence there is a one-to-one correspondence between all these functions.

Example 6.1.1 • The Exponential distribution

Suppose that f(x) = 1
✓
exp(�x/✓).

Then the distribution function is F (x) = 1 � exp(�x/✓). F(x) = exp(�x/✓),

h(x) = 1
✓
and H(x) = x/✓.

The exponential distribution is widely used. However, it is not very flexible. We

observe that the hazard function is constant over time. This is the well known

memoryless property of the exponential distribution. In terms of modelling it means

that the chance of failure in the next instant does not depend on on how old the

individual is. The exponential distribution cannot model ‘aging’.

• The Weibull distribution

We recall that this is a generalisation of the exponential distribution, where

f(x) =

✓

↵

✓

◆✓

x

✓

◆↵�1

exp(�(x/✓)↵);↵, ✓ > 0, x > 0.

For the Weibull distribution

F (x) = 1� exp
�

� (x/✓)↵
�

F(x) = exp
�

� (x/✓)↵
�

h(x) = (↵/✓)(x/✓)↵�1 H(x) = (x/✓)↵.

Compared to the exponential distribution the Weibull has a lot more flexibility. De-

pending on the value of ↵, the hazard function h(x) can either increase over time

or decay over time.
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• The shortest lifetime model

Suppose that Y1, . . . , Yk are independent life times and we are interested in the short-

est survival time (for example this could be the shortest survival time of k sibling

mice in a lab when given some disease). Let gi, Gi Hi and hi denote the density,

survival function, cumalitive hazard and hazard function respectively of Yi (we do

not assume they have the same distribution) and T = min(Yi). Then the survival

function is

FT (x) = P (T > x) =
k
Y

i=1

P (Yi > x) =
k
Y

i=1

Gi(x).

Since the cumulative hazard function satisfies Hi(x) = � log Gi(x), the cumulative

hazard function of T is

HT (x) = �
k

X

i=1

log Gi(x) =
k

X

i=1

Hi(x)

and the hazard function is

hT (x) =
k

X

i=1

d(� log Gi(x))

dx
=

k
X

i=1

hi(x)

• Survival function with regressors See Section 3.2.2.

Remark 6.1.1 (Discrete Data) Let us suppose that the survival time are not continu-

ous random variables, but discrete random variables. In other words, T can take any of

the values {ti}1i=1 where 0  t1 < t2 < . . .. Examples include the first time an individual

visits a hospital post operation, in this case it is unlikely that the exact time of visit is

known, but the date of visit may be recorded.

Let P (T = ti) = pi, using this we can define the survival function, hazard and cumu-

lative hazard function.

(i) Survival function The survival function is

Fi = P (T > ti) =
1
X

j=i+1

P (T = tj) =
1
X

j=i+1

pj.
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(ii) Hazard function The hazard function is

hi = P (ti�1 < T  ti|T > ti�1) =
P (T = ti)

P (T > Ti�1)

=
pi

Fi�1

=
Fi�1 � Fi

Fi�1

= 1� Fi

Fi�1

. (6.1)

Now by using the above we have the following useful representation of the survival

function in terms of hazard function

Fi =
i

Y

j=2

Fi

Fi�1

=
i

Y

j=2

�

1� hj

�

=
i

Y

j=1

�

1� hj

�

, (6.2)

since h1 = 0 and F1 = 1.

(iii) Cumulative hazard function The cumulative hazard function is Hi =
Pi

j=1 hj.

These expression will be very useful when we consider nonparametric estimators of the

survival function F .

6.1.3 Censoring and the maximum likelihood

One main feature about survival data which distinguishes, is that often it is “incomplete”.

This means that there are situations where the random variable (survival time) is not

completely observed (this is often called incomplete data). Usually, the incompleteness

will take the form as censoring (this will be the type of incompleteness we will consider

here).

There are many type of censoring, the type of censoring we will consider in this chapter

is right censoring. This is where the time of “failure”, may not be observed if it “survives”

beyond a certain time point. For example, is an individual (independent of its survival

time) chooses to leave the study. In this case, we would only know that the individual

survived beyond a certain time point. This is called right censoring. Left censoring

arises when the start (or birth) of an individual is unknown (hence it is known when an

individual passes away, but the individuals year of birth is unknown), we will not consider

this problem here.

Let us suppose that Ti is the survival time, which may not be observed and we observe

instead Yi = min(Ti, ci), where ci is the potential censoring time. We do know if the data
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has been censored, and together with Yi we observe the indicator variable

�i =

(

1 Ti  ci (uncensored)

0 Ti > ci (censored)
.

Hence, in survival analysis we typically observe {(Yi, �i)}ni=1. We use the observations

{(Yi, �i)}ni=1 to make inference about unknown parameters in the model.

Let us suppose that Ti has the distribution f(x; ✓0), where f is known but ✓0 is

unknown.

Naive approaches to likelihood construction

There are two naive approaches for estimating ✓0. One method is to ignore the fact that

the observations are censored and use time of censoring as if the were failure times. Hence

define the likelihood

L1,n(✓) =
n

X

i=1

log f(Yi; ✓),

and use as the parameter estimator ✓̂1,n = argmax✓2⇥ L1,n(✓). The fundemental problem

with this approach is that it will be biased. To see this consider the expectation of

n�1L1,n(✓) (for convenience let ci = c). Since

Yi = TiI(Ti  c) + cI(Ti > c) ) log f(Yi; ✓) = [log f(Ti; ✓)]I(Ti  c) + [log f(c; ✓)]I(Ti > c)

this gives the likelihood

E(log f(Yi; ✓)) =

Z c

0

log f(x; ✓)f(x; ✓0)dx+ F(c; ✓0)
| {z }

probability of censoring

log f(c; ✓).

There is no reason to believe that ✓0 maximises the above. For example, suppose f is

the exponential distribution, using the L1,n(✓) leads to the estimator b✓1,n = n�1
Pn

i=1 Yi,

which is clearly a biased estimator of ✓0. Hence this approach should be avoided since the

resulting estimator is biased.

Another method is to construct the likelihood function by ignoring the censored data.

In other words use the log-likelihood function

L2,n(✓) =
n

X

i=1

�i log f(Yi; ✓),
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and let ✓̂2,n = argmax✓2⇥ L2,n(✓) be an estimator of ✓. It can be shown that if a fixed

censor value is used, i.e. Yi = min(Ti, c), then this estimator is not a consistent estimator

of ✓, it is also biased. As above, consider the expectation of n�1L2,n(✓), which is

E(�i log f(Yi; ✓)) =

Z c

0

log f(x; ✓)f(x; ✓0)dx.

It can be shown that ✓0 does not maximise the above. Of course, the problem with the

above “likelihood” is that it is not the correct likelihood (if it were then Theorem 2.6.1

tells us that the parameter will maximise the expected likelihood). The correct likelihood

conditions on the non-censored data being less than c to give

L2,n(✓) =
n

X

i=1

�i (log f(Yi; ✓)� log(1� F(c; ✓))) .

This likelihood gives a consistent estimator of the ✓; this see why consider its expectation

E
�

n�1L2,n(✓)
�

= E

✓

log
f(Yi; ✓)

F(c; ✓)

�

�Ti < c

◆

=

Z c

0

log
f(x; ✓)

F(c; ✓)
log

f(c; ✓0)

F(c; ✓0)
dx.

Define the “new” density g(x; ✓) = f(x;✓)
F(c;✓)

for 0  x < c. Now by using Theorem 2.6.1 we

immediately see that the E (n�1L2,n(✓)) is maximised at ✓ = ✓0. However, since we have

not used all the data we have lost “information” and the variance will be larger than a

likelihood that includes the censored data.

The likelihood under censoring (review of Section 1.2)

The likelihood under censoring can be constructed using both the density and distribution

functions or the hazard and cumulative hazard functions. Both are equivalent. The log-

likelihood will be a mixture of probabilities and densities, depending on whether the

observation was censored or not. We observe (Yi, �i) where Yi = min(Ti, ci) and �i is the

indicator variable. In this section we treat ci as if they were deterministic, we consider

the case that they are random later.

We first observe that if �i = 1, then the log-likelihood of the individual observation Yi

is log f(Yi; ✓), since

P (Yi = x|�i = 1) = P (Ti = x|Ti  ci) =
f(x; ✓)

1� F(ci; ✓)
dx =

h(y; ✓)F(x; ✓)

1� F(ci; ✓)
dx. (6.3)

On the other hand, if �i = 0, the log likelihood of the individual observation Yi = c|�i = 0

is simply one, since if �i = 0, then Yi = ci (it is given). Of course it is clear that
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P (�i = 1) = 1 � F(ci; ✓) and P (�i = 0) = F(ci; ✓). Thus altogether the joint density of

{Yi, �i} is

✓

f(x; ✓)

1� F(ci; ✓)
⇥ (1� F(ci; ✓))

◆�
i

✓

1⇥ F(ci; ✓)

◆1��
i

= f(x; ✓)�iF(ci; ✓)
1��

i .

Therefore by using f(Yi; ✓) = h(Yi; ✓)F(Yi; ✓), and H(Yi; ✓) = � logF(Yi; ✓), the joint

log-likelihood of {(Yi, �i)}ni=1 is

Ln(✓) =
n

X

i=1

✓

�i log f(Yi; ✓) + (1� �i) log
�

1� F (Yi; ✓)
�

◆

=
n

X

i=1

�i
�

log h(Ti; ✓)�H(Ti; ✓)
�

�
n

X

i=1

(1� �i)H(ci; ✓)

=
n

X

i=1

�i log h(Yi; ✓)�
n

X

i=1

H(Yi; ✓). (6.4)

You may see the last representation in papers on survival data. Hence we use as the

maximum likelihood estimator ✓̂n = argmaxLn(✓).

Example 6.1.2 The exponential distribution Suppose that the density of Ti is f(x; ✓) =

✓�1 exp(x/✓), then by using (6.4) the likelihood is

Ln(✓) =
n

X

i=1

✓

�i
�

� log ✓ � ✓�1Yi

�

� (1� �i)✓
�1Yi

◆

.

By di↵erentiating the above it is straightforward to show that the maximum likelihood

estimator is

✓̂n =

Pn
i=1 �iTi +

Pn
i=1(1� �i)ci

Pn
i=1 �i

.

6.1.4 Types of censoring and consistency of the mle

It can be shown that under certain censoring regimes the estimator converges to the true

parameter and is asymptotically normal. More precisely the aim is to show that

p
n
�

✓̂n � ✓0
� D! N (0, I(✓0)

�1), (6.5)

where

I(✓) = �E

✓

1

n

n
X

i=1

�i
@2 log f(Yi; ✓)

@✓2
+

1

n

n
X

i=1

(1� �i)
@2 logF(ci; ✓)

@✓2

◆

.
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Note that typically we replace the Fisher information with the observed Fisher information

eI(✓) =
1

n

n
X

i=1

�i
@2 log f(Yi; ✓)

@✓2
+

1

n

n
X

i=1

(1� �i)
@2 logF(ci; ✓)

@✓2
.

We discuss the behaviour of the likelihood estimator for di↵erent censoring regimes.

Non-random censoring

Let us suppose that Yi = min(Ti, c), where c is some deterministic censoring point (for

example the number of years cancer patients are observed). We first show that the expec-

tation of the likelihood is maximum at the true parameter (this under certain conditions

means that the mle defined in (6.4) will converge to the true parameter). Taking expec-

tation of Ln(✓) gives

E

✓

n�1Ln(✓)

◆

= E

✓

�i log f(Ti; ✓) + (1� �i) logF(Ti; ✓)

◆

=

Z c

0

log f(x; ✓)f(x; ✓0)dx+ F(c; ✓0) logF(c; ✓).

To show that the above is maximum at ✓ (assuming no restrictions on the parameter

space) we di↵erentiate E
�

Ln(✓)
�

with respect to ✓ and show that it is zero at ✓0. The

derivative at ✓0 is

@E
�

n�1Ln(✓)
�

@✓
c✓=✓0 =

@

@✓

Z c

0

f(x; ✓)dxc✓=✓0 +
@F(c; ✓)

@✓
c✓=✓0

=
@(1� F(c; ✓))

@✓
c✓=✓0 +

@F(c; ✓)

@✓
c✓=✓0 = 0.

This proves that the expectation of the likelihood is maximum at zero (which we would

expect, since this all fall under the classical likelihood framework). Now assuming that the

standard regularity conditions are satisfied then (6.5) holds where the Fisher information

matrix is

I(✓) = � @2

@✓2

✓

Z c

0

f(x; ✓0) log f(x; ✓)dx+ F(c; ✓0) logF(c; ✓)

◆

.

We observe that when c = 0 (thus all the times are censored), the Fisher information is

zero, thus the asymptotic variance of the mle estimator, ✓̂n is not finite (which is consistent

with out understanding of the Fisher information matrix). It is worth noting that under

this censoring regime the estimator is consistent, but the variance of the estimator will
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be larger than when there is no censoring (just compare the Fisher informations for both

cases).

In the above, we assume the censoring time c was common for all individuals, such

data arises in several studies. For example, a study where life expectancy was followed

for up to 5 years after a procedure. However, there also arises data where the censoring

time varies over individuals, for example an individual, i, may pull out of a study at time

ci. In this case, the Fisher information matrix is

In(✓) = �
n

X

i=1

@2

@✓2

✓

Z c
i

0

f(x; ✓0) log f(x; ✓)dx+ F(ci; ✓0) logF(ci; ✓)

◆

=
n

X

i=1

I(✓; ci). (6.6)

However, if there is a lot of variability between the censoring times, one can “model these

as if they were random”. I.e. that ci are independent realisations from the random variable

C. Within this model (6.6) can be viewed as the Fisher information matrix conditioned

on the censoring time Ci = ci. However, it is clear that as n ! 1 a limit can be achieved

(which cannot be when the censoring in treated as deterministic) and

1

n

n
X

i=1

I(✓; ci)
a.s.!

Z

R
I(✓; c)k(c)dc, (6.7)

where k(c) denotes the censoring density. The advantage of treating the censoring as

random, is that it allows one to understand how the di↵erent censoring times influences

the limiting variance of the estimator. In the section below we formally incorporate

random censoring in the model and consider the conditions required such that the above

is the Fisher information matrix.

Random censoring

In the above we have treated the censoring times as fixed. However, they can also be

treated as if they were random i.e. the censoring times {ci = Ci} are random. Usually

it is assumed that {Ci} are iid random variables which are independent of the survival

times. Furthermore, it is assumed that the distribution of C does not depend on the

unknown parameter ✓.

Let k and K denote the density and distribution function of {Ci}. By using the

arguments given in (6.3) the likelihood of the joint distribution of {(Yi, �i)}ni=1 can be
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obtained. We recall that the probability of (Yi 2 [y � h
2
, y + h

2
], �i = 1) is

P

✓

Yi 2


y � h

2
, y +

h

2

�

, �i = 1

◆

= P

✓

Yi 2


y � h

2
, y +

h

2

�

�

��i = 1

◆

P (�i = 1)

= P

✓

Ti 2


y � h

2
, y +

h

2

�

�

��i = 1

◆

P (�i = 1) .

Thus

P

✓

Yi 2


y � h

2
, y +

h

2

�

, �i = 1

◆

= P

✓

Ti 2


y � h

2
, y +

h

2

�

, �i = 1

◆

= P

✓

�i = 1|Ti 2


y � h

2
, y +

h

2

�◆

P

✓

Ti 2


y � h

2
, y +

h

2

�◆

⇡ P

✓

�i = 1|Ti 2


y � h

2
, y +

h

2

�◆

fT
i

(y)h

= P (Ti  Ci|Ti = y)fT
i

(y)h

= P (y  Ci)fT
i

(y)h = fT
i

(y) (1�K(y))h.

It is very important to note that the last line P (Ti  Ci|Ti = y) = P (y  Ci) is due to

independence between Ti and Ci, if this does not hold the expression would involve the

joint distribution of Yi and Ci.

Thus the likelihood of (Yi, �i = 1) is fT
i

(y) (1�K(y)). Using a similar argument the

probability of (Yi 2 [y � h
2
, y + h

2
], �i = 0) is

P

✓

Yi 2


y � h

2
, y +

h

2

�

, �i = 0

◆

= P

✓

Ci 2


y � h

2
, y +

h

2

�

, �i = 0

◆

= P

✓

�i = 0|Ci =



y � h

2
, y +

y

2

�◆

fC
i

(y)h

= P

✓

Ci < Ti|Ci =



y � h

2
, y +

h

2

�◆

fC
i

(y)h = k(Ci)F(Ci; ✓)h.

Thus the likelihood of (Yi, �i) is

[fT
i

(Yi) (1�K(Yi))]
�
i [k(Yi)F(Yi; ✓)]

1��
i .
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This gives the log-likelihood

Ln,R(✓) =
n

X

i=1

✓

�i
⇥

log f(Yi; ✓) + log(1�K(Yi))
⇤

+ (1� �i)
⇥

log
�

1� F (Ci; ✓)
�

+ log k(Ci)
⇤

◆

=
n

X

i=1

✓

�i log f(Yi; ✓) + (1� �i) log
�

1� F (Ci; ✓)
�

◆

| {z }

=L
n

(✓)

+
n

X

i=1

✓

�i log(1�K(Yi)) + (1� �i) log k(Ci)

◆

= Ln(✓) +
n

X

i=1

✓

�i log(1�K(Yi)) + (1� �i) log k(Ci)

◆

. (6.8)

The interesting aspect of the above likelihood is that if the censoring density k(y) does

not depend on ✓, then the maximum likelihood estimator of ✓0 is identical to the maxi-

mum likelihood estimator using the non-random likelihood (or, equivalently, the likelihood

conditioned on Ci) (see (6.3)). In other words

b✓n = argmaxLn(✓) = argmaxLn,R(✓).

Hence the estimators using the two likelihoods are the same. The only di↵erence is the

limiting distribution of b✓n.

We now examine what b✓n is actually estimating in the case of random censoring. To

ease notation let us suppose that the censoring times follow an exponential distribution

k(x) = � exp(��x) and K(x) = 1 � exp(��x). To see whether ✓̂n is biased we evaluate

the derivative of the likelihood. As both the full likelihood and the conditional yield the

same estimators, we consider the expectation of the conditional log-likelihood. This is

E
�

Ln(✓)
�

= nE

✓

�i log f(Ti; ✓)

◆

+ nE

✓

(1� �i) logF(Ci; ✓)

◆

= nE

✓

log f(Ti; ✓) E(�i|Ti)
| {z }

=exp(��T
i

)

◆

+ nE

✓

logF(Ci; ✓) E
�

1� �i|Ci

�

| {z }

=F(C
i

;✓0)

◆

,

where the above is due to E(�i|Ti) = P (Ci > Ti|Ti) = exp(��Ti) and E(1 � �i|Ci) =

P (Ti > Ci|Ci) = F(Ci; ✓0). Therefore

E
�

Ln(✓)
�

= n

✓

Z 1

0

exp(��x) log f(x; ✓)f(x; ✓0)dx+

Z 1

0

F(c; ✓0)� exp(��c) logF(c; ✓)dc

◆

.
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It is not immediately obvious that the true parameter ✓0 maximises E
�

Ln(✓)
�

, however

by using (6.8) the expectation of the true likelihood is

E (LR,n(✓)) = E (Ln(✓)) + nK.

Thus the parameter which maximises the true likelihood also maximises E
�

Ln(✓)
�

. Thus

by using Theorem 2.6.1, we can show that b✓n = argmaxLR,n(✓) is a consistent estimator

of ✓0. Note that

p
n
⇣

✓̂n,R � ✓0
⌘

D! N (0, I(✓0)
�1)

where

I(✓) = n

Z 1

0

exp(��x)
✓

@f(x; ✓)

@✓

◆2

f(x; ✓0)
�1dx�

n

Z 1

0

exp(��x)@
2f(x; ✓)

@✓2
dx

+n

Z 1

0

� exp(��c)
✓

@F(c; ✓)

@✓

◆2

F(c; ✓)�1dc

�n

Z 1

0

� exp(��c)@
2F(c; ✓)

@✓2
dc.

Thus we see that the random censoring does have an influence on the limiting variance

of b✓n,R.

Remark 6.1.2 In the case that the censoring time C depends on the survival time T

it is tempting to still use (6.8) as the “likelihood”, and use the parameter estimator the

parameter which maximises this likelihood. However, care needs to be taken. The likelihood

in (6.8) is constructed under the assumption T and C, thus it is not the true likelihood

and we cannot use Theorem 2.6.1 to show consistency of the estimator, in fact it is likely

to be biased.

In general, given a data set, it is very di�cult to check for dependency between survival

and censoring times.

Example 6.1.3 In the case that Ti is an exponential, see Example 6.1.2, the MLE is

✓̂n =

Pn
i=1 �iTi +

Pn
i=1(1� �i)Ci

Pn
i=1 �i

.
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Now suppose that Ci is random, then it is possible to calculate the limit of the above. Since

the numerator and denominator are random it is not easy to calculate the expectation.

However under certain conditions (the denominator does not converge to zero) we have

by Slutsky’s theorem that

b✓n
P!

Pn
i=1 E(�iTi + (1� �i)Ci)

Pn
i=1 E(�i)

=
E(min(Ti, Ci))

P (Ti < Ci)
.

Definition: Type I and Type II censoring

• Type I sampling In this case, there is an upper bound on the observation time. In

other words, if Ti  c we observe the survival time but if Ti > c we do not observe

the survival time. This situation can arise, for example, when a study (audit) ends

and there are still individuals who are alive. This is a special case of non-random

sampling with ci = c.

• Type II sampling We observe the first r failure times, T(1), . . . , T(r), but do not

observe the (n� r) failure times, whose survival time is greater than T(r) (we have

used the ordering notation T(1)  T(2)  . . .  T(n)).

6.1.5 The likelihood for censored discrete data

Recall the discrete survival data considered in Remark 6.1.1, where the failures can occur

at {ts} where 0  t1 < t2 < . . .. We will suppose that the censoring of an individual can

occur only at the times {ts}. We will suppose that the survival time probabilities satisfy

P (T = ts) = ps(✓), where the parameter ✓ is unknown but the function ps is known, and

we want to estimate ✓.

Example 6.1.4

(i) The geometric distribution P (X = k) = p(1 � p)k�1 for k � 1 (p is the unknown

parameter).

(ii) The Poisson distribution P (X = k) = �k exp(��)/k! for k � 0 (� is the unknown

parameter).

As in the continuous case let Yi denote the failure time or the time of censoring of the

ith individual and let �i denote whether the ith individual is censored or not. Hence, we
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observe {(Yi, �i)}. To simplify the exposition let us define

ds = number of failures at time ts qs = number censored at time ts

Ns =
1
X

i=s

(di + qi) .

So there data would look like this:

Time No. Failures at time ti No. censored at time ti Total Number

t1 d1 q1 N1 =
P1

i=1 (di + qi)

t2 d2 q2 N2 =
P1

i=2 (di + qi)
...

...
...

...

Thus we observe from the table above that

Ns � ds = Number survived just before time ts+1.

Hence at any given time ts, there are ds “failures” and Ns � ds “survivals”.

Hence, since the data is discrete observing {(Yi, �i)} is equivalent to observing {(ds, qs)}
(i.e. the number of failures and censors at time ts), in terms of likelihood construction

(this leads to equivalent likelihoods). Using {(ds, qs)} and Remark 6.1.1 we now construct

the likelihood. We shall start with the usual (not log) likelihood. Let P (T = ts|✓) = ps(✓)

and P (T � ts|✓) = Fs(✓). Using this notation observe that the probability of (ds, qs) is

ps(✓)dsP (T � ts)qs = ps(✓)dsFs(✓)qs , hence the likelihood is

Ln(✓) =
n
Y

i=1

pY
i

(✓)�iFY
i

(✓)1��i =
1
Y

s=1

ps(✓)
d
sFs(✓)

q
s

=
1
Y

s=1

ps(✓)
d
s [

1
X

j=s

pj(✓)]
q
s .

For most parametric inference the above likelihood is relatively straightforward to max-

imise. However, in the case that our objective is to do nonparametric estimation (where

we do not assume a parametric model and directly estimate the probabilities without

restricting them to a parametric family), then rewriting the likelihood in terms of the

hazard function greatly simplies matters. By using some algebraic manipulations and

Remark 6.1.1 we now rewrite the likelihood in terms of the hazard functions. Using that

ps(✓) = hs(✓)Fs�1(✓) (see equation (6.1)) we have

Ln(✓) =
Y

s=1

hs(✓)
d
sFs(✓)

q
sFs�1(✓)

d
s =

Y

s=1

hs(✓)
d
sFs(✓)

q
s

+d
s+1

| {z }

realigning the s

(since F0(✓) = 1).
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Now, substituting Fs(✓) =
Qs

j=1(1� hj(✓)) (see equation (6.2)) into the above gives

Ln(✓) =
n
Y

s=1

hs(✓)
d
s

"

s
Y

j=1

(1� hj(✓))

#q
s

+d
s+1

=
n
Y

s=1

hs(✓)
d
s

s
Y

j=1

(1� hj(✓))
q
s

+d
s+1

Rearranging the multiplication we see that h1(✓) is multiplied by (1� h1(✓))
P

i=1(qi+d
i+1),

h2(✓) is multiplied by (1� h1(✓))
P

i=2(qi+d
i+1) and so forth. Thus

Ln(✓) =
n
Y

s=1

hs(✓)
d
s (1� hs(✓))

P
n

m=s

(q
m

+d
m+1) .

Recall Ns =
Pn

m=s(qm + dm). Thus
P1

m=s(qm + dm+1) = Ns � ds (number survived just

before time ts+1) the likelihood can be rewritten as

Ln(✓) =
1
Y

s=1

ps(✓)
d
s [

1
X

j=s

pj(✓)]
q
s

=
Y

s=1

hs(✓)
d
s(1� hs(✓))

N
s

�d
s .

The corresponding log-likelihood is

Ln(✓) =
1
X

s=1

(

ds log ps(✓)
d
s + log

" 1
X

j=s

pj(✓)]
q
s

#)

=
1
X

s=1

✓

ds log hs(✓) + (Ns � ds) log(1� hs(✓))

◆

. (6.9)

Remark 6.1.3 At time ts the number of “failures” is ds and the number of survivors is

Ns � ds. The probability of “failure” and “success” is

hs(✓) = P (T = s|T � s) =
ps(✓)

P1
i=s ps(✓)

1� hs(✓) = P (T > s|T � s) =

P1
i=s+1 pi(✓)

P1
i=s ps(✓)

.

Thus hs(✓)ds(1 � hs(✓))Ns

�d
s can be viewed as the probability of ds failures and Ns � ds

successes at time ts.

Thus for the discrete time case the mle of ✓ is the parameter which maximises the

above likelihood.
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6.2 Nonparametric estimators of the hazard function

- the Kaplan-Meier estimator

Let us suppose that {Ti} are iid random variables with distribution function F and survival

function F . However, we do not know the class of functions from which F or F may come

from. Instead, we want to estimate F nonparametrically, in order to obtain a good idea of

the ‘shape’ of the survival function. Once we have some idea of its shape, we can conjecture

the parametric family which may best fit its shape. See https://en.wikipedia.org/

wiki/Kaplan%E2%80%93Meier_estimator for some plots.

If the survival times have not been censored the ‘best’ nonparametric estimator of the

cumulative distribution function F is the empirical likelihood

F̂n(x) =
1

n

n
X

i=1

I(x  Ti).

Using the above the empirical survival function F(x) is

F̂n(x) = 1� F̂n(x) =
1

n

n
X

i=1

I(Ti > x),

observe this is a left continuous function (meaning that the limit lim0<�!0 Fn(x��) exists).
We use the notation

ds = number of failures at time ts

Ns = n�
s�1
X

i=1

di =
1
X

i=s

di = Ns�1 � ds�1 (corresponds to number of survivals just before ts).

If ts < x  ts+1, then the empirical survival function can be rewritten as

F̂n(x) =
Ns � ds

n
=

s
Y

i=1

✓

Ni � di
Ni

◆

=
s
Y

i=1

✓

1� di
Ni

◆

x 2 (ti, ti+1]

where N1 = n are the total in the group. Since the survival times usually come from

continuous random variable, di = {0, 1}, the above reduces to

F̂n(x) =
s
Y

i=1

✓

1� 1

Ni

◆d
i

x 2 (ti, ti+1].
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Figure 6.1: The noparametric estimator of the survival function based on the empirical

distribution function (with no censoring).

However, in the case, that the survival data is censored and we observe {Yi, �i}, then
some adjustments have to made to F̂n(x) to ensure it is a consistent estimator of the

survival function. This leads to the Kaplan-Meier estimator, which is a nonparametric

estimator of the survival function F that takes into account censoring. We will now derive

the Kaplan-Meier estimator for discrete data. A typical data set looks like this:

Time No. Failures at time ti No. censored at time ti Total Number

t1 0 0 N1 =
P1

i=1 (di + qi)

t2 1 0 N2 =
P1

i=2 (di + qi)

t3 0 1 N3 =
P1

i=3 (di + qi)

t4 0 1 N4 =
P1

i=4 (di + qi)
...

...
...

...

It is important to note that because these are usually observations from a continuous

random variable and observation which as been censored at time ts�1 may not have

survived up to time ts. This means that we cannot say that the total number of survivors

at time ts � " is Ns + qs�1, all we know for sure is that the number of survivors at ts � "

is Ns.
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The Kaplan-Meier estimator of the hazard function hs = P (T = ts)/P (T > ts � ") is

bhs =
ds
Ns

,

where ds are the number of failures at time ts and Ns are the number of survivors just

before time ts (think ts� "). The corresponding estimator of the survival function P (T >

ts) = F(ts) is

F̂(ts) =
s
Y

j=1

✓

1� dj
Nj

◆

.

We show below that this estimator maximises the likelihood and in many respects, this is

a rather intuitive estimator of the hazard function. For example, if there is no censoring

then it can be shown that maximum likelihood estimator of the hazard function is

bhs =
ds

P1
i=s ds

=
number of failures at time s

number who survive just before time s
,

which is a very natural estimator (and is equivalent to the nonparametric MLE estimator

discussed in Section ??).

For continuous random variables, dj 2 {0, 1} (as it is unlikely two or more survival

times are identical), the Kaplan-Meier estimator can be extended to give

F̂(t) =
Y

j;t>Y
j

✓

1� 1

Nj

◆d
j

,

where Yj is the time of an event (either failure or censor) and dj is an indicator on whether

it is a failure. One way of interpreting the above is that only the failures are recorded

in the product, the censored times simply appear in the number Nj. Most statistical

software packages will plot of the survival function estimator. A plot of the estimator is

given in Figure 6.2.

We observe that in the case that the survival data is not censored then Nj =
Pm

s=j ds,

and the Kaplan-Meier estimator reduces to

F̂(t) =
Y

j;t>Y
j

✓

1� 1

Nj

◆

.

Comparing the estimator of the survival function with and without censoring (compare

Figures 6.1 and 6.2) we see that one major di↵erence is the di↵erence between step sizes.

In the case there is no censoring the di↵erence between steps in the step function is always

n�1 whereas when censoring arises the step di↵erences change according to the censoring.
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Figure 6.2: An example of the Kaplan-Meier estimator with censoring. The small vertical

lines in the plot correspond to censored times.

Derivation of the Kaplan-Meier estimator

We now show that the Kaplan-Meier estimator is the maximum likelihood estimator in

the case of censoring. In Section ?? we showed that the empirical distribution is the

maximimum of the likelihood for non-censored data. We now show that the Kaplan-

Meier estimator is the maximum likelihood estimator when the data is censored. We

recall in Section 6.1.5 that the discrete log-likelihood for censored data is

Ln(✓) =
X

s=1

✓

ds log ps(✓)
d
s + qs log[

1
X

j=s

pj(✓)]

◆

=
1
X

s=1

✓

ds log hs(✓) + (Ns � ds) log(1� hs(✓)

◆

,

where P (T = ts) = ps(✓), ds are the number of failures at time ts, qs are the number of

individuals censored at time ts and Ns =
P1

m=s(qm + dm). Now the above likelihood is

constructed under the assumption that the distribution has a parametric form and the
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only unknown is ✓. Let us suppose that the probabilities ps do not have a parametric

form. In this case the likelihood is

Ln(p1, p2, . . .) =
X

s=1

✓

ds log ps + qs log[
1
X

j=s

pj]

◆

subject to the condition that
P

pj = 1. However, it is quite di�cult to directly maximise

the above. Instead we use the likelihood rewritten in terms of the hazard function (recall

equation (6.9))

Ln(h1, h2, . . .) =
X

s=1

✓

ds log hs + (Ns � ds) log(1� hs)

◆

,

and maximise this. The derivative of the above with respect to hs is

@Ln

@hs

=
ds
hs

� (Ns � ds)

1� hs

.

Hence by setting the above to zero and solving for hs gives

ĥs =
ds
Ns

.

If we recall that ds = number of failures at time ts and Ns = number of alive just before

time ts. Hence the non-parametric estimator of the hazard function is rather logical (since

the hazard function is the chance of failure at time t, given that no failure has yet occured,

ie. h(ti) = P (ti  T < ti+1|T � ti)). Now recalling (6.2) and substituting ĥs into (6.2)

gives the survival function estimator

F̂s =
s
Y

j=1

�

1� ĥj

�

.

Rewriting the above, we have the Kaplan-Meier estimator

F̂(ts) =
s
Y

j=1

�

1� dj
Nj

�

.

For continuous random variables, dj 2 {0, 1} (as it is unlikely two or more survival times

are identical), the Kaplan-Meier estimator cab be extended to give

F̂(t) =
Y

j;Y
j

t

�

1� 1

Nj

�d
j .

Of course given an estimator it is useful to approximate its variance. Some useful

approximations are given in Davison (2002), page 197.
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6.3 Problems

6.3.1 Some worked problems

Problem: Survival times and random censoring

Example 6.3.1 Question

Let us suppose that T and C are exponentially distributed random variables, where the

density of T is 1
�
exp(�t/�) and the density of C is 1

µ
exp(�c/µ).

(i) Evaluate the probability P (T � C < x), where x is some finite constant.

(ii) Let us suppose that {Ti}i and {Ci}i are iid survival and censoring times respec-

tively (Ti and Ci are independent of each other), where the densities of Ti and

Ci are fT (t;�) = 1
�
exp(�t/�) and fC(c;µ) = 1

µ
exp(�c/µ) respectively. Let Yi =

min(Ti, Ci) and �i = 1 if Yi = Ti and zero otherwise. Suppose � and µ are unknown.

We use the following “likelihood” to estimate �

Ln(�) =
n

X

i=1

�i log fT (Yi;�) +
n

X

i=1

(1� �i) logFT (Yi;�),

where FT denotes is the survival function.

Let �̂n = argmaxLn(�). Show that �̂n is an asymptotically, unbiased estimator of

� (you can assume that �̂n converges to some constant).

(iii) Obtain the Fisher information matrix of �.

(iv) Suppose that µ = �, what can we say about the estimator derived in (ii).

Solutions

(i) P (T > x) = exp(�x/�) and P (C > c) = exp(�c/µ), thus

P (T < C + x) =

Z

P (T < C + x|C = c)
| {z }

use independence

fC(c)dc

=

Z

P (T < c+ x)fC(c)dc

=

Z 1

0



1� exp(�c+ x

�
)

�

1

µ
exp(� c

µ
)dc = 1� exp(�x/�)

�

�+ µ
.
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(ii) Di↵erentiating the likelihood

@Ln(�)

@�
=

n
X

i=1

�i
@ log fT (Ti;�)

@�
+

n
X

i=1

(1� �i)
@ logFT (Ci;�)

@�
,

substituting f(x;�) = ��1 exp(�x/�) and F(x;�) = exp(�x/�) into the above and

equating to zero gives the solution

�̂n =

P

i=1 �iTi +
P

i(1� �i)Ci
P

i �i
.

Now we evaluate the expectaton of the numerator and the denominator.

E(�iTi) = E(TiI(Ti < Ci)) = E (TiE(I(Ci > Ti|Ti)))

= E (TiP (Ci > Ti|Ti)) = E (TiP (Ci � Ti > 0|Ti))

= E(Ti exp(�Ti/µ)) =

Z

t exp(�t/µ)
1

�
exp(�t/�)dt

=
1

�
⇥

� µ�

µ+ �

�2
=

µ2�

(µ+ �)2

Similarly we can show that

E((1� �i)Ci) = P (CiP (Ti > Ci|Ci)) =
µ�2

(µ+ �)2
.

Finally, we evaluate the denominator E(�i) = P (T < C) = 1� �
µ+�

= µ
µ+�

. Therefore

by Slutsky’s theorem we have

�̂n
P!

µ�2

(µ+�)2
+ µ2�

(µ+�)2

µ
µ+�

= �.

Thus �̂n converges in probability to �.

(iii) Since the censoring time does not depend on � the Fisher information of � is

I(�) = nE

✓

�@
2Ln,R(�)

@�2

◆

= nE

✓

�@
2Ln(�)

@�2

◆

=
n

�2
E[�i] =

n

�2
P (T < C)

=
n

�2
µ

�+ µ
,

where LN,R is defined in (6.8). Thus we observe, the larger the average censoring

time µ the more information the data contains about �.
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(iv) It is surprising, but the calculations in (ii) show that even when µ = � (but we require

that T and C are independent), the estimator defined in (ii) is still a consistent

estimator of �. However, because we did not use Ln,R to construct the maximum

likelihood estimator and the maximum of Ln(�) and Ln,R(�) are not necessarily the

same, the estimator will not have optimal (smallest) variance.

Problem: survival times and fixed censoring

Example 6.3.2 Question

Let us suppose that {Ti}ni=1 are survival times which are assumed to be iid (independent,

identically distributed) random variables which follow an exponential distribution with

density f(x;�) = 1
�
exp(�x/�), where the parameter � is unknown. The survival times

may be censored, and we observe Yi = min(Ti, c) and the dummy variable �i = 1, if Yi = Ti

(no censoring) and �i = 0, if Yi = c (if the survival time is censored, thus c is known).

(a) State the censored log-likelihood for this data set, and show that the estimator of �

is

�̂n =

Pn
i=1 �iTi +

Pn
i=1(1� �i)c

Pn
i=1 �i

.

(b) By using the above show that when c > 0, �̂n is a consistent of the the parameter �.

(c) Derive the (expected) information matrix for this estimator and comment on how

the information matrix behaves for various values of c.

Solution

(1a) Since P (Yi � c) = exp(�c�), the log likelihood is

Ln(�) =
n

X

i=1

✓

�i log �� �i�Yi � (1� �i)c�

◆

.

Thus di↵erentiating the above wrt � and equating to zero gives the mle

�̂n =

Pn
i=1 �iTi +

Pn
i=1(1� �i)c

Pn
i=1 �i

.
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(b) To show that the above estimator is consistent, we use Slutsky’s lemma to obtain

�̂n
P!

E
⇥

�T + (1� �)c
⇤

E(�)

To show tha � = E[�T+(1��)c]
E(�)

we calculate each of the expectations:

E(�T ) =

Z c

0

y
1

�
exp(��y)dy = c exp(�c/�)� 1

�
exp(�c/�) + �

E((1� �)c) = cP (Y > c) = c exp(�c/�)

E(�) = P (Y  c) = 1� exp(�c/�).

Substituting the above into gives �̂n
P! � as n ! 1.

(iii) To obtain the expected information matrix we di↵erentiate the likelihood twice and

take expections to obtain

I(�) = �nE

✓

�i�
�2

◆

= �1� exp(�c/�)

�2
.

Note that it can be shown that for the censored likelihood E(@Ln

(�)
@

)2 = �E(@
2L

n

(�)
@�2

).

We observe that the larger c, the larger the information matrix, thus the smaller the

limiting variance.

6.3.2 Exercises

Exercise 6.1 If {Fi}ni=1 are the survival functions of independent random variables and

�1 > 0, . . . , �n > 0 show that
Qn

i=1 Fi(x)�i is also a survival function and find the corre-

sponding hazard and cumulative hazard functions.

Exercise 6.2 Let {Yi}ni=1 be iid random variables with hazard function h(x) = � subject

to type I censoring at time c.

Show that the observed information for � is m/�2 where m is the number of Yi that

are non-censored and show that the expected information is I(�|c) = n[1� e��c]/�2.

Suppose that the censoring time c is a reailsation from a random variable C whose

density is

f(c) =
(�↵)⌫c⌫

�(⌫)
exp(�c�↵) c > 0,↵, ⌫ > 0.
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Show that the expected information for � after averaging over c is

I(�) = n
⇥

1� (1 + 1/↵)�⌫
⇤

/�2.

Consider what happens when

(i) ↵ ! 0

(ii) ↵ ! 1

(iii) ↵ = 1 and ⌫ = 1

(iv) ⌫ ! 1 but such that µ = ⌫/↵ is kept fixed.

In each case explain quantitively the behaviour of I(�).

Exercise 6.3 Let us suppose that {Ti}i are the survival times of lightbulbs. We will

assume that {Ti} are iid random variables with the density f(·; ✓0) and survival function

F(·; ✓0), where ✓0 is unknown. The survival times are censored, and Yi = min(Ti, c) and

�i are observed (c > 0), where �i = 1 if Yi = Ti and is zero otherwise.

(a) (i) State the log-likelihood of {(Yi, �i)}i.

(ii) We denote the above log-likelihood as Ln(✓). Show that

�E

✓

@2Ln(✓)

@✓2
c✓=✓0

◆

= E

✓

@Ln(✓)

@✓
c✓=✓0

◆2

,

stating any important assumptions that you may use.

(b) Let us suppose that the above survival times satisfy a Weibull distribution f(x;�,↵) =

(↵
�
)(x
�
)↵�1 exp(�(x/�)↵) and as in part (a) we observe and Yi = min(Ti, c) and �i,

where c > 0.

(i) Using your answer in part 2a(i), give the log-likelihood of {(Yi, �i)}i for this

particular distribution (we denote this as Ln(↵,�)) and derive the profile like-

lihood of ↵ (profile out the nusiance parameter �).

Suppose you wish to test H0 : ↵ = 1 against HA : ↵ 6= 1 using the log-likelihood

ratio test, what is the limiting distribution of the test statistic under the null?
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(ii) Let �̂n, ↵̂n = argmaxLn(↵,�) (maximum likelihood estimators involving the

censored likelihood). Do the estimators �̂n and ↵̂n converge to the true param-

eters � and ↵ (you can assume that �̂n and ↵̂n converge to some parameters,

and your objective is to find whether these parameters are � and ↵).

(iii) Obtain the (expected) Fisher information matrix of maximum likelihood esti-

mators.

(iv) Using your answer in part 2b(iii) derive the limiting variance of the maximum

likelihood estimator of ↵̂n.

Exercise 6.4 Let Ti denote the survival time of an electrical component. It is known

that the regressors xi influence the survival time Ti. To model the influence the regressors

have on the survival time the Cox-proportional hazard model is used with the exponential

distribution as the baseline distribution and  (xi; �) = exp(�xi) as the link function. More

precisely the survival function of Ti is

Fi(t) = F0(t)
 (x

i

;�),

where F0(t) = exp(�t/✓). Not all the survival times of the electrical components are

observed, and there can arise censoring. Hence we observe Yi = min(Ti, ci), where ci

is the censoring time and �i, where �i is the indicator variable, where �i = 0 denotes

censoring of the ith component and �i = 1 denotes that it is not censored. The parameters

� and ✓ are unknown.

(i) Derive the log-likelihood of {(Yi, �i)}.

(ii) Compute the profile likelihood of the regression parameters �, profiling out the base-

line parameter ✓.
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