
Chapter 10

Count Data

In the previous chapter we generalised the linear model framework to the exponential

family. GLM is often used for modelling count data, in these cases usually the Binomial,

Poisson or Multinomial distributions are used.

Types of data and the distribution:

Distribution Regressors Response variables

Binomial xi Yi = (Yi, N � Yi) = (Yi,1, Yi,2)

Poission xi Yi = Yi

Multinomial xi Yi = (Yi,1, Yi,2, . . . , Yi,m) (
P

j Yi,j = N)

Distribution Probabilities

Binomial P (Yi,1 = k, Yi,2 = N � k) =
�

N
k

�

(1� ⇡(�0xi))N�k⇡(�0xi)k

Poission P (Yi = k) = �(�0x
i

)k exp(��0x
i

)
k!

Multinomial P (Yi,1 = k1, . . . , Yi,m = km) =
�

N
k1,...,km

�

⇡1(�0xi)k1 . . . ⇡m(�0xi)km

In this section we will be mainly dealing with count data where the regressors tend

to be ordinal (not continuous regressors). This type of data normally comes in the form

of a contingency table. One of the most common type of contingency table is the two by

two table, and we will consider this in the Section below.

Towards the end of this chapter we use estimating equations to estimate the parameters

in overdispersed models.

269



10.1 Two by Two Tables

Consider the following 2⇥ 2 contingency table

Male Female Total

Blue 25 35 60

Pink 15 25 40

Total 40 60 100

Given the above table, one can ask if there is an association between gender and

colour preference. The standard method is test for independence. However, we could also

pose question in a di↵erent way: are proportion of females who like blue the same as the

proportion of males who like blue. In this case we can (equivalently) test for equality of

proportions (this equivalance usually only holds for 2 by 2 tables).

There are various methods for testing the above hypothesis

• The log-likelihood ratio test.

• The Score test

• The Wald test.

• Through Pearson residuals (which is the main motivation of the chi-squared test for

independence).

There can be so many tests for doing the same thing. But recall from Section 2.8.2

that asymptotically all of these tests are equivalent; for a large enough sample size their

p-values are nearly the same.

We go through some examples in the following section.

10.1.1 Tests for independence

Approach 1: Pearson and log-likelihood ratio test

The chi-square test for independence is based upon the Pearson residuals:

T1 =
X

i,j

(Oi,j � Ei,j)2

Ei,j

,
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where Oi,j are the observed numbers and Eij are the expected numbers under indepen-

dence. We recall that by modelling the counts are a multinomial distribution we can show

that the test statistic T1 is asymptotically equivalent to the a log-likelihood ratio test.

Approach 2: Score test

Let us consider the altenative approach, testing for equality of proportions. Let ⇡M denote

the proportion of males who prefer pink over blue and ⇡F the proportion of females who

prefer pink over blue. Suppose we want to test that H0 : ⇡F = ⇡M against H0 : ⇡F 6= ⇡M .

On method for testing the above hypothesis is to use the test for equality of proportions

using the Wald test, which gives the test statistic

T2 =
⇡̂F � ⇡̂M

I(⇡)�1/2
=

⇡̂F � ⇡̂M
r

b⇡
⇣

1
N

F

+ 1
N

M

⌘

,

where

b⇡ =
NM,P +NF,P

NM +NF

and NM NF correspond to the number of males and females and NM,P and NF,P the

number of males and females who prefer pink.

Approach 3: modelling

An alternative route for conducting the test, is to parameterise ⇡M and ⇡F and do a test

based on the parametrisation. For example, without loss of generality we can rewrite ⇡M

and ⇡F as

⇡F =
exp(�)

1 + exp(�)
⇡M =

exp(� + �)

1 + exp(� + �)
.

Hence using this parameterisation, the above test is equivalent to testing H0 : � = 0

against HA : � 6= 0. We can then use the log likelihood ratio test to do the test.

10.2 General contingency tables

Consider the following experiment. Suppose we want to know whether ethnicity plays a

role in the number of children a females has. We interview a sample of women, where we
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1 2 3

Background A 20 23 28

Background B 14 27 23

determine her ethnicity and the number of children. The data is collected below in the

form of a 3⇥ 2 contingency table.

How can such data arise? There are several ways this data could have been collected,

and this influences the model we choose to fit to this data. Consider the general R ⇥ C

table, with cells indexed by (i, j). Note that in the above example R = 2 and C = 3.

(a) The subjects arise at random, the study continues until a fixed time elapses. Each

subject is categorised according to two variables. Suppose the number in cell (i, j)

is Yij, then it is reasonable to assume Yij ⇠ Poisson(�ij) for some {�ij}, which will

be the focus of study. In this case the distribution is

P (Y = y) =
C
Y

i=1

R
Y

j=1

�
y
ij

ij exp(��ij)

yij!

(b) The total number of subjects is fixed at N , say. The numbers in cells follow a

multinomial distribution: (Yij) ⇠ M(N ; (⇡ij)):

P (Y = y) =
N !

QC
i=1

QR
j=1 yij!

C
Y

i=1

R
Y

j=1

⇡
y
ij

ij

if
P

i

P

j yij = N .

(c) One margin is fixed: say {y+j =
PC

i=1 yij} for each j = 1, 2, . . . , R. In each column,

we have an independent multinomial sample

P (Y = y) =
R
Y

j=1

 

y+j!
QC

i=1 yij!

C
Y

i=1

⇢
y
ij

ij

!

where ⇢ij is the probability that a column-j individual is in row i (so ⇢+j =
PC

i=1 ⇢ij = 1).

Of course, the problem is without knowledge of how the data was collected it is not

possible to know which model to use. However, we now show that all the models are
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closely related, and with a suitable choice of link functions, di↵ferent models can lead to

the same conclusions. We will only show the equivalence between cases (a) and (b), a

similar argument can be extended to case (c).

We start by show that if ⇡ij and �ij are related in a certain way, then the log-likelihoods

of both the poisson and the multinomial are e↵ectively the same. Define the following log-

likelihoods for the Poisson, Multinomial and the sum of independent Poissons as follows

LP (�) =
C
X

i=1

R
X

j=1

✓

yij log �ij � �ij � log yij!

◆

LM(⇡) = log
N !

QC
i=1

QR
j=1 yij!

+
C
X

i=1

R
X

j=1

yij log ⇡ij

LF (�++) = N log �++ � �++ � logN !.

We observe that LP is the log distribution of {yi,j} under Poisson sampling, LM is the log

distribution of {yi,j} under multinomial sampling, and LF is the distribution of
P

ij Yij,

where Yij are independent Poisson distributions each with mean �ij, N =
P

ij Yij and

�++ =
P

ij �ij.

Theorem 10.2.1 Let LP ,LM and LF be defined as above. If � and ⇡ are related through

⇡ij =
�ij

P

s,t �st

�ij = �++⇡ij,

where �++ is independent of (i, j). Then we have that

LP (�) = LM(⇡) + LF (�++).

PROOF. The proof is straightforward. Consider the log-likelihood of the Poisson

LP (�) =
C
X

i=1

R
X

j=1

✓

yij log �ij � �ij � log yij!

◆

=
C
X

i=1

R
X

j=1

✓

yij log �++⇡ij � �++⇡ij � log yij!

◆

=

 C
X

i=1

R
X

j=1

yij log ⇡ij + logN !�
C
X

i=1

R
X

j=1

log yij!

�

+
C
X

i=1

R
X

j=1

✓

yij log �++ � �++ � logN !

◆

= LM(⇡) + LF (�++).

Which leads to the required result. ⇤
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Remark 10.2.1 The above result means that the likelihood of the independent Poisson

conditioned on the total number of participants is N , is equal to the likelihood of the

multinomial distribution where the relationship between probabilities and means are given

above.

By connecting the probabilities and mean through the relation

⇡ij =
�ij

P

s,t �st

and �ij = �++pij,

it does not matter whether the multinomial distribution or Possion distribution is used

to do the estimation. We consider a few models which are commonly used in categorical

data.

Example 10.2.1 Let us consider suitable models for the number of children and ethnicity

data. Let us start by fitting a multinomial distribution using the logistic link. We start y

modelling �0xi. One possible model is

�0x = ⌘ + ↵1�1 + ↵2�2 + ↵3�3 + �1�
⇤
1 + �2�

⇤
2,

where �i = 1 if the female has i children and zero otherwise, �⇤1 = 1 if female belongs to

ethnic group A and zero otherwise, �⇤2 = 1 if female belongs to ethnic group B and zero

otherwise. The regressors in this example are x = (1, �1, . . . , �⇤2). Hence for a given cell

(i, j) we have

�0xij = ⌘ij = ⌘ + ↵i + �j.

One condition that we usually impose when doing the estimation is that
P3

i=1 ↵i = 0 and

�1 + �2 = 0. These conditions mean the system is identifiable. Without these conditions

you can observe that there exists another {↵̃i}, {�̃i} and ⌘̃, such that ⌘ij = ⌘ + ↵i + �j =

⌘̃ + ↵̃i + �̃j.

Now let understand what the above linear model means in terms of probabilities. Using

the logistic link we have

⇡ij = g�1(�0xij) =
exp(⌘ + ↵i + �j)

P

s,t exp(⌘ + ↵s + �t)
=

exp(↵i)
P

s exp(↵s)
⇥ exp(�j)
P

t exp(�t)
,

where ⇡ij denotes the probability of having i children and belonging to ethnic group j and

xij is a vector with ones in the appropriate places. What we observe is that the above
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model is multiplicative, that is

⇡ij = ⇡i+⇡+j

where ⇡i+ =
P

j ⇡ij and ⇡+j =
P

i ⇡i+. This means by fitting the above model we are

assuming independence between ethnicity and number of children. To model dependence

we would use an interaction term in the model

�0x = ⌘ + ↵1�1 + ↵t�2 + ↵3�3 + �1�
⇤
1 + �2�

⇤
1 +

X

i,j

�ij�i�
⇤
j ,

hence

⌘ij = ⌘ + ↵i + �j + �ij.

However, for R ⇥ C tables an interaction term means the model is saturated (i.e. the

MLE estimator of the probability ⇡ij is simply yij/N). But for R⇥ C ⇥ L, we can model

interactions without the model becoming saturated. These interactions may have interest-

ing interpretations about the dependence structure between two variables. By using the

analysis of deviance (which is a e↵ectively the log-likelihood ratio test, we can test whether

certain interaction terms are significant - similar things were done for linear models).

We transform the above probabilities into Poisson means using �ij = �⇡ij. In the case

there is no-interaction the mean of Poisson at cell (i, j) is �ij = � exp(⌘ + ↵i + �j).

In the above we have considered various methods for modelling the probabilities in a

mulitnomial and Poisson distributions. In the theorem we show that so long as the

probabilities and Poisson means are linked in a specific way, the estimators of � will be

identical.

Theorem 10.2.2 (Equivalence of estimators) Let us suppose that ⇡ij and µij are de-

fined by

⇡ij = ⇡ij(�) �ij = �⇡ij(�),

where � and � = {↵i, �j} are unknown and C(�) is a known function of � (such as
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P

i,j exp(↵i + �j) or 1). Let

LP (�, �) =
C
X

i=1

R
X

j=1

✓

yij log �⇡ij(�)� �⇡ij(�)

◆

LM(�) =
C
X

i=1

R
X

j=1

yij log ⇡ij(�)

LF (�, �) = N log � � �,

which is the log-likelihoods for the Multinomial and Poisson distributions without unnec-

essary constants (such as yij!). Define

(�̂P , �̂P ) = argmaxLP (�, �)

�̂B = argmaxLM(�) �̂F = argmaxLF (�, �).

Then b�P = b�M and b�P = �̂M = N/C(b�M).

PROOF. We first consider LP (�, �). Since
P

i,j pi,j(�) = 1 and
P

i,j yi,j = 1 we have

LP (�, �) =
C
X

i=1

R
X

j=1

✓

yij log �C(�)⇡ij(�) + �C(�)⇡ij(�)

◆

=
C
X

i=1

R
X

j=1

✓

yij log ⇡ij(�)

◆

+N log �C(�)� C(�)�.

Now we consider the partial derivatives of LP to obtain

@LP

@�
=

@LM

@�
+ �

@C(�)

@�

✓

N

�C(�)
� 1

◆

= 0

@LP

@�
=

✓

N

�
� C(�)

◆

= 0.

Solving the above we have that �̂P and �̂P satisfy

�̂P =
N
bC(�)

@LM

@�
c�=�̂

P

= 0. (10.1)

Now we consider the partial derivatives of LM and LC

@LM

@�
= 0

@LF

@�
=

✓

N

�
� C(�)

◆

= 0. (10.2)

Comparing the estimators in (10.1) and (10.2) it is clear that the maximum likelihood

estimators of � based on the Poisson and the Binomial distributions are the same. ⇤
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Example 10.2.2 Let us consider fitting the Poisson and the multinomial distributions to

the data in a contingency table where ⇡ij and �ij satisfy

�ij = exp(⌘ + �0xij) and ⇡ij =
exp(�0xij)

P

s,t exp(�
0xs,t)

.

Making a comparison with �ij(�) = �C(�)⇡ij(�) we see that � = exp(⌘) and C(�) =
P

s,t exp(�
0xs,t). Then it by using the above theorem the estimator of � is the parameter

which maximises

C
X

i=1

R
X

j=1

✓

yij log
exp(�0xij)

P

s,t exp(�
0xs,t)

◆

,

and the estimator of � is the parameter which maximises

N log exp(⌘)C(�̂)� exp(⌘)C(�̂),

which is ⌘ = logN � log(
P

s,t exp(�̂
0xs,t)).

10.3 Overdispersion

The binomial and Poisson distributions have the disadvantage that they are determined

by only one parameter (⇡ in the case of Binomial and � in the case of Possion). This can

be a disadvantage when it comes to modelling certain types of behaviour in the data. A

type of common behaviour in count data is overdispersed, in the sense that the variance

appears to be larger than the model variance.

Checking for overdispersion

• First fit a Poisson model to the data.

• Extract the Pearson residuals from the data (see Section 9.3.5), for the Poisson it is

ri =
(Yi � µ̂i)

�1/2V (µi)1/2
=

Yi � µ̂ip
µi

.

If the model is correct, the residuals {ri} should be ‘close’ to a standard normal

distribution. However, in the case of overdispersion it is likely that the estimated

variance of ri will be greater than one.

• Plot ri against µi.
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10.3.1 Modelling overdispersion

Modelling overdispersion can be done in various ways. Below we focus on Poisson-type

models.

Zero inflated models

The number of zeros in count data can sometimes be more (inflated) than Poisson or

binomial distributions are capable of modelling (for example, if we model the number of

times a child visits the dentist, we may observe that there is large probability the child

will not visit the dentist). To model this type of behaviour we can use the inflated zero

Poisson model, where

P (Y = k) =

 

(1� p)(1� exp(��)) = 1� p+ p exp(��) k = 0

p exp(��)�k

k!
k > 0

.

We observe that the above is e↵ectively a mixture model. It is straightforward to show

that E(Y ) = p� and var(Y ) = p�(1 + �(1� p)), hence

var(Y)

E(Y)
= (1 + �(1� p)).

We observe that there is more dispersion here than classical Poisson where var(Y)/E(Y) =

1.

Modelling overdispersion through moments

One can introduce overdispersion by simply modelling the moments. That is define a

psuedo Poisson model in terms of its moments, where E(Y) = � and var(Y) = �(1 + �)

(� � 0). This method does not specify the distribution, it simply places conditions on the

moments.

Modelling overdispersion with another distribution (latent variable)

Another method for introducing overdispersion into a model is to include a ‘latent’ (un-

observed) parameter ". Let us assume that " is a positive random variable where E(") = 1

and var(") = ⇠. We suppose that the distribution of Y conditioned on " is Poisson, i.e.

P (Y = k|") = (�")k exp(��")
k!

. The introduction of latent variables allows one to generalize

278



several models in various directions. It is a powerful tool in modelling. For example, if

one wanted to introduce dependence between theYis one can do this by conditioning on

a latent variable which is dependent (eg. the latent variable can be a time series).

To obtain the moments of Y we note that for any random variable Y we have

var(Y ) = E(Y 2)� E(Y )2 = E

✓

E(Y 2|")� E(Y |")2
◆

+ E
�

E(Y |")2
�

� E
�

E(Y |")
�2

= E

✓

var(Y |")
◆

+ var(E(Y |")),

where we note that var(Y |") =
P1

k=0 k
2P (Y = k|")�(

P1
k=0 kP (Y = k|"))2 and E(Y |") =

P1
k=0 kP (Y = k|"). Applying the above to the conditional Poisson we have

var(Y ) = E(2(�")� (�")) + var(�")

= �+ �2⇠ = �(1 + �⇠)

and E(Y ) = E(E(Y |")) = �.

The above gives an expression in terms of moments. If we want to derive the distribution

of Y , we require the distribution of ". This is normally hard in practice to verify, but

for reasons of simple interpretation we often let " have a Gamma distribution f("; ⌫,) =
⌫"k�1

�()
exp(�⌫"), where ⌫ = , hence E(") = 1 and var(") = 1/⌫(= ⇠). Therefore in

the case that " is a Gamma distribution with density f("; ⌫, ⌫) = ⌫⌫"⌫�1

�(⌫)
exp(�⌫") the

distribution of Y is

P (Y = k) =

Z

P (Y = k|")f("; ⌫, ⌫)d"

=

Z

(�")k exp(��")

k!

⌫⌫"k�1

�(⌫)
exp(�⌫")d"

=
�(k + ⌫)

�(⌫)k!

⌫⌫�k

(⌫ + �)⌫+�
.

This is called a negative Binomial (because in the case that ⌫ is an integer it resembles

a regular Binomial but can take infinite di↵erent outcomes). The negative binomial only

belongs to the exponential family if ⌫ is known (and does not need to be estimated). Not

all distributions on " lead to explicit distributions of Y . The Gamma is popular because

it leads to an explicit distribution for Y (often it is called the conjugate distribution).

A similar model can also be defined to model overdispersion in proportion data, using

a random variable whose conditional distribution is Binomial (see page 512, Davison

(2002)).
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Remark 10.3.1 (Using latent variables to model dependence) Suppose Yj condi-

tioned on {"j} follows a Poisson distribution where P (Yj = k|"j) = (�"
j

)k exp(��"
j

)

k!
and

Yi|"i and Yj|"j are conditionally independent. We assume that {"j} are positive contin-

uous random variables with correlation cov["i, "j] = ⇢i,j. The correlations in "j induce a

correlation between Yj through the relation

cov [Yi, Yj] = E

0

B

@

cov [Yi, Yj|"i, "j]
| {z }

=0(a.s.)

1

C

A

+ cov

0

B

@

E[Yi|"i]
| {z }

=�"
i

,E[Yj|"j]
| {z }

=�"
j

1

C

A

= �2cov ("i, "j) = �2⇢ij.

10.3.2 Parameter estimation using estimating equations

We now consider various methods for estimating the parameters. Some of the methods

described below will be based on the Estimating functions and derivations from Section

9.3.1, equation (9.10).

Let us suppose that {Yi} are overdispersed random variables with regressors {xi} and

E(Yi) = µi with g(µi) = �0xi. The natural way to estimate the parameters � is to

use a likelihood method. However, the moment based modelling of the overdispersion

does not have a model attached (so it is not possible to use a likelihood method), and the

modelling of the overdispersion using, say, a Gamma distribution, is based on a assumption

that is hard in practice to verify (that the latent variable is Gaussian). An alternative

approach is to use moment based/estimating function methods which are more robust

to misspecification than likelihood methods. In the estimation we discuss below we will

focus on the Poisson case, though it can easily be generalised to the non-Poisson case.

Let us return to equation (9.10)
n
X

i=1

(Yi � µi)xij

�V (µi)g0(µi)
=

n
X

i=1

(Yi � µi)xij

�V (µi)

dµi

d⌘i
= 0 1  j  p. (10.3)

In the case of the Poisson distribution, with the log link the above is
n
X

i=1

(Yi � exp(�0xi))xij = 0 1  j  p. (10.4)

We recall if {Yi} are Possion random variables with mean exp(�0xi), then variance of the

limiting distribution of � is

(b� � �) ⇡ Np(0, (X
TWX)�1),
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since the Fisher information matrix can be written as

(I(�))jk = E

✓

�@2Ln(�)

@�j@�k

◆

= E

 

�
n
X

i=1

d2`i
d⌘2i

xijxik

!

= (XTWX)jk.

where

W = diag

✓

E(�@2`1(⌘1)

@⌘21
), . . . ,E(�@2`n(⌘n)

@⌘2n
)

◆

= diag (exp(�0x1), . . . , exp(�
0xn)) .

However, as we mentioned in Section 9.3.1, equations (10.3) and (10.4) do not have

to be treated as derivatives of a likelihood. Equations (10.3) and (10.4) can be viewed as

estimating equation, since they only use the first and second order moments of {Yi}. Hence
they can be used as the basis of the estimation scheme even if they are not as e�cient as

the likelihood. In the overdispersion literature the estimating equations (functions) are

often called the Quasi-likelihood.

Example 10.3.1 Let us suppose that {Yi} are independent random variables with mean

exp(�0xi). We use the solution of the estimating function

n
X

i=1

g(Yi; �) =
n
X

i=1

(Yi � exp(�0xi))xij = 0 1  j  p.

to estimate �. Using Theorem 8.2.2 we derive the asymptotic variance for two models:

(i) E(Yi) = exp(�0xi) and var(Yi) = (1 + �) exp(�0xi) (� � 0).

Let us suppose that E(Yi) = exp(�0xi) and var(Yi) = (1 + �) exp(�0xi) (� � 0).

Then if the regularity conditions are satisfied we can use Theorem 8.2.2 to obtain

the limiting variance. Since

E

✓

�@
Pn

i=1 g(Yi; �)

@�

◆

= XTdiag (exp(�0x1), . . . , exp(�
0xn))X

var

 

n
X

i=1

g(Yi; �)

!

= (1 + �)XTdiag
�

exp(�0x1), . . . , exp(�
0xn)

�

X,

the limiting variance is

(1 + �)(XTWX)�1 = (1 + �)(XTdiag (exp(�0x1), . . . , exp(�
0xn))X)�1.
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Therefore, in the case that the variance is (1 + �) exp(�0xi), the variance of the

estimator using the estimating equations
Pn

i=1 g(Yi; �), is larger than for the regular

Poisson model. If � is quite small, the di↵erence is also small. To estimate � we

can use
n
X

i=1

(Yi � exp(b�0xi))2

exp(b�0xi)
.

(ii) E(Yi) = exp(�0xi) and var(Yi) = exp(�0xi)(1 + ⇠ exp(�0xi)).

In this case we have

E

✓

�@
Pn

i=1 g(Yi; �)

@�

◆

= XTWX and var(
n
X

i=1

g(Yi; �)) = XT W̃X,

where

W = diag

✓

exp(�0x1), . . . , exp(�
0xn)

◆

W̃ = diag

✓

exp(�0x1)(1 + ⇠ exp(�0x1)), . . . , exp(�
0xn)(1 + ⇠ exp(�0xn))

◆

.

Hence the limiting variance is

(XTWX)�1(XT W̃X)(XTWX)�1.

We mention that the estimating equation can be adapted to take into count the

overdispersion in this case. In other words we can use as an estimator of �, the �

which solves
n
X

i=1

(Yi � exp(�0xi))

(1 + ⇠ exp(�0xi))
xij = 0 1  j  p.

Though we mention that we probably have to also estimate ⇠ when estimating �.

10.4 A worked problem

(1) (a) Suppose that U is a Poisson distributed random variable with mean �. Then

for k � 0,

P (U = k) =
�ke��

k!
. (10.5)
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(i) Let us suppose U1, . . . , Un are independent, identically distributed random

variables from a Poisson distribution. What is the maximum likelihood

estimator of �?

(ii) For several count data sets it has been observed that there is an excessive

number of zeros. To model ‘inflated-zero’ count data, the zero-inflated

Poisson distribution model was proposed, where the observations are mod-

elled as

Y = �U,

where � and U are independent random variables, � takes on value either

zero or one with P (� = 0) = p, P (� = 1) = (1 � p), and U has a Poisson

distribution as defined as in (10.5).

Briefly explain why this model can account for an excessive number of

zeros.

(iii) Show that the estimator defined in (i) is a biased estimator of � when the

observations come from a zero-inflated Poisson distribution.

(b) In this part of the question we consider the zero-inflated Poisson regression

model, proposed in Lambert (1992), which is defined as

Yj = �jUj,

where �j and Uj are independent random variables, P (�j = 0) = p, P (�j =

1) = (1� p), and Uj has a Poisson distribution with mean �j = e�xj and xj is

a fixed covariate value. Our objective is to first construct crude estimators for

p and � and to use these estimates as the initial values in an iterative scheme

to obtain the maximum likelihood estimator.

(i) Estimation of �. What is the distribution of Yj conditioned on Yj > 0 and

xj?

Argue that, for each k = 1, 2, . . .,

P (Yj = k|Yj > 0) =
e��

j�k
j/k!

(1� e��
j)
. (10.6)

Let Y + be the vector of all the non-zero Yjs. Use result (10.6) to define a

conditional log-likelihood for Y + given that all the Yjs in Y + are positive.
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Determine the derivative of this conditional log-likelihood, and explain

how it can be used to determine an estimate of �. Denote this estimator

as b�.

(ii) Estimation of p. Define the dummy variable

Zj =

(

0 if Yj = 0

1 if Yj > 0.

Use Z1, . . . , Zn to obtain an explicit estimator of p in terms of Y1, . . . , Yn,

x1, . . . , xn and b�.

Hint: One possibility is to use estimating equations.

(iii) We may regard each �j as a missing observation or latent variable. What

is the full log-likelihood of (Yj, �j), j = 1, . . . , n, given the regressors

x1, . . . , xn?

(iv) Evaluate the conditional expectations E[�j|Yj = k], k = 0, 1, 2, . . ..

(v) Use your answers in part (iii) and (iv) to show how the EM-algorithm can

be used to estimate � and p. (You need to state the criterion that needs

to be maximised and the steps of the algorithm).

(vi) Explain why for the EM-algorithm it is important to use good initial values.

Reference: Zero-inflated Poisson Regression, with an application to defects in man-

ufactoring. Diane Lambert, Technometrics, vol 34, 1992.

Solution

(1) (a) Suppose that U is a Poisson distributed random variable, then for k � 0,

P (U = k) =
�ke��

k!
. (10.7)

(i) Let us suppose {Uj} independent, identically distributed random variables

from a Poisson distribution. What is the maximum likelihood estimator

of �?

It is clear that it is the sample mean, b� = 1
n

Pn
j=1 Uj

(ii) For several count data sets it has been observed that there is an excessive

number of zeros. To model ‘inflated-zero’ count data, the zero-inflated
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Poisson distribution model was proposed where the observations are mod-

elled as

Y = �U,

� and U are random variables which are independent of each other, where

� is random variable taking either zero or one, P (� = 0) = p, P (� = 1) =

(1� p) and U is a Poisson random variable as defined as in (10.7) Briefly

explain why this model can is able to model excessive number of zeros.

The probability of zero is P (Y = 0) = p + (1 � p)e��. Thus if p

is su�ciently large, the chance of zeros is larger than the usual

Poisson distribution (for a given �).

(ii) Show that the estimator defined in (i) is a biased estimator of � when the

observations come from an zero-inflated Poisson distribution.

E[b�] = (1� p)�, thus when p > 0, b� underestimates �.

(b) In this part of the question we consider the zero-inflated poisson regression

model, proposed in Lambert (1992), which is defined as

Yj = �jUj

where �j and Uj are random variables which are independent of each other, �j

is an indicator variable, where P (�j = 0) = p and P (�j = 1) = (1� p) and Uj

has a Poisson regression distribution with

P (Uj = k|xj) =
�k
j e

��
j

k!

where �j = e�xj and xj is an observed regressor. Our objective is to first

construct initial-value estimators for p and � and then use this to estimate as

the initial values in when obtaining the maximum likelihood estimator.

(i) Estimation of � First obtain the distribution of Yj conditioned on Yj > 0

and xj.

We note that P (Yj > 0) = P (�j = 1, Uj > 0) = P (�j = 1)P (Uj > 0) =

(1 � p)(1 � e�j). Similarly P (Yj = k, Yj > 0) = P (Uj = k, �j = 1) =

(1� p)P (Uj = k). Thus

P (Yj = k|Yj > 0) =
�k
j exp(��j)

(1� e�j)k!
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Let Y + = {Yj > 0} (all the non-zero Yj). Obtain the conditional log-

likelihood of Y + conditioned on Yj > 0 and x = (x1, . . . , xn). Derive the

score equation and explain how � can be estimated from here. Denote this

estimator as b�.

The log-conditional likelihood is proportional to

LC(�) =
X

Y
j

>0

⇥

Yj log �j � �j � log(1� e�j)
⇤

=
X

Y
j

>0

�

�Yjxj � e�xj � log(1� e�xj)
 

.

Thus to estimate � we di↵erentiate the above wrt � (giving the

score) and numerically solve the folling equation wrt �

X

Y
j

>0

Yjxj =
X

Y
j

>0

xje
�x

j

⇢

1� 1

1� e�xj

�

.

(ii) Estimation of p Define the dummy variable

Zj =

(

0 if Yj = 0

1 if Yj > 0.

Use {Zj} to obtain an explicit estimator of p in terms of Y , x and b�.

Hint: One possibility is to use estimating equations.

We solve the estimating equation

n
X

j=1

[Zj � E(Zj)] = 0,

wrt p. It is clear that E(Zj) = P (Zj = 1) = (1 � P (Zj = 0)) =

(1� p)(1� e��
j). Thus the estimating equation is

n
X

j=1

⇥

Zj � (1� p)(1� e��
j)
⇤

= 0.

Replacing �j with �̂j = e�̂xj and solving for p yields the estimator

p̂ = 1�
Pn

j=1 Zj
Pn

j=1[1� exp(�e�̂xj)]
.
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(iii) What is the complete log-likelihood of {Yj, �j; j = 1, . . . , n} (acting as if

the variable �j is observed) given the regressors {xj}?

The distribution of (Yj, �j) is

P (Yj = k, �j) = [P (Uj = k)P (�j = 1)]�j [P (�j = 0)]1��
j .

Thus the log-likelihood of {Yj, �j; j = 1, . . . , n} is

LF (p, �) =
n
X

j=1

�j [Yj log �j � �j + log(1� p)] +
n
X

j=1

(1� �j) log p.

(iv) Evaluate the conditional expectations E[�j|Yj > 0] and E[�j|Yj = 0].

E[�j|Yj > 0] = 1 (since if Yj > 0 then the only choice is �j = 1),

E[�j|Yj = 0] = P (�j = 1|Yj = 0) =
(1� p)e��

j

p+ (1� p)e��
j

and

E[1� �j|Yj = 0] = P (�j = 0|Yj = 0) =
p

p+ (1� p)e��
j

(v) Use your answers in part (iii) and (iv) to show how the EM-algorithm can

be used to estimate � and p (you need to state the criterion that needs to

be maximise and the steps of the algorithm).

Splitting the sum
Pn

j=1 into
P

Y
j

>0 and
P

Y
j

=0, and taking expec-

tations of LF with respect to Y gives

Q(✓; ✓⇤) =
X

Y
j

>0

[Yj log �j � �j + log(1� p)]

+
X

Y
j

=0

✓

(1� p⇤)e��⇤
j

p⇤ + (1� p⇤)e��⇤
j

◆

[�j + log(1� p)]

+
X

Y
j

=0

✓

p⇤

p⇤ + (1� p⇤)e��⇤
j

◆

log p

= Q1(�; ✓
⇤) +Q2(p; ✓

⇤),

where �⇤
j = exp(�⇤xj), ✓ = (p, �), ✓⇤ = (p⇤, �⇤),

Q1(�; ✓
⇤) =

X

Y
j

>0

[Yj log �j � �j] +
X

Y
j

=0

(1� ⇡⇤)�j

Q2(p; ✓
⇤) =

X

Y
j

>0

log(1� p) +
X

Y
j

=0

⇥

(1� ⇡⇤
j ) log(1� p) + ⇡⇤

j log p
⇤
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and

⇡⇤
j =

p⇤

p⇤ + (1� p⇤)e��⇤
j

.

Using Q(✓; ✓⇤) we can then implement the EM-algorithm:

1. Let p⇤ = p̂ and �⇤ = �̂. Then evaluate Q1(�; ✓⇤) and Q2(p; ✓⇤).

2. Di↵erentiate Q1(�; ✓⇤) wrt � and Q2(p; ✓⇤) wrt p (keeping ✓⇤

fixed) and solve for p and ✓ (needs to be done numerically).

Set the solution ✓⇤ = ✓̂.

3. Evaluate Q1(�; ✓⇤) and Q2(p; ✓⇤) with respect to the new ✓⇤ and

go back to (2).

4. Keep iterating until convergence.

(vi) Explain why in the EM-algorithm it is important to use good initial values.

The EM algorithm is an iterative scheme which successively max-

imises the likelihood. However, if it climbs to a local maximum

it will stay at that point. By using initial values, which are con-

sistent, thus relatively close to the global maximum we can be

reasonably sure that the EM-algorithm converged to a global

maximum (rather than a local one).
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