
Chapter 3

The Profile Likelihood

3.1 The Profile Likelihood

3.1.1 The method of profiling

Let us suppose that the unknown parameters ✓ can be partitioned as ✓0 = ( 0,�0), where

 are the p-dimensional parameters of interest (eg. mean) and � are the q-dimensional

nuisance parameters (eg. variance). We will need to estimate both  and �, but our

interest lies only in the parameter  . To achieve this one often profiles out the nuisance

parameters. To motivate the profile likelihood, we first describe a method to estimate the

parameters ( ,�) in two stages and consider some examples.

Let us suppse that {Xi} are iid random variables, with density f(x; ,�) where our

objective is to estimate  and �. In this case the log-likelihood is

Ln( ,�) =
n
X

i=1

log f(Xi; ,�).

To estimate  and � one can use (�̂n,  ̂n) = argmax�, Ln( ,�). However, this can be

di�cult to directly maximise. Instead let us consider a di↵erent method, which may,

sometimes, be easier to evaluate. Suppose, for now,  is known, then we rewrite the

likelihood as Ln( ,�) = L (�) (to show that  is fixed but � varies). To estimate � we

maximise L (�) with respect to �, i.e.

�̂ = argmax
�

L (�).
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In reality  is unknown, hence for each  we can evaluate �̂ . Note that for each  , we

have a new curve L (�) over �. Now to estimate  , we evaluate the maximum L (�),
over �, and choose the  , which is the maximum over all these curves. In other words,

we evaluate

 ̂n = argmax
 

L (�̂ ) = argmax
 

Ln( , �̂ ).

A bit of logical deduction shows that  ̂n and � ̂
n

are the maximum likelihood estimators

(�̂n,  ̂n) = argmax ,� Ln( ,�).

We note that we have profiled out nuisance parameter �, and the likelihood L (�̂ ) =
Ln( , �̂ ) is in terms of the parameter of interest  .

The advantage of this procedure is best illustrated through some examples.

Example 3.1.1 (The Weibull distribution) Let us suppose that {Xi} are iid random

variables from a Weibull distribution with density f(x;↵, ✓) = ↵y↵�1

✓↵
exp(�(y/✓)↵). We

know from Example 2.2.2, that if ↵, were known an explicit expression for the MLE can

be derived, it is

✓̂↵ = argmax
✓

L↵(✓)

= argmax
✓

n
X

i=1

✓

log↵ + (↵� 1) log Yi � ↵ log ✓ �
�Yi

✓

�↵
◆

= argmax
✓

n
X

i=1

✓

� ↵ log ✓ �
�Yi

✓

�↵
◆

= (
1

n

n
X

i=1

Y ↵
i )1/↵,

where L↵(X; ✓) =
Pn

i=1

✓

log↵ + (↵ � 1) log Yi � ↵ log ✓ �
�

Y
i

✓

�↵
◆

. Thus for a given ↵,

the maximum likelihood estimator of ✓ can be derived. The maximum likelihood estimator

of ↵ is

↵̂n = argmax
↵

n
X

i=1

✓

log↵ + (↵� 1) log Yi � ↵ log(
1

n

n
X

i=1

Y ↵
i )1/↵ �

� Yi

( 1
n

Pn
i=1 Y

↵
i )1/↵

�↵
◆

.

Therefore, the maximum likelihood estimator of ✓ is ( 1
n

Pn
i=1 Y

↵̂
n

i )1/↵̂n. We observe that

evaluating ↵̂n can be tricky but no worse than maximising the likelihood Ln(↵, ✓) over ↵

and ✓.
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As we mentioned above, we are not interest in the nuisance parameters � and are only

interesting in testing and constructing CIs for  . In this case, we are interested in the

limiting distribution of the MLE  ̂n. Using Theorem 2.6.2(ii) we have

p
n

 

 ̂n �  

�̂n � �

!

D! N
✓

0,

 

I  I �

I� I��

!�1
◆

.

where
 

I  I �

I� I��

!

=

 

E
�

� @2 log f(X
i

; ,�)
@ 2

�

E
�

� @2 log f(X
i

; ,�)
@ @�

�

E
�

� @2 log f(X
i

; ,�)
@ @�

�0
E
�

� @2 log f(X
i

; ,�)
@ 2

�

!

. (3.1)

To derive an exact expression for the limiting variance of
p
n( ̂n �  ), we use the block

inverse matrix identity.

Remark 3.1.1 (Inverse of a block matrix) Suppose that

 

A B

C D

!

is a square matrix. Then

 

A B

C D

!�1

=

 

(A� BD�1C)�1 �A�1B(D � CA�1B)�1

�D�1CB(A� BD�1C)�1 (D � CA�1B)�1

!

. (3.2)

Using (3.2) we have

p
n( b n �  )

D! N (0, (I , � I ,�I
�1
�� I�, )

�1). (3.3)

Thus if  is a scalar we can use the above to construct confidence intervals for  .

Example 3.1.2 (Block diagonal information matrix) If

I( ,�) =

 

I , 0

0 I�,�

!

,

then using (3.3) we have

p
n( b n �  )

D! N (0, I�1
 , ).
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3.1.2 The score and the log-likelihood ratio for the profile like-

lihood

To ease notation, let us suppose that  0 and �0 are the true parameters in the distribution.

We now consider the log-likelihood ratio

2

⇢

max
 ,�

Ln( ,�)�max
�

Ln( 0,�)

�

, (3.4)

where  0 is the true parameter. However, to derive the limiting distribution in this case

for this statistic is a little more complicated than the log-likelihood ratio test that does

not involve nuisance parameters. This is because directly applying Taylor expansion does

not work since this is usually expanded about the true parameters. We observe that

2

⇢

max
 ,�

Ln( ,�)�max
�

Ln( 0,�)

�

= 2

⇢

max
 ,�

Ln( ,�)� Ln( 0,�0)

�

| {z }

�2
p+q

� 2
n

max
�

Ln( 0,�)�max
�

Ln( 0,�0)
o

| {z }

�2
q

.

It seems reasonable that the di↵erence may be a �2
p but it is really not clear by. Below,

we show that by using a few Taylor expansions why this is true.

In the theorem below we will derive the distribution of the score and the nested log-

likelihood.

Theorem 3.1.1 Suppose Assumption 2.6.1 holds. Suppose that ( 0,�0) are the true

parameters. Then we have

@Ln( ,�)

@ 
c�̂

 0
, 0

⇡ @Ln( ,�)

@ 
c 0,�0 �

@Ln( ,�)

@�
c 0,�0I

�1
�0�0

I�0 0 (3.5)

1p
n

@Ln( ,�)

@ 
c 0,�̂

 0

D! N (0, (I 0 0 � I 0�0I
�1
�0�0

I�0, 0)) (3.6)

where I is defined as in (3.1) and

2

⇢

Ln( ̂n, �̂n)� Ln( 0, �̂ 0)

�

D! �2
p, (3.7)

where p denotes the dimension of  . This result is often called Wilks Theorem.
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PROOF. We first prove (3.5) which is the basis of the proofs of (3.6). To avoid, notational

di�culties we will assume that @L
n

( ,�)
@ 

c�̂
 0

, 0
and @L

n

( ,�)
@�

c�=�0, 0 are univariate random

variables.

Our objective is to find an expression for @L
n

( ,�)
@ 

c�̂
 0

, 0
in terms of @Ln

( ,�)
@�

c�=�0, 0 and
@L

n

( ,�)
@ 

c�=�0, 0 which will allow us to obtain its variance and asymptotic distribution.

Making a Taylor expansion of @L
n

( ,�)
@ 

c�̂
 0

, 0
about @L

n

( ,�)
@ 

c�0, 0 gives

@Ln( ,�)

@ 
c�̂

 0
, 0

⇡ @Ln( ,�)

@ 
c�0, 0 + (�̂ 0 � �0)

@2Ln( ,�)

@�@ 
c�0, 0 .

Notice that we have used ⇡ instead of = because we replace the second derivative

with its true parameters. If the sample size is large enough then @2L
n

( ,�)
@�@ 

c�0, 0 ⇡
E
�@2L

n

( ,�)
@�@ 

c�0, 0

�

; eg. in the iid case we have

1

n

@2Ln( ,�)

@�@ 
c�0, 0 =

1

n

n
X

i=1

@2 log f(Xi; ,�)

@�@ 
c�0, 0

⇡ E

✓

@2 log f(Xi; ,�)

@�@ 
c�0, 0

◆

= �I�, 

Therefore

@Ln( ,�)

@ 
c�̂

 0
, 0

⇡ @Ln( ,�)

@ 
c�0, 0 � n(�̂ 0 � �0)I� . (3.8)

Next we make a decomposition of (�̂ 0��0). We recall that since Ln( 0, �̂ 0) = argmax� Ln( 0,�)

then

@Ln( ,�)

@�
c�̂

 0
, 0

= 0

(if the maximum is not on the boundary). Therefore making a Taylor expansion of
@L

n

( 0,�)
@�

c�̂
 0

, 0
about @L

n

( 0,�)
@�

c�0, 0 gives

@Ln( 0,�)

@�
c�̂

 0
, 0

| {z }

=0

⇡ @Ln( 0,�)

@�
c�0, 0 +

@2Ln( 0,�)

@�2
c�0, 0(�̂ 0 � �0).

Replacing @2L
n

( 0,�)
@�2

c�0, 0 with I�� gives

@Ln( 0,�)

@�
c�0, 0 � nI��(�̂ 0 � �0) ⇡ 0,
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and rearranging the above gives

(�̂ 0 � �0) ⇡
I�1
��

n

@Ln( 0,�)

@�
c�0, 0 . (3.9)

Therefore substituting (3.9) into (3.8) gives

@Ln( ,�)

@ 
c�̂

 0
, 0

⇡ @Ln( ,�)

@ 
c�0, 0 �

@Ln( 0,�)

@�
c 0,�0I

�1
�� I� 

and thus we have proved (3.5).

To prove (3.6) we note that

@Ln( ,�)

@ 
c�̂

 0
, 0

⇡ @Ln( 0,�)

@✓
c0 0,�0

�

I,�I�1
�� ��, 

�0
. (3.10)

We recall that the regular score function satisfies

1p
n

@Ln( ,�)

@✓
c�0, 0 =

1p
n

 

@L
n

( ,�)
@ 

c�0, 0

@L
n

( ,�)
@�

c 0,�0

!

D! N (0, I(✓0)).

Now by substituting the above into (3.10) and calculating the variance gives (3.6).

Finally to prove (3.7) we apply the Taylor expansion on the decomposition

2

⇢

Ln( ̂n, �̂n)� Ln( 0, �̂ 0)

�

= 2

⇢

Ln( ̂n, �̂n)� Ln( 0,�0)

�

� 2

⇢

Ln( 0, �̂ 0)� Ln( 0,�0)

�

⇡ (✓̂n � ✓0)
0I(✓)(✓̂n � ✓0)� (�̂ 0 � �0)

0I��(�̂ 0 � �0), (3.11)

where ✓̂0n = ( ̂, �̂) (the mle). We now find an approximation of (�̂ 0 � �0)0 in terms

(✓̂n � ✓0). We recall that (b✓ � ✓) = I(✓0)�1r✓Ln(✓)c✓=✓0 therefore
 

@L
n

(✓)
@ 

@L
n

(✓)
@�

!

⇡
 

I  I �

I� I��

! 

b n �  0

b�n � �n

!

(3.12)

From (3.9) and the expansion of @L
n

(✓)
@�

given in (3.12) we have

(�̂ 0 � �0) ⇡ I�1
��

n

@Ln( 0,�)

@�
c�0, 0 ⇡

I�1
��

n

⇣

I� ( ̂ �  0) + I��(�̂� �0)
⌘

⇡ I�1
�� I� ( ̂ �  0) + (�̂� �0) =

�

I�1
�� I� , 1

�

⇣

b✓n � ✓0
⌘

.

Substituting the above into (3.11) and making lots of cancellations we have

2

⇢

Ln( ̂n, �̂n)� Ln( 0, �̂ 0)

�

⇡ n( ̂ �  0)
0(I  � I �I

�1
�,�I�, )( ̂ �  0).

Finally, by using (3.3) we substitute
p
n( ̂ �  0)

D! N (0, (I  � I �I
�1
�,�I�, )

�1), into the

above which gives the desired result. ⇤
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Remark 3.1.2 (i) The limiting variance of b �  0 if � were known is I�1
 , , whereas

the the limiting variance of @L
n

( ,�)
@ 

c�̂
 0

, 0
is (I  � I �I

�1
�,�I�, ) and the limiting

variance of
p
n( ̂ �  0) is (I  � I �I

�1
�,�I�, )

�1. Therefore if  and � are scalars

and the correlation I�, is positive, then the limiting variance of b � 0 is more than

if � were known. This makes sense, if we have less information the variance grows.

(ii) Look again at the expression

@Ln( ,�)

@ 
c�̂

 0
, 0

⇡ @Ln( ,�)

@ 
c�0, 0 � I �I

�1
��

@Ln( 0,�)

@�
c�0, 0 (3.13)

It is useful to understand where it came from. Consider the problem of linear re-

gression. Suppose X and Y are random variables and we want to construct the

best linear predictor of Y given X. We know that the best linear predictor is

Ŷ (X) = E(XY )/E(Y 2)X and the residual and mean squared error is

Y � Ŷ (X) = Y � E(XY )

E(Y 2)
X and E

✓

Y � E(XY )

E(Y 2)
X

◆2

= E(Y 2)� E(XY )E(Y 2)�1E(XY ).

Compare this expression with (3.13). We see that in some sense @L
n

( ,�)
@ 

c�̂
 0

, 0
can

be treated as the residual (error) of the projection of @Ln

( ,�)
@ 

c�0, 0 onto
@L

n

( 0,�)
@�

c�0, 0.

3.1.3 The log-likelihood ratio statistics in the presence of nui-

sance parameters

Theorem 3.1.1 can be used to test H0 :  =  0 against HA :  6=  0 since

2

⇢

max
 ,�

Ln( ,�)�max
�

Ln( 0,�)

�

D! �2
p.

The same quantity can be used in the construction of confidence intervals By using (3.7)

we can construct CIs. For example, to construct a 95% CI for  we can use the mle

✓̂n = ( ̂n, �̂n) and the profile likelihood (3.7) to give

⇢

 ; 2

⇢

Ln( ̂n, �̂n)� Ln( , �̂ )

�

 �2
p(0.95)

�

.

Example 3.1.3 (The normal distribution and confidence intervals) This example

is taken from Davidson (2004), Example 4.31, p129.
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We recall that the log-likelihood for {Yi} which are iid random variables from a normal

distribution with mean µ and variance �2 is

Ln(µ, �
2) = Lµ(�

2) = � 1

2�2

n
X

i=1

(Yi � µ)2 � n

2
log �2.

Our aim is to the use the log-likelihood ratio statistic, analogous to Section 2.8.1 to con-

struct a CI for µ. Thus we treat �2 as the nuisance parameter.

Keeping µ fixed, the maximum likelihood estimator of �2 is b�2(µ) = 1
n

Pn
i=1(Yi � µ)2.

Rearranging b�2(µ) gives

b�2(µ) =
n� 1

n
s2
✓

1 +
t2n(µ)

n� 1

◆

where t2n(µ) = n(Ȳ �µ)2/s2 and s2 = 1
n�1

Pn
i=1(Yi�Ȳ )2. Substituting b�2(µ) into Ln(µ, �2)

gives the profile likelihood

Ln(µ, b�
2(µ)) =

�1

b�2(µ)

n
X

i=1

(Yi � µ)2

| {z }

=�n/2

�n

2
log b�2(µ)

= �n

2
� n

2
log

⇢

n� 1

n
s2
✓

1 +
t2n(µ)

n� 1

◆�

.

It is clear that Ln(µ, b�2(µ)) is maximised at bµ = Ȳ . Hence

Ln(bµ, b�
2(bµ)) = �n

2
� n

2
log

⇢

n� 1

n
s2
�

.

Thus the log-likelihood ratio is

Wn(µ) = 2
�

Ln(bµ, b�
2(bµ))� Ln(µ, b�

2(µ))
 

= n log

✓

1 +
t2n(µ)

n� 1

◆

| {z }

D!�2
1 for true µ

.

Therefore, using the same argument to those in Section 2.8.1, the 95% confidence interval

for the mean is

�

µ; 2
�

Ln(bµ, b�
2(bµ))� Ln(µ, b�

2(µ))
  

=
�

µ;Wn(µ)  �2
1(0.95)

 

=

⇢

µ;n log

✓

1 +
t2n(µ)

n� 1

◆

 �2
1(0.95)

�

.
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However, this is an asymptotic result. With the normal distribution we can get the exact

distribution. We note that since log is a monotonic function the log-likelihood ratio is

equivalent to
�

µ; t2n(µ)  C↵
 

,

where C↵ is an appropriately chosen critical value. We recall that tn(µ) is a t-distribution

with n� 1 degrees of freedom. Thus C↵ is the critical value corresponding to a Hotelling

T 2-distribution.

Exercise 3.1 Derive the �2 test for independence (in the case of two by two tables) using

the log-likelihood ratio test. More precisely, derive the asymptotic distribution of

T =
(O1 � E1)2

E1

+
(O2 � E2)2

E2

+
(O3 � E3)2

E3

+
(O4 � E4)2

E4

,

under the null that there is no association between the categorical variables C and R,

where and E1 = n3⇥n1/N , E2 = n4⇥n1/N , E3 = n3⇥n2/N and E2 = n4⇥n2/N . State

C1 C2 Subtotal

R1 O1 O2 n1

R2 O3 O4 n2

Subtotal n3 n4 N

all results you use.

Hint: You may need to use the Taylor approximation x log(x/y) ⇡ (x�y)+ 1
2
(x�y)2/y.

Pivotal Quantities

Pivotal quantities are statistics whose distribution does not depend on any parameters.

These include the t-ratio t =
p
n(X̄�µ)/sn ⇠ tn�1 (in the case the data is normal) F -test

etc.

In many applications it is not possible to obtain a pivotal quantity, but a quantity can

be asymptotically pivotal. The log-likelihood ratio statistic is one such example (since its

distribution is a chi-square).

Pivotal statistics have many advantages. The main is that it avoids the need to

estimate extra parameters. However, they are also useful in developing Bootstrap methods

etc.
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3.1.4 The score statistic in the presence of nuisance parameters

We recall that we used Theorem 3.1.1 to obtain the distribution of 2
�

max ,� Ln( ,�)�
max� Ln( 0,�)

 

under the null, we now consider the score test.

We recall that under the null H0 :  =  0 the derivative @L
n

( ,�)
@�

c�̂
 0

, 0
= 0, but the

same is not true of @L
n

( ,�)
@ 

c�̂
 0

, 0
. However, if the null were true we would expect �̂ 0 to

be close to the true �0 and for @L
n

( ,�)
@ 

c�̂
 0

, 0
to be close to zero. Indeed this is what we

showed in (3.6), where we showed that under the null

n�1/2@Ln( ,�)

@ 
c�̂

 0

D! N (0, I  � I �I
�1
�,�I�, ), (3.14)

where � 0 = argmax� Ln( 0,�).

Therefore (3.14) suggests an alternative test for H0 :  =  0 against HA :  6=  0. We

can use 1p
n
@L

n

( ,�)
@ 

c�̂
 0

as the test statistic. This is called the score or LM test.

The log-likelihood ratio test and the score test are asymptotically equivalent. There

are advantages and disadvantages of both.

(i) An advantage of the log-likelihood ratio test is that we do not need to calculate the

information matrix.

(ii) An advantage of the score test is that we do not have to evaluate the the maximum

likelihood estimates under the alternative model.

3.2 Applications

3.2.1 An application of profiling to frequency estimation

Suppose that the observations {Xt; t = 1, . . . , n} satisfy the following nonlinear regression

model

Xt = A cos(!t) + B sin(!t) + "i

where {"t} are iid standard normal random variables and 0 < ! < ⇡ (thus allowing the

case ! = ⇡/2, but not the end points ! = 0 or ⇡). The parameters A,B, and ! are real

and unknown. Full details can be found in the paper http://www.jstor.org/stable/

pdf/2334314.pdf (Walker, 1971, Biometrika).
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(i) Ignoring constants, obtain the log-likelihood of {Xt}. Denote this likelihood as

Ln(A,B,!).

(ii) Let

Sn(A,B,!) =

✓ n
X

t=1

X2
t � 2

n
X

t=1

Xt

�

A cos(!t) + B sin(!t)
�

� 1

2
n(A2 +B2)

◆

.

Show that

2Ln(A,B,!) + Sn(A,B,!) = �(A2 � B2)

2

n
X

t=1

cos(2t!) + AB
n
X

t=1

sin(2t!).

Thus show that |Ln(A,B,!) + 1
2
Sn(A,B,!)| = O(1) (ie. the di↵erence does not

grow with n).

Since Ln(A,B,!) and �1
2
Sn(A,B,!) are asymptotically equivalent, for the rest of

this question, use �1
2
Sn(A,B,!) instead of the likelihood Ln(A,B,!).

(iii) Obtain the profile likelihood of !.

(hint: Profile out the parameters A andB, to show that !̂n = argmax! |
Pn

t=1 Xt exp(it!)|2).

Suggest, a graphical method for evaluating !̂n?

(iv) By using the identity

n
X

t=1

exp(i⌦t) =

8

<

:

exp( 12 i(n+1)⌦) sin( 12n⌦)

sin( 12⌦)
0 < ⌦ < 2⇡

n ⌦ = 0 or 2⇡.
(3.15)

show that for 0 < ⌦ < 2⇡ we have
n
X

t=1

t cos(⌦t) = O(n)
n
X

t=1

t sin(⌦t) = O(n)

n
X

t=1

t2 cos(⌦t) = O(n2)
n
X

t=1

t2 sin(⌦t) = O(n2).

(v) By using the results in part (iv) show that the Fisher Information of Ln(A,B,!)

(denoted as I(A,B,!)) is asymptotically equivalent to

2I(A,B,!) = E
�@2Sn

@!2

�

=

0

B

B

@

n
2

0 n2

2
B +O(n)

0 n
2

�n2

2
A+O(n)

n2

2
B +O(n) �n2

2
A+O(n) n3

3
(A2 +B2) +O(n2)

1

C

C

A

.
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(vi) Derive the asymptotic variance of maximum likelihood estimator, !̂n, derived in

part (iv).

Comment on the rate of convergence of !̂n.

Useful information: The following quantities may be useful:

n
X

t=1

exp(i⌦t) =

8

<

:

exp( 12 i(n+1)⌦) sin( 12n⌦)

sin( 12⌦)
0 < ⌦ < 2⇡

n ⌦ = 0 or 2⇡.
(3.16)

the trignometric identities: sin(2⌦) = 2 sin⌦ cos⌦, cos(2⌦) = 2 cos2(⌦)�1 = 1�2 sin2 ⌦,

exp(i⌦) = cos(⌦) + i sin(⌦) and

n
X

t=1

t =
n(n+ 1)

2

n
X

t=1

t2 =
n(n+ 1)(2n+ 1)

6
.

Solution

Since {"i} are standard normal iid random variables the likelihood is

Ln(A,B,!) = �1

2

n
X

t=1

(Xt � A cos(!t)� B sin(!t))2.

If the frequency ! were known, then the least squares estimator of A and B would be

 

bA
bB

!

=

 

n�1

n
X

t=1

x0
txt

!�1
1

n

n
X

t=1

Xt

 

cos(!t)

sin(!t)

!

where xt = (cos(!t), sin(!t)). However, because the sine and cosine functions are near

orthogonal we have that n�1
Pn

t=1 x
0
txt ⇡ I2 and

 

bA
bB

!

⇡ 1

n

n
X

t=1

Xt

 

cos(!t)

sin(!t)

!

,
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which is simple to evaluate! The above argument is not very precise. To make it precise

we note that

�2Ln(A,B,!)

=
n
X

t=1

X2
t � 2

n
X

t=1

Xt

�

A cos(!t) + B sin(!t)
�

+A2

n
X

t=1

cos2(!t) + B2

n
X

t=1

sin2(!t) + 2AB
n
X

t=1

sin(!t) cos(!t)

=
n
X

t=1

X2
t � 2

n
X

t=1

Xt

�

A cos(!t) + B sin(!t)
�

+

A2

2

n
X

t=1

(1 + cos(2t!)) +
B2

2

n
X

t=1

(1� cos(2t!)) + AB
n
X

t=1

sin(2t!)

=
n
X

t=1

X2
t � 2

n
X

t=1

Xt

�

A cos(!t) + B sin(!t)
�

+
n

2
(A2 +B2) +

(A2 � B2)

2

n
X

t=1

cos(2t!) + AB
n
X

t=1

sin(2t!)

= Sn(A,B,!) +
(A2 � B2)

2

n
X

t=1

cos(2t!) + AB
n
X

t=1

sin(2t!)

where

Sn(A,B,!) =
n
X

t=1

X2
t � 2

n
X

t=1

Xt

�

A cos(!t) + B sin(!t)
�

+
n

2
(A2 +B2).

The important point abut the above is that n�1Sn(A,B,!) is bounded away from zero,

however n�1
Pn

t=1 sin(2!t) and n�1
Pn

t=1 cos(2!t) both converge to zero (at the rate n�1,

though it is not uniform over !); use identity (3.16). Thus Sn(A,B,!) is the dominant

term in Ln(A,B,!);

�2Ln(A,B,!) = Sn(A,B,!) +O(1).

Thus ignoring the O(1) term and di↵erentiating Sn(A,B,!) wrt A and B (keeping !

fixed) gives the estimators

 

bA(!)
bB(!)

!

=
1

n

n
X

t=1

Xt

 

cos(!t)

sin(!t)

!

.
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Thus we have “profiled out” the nuisance parameters A and B.

Using the approximation Sn( bAn(!), bBn(!),!) we have

Ln( bAn(!), bBn(!),!) =
�1

2
Sp(!) +O(1),

where

Sp(!) =

✓ n
X

t=1

X2
t � 2

n
X

t=1

Xt

�

bAn(!) cos(!t) + bB(!) sin(!t)
�

+
n

2
( bAn(!)

2 + bB(!)2)

◆

=

✓ n
X

t=1

X2
t �

n

2



bAn(!)
2 + bBn(!)

2

�◆

.

Thus

argmaxLn( bAn(!), bBn(!),!) ⇡ argmax
�1

2
Sp(!)

= argmax



bAn(!)
2 + bBn(!)

2

�

.

Thus

b!n = argmax
!

(�1/2)Sp(!) = argmax
!

�

bAn(!)
2 + bBn(!)

2
�

= argmax
!

�

�

n
X

t=1

Xt exp(it!)
�

�

2
,

which is easily evaluated (using a basic grid search).

(iv) Di↵erentiating both sides of (3.15) with respect to ⌦ and considering the real and

imaginary terms gives
Pn

t=1 t cos(⌦t) = O(n)
Pn

t=1 t sin(⌦t) = O(n). Di↵erenti-

ating both sides of (3.15) twice wrt to ⌦ gives the second term.

(v) In order to obtain the rate of convergence of the estimators, b!, bA(b!), bB(b!) we eval-

uate the Fisher information of Ln (the inverse of which will give us limiting rate

of convergence). For convenience rather than take the second derivative of L we

evaluate the second derivative of Sn(A,B,!) (though, you will find the in the limit

both the second derivative of Ln and Sn(A,B,!) are the same).

Di↵erentiating Sn(A,B,!) =
�

Pn
t=1 X

2
t �2

Pn
t=1 Xt

�

A cos(!t)+B sin(!t)
�

+1
2
n(A2+
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B2)
�

twice wrt to A,B and ! gives

@Sn

@A
= �2

n
X

t=1

Xt cos(!t) + An

@Sn

@B
= �2

n
X

t=1

Xt sin(!t) + Bn

@Sn

@!
= 2

n
X

t=1

AXtt sin(!t)� 2
n
X

t=1

BXtt cos(!t).

and @2S
n

@A2 = n, @
2S

n

@B2 = n, @2S
n

@A@B
= 0,

@2Sn

@!@A
= 2

n
X

t=1

Xtt sin(!t)

@2Sn

@!@B
= �2

n
X

t=1

Xtt cos(!t)

@2Sn

@!2
= 2

n
X

t=1

t2Xt

�

A cos(!t) + B sin(!t)
�

.

Now taking expectations of the above and using (v) we have

E(
@2Sn

@!@A
) = 2

n
X

t=1

t sin(!t)
�

A cos(!t) + B sin(!t)
�

= 2B
n
X

t=1

t sin2(!t) + 2
n
X

t=1

At sin(!t) cos(!t)

= B
n
X

t=1

t(1� cos(2!t)) + A
n
X

t=1

t sin(2!t) =
n(n+ 1)

2
B +O(n) = B

n2

2
+O(n).

Using a similar argument we can show that E( @
2S

n

@!@B
) = �An2

2
+O(n) and

E(
@2Sn

@!2
) = 2

n
X

t=1

t2
✓

A cos(!t) + B sin(!t)

◆2

= (A2 +B2)
n(n+ 1)(2n+ 1)

6
+O(n2) = (A2 +B2)n3/3 +O(n2).

Since E(�r2Ln) ⇡ 1
2
E(r2Sn), this gives the required result.

(vi) Noting that the asymptotic variance for the profile likelihood estimator !̂n

✓

I!,! � I!,(AB)I
�1
A,BI(BA),!

◆�1

,
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by subsituting (vi) into the above we have

2

✓

A2 +B2

6
n3 +O(n2)

◆�1

⇡ 12

(A2 +B2)n3

Thus we observe that the asymptotic variance of !̂n is O(n�3).

Typically estimators have a variance of order O(n�1), so we see that the estimator

!̂n converges to to the true parameter, far faster than expected. Thus the estimator

is extremely good compared with the majority of parameter estimators.

Exercise 3.2 Run a simulation study to illustrate the above example.

Evaluate In(!) for all !k =
2⇡k
n

using the fft function in R (this evaluates {
Pn

t=1 Yteit
2⇡k
n }nk=1),

then take the absolute square of it. Find the maximum over the sequence using the function

which.max. This will estimate b!n. From this, estimate A and B. However, b!n will only

estimate ! to Op(n�1), since we have discretized the frequencies. To improve on this, one

can use one further iteration see http: // www. jstor. org/ stable/ pdf/ 2334314. pdf

for the details.

Run the above over several realisations and evaluate the average squared error.

3.2.2 An application of profiling in survival analysis

This application uses some methods from Survival Analysis which is covered later in this

course.

Let Ti denote the survival time of an electrical component (we cover survival functions

in Chapter 6.1). Often for each survival time, there are known regressors xi which are

believed to influence the survival time Ti. The survival function is defined as

P (Ti > t) = Fi(t) t � 0.

It is clear from the definition that what defines a survival function is that Fi(t) is positive,

Fi(0) = 1 and Fi(1) = 0. The density is easily derived from the survival function taking

the negative derivative; fi(t) = �dF
i

(t)
dt

.

To model the influence the regressors have on the survival time, the Cox-proportional

hazard model is often used with the exponential distribution as the baseline distribution

and  (xi; �) is a positive “link” function (typically, we use  (xi; �) = exp(�xi) as the link

function). More precisely the survival function of Ti is

Fi(t) = F0(t)
 (x

i

;�),
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where F0(t) = exp(�t/✓). Not all the survival times of the electrical components are

observed, and there can arise censoring. Hence we observe Yi = min(Ti, ci), where ci is

the (non-random) censoring time and �i, where �i is the indicator variable, where �i = 1

denotes censoring of the ith component and �i = 0 denotes that it is not censored. The

parameters � and ✓ are unknown.

(i) Derive the log-likelihood of {(Yi, �i)}.

(ii) Compute the profile likelihood of the regression parameters �, profiling out the

baseline parameter ✓.

Solution

(i) The survivial function and the density are

fi(t) =  (xi; �)
�

F0(t)
 [ (x

i

;�)�1]
f0(t) and Fi(t) = F0(t)

 (x
i

;�).

Thus for this example, the logarithm of density and survival function is

log fi(t) = log (xi; �)�
⇥

 (xi; �)� 1
⇤

F0(t) + log f0(t)

= log (xi; �)�
⇥

 (xi; �)� 1
⇤ t

✓
� log ✓ � t

✓

logFi(t) =  (xi; �) logF0(t) = � (xi; �)
t

✓
.

Since

fi(yi, �i) =

(

fi(yi) =  (xi; �)
�

F0(yi)
 [ (x

i

;�)�1
f0(t) �i = 0

Fi(yi) = F0(t) (xi

;�) �i = 1

the log-likelihood of (�, ✓) based on (Yi, �i) is

Ln(�, ✓) =
n
X

i=1

(1� �i)
�

log (xi; �) + log f0(Yi) + ( (xi; �)� 1) logF0(Yi)
 

+

n
X

i=1

�i
�

 (xi; �) logF0(Yi)
 

=
n
X

i=1

(1� �i)

✓

log (xi; �)� log ✓ � Yi

✓
� ( (xi; �)� 1)

Yi

✓

◆

�
n
X

i=1

�i (xi; �)
Yi

✓

=
n
X

i=1

(1� �i)
�

log (xi; �)� log ✓
 

�
n
X

i=1

 (xi; �)
Yi

✓
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Di↵erentiating the above wrt � and ✓ gives

@L
@�

=
n
X

i=1

(1� �i)
�r �(xi; �)

 (xi; �)

 

�
n
X

i=1

r� (xi; �)
Yi

✓

@L
@✓

=
n
X

i=1

(1� �i)
�

� 1

✓

 

+
n
X

i=1

 (xi; �)
Yi

✓2

which is not simple to solve.

(ii) Instead we keep � fixed and di↵erentiate the likelihood with respect to ✓ and equate

to zero, this gives

@Ln

@✓
=

n
X

i=1

(1� �i)
�

� 1

✓

 

+
X

i=1

 (xi; �)
Yi

✓2

and

b✓(�) =

Pn
i=1  (xi; �)Yi
Pn

i=1(1� �i)
.

This gives us the best estimator of ✓ for a given �. Next we find the best estimator

of �. The profile likelihood (after profiling out ✓) is

`P (�) = Ln(�, b✓(�)) =
n
X

i=1

(1� �i)
�

log (xi; �)� log b✓(�)
 

�
n
X

i=1

 (xi; �)
Yi

b✓(�)
.

Hence to obtain the ML estimator of � we maximise the above with respect to �,

this gives us b�. Which in turn gives us the MLE b✓(b�).

3.2.3 An application of profiling in semi-parametric regression

Here we apply the profile “likelihood” (we use inverted commas here because we do not

use the likelihood, but least squares instead) to semi-parametric regression. Recently this

type of method has been used widely in various semi-parametric models. This application

requires a little knowledge of nonparametric regression, which is considered later in this

course. Suppose we observe (Yi, Ui, Xi) where

Yi = �Xi + �(Ui) + "i,

(Xi, Ui, "i) are iid random variables and � is an unknown function. Before analyzing the

model we summarize some of its interesting properties:
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• When a model does not have a parametric form (i.e. a finite number of parameters

cannot describe the model), then we cannot usually obtain the usual O(n�1/2) rate.

We see in the above model that �(·) does not have a parametric form thus we cannot

expect than an estimator of it
p
n-consistent.

• The model above contains �Xi which does have a parametric form, can we obtain

a
p
n-consistent estimator of �?

The Nadaraya-Watson estimator

Suppose

Yi = �(Ui) + "i,

where Ui, "i are iid random variables. A classical method for estimating �(·) is to use the

Nadarayan-Watson estimator. This is basically a local least squares estimator of �(u).

The estimator b�n(u) is defined as

b�n(u) = argmin
a

X

i

1

b
W

✓

u� Ui

b

◆

(Yi � a)2 =

P

i Wb(u� Ui)Yi
P

i Wb(u� Ui)

where W (·) is a kernel (think local window function) with
R

W (x)dx = 1 and Wb(u) =

b�1W (u/b) with b ! 0 as n ! 1; thus the window gets narrower and more localized

as the sample size grows. Dividing by
P

i Wb(u � Ui) “removes” the clustering in the

locations {Ui}.
Note that the above can also be treated as an estimator of

E (Y |U = u) =

Z

R
yfY |U(y|u)dy

Z

R

yfY,U(y, u)

fU(u)
dy = �(u),

where we replace fY,U and fU with

bfY,U(u, y) =
1

bn

n
X

i=1

�Y
i

(y)Wb (u� Ui)

bfU(u) =
1

bn

n
X

i=1

Wb (u� Ui) ,
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with �Y (y) denoting the Dirac-delta function. Note that the above is true because

Z

R

bfY,U(y, u)
bfU(u)

dy =
1

bfU(u)

Z

R
y bfY,U(y, u)dy

=
1

bfU(u)

Z

R

1

bn

n
X

i=1

y�Y
i

(y)Wb (u� Ui) dy

=
1

bfU(u)

1

bn

n
X

i=1

Wb (u� Ui)

Z

R
y�Y

i

(y)dy
| {z }

=Y
i

=

P

i Wb(u� Ui)Yi
P

i Wb(u� Ui)
.

The Nadaraya-Watson estimator is a non-parametric estimator and su↵ers from a far

slower rate of convergence to the non-parametric function than parametric estimators.

This rates are usually (depending on the smoothness of � and the density of U)

|b�n(u)� �(u)|2 = Op

✓

1

bn
+ b4

◆

.

Since b ! 0, bn ! 1 as n ! 1 we see this is far slower than the parametric rate

Op(n�1/2). Heuristically, this is because not all n observations are used to estimate �(·)
at any particular point u (the number is about bn).

Estimating � using the Nadaraya-Watson estimator and profiling

To estimate �, we first profile out �(·) (this is the nuisance parameter), which we estimate

as if � were known. In other other words, we suppose that � were known and let

Yi(�) = Yi � �Xi = �(Ui) + "i,

We then estimate �(·) using the Nadaraya-Watson estimator, in other words the �(·)
which minimises the criterion

�̂�(u) = argmin
a

X

i

Wb(u� Ui)(Yi(�)� a)2 =

P

i Wb(u� Ui)Yi(�)
P

i Wb(u� Ui)

=

P

i Wb(u� Ui)Yi
P

i Wb(u� Ui)
� �

P

i Wb(u� Ui)Xi
P

i Wb(u� Ui)

:= Gb(u)� �Hb(u), (3.17)

where

Gb(u) =

P

i Wb(u� Ui)Yi
P

i Wb(u� Ui)
and Hb(u) =

P

i Wb(u� Ui)Xi
P

i Wb(u� Ui)
.
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Thus, given �, the estimator of � and the residuals "i are

�̂�(u) = Gb(u)� �Hb(u)

and

b"� = Yi � �Xi � �̂�(Ui).

Given the estimated residuals Yi��Xi� �̂�(Ui) we can now use least squares to estimate

coe�cient �. We define the least squares criterion

Ln(�) =
X

i

�

Yi � �Xi � �̂�(Ui)
�2

=
X

i

�

Yi � �Xi �Gb(Ui) + �Hb(Ui)
�2

=
X

i

�

Yi �Gb(Ui)� �[Xi �Hb(Ui)]
�2
.

Therefore, the least squares estimator of � is

�̂b,T =

P

i[Yi �Gb(Ui)][Xi �Hb(Ui)]
P

i[Xi �Hb(Ui)]2
.

Using �b,T we can then estimate (3.18). We observe how we have the used the principle of

profiling to estimate the unknown parameters. There is a large literature on this, including

Wahba, Speckman, Carroll, Fan etc. In particular it has been shown that under some

conditions on b (as T ! 1), the estimator �̂b,T has the usual
p
n rate of convergence.

It should be mentioned that using random regressors Ui is not necessary. It could

be that Ui = i
n
(observations lie on a on a grid). In this case n�1

P

i Wb(u � i/n) =
1
nb

Pn
i=1 W (u�i/n

b
) = b�1

R

W (u�x
b
)dx + O((bn)�1) = 1 + O((bn)�1) (with a change of

variables). This gives

�̂�(u) = argmin
a

X

i

Wb(u� i

n
)(Yi(�)� a)2 =

P

i Wb(u� i
n
)Yi(�)

P

i Wb(u� i
n
)

=
X

i

Wb(u� i

n
)Yi � �

X

i

Wb(u� Ui)Xi

:= Gb(u)� �Hb(u), (3.18)

where

Gb(u) =
X

i

Wb(u� i

n
)Yi and Hb(u) =

X

i

Wb(u� i

n
)Xi.

Using the above estimator of �(·) we continue as before.
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