Big and little oh

Big and little oh in mathematics

(a) Big oh If we write $S_{n}=O\left(a_{n}\right)$, then this implies there exists a finite constant C such that for all $n,\left|\frac{S_{n}}{a_{n}}\right| \leq C$.
(b) Little Oh If we write $S_{n}=o\left(a_{n}\right)$, then this implies the sequence $\left|\frac{S_{n}}{a_{n}}\right| \rightarrow 0$ as $n \rightarrow \infty$.

Example: Often we write $S_{n}=\mu+b_{n}+o\left(a_{n}\right)$. This implies that the reminder $S_{n}-\mu-b_{n}$ is such that $\left|S_{n}-\mu-b_{n}\right| / a_{n} \rightarrow 0$ as $n \rightarrow \infty$. Thus a_{n} dominates the remainder $S_{n}-\mu-b_{n}$.

Big and little oh in probability

Often we are given an estimator, S_{n} of μ. Sometimes we can evaluate $\mathbb{E}\left[S_{n}-\mu\right]^{2}$. Typically we can show $\mathbb{E}\left[S_{n}-\mu\right]^{2}=O\left(n^{-\gamma}\right)$ (usually $\gamma=1 / 2$).
(a) Big oh If we write $S_{n}=O_{p}\left(a_{n}\right)$. This means for every $\varepsilon>0$ there exists a finite constant C_{ε} such that for all n

$$
P\left(\left|\frac{S_{n}}{a_{n}}\right|>C_{\varepsilon}\right) \leq \varepsilon
$$

Example: Suppose $\mathbb{E}\left|S_{n}-\mu\right|^{2} \leq \frac{K}{n}$, then we can say that $S_{n}=O_{p}\left(n^{-1 / 2}\right)$. This is due to Chebyshev's inequality. That is

$$
P\left(\left|\frac{S_{n}}{n^{-1 / 2}}\right|>C_{\varepsilon}\right) \leq \frac{n \mathbb{E}\left|S_{n}\right|^{2}}{C_{\varepsilon}^{2}} \leq \frac{K}{C_{\varepsilon}^{2}},
$$

Thus, for a given ε if we choose $C_{\varepsilon}=(K / \varepsilon)^{1 / 2}$, we have that

$$
P\left(\left|\frac{S_{n}}{n^{-1 / 2}}\right|>C_{\varepsilon}\right) \leq \varepsilon
$$

This implies $S_{n}=O_{p}\left(n^{-1 / 2}\right)$.
(b) Little Oh If we write $S_{n}=\mu+X_{n}+o_{p}\left(a_{n}\right)$, then this implies the sequence $\left|\frac{S_{n}-\mu-X_{n}}{a_{n}}\right| \xrightarrow{\mathcal{P}} 0$ as $n \rightarrow \infty$. In other words, for every $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left(\left|\frac{S_{n}-\mu-X_{n}}{a_{n}}\right|>\varepsilon\right)=0
$$

(c) Suppose $a_{n} \rightarrow 0$ as $n \rightarrow \infty$. If $\left|S_{n}-\mu\right|=O_{p}\left(a_{n}\right)$, then $\left|S_{n}-\mu\right|^{2}=O_{p}\left(a_{n}^{2}\right)=o_{p}\left(a_{n}\right)$. If $\left|S_{1, n}-\mu_{1}\right|=O_{p}\left(a_{n}\right)$ and $\left|S_{2, n}-\mu_{2}\right|=O_{p}\left(a_{n}\right)$, then $\left|S_{1, n}-\mu_{1}\right|\left|S_{2, n}-\mu_{2}\right|=O_{p}\left(a_{n}^{2}\right)=o_{p}\left(a_{n}\right)$.

