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Chapter 1

The Likelihood

In this chapter we review some results that you may have came across previously. We

define the likelihood and construct the likelihood in slightly non-standard situations.

We derive properties associated with the likelihood, such as the Crámer-Rao bound and

sufficiency. Finally we review properties of the exponential family which are an important

parametric class of distributions with some elegant properties.

1.1 The likelihood function

Suppose x = {Xi} is a realized version of the random vector X = {Xi}. Suppose the

density f is unknown, however, it is known that the true density belongs to the density

class F . For each density in F , fX(x) specifies how the density changes over the sample

space of X. Regions in the sample space where fX(x) is “large” point to events which are

more likely than regions where fX(x) is “small”. However, we have in our hand x and our

objective is to determine which distribution the observation x may have come from. In

this case, it is useful to turn the story around. For a given realisation x and each f ∈ F
one evaluates fX(x). This “measures” the likelihood of a particular density in F based

on a realisation x. The term likelihood was first coined by Fisher.

In most applications, we restrict the class of densities F to a “parametric” class. That

is F = {f(x; θ); θ ∈ Θ}, where the form of the density f(x; ·) is known but the finite

dimensional parameter θ is unknown. Since the aim is to make decisions about θ based

on a realisation x we often write L(θ;x) = f(x; θ) which we call the likelihood. For

convenience, we will often work with the log-likelihood L(θ;x) = log f(x; θ). Since the
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logarithm is a monotonic transform the maximum of the likelihood and log-likelihood will

be the same. This preservation of maximum is very important.

Let us consider the simplest case that {Xi} are iid random variables with probability

function (or probability density function) f(x; θ), where f is known but the parameter θ

is unknown. The likelihood function of θ based on {Xi} is

L(θ;X) =
n∏
i=1

f(Xi; θ) (1.1)

and the log-likelihood turns product into sum

logL(θ;X) = L(θ;X) =
n∑
i=1

log f(Xi; θ). (1.2)

We now consider some simple examples.

Example 1.1.1 (i) Suppose that {Xi} are iid normal random variables with mean µ

and variance σ2 the log likelihood is

Ln(µ, σ2;X) = −n
2

log σ2 − 1

2

n∑
i=1

(Xi − µ)2

σ2
− n

2
log 2π

Observe that the parameters and random variables are “separable”.

(ii) Suppose that {Xi} are iid binomial random variables Xi ∼Bin(m,π). We assume

m is known, then the log likelihood for π is

Ln(π;X) =
n∑
i=1

log

(
m

Xi

)
+

n∑
i=1

(
Xi log π + (m−Xi) log(1− π)

)
=

n∑
i=1

log

(
m

Xi

)
+

n∑
i=1

(
Xi log

( π

1− π
)

+m log(1− π)

)
.

Observe that the parameters and random variables are “separable”.

(iii) Suppose that {Xi} are independent random variables which give the number of “suc-

cesses” out of mi. It seems reasonable to model Xi ∼Bin(mi, πi). It is believed that

the the regressors zi influence the chance of success πi. We try to model this influ-

ence with the nonlinear transform

πi = g(eβ
′zi) =

eβ
′zi

1 + eβ′zi
,

10



where β are the unknown parameters of interest. Then the log likelihood is

Ln(β;X) =
n∑
i=1

log

(
mi

Xi

)
+

n∑
i=1

(
Xi log

(
g(β′zi)

1− g(β′zi)

)
+mi log(1− g(β′zi))

)
.

(iv) Modelling categorical data in a contingency table. Suppose a continency table con-

tains C cells, where each cell gives the number for the corresponding event. Let

1 ≤ ` ≤ C, at each “trial” probability of being placed in cell ` is π`. If we do not make

any assumptions on the probabilities (except that each trial are iid random variables)

then we model the number of counts in each cell using a multinomial distribution.

Suppose the total number of counts is n and the number of counts observed in cell

` is X`, then the distribution is P (X1 = x1, . . . , XC = xc) =
(

n
x1,...,xC

)
πx11 . . . πxCC ,

which has the log-likelihood

Ln(π1, π2, . . . , πC−1;X1, . . . , XC) = log

(
n

X1, . . . , XC

)
+

C∑
i=1

Xi log πi

= log

(
n

X1, . . . , XC

)
+

C−1∑
i=1

Xi log
πi

1−
∑C−1

j=1 πj
+ n log(1−

C−1∑
j=1

πj).

Observe that the parameters and random variables are “separable”.

(v) Suppose X is a random variable that only takes integer values, however, there is

no upper bound on the number of counts. When there is no upper bound on the

number of counts, the Poisson distribution is often used as an alternative to the

Binomial. If X follows a Poisson distribution then P (X = k) = λk exp(−λ)/k!.

The log-likelihood for the iid Poisson random variables {Xi} is

L(λ;X) =
n∑
i=1

(Xi log λ− λ− logXi!) .

Observe that the parameters and random variables are “separable”.

(vi) Suppose that {Xi} are independent exponential random variables which have the

density θ−1 exp(−x/θ). The log-likelihood is

Ln(θ;X) =
n∑
i=1

(
− log θ − Xi

θ

)
.
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(vii) A generalisation of the exponential distribution which gives more flexibility in terms

of shape of the distribution is the Weibull. Suppose that {Xi} are independent

Weibull random variables which have the density αxα−1

θα
exp(−(x/θ)α) where θ, α > 0

(in the case that α = 0 we have the regular exponential) and x is defined over the

positive real line. The log-likelihood is

Ln(α, θ;X) =
n∑
i=1

(
logα + (α− 1) logXi − α log θ −

(
Xi

θ

)α)
.

Observe that the parameters and random variables are not “separable”. In the case,

that α is known, but θ is unknown the likelihood is proportional to

Ln(θ;X; ) ∝
n∑
i=1

(
− α log θ −

(
Xi

θ

)α)
,

observe the other terms in the distribution are fixed and do not vary, so are omitted.

If α is known, the unknown parameter and random variables are “separable”.

Often I will exchange L(θ;X) = L(X; θ), but they are the same.

Look closely at the log-likelihood of iid random variables, what does its average

1

n
L(X; θ) =

1

n

n∑
i=1

log f(Xi; θ) (1.3)

converge to as n→∞?

1.2 Constructing likelihoods

Constructing the likelihood for the examples given in the previous section was straightfor-

ward. However, in many real situations, half the battle is finding the correct distribution

and likelihood.

Many of the examples we consider below depend on using a dummy/indicator variable

that we treat as a Bernoulli random variables. We recall if δ is a Bernoulli random

variable that can take either 0 or 1, where P (δ = 1) = π and P (δ = 0) = 1 − π,

then P (δ = x) = (1 − π)1−xπx. We observe that the log-likelihood for π given δ is

(1− δ) log(1−π) + δ log π. Observe after the log transform, that the random variable and

the parameter of interest are “separable”.
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Mixtures of distributions

Suppose Y is a mixture of two subpopulations, with densities f0(x; θ) and f1(x; θ) re-

spectively. The probability of belonging to density 0 is 1 − p and probability of be-

longing to density 1 is p. Based this information, we can represent the random variable

Y = δU + (1− δ)V , where U, V, δ are independent random variables; U has density f1, V

has density f0 and P (δ = 1) = p and P (δ = 0) = 1− p. The density of Y is

fY (x; θ) = fY (x|δ = 0, θ)P (δ = 0) + fY (x|δ = 1, θ)P (δ = 1) = (1− p)f0(x; θ) + pf1(x; θ).

Thus the log likelihood of θ and p given {Yi} is

L({Yi}; θ, p) =
n∑
i=1

log [(1− p)f0(Yi; θ) + pf1(Yi; θ)] .

Observe that the random variables and parameters of interest are not separable.

Suppose we not only observe Y but we observe the mixture the individual belongs to.

Not only do we have more information about our parameters, but also estimation becomes

easier. To obtain the joint likelihood, we require the joint distribution of (Y, δ), which

is a mixture of density and point mass. To derive this we note that by using limiting

arguments

lim
ε→0

P (Y ∈ [y − ε/2, y + ε/2], δ = x; θ, p)

ε
= lim

ε→0

Fx(y + ε/2)− Fx(y − ε/2)

ε
P (δ = x; p)

= fx(y; θ)P (δ = x; p)

= f1(y; θ)xf0(y; θ)1−xpx(1− p)1−x.

Thus the log-likelihood of θ and p given the joint observations {Yi, δi} is

L(Yi, δi; θ, p) =
n∑
i=1

{δi log f1(Yi; θ) + (1− δi) log f0(Yi; θ) + δi log p+ (1− δi) log(1− p)} . (1.4)

The parameters and random variables are separable in this likelihood.

Of course in reality, we do not observe δi, but we can predict it, by conditioning

on what is observed Yi. This is effectively constructing the expected log-likelihood of

{Yi, δi} conditioned on {Yi}. This is not a log-likelihood per se. But for reasons that will

become clear later in the course, in certain situations it is useful to derive the expected

log-likelihood when conditioned on random variables of interest. We now construct the
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expected log-likelihood of {Yi, δi} conditioned on {Yi}. Using (1.4) and that {Yi, δi} are

independent over i we have

E[L(Yi, δi; θ, p)|{Yi}] =
n∑
i=1

{E[δi|Yi, θ, p] (log f1(Yi; θ) + log p) + E[(1− δi)|Yi] (log f0(Yi; θ) + log(1− p))} .

E[δi|Yi, θ, p] = P [δi = 1|Yi, θ, p], hence it measures the probability of the mixture 1 being

chosen when Yi is observed and is

P [δi = 1|Yi, θ, p] =
P [δi = 1, Yi, θ, p]

P [Yi, θ, p]
=
P [Yi|δi = 1, θ, p]P (δi = 1, θ, p)

P [Yi, θ, p]
=

pf1(Yi; θ)

pf1(Yi; θ) + (1− p)f0(Yi; θ)
.

Similarly

P [δi = 0|Yi, θ, p] =
(1− p)f0(Yi; θ)

pf1(Yi; θ) + (1− p)f0(Yi; θ)
.

Substituting these in the the above gives the expected log-likelihood conditioned on {Yi};

E[L(Yi, δi; θ, p)|{Yi}] =
n∑
i=1

{(
pf1(Yi; θ)

pf1(Yi; θ) + (1− p)f0(Yi; θ)

)
(log f1(Yi; θ) + log p) +(

(1− p)f0(Yi; θ)

pf1(Yi; θ) + (1− p)f0(Yi; θ)

)
(log f0(Yi; θ) + log(1− p))

}
.

Observe that this is not in terms of δi.

The censored exponential distribution

Suppose X ∼ Exp(θ) (density of X is f(x; θ) = θ exp(−xθ)), however X is censored at a

known point c and Y is observed where

Y =

{
X X ≤ c

c X > c
(1.5)

It is known if an observation is censored. We define the censoring variable

δ =

{
0 X ≤ c

1 X > c

The only unknown is θ and we observe (Y, δ). Note that δ is a Bernoulli variable (Binomial

with n = 1) with P (δ = 0) = 1−exp(−cθ) and P (δ = 1) = exp(−cθ). Thus the likelihood

of θ based only δ is L(δ; θ) = (1− π)1−δπδ = (1− e−cθ)1−δ(e−cθ)1−δ.
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Analogous to the example above, the likelihood of (Y, δ) is a mixture of a density and

a point mass. Thus the likelihood θ based on (Y, δ) is

L(Y, δ; θ) =

{
f(Y |δ = 0)P (δ = 0) δ = 0

f(Y |δ = 1)P (δ = 1) δ = 1

= [f(Y |δ = 0)P (δ = 0)]1−δ[f(Y |δ = 1)P (δ = 1)]δ

= [exp(−θY + log θ)]1−δ[exp(−cθ)]δ.

This yields the log-likelihood of θ given {Yi, δi}

L(θ) =
n∑
i=1

{(1− δi) [−θYi + log θ]− δicθ} . (1.6)

The inflated zero Poisson distribution

The Possion distribution is commonly used to model count data. However, there arises

many situations where the proportion of time zero occurs is larger than the proportion

one would expect using a Poisson distribution. One often models this “inflation” using

a mixture distribution. Let U be a Poission distributed random variable where P (U =

k) = λk exp(−λ)/k!. We see that P (U = 0) = exp(−λ). We can boost this chance by

defining a new random variable Y , where

Y = δU

and δ is a Bernoulli random variable taking zero or one with P (δ = 0) = p and P (δ =

1) = (1− p). It is clear that

P (Y = 0) = P (Y = 0|δ = 0)P (δ = 0) + P (Y = 0|δ = 1)P (δ = 1)

= 1× p+ P (U = 0)(1− p) = p+ (1− p)e−λ ≥ e−λ = P (U = 0).

Thus, in situations where there are a large number of zeros, the inflated zero Poisson

seems appropriate. For k > 1, we have

P (Y = k) = P (Y = k|δ = 0)P (δ = 0) + P (Y = k|δ = 1)P (δ = 1)

= P (U = k)(1− p) = (1− p)λ
ke−λ

k!
.

Thus altogether the distribution of Y is

P (Y = k) =
{
p+ (1− p)e−λ

}I(k=0)
{

(1− p)λ
ke−λ

k!

}I(k 6=0)

,
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where I(·) denotes the indicator variable. Thus the log-likelihood of λ, p given Y is

L(Y ;λ, p) =
n∑
i=1

I(Yi = 0) log
(
p+ (1− p)e−λ

)
+

n∑
i=1

I(Yi 6= 0)

(
log(1− p) + log

λYie−λ

Yi!

)
.

Exercise 1.1 Let us suppose that X and Z are independent random variables with den-

sities fX and fZ respectively. Assume that X is positive.

(i) Derive the density function of 1/X.

(ii) Show that the density of XZ is∫
1

x
fZ(

y

x
)fX(x)dx (1.7)

(or equivalently
∫
c−1fZ(cy)fX(c−1)dc).

(iii) Consider the linear regression model

Yi = α′xi + σiεi

where the regressors xi is observed, εi follows a standard normal distribution (mean

zero and variance 1) and σ2
i follows a Gamma distribution

f(σ2;λ) =
σ2(κ−1)λκ exp(−λσ2)

Γ(κ)
, σ2 ≥ 0,

with κ > 0.

Derive the log-likelihood of Yi (assuming the regressors are observed).

Exercise 1.2 Suppose we want to model the average amount of daily rainfall in a par-

ticular region. Empirical evidence suggests that it does not rain on many days in the

year. However, if it does rain on a certain day, the amount of rain follows a Gamma

distribution.

(i) Let Y denote the amount of rainfall in a particular day and based on the information

above write down a model for Y .

Hint: Use the ideas from the inflated zero Poisson model.

(ii) Suppose that {Yi}ni=1 is the amount of rain observed n consecutive days. Assuming

that {Yi}ni=1 are iid random variables with the model given in part (ii), write down

the log-likelihood for the unknown parameters.

(iii) Explain why the assumption that {Yi}ni=1 are independent random variables is tenu-

ous.
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1.3 Bounds for the variance of an unbiased estimator

So far we have iid observations {Xi} with from a known parametric family i.e. the distri-

bution of Xi comes from F = {f(x; θ); θ ∈ Θ}, where θ is a finite dimension parameter

however the true θ is unknown. There are an infinite number of estimators of θ based on

an infinite number of decision rules. Which estimator do we choose? We should choose

the estimator which is “closest” to the true parameter. There are several different distance

measures, but the most obvious is the mean square error. As the class of all estimators is

“too large” we restrict ourselves to unbiased estimators, θ̃(X) (where mean of estimator

is equal to the true parameter) and show that the mean squared error

E
(
θ̃(X)− θ

)2

= var
(
θ̃(X)

)
+
(

E[θ̃(X)]− θ
)2

= var
(
θ̃(X)

)
is bounded below by the inverse of the Fisher information (this is known as the Cramer-

Rao bound). To show such a bound we require the regularity assumptions. We state the

assumptions and in the case that θ is a scalar, but they can easily be extended to the case

that θ is a vector.

Assumption 1.3.1 (Regularity Conditions 1) Let us suppose that Ln(·; θ) is the like-

lihood.

(i) ∂
∂θ

∫
Ln(x; θ)dx =

∫ ∂Ln(x;θ)
∂θ

dx = 0 (for iid random variables (rv) this is equivalent

to checking if
∫ ∂f(x;θ)

∂θ
dx = ∂

∂θ

∫
f(x; θ)dx).

Observe since a by definition a density integrates to one, then ∂
∂θ

∫
Ln(x; θ)dx = 0.

(ii) For any function g not a function of θ, ∂
∂θ

∫
g(x)Ln(x; θ)dx =

∫
g(x)∂Ln(x;θ)

∂θ
dx.

(iii) E
(∂ logLn(X;θ)

∂θ

)2
> 0.

To check Assumption 1.3.1(i,ii) we need to apply Leibniz’s rule https://en.wikipedia.

org/wiki/Leibniz_integral_rule

d

dθ

∫ b(θ)

a(θ)

g(x)f(x; θ)dx =

∫ b(θ)

a(θ)

g(x)
∂f(x, θ)

∂θ
dx+ f(b(θ), θ)g(b(θ))b′(θ)− f(a(θ), θ)g(a(θ))a′(θ).(1.8)

Therefore Assumption 1.3.1(i,ii) holds if f(b(θ), θ)g(b(θ))b′(θ)−f(a(θ), θ)g(a(θ))a′(θ) = 0.

Example 1.3.1 (i) If the support of the density does not depend on θ it is clear from

(1.8) that Assumption 1.3.1(i,ii) is satisfied.
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(ii) If the density is the uniform distribution f(x; θ) = θ−1I[0,θ](x) then the conditions

are not satisfied. We know that θ−1
∫ θ

0
dx = 1 (thus it is independent of θ) hence

dθ−1
∫ θ
0 dx

dθ
= 0. However,∫ θ

0

dθ−1

dθ
dx =

−1

θ
and f(b(θ), θ)b′(θ)− f(a(θ), θ)a′(θ) = θ−1.

Thus we see that Assumption 1.3.1(i) is not satisfied. Therefore, the uniform dis-

tribution does not satisfy the standard regularity conditions.

(iii) Consider the density

f(x; θ) =
1

2
(x− θ)2 exp[−(x− θ)]I[θ,∞)(x).

The support of this estimator depends on θ, however, it does satisfy the regularity

conditions. This is because f(x; θ) = 0 at both x = θ and x =∞. This means that

for any θ

f(b(θ), θ)g(b(θ))b′(θ)− f(a(θ), θ)g(a(θ))a′(θ) = 0.

Therefore from the Leibnitz rule we have

d

dθ

∫ b(θ)

a(θ)

g(x)f(x; θ)dx =

∫ b(θ)

a(θ)

g(z)
∂f(x, θ)

∂θ
dx.

Thus Assumption 1.3.1 is satisfied.

We now state the Cramer-Rao bound, which gives the minimal attaining variance

bound for a large class of estimators. We will use the matrix inequality A ≥ B to mean

that A−B is a non-negative definite matrix (or equivalently positive semi-definite).

Theorem 1.3.1 (The Cramér-Rao bound) Suppose the likelihood Ln(X; θ) satisfies

the regularity conditions given in Assumption 1.3.1. Let θ̃(X) be an unbiased estimator

of θ, then

var
[
θ̃(X)

]
≥

[
E

(
∂ logLn(X; θ)

∂θ

)2
]−1

.
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PROOF. We prove the result for the univariate case. Recall that θ̃(X) is an unbiased

estimator of θ therefore ∫
θ̃(x)Ln(x; θ)dx = θ.

Differentiating both sides wrt to θ, and taking the derivative into the integral (allowed

under the regularity condition) gives∫
θ̃(x)

∂Ln(x; θ)

∂θ
dx = 1.

By Assumption 1.3.1(i)
d
∫
Ln(x;θ)dx

dθ
=
∫ ∂Ln(x;θ)

∂θ
dx = 0. Thus adding θ

∫ ∂Ln(x;θ)
∂θ

dx to both

sides of the above we have∫ {
θ̃(x)− θ

} ∂Ln(x; θ)

∂θ
dx = 1.

Multiplying and dividing by Ln(x; θ) gives∫ {
θ̃(x)− θ

} 1

Ln(x; θ)

∂Ln(x; θ)

∂θ
Ln(x; θ)dx = 1. (1.9)

Hence (since Ln(x; θ) is the distribution of X) we have

E

({
θ̃(X)− θ

} ∂ logLn(X; θ)

∂θ

)
= 1.

Recalling that the Cauchy-Schwartz inequality is E(UV ) ≤ E(U2)1/2E(V 2)1/2 (where

equality only arises if U = aV + b (where a and b are constants)) and applying it to

the above we have

var
[
θ̃(X)

]
E

[(
∂ logLn(X; θ)

∂θ

)2
]
≥ 1 ⇒ var

[
θ̃(X)

]
≥ E

[(
∂ logLn(X; θ)

∂θ

)2
]−1

.

Thus giving the Cramer-Rao inequality. �

Corollary 1.3.1 (Estimators which attain the Cramér-Rao bound) Suppose As-

sumption 1.3.1 is satisfied. Then the estimator θ̃(X) attains the Cramer-Rao bound only

if it can be written as

θ̂(X) = a(θ) + b(θ)
∂ logLn(X; θ)

∂θ

for some functions a(·) and b(·) of θ1.

1Of course, in most cases it makes no sense to construct an estimator of θ, which involves θ.
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PROOF. The proof is clear and follows from when the Cauchy-Schwartz inequality is an

equality in the derivation of the Cramer-Rao bound. �

We next derive an equivalent expression for E
(
∂ logLn(X;θ)

∂θ

)2

(called the Fisher infor-

mation).

Lemma 1.3.1 Suppose the likelihood Ln(X; θ) satisfies the regularity conditions given in

Assumption 1.3.1 and for all θ ∈ Θ, ∂2

∂θ2

∫
g(x)Ln(x; θ)dx =

∫
g(x)∂

2Ln(x;θ)
∂θ2

dx, where g is

any function which is not a function of θ (for example the estimator of θ). Then

var

(
∂ logLn(X; θ)

∂θ

)
= E

(
∂ logLn(X; θ)

∂θ

)2

= −E

(
∂2 logLn(X; θ)

∂θ2

)
.

PROOF. To simplify notation we focus on the case that the dimension of the vector θ is

one. To prove this result we use the fact that Ln is a density to obtain∫
Ln(x; θ)dx = 1.

Now by differentiating the above with respect to θ gives

∂

∂θ

∫
Ln(x; θ)dx = 0.

By using Assumption 1.3.1(ii) we have∫
∂Ln(x; θ)

∂θ
dx = 0⇒

∫
∂ logLn(x; θ)

∂θ
Ln(x; θ)dx = 0

Differentiating again with respect to θ and taking the derivative inside gives∫
∂2 logLn(x; θ)

∂θ2
Ln(x; θ)dx+

∫
∂ logLn(x; θ)

∂θ

∂Ln(x; θ)

∂θ
dx = 0

⇒
∫
∂2 logLn(x; θ)

∂θ2
Ln(x; θ)dx+

∫
∂ logLn(x; θ)

∂θ

1

Ln(x; θ)

∂Ln(x; θ)

∂θ
Ln(x; θ)dx = 0

⇒
∫
∂2 logLn(x; θ)

∂θ2
Ln(x; θ)dx+

∫ (
∂ logLn(x; θ)

∂θ

)2

Ln(x; θ)dx = 0

Thus

−E

(
∂2 logLn(X; θ)

∂θ2

)
= E

(
∂ logLn(X; θ)

∂θ

)2

.

The above proof can easily be generalized to parameters θ, with dimension larger than 1.

This gives us the required result.
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Note in all the derivations we are evaluating the second derivative of the likelihood at

the true parameter. �

We mention that there exists distributions which do not satisfy Assumption 1.3.1.

These are called non-regular distributions. The Cramer-Rao lower bound does hold for

such distributions.

Definition 1.3.1 (The Fisher information matrix) The matrix

I(θ) =

[
E

(
∂ logLn(X; θ)

∂θ

)2
]

= −
[
E

(
∂2 logLn(X; θ)

∂θ2

)]
,

whose inverse forms the lower bound of Cramér-Rao bound is called the Fisher information

matrix. It plays a critical role in classical inference.

Essentially I(θ) tells us how much “information” the data {Xi}ni=1 contains about the

true parameter θ.

Remark 1.3.1 Define the quantity

Iθ0(θ) = −
∫ (

∂2 logLn(x; θ)

∂θ2

)
Ln(x; θ0)dx

= −
[
Eθ0

(
∂2 logLn(X; θ)

∂θ2

)]
.

This quantity evaluates the negative expected second derivative of the log-likelihood over

θ, but the expectation is taken with respect to the “true” density Ln(x; θ0). This quantity

will not be positive for all θ. However, by the result above we evaluate Iθ0(θ) at θ = θ0,

then

Iθ0(θ0) = varθ0

(
∂ logLn(x; θ0)

∂θ

)
.

In other words, when the expectation of the negative second derivative of log-likelihood is

evaluated at the true parameter this is the Fisher information which is positive.

Exercise 1.3 Suppose {Xi} are iid random variables with density f(x; θ) and the Fisher

information for θ based on {Xi} is I(θ).

Let Yi = g(Xi) where g(·) is a bijective diffeomorphism (the derivatives of g and its

inverse exist). Intuitive when one makes such a transformation no “information” about θ

should be lost or gained. Show that the Fisher information matrix of θ based on {Yi} is

I(θ).
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Figure 1.1: Interpretation of the Fisher information
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Example 1.3.2 Consider the example of censored data given in Section 1.2. Both the

observations and the censored variables, {Yi} and {δi}, where

δi = I(Yi ≥ c)

contain information about the parameter θ. However, it seems reasonable to suppose that

{Yi} contains more information about θ than {δi}. We articulate what we mean by this

in the result below.

Lemma 1.3.2 Let us suppose that the log-likelihood of X, Ln(X; θ) satisfies Assumption

1.3.1. Let Y = B(X) be some statistic (of arbitrary dimension) of the original data.

Let LB(X)(Y ; θ), and L(X|Y ; θ) denote the log-likelihood of Y = B(X) and conditional

likelihood of X|Y (we assume these satisfy Assumption 2.6.1, however I think this is

automatically true). Then

IX(θ) ≥ IB(X)(θ)

where

IX(θ) = E

(
∂LX(X; θ)

∂θ

)2

and IB(X)(θ) = E

(
∂LB(X)(Y ; θ)

∂θ

)2

.

In other words the original Fisher information contains the most information about the

parameter. In general, most transformations of the data will lead to a loss in information.

We consider some exceptions in Lemma 1.4.1.

PROOF. Writing the conditional density of X given B(X) as the ratio of a joint density

of X,B(X) and marginal density of B(X) we have

fX|B(X)(x|y) =
fX,B(X)(x, y; θ)

fB(X)(y; θ)
⇒ fX,B(X)(x, y; θ) = fX|B(X)(x|y)fB(X)(y; θ),

where fX|B(X) denotes the density of X conditioned on B(X) and fX,B(X) the joint den-

sity of X and B(X). Note that if B(x) = y, then the joint density fX,B(X)(x, y; θ) is

simply the density of fX(x; θ) with the constraint that y = B(x) i.e. fX,B(X)(x, y; θ) =

fX(x; θ)δ(B(x) = y), where δ denotes the indicator variable2. Thus we have

fX(x; θ)δ(B(x) = y) = fX|B(X)(x|y, θ)fB(X)(y; θ).

2To understand why, consider the joint density of X,Y = B(X) the density ie not defined over R2

but over the curve (x,B(x)) fX,B(X)(x, y) = fX(x)δ(y = B(x))
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Having written the likelihood in this way, the derivative of the log likelihood is

∂ log fX(x; θ)

∂θ
=

∂ log fX|B(X)(x|y)fB(X)(y; θ)

∂θ

=
∂ log fX|B(X)(x|y, θ)

∂θ
+
∂ log fB(X)(y; θ)

∂θ
.

Therefore

IX(θ) = var

(
∂ log fX(X; θ)

∂θ

)
= var

(
∂ log fX|B(X)(X|B(X), θ)

∂θ

)
+ var

(
∂ log fB(X)(B(X); θ)

∂θ

)
︸ ︷︷ ︸

=IB(X)(θ)

+

2cov

(
∂ log fX|B(X)(X|B(X), θ)

∂θ
,
∂ log fB(X)(B(X); θ)

∂θ

)
. (1.10)

Under the stated regularity conditions, since fB(X), is a density it is clear that

E

(
∂ log fB(X)(B(X); θ)

∂θ

)
= 0

and

E

(
∂ log fX|B(X)(X|B(X), θ)

∂θ

∣∣B(X)

)
=

∫
∂ log fX|B(X)(x|y, θ)

∂θ
fX|B(X)(x|y, θ)dx = 0. (1.11)

Thus using the law of iterated expectation E(A) = E(E[A|B]), then E[
∂ log fX|B(X)(X|B(X),θ)

∂θ
] =

0. Returning to (1.10), since the mean is zero this implies that

IX(θ) = IB(X)(θ) + E

(
∂ log fX|B(X)(X|B(X), θ)

∂θ

)2

+ 2E

(
∂ log fX|B(X)(X|B(X), θ)

∂θ

∂ log fB(X)(Y ; θ)

∂θ

)
.

Finally we show that the above covariance is zero. To do so we use that E(XY ) =

E(XE[Y |X]) (by the law of iterated expectation) then by using (1.11) we have

E

(
∂ log fX|B(X)(X|B(X), θ)

∂θ

∂ log fB(X)(B(X); θ)

∂θ

)

= E

∂ log fB(X)(B(X); θ)

∂θ
E

[
∂ log fX|B(X)(X|B(X), θ)

∂θ

∣∣∣∣∂ log fB(X)(B(X); θ)

∂θ

]
︸ ︷︷ ︸

=0 by (1.11)

 = 0.

Thus

IX(θ) = IB(X)(θ) + E

(
∂ log fX|B(X)(X|B(X), θ)

∂θ

)2

.

As all the terms are positive, this immediately implies that IX(θ) ≥ IB(X)(θ). �
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Definition 1.3.2 (Observed and Expected Fisher Information) (i) The observed

Fisher information matrix is defined as

I(X; θ) = −∂
2 logLn(X; θ)

∂θ2
.

(ii) The expected Fisher information matrix is defined as

I(θ) = E

(
−∂

2 logLn(X; θ)

∂θ

)
These will play an important role in inference for parameters.

Often we want to estimate a function of θ, τ(θ). The following corollary is a general-

ization of the Cramer-Rao bound.

Corollary 1.3.2 Suppose Assumption 1.3.1 is satisfied and T (X) is an unbiased estima-

tor of τ(θ). Then we have

var [T (X)] ≥ τ ′(θ)2

E

[(
∂ logLn(X;θ)

∂θ

)2
] .

Exercise 1.4 Prove the above corollary.

In this section we have learnt how to quantify the amount of information the data

contains about a parameter and show that for the majority of transformations of data

(with the exception of bijections) we loose information. In the following section we define

a transformation of data, where in some certain situations, will substantially reduce the

dimension of the data, but will not result in a loss of information.

1.4 Sufficient statistics

We start with a simple example from introductory statistics.

Example 1.4.1 Samples of size 10 and 15 are drawn from two different distributions.

How to check if the two samples come from the same distribution? The data is given in

Figure 1.2. If the distributions are known to come from the Gaussian family of distri-

butions with, for the sake of argument, standard deviation one, then all the information

about the unknown parameter, is characteristized in terms of the sample means X̄A and
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Figure 1.2: Samples from two population

X̄B (in this example, 4.6 and 5.2 respectively). The sample mean is sufficient for describ-

ing all the information about the unknown mean, more precisely the data conditioned on

sample mean is free of any information about µ.

On the other hand, if the data comes from the Cauchy family of distributions {fθ(x) =

[π(1 + (x− θ)2)]−1} there does not exist a lower dimensional transformations of the data

which contains all the information about θ. The observations conditioned on any lower

transformation will still contain information about θ.

This example brings us to a formal definition of sufficiency.

Definition 1.4.1 (Sufficiency) Suppose that X = (X1, . . . , Xn) is a random vector. A

statistic s(X) is said to be sufficient for the family F of distributions, if the conditional

density fX|S((X))(y|s) is the same for all distributions in F .

This means in a parametric class of distributions F = {f(x; θ); θ ∈ Θ} the statistic

s(X) is sufficient for the parameter θ, if the conditional distribution of X given s(X) is

not a function of θ.

Example 1.4.2 (Order statistics) Suppose that {Xi}ni=1 are iid random variables with

density f(x). Let X(1), . . . , X(n) denote the ordered statistics (i.e. X(1) ≤ X(2) ≤ . . . ≤
X(n)). We will show that the order statistics X(1), . . . , X(n) is the sufficient statistic over

the family of all densities F .

To see why, note that it can be shown that the joint density of the order statistics
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X(1), . . . , X(n) is

fX(1),...,X(n)
(x1, . . . , xn) =

{
n!
∏n

i=1 f(xi) x1 ≤ . . . ,≤ xn

0 otherwise
(1.12)

Clearly the density of the X1, . . . , Xn is
∏n

i=1 f(Xi). Therefore the density of X1, . . . , Xn

given X(1), . . . , X(n) is

fX1,...,Xn|X(1),...,X(n)
=

1

n!
,

which is simply the chance of selecting the ordering X1, . . . , Xn from a sequence X(1), . . . , X(n).

Clearly this density does not depend on any distribution.

This example is interesting, but statistically not very useful. In general we would like

the number of sufficient statistic to be a lower dimension than the data itself (sufficiency

is a form of compression).

Exercise 1.5 Show (1.12).

Usually it is extremely difficult to directly obtain a sufficient statistic from its def-

inition. However, the factorisation theorem gives us a way of obtaining the sufficient

statistic.

Theorem 1.4.1 (The Fisher-Neyman Factorization Theorem) A necessary and suf-

ficient condition that s(X) is a sufficient statistic is that the likelihood function, L (not

log-likelihood), can be factorized as Ln(X; θ) = h(X)g(s(X); θ), where h(X) is not a func-

tion of θ.

Example 1.4.3 (The uniform distribution) Let us suppose that {Xi} are iid uni-

formly distributed random variables with density fθ(x) = θ−1I[0,θ](x). The likelihood is

Ln(X; θ) =
1

θn

n∏
i=1

I[0,θ](Xi) =
1

θn
I[0,θ](maxXi) = g(maxXi; θ)

Since Ln(X; θ) is only a function of maxiXi, it is immediately clear that s(X) = maxiXi

is a sufficient.
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Example 1.4.4 (The normal distribution) Let {Xi}ni=1 be iid normal random vari-

ables. The likelihood is

Ln(X;µ, σ2) =
1

(2πσ)n
exp

[
− 1

2σ2

n∑
i=1

(Xi − µ)2

]
=

1

(2πσ)n
exp

[
− 1

2σ2

(
Sxx − 2Sxµ+ µ2

)]
= g(Sx, Sxx;µ, σ

2)

where Sx =
∑n

i=1Xi and Sxx =
∑n

i=1 X
2
i . We see immediately from the factorisation

theorem that the density is a function of two sufficient statistics Sx and Sxx. Thus Sx and

Sxx are the sufficient statistics for µ and σ2.

Suppose we treat σ2 as known, then by using

Ln(X;µ, σ2) =
1

(2πσ)n
exp

[
− 1

2σ2
Sxx

]
exp

[
−Sxµ
σ2

+
µ2

σ2

]
= g1(Sxx;σ

2)g2(Sx;µ, σ
2)

we see that the sufficient statistic for the mean, µ, is Sx =
∑n

i=1 Xi. I.e. any function

of {Xi} conditioned on Sx contains no information about the mean µ. This includes the

Sxx. However, Sx contains information about the both µ and σ2. We can explicitly see

this because Sx ∼ N(nµ, nσ2).

Note that alternative sufficient statistics for the normal distribution are Sx =
∑

iXi

and S ′xx =
∑

i(Xi − n−1Sx)
2. Sufficient statistics are not unique!

Example 1.4.5 (The exponential family) The exponential family of distributions, char-

acterized by

f(x;ω) = exp [s(x)η(ω)− b(ω) + c(x)] , (1.13)

is broad class of distributions which includes the normal distributions, binomial, exponen-

tials etc. but not the uniform distribution. Suppose that {Xi}ni=1 are iid random variables

which have the form (1.13) We can write and factorize the likelihood as

Ln(X;ω) = exp

[
η(ω)

n∑
i=1

s(Xi)− nb(ω)

]
exp

[
n∑
i=1

c(Xi)

]

= g(
n∑
i=1

s(Xi);ω)h(X1, . . . , Xn).

We immediately see that
∑n

i=1 s(Xi) is a sufficient statistic for ω.
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The above example is for the case that the number of parameters is one, however we

can generalize the above to the situation that the number of parameters in the family is p

f(x;ω) = exp

[
p∑
j=1

sj(x)ηj(ω)− b(ω) + c(x)

]
,

where ω = (ω1, . . . , ωp). The sufficient statistics for the p-dimension is (
∑n

i=1 s1(Xi), . . . ,
∑n

i=1 sp(Xi)).

Observe, we have not mentioned, so far, about this being in anyway minimal, that comes

later.

For example, the normal distribution is parameterized by two parameters; mean and

variance. Typically the number of sufficient statistics is equal to the the number of un-

known parameters. However there can arise situations where the number of sufficient

statistics is more than the number of unknown parameters.

Example 1.4.6 Consider a mixture model, where we know which distribution a mixture

comes from. In particular, let g0(·; θ) and g1(·; θ) be two different densities with unknown

parameter θ. Let δ be a Bernoulli random variables which takes the values 0 or 1 and the

probability P (δ = 1) = 1/2. The random variables (X, δ) have the joint “density”

f(x, δ; θ) =

{
1
2
g0(x; θ) δ = 0

1
2
g1(x; θ) δ = 1

= (1− δ)1

2
g0(x; θ) + δ

1

2
g1(x; θ) = (

1

2
g0(x; θ))1−δ(

1

2
g1(x; θ))δ.

Example; the population of males and females where we observe the gender and height of

an individual. Both (X, δ) are the sufficient statistics for θ. Observe that X by itself is

not sufficient because

P (δ|X = x) =
g1(x; θ)

g0(x; θ) + g1(x; θ)
.

Hence conditioned on just X, the distribution of δ contains information about θ, implying

X by itself is not sufficient.

Remark 1.4.1 (Ancillary variables) The above example demonstrates the role of an

ancillary variable. If we observe only X, since the marginal density of X is

1

2
g0(x; θ) +

1

2
g1(x; θ),
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then X contains information about θ. On the other hand, if we only observe δ, it contains

no information about θ (the marginal distribution of δ is half). This means that θ is an

ancillary variable (since its marginal distribution contains no information about θ).

Furthermore, since (X, δ) are the sufficient statistics for θ, δ is an ancillary variable

and δ in conjuction with X does contain information about θ then δ is called an ancillary

complement.

We already came across an ancillary variable. We recall that for the normal distribu-

tion one version of the sufficient statistics is Sx =
∑

iXi and S ′xx =
∑

i(Xi − n−1Sx)
2.

Now we see that S ′xx =
∑n

i=1(Xi− X̄)2 ∼ σ2χ2
n−1, hence it is an ancillary variable for the

mean, since its marginal distribution does not depend on µ. However, it is not an ancil-

lary complement for Sx since S ′xx conditioned on Sx does not depend on µ in fact they are

independent! So S ′xx conditioned or otherwise contains no information whatsoever about

the mean µ.

From the examples above we immediately see that the sufficient statistic is not unique.

For example, for the Gaussian family of distributions the order statistics X(1), . . . , X(n),

Sxx, Sx and Sx, S
′
xx are all sufficient statistics. But it is clear that Sxx, Sx or Sx, S

′
xx is

“better” than X(1), . . . , X(n), since it “encodes” information the unknown parameters in

fewer terms. In other words, it drops the dimension of the data from n to two. This

brings us to the notion of minimal sufficiency.

Definition 1.4.2 (Minimal sufficiency) A statistic S(X) is minimal sufficient if (a)

it is sufficient and (b) if T (X) is sufficient statistic there exists an f such that S(X) =

f(T (X)).

Note that the minimal sufficient statistic of a family of distributions is not unique.

The minimal sufficient statistic corresponds to the coarsest sufficient partition of sam-

ple space, whereas the data generates the finest partition. We show in Lemma 1.6.4 that

if a family of distributions belong to the exponential family and the sufficient statistics

are linearly independent, then these sufficient statistics are minimally sufficient.

We now show that the minimal sufficient statistics of the exponential class of distri-

butions are quite special.

Theorem 1.4.2 (Pitman-Koopman-Darmois theorem) Suppose that F is a para-

metric class of distributions whose domain does not depend on the parameter, this as-
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sumption includes the Cauchy family, Weibull distributions and exponential families of

distributions but not the uniform family. Only in the case that distribution belongs to the

exponential family will the number of minimal sufficient statistic not depend on sample

size.

The uniform distribution has a finite number of sufficient statistics (maxXi), which does

not depend on the sample size and it does not belong the exponential family. However,

the Pitman-Koopman-Darmois theorem does not cover the uniform distribution since its

domain depends on the parameter θ.

Example 1.4.7 (Number of sufficient statistics is equal to the sample size) (i)

Consider the Cauchy family of distributions

F =

{
fθ; fθ(x) =

1

π(1 + (x− θ)2

}
.

the joint distribution of {Xi}ni=1 where Xi follow a Cauchy is

n∏
i=1

1

π(1 + (xi − θ)2)
.

We observe that the parameters cannot be separated from any of the variables. Thus

we require all the data to characterize the parameter θ.

(ii) The Weibull family of distributions

F =

{
fθ; fφ,α(x) =

(
α

φ

)(
x

φ

)α−1

exp[−(x/φ)α]

}

Example 1.4.8 (The truncated exponential) Suppose that X is an exponentially dis-

tributed random variable but is truncated at c. That is

f(x; θ) =
θ exp(−θx)

1− e−cθ
I(x ≤ c).

However, the truncation point c is the point which cuts the exponential distribution in half,

that is 1/2 = e−cθ = 1 − e−cθ. Thus c = θ−1 log 2. Thus the boundary of the distribution

depends on the unknown parameter θ (it does not belong to the exponential family).
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Suppose {Xi} are iid random variables with distribution f(x; θ) = 2θ exp(−xθ)I(x ≤
θ−1 log 2) where θ ∈ Θ = (0,∞). The likelihood for θ is

L(θ;X) = 2nθn exp(−θ
n∑
i=1

Xi)
n∏
i=1

I[0,θ−1 log 2](Xi)

= 2nθn exp(−θ
n∑
i=1

Xi)I[0,θ−1 log 2](maxXi),

thus we see there are two sufficient statistics for θ, s1(X) =
∑

iXi and s2(X) = maxiXi.

We recall that from Lemma 1.3.2 that most transformations in the data will lead

to a loss in information about the parameter θ. One important exception are sufficient

statistics.

Lemma 1.4.1 (The Fisher information matrix and sufficient statistics) Suppose

Assumption 1.3.1 holds and S(X) is a sufficient statistic for a parametric family of dis-

tributions F = {fθ; θ ∈ Θ}. Let IX(θ) and IS(X)(θ) denote the Fisher information of X

and S(X) respectively. Then for all θ ∈ Θ

IS(X)(θ) = IX(θ).

PROOF. From the proof of Lemma 1.3.2 we have

IX(θ) = IS(X)(θ) + E

(
∂ log fX|S(X)(X|S(X), θ)

∂θ

)2

. (1.14)

By definition of a sufficient statistic

fX|S(X)(x|y, θ)

does not depend on θ. This means that
∂ log fX|S(X)(X|S(X),θ)

∂θ
= 0, consequently the second

term on the right hand side of (1.14) is zero, which gives the required result. �

Remark 1.4.2 It is often claimed that only transformations of the data which are suf-

ficient statistics have the same information as the original data. This is not neces-

sarily true, sufficiency is not a necessary condition for Lemma 1.4.1 to hold. http:

// arxiv. org/ pdf/ 1107. 3797v2. pdf gives an example where a statistic that is not a

sufficient statistic of the data has the same Fisher information as the Fisher information

of the data itself.
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1.4.1 The Fisher information and ancillary variables

We defined the notion of ancillary in the previous section. Here we give an application.

Indeed we have previously used the idea of an ancillary variable in regression even without

thinking about it! I discuss this example below

So let us start with an example. Consider the problem of simple linear regression

where {Yi, Xi}ni=1 are iid bivariate Gaussian random variables and

Yi = βXi + εi,

where E[εi] = 0, var[εi] = 1 and Xi and εi are independent and β is the unknown

parameter of interest. We observe {Yi, Xi}. Since Xi contains no information about β it

seems logical to look at the conditional log-likelihood of Yi conditioned on Xi

L(β;Y |X) =
−1

2

n∑
i=1

(Yi − βXi).

Using the factorisation theorem we see that sufficient statistics for β are
∑n

i=1 YiXi and∑n
i=1X

2
i . We see that the distribution of

∑n
i=1X

2
i contains no information about β. Thus

it is an ancillary variable. Furthermore, since the conditional distribution of
∑n

i=1X
2
i

conditioned on
∑n

i=1 XiYi does depend on β it is an ancillary complement (I have no idea

what the distribution is).

Now we calculate the Fisher information matrix. The second derivative of the likeli-

hood is

∂2L(β;Y |X)

∂β2
= −

n∑
i=1

X2
i ⇒ −

∂2L(β;Y |X)

∂β2
=

n∑
i=1

X2
i .

To evaluate the Fisher information, do we take the expectation with respect to the dis-

tribution of {Xi} or not? In other words, does it make sense to integrate influence of the

observed regressors (which is the ancillary variable) or not? Typically, in regression one

does not. We usually write that the variance of the least squares estimator of a simple

linear equation with no intercept is (
∑n

i=1X
2
i ).

We now generalize this idea. Suppose that (X,A) are sufficient statistics for the

parameter θ. However, A is an ancillary variable, thus the marginal distribution contains

no information about θ. The joint log-likelihood can be written as

L(θ;X,A) = L(θ;X|A) + L(A)
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where L(θ;X|A) is the conditional log-likelihood of X conditioned on A and L(A) is the

marginal log distribution of A which does not depend on A. Clearly the second derivative

of L(θ;X,A) with respect to θ is

−∂
2L(θ;X,A)

∂θ2
= −∂

2L(θ;X|A)

∂θ2
.

The Fisher information is the expectation of this quantity. But using the reasoning in

the example above it would seem reasonable to take the expectation conditioned on the

ancillary variable A.

1.5 Sufficiency and estimation

It is clear from the factorisation theorem that the sufficient statistic contains all the

“ingredients” about the parameter θ. In the following theorem we show that by projecting

any unbiased estimator of a parameter onto its sufficient statistic we reduce its variance

(thus improving the estimator).

Theorem 1.5.1 (The Rao-Blackwell Theorem) Suppose s(X) is a sufficient statis-

tic and θ̃(X) is an unbiased estimator of θ then if we define the new unbiased estimator

E[θ̃(X)|s(X)], then E[E[θ̃(X)|s(X)]] = θ and

var
[
E
(
θ̃(X)|s(X)

)]
≤ var

[
θ̃(X)

]
.

PROOF. Using that the distribution of X conditioned on s(X) does not depend on θ,

since s(X) is sufficient (very important, since our aim is to estimate θ) we have

E[θ̃(X)|s(X) = y] =

∫
θ̃(x)fX|s(X)=y(x)dx

is only a function of s(X) = y (and not θ).

We know from the theory of conditional expectations that since σ(s(X)) ⊂ σ(X1, . . . , Xn),

then E[E(X|G)] = E[X] for any sigma-algebra G. Using this we immediately we have

E[E[θ̃(X)|s(X)]] = E[θ̃(X)] = θ. Thus E[θ̃(X)|s(X)] is an unbiased estimator.

To evaluate the variance we use the well know equality var[X] = var[E(X|Y )] +

E[var(X|Y )]. Clearly, since all terms are positive var[X] ≥ var[E(X|Y )]. This immedi-

ately gives the Rao-Blackwell bound. �
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Example 1.5.1 Suppose {Xi}ni=1 are iid normal random variable with mean µ and vari-

ance σ2. We know that Sx =
∑n

i=1Xi is a sufficient statistic for µ. We also know that X1

is an unbiased estimator of µ, but it is not sufficient. It is clear that var[θ̃] = var[X1] = σ2.

To improve the estimator we condition X1 on Sx, that is define θ̂ = E[X1|Sx], by the Rao-

Blackwell theorem this has a smaller variance than X1. To show that this is true for

this example, we use that X1, . . . , Xn are jointly normal then E[X1|Sx] is the best linear

predictor of X1 given Sx

E[X1|Sx] =
cov[X1, Sx]

var[Sx]
Sx =

σ2

nσ2
Sx = X̄,

which is not a surprise.

Is this the best estimator amongst all unbiased estimator? The Lehmann-Scheffe the-

orem shows that it is.

The Rao-Blackwell theorem tells us that estimators with the smallest variance must

be a function of a sufficient statistic. Of course, one can ask is there a unique estimator

with the minumum variance. For this we require completeness of the sufficient statistic.

Uniqueness immediately follows from the idea of completeness.

Definition 1.5.1 (Completeness) Let s(X) be a minimally sufficient statistic for all

θ ∈ Θ. Suppose Z(·) is a function of s(X) such that Eθ[Z(s(X))] = 0. s(X) is a complete

sufficient statistic if and only if E[Z(s(X))] = 0 implies Z(t) = 0 for all t and all θ ∈ Θ.

Example 1.5.2 If the exponential family has full rank, that is the number of unknown

parameters is equal to the dimension of the exponential family (and the parameter space

Θ is an open set, as yet I cannot give a good condition for this) then it is complete (see

Lehmann (1986), Section 4.3, Theorem 1).

Examples include the fully parameterized normal distribution, exponential distribution,

binomial distribution etc.

Example 1.5.3 (The constrained normal) Suppose that X ∼ N (µ2, µ2). Then Sx =∑n
i=1Xi and S ′xx =

∑n
i=1(Xi − X̄)2 are still the sufficient statistics for µ2. To see why

consider the conditional distribution of S ′xx|Sx, we know that S ′xx and Sx are independent

thus it is the marginal distribution of S ′xx which is µ2χ2
n−1. Clearly this still depends on

the parameter µ2. Hence we cannot reduce the number of sufficient statistics when we

constrain the parameters.
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However, Sx and Sxx are not complete sufficient statistics for µ2, since there exists a

non-zero function Z(Sx, Sxx) such that

E (Z(Sx, Sxx)) = E
(
X̄ − s2

)
= µ2 − µ2 = 0.

Example 1.5.4 (The uniform distribution f(x; θ) = θ−1I[0,θ](x)) Given the random

variables {Xi}ni=1 we recall that the sufficient statistic is max(Xi), we now show that it is

complete. Since P (max(Xi) ≤ x) = (x/θ)nI[0,θ](x) the density is fmax(x) = nxn−1/θnI[0,θ](x).

We now look for functions Z (which do not depend on θ) where

Eθ(Z(max
i
Xi)) =

n

θn

∫ θ

0

Z(x)xn−1dx.

It is“clear” that there cannot exist a function X where the above is zero for all θ ∈ (0,∞)

(I can’t think of a cute mathematical justification). Thus maxi(Xi) is a complete minimal

sufficient statistic for {Xi}.

Theorem 1.5.2 (Lehmann-Scheffe Theorem) Suppose that {S1(X), . . . , Sp(X)} is a

complete minimally sufficient statistic for the parametric family F = {fθ; θ ∈ Θ} and for

all θ ∈ Θ T (X) is an unbiased estimator estimator of θ then θ̂[X] = E [T (X)|s(X)] is the

unique minimum variance unbiased estimator (UMVUE) for all θ ∈ Θ.

PROOF. Suppose φ[s(X)] is an unbiased estimator of θ with a smaller variance than

θ̂[s(X)] then taking differences it is clear by unbiasedness that

E
(
θ̂[s(X)]− φ̂[s(X)]

)
= 0.

However, completeness immediately implies that φ̂[s(x)]− θ̂[s(x)] = 0 almost surely. Thus

proving the result. �

This theorem tells us if the conditions are satisfied, then for every θ ∈ Θ, the estimator

T (X) will give the smallest variance amongst all estimators which are unbiased. The

condition that the comparison is done over all unbiased estimators is very important. If

we drop the relax the condition to allow biased estimators then improvements are possible.

Remark 1.5.1 Consider the example of the truncated exponential in Example 1.4.8. In

this example, there are two sufficient statistics, s1(X) =
∑n

i=1Xi and s2(X) = maxiXi

for the unknown parameter θ, neither are ancillary in the sense that their marginal dis-

tributions depend on θ. Thus both sufficient statistics can be used to estimate θ.
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In general if there are two sufficient statistics for one parameter, θ, and neither of the

sufficient statistics are ancillary, then usually one can use either sufficient statistic as a

means of constructing an estimator of θ.

Exercise 1.6 In the above remark, calculate the expectation of maxiXi and
∑

iXi and

use this to propose two different estimators for θ.

Example 1.5.5 For the curious, http: // www. tandfonline. com/ doi/ abs/ 10. 1080/

00031305. 2015. 1100683? journalCode= utas20 give an example of minimal sufficient

statistics which are not complete and use the Rao-Blackwell theorem to improve on the

estimators (though the resulting estimator does not have minimum variance for all θ in

the parameter space).

1.6 The exponential family of distributions

We now expand a little on the exponential family described in the previous section. In

a nutshell the exponential family is where the parameters of interest and the random

variables of the log-likelihood are separable. As we shall see below, this property means

the number of minimal sufficient statistics will always be finite and estimation relatively

straightforward.

1.6.1 The natural/canonical exponential family

We first define the one-dimension natural exponential family

f(x; θ) = exp (s(x)θ − κ(θ) + c(x)) , (1.15)

where κ(θ) = log
∫

exp(s(x)θ+c(x))dν(x) and θ ∈ Θ (which define below). If the random

variable is continuous, then typically ν(x) is the Lebesgue measure, on the other hand

if it is discrete then ν(x) is the point mass, for example for the Poisson distribution

dν(x) =
∑∞

k=0 δk(x)dx.

Example 1.6.1 We now give an example of a distribution which immediately has this

parameterisation. The exponential distribution has the pdf is f(x;λ) = λ exp(−λx), which

can be written as

log f(x;λ) = (−xλ+ log λ) λ ∈ (0,∞)
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Therefore s(x) = −x and κ(λ) = − log λ.

The parameter space for this family is defined as

Θ =

{
θ;

∫
exp (s(x)θ + c(x)) dν(x) <∞

}
,

in other words all parameters where this integral is finite and thus gives a well defined

density. The role of κ(θ) is as a normaliser and ensures that density integrates to one i.e∫
f(x; θ)dν(x) =

∫
exp (s(x)θ − κ(θ) + c(x)) dν(x) = exp(−κ(θ))

∫
exp (s(x)θ + c(x)) dν(x) = 1

we see that

κ(θ) = log

∫
exp (s(x)θ + c(x)) dν(x)

By using the factorisation theorm, we can see that
∑n

i=1 s(X) is the sufficient statistic

for the family F = {f(x; θ); θ ∈ Θ}. The one-dimensional natural exponential is only

a function of one-parameter. The p-dimensional natural exponential generalisation is

defined as

f(x; θ) = exp [s(x)′θ − κ(θ) + c(x)] . (1.16)

where s(x) = (s1(x), . . . , sp(x)) is a vector which is a function of x and θ = {θ1, . . . , θp}
is a p-dimension parameter. The parameter space for this family is defined as

Θ =

{
θ;

∫
exp (s(x)′θ + c(x)) dν(x) <∞

}
,

again κ(θ) is such that

κ(θ) = log

∫
exp

(
p∑
j=1

sj(x)θj + c(x)

)
dν(x)

and ensures that the density integrates to one.

Lemma 1.6.1 Consider the p-dimension family F of densities where F = {f(x; θ); θ =

(θ1, . . . , θp) ∈ Θ} with

f(x; θ) = exp [s(x)′θ − κ(θ) + c(x)] .

By using the Factorisation theorem it can be seen that {
∑n

i=1 s1(Xi), . . . ,
∑n

i=1 sp(Xi)} are

the sufficient statistics for F .

38



However, once one goes beyond dimension one, there can arise redundancy in the

representation. For example, consider the two-dimensional exponential family defined by

F = {f(x; θ1, θ2) = exp (αs(x)θ1 + βs(x)θ2 − κ(θ1, θ2) + c(x)) ; (θ1, θ2) ∈ Θ} ,

since f(x; θ1, θ2) is a density, then

κ(θ1, θ2) = log

(∫
exp [(θ1α + θ2β)s(x) + c(x)] dν(x)

)
.

We see that κ(θ1, θ2) is the same for all θ1, θ2 such that (θ1α+ θ2β) is constant. Thus for

all parameters

(θ1, θ2) ∈ ΘC = {(θ1, θ2); (θ1, θ2) ∈ Θ, (θ1α + θ2β) = C}

the densities f(x; θ1, θ2) are the same. This means the densities in F are not identifiable.

Definition 1.6.1 A class of distributions/model F = {f(x;θ);θ ∈ Θ} is non-identifiable

if there exists a θ1,θ2 ∈ Θ such that f(x;θ1) = f(x;θ2) for all x ∈ R.

Non-identifiability of a model can be hugely problematic in estimation. If you cannot

identify the parameter, then a likelihood can have several maximums, the limit of the

estimator is no longer well defined (it can be estimating several different estimators).

In the above example, a minimal representation of the above function is the one-

dimensional exponential family

F = {f(x; θ) = exp [θs(x)− κ(θ) + c(x)] ; θ ∈ Θ} .

Therefore to prevent this over parameterisation and lack of identifiability we assume

that the functions {sj(x)}pj=1 in the canonical representation are linear independent i.e.

there does not exist constants {αj}pj=1 and C such that

p∑
j=1

αjsj(x) = C

for all x in the domain of X. This representation is called minimal. As can be seen from

the example above, if there is linear dependence in {si(x)}pi=1, then it is easy to find an

alternative representation which is of a lower dimension and canonical.
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Lemma 1.6.2 If {Xi}ni=1 are iid random variables, which belong to the p-dimensional

exponential family that has the form

F =

{
f(x; θ) = exp

[
p∑
j=1

θjsj(x)− κ(θ) + c(x)

]
; θ ∈ Θ

}

where Θ =

{
θ;

∫
exp

[
p∑
j=1

θjsj(x) + c(x)

]
dν(x) <∞

}
and this is a minimal representation. Then the minimal sufficient statistics are

{
∑n

i=1 s1(Xi), . . . ,
∑n

i=1 sp(Xi)}.

If the parameter space Θ is an open set, then the family of distributions F is called regular.

The importance of this will become clear in the next chapter. The parameter space Θ is

often called the natural parameter space. Note that the the natural parameter space is

convex. This means if θ1, θ2 ∈ N then for any 0 ≤ α ≤ 1 αθ1 + (1 − α)θ2 ∈ N . This is

proved by using Hölder’s inequality and that κ(θ1), κ(θ2) <∞ and eκ(θ) =
∫

exp(θ′s(x) +

c(x))dν(x).

Remark 1.6.1 Convexity of the parameter space basically mean if θ1, θ2 ∈ Rd and both

of them are such that give a well defined density then for any convex combination (think

a line between the two points) will also yield a well defined density.

1.6.2 Moments of the canonical representation

In this section we derive the moments of the canonical exponential family using some cute

tricks. To simplify the exposition we focus on canonical exponential families of dimension

one, though the same result holds for higher dimensions.

Definition 1.6.2 (Cumulant generating function) The cumulant generating function

(for a univariate random variable) is defined as CX(t) = log E[etX ]. The power series ex-

pansion of the cumulant generating function is

CX(t) = log E[etX ] =
∞∑
n=1

κn
tn

n!
,

where κn = C
(n)
X (0) (analogous to the moment generating function). Note that κ1(X) =

E[X], κ2(X) = var[X] and κj = κj(X, . . . , X). X is a Gaussian random variable iff

κj = 0 for j ≥ 3.
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We use the above in the lemma below.

Lemma 1.6.3 [Moment generating functions] Suppose that X is a random variable with

density

f(x; θ) = exp (s(x)θ − κ(θ) + c(x)) , θ ∈ Θ (1.17)

where

Θ =

{
θ;

∫
exp (s(x)θ − κ(θ) + c(x)) dν(x) <∞

}
,

. If θ ∈ int(Θ) (the interior of θ, to ensure that it is an open set),

(i) Then the moment generating function of s(X) is

E [exp(s(X)t)] = Ms(X)(t) = exp [κ(t+ θ)− κ(θ)]

(ii) The cumulant generating function is

log E [exp(s(X)t)] = Cs(X)(t) = κ(t+ θ)− κ(θ).

(iii) Furthermore Eθ[s(X)] = κ′(θ) = µ(θ) and varθ[s(X)] = κ′′(θ).

(iv) ∂2 log f(x;θ)
∂θ2

= −κ′′(θ), thus log f(x; θ) has a negative definite Hessian.

This result easily generalizes to p-order exponential families.

PROOF. We choose t sufficiently small such that (θ + t) ∈ int(Θ), since (θ + t) belongs

to the parameter space, then f(y; (θ + t)) is a valid density/distribution. The moment

generating function of s(X) is

Ms(X)(t) = E [exp(ts(X))] =

∫
exp(ts(x)) exp(θs(x)− κ(θ) + c(x))dν(x).

Taking exp(−κ(θ)) out of the integral and adding and subtracting exp(κ(θ + t)) gives

Ms(X)(t) = exp(κ(θ + t)− κ(θ))

∫
exp((θ + t)s(x)− κ(θ + t) + c(x))dν(x)

= exp(κ(θ + t)− κ(θ)),

since
∫

exp((θ+t)y−κ(θ+t)+c(y))dy =
∫
f(y; (θ+t))dy = 1. To obtain the moments we

recall that the derivatives of the cumulant generating function at zero give the cumulant of

the random variable. In particular C ′s(X)(0) = E[s(X)] and C ′′s(X)(0) = var[s(X)]. Which

immediately gives the result. �
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1.6.3 Reparameterisations and examples

We recall that a distribution belongs to the exponential family F if f ∈ F can be written

as

f(x;ω) = exp

(
p∑
j=1

φj(ω)sj(x)− A(ω) + c(x)

)
,

where ω = (ω1, . . . , ωq) are the q-dimensional parameters. Since this family of distribu-

tions is parameterized by ω and not θ it is not in natural form. With the exponential

distribution there are very few distributions which immediately have a canonical/natural

exponential representation. However, it can be seen (usually by letting θj = φj(ω))

that all exponential families of distributions can be reparameterized such that it has

a canonical/natural representation. Moreover by making sufficient transformations, to

ensure the sufficient statistics do not satisfy any linear constraints, the representation

will be minimal (see the monograph http://www.jstor.org/stable/pdf/4355554.pdf?

acceptTC=true, Lawrence Brown (1986), Proposition 1.5, for the precise details). Let

Φ(ω) = (φ1(ω), . . . , φp(ω)) and Ω denote the parameter space of ω. Then we see that

Φ : Ω→ Θ, where Θ is the natural parameter space defined by

Θ =

{
θ;

∫
exp

(
p∑
j=1

θjsj(x) + c(x)

)
dx <∞

}
.

Thus Φ is an injection (one-to-one) mapping from Ω to Θ. Often the mapping is a bijection

(injective and surjective), in which case p = q. In such cases, the exponential family is

said to have full rank (technically, full rank requires that N is an open set; when it is

closed strange things can happen on the boundary of the set).

If the image of Φ, Φ(Ω), is not a linear subset of N , then the exponential family F is

called a curved exponential.

Recall that θ is a function of the d-dimension parameters ω if

(i) If p = d then the exponential family is said to have full rank. In this case the

sufficient statistics are complete.

(i) If p > d then the exponential family is said to be a curved exponential family. This

means the image Φ(Ω) (the parameter space of ω onto θ) is not a linear subset

of Θ For curved exponential families there are nonlinear constraints between the

unknown parameters.
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When the exponential family is curved it is not complete (see Exercise 1.6.2). The

implication of this is that there is no unique unbiased estimator (in terms of the

sufficient statistics), which will give the minimal variance for all parameters in the

parameter space. See Brown (1986), Theorem 1.9 (page 13) for details on the above.

Lemma 1.6.4 If a distribution belongs to the exponential family, and the sufficient statis-

tics are linearly independent then the sufficient statistics are minimally sufficient.

Example 1.6.2 (The normal distribution) We recall that Sxx, Sx are the sufficient

statistics of the normal family of distributions, where (Sxx, Sx) = (
∑n

i=1X
2
i ,
∑n

i=1Xi). It

is clear that (Sxx, Sx) are linearly independent (i.e. for no linear combination αSxx+βSx =

0 for all Sx and Sxx), thus by Lemma 1.6.4 they are minimally sufficient.

Exercise 1.7 Suppose that {Xi}ni=1 are iid normal random variables where the ratio be-

tween mean and standard deviation γ = σ/µ is known. What are the minimal sufficient

statistics?

1.6.4 Examples

By making appropriate transformations, we show that the below well known distributions

can be written in natural form.

(i) The exponential distribution is already in natural exponential form and the param-

eter space is Θ = (0,∞).

(ii) For the binomial distribution where X ∼ Bin(n, p) we note

log f(x; p) = x log p+ (n− x) log(1− p) + log

(
n

x

)
.

One natural parameterisation is to let θ1 = log p, θ2 = log(1 − p) with sufficient

statistics x and (n−x). This a two-dimensional natural exponential representation.

However we see that the sufficient statistics are subject to a linear constraint, namely

s1(x) + s2(x) = x + (n− x) = n. Thus this representation is not minimal. Instead

we rearrange log f(x; p)

log f(x; p) = x log
p

1− p
+ n log(1− p) + log

(
n

x

)
.
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Let θ = log( p
1−p), since θ(p) = log( p

1−p) is invertible this gives the natural represen-

tation

log f(x; θ) =

[
xθ − n log (1 + exp(θ)) + log

(
n

x

)]
.

Hence the parameter of interest, p ∈ (0, 1), has been transformed, to θ ∈ (−∞,∞).

The natural parameter space is Θ = (−∞,∞). The sufficient statistic is
∑

iXi.

dν(x) = dx, the Lebesgue measure.

(iii) The normal family of distributions can be written as

log f(x;µ, σ) = − 1

2σ2
x2 +

µ

σ2
x− µ2

2σ2
− 1

2
log σ2 − 1

2
log 2π. (1.18)

In this case the natural exponential parametrisation is x = (−1
2
x2, x), θ = ( 1

σ2 ,
µ
σ2 ) =

(θ1, θ2) and κ(θ1, θ2) = θ2
2/(2θ1)− 1/2 log(θ1). In this case Θ = (0,∞)× (−∞,∞).

The sufficient statistics are
∑

iXi and
∑

iX
2
i . dν(x) = dx, the Lebesgue measure.

(iv) The multinomial distribution can be written as

log f(x1, . . . , xp; π) =

p∑
i=1

xi log πi + log n!−
p∑
i=1

xi!

=

p−1∑
i=1

xi log
πi
πp

+ n log πp + log n!−
p∑
i=1

xi!.

For 1 ≤ i ≤ p− 1 let θi = log πi/πp then the natural representation is

log f(x1, . . . , xp; π) =

p−1∑
i=1

θixi − n log

(
1 +

p−1∑
i=1

exp(−θi)

)
+ log n!−

p∑
i=1

xi!

and the parameters space is Rp−1. The sufficient statistics are
∑

iXi1, . . . ,
∑

iXi,p−1.

The point measure is dν(x) =
∑n

j1,j2,...,jp−1=1 δj1(x1) . . . δjp−1(xj−1)δ[0,n](x1 + . . . +

xp−1)dx1 . . . dxp−1.

Note that one can also write the multinomial as

log f(x1, . . . , xp; π) =

p∑
i=1

θixi + log n!−
p∑
i=1

xi!,

where θi = log πi. However this is not in minimal form because n−
∑n

i=1 xi = 0 for

all {xi} in the sample space; thus they are not linearly independent.
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(v) The censored exponential distribution. X ∼ Exp(λ) (density of X is f(x;λ) =

exp[−xλ + log λ]), however X is censored at a known point c and Y is observed

where

Y =

{
X X ≤ c

c X > c

and c is assumed known. Suppose we observe {Yi, δi}, using (2.3) we have

L(λ) = −
n∑
i=1

(1− δi)λYi + (1− δi) log λ− δicλ.

We recall that by definition of Y when δ = 1 we have Y = c thus we can write the

above as

L(λ) = −λ
n∑
i=1

Yi − log λ
n∑
i=1

δi + n log λ.

Thus when the sample size is n the sufficient statistics are s1(Y, δ) =
∑

i Yi, s2(Y, δ) =∑
i δi =

∑
i I(Yi ≥ c)). The natural parameterisation is θ1 = −λ, θ2 = − log(−λ)

and κ(θ1, θ2) = θ2 = 1
2
(− log(−θ1) + θ2) (thus we see that parameters are subject

to nonlinear constraints). As s1(Y, δ) =
∑

i Yi, s2(Y, δ) =
∑

i δi are not linearly de-

pendent this means that the censored exponential distribution has a 2-dimensional

natural exponential representation. The measure is dν(x, δ) = dx[δ0(δ)dδ+ δ1(δ)dδ]

However since the parameter space is not the entire natural parameter space N =

(−∞, 0)× (−∞, 0) (since θ1(λ) = λ and θ2(λ) = log λ) but a subset of it, then the

family is curved and thus the sufficient statistics are not complete. This means that

there is no unique unbiased estimator with minimal variance.

(vi) The von-Mises distributions are distributions defined on a sphere. The simplest is

the von-Mises distribution defined on a 1-d circle

f(x;κ, µ) =
1

2πI0(κ)
exp (κ cos(x− µ)) x ∈ [0, 2π],

where I0 is a Bessel function of order zero (κ > 0 and µ ∈ R). We will show that it

has a natural 2-dimensional exponential representation

log f(x;κ, µ) = κ cos(x− µ)− log 2πI0(κ)

= κ cos(x) cos(µ) + κ sin(x) sin(µ)− log 2πI0(κ).
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Let s1(x) = cos(x) and s2(x) = sin(x) and we use the parameterisation θ1(κ, µ) =

κ cosµ, θ2(κ, µ) = κ sinµ, κ(θ1, θ2) = − log 2πI0(
√
θ2

1 + θ2
2). The sufficient statistics

are
∑

i cos(Xi) and
∑

i sin(Xi) and (θ1, θ2) ∈ R2 The measure is dν(x) = dx.

(vii) Consider the inflated zero Poisson distribution which has the log-likelihood

L(Y ;λ, p)

=
n∑
i=1

I(Yi = 0) log
(
p+ (1− p)e−λ

)
+

n∑
i=1

I(Yi 6= 0)

(
log(1− p) + log

λYie−λ

Yi!

)
=

n∑
i=1

[1− I(Yi 6= 0)] log
(
p+ (1− p)e−λ

)
+ log λ

n∑
i=1

I(Yi 6= 0)Yi

+ (log(1− p)− λ)
n∑
i=1

I(Yi 6= 0)−
n∑
i=1

I(Yi 6= 0) log Y !

=
{
− log

(
p+ (1− p)e−λ

)
+ (log(1− p)− λ)

} n∑
i=1

I(Yi 6= 0)

+ log λ
n∑
i=1

I(Yi 6= 0)Yi + n log
(
p+ (1− p)e−λ

)︸ ︷︷ ︸
−κ(·)

−
n∑
i=1

I(Yi 6= 0) log Y !.

This has a natural 2-dimension exponential representation. Let

θ1 =
{
− log

(
p+ (1− p)e−λ

)
+ (log(1− p)− λ)

}
θ2 = log λ

with sufficient statistics s1(Y ) =
∑n

i=1 I(Yi 6= 0), s2(Y ) =
∑n

i=1 I(Yi 6= 0)Yi. The

parameter space is (θ1, θ2) ∈ (−∞, 0]× (−∞,∞), the 0 end point for θ1 corresponds

to p = 0. If we allowed p < 0 (which makes no sense), then the parameter space for

θ1 can possibly be greater than 0, but this makes no sense. If calculated correctly

κ(θ1, θ2) = − log

(
eθ1 − θ−1

2

1− θ−1
2

(1− e−eθ2 ) + e−e
θ2

)
.

The measure is the point mass dν(x) =
∑∞

j=0 δj(x)dx.

(viii) Suppose (Xi, Yi) are iid random variables with densities θ exp(−θx) and θ−1 exp(−θ−1y)

respectively. Then the joint density is f(x, y) = exp(−θx− θ−1y). The slight differ-

ence here is that there are two random variables at play. But this not change the

analysis. The natural exponential parameterisation is

f(x, y; θ1, θ2) = exp (−θ1x− θ2y) θ1, θ2 > 0
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subject to tthe constraint θ1θ2 = 1. The log-likelihood is

Ln(θ) = −θ1

n∑
i=1

Xi − θ2

n∑
i=1

Yi,

thus the minimal sufficient statistics are s1(X, Y ) =
∑n

i Xi and s2(X, Y ) =
∑n

i Yi.

However, the parameter space is (θ, 1/θ) which is not a linear subset in (R+)2, thus

it is not complete. This is a curved exponential. The measure is dν(x, y) = dxdy.

1.6.5 Some additional properties of the exponential family

We first state some definitions which we use later.

Definition 1.6.3 (Concave, convex functions and the Hessian) • A function is

said to be concave if

f (y + α(x− y)) = f (αx+ (1− α)y) ≥ αf(x) + (1− α)f(y) = f(y) + α [f(x)− f(y)] .

and strictly concave if

f (y + α(x− y)) = f (αx+ (1− α)y) > αf(x) + (1− α)f(y) = f(y) + α [f(x)− f(y)] .

For d = 1 this can be seen as the curve of f lying above the tangent between the

points (x, f(x)) and (y, f(y)). This immediately implies that if y > x, then

f(y)− f(x) <
f (x+ α(y − x))− f(x)

α
⇒ f(y)− f(x)

y − x
<
f (x+ α(y − x))− f(x)

α(y − x)

for all 0 < α < 1. Thus

f(y)− f(x)

y − x
< f ′(x).

• The Hessian of a function of p variables f : Rp → R is its second derivative

∇2
θf(θ) =

{
∂2f(θ)
∂θi∂θj

; 1 ≤ i, j ≤ p
}

.

• Examples of concave functions are f(x) = −x2 (for x ∈ (−∞,∞)) and f(x) = log x

for x ∈ (0,∞). Observe that −x2 is maximised at x = 0, whereas the maximum of

log x lies outside of the interval (0,∞).

A function is a concave function if and only if the Hessian, ∇2
θf , is negative semi-

definite.
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We now show consider the properties of the log likelihood of the natural exponential.

(i) We now show that second derivative of log-likelihood of a function from the natural

exponential family has a negative definite Hessian. It is straightforward to show

that the second derivative of the log-likelihood is

∇2
θLn(θ) = −

n∑
i=1

∇2
θκ(θ) = −n∇2

θκ(θ).

From Lemma 1.6.3 we see that for all θ ∈ Θ ∇2
θκ(θ) corresponds to the variance of a

random variable Xθ with density fθ. This implies that ∇2
θκ(θ) ≥ 0 for all θ ∈ Θ and

thus the Hessian ∇2
θLn(θ) is semi-negative definite. We will later show that this

means that Ln(X; θ) can easily be maximised. Thus for the natural exponential

family the observed and expected Fisher information are the same.

Examples of different concave likelihoods are given in Figure 1.3. Observe that the

maximum may not always lie within the interior of the parameter space.

(ii) We recall that θ is a function of the parameters ω. Therefore the Fisher information

for ω is related, but not equal to the Fisher information for θ. More precisely, in

the case of the one-dimension exponential family the likelihood is

Ln(θ(ω)) = θ(ω)
n∑
i=1

s(Xi)− nκ(θ(ω)) + n
n∑
i=1

c(Xi).

Therefore the second derivative with respect to ω is

∂2Ln[θ(ω)]

∂ω2
= −n∂θ

′

∂ω

∂2κ(θ)

∂θ2

∂θ

∂ω
+

(
n∑
i=1

Xi − n
∂κ(θ)

∂θ

)
∂2θ

∂ω2
.

Recall that E[
(∑n

i=1Xi − n∂κ(θ)
∂θ

)
= nE[Xi]− nκ′(θ) = 0. Using this we have

I(ω) = −E

(
∂2Ln[θ(ω)]

∂ω2

)
= n

∂θ′

∂ω

∂2κ(θ)

∂θ2

∂θ

∂ω
.

In this case the observed and expected Fisher information matrices are not the same.

However, if there is a diffeomorphism between the space of θ and ω, negative defi-

nite ∇2
θLn(θ) = ∂2κ(θ)

∂θ2
implies negative definite ∇2

ωLn(θ(ω)). This is because when

there is a diffeomorphism (a continuous invertible mapping between two spaces), the
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Figure 1.3: Examples of different concave likelihoods
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eigen-values of the corresponding Hessian matrices will change, however the signs

will not. Therefore if ∇2
θLn(θ) is negative definite then so is its reparametrisation

∇2
ωLn(θ(ω)).

(ii) The natural parameter space N is convex, this means if θ1, θ2 ∈ Θ then αθ1 + (1−
α)θ2 ∈ Θ for 0 ≤ α ≤ 1 (easily proved using Hölder’s inequality).

(iii) The function κ(θ) is convex (easily proved using that κ(θ) = log
∫

exp(θs(x) +

c(x))dν(x) and Hölder’s inequality).

1.7 The Bayesian Cramer-Rao inequality

The classical Cramér-Rao inequality is useful for assessing the quality of a given estimator.

But from the derivation we can clearly see that it only holds if the estimator is unbiased.

As far as I am aware no such inequality exists for the mean squared error of estimators

that are biased. For example, this can be a problem in nonparametric regression, where

estimators in general will be biased. How does one access the estimator in such cases? To

answer this question we consider the Bayesian Cramer-Rao inequality. This is similar to

the Cramer-Rao inequality but does not require that the estimator is unbiased, so long

as we place a prior on the parameter space. This inequality is known as the Bayesian

Cramer-Rao or van-Trees inequality (see [?] and [?]).

Suppose {Xi}ni=1 are random variables with distribution function Ln(X; θ). Let θ̃(X)

be an estimator of θ. We now Bayesianise the set-up by placing a prior distribution

on the parameter space Θ, the density of this prior we denote as λ. Let E[g(x)|θ] =∫
g(x)Ln(x|θ)dx and Eλ denote the expectation over the density of the parameter λ. For

example

EλE[θ̃(X)|θ] =

∫ b

a

∫
Rn
θ̃(x)Ln(x|θ)dxλ(θ)dθ.

Now we place some assumptions on the prior distribution λ.

Assumption 1.7.1 θ is defined over the compact interval [a, b] and λ(x) → 0 as x → a

and x→ b (so λ(a) = λ(b) = 0).
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Theorem 1.7.1 Suppose Assumptions 1.3.1 and 1.7.1 hold. Let θ̃(X) be an estimator of

θ. Then we have

Eλ

[
Eθ

{(
θ̃(X)− θ

)2
∣∣∣∣θ}] ≥ [Eλ[I(θ)] + I(λ)]−1

where

Eλ[I(θ)] =

∫ ∫ (
∂ logLn(x; θ)

∂θ

)2

Ln(x; θ)λ(θ)dxdθ

and I(λ) =

∫ (
∂ log λ(θ)

∂θ

)2

λ(θ)dθ.

PROOF. First we derive a few equalities. We note that under Assumption 1.7.1 we have∫ b

a

dLn(x; θ)λ(θ)

dθ
dθ = Ln(x; θ)λ(θ)

]b
a

= 0,

thus ∫
Rn
θ̃(x)

∫ b

a

∂Ln(x; θ)λ(θ)

∂θ
dθdx = 0. (1.19)

Next consider
∫
Rn
∫ b
a
θ ∂Ln(x;θ)λ(θ)

∂θ
dθdx. Using integration by parts we have∫

Rn

∫ b

a

θ
dLn(x; θ)λ(θ)

dθ
dθdx =

∫
Rn

(
θLn(x; θ)λ(θ)

]b
a

)
dx−

∫
Rn

∫ b

a

Ln(x; θ)λ(θ)dθdx

= −
∫
Rn

∫ b

a

Ln(x; θ)λ(θ)dθdx = −1. (1.20)

Subtracting (1.20) from (1.19) we have∫
Rn

∫ b

a

(
θ̃(x)− θ

) ∂Ln(x; θ)λ(θ)

∂θ
dθdx =

∫
Rn

∫ b

a

Ln(x; θ)λ(θ)dθdx = 1.

Multiplying and dividing the left hand side of the above by Ln(x; θ)λ(θ) gives∫
Rn

∫ b

a

(
θ̃(x)− θ

) 1

Ln(x; θ)λ(θ)

dLn(x; θ)λ(θ)

dθ
Ln(x; θ)λ(θ)dxdθ = 1.

⇒
∫
Rn

∫ b

a

(
θ̃(x)− θ

) d logLn(x; θ)λ(θ)

dθ
Ln(x; θ)λ(θ)︸ ︷︷ ︸

measure

dxdθ = 1

Now by using the Cauchy-Schwartz inequality we have

1 ≤
∫ b

a

∫
Rn

(
θ̃(x)− θ

)2

Ln(x; θ)λ(θ)dxdθ︸ ︷︷ ︸
Eλ

(
E((θ̃(X)−θ)2|θ)

)
∫ b

a

∫
Rn

(
d logLn(x; θ)λ(θ)

dθ

)2

Ln(x; θ)λ(θ)dxdθ.
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Rearranging the above gives

Eλ

[
Eθ(θ̃(X)− θ)2

]
≥

[∫ b

a

∫
Rn

(
∂ logLn(x; θ)λ(θ)

∂θ

)2

Ln(x; θ)λ(θ)dxdθ

]−1

.

Finally we want to show that the denominator of the RHS of the above can equivalently

written as the information matrices:∫ b

a

∫
Rn

(
∂ logLn(x; θ)λ(θ)

∂θ

)2

Ln(x; θ)λ(θ)dxdθ = Eλ(I(θ)) + I(λ).

We use basic algebra to show this:∫ b

a

∫
Rn

(
∂ logLn(x; θ)λ(θ)

∂θ

)2

Ln(x; θ)λ(θ)dxdθ

=

∫ b

a

∫
Rn

(
∂ logLn(x; θ)

∂θ
+
∂ log λ(θ)

∂θ

)2

Ln(x; θ)λ(θ)dxdθ

=

(
∂ logLn(x; θ)

∂θ

)2

Ln(x; θ)λ(θ)dxdθ︸ ︷︷ ︸
Eλ(I(θ))

+2

∫ b

a

∫
Rn

∂ logLn(x; θ)

∂θ

∂ log λ(θ)

∂θ
Ln(x; θ)λ(θ)dxdθ

+

∫ b

a

∫
Rn

(
∂ log λ(θ)

∂θ

)2

Ln(x; θ)λ(θ)dxdθ︸ ︷︷ ︸
I(λ)

.

We note that∫ b

a

∫
Rn

∂ logLn(x; θ)

∂θ

∂ log λ(θ)

∂θ
dxdθ =

∫
∂ log λ(θ)

∂θ

∫
∂Ln(x; θ)

∂θ
dx︸ ︷︷ ︸

=0

dθ = 0.

and
∫ b
a

∫
Rn

(
∂ log λ(θ)

∂θ

)2

Ln(x; θ)λ(θ)dxdθ =
∫ b
a

(
∂ log λ(θ)

∂θ

)2

λ(θ)dθ. Therefore we have∫ ∫ (
∂ logLn(x; θ)λ(θ)

∂θ

)2

Ln(x; θ)λ(θ)dxdθ

=

∫ b

a

∫
Rn

(
∂ logLn(x; θ)

∂θ

)2

Ln(x; θ)λ(θ)dxdθ︸ ︷︷ ︸
Eλ(I(θ))

+

∫
Rn
Ln(x; θ)

∫ b

a

(
∂ log λ(θ)

∂θ

)2

λ(θ)dθ︸ ︷︷ ︸
I(λ)

dx.

Since
∫
Rn Ln(x; θ)dx = 1 we obtain the required result. �

We will consider applications of the Bayesian Cramer-Rao bound in Section ?? for

obtaining lower bounds of nonparametric density estimators.
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1.8 Some questions

Exercise 1.8 The distribution function of the random variable Xi is F(x) = 1−exp(−λx).

(i) Give a transformation of {Xi}i, such that the transformed variable is uniformly

distributed on the interval [0, 1].

(ii) Suppose that {Xi} are iid random variables. Use your answer in (i), to suggest a

method for checking that {Xi} has the distribution F(x) = 1−exp(−λx) (by checking

I mean a graphical tool)?

Exercise 1.9 Find the Fisher information matrix of

(i) The normal distribution with unknown mean µ and variance σ2.

(ii) The normal distribution with unknown mean µ and variance µ2.

(iii) Let g : R→ R be density. Show that 1
ρ
g
(
x−µ
ρ

)
is a density function. This is known

as the location-scale model.

Define the family of distributions

F =

{
f(x;µ, ρ) =

1

ρ
g

(
x− µ
ρ

)
;µ ∈ R, ρ ∈ (0,∞)

}
.

Suppose that µ and ρ is unknown, obtain the corresponding expected Fisher infor-

mation (make your derivation neat, explaining which terms depend on parameters

and which don’t); compare your result to (i) when are they similar?

Exercise 1.10 Construct a distribution which does not belong to the exponential family

but has only a finite number of sufficient statistics (the minimal number of sufficient

statistics does not grow with n).

Exercise 1.11 Suppose that Z is a Weibull random variable with density f(x;φ, α) =

(α
φ
)(x
φ
)α−1 exp(−(x/φ)α). Show that

E(Zr) = φrΓ

(
1 +

r

α

)
.

Hint: Use ∫
xa exp(−xb)dx =

1

b
Γ

(
a

b
+

1

b

)
a, b > 0.

This result will be useful in some of the examples used later in this course.
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Suppose we have two different sampling schemes to estimate a parameter θ, one mea-

sure for understanding which method is better able at estimating the parameter is the

relative frequency. Relative frequency is defined as the ratio between the two correspond-

ing Fisher information matrices. For example, if we have two iid samples from a normal

distribution N(µ, 1) (one of size n and the other of size m), then the relative frequency

is In(µ)/Im(µ) = n
m

. Clearly if n > m, then In(µ)/Im(µ) = n
m
> 1. Hence the sample of

size n contains more information about the parameter µ.

Exercise 1.12 Consider the censored exponential in equation (1.5), where {(Yi, δi)}ni=1

is observed.

(i) Calculate the expected Fisher information of the censored likelihood.

(ii) Calculate the expected Fisher information of {δi}.

(iii) Calculate the expected Fisher information when there is no censoring.

By using the notion of relative efficiency comment on which sampling scheme contains

the most and least information about the parameter θ.
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Chapter 2

The Maximum Likelihood Estimator

We start this chapter with a few “quirky examples”, based on estimators we are already

familiar with and then we consider classical maximum likelihood estimation.

2.1 Some examples of estimators

Example 1

Let us suppose that {Xi}ni=1 are iid normal random variables with mean µ and variance σ2.

The “best” estimators unbiased estimators of the mean and variance are X̄ = 1
n

∑n
i=1 Xi

and s2 = 1
n−1

∑n
i=1(Xi − X̄)2 respectively. To see why recall that

∑
iXi and

∑
iX

2
i

are the sufficient statistics of the normal distribution and that
∑

iXi and
∑

iX
2
i are

complete minimal sufficient statistics. Therefore, since X̄ and s2 are functions of these

minimally sufficient statistics, by the Lehmann-Scheffe Lemma, these estimators have

minimal variance.

Now let us consider the situation where the mean is µ and the variance is µ2. In this

case we have only one unknown parameter µ but the minimally sufficient statistics are∑
iXi and

∑
iX

2
i . Moreover, it is not complete since both(

n

n+ 1

)
X̄2 and s2 (2.1)

are unbiased estimators of µ2 (to understand why the first estimator is an unbiased estima-

tor we use that E[X2] = 2µ2). Thus violating the conditions of completeness. Furthermore
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any convex linear combination of these estimators

α

(
n

n+ 1

)
X̄2 + (1− α)s2 0 ≤ α ≤ 1

is an unbiased estimator of µ. Observe that this family of distributions is incomplete,

since

E

[(
n

n+ 1

)
X̄2 − s2

]
= µ2 − µ2,

thus there exists a non-zero function Z(Sx, Sxx) Furthermore(
n

n+ 1

)
X̄2 − s2 =

1

n(n+ 1)
S2
x −

1

n− 1

(
Sxx −

1

n
Sx

)
= Z(Sx, Sxx).

Thus there exists a non-zero function Z(·) such that E[Z(Sx, Sxx)] = 0, impying the

minimal sufficient statistics are not complete.

Thus for all sample sizes and µ, it is not clear which estimator has a minimum variance.

We now calculate the variance of both estimators and show that there is no clear winner

for all n. To do this we use the normality of the random variables and the identity (which

applies only to normal random variables)

cov [AB,CD] = cov[A,C]cov[B,D] + cov[A,D]cov[B,C] + cov[A,C]E[B]E[D] +

cov[A,D]E[B]E[C] + E[A]E[C]cov[B,D] + E[A]E[D]cov[B,C]

12. Using this result we have

var

[
n

n+ 1
X̄2

]
=

(
n

n+ 1

)2

var[X̄2] =

(
n

n+ 1

)2 {
2var[X̄]2 + 4µ2var[X̄]

}
=

(
n

n+ 1

)2 [
2µ4

n2
+

4µ4

n

]
=

2µ4

n

(
n

n+ 1

)2(
1

n
+ 4

)
.

1Observe that this identity comes from the general identity

cov [AB,CD]

= cov[A,C]cov[B,D] + cov[A,D]cov[B,C] + E[A]cum[B,C,D] + E[B]cum[A,C,D]

+E[D]cum[A,B,C] + E[C]cum[A,B,D] + cum[A,B,C,D]

+cov[A,C]E[B]E[D] + cov[A,D]E[B]E[C] + E[A]E[C]cov[B,D] + E[A]E[D]cov[B,C]

recalling that cum denotes cumulant and are the coefficients of the cumulant generating function (https:

//en.wikipedia.org/wiki/Cumulant), which applies to non-Gaussian random variables too
2Note that cum(A,B,C) is the coefficient of t1t2t3 in the series expansion of log E[et1A+t2B+t3B ] and

can be obtained with ∂3 log E[et1A+t2B+t3B ]
∂t1∂t2∂t3

ct1,t2,t3=0
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On the other hand using that s2 has a chi-square distribution with n−1 degrees of freedom

(with variance 2(n− 1)2) we have

var
[
s2
]

=
2µ4

(n− 1)
.

Altogether the variance of these two difference estimators of µ2 are

var

[
n

n+ 1
X̄2

]
=

2µ4

n

(
n

n+ 1

)2(
4 +

1

n

)
and var

[
s2
]

=
2µ4

(n− 1)
.

There is no estimator which clearly does better than the other. And the matter gets

worse, since any convex combination is also an estimator! This illustrates that Lehman-

Scheffe theorem does not hold in this case; we recall that Lehman-Scheffe theorem states

that under completeness any unbiased estimator of a sufficient statistic has minimal vari-

ance. In this case we have two different unbiased estimators of sufficient statistics neither

estimator is uniformly better than another.

Remark 2.1.1 Note, to estimate µ one could use X̄ or
√
s2 × sign(X̄) (though it is

unclear to me whether the latter is unbiased).

Exercise 2.1 Calculate (the best you can) E[
√
s2 × sign(X̄)].

Example 2

Let us return to the censored data example considered in Sections 1.2 and 1.6.4, Example

(v). {Xi}ni=1 are iid exponential distributed random variables, however we do not observe

Xi we observe a censored version Yi = min(Xi, c) (c is assumed known) and δi = 0 if

Yi = Xi else δi = 1.

We recall that the log-likelihood of (Yi, δi) is

Ln(θ) =
∑
i

(1− δi) {−θYi + log θ} −
∑
i

δicθ

= −
∑
i

θYi − log θ
∑
i

δi + n log θ,

since Yi = c when δi = 1. hence the minimal sufficient statistics for θ are
∑

i δi and
∑

i Yi.

This suggests there may be several different estimators for θ.
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(i)
∑n

i=1 δi gives the number of observations which have been censored. We recall that

P (δi = 1) = exp(−cθ), thus we can use n−1
∑n

i=1 δi as an estimator of exp(−cθ) and

solve for θ.

(ii) The non-censored observations also convey information about θ. The likelihood of

a non-censored observations is

LnC,n(θ) = −θ
n∑
i=1

(1− δi)Yi +
n∑
i=1

(1− δi)
{

log θ − log(1− e−cθ)
}
.

One could maximise this to obtain an estimator of θ

(iii) Or combine the censored and non-censored observations by maximising the likeli-

hood of θ given (Yi, θi) to give the estimator∑n
i=1(1− δi)∑n

i=1 Yi
.

The estimators described above are not unbiased (hard to take the expectation), but

they do demonstrate that often there is often no unique best method for estimating a

parameter.

Though it is usually difficult to find an estimator which has the smallest variance for

all sample sizes, in general the maximum likelihood estimator “asymptotically” (think

large sample sizes) usually attains the Cramer-Rao bound. In other words, it is “asymp-

totically” efficient.

Exercise 2.2 (Two independent samples from a normal distribution) Suppose that

{Xi}mi=1 are iid normal random variables with mean µ and variance σ2
1 and {Yi}mi=1 are iid

normal random variables with mean µ and variance σ2
2. {Xi} and {Yi} are independent,

calculate their joint likelihood.

(i) Calculate their sufficient statistics.

(ii) Propose a class of estimators for µ.

2.2 The Maximum likelihood estimator

There are many different parameter estimation methods. However, if the family of distri-

butions from the which the parameter comes from is known, then the maximum likelihood
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estimator of the parameter θ, which is defined as

θ̂n = arg max
θ∈Θ

Ln(X; θ) = arg max
θ∈Θ
Ln(θ),

is the most commonly used. Often we find that ∂Ln(θ)
∂θ
cθ=θ̂n = 0, hence the solution can be

obtained by solving the derivative of the log likelihood (the derivative of the log-likelihood

is often called the score function). However, if θ0 lies on the boundary of the parameter

space this will not be true. In general, the maximum likelihood estimator will not be an

unbiased estimator of the parameter.

We note that the likelihood is invariant to bijective transformations of the data. For

example if X has the density f(·; θ) and we define the transformed random variable

Z = g(X), where the function g has an inverse, then it is easy to show that the density

of Z is f(g−1(z); θ)∂g
−1(z)
∂z

. Therefore the likelihood of {Zi = g(Xi)} is

n∏
i=1

f(g−1(Zi); θ)
∂g−1(z)

∂z
cz=Zi =

n∏
i=1

f(Xi; θ)
∂g−1(z)

∂z
cz=Zi .

Hence it is proportional to the likelihood of {Xi} and the maximum of the likelihood in

terms of {Zi = g(Xi)} is the same as the maximum of the likelihood in terms of {Xi}.

Example 2.2.1 (The uniform distribution) Consider the uniform distribution, which

has the density f(x; θ) = θ−1I[0,θ](x). Given the iid uniform random variables {Xi} the

likelihood (it is easier to study the likelihood rather than the log-likelihood) is

Ln(Xn; θ) =
1

θn

n∏
i=1

I[0,θ](Xi).

Using Ln(Xn; θ), the maximum likelihood estimator of θ is θ̂n = max1≤i≤nXi (you can

see this by making a plot of Ln(Xn; θ) against θ).

To derive the properties of max1≤i≤nXi we first obtain its distribution. It is simple to

see that

P ( max
1≤i≤n

Xi ≤ x) = P (X1 ≤ x, . . . , Xn ≤ x) =
n∏
i=1

P (Xi ≤ x) =
(x
θ

)n
I[0,θ](x),

and the density of max1≤i≤nXi is fθ̂n(x) = nxn−1/θn.

Exercise 2.3 (i) Evaluate the mean and variance of θ̂n defined in the above example.
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(ii) Is the estimator biased? If it is, find an unbiased version of the estimator.

Example 2.2.2 (Weibull with known α) {Yi} are iid random variables, which follow

a Weibull distribution, which has the density

αyα−1

θα
exp(−(y/θ)α) θ, α > 0.

Suppose that α is known, but θ is unknown. Our aim is to fine the MLE of θ.

The log-likelihood is proportional to

Ln(X; θ) =
n∑
i=1

(
logα + (α− 1) log Yi − α log θ −

(
Yi
θ

)α)
∝

n∑
i=1

(
− α log θ −

(
Yi
θ

)α)
.

The derivative of the log-likelihood wrt to θ is

∂Ln
∂θ

= −nα
θ

+
α

θα+1

n∑
i=1

Y α
i = 0.

Solving the above gives θ̂n = ( 1
n

∑n
i=1 Y

α
i )1/α.

Example 2.2.3 (Weibull with unknown α) Notice that if α is given, an explicit so-

lution for the maximum of the likelihood, in the above example, can be obtained. Consider

instead the case that both α and θ are unknown. Now we need to find α and θ which

maximise the likelihood i.e.

arg max
θ,α

n∑
i=1

(
logα + (α− 1) log Yi − α log θ −

(Yi
θ

)α)
.

The derivative of the likelihood is

∂Ln
∂θ

= −nα
θ

+
α

θα+1

n∑
i=1

Y α
i = 0

∂Ln
∂α

=
n

α
−

n∑
i=1

log Yi − n log θ − nα

θ
+

n∑
i=1

log(
Yi
θ

)× (
Yi
θ

)α = 0.

It is clear that an explicit expression to the solution of the above does not exist and we

need to find alternative methods for finding a solution (later we show how profiling can be

used to estimate α).
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2.3 Maximum likelihood estimation for the exponen-

tial class

Typically when maximising the likelihood we encounter several problems (i) for a given

likelihood Ln(θ) the maximum may lie on the boundary (even if in the limit of Ln the

maximum lies with in the parameter space) (ii) there are several local maximums (so a

numerical routine may not capture the true maximum) (iii) Ln may not be concave, so

even if you are close the maximum the numerical routine just cannot find the maximum

(iv) the parameter space may not be convex (ie. (1 − α)θ1 + αθ2 may lie outside the

parameter space even if θ1 and θ2 are in the parameter space) again this will be problematic

for numerically maximising over the parameter space. When there is just one unknown

parameters these problems are problematic, when the number of unknown parameters is

p this becomes a nightmare. However for the full rank exponential class of distributions

we now show that everything behaves, in general, very well. First we heuristically obtain

its maximum likelihood estimator, and later justify it.

2.3.1 Full rank exponential class of distributions

Suppose that {Xi} are iid random variables which has a the natural exponential represen-

tation and belongs to the family F = {f(x; θ) = exp[
∑p

j=1 θjsj(x)− κ(θ) + c(x)]; θ ∈ Θ}
and Θ = {θ;κ(θ) = log

∫
exp(

∑p
j=1 θjsj(x) + c(x))dx < ∞} (note this condition defines

the parameter space, if κ(θ) = ∞ the density is no longer defined). Therefore the log

likelihood function is

Ln(X; θ) = θ
n∑
i=1

s(Xi)− nκ(θ) +
n∑
i=1

c(Xi),

where
∑n

i=1 s(Xi) = (
∑n

i=1 s1(Xi), . . . ,
∑n

i=1 sp(Xi)) are the sufficient statistics. By the

Rao-Blackwell theorem the unbiased estimator with the smallest variance will be a func-

tion of
∑n

i=1 s(Xi). We now show that the maximum likelihood estimator of θ is a function

of
∑n

i=1 s(Xi) (though there is no guarantee it will be unbiased);

θ̂n = arg max
θ∈Θ

{
θ

n∑
i=1

s(Xi)− nκ(θ) +
n∑
i=1

c(Xi)
}
.
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The natural way to obtain θ̂n is to solve

∂Ln(X; θ)

∂θ
cθ=θ̂n = 0.

However, this equivalence will only hold if the maximum lies within the interior of the

parameter space (we show below that in general this will be true). Let us suppose this is

true, then differentiating Ln(X; θ) gives

∂Ln(X; θ)

∂θ
=

n∑
i=1

s(Xi)− nκ′(θ) = 0.

To simplify notation we often write κ′(θ) = µ(θ) (since this is the mean of the sufficient

statistics). Thus we can invert back to obtain the maximum likelihood estimator

θ̂n = µ−1

(
1

n

n∑
i=1

s(Xi)

)
. (2.2)

Because the likelihood is a concave function, it has a unique maximum. But the maximum

will only be at θ̂n = µ−1
(

1
n

∑n
i=1 s(Xi)

)
if 1

n

∑n
i=1 s(Xi) ∈ µ(Θ). If µ−1( 1

n

∑n
i=1 s(Xi))

takes us outside the parameter space, then clearly this cannot be an estimator of the

parameter3. Fortunately, in most cases (specifically, if the model is said to be “steep”),

µ−1( 1
n

∑n
i=1 s(Xi)) will lie in the interior of the parameter space. In other words,

µ−1

(
1

n

n∑
i=1

s(Xi)

)
= arg max

θ∈Θ
Ln(θ).

In the next section we define steepness and what may happen if this condition is not

satisfied. But first we go through a few examples.

Example 2.3.1 (Normal distribution) For the normal distribution, the log-likelihood

is

L(X;σ2, µ) =
−1

2σ2

(
n∑
i=1

X2
i − 2µ

n∑
i=1

Xi + nµ2

)
− n

2
log σ2,

note we have ignored the 2π constant. Differentiating with respect to σ2 and µ and setting

to zero gives

µ̂ =
1

n

n∑
i=1

Xi σ̂2 =
1

n

n∑
i=1

(Xi − µ̂)2 .

3For example and estimator of the variance which is negative, clearly this estimator has no meaning

62



This is the only solution, hence it must the maximum of the likelihood.

Notice that σ̂2 is a slightly biased estimator of σ2.

Example 2.3.2 (Multinomial distribution) Suppose Y = (Y1, . . . , Yq) (with n =
∑q

i=1 Yi)

has a multinomial distribution where there are q cells. Without any constraints on the pa-

rameters the log likelihood is proportional to (we can ignore the term c(Y ) = log
(

n
Y1,...,Yq

)
)

Ln(Y ; π) =

q−1∑
j=1

Yi log πi + Yq log(1−
q−1∑
i=1

πi).

The partial derivative for each i is

L(Y ; π)

∂πi
=
Yi
π
− Yp

1−
∑p−1

i=1 πi
.

Solving the above we get one solution as π̂i = Yi/n (check by plugging it in).

Since there is a diffeomorphism between {πi} and its natural parameterisation θi =

log πi/(1−
∑q−1

j=1 πi) and the Hessian corresponding to the natural paramerisation is neg-

ative definite (recall the variance of the sufficient statistics is κ′′(θ)), this implies that

the Hessian of Ln(Y ; π) is negative definite, thus π̂i = Yi/n is the unique maximum of

L(Y ; π).

Example 2.3.3 (2× 2× 2 Contingency tables) Consider the example where for n in-

dividuals three binary variables are recorded; Z =gender (here, we assume two), X =whether

they have disease A (yes or no) and Y =whether they have disease B (yes or no). We

assume that the outcomes of all n individuals are independent.

Without any constraint on variables, we model the above with a multinomial distri-

bution with q = 3 i.e. P (X = x, Y = y, Z = z) = πxyz. In this case the likelihood is

proportional to

L(Y ; π) =
1∑

x=0

1∑
y=0

1∑
z=0

Yxyz log πxyz

= Y000π000 + Y010π010 + Y000π001 + Y100π100 + Y110π110 + Y101π101

Y011π011 + Y111(1− π000 − π010 − π001 − π100 − π110 − π101 − π011).

Differentiating with respect to each variable and setting to one it is straightfoward to see

that the maximum is when π̂xyz = Yxyz/n; which is intuitively what we would have used

as the estimator.
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However, suppose the disease status of X and Y are independent conditioned on

gender. i.e. P (X = x, Y = y|Z = z) = P (X = x|Z = z)P (Y = y|Z = z) then

P (X = x, Y = y, Z = z) = πX=x|Z=zπY=y|Z=zπZ=z, since these are binary variables we

drop the number of unknown parameters from 7 to 5. This is a curved exponential model

(though in this case the constrained model is simply a 5-dimensional hyperplane in 7 di-

mensional space; thus the parameter space is convex). The log likelihood is proportional

to

L(Y ; π) =
1∑

x=0

1∑
y=0

1∑
z=0

Yxyz log πx|zπy|zπz

=
1∑

x=0

1∑
y=0

1∑
z=0

Yxyz
(
log πx|z + log πy|z + log πz

)
.

Thus we see that the maximum likelihood estimators are

π̂z =
Y++z

n
π̂x|z =

Yx+z

Y++z

π̂y|z =
Y+yz

Y++z

.

Where in the above we use the standard notation Y+++ = n, Y++z =
∑1

x=0

∑1
y=0 Yxyz etc.

We observe that these are very natural estimators. For example, it is clear that Yx+z/n

is an estimator of the joint distribution of X and Z and Y++z/n is an estimator of the

marginal distribution of Z. Thus Yx+z/Y++z is clearly an estimator of X conditioned on

Z.

Exercise 2.4 Evaluate the mean and variance of the numerator and denominator of

(2.4). Then use the continuous mapping theorem to evaluate the limit of θ̂−1 (in proba-

bility).

Example 2.3.4 (The beta distribution) Consider the family of densities defined by

F =
{
f(x;α, β) = B(α, β)−1xα−1(1− x)β−1;α ∈ (0,∞), β ∈ (0,∞)

}
and B(α, β) = Γ(α)Γ(β)/Γ(α+ β) where Γ(α) =

∫∞
0
xα−1e−xdx. This is called the family

of beta distributions.

The log likelihood can be written as

Ln(X; θ) = α
n∑
i=1

logXi + β
n∑
i=1

log(1−Xi)− n [log(Γ(α)) + log(Γ(β)− log(Γ(α + β))]−

n∑
i=1

[logXi − log(1−Xi)].
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Thus θ1 = α, θ2 = β and κ(θ1, θ2) = log(θ1) + log(θ2)− log(θ1 + θ2).

Taking derivatives and setting to zero gives

1

n

( ∑n
i=1 logXi∑n

i=1 log(1−Xi)

)
=

(
Γ′(α)
Γ(α)
− Γ′(α+β)

Γ(α+β)
Γ′(β)
Γ(β)
− Γ′(α+β)

Γ(α+β)

)
.

To find estimators for α and β we need to numerically solve for the above. But will the

solution lie in the parameter space?

Example 2.3.5 (Inverse Gaussian distribution) Consider the inverse Gaussian dis-

tribution defined as

f(x; θ1, θ2) =
1

π1/2
x−3/2 exp

(
θ1x− θ2x

−1 + [−2(θ1θ2)1/2 − 1

2
log(−θ2)]

)
,

where x ∈ (0,∞). Thus we see that κ(θ1, θ2) = [−2(θ1θ2)1/2 − 1
2

log(−θ2)]. In this

case we observe that for θ1 = 0 κ(0, θ2) < ∞ thus the parameter space is not open and

Θ = (−∞, 0]× (−∞, 0). Taking derivatives and setting to zero gives

1

n

( ∑n
i=1 Xi∑n
i=1X

−1
i

)
=

 −
(
θ2
θ1

)1/2

− θ
1/2
1

θ
1/2
2

+ 1
θ2
.

 .

To find estimators for α and β we need to numerically solve for the above. But will the

solution lie in the parameter space?

Example 2.3.6 (The inflated zero Poisson distribution) Using the natural param-

eterisation of the infltaed zero Poisson distribution we have

L(Y ; θ1, θ2) = θ1

n∑
i=1

I(Yi 6= 0) + θ2

n∑
i=1

I(Yi 6= 0)Yi

− log

(
eθ1 − θ−1

2

1− θ−1
2

(1− e−eθ2 ) + e−e
θ2

)
.

where the parameter space is Θ = (−∞, 0] × (−∞,∞), which is not open (note that 0

corresponds to the case p = 0, which is the usual Poisson distribution with no inflation).

To find estimators for θ and p we need to numerically solve for the above. But will

the solution lie in the parameter space?
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2.3.2 Steepness and the maximum of the likelihood

The problem is that despite the Hessian ∇2L(θ) being non-negative definite, it could

be that the maximum is at the boundary of the likelihood. We now state some results

that show that in most situations, this does not happen and usually (2.2) maximises the

likelihood. For details see Chapters 3 and 5 of http://www.jstor.org/stable/pdf/

4355554.pdf?acceptTC=true (this reference is mathematically quite heavy) for a maths

lite review see Davidson (2004) (page 170). Note that Brown and Davidson use the

notation N to denote the parameter space Θ.

Let X denote the range of the sufficient statistics s(Xi) (i.e. what values can s(X)

take). Using this we define its convex hull as

C(X ) = {αx1 + (1− α)x2; x1,x2 ∈ X , 0 ≤ α ≤ 1}.

Observe that 1
n

∑
i s(Xi) ∈ C(X ), even when 1

n

∑
i s(Xi) does not belong to the observa-

tion space of the sufficient statistic X . For example Xi may be counts from a Binomial

distribution Bin(m, p) but C(X ) would be the reals between [0,m].

Example 2.3.7 (Examples of C(X )) (i) The normal distribution

C(X ) =
{
α(x, x2) + (1− α)(y, y2); x, y ∈ R, 0 ≤ α ≤ 1

}
= (−∞,∞)(0,∞).

(ii) The β-distribution

C(X ) = {α(log x, log(1− x)) + (1− α)(log y, log(1− y)); x, y ∈ [0, 1], 0 ≤ α ≤ 1} = (R−1)2

(iii) The exponential with censoring (see 2.3)

C(X ) = {α(y1, δ1) + (1− α)(y2, δ2); y1 ∈ [0, c], δ1, δ2 = {0, 1}; 0 ≤ α ≤ 1} = triangle.

(iv) The binomial distribution Y ∼ Bin(n, π). Then

C(X ) = {αx+ (1− α)y; 0 ≤ α ≤ 1, y = 0, . . . ,m} = [0,m].

Now we give conditions under which µ−1
(

1
n

∑n
i=1 s(Xi)

)
maximises the likelihood

within the parameter space Θ. Define the parameter space Θ = {θ;κ(θ) <∞} ⊂ Rq. Let

int(Θ) denote the interior of a set, which is the largest open set in Θ. Next we define the

notion of steep.
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Definition 2.3.1 Let κ : Rp → (−∞,∞) be a convex function (so −κ is concave). κ is

called steep if for all θ1 ∈ B(Θ) and θ0 ∈ int(Θ), limρ→∞(θ1 − θ0)∂κ(θ)
∂θ
cθ=θ0+ρ(θ1−θ0) =∞.

This condition is equivalent to limθ→B(Θ) |κ′(θ)| → ∞. Intuitively, steep simply means the

function is very steep at the boundary.

• Regular exponential family

If the parameter space is open (such as Θ = (0, 1) or Θ = (0,∞)) meaning the

density is not defined on the boundary, then the family of exponentials is called a

regular family.

In the case that Θ is open (the boundary does not belong to Θ), then κ is not

defined at the boundary, in which case κ is steep.

Note, at the boundary limθ→B(Θ) log f(x; θ) will approach −∞, since {log f(x; θ)}
is convex over θ this means that its maximum will be within the interior of the

parameter space (just what we want!).

• Non-regular exponential family

If the parameter space is closed, this means at the boundary the density is defined,

then we require that at the boundary of the parameter space κ(·) is steep. This con-

dition needs to be checked by considering the expectation of the sufficient statistic

at the boundary or equivalently calculating κ′(·) at the boundary.

If κ(θ) is steep we have the following result. Brown (1986), Theorem 3.6 shows that

there is a homeomorphism4 between int(Θ) and int(C(X )).

Most importantly Brown (1986), Theorem 5.5 shows that if the density of Xi be-

longs to a full rank exponential family (using the natural parameterisation) f(x; θ) =

exp[
∑p

j=1 θjsj(x) − κ(θ) + c(x)] with θ = (θ1, . . . , θp) ∈ Θ, where κ(·) is steep and for a

given data set 1
n

∑n
i=1 s(Xi) ∈ C(X ), then

θ̂n = µ−1

(
1

n

n∑
i=1

s(Xi)

)
= arg max

θ∈int(Θ)

{
θ

n∑
i=1

xi − nκ(θ) +
n∑
i=1

c(Xi)
}
.

In most situations the full rank exponential family will have a parameter space which

is open and thus steep.

4A homeomorphism between two spaces means there is a bijection between two spaces and the f and

f−1 which maps between the two spaces is continuous.
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Example 2.3.8 (Binomial distribution and observations that lie on the boundary)

Suppose that {Yi}ni=1 are iid Binomially distributed random variables Yi ∼ Bin(m,πi).

The log likelihood of Yi is Yi log( π
1−π ) +m(1− π). Thus the log likelihood of the sample is

proportional to

Ln(Y ; π) =
n∑
i=1

Yi log π +
n∑
i=1

(m− Yi) log(1− π) = θ

n∑
i=1

Yi − nm log(1 + eθ),

where θ ∈ (−∞,∞). The theory states above that the maximum of the likelihood lies

within the interior of (−∞,∞) if
∑n

i=1 Yi lies within the interior of C(Y) = (0, nm).

On the other hand, there is a positive probability that
∑n

i=1 Yi = 0 or
∑n

i=1 Yi =

nm (i.e. all successes or all failures). In this case, the above result is not informative.

However, a plot of the likelihood in this case is very useful (see Figure 2.1). More precisely,

if
∑

i Yi = 0, then θ̂n = −∞ (corresponds to p̂ = 0), if
∑

i Yi = nm, then θ̂n = ∞
(corresponds to p̂ = 1). Thus even when the sufficient statistics lie on the boundary of

C(Y) we obtain a very natural estimator for θ.

Example 2.3.9 (Inverse Gaussian and steepness) Consider the log density of the

inverse Gaussian, where Xi are iid positive random variables with log likelihood

L(X; θ) = θ1

n∑
i=1

Xi + θ2

n∑
i=1

X−1
i − nκ(θ1, θ2)− 3

2

n∑
i=1

logXi −
1

2
log π,

where κ(θ1, θ2) = −2
√
θ1θ2 − 1

2
log(−2θ2). Observe that κ(0, θ2) < ∞ hence (θ1, θ2) ∈

(−∞, 0]× (−∞, 0).

However, at the boundary ∂κ(θ1,θ2)
∂θ1

cθ1=0 = −∞. Thus the inverse Gaussian distribution

is steep but non-regular. Thus the MLE is µ−1(·).

Example 2.3.10 (Inflated zero Poisson) Recall

L(Y ; θ1, θ2) = θ1

n∑
i=1

I(Yi 6= 0) + θ2

n∑
i=1

I(Yi 6= 0)Yi

− log

(
eθ1 − θ−1

2

1− θ−1
2

(1− e−eθ2 ) + e−e
θ2

)
.

where the parameter space is Θ = (−∞, 0] × (−∞,∞), which is not open (note that 0

corresponds to the case p = 0, which is the usual Poisson distribution with no inflation).
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Figure 2.1: Likelihood of Binomial for different scenarios
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However, the derivative ∂κ(θ1,θ2)
∂θ1

is finite at θ1 = 0 (for θ2 ∈ R). Thus κ(·) is not steep

and care needs to be taken in using µ−1 as the MLE.

µ−1( 1
n

∑n
i=1 s(Xi)) may lie outside the parameter space. For example, µ−1( 1

n

∑n
i=1 s(Xi))

may give an estimator of θ1 which is greater than zero; this corresponds to the probability

p < 0, which makes no sense. If µ−1( 1
n

∑n
i=1 s(Xi)) lies out the parameter space we need

to search on the boundary for the maximum.

Example 2.3.11 (Constraining the parameter space) If we place an “artifical” con-

straint on the parameter space then a maximum may not exist within the interior of the

parameter space. For example, if we model survival times using the exponential distribu-

tion f(x; θ) = θ exp(−θx) the parameter space is (0,∞), which is open (thus with proba-

bility one the likelihood is maximised at θ̂ = µ−1(X̄) = 1/X̄). However, if we constrain

the parameter space Θ̃ = [2,∞), 1/X̄ may lie outside the parameter space and we need to

use θ̂ = 2.

Remark 2.3.1 (Estimating ω) The results above tell us if κ(·) is steep in the parameter

space and Ln(θ) has a unique maximum and there is a diffeomorphism between θ and

ω (if the exponential family is full rank), then Ln(θ(ω)) will have a unique maximum.

Moreover the Hessian of the likelihood of both parameterisations will be negative definite.

Therefore, it does not matter if we maximise over the natural parametrisation or the usual

parameterisation

ω̂n = η−1

(
µ−1

(
1

n

n∑
i=1

xi

))
.

Remark 2.3.2 (Minimum variance unbiased estimators) Suppose Xi has a distri-

bution in the natural exponential family, then the maximum likelihood estimator is a func-

tion of the sufficient statistic s(X). Moreover if the exponential is full and µ−1( 1
n

∑n
i=1 xi)

is an unbiased estimator of θ, then µ−1( 1
n

∑n
i=1 xi) is the minumum variance unbiased

estimator of θ. However, in general µ−1( 1
n

∑n
i=1 xi) will not be an unbiased estimator.

However, by invoking the continuous mapping theorem (https: // en. wikipedia. org/

wiki/ Continuous_ mapping_ theorem ), by the law of large numbers 1
n

∑n
i=1 xi

a.s.→ E[x]i,

then µ−1( 1
n

∑n
i=1 xi)

a.s.→ µ−1(E(x)) = µ−1[κ′(θ)] = θ. Thus the maximum likelihood esti-

mator converges to θ.
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2.3.3 The likelihood estimator of the curved exponential

Example 2.3.12 (Normal distribution with constraint) Suppose we place the con-

straint on the parameter space σ2 = µ2. The log-likelihood is

L(X;µ) =
−1

2µ2

n∑
i=1

X2
i +

1

µ

n∑
i=1

Xi −
n

2
log µ2.

Recall that this belongs to the curved exponential family and in this case the parameter

space is not convex. Differentiating with respect to µ gives

∂L(X;σ2, µ)

∂µ
=

1

µ3
Sxx −

Sx
µ2
− 1

µ
= 0.

Solving for µ leads to the quadratic equation

p(µ) = µ2 + Sxµ− Sxx = 0.

Clearly there will be two real solutions

−Sx ±
√
S2
x + 4Sxx

2
.

We need to plug them into the log-likelihood to see which one maximises the likelihood.

Observe that in this case the Hessian of the log-likelihood cannot be negative (unlike

the full normal). However, we know that a maximum exists since a maximum exists on

for the full Gaussian model (see the previous example).

Example 2.3.13 (Censored exponential) We recall that the likelihood corresponding

to the censored exponential is

Ln(θ) = −θ
n∑
i=1

Yi − log θ
n∑
i=1

δi + log θ. (2.3)

We recall that δi = 1 if censoring takes place. The maximum likelihood estimator is

θ̂ =
n−

∑n
i=1 δi∑n

i=1 Yi
∈ (0,∞)

Basic calculations show that the mean of the exponential is 1/θ, therefore the estimate

of the mean is

θ̂−1 =

∑n
i=1 Yi

n−
n∑
i=1

δi︸ ︷︷ ︸
no. not censored terms

. (2.4)
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If the exponential distribution is curved (number of unknown parameters is less than

the number of minimally sufficient statistics), then the parameter space Ω = {ω =

(ω1, . . . , ωd); (θ1(ω), . . . , θq(ω)) ∈ Θ} ⊂ Θ (hence it is a curve on Θ). Therefore, by

differentiating the likelihood with respect to ω, a maximum within the parameter space

must satisfy

∇ωLn(θ(ω)) =
∂θ(ω)

∂ω

(
n∑
i=1

xi − n
∂κ(θ)

∂θ
cθ=θ(ω)

)
= 0. (2.5)

Therefore, either (a) there exists an ω ∈ Ω such that θ(ω) is the global maximum of

{Ln(θ); θ ∈ Θ} (in this case
∑n

i=1 xi − n∂κ(θ)
∂θ
cθ=θ(ω) = 0) or (b) there exists an ω ∈ Ω

such that ∂θ(ω)
∂ω

and
∑n

i=1 xi − n∂κ(θ)
∂θ
cθ=θ(ω) are orthogonal. Since Ln(X, θ) for θ ∈ Θ and∑n

i=1 xi ∈ int(X ) has a global maximum a simple illustration this means that Ln(θ(ω))

will have a maximum. In general (2.5) will be true. As far as I can see the only case where

it may not hold is when θ(ω) lies on some contour of Ln(θ). This suggests that a solution

should in general exist for the curved case, but it may not be unique (you will need to

read Brown (1986) for full clarification). Based this I suspect the following is true:

• If Ω is a curve in Θ, then ∂Ln(ω)
∂ω

= 0 may have multiple solutions. In this case, we

have to try each solution Ln(ω̂) and use the solution which maximises it (see Figure

2.2).

Exercise 2.5 The aim of this question is to investigate the MLE of the inflated zero

Poisson parameters λ and p. Simulate from a inflated zero poisson distribution with (i)

p = 0.5, p = 0.2 and p = 0 (the class is when there is no inflation), use n = 50.

Evaluate the MLE (over 200 replications) make a Histogram and QQplot of the parameter

estimators (remember if the estimator of p is outside the parameter space you need to

locate the maximum on the parameter space).

Exercise 2.6 (i) Simulate from the model defined in Example 2.3.12 (using n = 20)

using R. Calculate and maximise the likelihood over 200 replications. Make a QQplot

of the estimators and calculate the mean squared error.

For one realisation make a plot of the log-likelihood.

(ii) Sample from the inverse Gamma distribution (using n = 20) and obtain its maxi-

mum likelihood estimator. Do this over 200 replications and make a table summa-

rizing its bias and average squared error. Make a QQplot of the estimators.
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Figure 2.2: Likelihood of 2-dimension curved exponential

(iii) Consider the exponential distribution described in Example 2.3.11 where the param-

eter space is constrained to [2,∞]. For samples of size n = 50 obtain the maximum

likelihood estimator (over 200 replications). Simulate using the true parameter

(a) θ = 5 (b) θ = 2.5 (c) θ = 2.

Summarise your results and make a QQplot (against the normal distribution) and

histogram of the estimator.

2.4 The likelihood for dependent data

We mention that the likelihood for dependent data can also be constructed (though often

the estimation and the asymptotic properties can be a lot harder to derive). Suppose

{Xt}nt=1 is a time series (a sequence of observations over time where there could be de-

pendence). Using Bayes rule (ie. P (A1, A2, . . . , An) = P (A1)
∏n

i=2 P (Ai|Ai−1, . . . , A1))

73



we have

Ln(X; θ) = f(X1; θ)
n∏
t=2

f(Xt|Xt−1, . . . , X1; θ).

Under certain conditions on {Xt} the structure above
∏n

t=2 f(Xt|Xt−1, . . . , X1; θ) can be

simplified. For example if Xt were Markovian then Xt conditioned on the past on depends

only on the recent past, i.e. f(Xt|Xt−1, . . . , X1; θ) = f(Xt|Xt−1; θ) in this case the above

likelihood reduces to

Ln(X; θ) = f(X1; θ)
n∏
t=2

f(Xt|Xt−1; θ). (2.6)

We apply the above to a very simple time series. Consider the AR(1) time series

Xt = φXt−1 + εt, t ∈ Z,

where εt are iid random variables with mean zero and variance σ2. In order to ensure

that the recurrence is well defined for all t ∈ Z we assume that |φ| < 1 in this case the

time series is called stationary5.

We see from the above that the observation Xt−1 has a linear influence on the next

observation and it is Markovian; conditioned on Xt−1, Xt−2 and Xt are independent (the

distribution function P (Xt ≤ x|Xt−1, Xt−2) = P (Xt ≤ x|Xt−1)). Therefore by using (2.6)

the likelihood of {Xt}t is

Ln(X;φ) = f(X1;φ)
n∏
t=2

fε(Xt − φXt−1), (2.7)

where fε is the density of ε and f(X1;φ) is the marginal density of X1. This means

the likelihood of {Xt} only depends on fε and the marginal density of Xt. We use

φ̂n = arg maxLn(X;φ) as the mle estimator of a.

We now derive an explicit expression for the likelihood in the case that εt belongs to

the exponential family. We focus on the case that {εt} is Gaussian; since Xt is the sum

of Gaussian random variables Xt =
∑∞

j=0 φ
jεt−j (almost surely) Xt is also Gaussian. It

can be shown that if εt ∼ N (0, σ2), then Xt ∼ N (0, σ2/(1−φ2)). Thus the log likelihood

5If we start the recursion at some finite time point t0 then the time series is random walk and is called

a unit root process it is not stationary.
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for Gaussian “innovations” is

Ln(φ, σ2) = − 1

2σ2

n∑
t=2

X2
t︸ ︷︷ ︸

=
∑n−1
t=2 X

2
t−X2

n

+
φ

σ2

n∑
t=2

XtXt−1 −
φ2

2σ2

n∑
t=2

X2
t−1︸ ︷︷ ︸

=
∑n−1
t=2 X

2
t−X2

1

−n− 1

2
log σ2

−(1− φ2)

2σ2
X2

1 −
1

2
log

σ2

1− φ2

= −1− φ2

2σ2

n−1∑
t=1

X2
t +

φ

σ2

n∑
t=2

XtXt−1 −
1

2σ2
(X2

1 +X2
n)− n− 1

2
log σ2 − 1

2
log

σ2

1− φ2
,

see Efron (1975), Example 3. Using the factorisation theorem we see that the sufficient

statistics, for this example are
∑n−1

t=1 X
2
t ,
∑n

t=2 XtXt−1 and (X2
1 +X2

n) (it almost has two

sufficient statistics!). Since the data is dependent some caution needs to be applied before

ones applies the results on the exponential family to dependent data (see Küchler and

Sørensen (1997)). To estimate φ and σ2 we maximise the above with respect to φ and σ2.

It is worth noting that the maximum can lie on the boundary −1 or 1.

Often we ignore the term the distribution of X1 and consider the conditional log-

likelihood, that is X2, . . . , Xn conditioned on X1. This gives the conditional log likelihood

Qn(φ, σ2;X1) = log
n∏
t=2

fε(Xt − φXt−1)

= − 1

2σ2

n∑
t=2

X2
t +

φ

σ2

n∑
t=2

XtXt−1 −
φ2

2σ2

n∑
t=2

X2
t−1 −

n− 1

2
log σ2,(2.8)

again there are three sufficient statistics. However, it is interesting to note that if the

maximum of the likelihood lies within the parameter space φ ∈ [−1, 1] then φ̂n =∑n
t=2 XtXt−1/

∑n
t=2X

2
t−1 (the usual least squares estimator).

2.5 Evaluating the maximum: Numerical Routines

In an ideal world an explicit closed form expression would exist for the maximum of a

(log)-likelihood. In reality this rarely happens.

Usually, we have to use a numerical routine to maximise the likelihood. It is relative

straightforward to maximise the likelihood of random variables which belong to the expo-

nential family (since they typically have a negative definite Hessian). However, the story
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becomes more complicated if the likelihood does not belong to the exponential family, for

example mixtures of exponential family distributions.

Let us suppose that {Xi} are iid random variables which follow the classical normal

mixture distribution

f(y; θ) = pf1(y; θ1) + (1− p)f2(y; θ2),

where f1 is the density of the normal with mean µ1 and variance σ2
1 and f2 is the density

of the normal with mean µ2 and variance σ2
2. The log likelihood is

Ln(Y ; θ) =
n∑
i=1

log

(
p

1√
2πσ2

1

exp

[
− 1

2σ2
1

(Xi − µ1)2

]
+ (1− p) 1√

2πσ2
2

exp

[
− 1

2σ2
2

(Xi − µ2)2

])
.

Studying the above it is clear there does not explicit solution to the maximum. Hence

one needs to use a numerical algorithm to maximise the above likelihood.

We discuss a few such methods below.

The Newton Raphson Routine The Newton-Raphson routine is the standard

method to numerically maximise the likelihood, this can often be done automatically

in R by using the R functions optim or nlm. To apply Newton-Raphson, we have to

assume that the derivative of the likelihood exists (this is not always the case - think

about the `1-norm based estimators!) and the maximum lies inside the parameter

space such that ∂Ln(θ)
∂θ
cθ=θ̂n = 0. We choose an initial value θ

(1)
n and apply the

routine

θ(j)
n = θ(j−1)

n −
(
∂2Ln(θ)

∂θ2
c
θ
(j−1)
n

)−1
∂Ln(θ)

∂θ
c
θ
(j−1)
n

.

This routine can be derived from the Taylor expansion of ∂Ln(θn−1)
∂θ

about θ0 (see

Section 2.6.3). A good description is given in https://en.wikipedia.org/wiki/

Newton%27s_method. We recall that −∂2Ln(θ)
∂θ2
c
θ
(j−1)
n

is the observed Fisher informa-

tion matrix. If the algorithm does not converge, sometimes we replace −∂2Ln(θ)
∂θ2
c
θ
(j−1)
n

with its expectation (the Fisher information matrix); since this is positive definite

it may give better results (this is called Fisher scoring).

If the likelihood has just one global maximum and is concave, then it is quite easy

to maximise. If on the other hand, the likelihood has a few local maximums and

the initial value θ1 is not chosen close enough to the true maximum, then the
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routine may converge to a local maximum. In this case it may be a good idea to do

the routine several times for several different initial values θ∗n. For each candidate

value θ̂∗n evaluate the likelihood Ln(θ̂∗n) and select the value which gives the largest

likelihood. It is best to avoid these problems by starting with an informed choice of

initial value.

Implementing a Newton-Rapshon routine without much thought can lead to esti-

mators which take an incredibly long time to converge. If one carefully considers

the likelihood one can shorten the convergence time by rewriting the likelihood and

using faster methods (often based on the Newton-Raphson).

Iterative least squares This is a method that we shall describe later when we

consider Generalised linear models. As the name suggests the algorithm has to be

interated, however at each step weighted least squares is implemented (see later in

the course).

The EM-algorithm This is done by the introduction of dummy variables, which

leads to a new ‘unobserved’ likelihood which can easily be maximised (see later in

the course).

2.6 Statistical inference

2.6.1 A quick review of the central limit theorem

In this section we will not prove the central limit theorem. Instead we summarise the CLT

and generalisations of it. The purpose of this section is not to lumber you with unnecessary

mathematics but to help you understand when an estimator is close to normal (or not).

Lemma 2.6.1 (The famous CLT) Let us suppose that {Xi}ni=1 are iid random vari-

ables, let µ = E(Xi) < ∞ and σ2 = var(Xi) < ∞. Define X̄ = 1
n

∑n
i=1Xi. Then we

have

√
n(X̄ − µ)

D→ N (0, σ2).

Heuristically, we can write (X̄ − µ) ≈ N (0, σ
2

n
).
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What this means that if we have a large enough sample size and made a quantile plot

against the normal distribution the points should lie roughly on the x = y line (though

there will be less matching in the tails).

Remark 2.6.1 (i) The above lemma appears to be ‘restricted’ to just averages. How-

ever, it can be used in several different contexts. Averages arise in several different

situations. It is not just restricted to the average of the observations. By judicious

algebraic manipulations, one can show that several estimators can be rewritten as

an average (or approximately as an average). At first appearance, the MLE does not

look like an average, however, in Section 2.6.3 we show that it can be approximated

by a “useable” average.

(ii) The CLT can be extended in several ways.

(a) To random variables whose variance are not all the same (ie. independent but

identically distributed random variables).

(b) Dependent random variables (so long as the dependency ‘decays’ in some way).

(c) Weighted averages can also be asymptotically normal; so long as the weights

are ‘distributed evenly’ over all the random variables.

∗ Suppose that {Xi} are iid non-normal random variables, Y =
∑M

j=0 φ
jXj

(|φ| < 1) will never be normal (however large M).

∗ However, Y = 1
n

∑n
i=1 sin(2πi/12)Xi is asymptotically normal.

• There exists several theorems which one can use to prove normality. But really the

take home message is, look at your estimator and see whether asymptotic normal-

ity it looks plausible. Always check through simulations (even if asymptically it is

normal, it may require a very large sample size for it to be close to normal).

Example 2.6.1 (Some problem cases) A necessary condition is that the second mo-

ment of Xi should exist. If it does not the CLT will not hold. For example if {Xi} follow

a t-distribution with 2 degrees of freedom

f(x) =
Γ(3/2)√

2π

(
1 +

x2

2

)−3/2

,

then X̄ = 1
n

∑n
i=1 Xi will not have a normal limit.
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We apply can immediately apply the above result to the MLE in the full rank expo-

nential class.

2.6.2 Sampling properties and the full rank exponential family

In Section 2.3.1 we showed that if {Xi}ni=1 belonged to the exponential family and the

maximum of the likelihood lay inside the parameter space (satisfied if the distribution is

“steep”) then

θ̂n = µ−1

(
1

n

n∑
i=1

s(Xi)

)
is the maximum likelihood estimator. Since we have an “explicit” expression for the

estimator it is straightforward to derive the sampling properties of θ̂n. By using the law

of large numbers

1

n

n∑
i=1

s(Xi)
a.s.→ E[s(X)] n→∞

then by the continuous mapping theorem

µ−1

(
1

n

n∑
i=1

s(Xi)

)
a.s.→ µ−1 (E[s(X)]) = θ n→∞.

Thus the maximum likelihood estimator is a consistent estimator of θ. By using the CLT

we have

1√
n

n∑
i=1

(s(Xi)− E[s(Xi)])
D→ N (0, var[s(Xi)]) n→∞

where we recall that var[s(Xi)] = κ′′(θ). Now by using that

µ−1

(
1

n

n∑
i=1

s(Xi)

)
− µ−1 (µ(θ)) ≈ ∂µ−1(x)

∂x
cx=θ

(
1

n

n∑
i=1

[s(Xi)− E(s(Xi))]

)

=

(
∂µ(x)

∂x

)
c−1
x=θ

(
1

n

n∑
i=1

[s(Xi)− E(s(Xi))]

)
.

Thus by using the above, the continuous mapping theorem and the CLT for averages we

have

√
n

[
µ−1

(
1

n

n∑
i=1

s(Xi)

)
− µ−1 (µ(θ))

]
D→ N

(
0,

(
∂µ(x)

∂x

)
c−1
x=θκ

′′(θ)

(
∂µ(x)

∂x

)
c−1
x=θ

)
= N

(
0, κ′′(θ)−1

)
.
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We recall that κ′′(θ) is the Fisher information of θ based on X1.

Thus we have derived the sampling properties of the maximum likelihood estimator

for the exponential class. It is relatively straightfoward to derive. Interesting we see

that the limiting variance is the inverse of the Fisher information. So asymptotically the

MLE estimator attains the Cramer-Rao lower bound (though it is not really a variance).

However, the above derivation apply only to the full exponential class, in the following

section we derive a similar result for the general MLE.

2.6.3 The Taylor series expansion

The Taylor series is used all over the place in statistics. It can be used to prove con-

sistency of an estimator, normality (based on the assumption that averages converge to

a normal distribution), obtaining the limiting variance of an estimator etc. We start by

demonstrating its use for the log likelihood.

We recall that the mean value (in the univariate case) states that

f(x) = f(x0) + (x− x0)f ′(x̄1) and f(x) = f(x0) + (x− x0)f ′(x0) +
(x− x0)2

2
f ′′(x̄2),

where x̄1 = αx0 + (1− α)x and x̄2 = βx+ (1− β)x0 (for some 0 ≤ α, β ≤ 1). In the case

that f : Rq → R we have

f(x) = f(x0) + (x− x0)∇f(x)cx=x̄1

f(x) = f(x0) + (x− x0)′∇f(x)cx=x0
+

1

2
(x− x0)′∇2f(x)cx=x̄2

(x− x0),

where x̄1 = αx0 + (1 − α)x and x̄2 = βx + (1 − β)x0 (for some 0 ≤ α, β ≤ 1). In the

case that f(x) is a vector, then the mean value theorem does not directly work, i.e. the

following is not true

f(x) = f(x0) + (x− x0)′∇f(x)cx=x̄1
,

where x̄1 lies between x and x0. However, it is quite straightforward to overcome this

inconvience. The mean value theorem does hold pointwise, for every element of the vector

f(x) = (f1(x), . . . , fp(x)), ie. for every 1 ≤ j ≤ p we have

fj(x) = fi(x0) + (x− x0)∇fj(y)cy=αx+(1−α)x0
,
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where x̄j lies between x and x0. Thus if ∇fj(x)cx=x̄j
→ ∇fj(x)cx=x0

, we do have that

f(x) ≈ f(x0) + (x− x0)′∇f(x).

We use the above below.

• Application 1: An expression for Ln(θ̂n)− Ln(θ0) in terms of (θ̂n − θ0).

The expansion of Ln(θ̂n) about θ0 (the true parameter)

Ln(θ̂n)− Ln(θ0) = −∂Ln(θ)

∂θ
cθ̂n(θ̂n − θ0)− 1

2
(θ̂n − θ0)′

∂2Ln(θ)

∂θ2
cθ̄n(θ̂n − θ0)

where θ̄n = αθ0 + (1 − α)θ̂n. If θ̂n lies in the interior of the parameter space (this

is an extremely important assumption here) then ∂Ln(θ)
∂θ
cθ̂n = 0. Moreover, if it can

be shown that |θ̂n− θ0|
P→ 0 and n−1 ∂

2Ln(θ)
∂θ2

converges uniformly to E(n−1 ∂
2Ln(θ)
∂θ2
cθ0
)

(see Assumption 2.6.1(iv), below), then we have

∂2Ln(θ)

∂θ2
cθ̄n

P→ E

(
∂2Ln(θ)

∂θ2
cθ0
)

= −In(θ0). (2.9)

This altogether gives

2(Ln(θ̂n)− Ln(θ0)) ≈ (θ̂n − θ0)′In(θ0)(θ̂n − θ0). (2.10)

• Application 2: An expression for (θ̂n − θ0) in terms of ∂Ln(θ)
∂θ
cθ0

The expansion of the p-dimension vector ∂Ln(θ)
∂θ
cθ̂n pointwise about θ0 (the true

parameter) gives (for 1 ≤ j ≤ d)

∂Lj,n(θ)

∂θ
cθ̂n =

∂Lj,n(θ)

∂θ
cθ0 +

∂2Lj,n(θ)

∂θ2
cθ̄j,n(θ̂n − θ0),

where θ̄j,n = αj θ̄j,n + (1−αj)θ0. Using the same arguments as in Application 1 and

equation (2.9) we have

∂Ln(θ)

∂θ
cθ0 ≈ In(θ0)(θ̂n − θ0).

We mention that Un(θ0) = ∂Ln(θ)
∂θ
cθ0 is often called the score or U statistic. And we

see that the asymptotic sampling properties of Un determine the sampling properties

of (θ̂n − θ0).
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Remark 2.6.2 (i) In practice In(θ0) is unknown and it is approximated by the Hessian

evaluated at the estimated parameter θ̂n, −∂2Ln(θ)
∂θ2
cθ̂n. A discussion on the quality of

this approximation is given in Efron and Hinkley (1978).

(ii) Bear in mind that ∇2
θLn(θ) is not necessarily negative definite, but its limit is the

negative Fisher information matrix −In(θ) (non-negative definite over θ ∈ Θ).

Therefore for “large n ∇2
θLn(θ) will be negative definite”.

(iii) The quality of the approximation (2.9) depends on the the second order efficiency

measure In(θ̂n) − In(θ0) (this term was coined by C.R.Rao and discussed in Rao

(1961, 1962, 1963)). Efron (1975), equation (1.1) shows this difference depends on

the so called curvature of the parameter space.

Example 2.6.2 (The Weibull) Evaluate the second derivative of the likelihood given in

Example 2.2.3, take the expection on this, In(θ, α) = E(∇2Ln) (we use the ∇ to denote

the second derivative with respect to the parameters α and θ).

Application 2 implies that the maximum likelihood estimators θ̂n and α̂n (recalling that

no explicit expression for them exists) can be written as

(
θ̂n − θ
α̂n − α

)
≈ In(θ, α)−1


∑n

i=1

(
− α

θ
+ α

θα+1Y
α
i

)
∑n

i=1

(
1
α
− log Yi − log θ − α

θ
+ log(Yi

θ
)× (Yi

θ
)α
)


2.6.4 Sampling properties of the maximum likelihood estimator

We have shown that under certain conditions the maximum likelihood estimator can often

be the minimum variance unbiased estimator (for example, in the case of the normal

distribution). However, in most situations for finite samples the mle may not attain the

Cramer-Rao lower bound. Hence for finite sample var(θ̂n) > In(θ)−1. However, it can be

shown that asymptotically the “variance” (it is not the true variance) of the mle attains

the Cramer-Rao lower bound. In other words, for large samples, the “variance” of the

mle is close to the Cramer-Rao bound. We will prove the result in the case that Ln is the

log likelihood of independent, identically distributed random variables. The proof can be

generalised to the case of non-identically distributed random variables.

We first state sufficient conditions for this to be true.
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Assumption 2.6.1 Suppose {Xi} be iid random variables with density f(X; θ).

(i) The conditions in Assumption 1.3.1 hold. In particular:

(a)

Eθ0

(
∂ log f(X; θ)

∂θ
cθ=θ0

)
=

∫
∂f(x; θ)

∂θ
cθ=θ0dx =

∂

∂θ

∫
∂f(x; θ)

∂θ
dxcθ=θ0 = 0.

(b)

Eθ0

[(
∂ log f(X; θ)

∂θ
cθ=θ0

)2
]

= Eθ0

[
−∂

2 log f(X; θ)

∂θ2
cθ=θ0

]
.

(ii) Almost sure uniform convergence of the likelihood:

supθ∈Θ
1
n
|Ln(X; θ)− E(Ln(X; θ))| a.s.→ 0 as n→∞.

We mention that directly verifying uniform convergence can be difficult. However,

it can be established by showing that the parameter space is compact, point wise

convergence of the likelihood to its expectation and almost sure equicontinuity in

probability.

(iii) Model identifiability:

For every θ ∈ Θ, there does not exist another θ̃ ∈ Θ such that f(x; θ) = f(x; θ̃) for

all x in the sample space.

(iv) Almost sure uniform convergence of the second derivative of the likelihood (using the

notation ∇θ): supθ∈Θ
1
n
|∇2

θLn(X; θ)− E(∇2
θLn(X; θ))| a.s.→ 0 as n→∞.

This can be verified by using the same method described in (ii).

We require Assumption 2.6.1(ii,iii) to show consistency and Assumptions 1.3.1 and

2.6.1(iii-iv) to show asymptotic normality.

Theorem 2.6.1 Supppose Assumption 2.6.1(ii,iii) holds. Let θ0 be the true parameter

and θ̂n be the mle. Then we have θ̂n
a.s.→ θ0 (consistency).

PROOF. First define `(θ) = E[log f(X; θ)] (the limit of the expected log-likelihood). To

prove the result we first need to show that the expectation of the maximum likelihood is
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maximum at the true parameter and that this is the unique maximum. In other words

we need to show that E( 1
n
Ln(X; θ)− 1

n
Ln(X; θ0)) ≤ 0 for all θ ∈ Θ. To do this, we have

`(θ)− `(θ0) = E

(
1

n
Ln(X; θ)− E(

1

n
Ln(X; θ0)

)
=

∫
log

f(x; θ)

f(x; θ0)
f(x; θ0)dx

= E

(
log

f(X; θ)

f(X; θ0)

)
.

Now by using Jensen’s inequality (since log is a concave function) we have

E

(
log

f(X; θ)

f(X; θ0)

)
≤ log E

(
f(X; θ)

f(X; θ0)

)
= log

∫
f(x; θ)

f(x; θ0)
f(x; θ0)dx = log

∫
f(x; θ)dx = 0,

since θ ∈ Θ and
∫
f(x; θ)dx = 1. Thus giving E( 1

n
Ln(X; θ)) − E( 1

n
Ln(X; θ0)) ≤ 0.

To prove that E( 1
n
[Ln(X; θ)) − Ln(X; θ0)]) = 0 only when θ0, we use the identifiability

condition in Assumption 2.6.1(iii), which means that f(x; θ) = f(x; θ0) for all x only when

θ0 and no other function of f gives equality. Hence only when θ = θ0 do we have

E

(
log

f(X; θ)

f(X; θ0)

)
= log

∫
f(x; θ)

f(x; θ0)
f(x; θ0)dx = log

∫
f(x; θ)dx = 0,

thus E( 1
n
Ln(X; θ)) has a unique maximum at θ0.

Finally, we need to show that θ̂n
a.s.→ θ0. To simplify notation for the remainder of this

proof we assume the likelihood has been standardized by n i.e.

Ln(θ) =
1

n

n∑
i=1

log f(Xi; θ).

We note that since `(θ) is maximum at θ0 if |Ln(θ̂n)− `(θ0)| a.s.→ 0, then θ̂n
a.s.→ θ0. Thus we

need only prove |Ln(θ̂n)− `(θ0)| a.s.→ 0. We do this using a sandwich argument.

First we note for every mle θ̂n

Ln(X; θ0) ≤ Ln(X; θ̂n)
a.s.→ `(θ̂n) ≤ `(θ0), (2.11)

where we are treating θ̂n as if it were a non-random fixed value in Θ. Returning to

|E(Ln(X; θ0)) − Ln(X; θ̂n)| (they swapped round) we note that the difference can be

written as

`(θ0)− Ln(X; θ̂n) = {`(θ0)− Ln(X; θ0)}+
{
`(θ̂n)− Ln(X; θ̂n)

}
+
{
Ln(X; θ0)− `(θ̂n)

}
.
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Now by using (2.11) we have

`(θ0)− Ln(X; θ̂n) ≤ {`(θ0)− Ln(X; θ0)}+
{
`(θ̂n)− Ln(X; θ̂n)

}
+

Ln(X; θ̂n)︸ ︷︷ ︸
≥Ln(X;θ0)

−`(θ̂n)


= {`(θ0)− Ln(X; θ0)}

and

`(θ0)− Ln(X; θ̂n) ≥ {`(θ0)− Ln(X; θ0)}+
{
`(θ̂n)− Ln(X; θ̂n)

}
+

Ln(X; θ0)− `(θ0)︸︷︷︸
≥`(θ̂n)


=

{
`(θ̂n)− Ln(X; θ̂n)

}
Thus {

`(θ̂n)− Ln(X; θ̂n)
}
≤ `(θ0)− Ln(X; θ̂n) ≤ {`(θ0)− Ln(X; θ0)} .

The above also immediately follows from (2.11). This is easily seen in Figure 2.3, which

Reza suggested. Thus we have sandwiched the difference E(Ln(X; θ0))−Ln(X; θ̂n). There-

fore, under Assumption 2.6.1(ii) we have

|`(θ0)− Ln(X; θ̂n)| ≤ sup
θ∈Θ
|`(θ)− Ln(X; θ)| a.s.→ 0.

Since E[Ln(X; θ)] has a unique maximum at E[Ln(X; θ0)] this implies θ̂n
a.s.→ θ0.

�

Hence we have shown consistency of the mle. It is important to note that this proof is

not confined to just the likelihood it can also be applied to other contrast functions. We

now show asymptotic normality of the MLE.

Theorem 2.6.2 Suppose Assumption 2.6.1 is satisfied (where θ0 is the true parameter).

Let

I(θ0) = E

([
∂ log f(Xi; θ)

∂θ
cθ0
]2
)

= E

(
−∂

2 log f(Xi; θ)

∂θ2
cθ0
)
.

(i) Then the score statistic is

1√
n

∂Ln(X; θ)

∂θ
cθ0

D→ N
(

0, I(θ0)

)
. (2.12)
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Figure 2.3: Difference between likelihood and expectation.

(ii) Then the mle is

√
n
(
θ̂n − θ0

) D→ N(0, I(θ0)−1

)
.

(iii) The log likelihood ratio is

2

(
Ln(X; θ̂n)− Ln(X; θ0)

)
D→ χ2

p

(iv) The square MLE

n(θ̂n − θ0)′In(θ0)(θ̂n − θ0)
D→ χ2

p.

PROOF. First we will prove (i). We recall because {Xi} are iid random variables, then

1√
n

∂Ln(X; θ)

∂θ
cθ0 =

1√
n

n∑
i=1

∂ log f(Xi; θ)

∂θ
cθ0 ,

is the sum of independent random variables. We note that under Assumption 2.6.1(i) we

have

E

(
∂ log f(Xi; θ)

∂θ
cθ0
)

=

∫
∂ log f(x; θ)

∂θ
cθ0f(x; θ0)dx = 0,
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thus ∂ log f(Xi;θ)
∂θ

cθ0 is a zero mean random variable and its variance is I(θ0).

Hence ∂Ln(X;θ)
∂θ

cθ0 is the sum of iid random variables with mean zero and variance

I(θ0). Therefore, by the CLT for iid random variables we have (2.12).

We use (i) and Taylor (mean value) theorem to prove (ii). We first note that by the

mean value theorem we have

1

n

∂Ln(X; θ)

∂θ
cθ̂n︸ ︷︷ ︸

=0

=
1

n

∂Ln(X; θ)

∂θ
cθ0 + (θ̂n − θ0)

1

n

∂2Ln(X; θ)

∂θ2
cθ̄n . (2.13)

Using the consistency result in Theorem 2.6.1 (θ̂n
a.s.→ θ0, thus θ̄n

a.s.→ θ0) and Assumption

2.6.1(iv) we have

1

n

∂2Ln(X; θ)

∂θ2
cθ̄n

a.s.→ 1

n
E

(
∂2Ln(X; θ)

∂θ2
cθ0
)

= E

(
∂2 log f(X; θ)

∂θ2
cθ0
)

= −I(θ0). (2.14)

Substituting the above in (2.15) we have

1

n

∂Ln(X; θ)

∂θ
cθ0 − I(θ0)(θ̂n − θ0) +

(
1

n

∂2Ln(X; θ)

∂θ2
cθ̄n − I(θ0)

)
(θ̂n − θ0)︸ ︷︷ ︸

small

= 0 (2.15)

Multiplying the above by
√
n and rearranging gives

√
n(θ̂n − θ0) = I(θ0)−1 1√

n

∂Ln(X; θ)

∂θ
cθ0 + op(1).

6 Hence by substituting the (2.12) into the above we have (ii).

To prove (iii) we use (2.10), which we recall is

2

(
Ln(X; θ̂n)− Ln(X; θ0)

)
≈ (θ̂n − θ0)′nI(θ0)(θ̂n − θ0)′.

Now by using that
√
nI(θ0)−1/2(θ̂n−θ0)

D→ N (0, I) (see (i)) and substituting this into the

above gives (iii).

The proof of (iv) follows immediately from (ii). �

This result tells us that asymptotically the mle attains the Cramer-Rao bound. Fur-

thermore, if θ̂ is a p-dimension random vector and I(θ0) is diagonal, then the elements of

6We mention that the proof above is for univariate ∂2Ln(X;θ)
∂θ2 cθ̄n , but by redo-ing the above steps

pointwise it can easily be generalised to the multivariate case too
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θ̂ will be asymptotically independent (for example the sample mean and sample variance

estimator for the normal distribution). However if I(θ0) is not diagonal, then off-diagonal

elements in I(θ0)−1 measure the degree of correlation between the estimators. See Figure

2.4.

Figure 2.4: Contour plot of two dimensional normal distribution of two parameter esti-

mators with diagonal and non-diagonal information matrix

Example 2.6.3 (The Weibull) By using Example 2.6.2 we have

(
θ̂n − θ
α̂n − α

)
≈ In(θ, α)−1


∑n

i=1

(
− α

θ
+ α

θα+1Y
α
i

)
∑n

i=1

(
1
α
− log Yi − log θ − α

θ
+ log(Yi

θ
)× (Yi

θ
)α
)
 .

Now we observe that RHS consists of a sum iid random variables (this can be viewed as

an average). Since the variance of this exists (you can show that it is In(θ, α)), the CLT

can be applied and we have that

√
n

(
θ̂n − θ
α̂n − α

)
D→ N

(
0, I(θ, α)−1

)
,

where I(θ, α) = E[(∇ log f(X; θ, α))2].
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Remark 2.6.3 (i) We recall that for iid random variables that the Fisher information

for sample size n is

In(θ0) = E

{
∂ logLn(X; θ)

∂θ
cθ0
}2

= nE

(
∂ log f(X; θ)

∂θ
cθ0
)2

= nI(θ0)

Therefore since

(θ̂n − θ0) ≈ In(θ0)−1∂Ln(θ)

∂θ
cθ0 =

[
1

n
I(θ0)

]−1
1

n

∂Ln(θ)

∂θ
cθ0

⇒
√
n(θ̂n − θ0) ≈

√
nIn(θ0)−1∂Ln(θ)

∂θ
cθ0 =

[
1

n
I(θ0)

]−1
1√
n

∂Ln(θ)

∂θ
cθ0

and var
(

1√
n
∂Ln(θ)
∂θ
cθ0
)

= n−1E
[(∂Ln(θ)

∂θ
cθ0
)2
]

= I(θ0), it can be seen that |θ̂n − θ0| =
Op(n

−1/2).

(ii) Under suitable conditions a similar result holds true for data which is not iid.

(iii) These results only apply when θ0 lies inside the parameter space Θ.

We have shown that under certain regularity conditions the mle will asymptotically

attain the Fisher information bound. It is reasonable to ask how one can interprete this

bound.

(i) Situation 1. In(θ0) = E

(
− ∂2Ln(θ)

∂θ2
cθ0
)

is large (hence variance of the mle will

be small) then it means that the gradient of ∂Ln(θ)
∂θ

is large. Hence even for small

deviations from θ0, ∂Ln(θ)
∂θ

is likely to be far from zero. This means the mle θ̂n is

likely to be in a close neighbourhood of θ0.

(ii) Situation 2. In(θ0) = E

(
− ∂2Ln(θ)

∂θ2
cθ0
)

is small (hence variance of the mle will large).

In this case the gradient of the likelihood ∂Ln(θ)
∂θ

is flatter and hence ∂Ln(θ)
∂θ
≈ 0 for

a large neighbourhood about the true parameter θ. Therefore the mle θ̂n can lie in

a large neighbourhood of θ0.

Remark 2.6.4 (Lagrange Multipliers) Often when maximising the likelihood it has

to be done under certain constraints on the parameters. This is often achieved with the

use of Lagrange multipliers (a dummy variable), which enforces this constraint.

89



For example suppose the parameters in the likelihood must sum to one then we can

enforce this constraint by maximising the criterion

Ln(θ, λ) = Ln(θ)︸ ︷︷ ︸
likelihood

+λ[

q∑
j=1

θj − 1]

with respect to θ and the dummy variable λ.

2.7 Some questions

Exercise 2.7 Suppose X1, . . . , Xn are i.i.d. observations. A student wants to test whether

each Xi has a distribution in the parametric family {f(x;α) : α ∈ Θ} or the family

{g(x; β) : β ∈ Γ}. To do this he sets up the hypotheses

H0 : Xi ∼ f( · ;α0) vs. HA : Xi ∼ g( · ; β0),

where α0 and β0 are the unknown true parameter values. He constructs the log-likelihood

ratio statistic

L = max
β∈Γ
Lg(X; β)−max

α∈Θ
Lf (X;α) = Lg(X; β̂)− Lf (X; α̂),

where

Lg(X; β) =
n∑
i=1

log g(Xi; β), Lf (X;α) =
n∑
i=1

log f(Xi;α),

α̂ = arg maxα∈Θ Lf (X;α) and β̂ = arg maxβ∈Γ Lg(X; β). The student applies what he

believe he learned in class to L and assumes that the distribution of L under the null

hypothesis (asymptotically) follows a chi-squared distribution with one-degree of freedom.

He does the test at the 5% level using the critical value χ2 = 3.84, rejecting the null in

favor of the alternative if L > 3.84.

(a) Using well known results, derive the asymptotic distribution of

1√
n

n∑
i=1

log
g(Xi; β0)

f(Xi;α0)

under the null and the alternative.
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(b) Is the distribution of L chi-squared? If not, derive the asymptotic distribution of L.

Hint: You will need to use your answer from (a).

Note: This part is tough; but fun (do not be disillusioned if it takes time to solve).

(c) By using your solution to parts (a) and (b), carefully explain what the actual type

error I of the student’s test will be (you do not need to derive the Type I error, but

you should explain how it compares to the 5% level that the student uses).

(d) By using your solution to parts (a) and (b), carefully explain what the power of his

test will be (you do not have to derive an equation for the power, but you should

explain what happens to the power as the sample size grows, giving a precise justifi-

cation).

(e) Run some simulations to illustrate the above.

Exercise 2.8 Find applications where likelihoods are maximised with the use of Lagrange

multipliers. Describe the model and where the Lagrange multiplier is used.

2.8 Applications of the log-likelihood theory

We first summarise the results in the previous section (which will be useful in this section).

For convenience, we will assume that {Xi}ni=1 are iid random variables, whose density

is f(x; θ0) (though it is relatively simple to see how this can be generalised to general

likelihoods - of not necessarily iid rvs). Let us suppose that θ0 is the true parameter that

we wish to estimate. Based on Theorem 2.6.2 we have

√
n
(
θ̂n − θ0

) D→ N(0, I(θ0)−1

)
, (2.16)

1√
n

∂Ln
∂θ
cθ=θ0

D→ N
(

0, I(θ0)

)
(2.17)

and

2
[
Ln(θ̂n)− Ln(θ0)

]
D→ χ2

p, (2.18)
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where p are the number of parameters in the vector θ and I(θ0) = E[(∂ log f(X;θ)
∂θ

cθ0)2] =

n−1E[(∂ logLn(θ)
∂θ

cθ0)2]. It is worth keeping in mind that by using the usual Taylor expansion

the log-likelihood ratio statistic is asymptotically equivalent to

2
[
Ln(θ̂n)− L(θ0)

]
D
= ZI(θ0)Z,

where Z ∼ N (0, I(θ0)).

Note: There are situations where the finite sampling distributions of the above are

known, in which case there is no need to resort to the asymptotic sampling properties.

2.8.1 Constructing confidence sets using the likelihood

One the of main reasons that we show asymptotic normality of an estimator (it is usually

not possible to derive normality for finite samples) is to construct confidence intervals/sets

and to test.

In the case that θ0 is a scaler (vector of dimension one), it is easy to use (2.16) to

obtain

√
nI(θ0)1/2

(
θ̂n − θ0

) D→ N(0, 1). (2.19)

Based on the above the 95% CI for θ0 is[
θ̂n −

1√
n
I(θ0)zα/2, θ̂n +

1√
n
I(θ0)zα/2

]
.

The above, of course, requires an estimate of the (standardised) expected Fisher informa-

tion I(θ0), typically we use the (standardised) observed Fisher information evaluated at

the estimated value θ̂n.

The CI constructed above works well if θ is a scalar. But beyond dimension one,

constructing a CI based on (2.16) (and the p-dimensional normal) is extremely difficult.

More precisely, if θ0 is a p-dimensional vector then the analogous version of (2.19) is

√
nI(θ0)1/2

(
θ̂n − θ0

) D→ N(0, Ip).

However, this does not lead to a simple set construction. One way to construct the

confidence interval (or set) is to ‘square’
(
θ̂n − θ0

)
and use

n
(
θ̂n − θ0

)′
I(θ0)

(
θ̂n − θ0

) D→ χ2
p. (2.20)
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Based on the above a 95% CI is{
θ;
(
θ̂n − θ

)′
nE

(
∂ log f(X; θ)

∂θ
cθ0
)2(

θ̂n − θ
)
≤ χ2

p(0.95)

}
. (2.21)

Note that as in the scalar case, this leads to the interval with the smallest length. A

disadvantage of (2.21) is that we have to (a) estimate the information matrix and (b) try

to find all θ such the above holds. This can be quite unwieldy. An alternative method,

which is asymptotically equivalent to the above but removes the need to estimate the

information matrix is to use (2.18). By using (2.18), a 100(1− α)% confidence set for θ0

is {
θ; 2
(
Ln(θ̂n)− Ln(θ)

)
≤ χ2

p(1− α)

}
. (2.22)

The above is not easy to calculate, but it is feasible.

Example 2.8.1 In the case that θ0 is a scalar the 95% CI based on (2.22) is{
θ;Ln(θ) ≥ Ln(θ̂n)− 1

2
χ2

1(0.95)

}
.

See Figure 2.5 which gives the plot for the confidence interval (joint and disjoint).

Both the 95% confidence sets in (2.21) and (2.22) will be very close for relatively large

sample sizes. However one advantage of using (2.22) instead of (2.21) is that it is easier

to evaluate - no need to obtain the second derivative of the likelihood etc.

A feature which differentiates (2.21) and (2.22) is that the confidence sets based on

(2.21) is symmetric about θ̂n (recall that (X̄ − 1.96σ/
√
n, X̄ + 1.96σ/

√
n)) is symmetric

about X̄, whereas the symmetry condition may not hold for sample sizes when construct-

ing a CI for θ0 using (2.22). Using (2.22) there is no guarantee the confidence sets consist

of only one interval (see Figure 2.5). However, if the distribution is exponential with full

rank (and is steep) the likelihood will be concave with the maximum in the interior of the

parameter space. This will mean the CI constructed using (2.22) will be connected.

If the dimension of θ is large it is difficult to evaluate the confidence set. Indeed

for dimensions greater than three it is extremely hard. However in most cases, we are

only interested in constructing confidence sets for certain parameters of interest, the other

unknown parameters are simply nuisance parameters and confidence sets for them are not

of interest. For example, for the normal family of distribution we may only be interested

in constructing an interval for the mean, and the variance is simply a nuisance parameter.
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Figure 2.5: Constructing confidence intervals using method (2.22).

2.8.2 Testing using the likelihood

Let us suppose we wish to test the hypothesis H0 : θ = θ0 against the alternative HA :

θ 6= θ0. We can use any of the results in (2.16), (2.17) and (2.18) to do the test - they will

lead to slightly different p-values, but ‘asympototically’ they are all equivalent, because

they are all based (essentially) on the same derivation.

We now list the three tests that one can use.

The Wald test

The Wald statistic is based on (2.16). We recall from (2.16) that if the null is true, then

we have

√
n
(
θ̂n − θ0

) D→ N(0,

{
E

(
∂ log f(X; θ)

∂θ
cθ0
)2}−1)

.
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Thus we can use as the test statistic

T1 =
√
nI(θ0)1/2

(
θ̂n − θ0

)
to test the hypothesis. Under the null

T1
D→ N (0, 1).

We now consider how the test statistics behaves under the alternative HA : θ = θ1. If the

alternative were true, then we have

I(θ0)1/2(θ̂n − θ0) = I(θ0)1/2
(

(θ̂n − θ1) + (θ1 − θ0)
)

≈ I(θ0)1/2In(θ1)−1
∑
i

∂ log f(Xi; θ1)

∂θ1

+ I(θ0)1/2(θ1 − θ0)

where In(θ1) = Eθ1 [(
∂Ln(θ)
∂θ
cθ=θ1)2].

Local alternatives and the power function

In the case that the alternative is fixed (does not change with sample size), it is clear that

the power in the test goes to 100% as n→∞. To see we write

√
nI(θ0)1/2(θ̂n − θ0) =

√
nI(θ0)1/2(θ̂n − θ1) +

√
nI(θ0)1/2(θ1 − θ0)

≈ I(θ0)1/2I(θ1)−1 1√
n

∑
i

∂ log f(Xi; θ1)

∂θ1

+
√
nI(θ0)1/2(θ1 − θ0)

D→ N
(
0, I(θ0)1/2I(θ1)−1I(θ0)1/2

)
+
√
nI(θ0)1/2(θ1 − θ0).

Using the above calculation we see that

P (Reject|θ = θ1) = 1− Φ

(
z1−α/2 −

√
n(θ1 − θ0)I(θ0)1/2√

I(θ0)1/2I(θ1)−1I(θ0)1/2

)
.

Thus, we see that as n → ∞, the power gets closer to 100%. However, this calculation

does not really tell us how the test performs for θ1 close to the θ0.

To check the effectiveness of a given testing method, one lets the alternative get closer

to the the null as n → ∞. This allows us to directly different statistical tests (and the

factors which drive the power).

How to choose the closeness:
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• Suppose that θ1 = θ0 + φ
n

(for fixed φ), then the center of T1 is

√
nI(θ0)1/2(θ̂n − θ0) =

√
nI(θ0)1/2(θ̂n − θ1) +

√
nI(θ0)1/2(θ1 − θ0)

≈ I(θ0)1/2I(θ1)−1 1√
n

∑
i

∂ log f(Xi; θ1)

∂θ1

+
√
n(θ1 − θ0)

D→ N

0, I(θ0)1/2I(θ1)−1I(θ0)1/2︸ ︷︷ ︸
→I

+
I(θ0)1/2φ√

n︸ ︷︷ ︸
→0

≈ N(0, Ip).

Thus the alternative is too close to the null for us to discriminate between the null

and alternative.

• Suppose that θ1 = θ0 + φ√
n

(for fixed φ), then

√
nI(θ0)1/2(θ̂n − θ0) =

√
nI(θ0)1/2(θ̂n − θ1) +

√
nI(θ0)1/2(θ1 − θ0)

≈ I(θ0)1/2I(θ1)−1 1√
n

∑
i

∂ log f(Xi; θ1)

∂θ1

+
√
nI(θ0)1/2(θ1 − θ0)

D→ N
(
0, I(θ0)1/2I(θ1)−1I(θ0)1/2

)
+ I(θ0)1/2φ

≈ N
(
I(θ0)1/2φ, I(θ0)1/2I(θ0 + φn−1/2)−1I(θ0)1/2

)
.

Therefore, for a given φ we can calculate the power at a given level α. Assume for

simplicity that φ > 0 and θ is univariate. Then

P
(
|T1| > z1−α/2

)
≥ P

(
T1 > z1−α/2

)
= P

(
Z >

z1−α/2 − I(θ0)1/2φ√
I(θ0)1/2I(θ0 + φn−1/2)−1I(θ0)1/2

)

= 1− Φ

(
z1−α/2 − I(θ0)1/2φ√

I(θ0)1/2I(θ0 + φn−1/2)−1I(θ0)1/2

)
≈ 1− Φ

(
z1−α/2 − φI(θ0)1/2

)
.

this gives the power function of the test for a fixed n over φ. What we observe is

that the power of the test H0 : θ = θ0 vs HA : θ 6= θ0 depends on the size of I(θ0)1/2.

The larger the Fisher information I(θ0) the greater the ability of the Wald test to

discriminate between the null and the alternative. Based on what we understand

about the Fisher information this make sense. The larger the Fisher information

the “better” our ability to estimate the true parameter.
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In the case that the dimension of θ is p > 1, we use the test statistic ñ1 =
(
θ̂n −

θ0

)√
nE

(
∂ log f(X;θ)

∂θ
cθ0
)2(

θ̂n − θ0

)
instead of T1. Noting that the distribution of T1 is a

chi-squared with p-degrees of freedom.

The Score test

The score test is based on the score. Under the null the distribution of the score is

1√
n

∂Ln
∂θ
cθ=θ0

D→ N
(

0,

{
E

(
∂ log f(X; θ)

∂θ
cθ0
)2})

.

Thus we use as the test statistic

T2 =
1√
n

{
E

(
∂ log f(X; θ)

∂θ
cθ0
)2}−1/2

∂Ln
∂θ
cθ=θ0

D→ N (0, 1).

An advantage of this test is that the maximum likelihood estimator (under either the null

or alternative) does not have to be calculated.

The log-likelihood ratio test

This test is based on (2.18), and the test statistic is

T3 = 2
(

max
θ∈Θ
Ln(θ)− Ln(θ0)

) D→ χ2
p.

T3 is often called Wilk’s statistic. An advantage of this test statistic is that it is asymptot-

ically pivotal, in the sense that it does not depend on any nuisance parameters (we discuss

this in the next chapter). However, using the chi-square distribution will only give the

p-value corresponding to a “two-sided” hypothesis. This is because the chi-square distri-

bution is based on the approximation

T3 = 2
(
Ln(θ̂n)− Ln(θ0)

)
≈ n(θ̂n − θ0)2I(θ0),

which assumes that θ̂n = arg maxθ Ln(θ) and solves ∂Ln(θ)
∂θ
cθ=θ̂n = 0. However, in a one-

sided test H0 : µ = µ0 vs HA : µ > µ0 parameter space is restricted to µ ≥ µ0 (it is on the

boundary), this means that T3 will not have a chi-square (though it will be very close)

and p-value will be calculated in a slightly diifferent way. This boundary issue is not a

problem for Wald test, since for the Wald test we simply calculate

P (Z ≥ T1) = Φ
(√

nI(θ0)1/2(θ̂ − θ0)
)
.
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Indeed, we show in Chapter 4, that the p-value for the one-sided test using the log-

likelihood ratio statistic corresponds to that of p-value of the one-sided tests using the

Wald statistic.

Exercise 2.9 What do the score and log-likelihood ratio test statistics look like under the

alternative? Derive the power function for these test statistics.

You should observe that the power function for all three tests is the same.

Applications of the log-likeihood ratio to the multinomial distribution

We recall that the multinomial distribution is a generalisation of the binomial distribution.

In this case at any given trial there can arise m different events (in the Binomial case

m = 2). Let Zi denote the outcome of the ith trial and assume P (Zi = k) = πi (π1 +

. . . + πm = 1). Suppose that n trials are conducted and let Y1 denote the number of

times event 1 arises, Y2 denote the number of times event 2 arises and so on. Then it is

straightforward to show that

P (Y1 = k1, . . . , Ym = km) =

(
n

k1, . . . , km

) m∏
i=1

πkii .

If we do not impose any constraints on the probabilities {πi}, given {Yi}mi=1 it is

straightforward to derive the mle of {πi} (it is very intuitive too!). Noting that πm =

1−
∑m−1

i=1 πi, the log-likelihood of the multinomial is proportional to

Ln(π) =
m−1∑
i=1

yi log πi + ym log(1−
m−1∑
i=1

πi).

Differentiating the above with respect to πi and solving gives the mle estimator π̂i =

Yi/n! We observe that though there are m probabilities to estimate due to the constraint

πm = 1−
∑m−1

i=1 πi, we only have to estimate (m− 1) probabilities. We mention, that the

same estimators can also be obtained by using Lagrange multipliers, that is maximising

Ln(π) subject to the parameter constraint that
∑p

j=1 πi = 1. To enforce this constraint,

we normally add an additional term to Ln(π) and include the dummy variable λ. That

is we define the constrained likelihood

L̃n(π, λ) =
m∑
i=1

yi log πi + λ(
m∑
i=1

πi − 1).
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Now if we maximise L̃n(π, λ) with respect to {πi}mi=1 and λ we will obtain the estimators

π̂i = Yi/n (which is the same as the maximum of Ln(π)).

To derive the limiting distribution we note that the second derivative is

−∂
2Ln(π)

∂πiπj
=


yi
π2
i

+ ym
(1−

∑m−1
r=1 πr)2

i = j

ym
(1−

∑m−1
r=1 πr)2

i 6= j

Hence taking expectations of the above the information matrix is the (k − 1) × (k − 1)

matrix

I(π) = n


1
π1

+ 1
πm

1
πm

. . . 1
πm

1
πm

1
π2

+ 1
πm

. . . 1
πm

...
...

...
...

1
πm−1

. . . 1
πm−1

+ 1
πm

 .

Provided no of πi is equal to either 0 or 1 (which would drop the dimension of m and

make I(π)) singular, then the asymptotic distribution of the mle the normal with variance

I(π)−1.

Sometimes the probabilities {πi} will not be ‘free’ and will be determined by a param-

eter θ (where θ is an r-dimensional vector where r < m), ie. πi = πi(θ), in this case the

likelihood of the multinomial is

Ln(π) =
m−1∑
i=1

yi log πi(θ) + ym log(1−
m−1∑
i=1

πi(θ)).

By differentiating the above with respect to θ and solving we obtain the mle.

Pearson’s goodness of Fit test

We now derive Pearson’s goodness of Fit test using the log-likelihood ratio.

Suppose the null is H0 : π1 = π̃1, . . . , πm = π̃m (where {π̃i} are some pre-set proba-

bilities) and HA : the probabilities are not the given probabilities. Hence we are testing

restricted model (where we do not have to estimate anything) against the full model where

we estimate the probabilities using πi = Yi/n.

The log-likelihood ratio in this case is

W = 2
{

arg max
π
Ln(π)− Ln(π̃)

}
.
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Under the null we know that W = 2
{

arg maxπ Ln(π)−Ln(π̃)
} D→ χ2

m−1 (because we have

to estimate (m− 1) parameters). We now derive an expression for W and show that the

Pearson-statistic is an approximation of this.

1

2
W =

m−1∑
i=1

Yi log
(Yi
n

)
+ Ym log

Ym
n
−

m−1∑
i=1

Yi log π̃i − Ym log π̃m

=
m∑
i=1

Yi log
( Yi
nπ̃i

)
.

Recall that Yi is often called the observed Yi = Oi and nπ̃i the expected under the null

Ei = nπ̃i. Then W = 2
∑m

i=1 Oi log
(
Oi
Ei

) P→ χ2
m−1. By making a Taylor expansion of

x log(xa−1) about x = a we have x log(xa−1) ≈ a log(aa−1) + (x− a) + 1
2
(x− a)2/a. We

let O = x and E = a, then assuming the null is true and Ei ≈ Oi we have

W = 2
m∑
i=1

Yi log
( Yi
nπ̃i

)
≈ 2

m∑
i=1

(
(Oi − Ei) +

1

2

(Oi − Ei)2

Ei

)
.

Now we note that
∑m

i=1Ei =
∑m

i=1Oi = n hence the above reduces to

W ≈
m∑
i=1

(Oi − Ei)2

Ei

D→ χ2
m−1.

We recall that the above is the Pearson test statistic. Hence this is one methods for

deriving the Pearson chi-squared test for goodness of fit.

Remark 2.8.1 (Beyond likelihood) In several applications in statistics we cannot ar-

ticulate the question of interest in terms of the parameters of a distribution. However, we

can often articulate it in terms of some parameters, φ. Indeed, whether φ is zero or will

tell us something about the data. For example:

(i) Are some parameters in a linear regression zero?

(ii) Is there correlation between two variables?

(iii) Is there an interaction between two categorical variables in a regression?

(iv) In my own area of research on detecting nonstationarities, transforming the time

series can yield more information then the original data. For example, nonstation-

arities imply correlations in the transformed data. The list goes on.
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None of the above requires us to place distributional assumptions on the data. However, we

can still test H0 : φ = 0 against HA : φ 6= 0. If we can estimate this quantity and obtain

its limiting distribution under the null and show that under the alternative it “shifts”,

using φ̂ we can construct a test statistic which has some power (though it may not be the

most powerful test).

2.9 Some questions

Exercise 2.10 A parameterisation of a distribution is identifiably if there does not exist

another set of parameters which can give the same distribution. https: // en. wikipedia.

org/ wiki/ Identifiability . Recall this assumption was used when deriving the sam-

pling properties of the maximum likelihood estimator.

Suppose Xi are iid random variables which come from a mixture of distributions. The

density of Xi is

f(x; π, λ1, λ2) = πλ1 exp(−λ1x) + (1− π)λ2 exp(−λ2x)

where x > 0, λ1, λ2 > 0 and 0 ≤ π ≤ 1.

(i) Are the parameters identifiable?

(ii) Does standard theory apply when using the log-likelihood ratio test to test H0 : π = 0

vs HA : π 6= 0.

(iii) Does standard theory apply when using the log-likelihood to estimate π when λ1 = λ2.
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Chapter 3

The Profile Likelihood

3.1 The Profile Likelihood

3.1.1 The method of profiling

Let us suppose that the unknown parameters θ can be partitioned as θ′ = (ψ′, λ′), where

ψ are the p-dimensional parameters of interest (eg. mean) and λ are the q-dimensional

nuisance parameters (eg. variance). We will need to estimate both ψ and λ, but our

interest lies only in the parameter ψ. To achieve this one often profiles out the nuisance

parameters. To motivate the profile likelihood, we first describe a method to estimate the

parameters (ψ, λ) in two stages and consider some examples.

Let us suppse that {Xi} are iid random variables, with density f(x;ψ, λ) where our

objective is to estimate ψ and λ. In this case the log-likelihood is

Ln(ψ, λ) =
n∑
i=1

log f(Xi;ψ, λ).

To estimate ψ and λ one can use (λ̂n, ψ̂n) = arg maxλ,ψ Ln(ψ, λ). However, this can be

difficult to directly maximise. Instead let us consider a different method, which may,

sometimes, be easier to evaluate. Suppose, for now, ψ is known, then we rewrite the

likelihood as Ln(ψ, λ) = Lψ(λ) (to show that ψ is fixed but λ varies). To estimate λ we

maximise Lψ(λ) with respect to λ, i.e.

λ̂ψ = arg max
λ
Lψ(λ).
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In reality ψ is unknown, hence for each ψ we can evaluate λ̂ψ. Note that for each ψ, we

have a new curve Lψ(λ) over λ. Now to estimate ψ, we evaluate the maximum Lψ(λ),

over λ, and choose the ψ, which is the maximum over all these curves. In other words,

we evaluate

ψ̂n = arg max
ψ
Lψ(λ̂ψ) = arg max

ψ
Ln(ψ, λ̂ψ).

A bit of logical deduction shows that ψ̂n and λψ̂n are the maximum likelihood estimators

(λ̂n, ψ̂n) = arg maxψ,λ Ln(ψ, λ).

We note that we have profiled out nuisance parameter λ, and the likelihood Lψ(λ̂ψ) =

Ln(ψ, λ̂ψ) is in terms of the parameter of interest ψ.

The advantage of this procedure is best illustrated through some examples.

Example 3.1.1 (The Weibull distribution) Let us suppose that {Xi} are iid random

variables from a Weibull distribution with density f(x;α, θ) = αyα−1

θα
exp(−(y/θ)α). We

know from Example 2.2.2, that if α, were known an explicit expression for the MLE can

be derived, it is

θ̂α = arg max
θ
Lα(θ)

= arg max
θ

n∑
i=1

(
logα + (α− 1) log Yi − α log θ −

(Yi
θ

)α)
= arg max

θ

n∑
i=1

(
− α log θ −

(Yi
θ

)α)
= (

1

n

n∑
i=1

Y α
i )1/α,

where Lα(X; θ) =
∑n

i=1

(
logα + (α − 1) log Yi − α log θ −

(
Yi
θ

)α)
. Thus for a given α,

the maximum likelihood estimator of θ can be derived. The maximum likelihood estimator

of α is

α̂n = arg max
α

n∑
i=1

(
logα + (α− 1) log Yi − α log(

1

n

n∑
i=1

Y α
i )1/α −

( Yi
( 1
n

∑n
i=1 Y

α
i )1/α

)α)
.

Therefore, the maximum likelihood estimator of θ is ( 1
n

∑n
i=1 Y

α̂n
i )1/α̂n. We observe that

evaluating α̂n can be tricky but no worse than maximising the likelihood Ln(α, θ) over α

and θ.
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As we mentioned above, we are not interest in the nuisance parameters λ and are only

interesting in testing and constructing CIs for ψ. In this case, we are interested in the

limiting distribution of the MLE ψ̂n. Using Theorem 2.6.2(ii) we have

√
n

(
ψ̂n − ψ
λ̂n − λ

)
D→ N

(
0,

(
Iψψ Iψλ

Iλψ Iλλ

)−1)
.

where (
Iψψ Iψλ

Iλψ Iλλ

)
=

(
E
(
− ∂2 log f(Xi;ψ,λ)

∂ψ2

)
E
(
− ∂2 log f(Xi;ψ,λ)

∂ψ∂λ

)
E
(
− ∂2 log f(Xi;ψ,λ)

∂ψ∂λ

)′
E
(
− ∂2 log f(Xi;ψ,λ)

∂ψ2

) ) . (3.1)

To derive an exact expression for the limiting variance of
√
n(ψ̂n − ψ), we use the block

inverse matrix identity.

Remark 3.1.1 (Inverse of a block matrix) Suppose that(
A B

C D

)

is a square matrix. Then(
A B

C D

)−1

=

(
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1CB(A−BD−1C)−1 (D − CA−1B)−1

)
. (3.2)

Using (3.2) we have

√
n(ψ̂n − ψ)

D→ N (0, (Iψ,ψ − Iψ,λI−1
λλ Iλ,ψ)−1). (3.3)

Thus if ψ is a scalar we can use the above to construct confidence intervals for ψ.

Example 3.1.2 (Block diagonal information matrix) If

I(ψ, λ) =

(
Iψ,ψ 0

0 Iλ,λ

)
,

then using (3.3) we have

√
n(ψ̂n − ψ)

D→ N (0, I−1
ψ,ψ).
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3.1.2 The score and the log-likelihood ratio for the profile like-

lihood

To ease notation, let us suppose that ψ0 and λ0 are the true parameters in the distribution.

We now consider the log-likelihood ratio

2

{
max
ψ,λ
Ln(ψ, λ)−max

λ
Ln(ψ0, λ)

}
, (3.4)

where ψ0 is the true parameter. However, to derive the limiting distribution in this case

for this statistic is a little more complicated than the log-likelihood ratio test that does

not involve nuisance parameters. This is because directly applying Taylor expansion does

not work since this is usually expanded about the true parameters. We observe that

2

{
max
ψ,λ
Ln(ψ, λ)−max

λ
Ln(ψ0, λ)

}
= 2

{
max
ψ,λ
Ln(ψ, λ)− Ln(ψ0, λ0)

}
︸ ︷︷ ︸

χ2
p+q

− 2
{

max
λ
Ln(ψ0, λ)−max

λ
Ln(ψ0, λ0)

}
︸ ︷︷ ︸

χ2
q

.

It seems reasonable that the difference may be a χ2
p but it is really not clear by. Below,

we show that by using a few Taylor expansions why this is true.

In the theorem below we will derive the distribution of the score and the nested log-

likelihood.

Theorem 3.1.1 Suppose Assumption 2.6.1 holds. Suppose that (ψ0, λ0) are the true

parameters. Then we have

∂Ln(ψ, λ)

∂ψ
cλ̂ψ0 ,ψ0

≈ ∂Ln(ψ, λ)

∂ψ
cψ0,λ0 −

∂Ln(ψ, λ)

∂λ
cψ0,λ0I

−1
λ0λ0

Iλ0ψ0 (3.5)

1√
n

∂Ln(ψ, λ)

∂ψ
cψ0,λ̂ψ0

D→ N (0, (Iψ0ψ0 − Iψ0λ0I
−1
λ0λ0

Iλ0,ψ0)) (3.6)

where I is defined as in (3.1) and

2

{
Ln(ψ̂n, λ̂n)− Ln(ψ0, λ̂ψ0)

}
D→ χ2

p, (3.7)

where p denotes the dimension of ψ. This result is often called Wilks Theorem.

106



PROOF. We first prove (3.5) which is the basis of the proofs of (3.6). To avoid, notational

difficulties we will assume that ∂Ln(ψ,λ)
∂ψ

cλ̂ψ0 ,ψ0
and ∂Ln(ψ,λ)

∂λ
cλ=λ0,ψ0 are univariate random

variables.

Our objective is to find an expression for ∂Ln(ψ,λ)
∂ψ

cλ̂ψ0 ,ψ0
in terms of ∂Ln(ψ,λ)

∂λ
cλ=λ0,ψ0 and

∂Ln(ψ,λ)
∂ψ

cλ=λ0,ψ0 which will allow us to obtain its variance and asymptotic distribution.

Making a Taylor expansion of ∂Ln(ψ,λ)
∂ψ

cλ̂ψ0 ,ψ0
about ∂Ln(ψ,λ)

∂ψ
cλ0,ψ0 gives

∂Ln(ψ, λ)

∂ψ
cλ̂ψ0 ,ψ0

≈ ∂Ln(ψ, λ)

∂ψ
cλ0,ψ0 + (λ̂ψ0 − λ0)

∂2Ln(ψ, λ)

∂λ∂ψ
cλ0,ψ0 .

Notice that we have used ≈ instead of = because we replace the second derivative

with its true parameters. If the sample size is large enough then ∂2Ln(ψ,λ)
∂λ∂ψ

cλ0,ψ0 ≈
E
(∂2Ln(ψ,λ)

∂λ∂ψ
cλ0,ψ0

)
; eg. in the iid case we have

1

n

∂2Ln(ψ, λ)

∂λ∂ψ
cλ0,ψ0 =

1

n

n∑
i=1

∂2 log f(Xi;ψ, λ)

∂λ∂ψ
cλ0,ψ0

≈ E

(
∂2 log f(Xi;ψ, λ)

∂λ∂ψ
cλ0,ψ0

)
= −Iλ,ψ

Therefore

∂Ln(ψ, λ)

∂ψ
cλ̂ψ0 ,ψ0

≈ ∂Ln(ψ, λ)

∂ψ
cλ0,ψ0 − n(λ̂ψ0 − λ0)Iλψ. (3.8)

Next we make a decomposition of (λ̂ψ0−λ0). We recall that since Ln(ψ0, λ̂ψ0) = arg maxλ Ln(ψ0, λ)

then

∂Ln(ψ, λ)

∂λ
cλ̂ψ0 ,ψ0

= 0

(if the maximum is not on the boundary). Therefore making a Taylor expansion of
∂Ln(ψ0,λ)

∂λ
cλ̂ψ0 ,ψ0

about ∂Ln(ψ0,λ)
∂λ

cλ0,ψ0 gives

∂Ln(ψ0, λ)

∂λ
cλ̂ψ0 ,ψ0︸ ︷︷ ︸

=0

≈ ∂Ln(ψ0, λ)

∂λ
cλ0,ψ0 +

∂2Ln(ψ0, λ)

∂λ2
cλ0,ψ0(λ̂ψ0 − λ0).

Replacing ∂2Ln(ψ0,λ)
∂λ2

cλ0,ψ0 with Iλλ gives

∂Ln(ψ0, λ)

∂λ
cλ0,ψ0 − nIλλ(λ̂ψ0 − λ0) ≈ 0,
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and rearranging the above gives

(λ̂ψ0 − λ0) ≈ I−1
λλ

n

∂Ln(ψ0, λ)

∂λ
cλ0,ψ0 . (3.9)

Therefore substituting (3.9) into (3.8) gives

∂Ln(ψ, λ)

∂ψ
cλ̂ψ0 ,ψ0

≈ ∂Ln(ψ, λ)

∂ψ
cλ0,ψ0 −

∂Ln(ψ0, λ)

∂λ
cψ0,λ0I

−1
λλ Iλψ

and thus we have proved (3.5).

To prove (3.6) we note that

∂Ln(ψ, λ)

∂ψ
cλ̂ψ0 ,ψ0

≈ ∂Ln(ψ0, λ)

∂θ
c′ψ0,λ0

(
I,−I−1

λλ λλ,ψ
)′
. (3.10)

We recall that the regular score function satisfies

1√
n

∂Ln(ψ, λ)

∂θ
cλ0,ψ0 =

1√
n

(
∂Ln(ψ,λ)

∂ψ
cλ0,ψ0

∂Ln(ψ,λ)
∂λ
cψ0,λ0

)
D→ N (0, I(θ0)).

Now by substituting the above into (3.10) and calculating the variance gives (3.6).

Finally to prove (3.7) we apply the Taylor expansion on the decomposition

2

{
Ln(ψ̂n, λ̂n)− Ln(ψ0, λ̂ψ0)

}
= 2

{
Ln(ψ̂n, λ̂n)− Ln(ψ0, λ0)

}
− 2

{
Ln(ψ0, λ̂ψ0)− Ln(ψ0, λ0)

}
≈ (θ̂n − θ0)′I(θ)(θ̂n − θ0)− (λ̂ψ0 − λ0)′Iλλ(λ̂ψ0 − λ0), (3.11)

where θ̂′n = (ψ̂, λ̂) (the mle). We now find an approximation of (λ̂ψ0 − λ0)′ in terms

(θ̂n − θ0). We recall that (θ̂ − θ) = I(θ0)−1∇θLn(θ)cθ=θ0 therefore(
∂Ln(θ)
∂ψ

∂Ln(θ)
∂λ

)
≈

(
Iψψ Iψλ

Iλψ Iλλ

)(
ψ̂n − ψ0

λ̂n − λn

)
(3.12)

From (3.9) and the expansion of ∂Ln(θ)
∂λ

given in (3.12) we have

(λ̂ψ0 − λ0) ≈ I−1
λλ

n

∂Ln(ψ0, λ)

∂λ
cλ0,ψ0 ≈

I−1
λλ

n

(
Iλψ(ψ̂ − ψ0) + Iλλ(λ̂− λ0)

)
≈ 1

n
I−1
λλ Iλψ(ψ̂ − ψ0) + (λ̂− λ0) =

1

n

(
I−1
λλ Iλψ, 1

) (
θ̂n − θ0

)
.

Substituting the above into (3.11) and making lots of cancellations we have

2

{
Ln(ψ̂n, λ̂n)− Ln(ψ0, λ̂ψ0)

}
≈ n(ψ̂ − ψ0)′(Iψψ − IψλI−1

λ,λIλ,ψ)(ψ̂ − ψ0).

Finally, by using (3.3) we substitute
√
n(ψ̂ − ψ0)

D→ N (0, (Iψψ − IψλI−1
λ,λIλ,ψ)−1), into the

above which gives the desired result. �
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Remark 3.1.2 (i) The limiting variance of ψ̂ − ψ0 if λ were known is I−1
ψ,ψ, whereas

the the limiting variance of ∂Ln(ψ,λ)
∂ψ

cλ̂ψ0 ,ψ0
is (Iψψ − IψλI

−1
λ,λIλ,ψ) and the limiting

variance of
√
n(ψ̂ − ψ0) is (Iψψ − IψλI−1

λ,λIλ,ψ)−1. Therefore if ψ and λ are scalars

and the correlation Iλ,ψ is positive, then the limiting variance of ψ̂−ψ0 is more than

if λ were known. This makes sense, if we have less information the variance grows.

(ii) Look again at the expression

∂Ln(ψ, λ)

∂ψ
cλ̂ψ0 ,ψ0

≈ ∂Ln(ψ, λ)

∂ψ
cλ0,ψ0 − IψλI−1

λλ

∂Ln(ψ0, λ)

∂λ
cλ0,ψ0 (3.13)

It is useful to understand where it came from. Consider the problem of linear re-

gression. Suppose X and Y are random variables and we want to construct the

best linear predictor of Y given X. We know that the best linear predictor is

Ŷ (X) = E(XY )/E(X2)X and the residual and mean squared error is

Y − Ŷ (X) = Y − E(XY )

E(X2)
X and E

(
Y − E(XY )

E(X2)
X

)2

= E(Y 2)− E(XY )E(X2)−1E(XY ).

Compare this expression with (3.13). We see that in some sense ∂Ln(ψ,λ)
∂ψ

cλ̂ψ0 ,ψ0
can

be treated as the residual (error) of the projection of ∂Ln(ψ,λ)
∂ψ

cλ0,ψ0 onto ∂Ln(ψ0,λ)
∂λ

cλ0,ψ0.

3.1.3 The log-likelihood ratio statistics in the presence of nui-

sance parameters

Theorem 3.1.1 can be used to test H0 : ψ = ψ0 against HA : ψ 6= ψ0 since

2

{
max
ψ,λ
Ln(ψ, λ)−max

λ
Ln(ψ0, λ)

}
D→ χ2

p.

The same quantity can be used in the construction of confidence intervals By using (3.7)

we can construct CIs. For example, to construct a 95% CI for ψ we can use the mle

θ̂n = (ψ̂n, λ̂n) and the profile likelihood (3.7) to give{
ψ; 2

{
Ln(ψ̂n, λ̂n)− Ln(ψ, λ̂ψ)

}
≤ χ2

p(0.95)

}
.

Example 3.1.3 (The normal distribution and confidence intervals) This example

is taken from Davidson (2004), Example 4.31, p129.
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We recall that the log-likelihood for {Yi} which are iid random variables from a normal

distribution with mean µ and variance σ2 is

Ln(µ, σ2) = Lµ(σ2) = − 1

2σ2

n∑
i=1

(Yi − µ)2 − n

2
log σ2.

Our aim is to the use the log-likelihood ratio statistic, analogous to Section 2.8.1 to con-

struct a CI for µ. Thus we treat σ2 as the nuisance parameter.

Keeping µ fixed, the maximum likelihood estimator of σ2 is σ̂2(µ) = 1
n

∑n
i=1(Yi − µ)2.

Rearranging σ̂2(µ) gives

σ̂2(µ) =
n− 1

n
s2

(
1 +

t2n(µ)

n− 1

)
where t2n(µ) = n(Ȳ −µ)2/s2 and s2 = 1

n−1

∑n
i=1(Yi−Ȳ )2. Substituting σ̂2(µ) into Ln(µ, σ2)

gives the profile likelihood

Ln(µ, σ̂2(µ)) =
−1

σ̂2(µ)

n∑
i=1

(Yi − µ)2

︸ ︷︷ ︸
=−n/2

−n
2

log σ̂2(µ)

= −n
2
− n

2
log

{
n− 1

n
s2

(
1 +

t2n(µ)

n− 1

)}
.

It is clear that Ln(µ, σ̂2(µ)) is maximised at µ̂ = Ȳ . Hence

Ln(µ̂, σ̂2(µ̂)) = −n
2
− n

2
log

{
n− 1

n
s2

}
.

Thus the log-likelihood ratio is

Wn(µ) = 2
{
Ln(µ̂, σ̂2(µ̂))− Ln(µ, σ̂2(µ))

}
= n log

(
1 +

t2n(µ)

n− 1

)
︸ ︷︷ ︸

D→χ2
1 for true µ

.

Therefore, using the same argument to those in Section 2.8.1, the 95% confidence interval

for the mean is{
µ; 2

{
Ln(µ̂, σ̂2(µ̂))− Ln(µ, σ̂2(µ))

}}
=

{
µ;Wn(µ) ≤ χ2

1(0.95)
}

=

{
µ;n log

(
1 +

t2n(µ)

n− 1

)
≤ χ2

1(0.95)

}
.
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However, this is an asymptotic result. With the normal distribution we can get the exact

distribution. We note that since log is a monotonic function the log-likelihood ratio is

equivalent to {
µ; t2n(µ) ≤ Cα

}
,

where Cα is an appropriately chosen critical value. We recall that tn(µ) is a t-distribution

with n− 1 degrees of freedom. Thus Cα is the critical value corresponding to a Hotelling

T 2-distribution.

Exercise 3.1 Derive the χ2 test for independence (in the case of two by two tables) using

the log-likelihood ratio test. More precisely, derive the asymptotic distribution of

T =
(O1 − E1)2

E1

+
(O2 − E2)2

E2

+
(O3 − E3)2

E3

+
(O4 − E4)2

E4

,

under the null that there is no association between the categorical variables C and R,

where and E1 = n3×n1/N , E2 = n4×n1/N , E3 = n3×n2/N and E2 = n4×n2/N . State

C1 C2 Subtotal

R1 O1 O2 n1

R2 O3 O4 n2

Subtotal n3 n4 N

all results you use.

Hint: You may need to use the Taylor approximation x log(x/y) ≈ (x−y)+ 1
2
(x−y)2/y.

Pivotal Quantities

Pivotal quantities are statistics whose distribution does not depend on any parameters.

These include the t-ratio t =
√
n(X̄−µ)/sn ∼ tn−1 (in the case the data is normal) F -test

etc.

In many applications it is not possible to obtain a pivotal quantity, but a quantity can

be asymptotically pivotal. The log-likelihood ratio statistic is one such example (since its

distribution is a chi-square).

Pivotal statistics have many advantages. The main is that it avoids the need to

estimate extra parameters. However, they are also useful in developing Bootstrap methods

etc.
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3.1.4 The score statistic in the presence of nuisance parameters

We recall that we used Theorem 3.1.1 to obtain the distribution of 2
{

maxψ,λ Ln(ψ, λ)−
maxλ Ln(ψ0, λ)

}
under the null, we now consider the score test.

We recall that under the null H0 : ψ = ψ0 the derivative ∂Ln(ψ,λ)
∂λ
cλ̂ψ0 ,ψ0

= 0, but the

same is not true of ∂Ln(ψ,λ)
∂ψ

cλ̂ψ0 ,ψ0
. However, if the null were true we would expect λ̂ψ0 to

be close to the true λ0 and for ∂Ln(ψ,λ)
∂ψ

cλ̂ψ0 ,ψ0
to be close to zero. Indeed this is what we

showed in (3.6), where we showed that under the null

n−1/2∂Ln(ψ, λ)

∂ψ
cλ̂ψ0

D→ N (0, Iψψ − IψλI−1
λ,λIλ,ψ), (3.14)

where λψ0 = arg maxλ Ln(ψ0, λ).

Therefore (3.14) suggests an alternative test for H0 : ψ = ψ0 against HA : ψ 6= ψ0. We

can use 1√
n
∂Ln(ψ,λ)

∂ψ
cλ̂ψ0 as the test statistic. This is called the score or LM test.

The log-likelihood ratio test and the score test are asymptotically equivalent. There

are advantages and disadvantages of both.

(i) An advantage of the log-likelihood ratio test is that we do not need to calculate the

information matrix.

(ii) An advantage of the score test is that we do not have to evaluate the the maximum

likelihood estimates under the alternative model.

3.2 Applications

3.2.1 An application of profiling to frequency estimation

Suppose that the observations {Xt; t = 1, . . . , n} satisfy the following nonlinear regression

model

Xt = A cos(ωt) +B sin(ωt) + εi

where {εt} are iid standard normal random variables and 0 < ω < π (thus allowing the

case ω = π/2, but not the end points ω = 0 or π). The parameters A,B, and ω are real

and unknown. Full details can be found in the paper http://www.jstor.org/stable/

pdf/2334314.pdf (Walker, 1971, Biometrika).
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(i) Ignoring constants, obtain the log-likelihood of {Xt}. Denote this likelihood as

Ln(A,B, ω).

(ii) Let

Sn(A,B, ω) =

( n∑
t=1

X2
t − 2

n∑
t=1

Xt

(
A cos(ωt) +B sin(ωt)

)
− 1

2
n(A2 +B2)

)
.

Show that

2Ln(A,B, ω) + Sn(A,B, ω) = −(A2 −B2)

2

n∑
t=1

cos(2tω) + AB

n∑
t=1

sin(2tω).

Thus show that |Ln(A,B, ω) + 1
2
Sn(A,B, ω)| = O(1) (ie. the difference does not

grow with n).

Since Ln(A,B, ω) and −1
2
Sn(A,B, ω) are asymptotically equivalent, for the rest of

this question, use −1
2
Sn(A,B, ω) instead of the likelihood Ln(A,B, ω).

(iii) Obtain the profile likelihood of ω.

(hint: Profile out the parametersA andB, to show that ω̂n = arg maxω |
∑n

t=1Xt exp(itω)|2).

Suggest, a graphical method for evaluating ω̂n?

(iv) By using the identity

n∑
t=1

exp(iΩt) =


exp( 1

2
i(n+1)Ω) sin( 1

2
nΩ)

sin( 1
2

Ω)
0 < Ω < 2π

n Ω = 0 or 2π.
(3.15)

show that for 0 < Ω < 2π we have
n∑
t=1

t cos(Ωt) = O(n)
n∑
t=1

t sin(Ωt) = O(n)

n∑
t=1

t2 cos(Ωt) = O(n2)
n∑
t=1

t2 sin(Ωt) = O(n2).

(v) By using the results in part (iv) show that the Fisher Information of Ln(A,B, ω)

(denoted as I(A,B, ω)) is asymptotically equivalent to

2I(A,B, ω) = E
(∂2Sn
∂ω2

)
=


n
2

0 n2

2
B +O(n)

0 n
2

−n2

2
A+O(n)

n2

2
B +O(n) −n2

2
A+O(n) n3

3
(A2 +B2) +O(n2)

 .
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(vi) Derive the asymptotic variance of maximum likelihood estimator, ω̂n, derived in

part (iv).

Comment on the rate of convergence of ω̂n.

Useful information: The following quantities may be useful:

n∑
t=1

exp(iΩt) =


exp( 1

2
i(n+1)Ω) sin( 1

2
nΩ)

sin( 1
2

Ω)
0 < Ω < 2π

n Ω = 0 or 2π.
(3.16)

the trignometric identities: sin(2Ω) = 2 sin Ω cos Ω, cos(2Ω) = 2 cos2(Ω)−1 = 1−2 sin2 Ω,

exp(iΩ) = cos(Ω) + i sin(Ω) and

n∑
t=1

t =
n(n+ 1)

2

n∑
t=1

t2 =
n(n+ 1)(2n+ 1)

6
.

Solution

Since {εi} are standard normal iid random variables the likelihood is

Ln(A,B, ω) = −1

2

n∑
t=1

(Xt − A cos(ωt)−B sin(ωt))2.

If the frequency ω were known, then the least squares estimator of A and B would be

(
Â

B̂

)
=

(
n−1

n∑
t=1

x′txt

)−1
1

n

n∑
t=1

Xt

(
cos(ωt)

sin(ωt)

)

where xt = (cos(ωt), sin(ωt)). However, because the sine and cosine functions are near

orthogonal we have that n−1
∑n

t=1 x′txt ≈ I2 and

(
Â

B̂

)
≈ 1

n

n∑
t=1

Xt

(
cos(ωt)

sin(ωt)

)
,
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which is simple to evaluate! The above argument is not very precise. To make it precise

we note that

−2Ln(A,B, ω)

=
n∑
t=1

X2
t − 2

n∑
t=1

Xt

(
A cos(ωt) +B sin(ωt)

)
+A2

n∑
t=1

cos2(ωt) +B2

n∑
t=1

sin2(ωt) + 2AB
n∑
t=1

sin(ωt) cos(ωt)

=
n∑
t=1

X2
t − 2

n∑
t=1

Xt

(
A cos(ωt) +B sin(ωt)

)
+

A2

2

n∑
t=1

(1 + cos(2tω)) +
B2

2

n∑
t=1

(1− cos(2tω)) + AB

n∑
t=1

sin(2tω)

=
n∑
t=1

X2
t − 2

n∑
t=1

Xt

(
A cos(ωt) +B sin(ωt)

)
+
n

2
(A2 +B2) +

(A2 −B2)

2

n∑
t=1

cos(2tω) + AB
n∑
t=1

sin(2tω)

= Sn(A,B, ω) +
(A2 −B2)

2

n∑
t=1

cos(2tω) + AB
n∑
t=1

sin(2tω)

where

Sn(A,B, ω) =
n∑
t=1

X2
t − 2

n∑
t=1

Xt

(
A cos(ωt) +B sin(ωt)

)
+
n

2
(A2 +B2).

The important point abut the above is that n−1Sn(A,B, ω) is bounded away from zero,

however n−1
∑n

t=1 sin(2ωt) and n−1
∑n

t=1 cos(2ωt) both converge to zero (at the rate n−1,

though it is not uniform over ω); use identity (3.16). Thus Sn(A,B, ω) is the dominant

term in Ln(A,B, ω);

−2Ln(A,B, ω) = Sn(A,B, ω) +O(1).

Thus ignoring the O(1) term and differentiating Sn(A,B, ω) wrt A and B (keeping ω

fixed) gives the estimators(
Â(ω)

B̂(ω)

)
=

1

n

n∑
t=1

Xt

(
cos(ωt)

sin(ωt)

)
.
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Thus we have “profiled out” the nuisance parameters A and B.

Using the approximation Sn(Ân(ω), B̂n(ω), ω) we have

Ln(Ân(ω), B̂n(ω), ω) =
−1

2
Sp(ω) +O(1),

where

Sp(ω) =

( n∑
t=1

X2
t − 2

n∑
t=1

Xt

(
Ân(ω) cos(ωt) + B̂(ω) sin(ωt)

)
+
n

2
(Ân(ω)2 + B̂(ω)2)

)
=

( n∑
t=1

X2
t −

n

2

[
Ân(ω)2 + B̂n(ω)2

])
.

Thus

arg maxLn(Ân(ω), B̂n(ω), ω) ≈ arg max
−1

2
Sp(ω)

= arg max

[
Ân(ω)2 + B̂n(ω)2

]
.

Thus

ω̂n = arg max
ω

(−1/2)Sp(ω) = arg max
ω

(
Ân(ω)2 + B̂n(ω)2

)
= arg max

ω

∣∣ n∑
t=1

Xt exp(itω)
∣∣2,

which is easily evaluated (using a basic grid search).

(iv) Differentiating both sides of (3.15) with respect to Ω and considering the real and

imaginary terms gives
∑n

t=1 t cos(Ωt) = O(n)
∑n

t=1 t sin(Ωt) = O(n). Differenti-

ating both sides of (3.15) twice wrt to Ω gives the second term.

(v) In order to obtain the rate of convergence of the estimators, ω̂, Â(ω̂), B̂(ω̂) we eval-

uate the Fisher information of Ln (the inverse of which will give us limiting rate

of convergence). For convenience rather than take the second derivative of L we

evaluate the second derivative of Sn(A,B, ω) (though, you will find the in the limit

both the second derivative of Ln and Sn(A,B, ω) are the same).

Differentiating Sn(A,B, ω) =
(∑n

t=1X
2
t−2

∑n
t=1Xt

(
A cos(ωt)+B sin(ωt)

)
+1

2
n(A2+
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B2)
)

twice wrt to A,B and ω gives

∂Sn
∂A

= −2
n∑
t=1

Xt cos(ωt) + An

∂Sn
∂B

= −2
n∑
t=1

Xt sin(ωt) +Bn

∂Sn
∂ω

= 2
n∑
t=1

AXtt sin(ωt)− 2
n∑
t=1

BXtt cos(ωt).

and ∂2Sn
∂A2 = n, ∂2Sn

∂B2 = n, ∂2Sn
∂A∂B

= 0,

∂2Sn
∂ω∂A

= 2
n∑
t=1

Xtt sin(ωt)

∂2Sn
∂ω∂B

= −2
n∑
t=1

Xtt cos(ωt)

∂2Sn
∂ω2

= 2
n∑
t=1

t2Xt

(
A cos(ωt) +B sin(ωt)

)
.

Now taking expectations of the above and using (v) we have

E(
∂2Sn
∂ω∂A

) = 2
n∑
t=1

t sin(ωt)
(
A cos(ωt) +B sin(ωt)

)
= 2B

n∑
t=1

t sin2(ωt) + 2
n∑
t=1

At sin(ωt) cos(ωt)

= B
n∑
t=1

t(1− cos(2ωt)) + A
n∑
t=1

t sin(2ωt) =
n(n+ 1)

2
B +O(n) = B

n2

2
+O(n).

Using a similar argument we can show that E( ∂
2Sn

∂ω∂B
) = −An2

2
+O(n) and

E(
∂2Sn
∂ω2

) = 2
n∑
t=1

t2
(
A cos(ωt) +B sin(ωt)

)2

= (A2 +B2)
n(n+ 1)(2n+ 1)

6
+O(n2) = (A2 +B2)n3/3 +O(n2).

Since E(−∇2Ln) ≈ 1
2
E(∇2Sn), this gives the required result.

(vi) Noting that the asymptotic variance for the profile likelihood estimator ω̂n(
Iω,ω − Iω,(AB)I

−1
A,BI(BA),ω

)−1

,
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by subsituting (vi) into the above we have

2

(
A2 +B2

6
n3 +O(n2)

)−1

≈ 12

(A2 +B2)n3

Thus we observe that the asymptotic variance of ω̂n is O(n−3).

Typically estimators have a variance of order O(n−1), so we see that the estimator

ω̂n converges to to the true parameter, far faster than expected. Thus the estimator

is extremely good compared with the majority of parameter estimators.

Exercise 3.2 Run a simulation study to illustrate the above example.

Evaluate In(ω) for all ωk = 2πk
n

using the fft function in R (this evaluates {
∑n

t=1 Yte
it 2πk

n }nk=1),

then take the absolute square of it. Find the maximum over the sequence using the function

which.max. This will estimate ω̂n. From this, estimate A and B. However, ω̂n will only

estimate ω to Op(n
−1), since we have discretized the frequencies. To improve on this, one

can use one further iteration see http: // www. jstor. org/ stable/ pdf/ 2334314. pdf

for the details.

Run the above over several realisations and evaluate the average squared error.

3.2.2 An application of profiling in survival analysis

This application uses some methods from Survival Analysis which is covered later in this

course.

Let Ti denote the survival time of an electrical component (we cover survival functions

in Chapter 6.1). Often for each survival time, there are known regressors xi which are

believed to influence the survival time Ti. The survival function is defined as

P (Ti > t) = Fi(t) t ≥ 0.

It is clear from the definition that what defines a survival function is that Fi(t) is positive,

Fi(0) = 1 and Fi(∞) = 0. The density is easily derived from the survival function taking

the negative derivative; fi(t) = −dFi(t)
dt

.

To model the influence the regressors have on the survival time, the Cox-proportional

hazard model is often used with the exponential distribution as the baseline distribution

and ψ(xi; β) is a positive “link” function (typically, we use ψ(xi; β) = exp(βxi) as the link

function). More precisely the survival function of Ti is

Fi(t) = F0(t)ψ(xi;β),
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where F0(t) = exp(−t/θ). Not all the survival times of the electrical components are

observed, and there can arise censoring. Hence we observe Yi = min(Ti, ci), where ci is

the (non-random) censoring time and δi, where δi is the indicator variable, where δi = 1

denotes censoring of the ith component and δi = 0 denotes that it is not censored. The

parameters β and θ are unknown.

(i) Derive the log-likelihood of {(Yi, δi)}.

(ii) Compute the profile likelihood of the regression parameters β, profiling out the

baseline parameter θ.

Solution

(i) The survivial function and the density are

fi(t) = ψ(xi; β)
{
F0(t)

}[ψ(xi;β)−1]
f0(t) and Fi(t) = F0(t)ψ(xi;β).

Thus for this example, the logarithm of density and survival function is

log fi(t) = logψ(xi; β)−
[
ψ(xi; β)− 1

]
F0(t) + log f0(t)

= logψ(xi; β)−
[
ψ(xi; β)− 1

] t
θ
− log θ − t

θ

logFi(t) = ψ(xi; β) logF0(t) = −ψ(xi; β)
t

θ
.

Since

fi(yi, δi) =

{
fi(yi) = ψ(xi; β)

{
F0(yi)

}[ψ(xi;β)−1
f0(t) δi = 0

Fi(yi) = F0(t)ψ(xi;β) δi = 1

the log-likelihood of (β, θ) based on (Yi, δi) is

Ln(β, θ) =
n∑
i=1

(1− δi)
{

logψ(xi; β) + log f0(Yi) + (ψ(xi; β)− 1) logF0(Yi)
}

+

n∑
i=1

δi
{
ψ(xi; β) logF0(Yi)

}
=

n∑
i=1

(1− δi)
(

logψ(xi; β)− log θ − Yi
θ
− (ψ(xi; β)− 1)

Yi
θ

)
−

n∑
i=1

δiψ(xi; β)
Yi
θ

=
n∑
i=1

(1− δi)
{

logψ(xi; β)− log θ
}
−

n∑
i=1

ψ(xi; β)
Yi
θ
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Differentiating the above wrt β and θ gives

∂L
∂β

=
n∑
i=1

(1− δi)
{∇ψβ(xi; β)

ψ(xi; β)

}
−

n∑
i=1

∇βψ(xi; β)
Yi
θ

∂L
∂θ

=
n∑
i=1

(1− δi)
{
− 1

θ

}
+

n∑
i=1

ψ(xi; β)
Yi
θ2

which is not simple to solve.

(ii) Instead we keep β fixed and differentiate the likelihood with respect to θ and equate

to zero, this gives

∂Ln
∂θ

=
n∑
i=1

(1− δi)
{
− 1

θ

}
+
∑
i=1

ψ(xi; β)
Yi
θ2

and

θ̂(β) =

∑n
i=1 ψ(xi; β)Yi∑n
i=1(1− δi)

.

This gives us the best estimator of θ for a given β. Next we find the best estimator

of β. The profile likelihood (after profiling out θ) is

`P (β) = Ln(β, θ̂(β)) =
n∑
i=1

(1− δi)
{

logψ(xi; β)− log θ̂(β)
}
−

n∑
i=1

ψ(xi; β)
Yi

θ̂(β)
.

Hence to obtain the ML estimator of β we maximise the above with respect to β,

this gives us β̂. Which in turn gives us the MLE θ̂(β̂).

3.2.3 An application of profiling in semi-parametric regression

Here we apply the profile “likelihood” (we use inverted commas here because we do not

use the likelihood, but least squares instead) to semi-parametric regression. Recently this

type of method has been used widely in various semi-parametric models. This application

requires a little knowledge of nonparametric regression, which is considered later in this

course. Suppose we observe (Yi, Ui, Xi) where

Yi = βXi + φ(Ui) + εi,

(Xi, Ui, εi) are iid random variables and φ is an unknown function. Before analyzing the

model we summarize some of its interesting properties:
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• When a model does not have a parametric form (i.e. a finite number of parameters

cannot describe the model), then we cannot usually obtain the usual O(n−1/2) rate.

We see in the above model that φ(·) does not have a parametric form thus we cannot

expect than an estimator of it
√
n-consistent.

• The model above contains βXi which does have a parametric form, can we obtain

a
√
n-consistent estimator of β?

The Nadaraya-Watson estimator

Suppose

Yi = φ(Ui) + εi,

where Ui, εi are iid random variables. A classical method for estimating φ(·) is to use the

Nadarayan-Watson estimator. This is basically a local least squares estimator of φ(u).

The estimator φ̂n(u) is defined as

φ̂n(u) = arg min
a

∑
i

1

b
W

(
u− Ui
b

)
(Yi − a)2 =

∑
iWb(u− Ui)Yi∑
iWb(u− Ui)

where W (·) is a kernel (think local window function) with
∫
W (x)dx = 1 and Wb(u) =

b−1W (u/b) with b → 0 as n → ∞; thus the window gets narrower and more localized

as the sample size grows. Dividing by
∑

iWb(u − Ui) “removes” the clustering in the

locations {Ui}.
Note that the above can also be treated as an estimator of

E (Y |U = u) =

∫
R
yfY |U(y|u)dy

∫
R

yfY,U(y, u)

fU(u)
dy = φ(u),

where we replace fY,U and fU with

f̂Y,U(u, y) =
1

bn

n∑
i=1

δYi(y)Wb (u− Ui)

f̂U(u) =
1

bn

n∑
i=1

Wb (u− Ui) ,
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with δY (y) denoting the Dirac-delta function. Note that the above is true because∫
R

f̂Y,U(y, u)

f̂U(u)
dy =

1

f̂U(u)

∫
R
yf̂Y,U(y, u)dy

=
1

f̂U(u)

∫
R

1

bn

n∑
i=1

yδYi(y)Wb (u− Ui) dy

=
1

f̂U(u)

1

bn

n∑
i=1

Wb (u− Ui)
∫
R
yδYi(y)dy︸ ︷︷ ︸

=Yi

=

∑
iWb(u− Ui)Yi∑
iWb(u− Ui)

.

The Nadaraya-Watson estimator is a non-parametric estimator and suffers from a far

slower rate of convergence to the non-parametric function than parametric estimators.

This rates are usually (depending on the smoothness of φ and the density of U)

|φ̂n(u)− φ(u)|2 = Op

(
1

bn
+ b4

)
.

Since b → 0, bn → ∞ as n → ∞ we see this is far slower than the parametric rate

Op(n
−1/2). Heuristically, this is because not all n observations are used to estimate φ(·)

at any particular point u (the number is about bn).

Estimating β using the Nadaraya-Watson estimator and profiling

To estimate β, we first profile out φ(·) (this is the nuisance parameter), which we estimate

as if β were known. In other other words, we suppose that β were known and let

Yi(β) = Yi − βXi = φ(Ui) + εi,

We then estimate φ(·) using the Nadaraya-Watson estimator, in other words the φ(·)
which minimises the criterion

φ̂β(u) = arg min
a

∑
i

Wb(u− Ui)(Yi(β)− a)2 =

∑
iWb(u− Ui)Yi(β)∑

iWb(u− Ui)

=

∑
iWb(u− Ui)Yi∑
iWb(u− Ui)

− β
∑

iWb(u− Ui)Xi∑
iWb(u− Ui)

:= Gb(u)− βHb(u), (3.17)

where

Gb(u) =

∑
iWb(u− Ui)Yi∑
iWb(u− Ui)

and Hb(u) =

∑
iWb(u− Ui)Xi∑
iWb(u− Ui)

.
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Thus, given β, the estimator of φ and the residuals εi are

φ̂β(u) = Gb(u)− βHb(u)

and

ε̂β = Yi − βXi − φ̂β(Ui).

Given the estimated residuals Yi−βXi− φ̂β(Ui) we can now use least squares to estimate

coefficient β. We define the least squares criterion

Ln(β) =
∑
i

(
Yi − βXi − φ̂β(Ui)

)2

=
∑
i

(
Yi − βXi −Gb(Ui) + βHb(Ui)

)2

=
∑
i

(
Yi −Gb(Ui)− β[Xi −Hb(Ui)]

)2
.

Therefore, the least squares estimator of β is

β̂b,T =

∑
i[Yi −Gb(Ui)][Xi −Hb(Ui)]∑

i[Xi −Hb(Ui)]2
.

Using βb,T we can then estimate (3.18). We observe how we have the used the principle of

profiling to estimate the unknown parameters. There is a large literature on this, including

Wahba, Speckman, Carroll, Fan etc. In particular it has been shown that under some

conditions on b (as T →∞), the estimator β̂b,T has the usual
√
n rate of convergence.

It should be mentioned that using random regressors Ui is not necessary. It could

be that Ui = i
n

(observations lie on a on a grid). In this case n−1
∑

iWb(u − i/n) =
1
nb

∑n
i=1W (u−i/n

b
) = b−1

∫
W (u−x

b
)dx + O((bn)−1) = 1 + O((bn)−1) (with a change of

variables). This gives

φ̂β(u) = arg min
a

∑
i

Wb(u−
i

n
)(Yi(β)− a)2 =

∑
iWb(u− i

n
)Yi(β)∑

iWb(u− i
n
)

=
∑
i

Wb(u−
i

n
)Yi − β

∑
i

Wb(u− Ui)Xi

:= Gb(u)− βHb(u), (3.18)

where

Gb(u) =
∑
i

Wb(u−
i

n
)Yi and Hb(u) =

∑
i

Wb(u−
i

n
)Xi.

Using the above estimator of φ(·) we continue as before.
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Chapter 4

Non-standard inference

As we mentioned in Chapter 2 the the log-likelihood ratio statistic is useful in the context

of statistical testing because typically it is “pivotal” (does not depend on any nuisance)

under the null hypothesis. Typically, the log-likelihood ratio statistic follows a chi-square

distribution under the null hypothesis. However, there are realistic situations where the

this statistic does not follow a chi-square distribution and the purpose of this chapter is

to consider some of these cases.

At the end of this chapter we consider what happens when the “regularity” conditions

are not satisfied.

4.1 Detection of change points

This example is given in Davison (2004), pages 141, and will be considered in class. It is

not related to the boundary problems discussed below but none the less is very interesting.

4.2 Estimation on the boundary of the parameter

space

In this section we consider the distribution of parameters which are estimated on the

boundary of the parameter space. We will use results from Chapter 2.
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4.2.1 Estimating the mean on the boundary

There are situations where the parameter to be estimated lies on the boundary (or very,

very close to it). In such cases the limiting distribution of the the parameter may not be

normal (since when we maximise the likelihood we do so over the parameter space and

not outside it). This will not impact Wald based tests (by much), but it will have an

impact on the log-likelihood ratio test.

To understand the changes involved, we start with a simple example.

Suppose Xi ∼ N (µ, 1), where the mean µ is unknown. In addition it is known that

the mean is non-negative hence the parameter space of the mean is Θ = [0,∞). In this

case X̄ can no longer be the MLE because there will be some instances where X̄ < 0. Let

us relook at the maximum likelihood on the restricted parameter space

µ̂n = arg max
µ∈Θ
Ln(µ) = arg max

µ∈Θ

−1

2

n∑
i=1

(Xi − µ)2.

Since Ln(µ) is concave over µ, we see that the MLE estimator is

µ̂n =

{
X̄ X̄ ≥ 0

0 X̄ < 0.

Hence in this restricted space it is not necessarily true that ∂Ln(µ)
∂µ
cµ̂n 6= 0, and the usual

Taylor expansion method cannot be used to derive normality. Indeed we will show that

it is not normal.

We recall that
√
n(X̄ − µ)

D→ N (0, I(µ)−1) or equivalently 1√
n
∂Ln(µ)
∂µ
cX̄

D→ N (0, I(µ)).

Hence if the true parameter µ = 0, then approximately half the time X̄ will be less than

zero and the other half it will be greater than zero. This means that half the time µ̂n = 0

and the other half it will be greater than zero. Therefore the distribution function of µ̂n

is

P (
√
nµ̂n ≤ x) = P (

√
nµ̂n = 0 or 0 <

√
nµ̂n ≤ x)

≈


0 x ≤ 0

1/2 x = 0

1/2 + P (0 <
√
nX̄ ≤ x) = Φ(

√
nX̄ ≤ x) x > 0

,

where Φ denotes the distribution function of the normal distribution. Observe the distri-

bution of
√
nX̄ is a mixture of a point mass and a density. However, this result does not
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change our testing methodology based on the sample mean. For example, if we want to

test H0 : µ = 0 vs HA : µ > 0, the parameter space is [0,∞), thus we use the estimator

µ̂n and the p-value is

1− Φ
(√

nµ̂n
)
,

which is the p-value corresponding to the one-sided test (using the normal distribution).

Now we consider using the log-likelihood ratio statistics to test the H0 : µ = 0 vs

HA : µ > 0 (parameter space is [0,∞)). In this set-up the test statistic is

Wn = 2

{
arg max

µ∈[0,∞)
Ln(µ)− Ln(0)

}
= 2
{
Ln(µ̂n)− Ln(0)

}
.

However, since the derivative of the likelihood at µ̂n is not necessarily zero, means that

W will not be a standard chi-square distribtion. To obtain the distribution we note that

likelihoods under µ ∈ [0,∞) and µ = 0 can be written as

Ln(µ̂n) = −1

2

n∑
i=1

(Xi − µ̂n)2 Ln(0) = −1

2

n∑
i=1

X2
i .

Thus we observe that when X̄ ≤ 0 then Ln(µ̂n) = Ln(0) and

2
{
Ln(µ̂n)− Ln(0)

}
=

{
0 X̄ ≤ 0 P (X̄ ≤ 0) = 1/2

n|X̄|2 X̄ > 0 P (X̄ > 0) = 1/2
,

the above probabilities are exact since X̄ is normally distributed. Hence we have that

P (2
{
Ln(µ̂n)− Ln(0)

}
≤ x)

= P (2
{
Ln(µ̂n)− Ln(0)

}
≤ x

∣∣X̄ ≤ 0)P (X̄ ≤ 0) + P (2
{
Ln(µ̂n)− Ln(0)

}
≤ x

∣∣X̄ > 0)P (X̄ > 0).

Now using that

P (2
{
Ln(µ̂n)− Ln(0)

}
≤ x

∣∣X̄ ≤ 0) =

{
0 x < 0

1 x ≥ 0
,

P (2
{
Ln(µ̂n)− Ln(0)

}
≤ x

∣∣X̄ > 0) = P (nX̄2 ≤ x
∣∣X̄ > 0) =

{
0 x < 0

χ2
1 x > 0
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and P (
√
nX̄ < 0) = 1/2, gives

P (2
{
Ln(µ̂n)− Ln(0)

}
≤ x

)
=


0 x ≤ 0

1/2 x = 0

1/2 + 1
2
P (n|X̄|2 ≤ x) x > 0

Therefore

P (2
{
Ln(µ̂n)− Ln(0)

}
≤ x) =

1

2
+

1

2
P (χ2 ≤ x) =

1

2
χ2

0 +
1

2
χ2

1,

where we use the χ2
0 notation to denote the point mass at zero. Therefore, suppose we

want to test the hypothesis H0 : µ = 0 against the hypothesis HA : µ > 0 using the log

likelihood ratio test. We would evaluate Wn = 2
{
Ln(µ̂n) − Ln(0)

}
and find the p such

that

1

2
+

1

2
P (Wn ≤ χ2

1) = 1− p.

This is the p-value, which we then use to make the decision on the test.

Remark 4.2.1 Essentially what has been done is turned the log-likelihood test for the

mean, which is a two-sided test, into a one-sided test.

(i) It is clear that without a boundary testing H0 : µ = 0 against HA : µ 6= 0 the LLRT

is simply

2
{
Ln(X̄)− Ln(0)

}
= n|X̄|2 D→ χ2

1,

under the null.

Example, n = 10 and x̄ = 0.65 the p-value for the above hypothesis is

P
(
Wn > 10× (0.65)2

)
= P

(
χ2

1 > 10× (0.65)2
)

= 1− P (χ2
1 ≤ 4.2) = 1− 0.96 = 0.04.

The p-value is 4%.

(ii) On the other hand, to test H0 : µ = 0 against the hypothesis HA : µ > 0 we use

2
{
Ln(µ̂n)− Ln(0)

} D→ 1

2
+

1

2
χ2

1.
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Example: Using the same data, but the one-sided test we have

P
(
Wn > 10× (0.65)2

)
= 1− P

(
Wn ≤ 10× (0.65)2

)
= 1−

(
1

2
+

1

2
P
(
χ2

1 ≤ 10× (0.65)2
))

=
1

2

(
1− P (χ2

1 ≤ 4.2)
)

= 0.02.

The p-value is 2%. Thus, as we would expect, the result of the one-sided test simply

gives half the p-value corresponding to the two-sided test.

Exercise 4.1 The survivial time of disease A follow an exponential distribution, where

the distribution function has the form f(x) = λ−1 exp(−x/λ). Suppose that it is known

that at least one third of all people who have disease A survive for more than 2 years.

(i) Based on the above information obtain the appropriate parameter space for λ. Let

λB denote the lower boundary of the parameter space and Θ = [λB,∞) and the

corresponding parameter space.

(ii) What is the maximum likelihood estimator of λ̂n = arg maxλ∈Θ Ln(λ).

(iii) Derive the sampling properties of maximum likelihood estimator of λ, for the cases

λ = λB and λ > λB.

(iv) Suppose the true parameter is λB derive the distribution of 2[maxθ∈Θ Ln(λ)−Ln(λB)].

4.2.2 General case with parameter on the boundary

It was straightfoward to derive the distributions in the above examples because a closed

form expression exists for the estimator. However the same result holds for general max-

imum likelihood estimators; so long as certain regularity conditions are satisfied.

Suppose that the log-likelihood is Ln(θ), the parameter space is [0,∞) and

θ̂n = arg max
θ∈Θ
Ln(θ).

We consider the case that the true parameter θ0 = 0. To derive the limiting distribution

we extend the parameter space Θ̃ such that θ0 = 0 is an interior point of Θ̃. Let

θ̃n ∈ arg max
θ∈Θ̃
Ln(θ),
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Figure 4.1: A plot of the likelihood for large and small n. For large n, the likelihood tends

to be concave about the true parameter, which in this case is zero. This means that if

the true parameter is θ = 0, then for large enough n, there is a 50% chance θ̃n is less than

zero and 50% chance θ̂n that greater than zero.

this is the maximum likelihood estimator in the non-constrained parameter space. We as-

sume that for this non-constrained estimator
√
n(θ̃n−0)

D→ N (0, I(0)−1) (this needs to be

verified and may not always hold). This means that for sufficiently large n, the likelihood

will have a maximum close to 0 and that in the neighbourhood of zero, the likelihood is

concave (with only one maximum). We use this result to obtain the distribution of the

restricted estimator. The log-likelihood ratio involving the restricted estimator is

Wn = 2
(
argθ∈[0,∞) Ln(θ)− Ln(0)

)
= 2

(
Ln(θ̂n)− Ln(0)

)
.

Roughly speaking θ̂n can be considered as a “reflection” of θ̃n i.e. if θ̃n < 0 then θ̂n = 0

else θ̂n = θ̃n (see Figure 4.1) (since for a sufficiently large sample size, if θ̃n < 0, then the

maximum within [0,∞) will lie at zero). We use this principle to obtain the distribution

of Wn by conditioning on θ̃n

P (Wn ≤ x) = P (Wn ≤ x|θ̃n ≤ 0)P (θ̃n ≤ 0) + P (Wn ≤ x|θ̃n > 0)P (θ̃n > 0).

Now using that
√
nθ̃n

D→ N (0, I(0)−1) and that Ln(θ) is close to concave about its max-

imum thus for θ̃n ≤ 0 we have Wn = 0, and we have a result analogous to the mean
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case

P (Wn ≤ x) =
1

2
P (Wn ≤ x|θ̃n ≤ 0) +

1

2
P (Wn ≤ x|θ̃n > 0) =

1

2
+

1

2
χ2

1.

The precise argument for the above uses a result by Chernoff (1954), who shows that

Wn
D
= max

θ∈[0,∞)
[−(Z − θ)I(0)(Z − θ)] + ZI(0)Z + op(1), (4.1)

where Z ∼ N (0, I(0)−1) (and is the same for both quadratic forms). Observe that when

Z < 0 the above is zero, whereas when Z > 0 maxθ∈[0,∞) [−(Z − θ)I(0)(Z − θ)] = 0 and

we have the usual chi-square statistic.

To understand the approximation in (4.1) we return to the log-likelihood ratio and add

and subtract the maximum likelihood estimator based on the non-restricted parameter

space Θ̃

2

[
max
θ∈Θ
Ln(θ)− Ln(θ0)

]
= 2

[
max
θ∈Θ
Ln(θ)−max

θ∈Θ̃
Ln(θ)

]
+ 2

[
max
θ∈Θ̃
Ln(θ)− Ln(θ0)

]
.(4.2)

Now we do the usual Taylor expansion about θ̃n (which guarantees that the first derivative

is zero) for both terms to give

2

[
max
θ∈Θ
Ln(θ)− Ln(θ0)

]
= −n

(
θ̃n − θ̂n

)
I(θ0)

(
θ̃n − θ̂n

)
+ n

(
θ̃n − θ0

)
I(θ0)

(
θ̃n − θ0

)
+ op(1)

= −n
([
θ̃n − θ0

]
−
[
θ̂n − θ0

])
I(θ0)

([
θ̃n − θ0

]
−
[
θ̂n − θ0

])
+ n

(
θ̃n − θ0

)
I(θ0)

(
θ̃n − θ0

)
.

We recall that asymptotically
√
n
(
θ̃n − θ0

)
∼ N (0, I(θ0)−1). Therefore we define the

random variable
√
n
(
θ̃n − θ0

)
∼ Z ∼ N (0, I(θ0)−1) and replace this in the above to give

2
[
Ln(θ̂n)− Ln(θ0)

]
D
= −

(
Z − n1/2

[
θ̂n − θ0

])
I(θ0)

(
Z − n1/2

[
θ̂n − θ0

])
+ ZI(θ0)Z.

Finally, it can be shown (see, for example, Self and Liang (1987), Theorem 2 or Andrews

(1999), Section 4.1) that
√
n(θ̂n − θ0) ∈ Θ − θ0 = Λ, where Λ is a convex cone about θ0

(this is the terminology that is often used); in the case that Θ = [0,∞) and θ0 = 0 then
√
n(θ̂n− θ0) ∈ Λ = [0,∞) (the difference can never be negative). And that the maximum
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likelihood estimator is equivalent to the maximum of the quadratic form over Θ i.e.

2
[
Ln(θ̂n)− Ln(θ0)

]
D
= max

θ∈Θ
−
(
Z − n1/2

[
θ̂n − θ0

])
I(θ0)

(
Z − n1/2

[
θ̂n − θ0

])
+ ZI(θ0)Z

= max
θ∈Θ−θ0=[0,∞)=Θ

− (Z − θ) I(θ0) (Z − θ) + ZI(θ0)Z,

which gives (4.1).

Example 4.2.1 (Example 4.39 (page 140) in Davison (2002)) In this example Davi-

son reparameterises the t-distribution. It is well known that if the number of degrees of

freedom of a t-distribution is one, it is the Cauchy distribution, which has extremely thick

tails (such that the mean does not exist). At the other extreme, if we let the number of

degrees of freedom tend to ∞, then the limit is a normal distribution (where all moments

exist). In this example, the t-distribution is reparameterised as

f(y;µ, σ2, ψ) =
Γ
[ (1+ψ−1)

2

]
ψ1/2

(σ2π)1/2Γ( 1
2π

)

(
1 +

ψ(y − µ)2

σ2

)−(ψ−1+1)/2

It can be shown that limψ→1 f(y;µ, σ2, ψ) is a t-distribution with one-degree of freedom

and at the other end of the spectrum limψ→0 f(y;µ, σ2, ψ) is a normal distribution. Thus

0 < ψ ≤ 1, and the above generalisation allows for fractional orders of the t-distribution.

In this example it is assumed that the random variables {Xi} have the density f(y;µ, σ2, ψ),

and our objective is to estimate ψ, when ψ → 0, this the true parameter is on the bound-

ary of the parameter space (0, 1] (it is just outside it!). Using similar, arguments to those

given above, Davison shows that the limiting distribution of the MLE estimator is close

to a mixture of distributions (as in the above example).

Testing on the boundary in the presence of independent nuisance parameters

Suppose that the iid random variables come from the distribution f(x; θ, ψ), where (θ, ψ)

are unknown. We will suppose that θ is a univariate random variable and ψ can be

multivariate. Suppose we want to test H0 : θ = 0 vs HA : θ > 0. In this example we are

testing on the boundary in the presence of nuisance parameters ψ.

Example 4.2.2 Examples include the random coefficient regression model

Yi = (α + ηi)Xi + εi, (4.3)
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where {(Yi, Xi)}ni=1 are observed variables. {(ηi, εi)}ni=1 are independent zero mean random

vector, where var((ηi, εi)) = diag(σ2
η, σ

2
ε). We may want to test whether the underlying

model is a classical regression model of the type

Yi = αXi + εi,

vs the random regression model in (4.3). This reduces to testing H0 : σ2
η = 0 vs HA : σ2

η >

0.

In this section we will assume that the Fisher information matrix associated for the

mle of (θ, ψ) is block diagonal i.e. diag(I(θ), I(ψ)). In other words, if we did not constrain

the parameter space in the maximum likelihood estimation then

√
n

(
θ̃n − θ
ψ̃n − ψ

)
D→ N (0, diag(I(θ), I(ψ))) .

The log-likelihood ratio statistic for testing the hypothesis is

Wn = 2

[
max

θ∈[0,∞),ψ
Ln(θ, ψ)−max

ψ
Ln(0, ψ)

]
Now using the heuristics presented in the previous section we have

P (Wn ≤ x) = P (Wn ≤ x|θ̃n ≤ 0)P (θ̃n ≤ 0) + P (Wn ≤ x|θ̃n > 0)P (θ̃n > 0).

The important observation is that because (θ̃n, ψ̃n) are asymptotically independent of

each other, the estimator of θ̃n has no influence on the estimate of ψ̃n. Thus the estimator

of ψ conditional on θ̂n = 0 will not change the estimator of ψ thus

2

[
max

θ∈[0,∞),ψ
Ln(θ, ψ)−max

ψ
Ln(0, ψ)

] ∣∣θ̃n < 0

= 2

[
max

θ∈[0,∞),ψ
Ln(θ̂, ψ̂)−max

ψ
Ln(0, ψ)

] ∣∣θ̃n < 0

= 2

[
Ln(0, ψ̃)−max

ψ
Ln(0, ψ)

]
= 0.

This gives the result

P (Wn ≤ x) =
1

2
P (Wn ≤ x|θ̃n ≤ 0) +

1

2
P (Wn ≤ x|θ̃n > 0) =

1

2
+

1

2
χ2

1.
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4.2.3 Estimation on the boundary with several parameters when

the Fisher information is block diagonal

In the following section we summarize some of the results in Self and Liang (1987).

One parameter lies on the boundary and the rest do not

We now generalize the above to estimating the parameter θ = (θ1, θ2, . . . , θp+1). We start

by using an analogous argument to that used in the mean case and then state the precise

result from which it comes from.

Suppose the true parameter θ1 lies on the boundary, say zero, however the other pa-

rameters θ2, . . . , θp+1 lie within the interior of the parameter space and the parameter

space is denoted as Θ. Examples include mixture models where θ1 is the variance (and

cannot be negative!). We denote the true parameters as θ0 = (θ10 = 0, θ20, . . . , θp+1,0). Let

Ln(θ) denote the log-likelihood. We make the informal assumption that if we were to ex-

tend the parameter space such that θ0 = 0 were in the interior of this new parameter space

Θ̃ i.e. (θ10 = 0, θ20, . . . , θp+1,0) = (θ10, θp) ∈ int(Θ̃), and θ̃ = (θ̃1, θ̃p) = arg maxθ∈Θ̃ Ln(θ)

then

√
n

(
θ̃1n − θ0

θ̃pn − θp0

)
D→ N

0,

(
I11(θ0) 0

0 Ipp(θ0)

)−1
 .

It is worth noting that the block diagonal nature of the information matrix assumes that

the two sets of parameters are asymptotically independent. The asymptotic normality

results needs to be checked; it does not always hold.1. Let θ̂n = arg maxθ∈Θ Ln(θ) denote

the maximum likelihood estimator in the restricted parameter space (with the cut off at

zero). Our aim is to derive the distribution of

Wn = 2

(
max
θ∈Θ
Ln(θ)− Ln(θ0)

)
.

We use heuristics to obtain the distribution, by conditioning on the unrestricted estimator

θ̃n (we make this a little more precisely later on). Conditioning on θ̃1n we have

P (Wn ≤ x) = P (Wn ≤ x|θ̃1n ≤ 0)P (θ̃1n ≤ 0) + P (Wn ≤ x|θ̃1n > 0)P (θ̃1n > 0).

1Sometimes we cannot estimate on the boundary (consider some of the example considered in Chapter

2.9 with regards to the exponential family), sometimes the
√
n-rates and/or the normality result is

completely different for parameters which are defined at the boundary (the Dickey-Fuller test is a notable

example)

134



Figure 4.2: The likelihood for diagonal and nondiagonal Fisher information matrices.

Again assuming that for large n, Ln(θ) is concave about θ̃n such that when θ̃n < 0, θ̂n = 0.

However, asymptotic independence between θ̃n1 and θ̃np (since the Fisher information

matrix is block diagonal) means that setting θ̂n1 = 0 does not change the estimator of θp

θ̃np i.e. roughly speaking

2[Ln(θ̂1n, θ̂pn)− Ln(0, θp)]|θ̃n2 < 0 = 2[Ln(0, θ̃pn)− Ln(0, θp)]︸ ︷︷ ︸
χ2
p

If θ̃n1 and θ̃np were dependent then the above equality does not hold and it is not a χ2
p

(see Figure 4.2). The above gives

P (Wn ≤ x) = P (Wn ≤ x︸ ︷︷ ︸
χ2
p

|θ̃1n ≤ 0)P (θ̃1n ≤ 0) + P (Wn ≤ x︸ ︷︷ ︸
χ2
p+1

∣∣θ̃1n > 0)P (θ̃1n > 0)

=
1

2
χ2
p +

1

2
χ2
p+1. (4.4)

See Figure 4.3 for a plot of the parameter space and associated probabilities.

The above is a heuristic argument. If one wanted to do it precisely one needs to use

the asymptotic equivalent (based on the same derivations given in(4.2)) where (under
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Figure 4.3: Two parameters: one on boundary and one in interior.

certain regularity conditions) we have

Wn
D
= max

θ∈Θ
[−(Z − θ)I(0)(Z − θ)] + ZI(θ0)Z + op(1)

= max
θ1∈[0,∞)

[−(Z − θ1)I11(θ0)(Z − θ1)] + ZI11(θ0)Z

+ max
θp∈Θp

[
−(Zp − θp)I11(θ0)(Zp − θp)

]
︸ ︷︷ ︸

=0

+ZpIpp(θ0)Zp

= max
θ1∈[0,∞)

[−(Z − θ1)I11(θ0)(Z − θ1)] + ZI11(θ0)Z

+ZpIpp(θ0)Zp

where Z ∼ N(0, I11(θ0)−1) and Zp ∼ N(0, Ipp(θ0)−1) (Z and Zp are independent). Using

the above we can obtain the same distribution as that given in (4.4)

More than one parameter lies on the boundary

Suppose that the parameter space is Θ = [0,∞) × [0,∞) and the true parameter θ0 =

(θ10, θ20) = (0, 0) (thus is on the boundary). As before we make the informal assumption

that we can extend the parameter space such that θ0 lies within its interior of Θ̃. In this
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extended parameter space we have

√
n

(
θ̃1 − θ10

θ̃2 − θ20

)
D→ N

0,

(
I11(θ0) 0

0 I22(θ0)

)−1
 .

In order to derive the limiting distribution of the log-likelihood ratio statistic

Wn = 2

(
max
θ∈Θ
Ln(θ)− Ln(θ0)

)
we condition on θ̃1 and θ̃2. This gives

P (Wn ≤ x)

= P
(
Wn ≤ x|θ̃1 ≤ 0, θ̃2 ≤ 0

)
P
(
θ̃1 ≤ 0, θ̃2 ≤ 0

)
+ P

(
Wn ≤ x|θ̃1 ≤ 0, θ̃2 > 0

)
P
(
θ̃1 ≤ 0, θ̃2 > 0

)
+

P
(
Wn ≤ x|θ̃1 > 0, θ̃2 ≤ 0

)
P
(
θ̃1 > 0, θ̃2 ≤ 0

)
+ P

(
Wn ≤ x|θ̃1 > 0, θ̃2 > 0

)
P
(
θ̃1 > 0, θ̃2 > 0

)
.

Now by using the asymptotic independence of θ̃1 and θ̃2 and for θ̃1 > 0, θ̃2 > 0 Wn = 0

the above is

P (Wn ≤ x) =
1

4
+

1

2
χ2

1 +
1

4
χ2

2.

This is easiest seen in Figure 4.4.

Again the above argument can be made precise by using that the distribution of Wn

can be approximated with the quadratic form

Wn
D
= max

θ1∈[0,∞)
[−(Z1 − θ1)I11(0)(Z1 − θ1)] + Z1I11(0)Z1

= + max
θ2∈[0,∞)

[−(Z2 − θ2)I22(0)(Z2 − θ2)] + Z2I22(0)Z2

where Z1 ∼ N(0, I11(θ0)−1) and Z2 ∼ N(0, I22(θ0)−1). This approximation gives the same

result.

4.2.4 Estimation on the boundary when the Fisher information

is not block diagonal

In the case that the Fisher information matrix is not block diagonal the same procedure

can be use, but the results are no longer so clean. In particular, the limiting distribution
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Figure 4.4: Two parameters: both parameters on boundary.

may no longer be a mixture of chi-square distributions and/or the weighting probabilities

will depend on the parameter θ (thus the log-likelihood ratio will not be pivotal).

Let us consider the example where one parameter lies on the boundary and the other

does not. i.e the parameter space is [0,∞)× (−∞,∞). The true parameter θ0 = (0, θ20)

however, unlike the examples considered above the Fisher information matrix is not diag-

onal. Let θ̂n = (θ̂1, θ̂2) = arg maxθ∈Θ Ln(θ). We can use the conditioning arguments given

above however they become ackward because of the dependence between the estimators

of θ̂1 and θ̂2. Instead we use the quadratic form approximation

Wn = 2

(
max
θ∈Θ
Ln(θ)− Ln(θ0)

)
D
= max

θ∈Θ
[−(Z − θ)I(θ0)(Z − θ)] + Z ′I(θ0)Z + op(1)

where Z ∼ N (0, I(θ0)−1). To simplify the derivation we let Z ∼ N (0, I2). Then the above
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can be written as

Wn = 2

(
max
θ∈Θ
Ln(θ)− Ln(θ0)

)
D
= max

θ∈Θ

[
−
{
I(θ0)−1/2Z − I(θ0)−1/2I(θ0)1/2θ

}′
I(θ0)

{
I(θ0)−1/2Z − I(θ0)−1/2I(θ0)1/2θ

}]
+
{
I(θ0)−1/2Z

}′
I(θ0)

{
I(θ0)−1/2Z

}
+ op(1)

= max
θ∈Θ

[
−(Z − θ)′(Z − θ)

]
+ Z

′
Z + op(1)

where Θ = {θ = I(θ0)1/2θ; θ ∈ Θ}. This orthogonalisation simplifies the calculations.

Using the spectral decomposition of I(θ) = PΛP ′ where P = (p
1
, p

2
) (thus I(θ)1/2 =

PΛ1/2P ′) we see that the half plane (which defines Θ) turns into the rotated half plane

Θ which is determined by the eigenvectors p1 and p
2

(which rotates the line α(0, 1) into

L = α[λ
1/2
1 〈p1

, (0, 1)〉p
1

+ λ
1/2
2 〈p2

, (0, 1)〉p
2
] = α[λ

1/2
1 〈p1

, 1〉p
1

+ λ
1/2
2 〈p2

, 1〉p
2
]

where 1 = (0, 1). We observe that

Wn =


Z
′
Z︸︷︷︸

χ2
2

Z ∈ Θ

−[Z − PΘ(Z)]′[Z − PΘ(Z)] + Z
′
Z Z ∈ Θ

c
.

We note that PΘ(Z) is the nearest closest point on the line L, thus with some effort one

can calculate the distribution of −[Z−PΘ(Z)]′[Z−PΘ(Z)]+Z
′
Z (it will be some weighted

chi-square), noting that P (Z ∈ Θ) = 1/2 and P (Z ∈ Θ
c
) = 1/2 (since they are both in

half a plane). Thus we observe that the above is a mixture of distributions, but they are

not as simple (or useful) as when the information matrix has a block diagonal structure.

The precise details can be found in Chernoff (1954), Moran (1971), Chant (1974), Self

and Liang (1987) and Andrews (1999). For the Bayesian case see, for example, Botchkina

and Green (2014).

Exercise 4.2 The parameter space of θ is [0,∞)×[0,∞). The Fisher information matrix

corresponding to the distribution is

I(θ) =

(
I11(θ) I12(θ)

I21(θ) I22(θ)

)
.

Suppose that the true parameter is θ = (0, 0) obtain (to the best you can) the limiting

distribution of the log-likelihood ratio statistic 2(arg maxθ∈Θ Ln(θ)− Ln(0, 0)).

139



Figure 4.5: Two parameters: one parameter on boundary and the other in interior.

4.3 Regularity conditions which are not satisfied

In this section we consider another aspect of nonstandard inference. Namely, deriving the

asymptotic sampling properties of estimators (mainly MLEs) when the usual regularity

conditions are not satisfied, thus the results in Chapter 2 do not hold. Some of this

material was covered or touched on previously. Here, for completeness, we have collected

the results together.

The uniform distribution

The standard example where the regularity conditions (mainly Assumption 1.3.1(ii)) are

not satisfied is the uniform distribution

f(x; θ) =

{
1
θ

0 ≤ x ≤ θ

0 otherwise

We can see that the likelihood in this case is

Ln(X; θ) =
n∏
i=1

θ−1I(0 < Xi < θ).
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In this case the the derivative of Ln(X; θ) is not well defined, hence we cannot solve for

the derivative. Instead, to obtain the mle we try to reason what the maximum is. We

should plot Ln(X; θ) against θ and place Xi on the θ axis. We can see that if θ < Xi,

then Ln is zero. Let X(i) denote the ordered data X(1) ≤ X(2), . . . ≤ X(T ). We see that

for θ = X(T ), we have Ln(X; θ) = (X(T ))
−T , then beyond this point Ln(X; θ) decays ie.

Ln(X; θ) = θ−T for θ ≥ X(T ). Hence the maximum of the likelihood is θ̂n = max1≤t≤T Xi.

The sampling properties of θ̂n were calculated in Exercise 2.3.

The shifted exponential

Let us consider the shifted exponential distribution

f(x; θ, φ) =
1

θ
exp

(
−(x− φ)

θ

)
x ≥ φ,

which is only well defined for θ, φ > 0. We first observe when φ = 0 we have the usual

exponential function, φ is simply a shift parameter. It can be shown that the usual

regularity conditions (Assumption 1.3.1) will not be satisfied. This means the Cramer-

Rao bound does not hold in this case and the limiting variance of the mle estimators will

not be the inverse of the Fisher information matrix.

The likelihood for this example is

Ln(X; θ, φ) =
1

θn

n∏
i=1

exp

(
−(Xi − φ)

θ

)
I(φ ≤ Xi).

We see that we cannot obtain the maximum of Ln(X; θ, φ) by differentiating. Instead

let us consider what happens to Ln(X; θ, φ) for different values of φ. We see that for

φ > Xi for any t, the likelihood is zero. But at φ = X(1) (smallest value), the likelihood

is 1
θn

∏n
i=1 exp(− (X(t)−X(1))

θ
. But for φ < X(1), Ln(X; θ, φ) starts to decrease because

(X(t) − φ) > (X(t) − X(1)), hence the likelihood decreases. Thus the MLE for φ is φ̂n =

X(1), notice that this estimator is completely independent of θ. To obtain the mle of θ,

differentiate and solve ∂Ln(X;θ,φ)
dθ

cφ̂n=X(1)
= 0. We obtain θ̂n = X̄− φ̂n. For a reality check,

we recall that when φ = 0 then the MLE of θ is θ̂n = X̄.

We now derive the distribution of φ̂n − φ = X(1) − φ (in this case we can actually

obtain the finite sample distribution). To make the calculation easier we observe that

Xi can be rewritten as Xi = φ + Ei, where {Ei} are iid random variables with the

141



standard exponential distribution starting at zero: f(x; θ, 0) = θ−1 exp(−x/θ). Therefore

the distribution function of φ̂n − φ = miniEi

P (φ̂n − φ ≤ x) = P (min
i

(Ei) ≤ x) = 1− P (min
i

(Ei) > x)

= 1− [exp(−x/θ)]n.

Therefore the density of φ̂n− φ is θ
n

exp(−nx/θ), which is an exponential with parameter

n/θ. Using this, we observe that the mean of φ̂n − φ is θ/n and the variance is θ2/n2. In

this case when we standardize (φ̂n − φ) we need to do so with n (and not the classical
√
n). When we do this we observe that the distribution of n(φ̂n − φ) is exponential with

parameter θ−1 (since the sum of n iid exponentials with parameter θ−1 is exponential with

parameter nθ−1).

In summary, we observe that φ̂n is a biased estimator of φ, but the bias decreases as

n → ∞. Morover, the variance is quite amazing. Unlike standard estimators where the

variance decreases at the rate 1/n, the variance of φ̂n decreases at the rate 1/n2.

Even though φ̂n behaves in a nonstandard way, the estimator θ̂n is completely standard.

If φ were known then the regularity conditions are satisfied. Furthermore, since [φ̂n−φ] =

Op(n
−1) then the difference between the likelihoods with known and estimated φ are

almost the same; i.e. Ln(θ, φ) ≈ Ln(θ, φ̂n). Therefore the sampling properties of θ̂n are

asymptotically equivalent to the sampling properties of the MLE if φ were known.

See Davison (2002), page 145, example 4.43 for more details.

Note that in many problems in inference one replaces the observed likelihood with

the unobserved likelihood and show that the difference is “asymptotically negligible”. If

this can be shown then the sampling properties of estimators involving the observed and

unobserved likelihoods are asymptotically equivalent.

Example 4.3.1 Let us suppose that {Xi} are iid exponentially distributed random vari-

ables with density f(x) = 1
λ

exp(−x/λ). Suppose that we only observe {Xi}, if Xi > c

(else Xi is not observed).

(i) Show that the sample mean X̄ = 1
n

∑n
i=1Xi is a biased estimator of λ.

(ii) Suppose that λ and c are unknown, obtain the log-likelihood of {Xi}ni=1 and the

maximum likelihood estimators of λ and c.

Solution
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(i) It is easy to see that E(X̄) = E(Xi|Xi > c), thus

E(Xi|Xi > c) =

∫ ∞
0

x
f(x)I(X ≥ c)

P (X > c)
dx

=

∫ ∞
c

x
f(x)I(X ≥ c)

P (X > c)
dx =

1

e−c/λ

∫ ∞
c

xf(x)dx

=
λe−c/λ( c

λ
+ 1)

e−c/λ
= λ+ c.

Thus E(X̄) = λ+ c and not the desired λ.

(ii) We observe that the density of Xi given Xi > c is f(x|Xi > c) = f(x)I(X>c)
P (X>c)

=

λ−1 exp(−1/λ(X−c))I(X ≥ c); this is close to a shifted exponential and the density

does not satisfy the regularity conditions.

Based on this the log-likelihood {Xi} is

Ln(λ) =
n∑
i=1

{
log f(Xi) + log I(Xi ≥ c)− logP (Xi > c)

}
=

n∑
i=1

{
− log λ− 1

λ
(Xi − c) + log I(Xi ≥ c)

}
.

Hence we want to find the λ and c which maximises the above. Here we can use the

idea of profiling to estimate the parameters - it does not matter which parameter we

profile out. Suppose we fix, λ, and maximise the above with respect to c, in this case

it is easier to maximise the actual likelihood:

Lλ(c) =
n∏
i=1

1

λ
exp(−(Xi − c)/λ)I(Xi > c).

By drawing L with respect to c, we can see that it is maximum at minX(i) (for all

λ), thus the MLE of c is ĉ = miniXi. Now we can estimate λ. Putting ĉ back into

the log-likelihood gives

n∑
i=1

{
− log λ− 1

λ
(Xi − ĉ) + log I(Xi ≥ ĉ)

}
.

Differentiating the above with respect to λ gives
∑n

i=1(Xi − ĉ) = λn. Thus λ̂n =
1
n

∑n
i=1Xi − ĉ. Thus ĉ = miniXi λ̂n = 1

n

∑n
i=1 Xi − ĉn, are the MLE estimators of

c and λ respectively.
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Chapter 5

Misspecification, the Kullbach

Leibler Criterion and model selection

5.1 Assessing model fit

The Kullbach Leibler criterion is a method for measuring the ”distance” between two

densities. Rather than define it here it will come naturally from the discussion below on

model misspecification.

5.1.1 Model misspecification

Until now we have assumed that the model we are fitting to the data is the correct model

and our objective is to estimate the parameter θ. In reality the model we are fitting will

not be the correct model (which is usually unknown). In this situation a natural question

to ask is what are we estimating?

Let us suppose that {Xi} are iid random variables which have the density g(x). How-

ever, we fit the incorrect family of densities {f(x; θ); θ ∈ Θ} to the data using the MLE

and estimate θ. The misspecified log likelihood is

Ln(θ) =
n∑
i=1

log f(Xi; θ).

To understand what the MLE is actually estimating we use tthe LLN (law of large num-
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bers) to obtain the limit of Ln(θ)

1

n
Ln(θ) =

1

n

n∑
i=1

log f(Xi; θ)
a.s.→ Eg

(
log f(Xi; θ)

)
=

∫
log f(x; θ)g(x)dx. (5.1)

Therefore it is clear that θ̂n = arg maxLn(θ) is an estimator of

θg = arg max

(∫
log f(x; θ)g(x)dx

)
.

Hence θ̂n is an estimator of the parameter which best fits the model in the specified family

of models. Of course, one would like to know what the limit distribution of (θ̂n − θg) is

(it will not be the same as the correctly specified case). Under the regularity conditions

given in Theorem 5.1.1 and Assumption 2.6.1 (adapted to the misspecified case; these

need to be checked) we can use the same proof as that given in Theorem 2.6.1 to show

that θ̂n
P→ θg (thus we have “consistency” of the misspecified MLE). We will assume in

this section that this result is holds.

To obtain the limit distribution we again use the Taylor expansion of Ln(θ) and the

approximation

1√
n

∂Ln(θ)

∂θ
cθg ≈

1√
n

∂Ln(θ)

∂θ
cθ̂n + I(θg)

√
n(θ̂n − θg), (5.2)

where I(θg) = E(−∂2 log f(X;θ)
∂θ2

cθg).

Theorem 5.1.1 Suppose that {Xi} are iid random variables with density g. However,

we fit the incorrect family of densities {f(x; θ); θ ∈ Θ} to the data using the MLE and

estimate θ, using θ̂g = arg maxLn(θ) where

Ln(θ) =
n∑
i=1

log f(Xi; θ).

We assume

∂
∫
R log f(x; θ)g(x)dx

∂θ
cθ=θg =

∫
R

log f(x; θ)

∂θ
cθ=θgg(x)dx = 0 (5.3)

and the usual regularity conditions are satisfied (exchanging derivative and integral is

allowed and the third order derivative exists). Then we have

1√
n

∂Ln(θ)

∂θ
cθg

D→ N (0, J(θg)), (5.4)
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√
n(θ̂n − θg)

D→ N
(
0, I(θg)

−1J(θg)I(θg)
−1
)
. (5.5)

and

2
(
Ln(θ̂n)− Ln(θg)

)
D→

p∑
j=1

λjZ
2
j (5.6)

where

I(θg) = E

(
− ∂2 log f(X; θ)

∂θ2
cθg
)

= −
∫
∂2 log f(x; θ)

∂θ2
g(x)dx

J(θg) = var

(
∂ log f(X; θ)

∂θ
cθ=θg

)
= E

(
∂ log f(X; θ)

∂θ
cθ=θg

)2

=

∫ (
∂ log f(x; θ)

∂θ

)2

g(x)dx

and {λj} are the eigenvalues of the matrix I(θg)
−1/2J(θg)I(θg)

−1/2.

PROOF. First the basics. Under assumption (5.3) ∂f(Xi;θ)
∂θ
cθg are zero mean iid random

variables. Therefore by using the CLT we have

1√
n

∂Ln(θ)

∂θ
cθg

D→ N (0, J(θg)). (5.7)

If (5.3) is satisfied, then for large enough n we have ∂Ln(θ)
∂θ
cθ̂n = 0, using the same ideas

as those in Section 2.6.3 we have

1√
n

∂Ln(θ)

∂θ
cθg ≈ I(θg)

√
n(θ̂n − θg)

⇒
√
n(θ̂n − θg) ≈ I(θg)

−1 1√
n

∂Ln(θ)

∂θ
cθg︸ ︷︷ ︸

term that determines normality

. (5.8)

Hence asymptotic normality of
√
n(θ̂n−θg) follows from asymptotic normality of 1√

n
∂Ln(θ)
∂θ
cθg .

Substituting (5.7) into (5.8) we have

√
n(θ̂n − θg)

D→ N
(
0, I(θg)

−1J(θg)I(θg)
−1
)
. (5.9)

This gives (5.8).

To prove (5.6) we make the usual Taylor expansion

2
(
Ln(θ̂n)− Ln(θg)

)
≈ n

(
θ̂n − θg

)′
I(θg)

(
θ̂n − θg

)
(5.10)

Now we recall that since

√
n(θ̂n − θg)

D→ N
(
0, I(θg)

−1J(θg)I(θg)
−1
)
, (5.11)
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then asymptotically the distribution of
√
n(θ̂n−θg) is

√
n(θ̂n−θg)

D
= I(θg)

−1/2J(θg)
1/2I(θg)

−1/2Z

where Z is a p-dimension standard normal random variable. Thus we have

2
(
Ln(θ̂n)− Ln(θg)

)
D
= nZ ′I(θg)

−1/2J(θg)
1/2I(θg)

−1/2I(θg)I(θg)
−1/2J(θg)

1/2I(θg)
−1/2Z

= Z ′I(θg)
−1/2J(θg)I(θg)

−1/2Z

Let PΛP denote the spectral decomposition of the matrix I(θg)
−1/2J(θg)I(θg)

−1/2. We

observe that PZ ∼ N (0, Ip), thus we have

2
(
Ln(θ̂n)− Ln(θg)

)
=

p∑
j=1

λjZ
2
j

where λj are the eigenvalues of Λ and I(θg)
−1/2J(θg)I(θg)

−1/2 and {Zj} are iid Gaussian

random variables. Thus we have shown (5.6). �

An important feature is that in the misspecified case I(θg) 6= J(θg). Hence whereas

in the correctly specified case we have
√
n(θ̂n − θ0)

D→ N
(
0, I(θ0)−1

)
in the misspecified

case it is
√
n(θ̂n − θg)

D→ N
(
0, I(θg)

−1J(θg)I(θg)
−1
)
.

Recall that in the case the distributions are correctly specified we can estimate the

information criterion with either the observed Fisher information

În(θ̂n) =
−1

n

n∑
i=1

∂2 log f(Xi; θ)

∂θ2
cθ=θ̂n

or

Ĵn(θ̂n) =
1

n

n∑
i=1

(
∂ log f(Xi; θ)

∂θ
cθ=θ̂n

)2

.

In the misspecified case we need to use both În(θ̂n) and Ĵn(θ̂n), which are are estimators

of I(θg) and J(θg) respectively. Hence using this and Theorem 5.1.1 we can construct CIs

for θg. To use the log-likelihood ratio statistic, the eigenvalues in the distribution need to

calculated using În(θ̂n)−1/2Ĵn(θ̂n)În(θ̂n)−1/2. The log-likelihood ratio statistic is no longer

pivotal.

Example 5.1.1 (Misspecifying the mean) Let us suppose that {Xi}i are indepeden-

dent random variables which satisfy the model Xi = g( i
n
) + εi, where {εi} are iid random
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variables which follow a t-distribution with 6-degrees of freedom (the variance of εi is

finite). Thus, as n gets large we observe a corrupted version of g(·) on a finer grid.

The function g(·) is unknown, instead a line is fitted to the data. It is believed that

the noise is Gaussian, and the slope ân maximises

Ln(a) = − 1

2σ2

n∑
i=1

(
Xi − a ·

i

n

)2

,

where σ2 = var(εt) (note the role of σ2 is meaningless in the minimisation).

Question: (i) What is ân estimating? (ii) What is the limiting distribution of ân?

Solution:

(i) Rewriting Ln(a) we observe that

1

n
Ln(a) =

−1

2σ2n

n∑
i=1

(
g(
i

n
) + εi − a ·

i

n

)2

=
−1

2σ2n

n∑
i=1

(
g(
i

n
)− a · i

n

)2

+
−1

2σ2n

n∑
i=1

ε2
i +

2

2σ2n

n∑
i=1

(
g(
i

n
)− a · i

n

)
εi

P→ −1

2σ2n

∫ 1

0

(g(u)− au)2 − 1

2
.

Thus we observe ân is an estimator of the line which best fits the curve g(·) according

to the `2-distance

ag = arg min

∫ 1

0

(
g(u)− au

)2
du.

If you draw a picture, this seems logical.

(ii) Now we derive the distribution of
√
n(ân−ag). We assume (and it can be shown) that

all the regularity conditions are satisfied. Thus we proceed to derive the derivatives

of the “likelihoods”

1

n

∂Ln(a)

∂a
cag =

1

nσ2

n∑
i=1

(
Xi − ag ·

i

n

) i
n

1

n

∂2Ln(a)

∂a2
cag = − 1

nσ2

n∑
i=1

( i
n

)2
.

Note that 1
n
∂Ln(a)
∂a
cag are not iid random variables with mean zero. However, “glob-

ally” the mean will the close to zero, and ∂Ln(a)
∂a
cag is the sum of independent Xi

thus asymptotic normality holds i.e

1√
n

∂Ln(a)

∂a
cag =

1√
nσ2

n∑
i=1

(
Xi − ag ·

i

n

)
i

n

D→ N (0, J(ag)).
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Evaluating the variance of the first derivative and expectation of the negative second

derivative (and using the definition of the Reimann integral)

J(ag) =
1

n
var

(
∂Ln(a)

∂a
cag
)

=
1

nσ4

n∑
i=1

var(Xi)

(
i

n

)2

→ 1

σ2

∫ 1

0

u2du =
1

3σ2

I(ag) =
1

n
E

(
−∂

2Ln(a)

∂a2
cag
)

=
1

nσ2

n∑
i=1

(
i

n

)2

→ 1

σ2

∫ 1

0

u2du =
1

3σ2
.

We observe that in this case despite the mean and the distribution being misspecified

we have that I(ag) ≈ J(ag). Altogether, this gives the limiting distribution

√
n
(
ân − ag

) D→ N (0, 3σ2).

We observe that had we fitted a Double Laplacian to the data (which has the distribution

fi(x) = 1
2b

exp(− |x−µi|
b

)), the limit of the estimator would be different, and the limiting

distribution would also be different.

5.2 The Kullbach-Leibler information criterion

The discussion above, in particular (5.1), motivates the definition of the Kullbach-Liebler

criterion. We recall that the parameter which best fits the model using the maximum

likelihood is an estimator of

θg = arg max

(∫
log f(x; θ)g(x)dx

)
.

θg can be viewed as the parameter which best fits the distribution out of all distributions

in the misspecified parametric family. Of course the word ‘best’ is not particularly precise.

It is best according to the criterion
∫

log f(x; θ)g(x)dx. To determine how well this fits

the distribution we compare it to the limit likelihood using the correct distribution, which

is ∫
log g(x)g(x)dx (limit of of likelihood of correct distribution).

In other words, the closer the difference∫
log f(x; θg)g(x)dx−

∫
log g(x)g(x)dx =

∫
log

f(x; θg)

g(x)
g(x)dx
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is to zero, the better the parameter θg fits the distribution g, using this criterion. Using

Jenson’s inequality we have

∫
log

f(x; θ)

g(x)
g(x)dx = Eg

(
log

f(Xi; θ)

g(Xi)

)
≤ log Eg

(
f(Xi; θ)

g(Xi)

)
log

∫
f(x)dx ≤ 0.(5.12)

where equality arises only if f(x; θ) = g(x).

Therefore an alternative, but equivalent interpretation of θg, is the parameter which

minimises the ‘distance’ between g and fθ which is defined as

D(g, fθ) =

∫
log f(x; θg)g(x)dx−

∫
log g(x)g(x)dx =

∫
log

f(x; θg)

g(x)
g(x)dx,

i.e. θg = arg maxθ∈ΘD(g, fθ). D(g, fθ) is called the Kullbach-Leibler criterion. It can be

considered as a measure of fit between the two distributions, the closer these two quantities

are to zero the better the fit. We note that D(g, fθ) is technically not a distance since

D(g, fθ) 6= D(fθ, g) (though it can be symmetrified). The Kullbach-Leibler criterion arises

in many different contexts. We will use it in the section on model selection.

Often when comparing the model fit of different families of distributions our aim is to

compare maxθ∈ΘD(g, fθ) with maxω∈ΩD(g, hω) where {fθ; θ ∈ Ω} and {hω;ω ∈ Ω}. In

practice these distances cannot be obtained since the density g is unknown. Instead we

estimate the maximum likelihood for both densities (but we need to keep all the constants,

which are usually ignored in estimation) and compare these; i.e. compare maxθ∈Θ Lf (θ)
with maxω∈Ω Lh(ω). However, a direct comparison of log-likelihoods is problematic since

the log-likelihood is a biased estimator of the K-L criterion. The bias can lead to overfitting

of the model and a correction needs to be made (this we pursue in the next section).

We observe that θg = arg maxθ∈ΘD(g, fθ), hence f(x; θg) is the best fitting distribution

using the K-L criterion. This does not mean it is the best fitting distribution according

to another criterion. Indeed if we used a different distance measure, we are likely to

obtain a different best fitting distribution. There are many different information criterions.

The motivation for the K-L criterion comes from the likelihood. However, in the model

misspecification set-up there are alternative methods, to likelihood methods, to finding

the best fitting distribution (alternative methods may be more robust - for example the

Renyi information criterion).
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5.2.1 Examples

Example 5.2.1 An example of misspecification is when we fit the exponential distribu-

tion {f(x; θ) = θ−1 exp(−x/θ); θ > 0} to the observations which come from the Weibull

distribution. Suppose the data follows the Weibull distribution

g(x) =

(
α

φ

)(
x

φ

)α−1

exp (−(x/φ)α) ; α, φ > 0, x > 0.

but we fit the exponential with the likelihood

1

n
Ln(θ) =

−1

n

n∑
i=1

(
log θ +

Xi

θ

)
a.s.→ − log θ − E

(Xi

θ

)
= −

∫ (
log θ +

x

θ

)
g(x)dx.

Let θ̂n = arg maxLn(θ) = X̄. Then we can see that θ̂n is an estimator of

θg = arg max{−
(

log θ + E(Xi/θ)
)
} = φΓ(1 + α−1) = E(Xi) (5.13)

Therefore by using Theorem 5.1.1 (or just the regular central limit theorem for iid random

variables) we have

√
n
(
θ̂n − φΓ(1 + α−1)

) P→ N (0, I(θg)
−1J(θg)I(θg)

−1︸ ︷︷ ︸
=var(Xi)

)
where

I(θg) = E

(
−
(
θ−2 − 2Xθ−3

))
cθ=E(X) = [E(X)]−2

J(θg) = E

((
− θ−1 +Xθ−2

)2
)
cθ=E(X) =

E(X2)

[E(X)]4
− 1

[E(X)]2
=

1

E[X2]

(
E[X2]

E[X]2
− 1

)
.

Thus it is straightforward to see that I(θg)
−1J(θg)I(θg)

−1 = var[X]. We note that for the

Weibull distribution E(X) = φΓ(1 + α−1) and E(X2) = φ2Γ(1 + 2α−1).

To check how well the best fitting exponential fits the Weibull distribution for different

values of φ and α we use the K-L information criterion;

D(g, fθg) =

∫
log

(
θ−1
g exp(−θ−1

g x)
α
φ
(x
φ
)α−1 exp(−(x

φ
)α

)
α

φ
(
x

φ
)α−1 exp(−(

x

φ
)α)dx

=

∫
log

(
φΓ(1 + α−1)−1 exp(−φΓ(1 + α−1)−1x)

α
φ
(x
φ
)α−1 exp(−(x

φ
)α

)
α

φ
(
x

φ
)α−1 exp(−(

x

φ
)α)dx. (5.14)

We note that by using (5.14), we see that D(g, fθg) should be close to zero when α = 1

(since then the Weibull is a close an exponential), and we conjecture that this difference

should grow the further α is from one.
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Example 5.2.2 Suppose {Xi}ni=1 are independent, identically distributed normal random

variables with distribution N (µ, σ2), where µ > 0. Suppose that µ and σ2 are unknown.

A non-central t-distribution with 11 degrees of freedom

f(x; a) = C(11)

(
1 +

(x− a)2

11

)−(11+1)/2

,

where C(ν) is a finite constant which only depends on the degrees of freedom, is mistakenly

fitted to the observations. [8]

(i) Suppose we construct the likelihood using the t-distribution with 11 degrees of free-

dom, to estimate a. In reality, what is this MLE actually estimating?

(ii) Denote the above ML estimator as ân. Assuming that standard regularity conditions

are satisfied, what is the approximate distribution of ân?

Solution

(i) The MLE seeks to estimate the maximum of E(log f(X; a)) wrt a.

Thus for this example ân is estimating

ag = arg max
a

E
(
− 6 log(1 +

(X − a)2

11
)
)

= arg min

∫
log(1 +

(x− a)2

11
)
)
dΦ
(x− µ

σ

)
dx.

(ii) Let ag be defined a above. Then we have

√
n(ân − ag)

D→ N
(
0, J−1(ag)I(ag)J

−1(ag)
)
,

where

I(ag) = −C(11)6E
(d log(1 + (X − a)2/11)

da
ca=ag

)2

J(ag) = −C(11)6E
(d2 log(1 + (X − a)2/11)

da2
ca=ag

)
.

5.2.2 Some questions

Exercise 5.1 The iid random variables {Xi}i follow a geometric distribution π(1−π)k−1.

However, a Poisson distribution with P (X = k) = θk exp(−θ)
k!

is fitted to the data/

(i) What quantity is the misspecified maximum likelihood estimator actually estimating?
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(ii) How well does the best fitting Poisson distribution approximate the geometric distri-

bution?

(iii) Given the data, suggest a method the researcher can use to check whether the Poisson

distribution is an appropriate choice of distribution.

Exercise 5.2 Let us suppose that the random variable X is a mixture of Weibull distri-

butions

f(x; θ) = p(
α1

φ1

)(
x

φ1

)α1−1 exp(−(x/φ1)α1) + (1− p)(α2

φ2

)(
x

φ2

)α2−1 exp(−(x/φ2)α2).

(i) Derive the mean and variance of X.

(ii) Obtain the exponential distribution which best fits the above mixture of Weibulls

according to the Kullbach-Lieber criterion (recall that the exponential is g(x;λ) =
1
λ

exp(−x/λ)).

Exercise 5.3 Let us suppose that we observe the response variable and regressor (Yi, Xi).

Yi and Xi are related through the model

Yi = g(Xi) + εi

where εi are iid Gaussian random variables (with mean zero and variance σ2) which are

independent of the regressors Xi. Xi are independent random variables, and the density

of Xi is f . Suppose that it is wrongly assumed that Yi satisfies the model Yi = βXi + εi,

where εi are iid Gaussian random variables (with mean zero and variance σ2, which can

be assumed known).

(i) Given {(Yi, Xi)}ni=1, what is the maximum likelihood estimator of β?

(ii) Derive an expression for the limit of this estimator (ie. what is the misspecified

likelihood estimator actually estimating).

(iii) Derive an expression for the Kullbach-Leibler information between the true model

and the best fitting misspecified model (that you derived in part (ii)).
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5.3 Model selection

Over the past 30 years there have been several different methods for selecting the ‘best’

model out of a class of models. For example, the regressors {xi,j} are believed to influence

the response Yi with the model

Yi =

p∑
j=1

ajxi,j + εi.

The natural question to ask is how many regressors should be included in the model.

Without checking, we are prone to ‘overfitting’ the model.

There are various ways to approach this problem. One of the classical methods is

to use an information criterion (for example the AIC). There are different methods for

motivating the information criterion. Here we motivate it through the Kullbach-Leibler

criterion. The main features of any criterion is that it can be split into two parts, the

first part measures the model fit the second part measures the increased variance which

is due to the inclusion of several parameters in the model.

To simplify the approach we will assume that {Xi} are iid random variables with

unknown distribution g(x). We fit the family of distributions {f(x; θ); θ ∈ Θ} and want

to select the best fitting distribution. Let

I(θg) = E

(
− ∂2 log f(X; θ)

∂θ2
cθg
)

= −
∫
∂2 log f(x; θ)

∂θ2
g(x)dxcθg

J(θg) = E

(
∂ log f(X; θ)

∂θ
cθ=θg

)2

=

∫ (
∂ log f(x; θ)

∂θ

)2

g(x)dxcθg .

Given the observations {Xi} we use the mle to estimate the parameter

θ̂n(X) = arg max
θ∈Θ
Ln(X; θ) = arg max

θ∈Θ

n∑
i=1

log f(Xi; θ),

we have included X in θ̂ to show that the mle depends on it. We will use the result

√
n
(
θ̂(X)− θg

)
D→ N

(
0, I(θg)

−1J(θg)I(θg)
−1
)
.

Example 5.3.1 Suppose we fit a Weibull distribution to the iid random variables {Xi}ni=1,

and the best fitting parameter according to the K-L criterion is θ = θg and α = 1 (thus

the parameters of an exponential), then

√
n

(
θ̂n − θg
α̂n − 1

)
D→ N

(
0, I(θg)

−1J(θg)I(θg)
−1
)
.
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Of course in practice, α̂n 6= 1. Thus we would like a model selection criterion to penalize

the “larger” Weibull distribution in favour of the exponential distribution.

We cannot measure “fit” of an estimator by simply plugging the MLE back into the

same likelihood (which gave the MLE)

Ln(θ̂n(X);X) = −
n∑
i=1

log f(Xi; θ̂n(X)),

because θ̂(X) is finding the best fitting parameter for the data set X. For example,

suppose {Xi} are iid random variables coming from a Cauchy distribution

c(x; θ) =
1

π (1 + (x− θ)2)
.

Let LC(θ;X) and θ̂(X) correspond to the log-likelihood and corresponding MLE. Sup-

pose we also fit a Gaussian distribution to the same data set, let LG(µ, σ;X) and µ̂(X)

and σ2(X) correspond to the log-likelihood and corresponding MLE. Even though the

Gaussian distribution is the incorrect distribution, because it has the flexibility of two

parameters rather than one, it is likely that

LG[µ̂(X), σ̂2(X);X] > LC [θ̂(X);X].

Which suggests the Gaussian likelihood better fits the data than the Cauchy, when its

simply that there are more parameters in the Gaussian likelihood. This is the reason that

validation data sets are often used. This is a data set Y , which is independent of X, but

where Y and X have the same distribution. The quantity

Ln(θ̂n(X);Y ) = −
n∑
i=1

log f(Yi; θ̂n(X))

measures how well θ̂(X) fits another equivalent data. In this case, if {Xi} and {Yi} are

iid random variables from a Cauchy distribution it is highly unlikely

LG[µ̂(X), σ̂2(X);Y ] > LC [θ̂(X);Y ].

Since Y is random and we want to replace highly unlikely to definitely will not happen,

we consider the limit and measure how well f(y; θ̂n(X)) fits the expectation

EY

[
1

n
Ln(θ̂n(X);Y )

]
=

∫
log f(y; θ̂n(X))g(y)dy.
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The better the fit, the larger the above will be. Note that if we subtract
∫

log g(y)g(y)dy

from the above we have the K-L criterion. As a matter of convention we define the

negative of the above

D̃
[
g, fθ̂n(X)

]
= −

∫
log f(y; θ̂n(X))g(y)dy.

The better the fit, the smaller D̃
[
g, fθ̂n(X)

]
will be. We observe that D̃[g, fθ̂n(X)] depends

on the sample X. Therefore, a more sensible criterion is to consider the expectation of

the above over all random samples X

EX

{
D̃
[
g, fθ̂n(X)

]}
= −EX

{
EY

[
log f(Y ; θ̂n(X)

]}
.

EX

{
D̃
[
g, fθ̂n(X)

]}
is the information criterion that we aim to estimate. First we show

that EX

{
D̃
[
g, fθ̂n(X)

]}
penalizes models which are over fitted (which n−1L(θ̂(X);X)) is

unable to do). Making a Taylor expansion of EX

(
EY (log f(Y ; θ̂n(X))

)
about θg gives

EX

{
D̃
[
g, fθ̂n(X)

]}
= −EX

{
EY

[
log f(Y ; θ̂n(X)

]}

≈ −EX {EY [log f(Y ; θg)]} − EX


[
θ̂(X)− θg

]
EY

[
∂ log f(Y ; θ)

∂θ cθ=θg

]
︸ ︷︷ ︸

=0


−EX

{[
θ̂(X)− θg

]
EY

[
∂2 log f(Y ; θ)

∂θ2 cθ=θg

] [
θ̂(X)− θg

]}
≈ −1

2
EY [log f(Y ; θg)] +

1

2
EX

(
(θ̂n(X)− θg)′I(θg)(θ̂n(X)− θg)

)
.

The second term on the right of the above grows as the number of parameters grow (recall

it has a χ2-distribution where the number of degrees of freedom is equal to the number

of parameters). Hence EX

{
D̃
[
g, fθ̂n(X)

]}
penalises unnecessary parameters making it

an ideal criterion. For example, we may be fitting a Weibull distribution to the data,

however, the best fitting distribution turns out to be an exponential distribution, the

additional term will penalize the over fit.

However, in practise EX

{
D̃
[
g, fθ̂n(X)

]}
is unknown and needs to estimated. Many

information criterions are based on estimating EX

{
D̃
[
g, fθ̂n(X)

]}
(including the AIC and

corrected AIC, usually denoted as AICc). Below we give a derivation of the AIC based

on approximating EX

{
D̃
[
g, fθ̂n(X)

]}
.
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We recall that θ̂n(X) is an estimator of θg hence we start by replacing EX

{
D̃
[
g, fθ̂n(X)

]}
with EX

{
D̃
[
g, fθg)

]}
= D̃[g, fθg ] to give

EX

{
D̃
[
g, fθ̂n(X)

]}
= D̃[g, fθg ] +

(
EX

{
D̃
[
g, fθ̂n(X)

]}
− D̃

[
g, fθg

])
.

We first focus on the first term D̃[g, fθg ]. Since EX

(
D̃(g, fθg)) is unknown we replace it

by its sample average

D̃[g, fθg ] = −
∫
f(y; θg)g(y)dy ≈ − 1

n

n∑
i=1

log f(Xi; θg).

Hence we have

EX

{
D̃
[
g, fθ̂n(X)

]}
≈ − 1

n

n∑
i=1

log f(Xi; θg) +
(

EX

{
D̃
[
g, fθ̂n(X)

]}
− EX

{
D̃[g, fθg ]

})
= − 1

n

n∑
i=1

log f(Xi; θg) + I1.

Of course, θg is unknown so this is replaced by θ̂n(X) to give

EX

(
D̃(g, fθ̂n(X))

)
≈ − 1

n

n∑
i=1

log f(Xi; θ̂n(X)) + I1 + I2 (5.15)

where

I2 =

(
1

n

n∑
i=1

log f
(
Xi; θ̂n(X)

)
− 1

n

n∑
i=1

log f(Xi; θg)

)
.

We now find approximations for I1 and I2. We observe that the terms I1 and I2 are both

positive; this is because θg = arg min
(
D̃(g, fθ)) (recall that D̃ is the expectation of the

negative likelihood) and θ̂n = arg max
∑n

i=1 log f(Xi; θ). This implies that

EX

{
D̃
[
g, fθ̂n(X)

]}
≥ EX

{
D̃[g, fθg ]

}
and

1

n

n∑
i=1

log f
(
Xi; θ̂n(X)

)
≥ 1

n

n∑
i=1

log f(Xi; θg).

Thus if θg are the parameters of a Weibull distribution, when the best fitting distribution

is an exponential (i.e. a Weibull with α = 1), the additional terms I1 and I2 will penalize

this.
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We bound I1 and I2 by making Taylor expansions. By using the Taylor expansion

(and the assumption that E(∂ log f(x;θ)
∂θ

cθ=θg) = 0) we have

EX

[
D̃(g, fθ̂n(X))− D̃(g, fθg)

]
= −EXEY

(
1

n

n∑
i=1

{
log f(Yi; θ̂n(X))− log f(Yi; θg)

})
= − 1

n
EXEY

(
Ln(Y , θ̂n(X))− Ln(Y , θg)

)
= − 1

n
EX EY

(
∂Ln(Y , θ)

∂θ
cθg(θ̂n(X)− θg)

)
︸ ︷︷ ︸

=0

− 1

2n
EY EX

(
(θ̂n(X)− θg)′

∂2Ln(Y , θ)

∂θ
cθ̄(X)(θ̂n(X)− θg)

)

= − 1

2n
EY EX

(
(θ̂n(X)− θg)′

∂2Ln(Y , θ)

∂θ
cθ̄(X)(θ̂n(X)− θg)

)
,

where θ̄(X) = αθ(X) + (1− α)θg for some 0 ≤ α ≤ 1. Now we note that

− 1

n

∂2Ln(Y , θ)

∂θ2
cθ̄(X) ≈ −

1

n

n∑
i=1

∂2 log f(Xi, θ)

∂θ2
cθ=θg

P→ I(θg),

which (using a hand wavey argument) gives

I1 = EX

(
D̃(g, fθ̂n(X))− D̃(g, fθg)

)
≈ 1

2
EX

(
(θ̂n(X)− θg)′I(θg)(θ̂n(X)− θg)

)
.(5.16)

We now obtain an estimator of I2 in (5.15). To do this we make the usual Taylor expansion

(noting that ∂Ln(θ)
∂θ
cθ=θ̂n = 0)

I2 =

(
1

n

n∑
i=1

log f(Xi; θg)−
1

n

n∑
i=1

log f(Xi; θ̂n(X))

)
≈ 1

2
(θ̂n(X)− θg)′I(θg)(θ̂n(X)− θg). (5.17)

To obtain the final approximations for (5.16) and (5.17) we use (5.11) where

√
n(θ̂n − θg)

D→ N
(
0, I(θg)

−1J(θg)I(θg)
−1
)
.

Now by using the above and the relationship that if Z ∼ N (0,Σ) then E(Z ′AZ) =
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trace
{
AΣ
}

(check your linear models notes). Therefore by using the above we have

I2 = −
(

1

n

n∑
i=1

log f(Xi; θg)−
1

n

n∑
i=1

log f(Xi; θ̂n(X))

)
≈ 1

2
(θ̂n(X)− θg)′I(θg)(θ̂n(X)− θg)

≈ 1

2
E

 (θ̂n(X)− θg)′︸ ︷︷ ︸
≈N (0,I(θg)−1J(θg)I(θg)−1/n)

I(θg)(θ̂n(X)− θg)


≈ 1

2n
trace

(
I(θg)

−1J(θg)

)
and by the same reasoning we have

I1 = EX

(
D̃(g, fθ̂n(X))− D̃(g, fθg)

)
≈ 1

2
EX

(
(θ̂n(X)− θg)′I(θg)(θ̂n(X)− θg)

)
≈ 1

2n
trace

(
I(θg)

−1J(θg)

)
.

Simplifying the above and substituting into (5.15) gives

EX

{
D̃[g, fθ̂n(X)]

}
≈ − 1

n

n∑
i=1

log f(Xi; θ̂n(X)) +
1

n
trace

(
J(θg)I(θg)

−1

)
= − 1

n
Ln(X; θ̂n(X)) +

1

n
trace

(
J(θg)I(θg)

−1

)
.

Altogether one approximation of EX

{
D̃[g, fθ̂n(X)]

}
is

EX

(
D̃(g, fθ̂n(X))

)
≈ − 1

n
Ln(X; θ̂n(X)) +

1

n
trace

(
J(θg)I(θg)

−1

)
. (5.18)

This approximation of the K − L information is called the AIC (Akaike Information

Criterion). In the case that J(θg) = I(θg) the AIC reduces to

AIC(p) = − 1

n
Lp,n(X; θ̂p,n) +

p

n
,

and we observe that it penalises the number of parameters (this is the classical AIC).

This is one of the first information criterions.

We apply the above to the setting of model selection. The idea is that we have a set

of candidate models we want to fit to the data, and we want to select the best model.
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• Suppose there are N different candidate family of models. Let {fp(x; θp); θp ∈ Θp}
denote the pth family.

• Let

Lp,n(X; θp) =
n∑
i=1

log f(Xi; θp)

denote the likelihood associated with the pth family. Let θ̂p,n = arg maxθp∈Θp Lp,n(X; θp)

denote the maximum likelihood estimator of the pth family.

• In an ideal world we would compare the different families by selecting the family of

distributions {fp(x; θp); θp ∈ Θp} which minimise the criterion EX

(
D̃(g, fp,θ̂p,n(X))

)
.

However, we do not know EX

(
D̃(g, fp,θ̂p,n(X))

)
hence we consider an estimator of it

given in (5.18).

This requires estimators of J(θp,g) and I(θp,g), this we can be easily be obtained

from the data and we denote this as Ĵp and Îp.

• We then choose the the family of distributions which minimise

min
1≤p≤N

(
− 1

n
Lp,n(X; θ̂p,n) +

1

n
trace

(
ĴpÎ

−1
p

))
(5.19)

In other words, the order we select is p̂ where

p̂ = arg min
1≤p≤N

(
− 1

n
Lp,n(X; θ̂p,n) +

1

n
trace

(
ĴpÎ

−1
p

))
Often (but not always) in model selection we assume that the true distribution is

nested in the many candidate model. For example, the ‘true’ model Yi = α0 + α1xi,1 + εi

belongs to the set of families defined by

Yi,p = α0 +

p∑
j=1

αjxi,j + εi p > 1.

In this case {α0 +
∑p

j=1 αjxi,j +εi;αj ∈ Rp+1} denotes the pth family of models. Since the

true model is nested in most of the candidate model we are in the specified case. Hence

we have J(θg) = I(θg), in this case trace
(
J(θg)I(θg)

−1
)

= trace
(
I(θg)I(θg)

−1
)

= p. In

this case (5.19) reduces to selecting the family which minimises

AIC(p) = min
1≤p≤N

(
− 1

n
Lp,n(X; θ̂p,n) +

p

n

)
.
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There is a bewildering array of other criterions (including BIC etc), but most are

similar in principle and usually take the form

− 1

n
Lp,n(X; θ̂p,n) + penn(p),

where penn(p) denotes a penality term (there are many including Bayes Information

criterion etc.).

Remark 5.3.1 • Usually the AIC is defined as

AIC(p) = −2Lp,n(X; θ̂p,n) + 2p,

this is more a matter of preference (whether we include the factor 2n or not).

• We observe that as the sample size grows, the weight of penalisation relative to the

likelihood declines (since Lp,n(X; θ̂p,n) = O(n)).

This fact can mean that the AIC can be problematic; it means that the AIC can easily

overfit, and select a model with a larger number of parameters than is necessary (see

Lemma 5.3.1).

• Another information criterion is the BIC (this can be obtained using a different

reasoning), and is defined as

BIC(p) = −2Lp,n(X; θ̂p,n) + p log n.

• The AIC does not place as much weight on the number of parameters, whereas the

BIC the does place a large weight on the parameters. It can be shown that the BIC

is a consistent estimator of the model (so long as the true model is in the class of

candidate models). However, it does have a tendency of underfitting (selecting a

model with too few parameters).

• However, in the case that the the true model does not belong to any the families, the

AIC can be a more suitable criterion than other criterions.

Note that ”estimators” such as the AIC (or even change point detection methods,

where the aim is to detect the location of a change point) are different to classical estima-

tors in the sense that the estimator is ”discrete valued”. In such cases, often the intention

is to show that the estimator is consistent, in the sense that

P (p̂n = p)
P→ 1
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as n → ∞ (where p̂ denotes the estimator and p the true parameter). There does exist

some paper which try to construct confidence intervals for such discrete valued estimators,

but they tend to be rarer.

Lemma 5.3.1 (Inconsistency of the AIC) Suppose that we are in the specified case

and θp is the true model. Hence the true model has order p. Then for any q > 0 we have

that

lim
n→∞

P
(

arg min
1≤m≤p+q

AIC(m) > p
)
> 0,

moreover

lim
n→∞

P
(

arg min
1≤m≤p+q

AIC(m) = p
)
6= 1.

In other words, the AIC will with a positive probability choose the larger order model, and

is more likely to select large models, as the the order q increases.

PROOF. To prove the result we note that (p+q)-order model will be selected over p-order

in the AIC if −Lp+q,T + (p+ q) < −Lp,n + p, in other words we select (p+ q) if

Lp+q,n − Lp,n > q.

Hence

P
(

arg min
1≤m≤p+q

AIC(m) > p
)

= P
(

arg min
p≤m≤p+q

AIC(m) < AIC(p)
)

≥ P
(
AIC(p+ q) < AIC(p)

)
≥ P (2(Lp+q,n − Lp,n) > 2q).

But we recall that Lp+q,n and Lp,n are both log-likelihoods and under the null that the

pth order model is the true model we have 2(Lp+q,n − Lp,n)
D→ χ2

q. Since E(χ2
q) = q and

var[χ2
q] = 2q, we have for any q > 0 that

P
(

arg min
1≤m≤p+q

AIC(m) > p
)
≥ P (2(Lp+q,n − Lp,n) > 2q) > 0.

Hence with a positive probability the AIC will choose the larger model.

This means as the sample size n grows, with a positive probability we will not neces-

sarily select the correct order p, hence the AIC is inconsistent and

lim
n→∞

P
(

arg min
1≤m≤p+q

AIC(m) = p
)
6= 1.

�
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Remark 5.3.2 (The corrected AIC) In order to correct for the bias in the AIC the

corrected AIC was proposed in Sugiura (1978) and Hurvich and Tsai (1989). This gives a

more subtle approximation of EX

{
D̃[g, fθ̂n(X)]

}
which results in an additional penalisation

term being added to the AIC. It can be shown that for linear models the AICc consistently

estimates the order of the model.

Remark 5.3.3 The AIC is one example of penalised model that take the form

−Lp,n(X; θ) + λ‖θ‖α,

where ‖θ‖α is a “norm” on θ. In the case of the AIC the `0-norm ‖θ‖0 =
∑p

i=1 I(θi 6= 0)

(where θ = (θ1, . . . , θp) and I denotes the indicator variable). However, minimisation of

this model over all subsets of θ = (θ1, . . . , θp) is computationally prohibitive if p is large.

Thus norms where α ≥ 1 are often seeked (such as the LASSO etc).

Regardless of the norm used, if the number of non-zero parameter is finite, with a

positive probability we will over estimate the number of non-zero parameters in the model.

5.3.1 Examples

This example considers model selection for logistic regression, which is covered later in

this course.

Example 5.3.2 Example: Suppose that {Yi} are independent binomial random variables

where Yi ∼ B(ni, pi). The regressors x1,i, . . . , xk,i are believed to influence the probability

pi through the logistic link function

log
pi

1− pi
= β0 + β1x1,i + βpxp,i + βp+1xp+1,i + . . .+ βqxq,i,

where p < q.

(a) Suppose that we wish to test the hypothesis

H0 : log
pi

1− pi
= β0 + β1x1,i + βpxp,i

against the alternative

H0 : log
pi

1− pi
= β0 + β1x1,i + βpxp,i + βp+1xp+1,i + . . .+ βqxq,i.

State the log-likelihood ratio test statistic that one would use to test this hypothesis.

If the null is true, state the limiting distribution of the test statistic.
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(b) Define the model selection criterion

Mn(d) = 2Ln(β̂d)− 2Cd

where C is a finite constant,

Li,d(βd) =
n∑
i=1

(
Yiβ

′
dxid − ni log(1 + exp(β′dxid) +

(
ni
Yi

))
,

xid = (x1,i, . . . , xd,i) and β̂d = arg maxβd Li,d(βd). We use d̂ = arg maxdMn(d) as an

estimator of the order of the model.

Suppose that H0 defined in part (2a) is true, use your answer in (2a) to explain

whether the model selection criterion Mn(d) consistently estimates the order of

model.

Solution:

(a) The likelihood for both hypothesis is

Li,d(βd) =
n∑
i=1

(
Yiβ

′
dxid − ni log(1 + exp(β′dxid) +

(
ni
Yi

))
.

Thus the log-likelihood ratio test is

〉n = 2
(
Ln,q(β̂q)− Li,p(β̂p

)
= 2

n∑
i=1

(
Yi[β̂

′
A − β̂′0]xi − ni[log(1 + exp(β̂′Axi)− log(1 + exp(β̂′0xi)]

)
where β̂0 and β̂A are the maximum likelihood estimators under the null and alterna-

tive respectively.

If the null is true, then 〉n
D→ χ2

q−p as T →∞.

(b) Under the null we have that 〉n = 2
(
Ln,q(β̂q) − Ln,p(β̂p

) D→ χ2
q−p. Therefore, by

definition, if d̂ = arg maxdMn(d), then we have(
Ld̂(β̂d)− 2Cd̂

)
−
(
Lp(β̂p)− 2Cp

)
> 0.

Suppose q > p, then the model selection criterion would select q over p if

2
[
Ld̂(β̂q)− Lp(β̂p)

]
> 2C(q − p).
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Now the LLRT test states that under the null 2
[
Lq(β̂q)−Lp(β̂p)

D→ χ2
q−p, thus roughly

speaking we can say that

P

[
Lq(β̂q)− (Lp(β̂p) > 2C(d̂− p)

]
≈ P (χ2

q−p > 2C(q − p)).

As the above is a positive probability, this means that the model selection criterion

will select model q over the true smaller model with a positive probability. This

argument holds for all q > p, thus the model selection criterion Mn(d) does not

consistently estimate d.

5.3.2 Recent model selection methods

The AIC and its relatives have been extensively in statistics over the past 30 years because

it is easy to evaluate. There are however problems in the case that p is large (more so

when p is large with respect to the sample size n, often called the large p small n problem).

For example, in the situation where the linear regression model takes the form

Yi =

p∑
j=1

ajxi,j + εi,

where the number of possible regressors {xi,j} is extremely large. In this case, evaluating

the mle for all the p different candidate models, and then making a comparisoon can take

a huge amount of computational time. In the past 10 years there has been a lot of work

on alternative methods of model selection. One such method is called the LASSO, this is

where rather than estimating all model individually parameter estimation is done on the

large model using a penalised version of the MLE

Ln(θ) + λ

p∑
i=1

|θi|.

The hope is by including the λ
∑p

i=1 |θi| in the likelihood many of coefficients of the

regressors would be set to zero (or near zero). Since the introduction of the LASSO in

1996 many variants of the LASSO have been proposed and also the LASSO has been

applied to several different situations.
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Chapter 6

Survival Analysis

6.1 An introduction to survival analysis

6.1.1 What is survival data?

Data where a set of ‘individuals’ are observed and the failure time or lifetime of that

individual is recordered is usually called survival data. We note that individual does not

necessarily need to be a person but can be an electrical component etc. Examples include:

• Lifetime of a machine component.

• Time until a patient’s cure, remission, passing.

• Time for a subject to perform a task.

• Duration of an economic cycle.

• Also it may not be ‘time’ we are interested in but:

– Length of run of a particle.

– Amount of usage of a machine, eg. amount of petrol used etc.

In the case that we do not observe any regressors (explanatory variables) which influence

the survival time (such as gender/age of a patient etc), we can model the survival times

as iid random variables. If the survival times are believed to have the density f(x; θ0),

where f(x; θ) is known but θ0 is unknown, then the maximum likelihood can be used to
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estimate θ. The standard results discussed in Section 2.2 can be easily applied to this

type of data.

6.1.2 Definition: The survival, hazard and cumulative hazard

functions

Let T denote the survival time of an individual, which has density f . The density f

and the distribution function F (x) =
∫ x

0
f(u)du are not particularly informative about

the chance of survival at a given time point. Instead, the survival, hazard and cumlative

hazard functions, which are functions of the density and distribution function, are used

instead.

• The survival function.

This is F(x) = 1−F (x). It is straightforward to see that F(x) = P (T > x) (observe

that the strictly greater than sign is necessary). Therefore, F(x) is the probability

of survival over x.

• The hazard function

The hazard function is defined as

h(x) = lim
δx→0

P (x < T ≤ x+ δx|T > x)

δx
= lim

δx→0

P (x < T ≤ x+ δx)

δxP (T > x)

=
1

F(x)
lim
δx→0

F (x+ δx)− F (x)

δx
=
f(x)

F(x)
= −d logF(x)

dx
.

We can see from the definition the hazard function is the ‘chance’ of failure (though

it is a normalised probability, not a probability) at time x, given that the individual

has survived until time x.

We see that the hazard function is similar to the density in the sense that it is a

positive function. However it does not integrate to one. Indeed, it is not integrable.

• The cumulative Hazard function

This is defined as

H(x) =

∫ x

−∞
h(u)du.
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It is straightforward to see that

H(x) =

∫ x

−∞
−d logF(x)

dx
cx=udu = − logF(x).

This is just the analogue of the distribution function, however we observe that unlike

the distribution function, H(x) is unbounded.

It is straightforward to show that f(x) = h(x) exp(−H(x)) and F(x) = exp(−H(x)).

It is useful to know that given any one of f(x), F (x), H(x) and h(x), uniquely defines the

other functions. Hence there is a one-to-one correspondence between all these functions.

Example 6.1.1 • The Exponential distribution

Suppose that f(x) = 1
θ

exp(−x/θ).

Then the distribution function is F (x) = 1 − exp(−x/θ). F(x) = exp(−x/θ),

h(x) = 1
θ

and H(x) = x/θ.

The exponential distribution is widely used. However, it is not very flexible. We

observe that the hazard function is constant over time. This is the well known

memoryless property of the exponential distribution. In terms of modelling it means

that the chance of failure in the next instant does not depend on on how old the

individual is. The exponential distribution cannot model ‘aging’.

• The Weibull distribution

We recall that this is a generalisation of the exponential distribution, where

f(x) =

(
α

θ

)(
x

θ

)α−1

exp(−(x/θ)α);α, θ > 0, x > 0.

For the Weibull distribution

F (x) = 1− exp
(
− (x/θ)α

)
F(x) = exp

(
− (x/θ)α

)
h(x) = (α/θ)(x/θ)α−1 H(x) = (x/θ)α.

Compared to the exponential distribution the Weibull has a lot more flexibility. De-

pending on the value of α, the hazard function h(x) can either increase over time

or decay over time.
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• The shortest lifetime model

Suppose that Y1, . . . , Yk are independent life times and we are interested in the short-

est survival time (for example this could be the shortest survival time of k sibling

mice in a lab when given some disease). Let gi, Gi Hi and hi denote the density,

survival function, cumalitive hazard and hazard function respectively of Yi (we do

not assume they have the same distribution) and T = min(Yi). Then the survival

function is

FT (x) = P (T > x) =
k∏
i=1

P (Yi > x) =
k∏
i=1

Gi(x).

Since the cumulative hazard function satisfies Hi(x) = − log Gi(x), the cumulative

hazard function of T is

HT (x) = −
k∑
i=1

log Gi(x) =
k∑
i=1

Hi(x)

and the hazard function is

hT (x) =
k∑
i=1

d(− log Gi(x))

dx
=

k∑
i=1

hi(x)

• Survival function with regressors See Section 3.2.2.

Remark 6.1.1 (Discrete Data) Let us suppose that the survival time are not continu-

ous random variables, but discrete random variables. In other words, T can take any of

the values {ti}∞i=1 where 0 ≤ t1 < t2 < . . .. Examples include the first time an individual

visits a hospital post operation, in this case it is unlikely that the exact time of visit is

known, but the date of visit may be recorded.

Let P (T = ti) = pi, using this we can define the survival function, hazard and cumu-

lative hazard function.

(i) Survival function The survival function is

Fi = P (T > ti) =
∞∑

j=i+1

P (T = tj) =
∞∑

j=i+1

pj.
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(ii) Hazard function The hazard function is

hi = P (ti−1 < T ≤ ti|T > ti−1) =
P (T = ti)

P (T > Ti−1)

=
pi
Fi−1

=
Fi−1 −Fi
Fi−1

= 1− Fi
Fi−1

. (6.1)

Now by using the above we have the following useful representation of the survival

function in terms of hazard function

Fi =
i∏

j=2

Fi
Fi−1

=
i∏

j=2

(
1− hj

)
=

i∏
j=1

(
1− hj

)
, (6.2)

since h1 = 0 and F1 = 1.

(iii) Cumulative hazard function The cumulative hazard function is Hi =
∑i

j=1 hj.

These expression will be very useful when we consider nonparametric estimators of the

survival function F .

6.1.3 Censoring and the maximum likelihood

One main feature about survival data which distinguishes, is that often it is “incomplete”.

This means that there are situations where the random variable (survival time) is not

completely observed (this is often called incomplete data). Usually, the incompleteness

will take the form as censoring (this will be the type of incompleteness we will consider

here).

There are many type of censoring, the type of censoring we will consider in this chapter

is right censoring. This is where the time of “failure”, may not be observed if it “survives”

beyond a certain time point. For example, is an individual (independent of its survival

time) chooses to leave the study. In this case, we would only know that the individual

survived beyond a certain time point. This is called right censoring. Left censoring

arises when the start (or birth) of an individual is unknown (hence it is known when an

individual passes away, but the individuals year of birth is unknown), we will not consider

this problem here.

Let us suppose that Ti is the survival time, which may not be observed and we observe

instead Yi = min(Ti, ci), where ci is the potential censoring time. We do know if the data
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has been censored, and together with Yi we observe the indicator variable

δi =

{
1 Ti ≤ ci (uncensored)

0 Ti > ci (censored)
.

Hence, in survival analysis we typically observe {(Yi, δi)}ni=1. We use the observations

{(Yi, δi)}ni=1 to make inference about unknown parameters in the model.

Let us suppose that Ti has the distribution f(x; θ0), where f is known but θ0 is

unknown.

Naive approaches to likelihood construction

There are two naive approaches for estimating θ0. One method is to ignore the fact that

the observations are censored and use time of censoring as if the were failure times. Hence

define the likelihood

L1,n(θ) =
n∑
i=1

log f(Yi; θ),

and use as the parameter estimator θ̂1,n = arg maxθ∈Θ L1,n(θ). The fundemental problem

with this approach is that it will be biased. To see this consider the expectation of

n−1L1,n(θ) (for convenience let ci = c). Since

Yi = TiI(Ti ≤ c) + cI(Ti > c)⇒ log f(Yi; θ) = [log f(Ti; θ)]I(Ti ≤ c) + [log f(c; θ)]I(Ti > c)

this gives the likelihood

E(log f(Yi; θ)) =

∫ c

0

log f(x; θ)f(x; θ0)dx+ F(c; θ0)︸ ︷︷ ︸
probability of censoring

log f(c; θ).

There is no reason to believe that θ0 maximises the above. For example, suppose f is

the exponential distribution, using the L1,n(θ) leads to the estimator θ̂1,n = n−1
∑n

i=1 Yi,

which is clearly a biased estimator of θ0. Hence this approach should be avoided since the

resulting estimator is biased.

Another method is to construct the likelihood function by ignoring the censored data.

In other words use the log-likelihood function

L2,n(θ) =
n∑
i=1

δi log f(Yi; θ),
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and let θ̂2,n = arg maxθ∈Θ L2,n(θ) be an estimator of θ. It can be shown that if a fixed

censor value is used, i.e. Yi = min(Ti, c), then this estimator is not a consistent estimator

of θ, it is also biased. As above, consider the expectation of n−1L2,n(θ), which is

E(δi log f(Yi; θ)) =

∫ c

0

log f(x; θ)f(x; θ0)dx.

It can be shown that θ0 does not maximise the above. Of course, the problem with the

above “likelihood” is that it is not the correct likelihood (if it were then Theorem 2.6.1

tells us that the parameter will maximise the expected likelihood). The correct likelihood

conditions on the non-censored data being less than c to give

L2,n(θ) =
n∑
i=1

δi (log f(Yi; θ)− log(1−F(c; θ))) .

This likelihood gives a consistent estimator of the θ; this see why consider its expectation

E
(
n−1L2,n(θ)

)
= E

(
log

f(Yi; θ)

F(c; θ)

∣∣Ti < c

)
=

∫ c

0

log
f(x; θ)

F(c; θ)
log

f(c; θ0)

F(c; θ0)
dx.

Define the “new” density g(x; θ) = f(x;θ)
F(c;θ)

for 0 ≤ x < c. Now by using Theorem 2.6.1 we

immediately see that the E (n−1L2,n(θ)) is maximised at θ = θ0. However, since we have

not used all the data we have lost “information” and the variance will be larger than a

likelihood that includes the censored data.

The likelihood under censoring (review of Section 1.2)

The likelihood under censoring can be constructed using both the density and distribution

functions or the hazard and cumulative hazard functions. Both are equivalent. The log-

likelihood will be a mixture of probabilities and densities, depending on whether the

observation was censored or not. We observe (Yi, δi) where Yi = min(Ti, ci) and δi is the

indicator variable. In this section we treat ci as if they were deterministic, we consider

the case that they are random later.

We first observe that if δi = 1, then the log-likelihood of the individual observation Yi

is log f(Yi; θ), since

P (Yi = x|δi = 1) = P (Ti = x|Ti ≤ ci) =
f(x; θ)

1−F(ci; θ)
dx =

h(y; θ)F(x; θ)

1−F(ci; θ)
dx. (6.3)

On the other hand, if δi = 0, the log likelihood of the individual observation Yi = c|δi = 0

is simply one, since if δi = 0, then Yi = ci (it is given). Of course it is clear that

173



P (δi = 1) = 1 − F(ci; θ) and P (δi = 0) = F(ci; θ). Thus altogether the joint density of

{Yi, δi} is(
f(x; θ)

1−F(ci; θ)
× (1−F(ci; θ))

)δi(
1×F(ci; θ)

)1−δi
= f(x; θ)δiF(ci; θ)

1−δi .

Therefore by using f(Yi; θ) = h(Yi; θ)F(Yi; θ), and H(Yi; θ) = − logF(Yi; θ), the joint

log-likelihood of {(Yi, δi)}ni=1 is

Ln(θ) =
n∑
i=1

(
δi log f(Yi; θ) + (1− δi) log

(
1− F (Yi; θ)

))
=

n∑
i=1

δi
(

log h(Ti; θ)−H(Ti; θ)
)
−

n∑
i=1

(1− δi)H(ci; θ)

=
n∑
i=1

δi log h(Yi; θ)−
n∑
i=1

H(Yi; θ). (6.4)

You may see the last representation in papers on survival data. Hence we use as the

maximum likelihood estimator θ̂n = arg maxLn(θ).

Example 6.1.2 The exponential distribution Suppose that the density of Ti is f(x; θ) =

θ−1 exp(x/θ), then by using (6.4) the likelihood is

Ln(θ) =
n∑
i=1

(
δi
(
− log θ − θ−1Yi

)
− (1− δi)θ−1Yi

)
.

By differentiating the above it is straightforward to show that the maximum likelihood

estimator is

θ̂n =

∑n
i=1 δiTi +

∑n
i=1(1− δi)ci∑n

i=1 δi
.

6.1.4 Types of censoring and consistency of the mle

It can be shown that under certain censoring regimes the estimator converges to the true

parameter and is asymptotically normal. More precisely the aim is to show that

√
n
(
θ̂n − θ0

) D→ N (0, I(θ0)−1), (6.5)

where

I(θ) = −E

(
1

n

n∑
i=1

δi
∂2 log f(Yi; θ)

∂θ2
+

1

n

n∑
i=1

(1− δi)
∂2 logF(ci; θ)

∂θ2

)
.
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Note that typically we replace the Fisher information with the observed Fisher information

Ĩ(θ) =
1

n

n∑
i=1

δi
∂2 log f(Yi; θ)

∂θ2
+

1

n

n∑
i=1

(1− δi)
∂2 logF(ci; θ)

∂θ2
.

We discuss the behaviour of the likelihood estimator for different censoring regimes.

Non-random censoring

Let us suppose that Yi = min(Ti, c), where c is some deterministic censoring point (for

example the number of years cancer patients are observed). We first show that the expec-

tation of the likelihood is maximum at the true parameter (this under certain conditions

means that the mle defined in (6.4) will converge to the true parameter). Taking expec-

tation of Ln(θ) gives

E

(
n−1Ln(θ)

)
= E

(
δi log f(Ti; θ) + (1− δi) logF(Ti; θ)

)
=

∫ c

0

log f(x; θ)f(x; θ0)dx+ F(c; θ0) logF(c; θ).

To show that the above is maximum at θ (assuming no restrictions on the parameter

space) we differentiate E
(
Ln(θ)

)
with respect to θ and show that it is zero at θ0. The

derivative at θ0 is

∂E
(
n−1Ln(θ)

)
∂θ

cθ=θ0 =
∂

∂θ

∫ c

0

f(x; θ)dxcθ=θ0 +
∂F(c; θ)

∂θ
cθ=θ0

=
∂(1−F(c; θ))

∂θ
cθ=θ0 +

∂F(c; θ)

∂θ
cθ=θ0 = 0.

This proves that the expectation of the likelihood is maximum at zero (which we would

expect, since this all fall under the classical likelihood framework). Now assuming that the

standard regularity conditions are satisfied then (6.5) holds where the Fisher information

matrix is

I(θ) = − ∂2

∂θ2

(∫ c

0

f(x; θ0) log f(x; θ)dx+ F(c; θ0) logF(c; θ)

)
.

We observe that when c = 0 (thus all the times are censored), the Fisher information is

zero, thus the asymptotic variance of the mle estimator, θ̂n is not finite (which is consistent

with out understanding of the Fisher information matrix). It is worth noting that under

this censoring regime the estimator is consistent, but the variance of the estimator will
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be larger than when there is no censoring (just compare the Fisher informations for both

cases).

In the above, we assume the censoring time c was common for all individuals, such

data arises in several studies. For example, a study where life expectancy was followed

for up to 5 years after a procedure. However, there also arises data where the censoring

time varies over individuals, for example an individual, i, may pull out of a study at time

ci. In this case, the Fisher information matrix is

In(θ) = −
n∑
i=1

∂2

∂θ2

(∫ ci

0

f(x; θ0) log f(x; θ)dx+ F(ci; θ0) logF(ci; θ)

)
=

n∑
i=1

I(θ; ci). (6.6)

However, if there is a lot of variability between the censoring times, one can “model these

as if they were random”. I.e. that ci are independent realisations from the random variable

C. Within this model (6.6) can be viewed as the Fisher information matrix conditioned

on the censoring time Ci = ci. However, it is clear that as n→∞ a limit can be achieved

(which cannot be when the censoring in treated as deterministic) and

1

n

n∑
i=1

I(θ; ci)
a.s.→
∫
R
I(θ; c)k(c)dc, (6.7)

where k(c) denotes the censoring density. The advantage of treating the censoring as

random, is that it allows one to understand how the different censoring times influences

the limiting variance of the estimator. In the section below we formally incorporate

random censoring in the model and consider the conditions required such that the above

is the Fisher information matrix.

Random censoring

In the above we have treated the censoring times as fixed. However, they can also be

treated as if they were random i.e. the censoring times {ci = Ci} are random. Usually

it is assumed that {Ci} are iid random variables which are independent of the survival

times. Furthermore, it is assumed that the distribution of C does not depend on the

unknown parameter θ.

Let k and K denote the density and distribution function of {Ci}. By using the

arguments given in (6.3) the likelihood of the joint distribution of {(Yi, δi)}ni=1 can be
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obtained. We recall that the probability of (Yi ∈ [y − h
2
, y + h

2
], δi = 1) is

P

(
Yi ∈

[
y − h

2
, y +

h

2

]
, δi = 1

)
= P

(
Yi ∈

[
y − h

2
, y +

h

2

] ∣∣δi = 1

)
P (δi = 1)

= P

(
Ti ∈

[
y − h

2
, y +

h

2

] ∣∣δi = 1

)
P (δi = 1) .

Thus

P

(
Yi ∈

[
y − h

2
, y +

h

2

]
, δi = 1

)
= P

(
Ti ∈

[
y − h

2
, y +

h

2

]
, δi = 1

)
= P

(
δi = 1|Ti ∈

[
y − h

2
, y +

h

2

])
P

(
Ti ∈

[
y − h

2
, y +

h

2

])
≈ P

(
δi = 1|Ti ∈

[
y − h

2
, y +

h

2

])
fTi(y)h

= P (Ti ≤ Ci|Ti = y)fTi(y)h

= P (y ≤ Ci)fTi(y)h = fTi(y) (1−K(y))h.

It is very important to note that the last line P (Ti ≤ Ci|Ti = y) = P (y ≤ Ci) is due to

independence between Ti and Ci, if this does not hold the expression would involve the

joint distribution of Yi and Ci.

Thus the likelihood of (Yi, δi = 1) is fTi(y) (1−K(y)). Using a similar argument the

probability of (Yi ∈ [y − h
2
, y + h

2
], δi = 0) is

P

(
Yi ∈

[
y − h

2
, y +

h

2

]
, δi = 0

)
= P

(
Ci ∈

[
y − h

2
, y +

h

2

]
, δi = 0

)
= P

(
δi = 0|Ci =

[
y − h

2
, y +

y

2

])
fCi(y)h

= P

(
Ci < Ti|Ci =

[
y − h

2
, y +

h

2

])
fCi(y)h = k(Ci)F(Ci; θ)h.

Thus the likelihood of (Yi, δi) is

[fTi(Yi) (1−K(Yi))]
δi [k(Yi)F(Yi; θ)]

1−δi .
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This gives the log-likelihood

Ln,R(θ) =
n∑
i=1

(
δi
[

log f(Yi; θ) + log(1−K(Yi))
]

+ (1− δi)
[

log
(
1− F (Ci; θ)

)
+ log k(Ci)

])
=

n∑
i=1

(
δi log f(Yi; θ) + (1− δi) log

(
1− F (Ci; θ)

))
︸ ︷︷ ︸

=Ln(θ)

+
n∑
i=1

(
δi log(1−K(Yi)) + (1− δi) log k(Ci)

)
= Ln(θ) +

n∑
i=1

(
δi log(1−K(Yi)) + (1− δi) log k(Ci)

)
. (6.8)

The interesting aspect of the above likelihood is that if the censoring density k(y) does

not depend on θ, then the maximum likelihood estimator of θ0 is identical to the maxi-

mum likelihood estimator using the non-random likelihood (or, equivalently, the likelihood

conditioned on Ci) (see (6.3)). In other words

θ̂n = arg maxLn(θ) = arg maxLn,R(θ).

Hence the estimators using the two likelihoods are the same. The only difference is the

limiting distribution of θ̂n.

We now examine what θ̂n is actually estimating in the case of random censoring. To

ease notation let us suppose that the censoring times follow an exponential distribution

k(x) = β exp(−βx) and K(x) = 1 − exp(−βx). To see whether θ̂n is biased we evaluate

the derivative of the likelihood. As both the full likelihood and the conditional yield the

same estimators, we consider the expectation of the conditional log-likelihood. This is

E
(
Ln(θ)

)
= nE

(
δi log f(Ti; θ)

)
+ nE

(
(1− δi) logF(Ci; θ)

)
= nE

(
log f(Ti; θ) E(δi|Ti)︸ ︷︷ ︸

=exp(−βTi)

)
+ nE

(
logF(Ci; θ) E

(
1− δi|Ci

)︸ ︷︷ ︸
=F(Ci;θ0)

)
,

where the above is due to E(δi|Ti) = P (Ci > Ti|Ti) = exp(−βTi) and E(1 − δi|Ci) =

P (Ti > Ci|Ci) = F(Ci; θ0). Therefore

E
(
Ln(θ)

)
= n

(∫ ∞
0

exp(−βx) log f(x; θ)f(x; θ0)dx+

∫ ∞
0

F(c; θ0)β exp(−βc) logF(c; θ)dc

)
.
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It is not immediately obvious that the true parameter θ0 maximises E
(
Ln(θ)

)
, however

by using (6.8) the expectation of the true likelihood is

E (LR,n(θ)) = E (Ln(θ)) + nK.

Thus the parameter which maximises the true likelihood also maximises E
(
Ln(θ)

)
. Thus

by using Theorem 2.6.1, we can show that θ̂n = arg maxLR,n(θ) is a consistent estimator

of θ0. Note that

√
n
(
θ̂n,R − θ0

)
D→ N (0, I(θ0)−1)

where

I(θ) = n

∫ ∞
0

exp(−βx)

(
∂f(x; θ)

∂θ

)2

f(x; θ0)−1dx−

n

∫ ∞
0

exp(−βx)
∂2f(x; θ)

∂θ2
dx

+n

∫ ∞
0

β exp(−βc)
(
∂F(c; θ)

∂θ

)2

F(c; θ)−1dc

−n
∫ ∞

0

β exp(−βc)∂
2F(c; θ)

∂θ2
dc.

Thus we see that the random censoring does have an influence on the limiting variance

of θ̂n,R.

Remark 6.1.2 In the case that the censoring time C depends on the survival time T

it is tempting to still use (6.8) as the “likelihood”, and use the parameter estimator the

parameter which maximises this likelihood. However, care needs to be taken. The likelihood

in (6.8) is constructed under the assumption T and C, thus it is not the true likelihood

and we cannot use Theorem 2.6.1 to show consistency of the estimator, in fact it is likely

to be biased.

In general, given a data set, it is very difficult to check for dependency between survival

and censoring times.

Example 6.1.3 In the case that Ti is an exponential, see Example 6.1.2, the MLE is

θ̂n =

∑n
i=1 δiTi +

∑n
i=1(1− δi)Ci∑n

i=1 δi
.
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Now suppose that Ci is random, then it is possible to calculate the limit of the above. Since

the numerator and denominator are random it is not easy to calculate the expectation.

However under certain conditions (the denominator does not converge to zero) we have

by Slutsky’s theorem that

θ̂n
P→
∑n

i=1 E(δiTi + (1− δi)Ci)∑n
i=1 E(δi)

=
E(min(Ti, Ci))

P (Ti < Ci)
.

Definition: Type I and Type II censoring

• Type I sampling In this case, there is an upper bound on the observation time. In

other words, if Ti ≤ c we observe the survival time but if Ti > c we do not observe

the survival time. This situation can arise, for example, when a study (audit) ends

and there are still individuals who are alive. This is a special case of non-random

sampling with ci = c.

• Type II sampling We observe the first r failure times, T(1), . . . , T(r), but do not

observe the (n− r) failure times, whose survival time is greater than T(r) (we have

used the ordering notation T(1) ≤ T(2) ≤ . . . ≤ T(n)).

6.1.5 The likelihood for censored discrete data

Recall the discrete survival data considered in Remark 6.1.1, where the failures can occur

at {ts} where 0 ≤ t1 < t2 < . . .. We will suppose that the censoring of an individual can

occur only at the times {ts}. We will suppose that the survival time probabilities satisfy

P (T = ts) = ps(θ), where the parameter θ is unknown but the function ps is known, and

we want to estimate θ.

Example 6.1.4

(i) The geometric distribution P (X = k) = p(1 − p)k−1 for k ≥ 1 (p is the unknown

parameter).

(ii) The Poisson distribution P (X = k) = λk exp(−λ)/k! for k ≥ 0 (λ is the unknown

parameter).

As in the continuous case let Yi denote the failure time or the time of censoring of the

ith individual and let δi denote whether the ith individual is censored or not. Hence, we
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observe {(Yi, δi)}. To simplify the exposition let us define

ds = number of failures at time ts qs = number censored at time ts

Ns =
∞∑
i=s

(di + qi) .

So there data would look like this:

Time No. Failures at time ti No. censored at time ti Total Number

t1 d1 q1 N1 =
∑∞

i=1 (di + qi)

t2 d2 q2 N2 =
∑∞

i=2 (di + qi)
...

...
...

...

Thus we observe from the table above that

Ns − ds = Number survived just before time ts+1.

Hence at any given time ts, there are ds “failures” and Ns − ds “survivals”.

Hence, since the data is discrete observing {(Yi, δi)} is equivalent to observing {(ds, qs)}
(i.e. the number of failures and censors at time ts), in terms of likelihood construction

(this leads to equivalent likelihoods). Using {(ds, qs)} and Remark 6.1.1 we now construct

the likelihood. We shall start with the usual (not log) likelihood. Let P (T = ts|θ) = ps(θ)

and P (T ≥ ts|θ) = Fs(θ). Using this notation observe that the probability of (ds, qs) is

ps(θ)
dsP (T ≥ ts)

qs = ps(θ)
dsFs(θ)qs , hence the likelihood is

Ln(θ) =
n∏
i=1

pYi(θ)
δiFYi(θ)1−δi =

∞∏
s=1

ps(θ)
dsFs(θ)qs

=
∞∏
s=1

ps(θ)
ds [
∞∑
j=s

pj(θ)]
qs .

For most parametric inference the above likelihood is relatively straightforward to max-

imise. However, in the case that our objective is to do nonparametric estimation (where

we do not assume a parametric model and directly estimate the probabilities without

restricting them to a parametric family), then rewriting the likelihood in terms of the

hazard function greatly simplies matters. By using some algebraic manipulations and

Remark 6.1.1 we now rewrite the likelihood in terms of the hazard functions. Using that

ps(θ) = hs(θ)Fs−1(θ) (see equation (6.1)) we have

Ln(θ) =
∏
s=1

hs(θ)
dsFs(θ)qsFs−1(θ)ds =

∏
s=1

hs(θ)
dsFs(θ)qs+ds+1︸ ︷︷ ︸

realigning the s

(since F0(θ) = 1).
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Now, substituting Fs(θ) =
∏s

j=1(1− hj(θ)) (see equation (6.2)) into the above gives

Ln(θ) =
n∏
s=1

hs(θ)
ds

[
s∏
j=1

(1− hj(θ))

]qs+ds+1

=
n∏
s=1

hs(θ)
ds

s∏
j=1

(1− hj(θ))qs+ds+1

Rearranging the multiplication we see that h1(θ) is multiplied by (1− h1(θ))
∑
i=1(qi+di+1),

h2(θ) is multiplied by (1− h1(θ))
∑
i=2(qi+di+1) and so forth. Thus

Ln(θ) =
n∏
s=1

hs(θ)
ds (1− hs(θ))

∑n
m=s(qm+dm+1) .

Recall Ns =
∑n

m=s(qm + dm). Thus
∑∞

m=s(qm + dm+1) = Ns − ds (number survived just

before time ts+1) the likelihood can be rewritten as

Ln(θ) =
∞∏
s=1

ps(θ)
ds [
∞∑
j=s

pj(θ)]
qs

=
∏
s=1

hs(θ)
ds(1− hs(θ))Ns−ds .

The corresponding log-likelihood is

Ln(θ) =
∞∑
s=1

{
ds log ps(θ)

ds + log

[
∞∑
j=s

pj(θ)]
qs

]}

=
∞∑
s=1

(
ds log hs(θ) + (Ns − ds) log(1− hs(θ))

)
. (6.9)

Remark 6.1.3 At time ts the number of “failures” is ds and the number of survivors is

Ns − ds. The probability of “failure” and “success” is

hs(θ) = P (T = s|T ≥ s) =
ps(θ)∑∞
i=s ps(θ)

1− hs(θ) = P (T > s|T ≥ s) =

∑∞
i=s+1 pi(θ)∑∞
i=s ps(θ)

.

Thus hs(θ)
ds(1 − hs(θ))Ns−ds can be viewed as the probability of ds failures and Ns − ds

successes at time ts.

Thus for the discrete time case the mle of θ is the parameter which maximises the

above likelihood.

182



6.2 Nonparametric estimators of the hazard function

- the Kaplan-Meier estimator

Let us suppose that {Ti} are iid random variables with distribution function F and survival

function F . However, we do not know the class of functions from which F or F may come

from. Instead, we want to estimate F nonparametrically, in order to obtain a good idea of

the ‘shape’ of the survival function. Once we have some idea of its shape, we can conjecture

the parametric family which may best fit its shape. See https://en.wikipedia.org/

wiki/Kaplan%E2%80%93Meier_estimator for some plots.

If the survival times have not been censored the ‘best’ nonparametric estimator of the

cumulative distribution function F is the empirical likelihood

F̂n(x) =
1

n

n∑
i=1

I(x ≤ Ti).

Using the above the empirical survival function F(x) is

F̂n(x) = 1− F̂n(x) =
1

n

n∑
i=1

I(Ti > x),

observe this is a left continuous function (meaning that the limit lim0<δ→0 Fn(x−δ) exists).

We use the notation

ds = number of failures at time ts

Ns = n−
s−1∑
i=1

di =
∞∑
i=s

di = Ns−1 − ds−1 (corresponds to number of survivals just before ts).

If ts < x ≤ ts+1, then the empirical survival function can be rewritten as

F̂n(x) =
Ns − ds

n
=

s∏
i=1

(
Ni − di
Ni

)
=

s∏
i=1

(
1− di

Ni

)
x ∈ (ti, ti+1]

where N1 = n are the total in the group. Since the survival times usually come from

continuous random variable, di = {0, 1}, the above reduces to

F̂n(x) =
s∏
i=1

(
1− 1

Ni

)di
x ∈ (ti, ti+1].
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Figure 6.1: The noparametric estimator of the survival function based on the empirical

distribution function (with no censoring).

However, in the case, that the survival data is censored and we observe {Yi, δi}, then

some adjustments have to made to F̂n(x) to ensure it is a consistent estimator of the

survival function. This leads to the Kaplan-Meier estimator, which is a nonparametric

estimator of the survival function F that takes into account censoring. We will now derive

the Kaplan-Meier estimator for discrete data. A typical data set looks like this:

Time No. Failures at time ti No. censored at time ti Total Number

t1 0 0 N1 =
∑∞

i=1 (di + qi)

t2 1 0 N2 =
∑∞

i=2 (di + qi)

t3 0 1 N3 =
∑∞

i=3 (di + qi)

t4 0 1 N4 =
∑∞

i=4 (di + qi)
...

...
...

...

It is important to note that because these are usually observations from a continuous

random variable and observation which as been censored at time ts−1 may not have

survived up to time ts. This means that we cannot say that the total number of survivors

at time ts − ε is Ns + qs−1, all we know for sure is that the number of survivors at ts − ε
is Ns.
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The Kaplan-Meier estimator of the hazard function hs = P (T = ts)/P (T > ts − ε) is

ĥs =
ds
Ns

,

where ds are the number of failures at time ts and Ns are the number of survivors just

before time ts (think ts− ε). The corresponding estimator of the survival function P (T >

ts) = F(ts) is

F̂(ts) =
s∏
j=1

(
1− dj

Nj

)
.

We show below that this estimator maximises the likelihood and in many respects, this is

a rather intuitive estimator of the hazard function. For example, if there is no censoring

then it can be shown that maximum likelihood estimator of the hazard function is

ĥs =
ds∑∞
i=s ds

=
number of failures at time s

number who survive just before time s
,

which is a very natural estimator (and is equivalent to the nonparametric MLE estimator

discussed in Section ??).

For continuous random variables, dj ∈ {0, 1} (as it is unlikely two or more survival

times are identical), the Kaplan-Meier estimator can be extended to give

F̂(t) =
∏
j;t>Yj

(
1− 1

Nj

)dj
,

where Yj is the time of an event (either failure or censor) and dj is an indicator on whether

it is a failure. One way of interpreting the above is that only the failures are recorded

in the product, the censored times simply appear in the number Nj. Most statistical

software packages will plot of the survival function estimator. A plot of the estimator is

given in Figure 6.2.

We observe that in the case that the survival data is not censored then Nj =
∑m

s=j ds,

and the Kaplan-Meier estimator reduces to

F̂(t) =
∏
j;t>Yj

(
1− 1

Nj

)
.

Comparing the estimator of the survival function with and without censoring (compare

Figures 6.1 and 6.2) we see that one major difference is the difference between step sizes.

In the case there is no censoring the difference between steps in the step function is always

n−1 whereas when censoring arises the step differences change according to the censoring.
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Figure 6.2: An example of the Kaplan-Meier estimator with censoring. The small vertical

lines in the plot correspond to censored times.

Derivation of the Kaplan-Meier estimator

We now show that the Kaplan-Meier estimator is the maximum likelihood estimator in

the case of censoring. In Section ?? we showed that the empirical distribution is the

maximimum of the likelihood for non-censored data. We now show that the Kaplan-

Meier estimator is the maximum likelihood estimator when the data is censored. We

recall in Section 6.1.5 that the discrete log-likelihood for censored data is

Ln(θ) =
∑
s=1

(
ds log ps(θ)

ds + qs log[
∞∑
j=s

pj(θ)]

)

=
∞∑
s=1

(
ds log hs(θ) + (Ns − ds) log(1− hs(θ)

)
,

where P (T = ts) = ps(θ), ds are the number of failures at time ts, qs are the number of

individuals censored at time ts and Ns =
∑∞

m=s(qm + dm). Now the above likelihood is

constructed under the assumption that the distribution has a parametric form and the
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only unknown is θ. Let us suppose that the probabilities ps do not have a parametric

form. In this case the likelihood is

Ln(p1, p2, . . .) =
∑
s=1

(
ds log ps + qs log[

∞∑
j=s

pj]

)
subject to the condition that

∑
pj = 1. However, it is quite difficult to directly maximise

the above. Instead we use the likelihood rewritten in terms of the hazard function (recall

equation (6.9))

Ln(h1, h2, . . .) =
∑
s=1

(
ds log hs + (Ns − ds) log(1− hs)

)
,

and maximise this. The derivative of the above with respect to hs is

∂Ln
∂hs

=
ds
hs
− (Ns − ds)

1− hs
.

Hence by setting the above to zero and solving for hs gives

ĥs =
ds
Ns

.

If we recall that ds = number of failures at time ts and Ns = number of alive just before

time ts. Hence the non-parametric estimator of the hazard function is rather logical (since

the hazard function is the chance of failure at time t, given that no failure has yet occured,

ie. h(ti) = P (ti ≤ T < ti+1|T ≥ ti)). Now recalling (6.2) and substituting ĥs into (6.2)

gives the survival function estimator

F̂s =
s∏
j=1

(
1− ĥj

)
.

Rewriting the above, we have the Kaplan-Meier estimator

F̂(ts) =
s∏
j=1

(
1− dj

Nj

)
.

For continuous random variables, dj ∈ {0, 1} (as it is unlikely two or more survival times

are identical), the Kaplan-Meier estimator cab be extended to give

F̂(t) =
∏
j;Yj≤t

(
1− 1

Nj

)dj .
Of course given an estimator it is useful to approximate its variance. Some useful

approximations are given in Davison (2002), page 197.
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6.3 Problems

6.3.1 Some worked problems

Problem: Survival times and random censoring

Example 6.3.1 Question

Let us suppose that T and C are exponentially distributed random variables, where the

density of T is 1
λ

exp(−t/λ) and the density of C is 1
µ

exp(−c/µ).

(i) Evaluate the probability P (T − C < x), where x is some finite constant.

(ii) Let us suppose that {Ti}i and {Ci}i are iid survival and censoring times respec-

tively (Ti and Ci are independent of each other), where the densities of Ti and

Ci are fT (t;λ) = 1
λ

exp(−t/λ) and fC(c;µ) = 1
µ

exp(−c/µ) respectively. Let Yi =

min(Ti, Ci) and δi = 1 if Yi = Ti and zero otherwise. Suppose λ and µ are unknown.

We use the following “likelihood” to estimate λ

Ln(λ) =
n∑
i=1

δi log fT (Yi;λ) +
n∑
i=1

(1− δi) logFT (Yi;λ),

where FT denotes is the survival function.

Let λ̂n = arg maxLn(λ). Show that λ̂n is an asymptotically, unbiased estimator of

λ (you can assume that λ̂n converges to some constant).

(iii) Obtain the Fisher information matrix of λ.

(iv) Suppose that µ = λ, what can we say about the estimator derived in (ii).

Solutions

(i) P (T > x) = exp(−x/λ) and P (C > c) = exp(−c/µ), thus

P (T < C + x) =

∫
P (T < C + x|C = c)︸ ︷︷ ︸

use independence

fC(c)dc

=

∫
P (T < c+ x)fC(c)dc

=

∫ ∞
0

[
1− exp(−c+ x

λ
)

]
1

µ
exp(− c

µ
)dc = 1− exp(−x/λ)

λ

λ+ µ
.

188



(ii) Differentiating the likelihood

∂Ln(λ)

∂λ
=

n∑
i=1

δi
∂ log fT (Ti;λ)

∂λ
+

n∑
i=1

(1− δi)
∂ logFT (Ci;λ)

∂λ
,

substituting f(x;λ) = λ−1 exp(−x/λ) and F(x;λ) = exp(−x/λ) into the above and

equating to zero gives the solution

λ̂n =

∑
i=1 δiTi +

∑
i(1− δi)Ci∑

i δi
.

Now we evaluate the expectaton of the numerator and the denominator.

E(δiTi) = E(TiI(Ti < Ci)) = E (TiE(I(Ci > Ti|Ti)))

= E (TiP (Ci > Ti|Ti)) = E (TiP (Ci − Ti > 0|Ti))

= E(Ti exp(−Ti/µ)) =

∫
t exp(−t/µ)

1

λ
exp(−t/λ)dt

=
1

λ
×
( µλ

µ+ λ

)2
=

µ2λ

(µ+ λ)2

Similarly we can show that

E((1− δi)Ci) = P (CiP (Ti > Ci|Ci)) =
µλ2

(µ+ λ)2
.

Finally, we evaluate the denominator E(δi) = P (T < C) = 1− λ
µ+λ

= µ
µ+λ

. Therefore

by Slutsky’s theorem we have

λ̂n
P→

µλ2

(µ+λ)2
+ µ2λ

(µ+λ)2

µ
µ+λ

= λ.

Thus λ̂n converges in probability to λ.

(iii) Since the censoring time does not depend on λ the Fisher information of λ is

I(λ) = nE

(
−∂

2Ln,R(λ)

∂λ2

)
= nE

(
−∂

2Ln(λ)

∂λ2

)
=

n

λ2
E[δi] =

n

λ2
P (T < C)

=
n

λ2

µ

λ+ µ
,

where LN,R is defined in (6.8). Thus we observe, the larger the average censoring

time µ the more information the data contains about λ.
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(iv) It is surprising, but the calculations in (ii) show that even when µ = λ (but we require

that T and C are independent), the estimator defined in (ii) is still a consistent

estimator of λ. However, because we did not use Ln,R to construct the maximum

likelihood estimator and the maximum of Ln(λ) and Ln,R(λ) are not necessarily the

same, the estimator will not have optimal (smallest) variance.

Problem: survival times and fixed censoring

Example 6.3.2 Question

Let us suppose that {Ti}ni=1 are survival times which are assumed to be iid (independent,

identically distributed) random variables which follow an exponential distribution with

density f(x;λ) = 1
λ

exp(−x/λ), where the parameter λ is unknown. The survival times

may be censored, and we observe Yi = min(Ti, c) and the dummy variable δi = 1, if Yi = Ti

(no censoring) and δi = 0, if Yi = c (if the survival time is censored, thus c is known).

(a) State the censored log-likelihood for this data set, and show that the estimator of λ

is

λ̂n =

∑n
i=1 δiTi +

∑n
i=1(1− δi)c∑n

i=1 δi
.

(b) By using the above show that when c > 0, λ̂n is a consistent of the the parameter λ.

(c) Derive the (expected) information matrix for this estimator and comment on how

the information matrix behaves for various values of c.

Solution

(1a) Since P (Yi ≥ c) = exp(−cλ), the log likelihood is

Ln(λ) =
n∑
i=1

(
δi log λ− δiλYi − (1− δi)cλ

)
.

Thus differentiating the above wrt λ and equating to zero gives the mle

λ̂n =

∑n
i=1 δiTi +

∑n
i=1(1− δi)c∑n

i=1 δi
.
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(b) To show that the above estimator is consistent, we use Slutsky’s lemma to obtain

λ̂n
P→

E
[
δT + (1− δ)c

]
E(δ)

To show tha λ = E[δT+(1−δ)c]
E(δ)

we calculate each of the expectations:

E(δT ) =

∫ c

0

y
1

λ
exp(−λy)dy = c exp(−c/λ)− 1

λ
exp(−c/λ) + λ

E((1− δ)c) = cP (Y > c) = c exp(−c/λ)

E(δ) = P (Y ≤ c) = 1− exp(−c/λ).

Substituting the above into gives λ̂n
P→ λ as n→∞.

(iii) To obtain the expected information matrix we differentiate the likelihood twice and

take expections to obtain

I(λ) = −nE

(
δiλ
−2

)
= −1− exp(−c/λ)

λ2
.

Note that it can be shown that for the censored likelihood E(∂Ln(λ)
∂

)2 = −E(∂
2Ln(λ)
∂λ2

).

We observe that the larger c, the larger the information matrix, thus the smaller the

limiting variance.

6.3.2 Exercises

Exercise 6.1 If {Fi}ni=1 are the survival functions of independent random variables and

β1 > 0, . . . , βn > 0 show that
∏n

i=1Fi(x)βi is also a survival function and find the corre-

sponding hazard and cumulative hazard functions.

Exercise 6.2 Let {Yi}ni=1 be iid random variables with hazard function h(x) = λ subject

to type I censoring at time c.

Show that the observed information for λ is m/λ2 where m is the number of Yi that

are non-censored and show that the expected information is I(λ|c) = n[1− e−λc]/λ2.

Suppose that the censoring time c is a reailsation from a random variable C whose

density is

f(c) =
(λα)νcν

Γ(ν)
exp(−cλα) c > 0, α, ν > 0.
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Show that the expected information for λ after averaging over c is

I(λ) = n
[
1− (1 + 1/α)−ν

]
/λ2.

Consider what happens when

(i) α→ 0

(ii) α→∞

(iii) α = 1 and ν = 1

(iv) ν →∞ but such that µ = ν/α is kept fixed.

In each case explain quantitively the behaviour of I(λ).

Exercise 6.3 Let us suppose that {Ti}i are the survival times of lightbulbs. We will

assume that {Ti} are iid random variables with the density f(·; θ0) and survival function

F(·; θ0), where θ0 is unknown. The survival times are censored, and Yi = min(Ti, c) and

δi are observed (c > 0), where δi = 1 if Yi = Ti and is zero otherwise.

(a) (i) State the log-likelihood of {(Yi, δi)}i.

(ii) We denote the above log-likelihood as Ln(θ). Show that

−E

(
∂2Ln(θ)

∂θ2
cθ=θ0

)
= E

(
∂Ln(θ)

∂θ
cθ=θ0

)2

,

stating any important assumptions that you may use.

(b) Let us suppose that the above survival times satisfy a Weibull distribution f(x;φ, α) =

(α
φ
)(x
φ
)α−1 exp(−(x/φ)α) and as in part (a) we observe and Yi = min(Ti, c) and δi,

where c > 0.

(i) Using your answer in part 2a(i), give the log-likelihood of {(Yi, δi)}i for this

particular distribution (we denote this as Ln(α, φ)) and derive the profile like-

lihood of α (profile out the nusiance parameter φ).

Suppose you wish to test H0 : α = 1 against HA : α 6= 1 using the log-likelihood

ratio test, what is the limiting distribution of the test statistic under the null?
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(ii) Let φ̂n, α̂n = arg maxLn(α, φ) (maximum likelihood estimators involving the

censored likelihood). Do the estimators φ̂n and α̂n converge to the true param-

eters φ and α (you can assume that φ̂n and α̂n converge to some parameters,

and your objective is to find whether these parameters are φ and α).

(iii) Obtain the (expected) Fisher information matrix of maximum likelihood esti-

mators.

(iv) Using your answer in part 2b(iii) derive the limiting variance of the maximum

likelihood estimator of α̂n.

Exercise 6.4 Let Ti denote the survival time of an electrical component. It is known

that the regressors xi influence the survival time Ti. To model the influence the regressors

have on the survival time the Cox-proportional hazard model is used with the exponential

distribution as the baseline distribution and ψ(xi; β) = exp(βxi) as the link function. More

precisely the survival function of Ti is

Fi(t) = F0(t)ψ(xi;β),

where F0(t) = exp(−t/θ). Not all the survival times of the electrical components are

observed, and there can arise censoring. Hence we observe Yi = min(Ti, ci), where ci

is the censoring time and δi, where δi is the indicator variable, where δi = 0 denotes

censoring of the ith component and δi = 1 denotes that it is not censored. The parameters

β and θ are unknown.

(i) Derive the log-likelihood of {(Yi, δi)}.

(ii) Compute the profile likelihood of the regression parameters β, profiling out the base-

line parameter θ.
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Chapter 7

The Expectation-Maximisation

Algorithm

7.1 The EM algorithm - a method for maximising

the likelihood

Let us suppose that we observe Y = {Yi}ni=1. The joint density of Y is f(Y ; θ0), and θ0 is

an unknown parameter. Our objective is to estimate θ0. The log-likelihood of Y is

Ln(Y ; θ) = log f(Y ; θ),

Observe, that we have not specified that {Yi} are iid random variables. This is because

the procedure that we will describe below is very general and the observations do not

need to be either independent or identically distributed (indeed an interesting extension

of this procedure, is to time series with missing data first proposed in Shumway and Stoffer

(1982) and Engle and Watson (1982)). Our objective is to estimate θ0, in the situation

where either evaluating the log-likelihood Ln or maximising Ln is difficult. Hence an

alternative means of maximising Ln is required. Often, there may exist unobserved data

{U = {Ui}mi=1}, where the likelihood of (Y , U) can be ‘easily’ evaluated. It is through

these unobserved data that we find an alternative method for maximising Ln.

The EM-algorithm was specified in its current form in Dempster, Laird and Run-

bin (1977)(https://www.jstor.org/stable/pdf/2984875.pdf) however it was applied

previously to several specific models.
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Example 7.1.1 (i) Suppose that {fj(·; θ); θ}mj=1 are a sequence of densities from m

exponential classes of densities. In Sections 1.6 and 1.6.5 we showed that it was

straightforward to maximise each of these densities. However, let us suppose that

each fj(·; θ) corresponds to one subpopulation. All the populations are pooled together

and given an observation Xi it is unknown which population it comes from. Let δi

denote the subpopulation the individual Xi comes from i.e. δi ∈ {1, . . . ,m} where

P (δi = j) = pj.

The density of all these mixtures of distribution is

f(x; θ) =
m∑
j=1

f(Xi = x|δi = j)P (δi = j) =
m∑
j=1

pjfj(x; θ)

where
∑m

j=1 pj = 1. Thus the log-likelihood of {Xi} is

n∑
i=1

log

(
m∑
j=1

pjfj(Xi; θ)

)
.

Of course we require that
∑m

j=1 pj = 1, thus we include a lagrange multiplier to the

likelihood to ensure this holds

n∑
i=1

log

(
m∑
j=1

pjfj(Xi; θ)

)
+ λ

(
m∑
j=1

pj − 1

)
.

It is straightforward to maximise the likelihood for each individual subpopulation,

however, it is extremely difficult to maximise the likelihood of this mixture of distri-

butions.

The data {Xi} can be treated as missing, since the information {δi} about the which

population each individual belongs to is not there. If δi were known the likelihood of

{Xi, δi} is

m∏
j=1

n∏
i=1

(pjfj(Xi; θ))
I(δi=j) =

n∏
i=1

pδifδi(Xi; θ)

which leads to the log-likelihood of {Xi, δi} which is

n∑
i=1

log pδifδi(Xi; θ) =
n∑
i=1

(log pδi + log fδi(Xi; θ))
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which is far easier to maximise. Again to ensure that
∑m

j=1 pj = 1 we include a

Lagrange multiplier

n∑
i=1

log pδifδi(Xi; θ) =
n∑
i=1

(log pδi + log fδi(Xi; θ)) + λ

(
m∑
j=1

pj − 1

)
.

It is easy to show that p̂j = n−1
∑n

i=1 I(δi = j).

(ii) Let us suppose that {Ti}n+m
i=1 are iid survival times, with density f(x; θ0). Some of

these times are censored and we observe {Yi}n+m
i=1 , where Yi = min(Ti, c). To simplify

notation we will suppose that {Yi = Ti}ni=1, hence the survival time for 1 ≤ i ≤ n,

is observed but Yi = c for n + 1 ≤ i ≤ n + m. Using the results in Section the

log-likelihood of Y is

Ln(Y ; θ) =

( n∑
i=1

log f(Yi; θ)

)
+

( n+m∑
i=n+1

logF(Yi; θ)

)
.

The observations {Yi}n+m
i=n+1 can be treated as if they were missing. Define the ‘com-

plete’ observations U = {Ti}n+m
i=n+1, hence U contains the unobserved survival times.

Then the likelihood of (Y , U) is

Ln(Y , U ; θ) =
n+m∑
i=1

log f(Ti; θ).

If no analytic express exists for the survival function F , it is easier to maximise

Ln(Y , U) than Ln(Y ).

We now formally describe the EM-algorithm. As mentioned in the discussion above

it is often easier to maximise the joint likelihood of (Y , U) than with the likelihood of Y

itself. the EM-algorithm is based on maximising an approximation of (Y , U) based on

the data that is observed Y .

Let us suppose that the joint likelihood of (Y , U) is

Ln(Y , U ; θ) = log f(Y , U ; θ).

This likelihood is often called the complete likelihood, we will assume that if U were

known, then this likelihood would be easy to obtain and differentiate. We will assume
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that the density f(U |Y ; θ) is also known and is easy to evaluate. By using Bayes theorem

it is straightforward to show that

log f(Y , U ; θ) = log f(Y ; θ) + log f(U |Y ; θ) (7.1)

⇒ Ln(Y , U ; θ) = Ln(Y ; θ) + log f(U |Y ; θ).

Of course, in reality log f(Y , U ; θ) is unknown, because U is unobserved. However, let us

consider the expected value of log f(Y , U ; θ) given what we observe Y . That is

Q(θ0, θ) = E

(
log f(Y , U ; θ)

∣∣Y , θ0

)
=

∫ (
log f(Y , u; θ)

)
f(u|Y , θ0)du, (7.2)

where f(u|Y , θ0) is the conditional distribution of U given Y and the unknown parameter

θ0. Hence if f(u|Y , θ0) were known, then Q(θ0, θ) can be evaluated.

Remark 7.1.1 It is worth noting that Q(θ0, θ) = E
(

log f(Y , U ; θ)
∣∣Y , θ0

)
can be viewed

as the best predictor of the complete likelihood (involving both observed and unobserved

data - (Y , U)) given what is observed Y . We recall that the conditional expectation is

the best predictor of U in terms of mean squared error, that is the function of Y which

minimises the mean squared error: E(U |Y ) = arg ming E(U − g(Y ))2.

The EM algorithm is based on iterating Q(·) in such a way that at each step we

obtaining an estimator which gives a larger value of Q(·) (and as we will show later, this

gives a larger Ln(Y ; θ)). We describe the EM-algorithm below.

The EM-algorithm:

(i) Define an initial value θ1 ∈ Θ. Let θ∗ = θ1.

(ii) The expectation step (The (k+1)-step),

For a fixed θ∗ evaluate

Q(θ∗, θ) = E

(
log f(Y , U ; θ)

∣∣∣∣Y , θ∗) =

∫ (
log f(Y , u; θ)

)
f(u|Y , θ∗)du,

for all θ ∈ Θ.

(iii) The maximisation step

Evaluate θk+1 = arg maxθ∈ΘQ(θ∗, θ).
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We note that the maximisation can be done by finding the solution of

E

(
∂ log f(Y , U ; θ)

∂θ

∣∣∣∣Y , θ∗) = 0.

(iv) If θk and θk+1 are sufficiently close to each other stop the algorithm and set θ̂n = θk+1.

Else set θ∗ = θk+1, go back and repeat steps (ii) and (iii) again.

We use θ̂n as an estimator of θ0. To understand why this iteration is connected to the

maximising of Ln(Y ; θ) and, under certain conditions, gives a good estimator of θ0 (in

the sense that θ̂n is close to the parameter which maximises Ln) let us return to (7.1).

Taking the expectation of log f(Y , U ; θ), conditioned on Y we have

Q(θ∗, θ) = E

(
log f(Y , U ; θ)

∣∣Y , θ∗)
= E

[
log f(Y ; θ) + log f(U |Y ; θ)

∣∣Y , θ∗]
= log f(Y ; θ) + E

[
log f(U |Y ; θ)

∣∣Y , θ∗]. (7.3)

Define

D(θ∗, θ) = E

(
log f(U |Y ; θ)

∣∣Y , θ∗) =

∫ [
log f(u|Y ; θ)

]
f(u|Y , θ∗)du.

Substituting D(θ∗, θ) into (7.3) gives

Q(θ∗, θ) = Ln(θ) +D(θ∗, θ), (7.4)

we use this in expression in the proof below to show that Ln(θk+1) > Ln(θk). First we

that at the (k+ 1)th step iteration of the EM-algorithm, θk+1 maximises Q(θk, θ) over all

θ ∈ Θ, hence Q(θk, θk+1) ≥ Q(θk, θk) (which will also be used in the proof).

In the lemma below we show that Ln(θk+1) ≥ Ln(θk), hence at each iteration of the

EM-algorthm we are obtaining a θk+1 which increases the likelihood over the previous

iteration.

Lemma 7.1.1 When running the EM-algorithm the inequality Ln(θk+1) ≥ Ln(θk) always

holds.

Furthermore, if θk → θ̂ and for every iteration ∂Q(θ1,θ2)
∂θ2

c(θ1,θ2)=(θk,θk+1) = 0, then
∂Ln(θ)
∂θ
cθ=θ̂ = 0 (this point can be a saddle point, a local maximum or the sought after

global maximum).
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PROOF. From (7.4) it is clear that

Q(θk, θk+1)−Q(θk, θk) =
[
Ln(θk+1)− Ln(θk)

]
+
[
D(θk, θk+1)−D(θk, θk)

]
, (7.5)

where we recall

D(θ1, θ) = E

(
log f(U |Y ; θ)

∣∣Y , θ1

)
=

∫ [
log f(u|Y ; θ)

]
f(u|Y , θ1)du.

We will show that
[
D(θk, θk+1)−D(θk, θk)

]
≤ 0, the result follows from this. We observe

that [
D(θk, θk+1)−D(θk, θk)

]
=

∫
log

f(u|Y , θk+1)

f(u|Y , θk)
f(u|Y , θk)du.

By using the Jenson’s inequality (which we have used several times previously)[
D(θk, θk+1)−D(θk, θk)

]
≤ log

∫
f(u|Y , θk+1)du = 0.

Therefore,
[
D(θk, θk+1)−D(θk, θk)

]
≤ 0. Note that if θ uniquely identifies the distribution

f(u|Y , θ) then equality only happens when θk+1 = θk. Since
[
D(θk, θk+1)−D(θk, θk)

]
≤ 0

by (7.5) we have [
Ln(θk+1)− Ln(θk)

]
≥ Q(θk, θk+1)−Q(θk, θk) ≥ 0.

and we obtain the desired result (Ln(θk+1) ≥ Ln(θk)).

To prove the second part of the result we will use that for all θ ∈ Θ

∂D(θ1, θ2)

∂θ2

c(θ1,θ2)=(θ,θ) =

∫
∂ log f(u|Y ; θ)

∂θ
f(u|Y , θ)du =

∂

∂θ

∫
f(u|Y , θ)du = 0. (7.6)

We will to show that the derivative of the likelihood is zero at θ∗ i.e. ∂L
∂θ
cθ=θ∗ = 0. To

show this we use the identity

Ln(θk+1) = Q(θk, θk+1)−D(θk, θk+1).

Taking derivatives with respect to θk+1 gives

∂Ln(θ)

∂θ
cθ=θk+1

=
∂Q(θ1, θ2)

∂θ2

c(θ1,θ2)=(θk,θk+1) −
∂D(θ1, θ2)

∂θ2

c(θ1,θ2)=(θk,θk+1).

By definition of θk+1, ∂Q(θ1,θ2)
∂θ2

c(θ1,θ2)=(θk,θk+1) = 0, thus we have

∂Ln(θ)

∂θ
cθ=θk+1

= −∂D(θ1, θ2)

∂θ2

c(θ1,θ2)=(θk,θk+1).
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Furthermore, since by assumption θk → θ̂ this implies that as k →∞ we have

∂Ln(θ)

∂θ
cθ=θ̂ = −∂D(θ1, θ2)

∂θ2

c(θ1,θ2)=(θ̂,θ̂) = 0,

which follows from (7.6), thus giving the required result. �

Further information on convergence can be found in Boyles (1983) (http://www.

jstor.org/stable/pdf/2345622.pdf?_=1460485744796) and Wu (1983) (https://www.

jstor.org/stable/pdf/2240463.pdf?_=1460409579185).

Remark 7.1.2 Note that the EM algorithm will converge to a θ̂ where ∂Ln(θ)
∂θ θ=θ̂

= 0.

The reason can be seen from the identity

Q(θ∗, θ) = Ln(θ) +D(θ∗, θ).

The derivative of the above with respect to θ is

∂Q(θ∗, θ)

∂θ
=
∂Ln(θ)

∂θ
+
∂D(θ∗, θ)

∂θ
. (7.7)

Observe that D(θ∗, θ) is maximum only when θ = θ∗ (for all θ∗, this is clear from the

proof above), thus ∂D(θ∗,θ)
∂θ θ=θ∗

which for θ∗ = θ̂ implies ∂D(θ̂,θ)
∂θ θ=θ̂

= 0. Furthermore, by

definition ∂Q(θ̂,θ)
∂θ θ=θ̂

= 0.

Since ∂Q(θ̂,θ)
∂θ θ=θ̂

= 0 and ∂D(θ̂,θ)
∂θ θ=θ̂

= 0 by using (7.7) this implies ∂Ln(θ)
∂θ θ=θ̂

= 0.

In order to prove the results in the following section we use the following identities.

Since

Q(θ1, θ2) = L(θ2) +D(θ1, θ2)

⇒ ∂2Q(θ1, θ2)

∂θ2
2

=
∂2L(θ2)

∂θ2
+
∂2D(θ1, θ2)

∂θ2

⇒ ∂2Q(θ1, θ2)

∂θ2
2

c(θ1,θ2)=(θ,θ) =
∂2L(θ2)

∂θ2
2

c(θ1,θ2)=(θ,θ) +
∂2D(θ1, θ2)

∂θ2
2

c(θ1,θ2)=(θ,θ)

⇒ −∂
2L(θ2)

∂θ2
2

c(θ1,θ2)=(θ,θ) = −∂
2Q(θ1, θ2)

∂θ2
2

c(θ1,θ2)=(θ,θ) +
∂2D(θ1, θ2)

∂θ2
2

c(θ1,θ2)=(θ,θ) (7.8)

We observe that the LHS of the above is the observed Fisher information matrix I(θ|Y ),

−∂
2Q(θ1, θ2)

∂θ2
2

c(θ1,θ2)=(θ,θ) = IC(θ|Y ) = −
∫
∂2 log f(u, Y ; θ)

∂θ2
f(u|Y , θ)du (7.9)
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is the complete Fisher information conditioned on what is observed and

−∂
2D(θ1, θ2)

∂θ2
2

c(θ1,θ2)=(θ,θ) = IM(θ|Y ) = −
∫
∂2 log f(u|Y ; θ)

∂θ2
f(u|Y , θ)du (7.10)

is the Fisher information matrix of the unobserved data conditioned on what is observed.

Thus

I(θ|Y ) = IC(θ|Y )− IM(θ|Y ).

7.1.1 Speed of convergence of θk to a stable point

When analyzing an algorithm it is instructive to understand how fast it takes to converge

to the limiting point. In the case of the EM-algorithm, this means what factors determine

the rate at which θk converges to a stable point θ̂ (note this has nothing to do with the rate

of convergence of an estimator to the true parameter, and it is important to understand

this distinction).

The rate of convergence of an algorithm is usually measured by the ratio of the current

iteration with the previous iteration:

R = lim
k→∞

(
θk+1 − θ̂
θk − θ̂

)
,

if the algorithm converges to a limit in a finite number of iterations we place the above

limit to zero. Thus the smaller R the faster the rate of convergence (for example if (i)

θk − θ̂ = k−1 then R = 1 if (ii) θk − θ̂ = ρk then R = ρ, assuming |ρ| < 1). Note that

since (θk+1 − θ̂) =
∏k

j=1

(
θj+1−θ̂
θj−θ̂

)
, then typically |R| ≤ 1.

To obtain an approximation of R we will make a Taylor expansion of ∂Q(θ1,θ2)
∂θ2

around

the limit (θ1, θ2) = (θ̂, θ̂). To do this we recall that for a bivariate function f : R2 → R
for (x0, y0) “close” to (x, y) we have the Taylor expansion

f(x, y) = f(x0, y0) + (x− x0)
∂f(x, y)

∂x
c(x,y)=(x0,y0) + (y − y0)

∂f(x, y)

∂y
c(x,y)=(x0,y0) + lower order terms.

Applying the above to ∂Q(θ1,θ2)
∂θ2

gives

∂Q(θ1, θ2)

∂θ2

c(θ1,θ2)=(θk,θk+1)

≈ ∂Q(θ1, θ2)

∂θ2

c(θ1,θ2)=(θ̂,θ̂) + (θk+1 − θ̂)
∂2Q(θ1, θ2)

∂θ2
2

c(θ1,θ2)=(θ̂,θ̂) + (θk − θ̂)
∂2Q(θ1, θ2)

∂θ1∂θ2

c(θ1,θ2)=(θ̂,θ̂).
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Since θk+1 maximises Q(θk, θ) and θ̂ maximises Q(θ̂, θ) within the interior of the parameter

space then

∂Q(θ1, θ2)

∂θ2

c(θ1,θ2)=(θk,θk+1) = 0 and
∂Q(θ1, θ2)

∂θ2

c(θ1,θ2)=(θ̂,θ̂) = 0

This implies that

(θk+1 − θ̂)
∂2Q(θ1, θ2)

∂θ2
2

c(θ1,θ2)=(θ̂,θ̂) + (θk − θ̂)
∂2Q(θ1, θ2)

∂θ1∂θ2

c(θ1,θ2)=(θ̂,θ̂) = 0.

Thus

lim
k→∞

(
θk+1 − θ̂
θk − θ̂

)
= −

(
∂2Q(θ1, θ2)

∂θ2
2

c(θ1,θ2)=(θ̂,θ̂)

)−1
∂2Q(θ1, θ2)

∂θ1∂θ2

c(θ1,θ2)=(θ̂,θ̂). (7.11)

This result shows that the rate of convergence depends on the ratio of gradients of Q(θ1, θ2)

around (θ1, θ2) = (θ̂, θ̂). Some further simplifications can be made by noting that

Q(θ1, θ2) = Ln(θ2) +D(θ1, θ2) ⇒ ∂2Q(θ1, θ2)

∂θ1∂θ2

=
∂2D(θ1, θ2)

∂θ1∂θ2

.

Substituting this into (7.11) gives

lim
k→∞

(
θk+1 − θ̂
θk − θ̂

)
= −

(
∂2Q(θ1, θ2)

∂θ2
2

c(θ1,θ2)=(θ̂,θ̂)

)−1
∂2D(θ1, θ2)

∂θ1∂θ2

c(θ1,θ2)=(θ̂,θ̂). (7.12)

To make one further simplification, we note that

∂2D(θ1, θ2)

∂θ1∂θ2

c(θ1,θ2)=(θ̂,θ̂) =

∫
1

f(u|Y , θ2)

∂f(u|Y , θ2)

∂θ2

∂f(u|Y , θ1)

∂θ1

c(θ1,θ2)=(θ̂,θ̂)du

=

∫
1

f(u|Y , θ)

(
∂f(u|Y , θ)

∂θ

)2

cθ=θ̂du

= −
∫
∂2 log f(u|Y , θ)

∂θ2

f(u|Y , θ)cθ=θ̂du (7.13)

were the last line of the above follows from the identity∫
1

f(x; θ)

(
∂f(x; θ)

∂θ

)2

dx+

∫
∂2 log f(x; θ)

∂θ2

f(x; θ)dx = 0

(see the proof of Corollary 1.3.1). Substituting (7.12) into (7.13) gives

lim
k→∞

(
θk+1 − θ̂
θk − θ̂

)
=

(
∂2Q(θ1, θ2)

∂θ2
2

c(θ1,θ2)=(θ̂,θ̂)

)−1
∂2D(θ1, θ2)

∂θ2
2

c(θ1,θ2)=(θ̂,θ̂). (7.14)
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Substituting (7.9) and (7.10) into the above gives

lim
k→∞

(
θk+1 − θ̂
θk − θ̂

)
= IC(θ|Y )−1IM(θ|Y ) (7.15)

Hence the rate of convergence of the algorithm depends on on the ratio IC(θ|Y )−1IM(θ|Y ).

The closer the largest eigenvalue of IC(θ|Y )−1IM(θ|Y ) to one, the slower the rate of

convergence, and a larger number of iterations are required. The heuristic of this result is

that if the missing information is a large proportion of the complete or total information

than this ratio will be large.

Further details can be found in Dempster et. al. (1977) pages 9-10 and Meng and Ru-

bin (1994) (http://www.sciencedirect.com/science/article/pii/0024379594903638).

7.2 Applications of the EM algorithm

7.2.1 Censored data

Let us return to the example at the start of this section, and construct the EM-algorithm

for censored data. We recall that the log-likelihoods for censored data and complete data

are

Ln(Y ; θ) =

( n∑
i=1

log f(Yi; θ)

)
+

( n+m∑
i=n+1

logF(Yi; θ)

)
.

and

Ln(Y , U ; θ) =

( n∑
i=1

log f(Yi; θ)

)
+

( n+m∑
i=n+1

log f(Ti; θ)

)
.

To implement the EM-algorithm we need to evaluate the expectation step Q(θ∗, θ). It is

easy to see that

Q(θ∗, θ) = E

(
Ln(Y , U ; θ)

∣∣Y , θ∗) =

( n∑
i=1

log f(Yi; θ)

)
+

( n+m∑
i=n+1

E
(

log f(Ti; θ)|Y , θ∗
))
.

To obtain E
(

log f(Ti; θ)|Y , θ∗
)

(i ≥ n+ 1) we note that

E
(

log f(Ti; θ)|Y , θ∗
)

= E(log f(Ti; θ)|Ti ≥ c)

=
1

F(c; θ)

∫ ∞
c

[
log f(Ti; θ)

]
f(u; θ∗)du.

204

http://www.sciencedirect.com/science/article/pii/0024379594903638


Therefore we have

Q(θ∗, θ) =

( n∑
i=1

log f(Yi; θ)

)
+

m

F(c; θ∗)

∫ ∞
c

[
log f(Ti; θ)

]
f(u; θ∗)du.

We also note that the derivative of Q(θ∗, θ) with respect to θ is

∂Q(θ∗, θ)

∂θ
=

( n∑
i=1

1

f(Yi; θ)

∂f(Yi; θ)

∂θ

)
+

m

F(c; θ∗)

∫ ∞
c

1

f(u; θ)

∂f(u; θ)

∂θ
f(u; θ∗)du.

Hence for this example, the EM-algorithm is

(i) Define an initial value θ1 ∈ Θ. Let θ∗ = θ1.

(ii) The expectation step:

For a fixed θ∗ evaluate

∂Q(θ∗, θ)

∂θ
=

( n∑
i=1

1

f(Yi; θ)

∂f(Yi; θ)

∂θ

)
+

m

F(c; θ∗)

∫ ∞
c

1

f(u; θ)

∂f(u; θ)

∂θ
f(u; θ∗)du.

(iii) The maximisation step:

Solve for ∂Q(θ∗,θ)
∂θ

. Let θk+1 be such that ∂Q(θ∗,θ)
∂θ
cθ=θk = 0.

(iv) If θk and θk+1 are sufficiently close to each other stop the algorithm and set θ̂n = θk+1.

Else set θ∗ = θk+1, go back and repeat steps (ii) and (iii) again.

7.2.2 Mixture distributions

We now consider a useful application of the EM-algorithm, to the estimation of parameters

in mixture distributions. Let us suppose that {Yi}ni=1 are iid random variables with density

f(y; θ) = pf1(y; θ1) + (1− p)f2(y; θ2),

where θ = (p, θ1, θ2) are unknown parameters. For the purpose of identifiability we will

suppose that θ1 6= θ2, p 6= 1 and p 6= 0. The log-likelihood of {Yi} is

Ln(Y ; θ) =
n∑
i=1

log
(
pf1(Yi; θ1) + (1− p)f2(Yi; θ2)

)
. (7.16)

Now maximising the above can be extremely difficult. As an illustration consider the

example below.
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Example 7.2.1 Let us suppose that f1(y; θ1) and f2(y; θ1) are normal densities, then the

log likelihood is

Ln(Y ; θ) =
n∑
i=1

log

(
p

1√
2πσ2

1

exp(− 1

2σ2
1

(Yi − µ1)2) + (1− p) 1√
2πσ2

2

exp(− 1

2σ2
2

(Yi − µ2)2)

)
.

We observe this is extremely difficult to maximise. On the other hand if Yi were simply

normally distributed then the log-likelihood is extremely simple

Ln(Y ; θ) ∝ −
n∑
i=1

(
log σ2

1 +
1

2σ2
1

(Yi − µ1)2)

)
. (7.17)

In other words, the simplicity of maximising the log-likelihood of the exponential family of

distributions (see Section 1.6) is lost for mixtures of distributions.

We use the EM-algorithm as an indirect but simple method of maximising (7.17). In

this example, it is not clear what observations are missing. However, let us consider one

possible intepretation of the mixture distribution. Let us define the random variables δi

and Yi, where δi ∈ {1, 2},

P (δi = 1) = p and P (δi = 2) = (1− p)

and the density of Yi|δi = 1 is f1 and the density of Yi|δi = 1 is f2. Based on this definition,

it is clear from the above that the density of Yi is

f(y; θ) = f(y|δ = 1, θ)P (δ = 1) + f(y|δ = 2, θ)P (δ = 2) = pf1(y; θ1) + (1− p)f2(y; θ2).

Hence, one interpretation of the mixture model is that there is a hidden unobserved

random variable which determines the state or distribution of Yi. A simple example, is

that Yi is the height of an individual and δi is the gender. However, δi is unobserved and

only the height is observed. Often a mixture distribution has a physical interpretation,

similar to the height example, but sometimes it can be used to parametrically model a

wide class of densities.

Based on the discussion above, U = {δi} can be treated as the missing observations.

The likelihood of (Yi, Ui) is

{
p1f1(Yi; θ1)

}I(δi=1){
p2f2(Yi; θ2)

}I(δi=2)
= pδifδi(Yi; θδi).
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where we set p2 = 1− p. Therefore the log likelihood of {(Yi, δi)} is

Ln(Y , U ; θ) =
n∑
i=1

(log pδi + log fδi(Yi; θδi)) .

We now need to evaluate

Q(θ∗, θ) = E
(
Ln(Y , U ; θ)|Y , θ∗

)
=

n∑
i=1

[
E
(

log pδi |Yi, θ∗
)

+ E
(

log fδi(Yi; θδi)|Yi, θ∗
)]
.

We see that the above expectation is taken with respect the distribution of δi conditioned

on Yi and the parameter θ∗ Thus, in general,

E (A(Y, δ)|Y, θ∗) =
∑
j

A(Y, δ = j)P (δ = j|Yi, θ∗),

which we apply to Q(θ∗, θ) to give

Q(θ∗, θ) =
∑
j

n∑
i=1

[log pδi=j + log fδi=j(Yi; θ)]P (δi = j|Yi, θ∗).

Therefore we need to obtain P (δi = j|Yi, θ∗). By using conditioning arguments it is easy

to see that 1

P (δi = 1|Yi = y, θ∗) =
P (δi = 1, Yi = y; θ∗)

P (Yi = y; θ∗)
=

p∗f1(y, θ1,∗)

p∗f1(y, θ1,∗) + (1− p∗)f2(y, θ2,∗)

:= w1(θ∗, y)

P (δi = 2|Yi = y, θ∗) =
p∗f2(y, θ2,∗)

p∗f1(y, θ1,∗) + (1− p∗)f2(y, θ2,∗)

:= w2(θ∗, y) = 1− w1(θ∗, y).

Therefore

Q(θ∗, θ) =
n∑
i=1

(
log p+ log f1(Yi; θ1)

)
w1(θ∗, Yi) +

n∑
i=1

(
log(1− p) + log f2(Yi; θ2)

)
w2(θ∗, Yi).

Now maximising the above with respect to p, θ1 and θ2 in general will be much easier than

maximising Ln(Y ; θ). For this example the EM algorithm is

(i) Define an initial value θ1 ∈ Θ. Let θ∗ = θ1.

1To see why note that P (δi = 1 and Yi ∈ [y − h/2, y + h/2]|θ∗) = hp∗f1(y) and P (Yi ∈ [y − h/2, y +

h/2]|θ∗) = h (p∗f1(y) + (1− p∗)f2(y)).
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(ii) The expectation step:

For a fixed θ∗ evaluate

Q(θ∗, θ) =
n∑
i=1

(
log p+ log f1(Yi; θ1)

)
w1(θ∗, Yi) +

n∑
i=1

(
log(1− p) + log f2(Yi; θ2)

)
w2(θ∗, Yi).

(iii) The maximisation step:

Evaluate θk+1 = arg maxθ∈ΘQ(θ∗, θ) by differentiatingQ(θ∗, θ) wrt to θ and equating

to zero. Since the parameters p and θ1, θ2 are in separate subfunctions, they can be

maximised separately.

(iv) If θk and θk+1 are sufficiently close to each other stop the algorithm and set θ̂n = θk+1.

Else set θ∗ = θk+1, go back and repeat steps (ii) and (iii) again.

Example 7.2.2 (Normal mixtures and mixtures from the exponential family) (i)

We briefly outline the algorithm in the case of a mixture two normal distributions.

In this case

Q(θ∗, θ) = −1

2

2∑
j=1

n∑
i=1

wj(θ∗, Yi)
(
σ−2
j (Yi − µj)2 + log σ2

j

)
+

n∑
i=1

wj(θ∗, Yi) (log p+ log(1− p)) .

By differentiating the above wrt to µj, σ
2
j (for j = 1 and 2) and p it is straightforward

to see that the µj, σ
2
j and p which maximises the above is

µ̂j =

∑n
i=1wj(θ∗, Yi)Yi∑n
i=1 wj(θ∗, Yi)

and σ̂2
j =

∑n
i=1 wj(θ∗, Yi)(Yi − µ̂j)2∑n

i=1wj(θ∗, Yi)

and

p̂ =

∑n
i=1 w1(θ∗, Yi)

n
.

Once these estimators are obtained we let θ∗ = (µ̂1, µ̂2, σ̂
2
1, σ̂

2
2, p̂). The quantities

wj(θ∗, Yi) are re-evaluated and Q(θ∗, θ) maximised with respect to the new weights.

(ii) In general if Y is a mixture from the exponential family with density

f(y; θ) =
m∑
j=1

pj exp (yθj − κj(θj) + cj(y))
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the corresponding Q(θ∗, θ) is

Q(θ∗, θ) =
m∑
j=1

n∑
i=1

wj(θ∗, Yi) [Yiθj − κj(θj) + cj(Yi) + log pj] ,

where

wj(θ∗, Yi) =
p∗j exp

(
Yiθ
∗
j − κj(θ∗j ) + cj(Yi)

)∑m
k=1 p

∗
k exp (Yiθ∗k − κk(θ∗k) + ck(Yi))

subject to the constraint that
∑m

j=1 pj = 1. Thus for 1 ≤ j ≤ m, Q(θ∗, θ) is

maximised for

θ̂j = µ−1
j

(∑n
i=1wj(θ∗, Yi)Yi∑n
i=1 wj(θ∗, Yi)

)
where µj = κ′j (we assume all parameter for each exponential mixture is open) and

p̂j =

∑n
i=1 wj(θ∗, Yi)

n
.

Thus we set θ∗ = ({θ̂j, p̂j}mj=1) and re-evaluate the weights.

Remark 7.2.1 Once the algorithm is terminated, we can calculate the chance that any

given observation Yi is in subpopulation j since

P̂ (δi = j|Yi) =
p̂jfj(Y ; θ̂)∑2
j=1 p̂jfj(Y ; θ̂)

.

This allows us to obtain a classifier for each observation Yi.

It is straightforward to see that the arguments above can be generalised to the case

that the density of Yi is a mixture of m different densities. However, we observe that the

selection of m can be quite adhoc. There are methods for choosing m, these include the

reversible jump MCMC methods.

7.2.3 Problems

Example 7.2.3 Question: Suppose that the regressors xt are believed to influence the

response variable Yt. The distribution of Yt is

P (Yt = y) = p
λyt1 exp(−λt1y)

y!
+ (1− p)λ

y
t2 exp(−λt2y)

y!
,

where λt1 = exp(β′1xt) and λt2 = exp(β′2xt).
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(i) State minimum conditions on the parameters, for the above model to be identifiable?

(ii) Carefully explain (giving details of Q(θ∗, θ) and the EM stages) how the EM-algorithm

can be used to obtain estimators of β1, β2 and p.

(iii) Derive the derivative of Q(θ∗, θ), and explain how the derivative may be useful in

the maximisation stage of the EM-algorithm.

(iv) Given an initial value, will the EM-algorithm always find the maximum of the like-

lihood?

Explain how one can check whether the parameter which maximises the EM-algorithm,

maximises the likelihood.

Solution

(i) 0 < p < 1 and β1 6= β2 (these are minimum assumptions, there could be more which

is hard to account for given the regressors xt).

(ii) We first observe that P (Yt = y) is a mixture of two Poisson distributions where

each has the canonical link function. Define the unobserved variables, {Ut}, which

are iid and where P (Ut = 1) = p and P (Ut = 2) = (1− p) and P (Y = y|Ui = 1) =
λyt1 exp(−λt1y)

y!
and P (Y = y)|Ui = 2) =

λyt2 exp(−λt2y)

y!
. Therefore, we have

log f(Yt, Ut, θ) =

(
Ytβ

′
utxt − exp(β′utxt) + log Yt! + log p

)
,

where θ = (β1, β2, p). Thus, E(log f(Yt, Ut, θ)|Yt, θ∗) is

E(log f(Yt, Ut, θ)|Yt, θ∗) =

(
Ytβ

′
1xt − exp(β′1xt) + log Yt! + log p

)
π(θ∗, Yt)

+

(
Ytβ

′
2xt − exp(β′2xt) + log Yt! + log p

)
(1− π(θ∗, Yt)).

where P (Ui|Yt, θ∗) is evaluated as

P (Ui = 1|Yt, θ∗) = π(θ∗, Yt) =
pf1(Yt, θ∗)

pf1(Yt, θ∗) + (1− p)f2(Yt, θ∗)
,

with

f1(Yt, θ∗) =
exp(β′∗1xtYt) exp(−Yt exp(β′∗1xt))

Yt!
f1(Yt, θ∗) =

exp(β′∗1xtYt) exp(−Yt exp(β′∗1xt)

Yt!
.
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Thus Q(θ∗, θ) is

Q(θ∗, θ) =
T∑
t=1

(
Ytβ

′
1xt − exp(β′1xt) + log Yt! + log p

)
π(θ∗, Yt)

+

(
Ytβ

′
2xt − exp(β′2xt) + log Yt! + log(1− p)

)
(1− π(θ∗, Yt)).

Using the above, the EM algorithm is the following:

(a) Start with an initial value which is an estimator of β1, β2 and p, denote this as

θ∗.

(b) For every θ evaluate Q(θ∗, θ).

(c) Evaluate arg maxθQ(θ∗, θ). Denote the maximum as θ∗ and return to step (b).

(d) Keep iterating until the maximums are sufficiently close.

(iii) The derivative of Q(θ∗, θ) is

∂Q(θ∗, θ)

∂β1

=
T∑
t=1

(
Yt − exp(β′1xt)

)
xtπ(θ∗, Yt)

∂Q(θ∗, θ)

∂β2

=
T∑
t=1

(
Yt − exp(β′2xt)

)
xt(1− π(θ∗, Yt))

∂Q(θ∗, θ)

∂p
=

T∑
t=1

(
1

p
π(θ∗, Yt)−

1

1− p
(1− π(θ∗, Yt)

)
.

Thus maximisation of Q(θ∗, θ) can be achieved by solving for the above equations

using iterative weighted least squares.

(iv) Depending on the initial value, the EM-algorithm may only locate a local maximum.

To check whether we have found the global maximum, we can start the EM-

algorithm with several different initial values and check where they converge.

Example 7.2.4 Question

(2) Let us suppose that F1(t) and F2(t) are two survival functions. Let x denote a

univariate regressor.

(i) Show that F(t;x) = pF1(t)exp(β1x) + (1 − p)F2(t)exp(β2x) is a valid survival

function and obtain the corresponding density function.
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(ii) Suppose that Ti are survival times and xi is a univariate regressor which ex-

erts an influence an Ti. Let Yi = min(Ti, c), where c is a common cen-

soring time. {Ti} are independent random variables with survival function

F(t;xi) = pF1(t)exp(β1xi) + (1 − p)F2(t)exp(β2xi), where both F1 and F2 are

known, but p, β1 and β2 are unknown.

State the censored likelihood and show that the EM-algorithm together with

iterative least squares in the maximisation step can be used to maximise this

likelihood (sufficient details need to be given such that your algorithm can be

easily coded).

Solution

i) Since F1 and F2 are monotonically decreasing positive functions where F1(0) =

F2(0) = 1 and F1(∞) = F2(∞) = 0, then it immediately follows that

F(t, x) = pF1(t)e
β1x + (1− p)F2(t)e

β2x

satisfies the same conditions. To obtain the density we differential wrt x

∂F(t, x)

∂t
= −peβ1xf1(t)F1(t)e

β1x−1 − (1− p)eβ2xf2(t)F2(t)e
β2x−1

⇒ f(t;x) = peβ1xf1(t)F1(t)e
β1x−1

+ (1− p)eβ2xf2(t)F2(t)e
β2x−1

,

where we use that
dF(t)

dt
= −f(t).

ii) The censored log likelihood is

Ln(β1, β2, p) =
n∑
i=1

[δi log f(Yi; β1, β2, p) + (1− δi) logF(Yi; β1, β2, p)].

Clearly, directly maximizing the above is extremely difficult. Thus we look for an

alternative method via the EM algorithm.

We first define the indicator variable (which corresponds to the missing variables)

which denotes the state 1 or 2

Ii =

{
1 with P (Ii = 1) = p = p1

2 with P (Ii = 2) = (1− p) = p2.
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Then the joint density of (Yi, δi, Ii) is

pIi

(
eβIixifIi(t)FIi(t)e

βIi
xi−1
)(
FIi(t)e

βIi
xi
)1−δi

which gives the log-density

δi
{

log pIi + βIixi + log fIi(Yi) + (eβIixi − 1) logFIi(Yi)
}

+ (1− δi)
{

log pIi + (eβIixi) logFIi(Yi)
}
.

Thus the complete log likelihood of (Yi, δi, Ii) is

Ln(Y, δ, Ii; β1, β2, p) =
n∑
i=1

{δi[log pIi + βIixi + log fIi(Yi) + (eβIixi − 1) logFIi(Yi)

+(1− δi)[log pIi + (eβIixi) logFIi(Yi)])}

Next we need to calculate P (Ii = 1|Yi, δi, θ∗) and P (Ii = 2|Yi, δi, θ∗);

ωδi=1
i (1) = P (Ii = 1|Yi, δi = 1, p∗, β∗1 , β

∗
2)

=
p∗eβ

∗
1xif1(Yi)F1(Yi)

eβ
∗
1xi−1

p∗eβ
∗
1xif1(Yi)F1(Yi)e

β∗1xi−1 + (1− p∗)eβ∗2xif2(Yi)F2(Yi)e
β∗2xi−1

ωδi=0
i (1) = P (Ii = 1|Yi, δi = 0, p∗, β∗1 , β

∗
2)

=
p∗F1(Yi)

eβ
∗
1xi

p∗F1(Yi)e
β∗1xi + (1− p∗)F2(Yi)e

β∗2xi

and ωδi=1
i (2) = 1−ωδi=1

i (1) and ωδi=0
i (2) = 1−ωδi=0

i (1). Let p1 = p and p2 = 1− p.
Therefore the complete likelihood conditioned on what we observe is

Q(θ∗, θ) =
2∑
s=1

n∑
i=1

{δiωδi=1
i (s)[log ps + β1xi + log fs(Yi) + (eβsxi − 1) logFs(Yi)]

+(1− δi)ωδi=0
i (s)

[
log ps + eβsxi logFs(Yi)

]
}

=
2∑
s=1

n∑
i=1

{
{δiωδi=1

i (s)[β1xi + log fs(Yi) + (eβsxi − 1) logFs(Yi)]

+eβsxi logFs(Yi)
}

+
2∑
s=1

n∑
i=1

{
δiω

δi=1
i (s) log ps + (1− δi)ωδi=0

i (s) log ps
}

= Q(θ∗, β1) +Q(θ∗, β2) +Q(θ∗, p1, p2)
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The conditional likelihood, above, looks unwieldy. However, the parameter estima-

tors can to be separated. First, differentiating with respect to p gives

∂Q

∂p
=

∂Q(θ∗, p, 1− p)
∂p

=
n∑
i=1

δiω
δi=1
i (1)

1

p
+

n∑
i=1

ωδi=0
i (1)(1− δi)

1

p
−

n∑
i=1

δiω
δi=1
i (2)

1

1− p
−

n∑
i=1

ωδi=0
i (2)(1− δi)

1

1− p
.

Equating the above to zero we have the estimator p̂ = a
a+b

, where

a =
n∑
i=1

δiω
δi=1
i (1) +

n∑
i=1

ωδi=0
i (1)(1− δi)

b =
n∑
i=1

δiω
δi=1
i (2) +

n∑
i=1

ωδi=0
i (2)(1− δi).

Next we consider the estimates of β1 and β2 at the ith iteration step. Differentiating

Q wrt to β1 and β2 gives for s = 1, 2

∂Q

∂βs
=

∂Qs(θ∗, βs)

∂βs

=
n∑
i=1

{
δiω

δi=1
i (s)

[
1 + eβsxi logFs(Yi)

]
+ (1− δi)ωδi=0

i (s)eβsxi logFs(Yi)
}
xi

∂2Q(θ∗, θ)

∂β2
s

=
∂2Qs(θ

∗, βs)

∂βs

=
n∑
i=1

{
δiω

δi=1
i (s)eβsxi logFs(Yi) + (1− δi)ωδi=0

i (s)eβsxi logFs(Yi)
}
x2
i

∂2Q(θ∗; θ)

∂β1∂β2

= 0.

Observe that setting the first derivative to zero, we cannot obtain an explicit expres-

sion for the estimators at each iteration. Thus we need to use the Newton-Rapshon

scheme but in a very simply set-up. To estimate (β1, β2) at the jth iteration we use

[
β

(j)
1

β
(j)
2

]
=

[
β

(j−1)
1

β
(j−1)
2

]
+

 ∂2Q
∂β2

1
0

0 ∂2Q
∂β2

1

−1

β(j−1)

[
∂Q
∂β1
∂Q
∂β2

]
β(j−1)
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Thus for s = 1, 2 we have β
(j)
s = β

(j−1)
s +

(
∂2Q
∂β2
s

)−1
∂Q
∂βs
cβ(j−1) .

We can rewrite the above Newton Raphson scheme as something that resembles

weighted least squares. We recall the weighted least squares estimator are the

parameters α which minimise the weighted least squares criterion

n∑
i=1

Wii (Yi − x′iα)
2
.

The α which minimises the above is

α̂ = (X ′WX)−1X ′WY .

The Newtons-Raphson scheme can be written as

β(j)
s = β(j−1)

s −
(
∂Q2

∂β2
s

)−1
∂Q

∂βs
cβ(j−1)

= β(j−1)
s − (X ′W (j−1)

s X)−1XS(j−1)
s

where

X ′ = (x1, x2, . . . , xn),

W (j−1)
s = diag[ω

(j−1)
1 (s), . . . , ω(j−1)

n (s)],

S(j−1)
s =


S

(j−1)
s1
...

S
(j−1)
sn

 ,
where the elements of the above are

ω
(j−1)
si = δiω

δi=1
i eβ

(j−1)
s logFs(Yi) + (1− δi)ωδi=0

i eβ
(j−1)
s xi logFs(Yi)

S
(j−1)
si = δiω

δi=1
i [1 + eβ

(j−1)
s xi logFs(Yi)] + (1− δi)ωδi=0

i eβ
(j−1)
s xi logFs(Yi)].

By using algebraic manipulations we can rewrite the iteration as an iterated weighted

least squared algorithm

β(j)
s = β(j−1)

s −
(
∂Q2

∂β2
s

)−1
∂Q

∂βs
cβ(j−1)

= β(j−1)
s − (X ′ω(j−1)

s X)−1X ′S(j−1)
s

= (X ′W (j−1)
s X)−1(X ′W (j−1)

s X)β(j−1)
s − (X ′W (j−1)

s X)−1XS(j−1)
s

= (X ′W (j−1)
s X)−1X ′W (j−1)

s Xβ(j−1)
s − (X ′W (j−1)

s X)−1XW (j−1)
s [W (j−1)

s ]−1S(j−1)
s
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Now we rewrite the above in weighted least squares form. Define

Z(j−1)
s = Xβ(j−1)

s − [W (j−1)
s ]−1S(j−1)

s

this “acts” as our pseudo y-variable. Using this notation we have

β(j)
s = (X ′W (j−1)

s X)−1X ′W (j−1)
s Z(j−1)

s .

Thus at each step of the Newton-Raphson iteration we minimise the weighted least

equation

n∑
i=1

ω
(j−1)
si

(
Z(j−1)
s − βxi

)2
for s = 1, 2.

Thus altogether in the EM-algorithm we have:

Start with initial value β0
1 , β

0
2 , p

0

Step 1 Set (β1,r−1, β2,r−1, pr−1) = (β∗1 , β
∗
2 , p
∗). Evaluate ωδii and ω1−δi

i (these proba-

bilies/weights stay the same throughout the iterative least squares).

Step 2 Maximize Q(θ∗, θ) by using the algorithm pr = ar
ar+br

where ar, br are defined

previously. Now evaluate for s = 1, 2

β(j)
s = (X ′W (j−1)

s X)−1X ′W (j−1)
s Z(j−1)

s .

Iterate until convergence of the parameters.

Step 3 Go back to step 1 until convergence of the EM algorithm.

7.2.4 Exercises

Exercise 7.1 Consider the linear regression model

Yi = α′xi + σiεi

where εi follows a standard normal distribution (mean zero and variance 1) and σ2
i follows

a Gamma distribution

f(σ2;λ) =
σ2(κ−1)λκ exp(−λσ2)

Γ(κ)
, σ2 ≥ 0,
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with κ > 0.

Let us suppose that α and λ are unknown parameters but κ is a known parameter. We

showed in Exercise 1.1 that directly maximising the log-likelihood was extremely difficult.

Derive the EM-algorithm for estimating the parameters in this model. In your deriva-

tion explain what quantities will have to be evaluated numerically.

Exercise 7.2 Consider the following shifted exponential mixture distribution

f(x;λ1, λ2, p, a) = p
1

λ1

exp(−x/λ1)I(x ≥ 0) + (1− p) 1

λ2

exp(−(x− a)/λ2)I(x ≥ a),

where p, λ1, λ2 and a are unknown.

(i) Make a plot of the above mixture density.

Considering the cases x ≥ a and x < a separately, calculate the probability of

belonging to each of the mixtures, given the observation Xi (i.e. Define the variable

δi, where P (δi = 1) = p and f(x|δi = 1) = 1
λ1

exp(−x/λ1) and calculate P (δi|Xi)).

(ii) Show how the EM-algorithm can be used to estimate a, p, λ1, λ2. At each iteration

you should be able to obtain explicit solutions for most of the parameters, give as

many details as you can.

Hint: It may be beneficial for you to use profiling too.

(iii) From your knowledge of estimation of these parameters, what do you conjecture the

rates of convergence to be? Will they all be the same, or possibly different?

Exercise 7.3 Suppose {Zi}ni=1 are independent random variables, where Zi has the den-

sity

fZ(z; β0, β1, µ, α, ui) = ph(z; β0, β1, ui) + (1− p)g(z;α, µ),

g(x;α, µ) = (α
µ
)(x
µ
)α−1 exp(−(x/µ)α)I(0,∞)(x) (the Weibull distribution) and h(x; β0, β1, ui) =

1
λi

exp(−x/λi)I(0,∞)(x) (the exponential distribution), with λi = β0 exp(β1ui) and {ui}ni=1

are observed regressors.

The parameters p, β0, β1, µ and α are unknown and our objective in this question is to

estimate them.

(a) What is the log-likelihood of {Zi}? (Assume we also observe the deterministic re-

gressors {ui}.)
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(b) By defining the correct dummy variable δi derive the steps of the EM-algorithm to

estimate the parameters p, β0, β1, µ, α (using the method of profiling if necessary).

7.3 Hidden Markov Models

Finally, we consider applications of the EM-algorithm to parameter estimation in Hidden

Markov Models (HMM). This is a model where the EM-algorithm pretty much surpasses

any other likelihood maximisation methodology. It is worth mentioning that the EM-

algorithm in this setting is often called the Baum-Welch algorithm.

Hidden Markov models are a generalisation of mixture distributions, however unlike

mixture distibutions it is difficult to derive an explicit expression for the likelihood of a

Hidden Markov Models. HMM are a general class of models which are widely used in

several applications (including speech recongition), and can easily be generalised to the

Bayesian set-up. A nice description of them can be found on Wikipedia.

In this section we will only briefly cover how the EM-algorithm can be used for HMM.

We do not attempt to address any of the issues surrounding how the maximisation is

done, interested readers should refer to the extensive literature on the subject.

The general HMM is described as follows. Let us suppose that we observe {Yt}, where

the rvs Yt satisfy the Markov property P (Yt|Yt−1, Yt−1, . . .) = P (Yt|Yt−1). In addition to

{Yt} there exists a ‘hidden’ unobserved discrete random variables {Ut}, where {Ut} satis-

fies the Markov property P (Ut|Ut−1, Ut−2, . . .) = P (Ut|Ut−1) and ‘drives’ the dependence

in {Yt}. In other words P (Yt|Ut, Yt−1, Ut−1, . . .) = P (Yt|Ut). To summarise, the HMM is

described by the following properties:

(i) We observe {Yt} (which can be either continuous or discrete random variables) but

do not observe the hidden discrete random variables {Ut}.

(ii) Both {Yt} and {Ut} are time-homogenuous Markov random variables that is P (Yt|Yt−1, Yt−1, . . .) =

P (Yt|Yt−1) and P (Ut|Ut−1, Ut−1, . . .) = P (Ut|Ut−1). The distributions of P (Yt),

P (Yt|Yt−1), P (Ut) and P (Ut|Ut−1) do not depend on t.

(iii) The dependence between {Yt} is driven by {Ut}, that is P (Yt|Ut, Yt−1, Ut−1, . . .) =

P (Yt|Ut).
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There are several examples of HMM, but to have a clear intepretation of them, in this

section we shall only consider one classical example of a HMM. Let us suppose that the

hidden random variable Ut can take N possible values {1, . . . , N} and let pi = P (Ut = i)

and pij = P (Ut = i|Ut−1 = j). Moreover, let us suppose that Yt are continuous random

variables where (Yt|Ut = i) ∼ N (µi, σ
2
i ) and the conditional random variables Yt|Ut and

Yτ |Uτ are independent of each other. Our objective is to estimate the parameters θ =

{pi, pij, µi, σ2
i } given {Yi}. Let fi(·; θ) denote the normal distribution N (µi, σ

2
i ).

Remark 7.3.1 (HMM and mixture models) Mixture models (described in the above

section) are a particular example of HMM. In this case the unobserved variables {Ut} are

iid, where pi = P (Ut = i|Ut−1 = j) = P (Ut = i) for all i and j.

Let us denote the log-likelihood of {Yt} as LT (Y ; θ) (this is the observed likelihood).

It is clear that constructing an explicit expression for LT is difficult, thus maximising the

likelihood is near impossible. In the remark below we derive the observed likelihood.

Remark 7.3.2 The likelihood of Y = (Y1, . . . , YT ) is

LT (Y ; θ) = f(YT |YT−1, YT−2, . . . ; θ) . . . f(Y2|Y1; θ)P (Y1; θ)

= f(YT |YT−1; θ) . . . f(Y2|Y1; θ)f(Y1; θ).

Thus the log-likelihood is

LT (Y ; θ) =
T∑
t=2

log f(Yt|Yt−1; θ) + f(Y1; θ).

The distribution of f(Y1; θ) is simply the mixture distribution

f(Y1; θ) = p1f(Y1; θ1) + . . .+ pNf(Y1; θN),

where pi = P (Ut = i). The conditional f(Yt|Yt−1) is more tricky. We start with

f(Yt|Yt−1; θ) =
f(Yt, Yt−1; θ)

f(Yt−1; θ)
.

An expression for f(Yt; θ) is given above. To evaluate f(Yt, Yt−1; θ) we condition on
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Ut, Ut−1 to give (using the Markov and conditional independent propery)

f(Yt, Yt−1; θ) =
∑
i,j

f(Yt, Yt−1|Ut = i, Ut−1 = j)P (Ut = i, Ut−1 = j)

=
∑
i,j

f(Yt|Ut = i)P (Yt−1|Ut−1 = j)P (Ut = i|Ut−1 = j)P (Ut−1 = i)

=
∑
i,j

fi(Yt; θi)fj(Yt−1; θj)pijpi.

Thus we have

f(Yt|Yt−1; θ) =

∑
i,j fi(Yt; θi)fj(Yt−1; θj)pijpi∑

i pif(Yt−1; θi)
.

We substitute the above into LT (Y ; θ) to give the expression

LT (Y ; θ) =
T∑
t=2

log

(∑
i,j fi(Yt; θi)fj(Yt−1; θj)pijpi∑

i pif(Yt−1; θi)

)
+ log

(
N∑
i=1

pif(Y1; θi)

)
.

Clearly, this is extremely difficult to maximise.

Instead we seek an indirect method for maximising the likelihood. By using the EM al-

gorithm we can maximise a likelihood which is a lot easier to evaluate. Let us suppose that

we observe {Yt, Ut}. Since P (Y |U) = P (YT |YT−1, . . . , Y1, U)P (YT−1|YT−2, . . . , Y1, U) . . . P (Y1|U) =∏T
t=1 P (Yt|Ut), and the distribution of Yt|Ut is N (µUt , σ

2
Ut

), then the complete likelihood

of {Yt, Ut} is ( T∏
t=1

f(Yt|Ut; θ)
)
pU1

T∏
t=2

pUt|Ut−1 .

Thus the log-likelihood of the complete observations {Yt, Ut} is

LT (Y , U ; θ) =
T∑
t=1

log f(Yt|Ut; θ) +
T∑
t=2

log pUt|Ut−1 + log pU1 .

Of course, we do not observe the complete likelihood, but the above can be used in order

to define the function Q(θ∗, θ) which is maximised in the EM-algorithm. It is worth

mentioning that given the transition probabilities of a discrete Markov chain (that is

{pi,j}ij) the marginal/stationary probabilities {pi} can be obtained by solving π = πP ,

where P is the transition matrix. Thus it is not necessary to estimate the marginal
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probabilities {pi} (note that the exclusion of {pi} in the log-likelihood, above, gives the

conditional complete log-likelihood).

We recall that to maximise the observed likelihood LT (Y ; θ) using the EM algorithm

involves evaluating Q(θ∗, θ), where

Q(θ∗, θ) = E

( T∑
t=1

log f(Yt|Ut; θ) +
T∑
t=2

log pUt|Ut−1 + log pU1

∣∣∣∣Y , θ∗)

=
∑

U∈{1,...,N}T

( T∑
t=1

log f(Yt|Ut; θ) +
T∑
t=2

log pUt|Ut−1 + log pU1

)
p(U |Y , θ∗).

Note that each step in the algorithm the probability p(U |Y , θ∗) needs to be evaluated.

This is done by using conditioning

p(U |Y , θ∗) = p(U1|Y , θ∗)
T∏
t=2

P (Ut|Ut−1, . . . , U1Y ; θ∗)

= p(U1|Y , θ∗)
T∏
t=2

P (Ut|Ut−1, Y ; θ∗) (using the Markov property).

Evaluation of the above is not simple (mainly because one is estimating the probability

of being in state Ut based on Ut−1 and the observation information Yt in the past, present

and future). This is usually done using the so called forward backward algorithm (and is

related to the idea of Kalman filtering), see https://en.wikipedia.org/wiki/Forward/

backward_algorithm.

For this example the EM algorithm is

(i) Define an initial value θ1 ∈ Θ. Let θ∗ = θ1.

(ii) The expectation step,

For a fixed θ∗ evaluate P (Ut, Y , θ∗), P (Ut|Ut−1, Y , θ∗) and Q(θ∗, θ).

(iii) The maximisation step

Evaluate θk+1 = arg maxθ∈ΘQ(θ∗, θ) by differentiatingQ(θ∗, θ) wrt to θ and equating

to zero.

(iv) If θk and θk+1 are sufficiently close to each other stop the algorithm and set θ̂n = θk+1.

Else set θ∗ = θk+1, go back and repeat steps (ii) and (iii) again.
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Since P (U1|Y , θ∗) = P (U1, Y , θ∗)/P (Y , θ∗) and P (Ut, Ut−1|Y , θ∗) = P (Ut, Ut−1, Y , θ∗)/P (Y , θ∗);

P (Y , θ∗) is common to all U in {1, . . . , N}T and is independent of θ∗, Thus rather than

maximising Q(θ∗, θ) one can equvalently maximise

Q̃(θ∗, θ) =
∑

U∈{1,...,N}T

( T∑
t=1

log f(Yt|Ut; θ) +
T∑
t=2

log pUt|Ut−1 + log pU1

)
p(U, Y , θ∗),

noting that Q̃(θ∗, θ) ∝ Q(θ∗, θ) and the maximum of Q̃(θ∗, θ) with respect to θ is the same

as the maximum of Q(θ∗, θ).
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Chapter 8

Non-likelihood methods

8.1 Loss functions

Up until now our main focus has been on parameter estimating via the maximum likeli-

hood. However, the negative maximum likelihood is simply one member of loss criterions.

Loss functions are usually distances, such as the `1 and `2 distance. Typically we estimate

a parameter by minimising the loss function, and using as the estimator the parameter

which minimises the loss. Usually (but not always) the way to solve the loss function is

to differentiate it and equate it to zero. Below we give examples of loss functions whose

formal derivative does not exist.

8.1.1 L1-loss functions

The Laplacian

Consider the Laplacian (also known as the double exponential), which is defined as

f(y; θ, ρ) =
1

2ρ
exp

(
−|y − θ|

ρ

)
=


1
2ρ

exp
(
y−θ
ρ

)
y < θ

1
2ρ

exp
(
θ−y
ρ

)
y ≥ θ.

We observe {Yi} and our objective is to estimate the location parameter θ, for now the

scale parameter ρ is not of interest. The log-likelihood is

Ln(θ, ρ) = −n log 2ρ− ρ−1 1

2

n∑
i=1

|Yi − θ|︸ ︷︷ ︸
=Ln(θ)

.
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Figure 8.1: Plot of L1-norm

Since the θ which maximises the above does not depend on ρ we can simply focus on

the component which maximises θ. We see that this is equivalent to minimising the loss

function

Ln(θ) =
1

2

n∑
i=1

|Yi − θ| =
∑
Y(i)>θ

1

2
(Y(i) − θ) +

∑
Y(i)≤θ

1

2
(θ − Y(i)).

If we make a plot of Ln over θ, and consider how Ln, behaves at the ordered observations

{Y(i)}, we see that it is piecewise continuous (that is it is a piecewise continuous function,

with joints at Y(i)). On closer inspection (if n is odd) we see that Ln has its minimum at

θ = Y(n/2), which is the sample median (see Figure 8.1 for an illustration).

In summary, the normal distribution gives rise to the `2-loss function and the sample

mean. In contrast the Laplacian gives rise to the `1-loss function and the sample median.
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The asymmetric Laplacian

Consider the generalisation of the Laplacian, usually called the assymmetric Laplacian,

which is defined as

f(y; θ, ρ) =


p
ρ

exp
(
py−θ

ρ

)
y < θ

(1−p)
ρ

exp
(
−(1− p)y−θ

ρ

)
y ≥ θ.

where 0 < p < 1. The corresponding negative likelihood to estimate θ is

Ln(θ) =
∑
Y(i)>θ

(1− p)(Yi − θ) +
∑
Y(i)≤θ

p(θ − Yi).

Using similar arguments to those in part (i), it can be shown that the minimum of Ln is

approximately the pth quantile.

8.2 Estimating Functions

8.2.1 Motivation

Estimating functions are a unification and generalisation of the maximum likelihood meth-

ods and the method of moments. It should be noted that it is a close cousin of the gen-

eralised method of moments and generalised estimating equation. We first consider a few

examples and will later describe a feature common to all these examples.

Example 8.2.1 (i) Let us suppose that {Yi} are iid random variables with Yi ∼ N (µ, σ2).

The log-likelihood in proportional to

Ln(µ, σ2) = −1

2
log σ2 − 1

2σ2

n∑
i=1

(Xi − µ)2.

We know that to estimate µ and σ2 we use the µ and σ2 which are the solution of

−1

2σ2
+

1

2σ4

n∑
i=1

(Xi − µ)2 = 0
1

σ2

n∑
i=1

(Xi − µ) = 0. (8.1)

(ii) In general suppose {Yi} are iid random variables with Yi ∼ f(·; θ). The log-likelihood

is Ln(θ) =
∑n

i=1 log f(θ;Yi). If the regularity conditions are satisfied then to esti-

mate θ we use the solution of

∂Ln(θ)

∂θ
= 0. (8.2)
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(iii) Let us suppose that {Xi} are iid random variables with a Weibull distribution f(x; θ) =

(α
φ
)(x
φ
)α exp(−(x/φ)α), where α, φ > 0.

We know that E(X) = φΓ(1 +α−1) and E(X2) = φ2Γ(1 + 2α−1). Therefore E(X)−
φΓ(1 + α−1) = 0 and E(X2)− φ2Γ(1 + 2α−1) = 0. Hence by solving

1

n

n∑
i=1

Xi − φΓ(1 + α−1) = 0
1

n

n∑
i=1

X2
i − φ2Γ(1 + 2α−1) = 0, (8.3)

we obtain estimators of α and Γ. This is essentially a method of moments estimator

of the parameters in a Weibull distribution.

(iv) We can generalise the above. It can be shown that E(Xr) = φrΓ(1 + rα−1). There-

fore, for any distinct s and r we can estimate α and Γ using the solution of

1

n

n∑
i=1

Xr
i − φrΓ(1 + rα−1) = 0

1

n

n∑
i=1

Xs
i − φsΓ(1 + sα−1) = 0. (8.4)

(v) Consider the simple linear regression Yi = αxi + εi, with E(εi) = 0 and var(εi) = 1,

the least squares estimator of α is the solution of

1

n

n∑
i=1

(Yi − axi)xi = 0. (8.5)

We observe that all the above estimators can be written as the solution of a homoge-

nous equations - see equations (8.1), (8.2), (8.3), (8.4) and (8.5). In other words, for

each case we can define a random function Gn(θ), such that the above estimators are the

solutions of Gn(θ̃n) = 0. In the case that {Yi} are iid then Gn(θ) =
∑n

i=1 g(Yi; θ), for some

function g(Yi; θ). The function Gn(θ̃) is called an estimating function. All the function

Gn, defined above, satisfy the unbiased property which we define below.

Definition 8.2.1 (Estimating function) An estimating function Gn is called unbiased

if at the true parameter θ0 Gn(·) satisfies

E [Gn(θ0)] = 0.

If there are p unknown parameters and p estimating equations, the estimation equation

estimator is the θ which solves Gn(θ) = 0.
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Hence the estimating function is an alternative way of viewing parameter estimating.

Until now, parameter estimators have been defined in terms of the maximum of the

likelihood. However, an alternative method for defining an estimator is as the solution

of a function. For example, suppose that {Yi} are random variables, whose distribution

depends in some way on the parameter θ0. We want to estimate θ0, and we know that

there exists a function such that G(θ0) = 0. Therefore using the data {Yi} we can define

a random function, Gn where E(Gn(θ)) = G(θ) and use the parameter θ̃n, which satisfies

Gn(θ̃) = 0, as an estimator of θ. We observe that such estimators include most maximum

likelihood estimators and method of moment estimators.

Example 8.2.2 Based on the examples above we see that

(i) The estimating function is

Gn(µ, σ) =

(
−1
2σ2 + 1

2σ4

∑n
i=1(Xi − µ)2

1
σ2

∑n
i=1(Xi − µ)

)
.

(ii) The estimating function is Gn(θ) = ∂Ln(θ)
∂θ

.

(iii) The estimating function is

Gn(α, φ) =

(
1
n

∑n
i=1Xi − φΓ(1 + α−1)

1
n

∑n
i=1X

2
i − φ2Γ(1 + 2α−1)

)
.

(iv) The estimating function is

Gn(α, φ) =

(
1
n

∑n
i=1X

s
i − φsΓ(1 + sα−1)

1
n

∑n
i=1X

r
i − φrΓ(1 + rα−1)

)
.

(v) The estimating function is

Gn(a) =
1

n

n∑
i=1

(Yi − axi)xi.

Observe that regardless of the distribution of the errors (or dependency between {Yi})

E

(
1

n

n∑
i=1

(Yi − αxi)xi
)

= 0, (8.6)

is true regardless of the distribution of Yi ({εi}) and is also true if there {Yi} are

dependent random variables (see Rao (1973), Linear Statistical Inference and its

applications).
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The advantage of this approach is that sometimes the solution of an estimating equa-

tion will have a smaller finite sample variance than the MLE. Even though asymptotically

(under certain conditions) the MLE will asymptotically attain the Cramer-Rao bound

(which is the smallest variance). Moreover, MLE estimators are based on the assump-

tion that the distribution is known (else the estimator is misspecified - see Section 5.1.1),

however sometimes an estimating equation can be free of such assumptions.

Example 8.2.3 In many statistical situations it is relatively straightforward to find a

suitable estimating function rather than find the likelihood. Consider the time series {Xt}
which is “stationary” (moments are invariant to shift i.e E[XtXt+r] = E[X0Xr]) which

satisfies

Xt = a1Xt−1 + a2Xt−2 + σεt,

where {εt} are iid zero mean random variables (zero mean ensures that E[Xt] = 0). We

do not know the distribution of εt, but under certain conditions on a1 and a2 (causality

conditions) εt is independent of Xt−1 and Xt−2. Thus by multiplying the above equation

by Xt−1 or Xt−2 and taking expections we have

E(XtXt−1) = a1E(X2
t−1) + a2E(Xt−1Xt−2)

E(XtXt−2) = a1E(Xt−1Xt−2) + a2E(X2
t−2).

Since the above time series is ‘stationary’ (we have not formally defined this - but basically

it means the properties of {Xt} do not “evolve” over time), the above reduces to

c(1) = a1c(0) + a2c(1)

c(2) = a1c(1) + a2c(0),

where E[XtXt+r] = c(r). Given {Xt}nt=1, it can be shown that ĉn(r) = n−1
∑n

t=|r|+1XtXt−|r|

is an estimator of c(r) and that for small r E[ĉn(r)] ≈ c(r) (and is consistent). Hence

replacing the above with its estimators we obtain the estimating equations

G1(a1, a2) =

(
ĉn(1)− a1ĉn(0)− a2ĉn(1)

ĉn(2)− a1ĉn(1)− a2ĉn(0)

)
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8.2.2 The sampling properties

We now show that under certain conditions θ̃n is a consistent estimator of θ.

Theorem 8.2.1 Suppose that Gn(θ) is an unbiased estimating function, where Gn(θ̃n) =

0 and E(Gn(θ0)) = 0.

(i) If θ is a scalar, for every n Gn(θ) is a continuous monotonically decreasing function

in θ and for all θ Gn(θ)
P→ E(Gn(θ)) (notice that we do require an equicontinuous

assumption), then we have θ̃n
P→ θ0.

(ii) If we can show that supθ |Gn(θ)− E(Gn(θ))| P→ 0 and E(Gn(θ)) is uniquely zero at

θ0 then we have θ̃n
P→ θ0.

PROOF. The proof of case (i) is relatively straightforward (see also page 318 in Davison

(2002)). The idea is to exploit the monotonicity property of Gn(·) to show for every

ε > 0 P (θ̃n < θ0 − ε or θ̃n > θ0 + ε) → 0 as n → ∞. The proof is best understand by

making a plot of Gn(θ) with θ̃n < θ0 − ε < θ0 (see Figure 8.2). We first note that since

E[Gn(θ0)] = 0, then for any fixed ε > 0

Gn(θ0 − ε)
P→ E

[
Gn(θ0 − ε)

]
> 0, (8.7)

since Gn is monotonically decreasing for all n. Now, since Gn(θ) is monotonically de-

creasing we see that θ̃n < (θ0 − ε) implies Gn(θ̃n) − Gn(θ0 − ε) > 0 (and visa-versa)

hence

P
(
θ̃n − (θ0 − ε) ≤ 0

)
= P

(
Gn(θ̃n)−Gn(θ0 − ε) > 0

)
.

But we have from (8.7) that E(Gn(θ0 − ε))
P→ E(Gn(θ0 − ε)) > 0. Thus P

(
Gn(θ̃n) −

Gn(θ0 − ε) > 0
) P→ 0 and

P
(
θ̃n − (θ0 − ε) < 0

) P→ 0 as n→∞.

A similar argument can be used to show that that P
(
θ̃n − (θ0 + ε) > 0

) P→ 0 as n→∞.

As the above is true for all ε, together they imply that θ̃n
P→ θ0 as n→∞.

The proof of (ii) is more involved, but essentially follows the lines of the proof of

Theorem 2.6.1. �

We now show normality, which will give us the variance of the limiting distribution of

θ̃n.
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Figure 8.2: Plot of Gn(·)
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Theorem 8.2.2 Let us suppose that {Yi} are iid random variables, where E[g(Yi, θ)] = 0.

Define the estimating equation Gn(θ) = 1
n

∑n
i=1 g(Yi; θ) and suppose Gn(θ̃n) = 0.

Suppose that θ̃n
P→ θ0 and the first and second derivatives of g(Yi, ·) have a finite

expectation (we will assume that θ is a scalar to simplify notation). Then we have

√
n
(
θ̃n − θ0

) D→ N(0,
var(g(Yi; θ0))[
E
(∂g(Yi;θ)

∂θ
cθ0
)]2),

as n→∞.

Suppose {Yi} are independent but not identically distributed random variables, where

for all i E[gi(Yi, θ)] = 0. Define the estimating equation Gn(θ) = 1
n

∑n
i=1 g(Yi; θ) and

suppose Gn(θ̃n) = 0. Suppose that θ̃n
P→ θ0 and the first and second derivatives of gi(Yi, ·)

have a finite, uniformly bounded expectation (we will assume that θ is a scalar to simplify

notation). Then we have

√
n
(
θ̃n − θ0

) D→ N (0,
n−1

∑n
i=1 var(gi(Yi; θ0))[

E
(
n−1

∑n
i=1

∂g(Yi;θ)
∂θ
cθ0
)]2
)
, (8.8)

as n→∞.

PROOF. We use the standard Taylor expansion to prove the result (which you should be

expert in by now). Using a Taylor expansion and that θ̃

Gn(θ̃n) = Gn(θ0) + (θ̃n − θ0)
∂Gn(θ)

∂θ
cθ̄n (8.9)

⇒ (θ̃n − θ0) =

(
E

(
−∂gn(θ)

∂θ
cθ0
))−1

Gn(θ0),

where the above is due to ∂Gn(θ)
∂θ
cθ̄n

P→ E(∂gn(θ)
∂θ
cθ0) as n → ∞. Now, since Gn(θ0) =

1
n

∑
i g(Yi; θ) is the sum of iid random variables we have

√
nGn(θ0)

D→ N
(
0, var(Gn(θ0))︸ ︷︷ ︸

=var[g(Yi;θ0)]

)
, (8.10)

(since E(g(Yi; θ0)) = 0). Therefore (8.9) and (8.10) together give

√
n
(
θ̃n − θ0

) P→ N(0,
var(g(Yi; θ0))[

E
(−∂g(Yi;θ)

∂θ
cθ0
)]2),

as required. �

In most cases var(g(Yi;θ0))[
E
(
−∂g(Yi;θ)

∂θ
cθ0
)]2 ≥ I(θ0)−1 (where I(θ) is the Fisher information).
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Example 8.2.4 (The Huber estimator) We describe the Huber estimator which is a

well known estimator of the mean which is robust to outliers. The estimator can be written

as an estimating function.

Let us suppose that {Yi} are iid random variables with mean θ, and density function

which is symmetric about the mean θ. So that outliers do not effect the mean, a robust

method of estimation is to truncate the outliers and define the function

g(c)(Yi; θ) =


−c Yi < −c+ θ

Yi − c −c+ θ ≤ Yi ≤ c+ θ

c Yi > c+ θ

.

The estimating equation is

Gc,n(θ) =
n∑
i=1

g(c)(Yi; θ).

And we use as an estimator of θ, the θ̃n which solves Gc,n(θ̃n) = 0.

(i) In the case that c = ∞, then we observe that G∞,n(θ) =
∑n

i=1(Yi − θ), and the

estimator is θ̃n = Ȳ . Hence without truncation, the estimator of the mean is the

sample mean.

(ii) In the case that c is small, then we have truncated many observations.

Definition 8.2.2 (Generalized method of moments) We observe from Example 8.2.1(iii,iv)

that there are several estimating equations which can be used to estimate a finite number

of parameters (number of estimating equations is more than the number of parameters).

In this case, we can use M estimating equations to construct the estimator by minimising

the L2 criterion

Ln(α, φ) =
M∑
r=1

(
1

n

n∑
i=1

Xr
i − φrΓ(1 + rα−1)

)2

.

This is an example of the generalized method of moments, which generalizes the ideas of

solving estimating equations to obtain parameter estimators.
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8.2.3 A worked problem

(1) Let us suppose we observe the response Yi and regressor Xi. We assume they satisfy

the random coefficient regression model

Yi = (φ+ ξi)Xi + εi,

where {ξi}i and {εi}i are zero mean iid random variables which are independent of

each other, with σ2
ξ = var[ξi] and σ2

ε = var[εi]. In this question we will consider how

to estimate φ, ξi and εi based on the observations {Yi, Xi}.

(a) What is the Expectation of Yi given (conditioned on) Xi?

(b) What is the variance of Yi given (conditioned on) Xi?

(c) Use your answer in part (a) and least squares to obtain an explicit expression

for estimating φ.

(d) Use your answer in part (c) to define the ‘residual’.

(e) Use your answer in part (b) and (d) and least squares to obtain an explicit

expression for estimating σ2
ξ and σ2

ε .

(f) By conditioning on the regressors {Xi}ni=1, obtain the negative log-likelihood

of {Yi}ni=1 under the assumption of Gaussianity of ξi and εi. Explain the role

that (c) and (e) plays in your maximisation algorithm.

(g) Assume that the regressors, {Xi}, are iid random variables that are indepen-

dent of εi and ξi.

Show that the expectation of the negative log-likelihood is minimised at the

true parameters φ, σ2
ξ and σ2

ε even when ξi and εi are not Gaussian.

Hint: You may need to use that − log x+ x is minimum at x = 1.

Solution:

(a) What is the Expectation of Yi given (conditioned on) Xi?

E[Yi|Xi] = φXi.

(b) What is the variance of Yi given (conditioned on) Xi?

var[Yi|Xi] = E[(ξiXi + εi)
2|Xi] = σ2

ξX
2
i + σ2

ε
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(c) Use your answer in part (a) and least squares to obtain an explicit expression for

estimating φ.

φ̂ = arg minφ
∑n

i=1(Yi − φXi)
2 =

∑n
i=1 YiXi∑n
i=1X

2
i

(d) Use your answer in part (c) to define the ‘residual’.

For 1 ≤ i ≤ n, r̂i = Yi − φ̂Xi

(e) Use your answer in part (b) and (d) and least squares to obtain an explicit expression

for estimating σ2
ξ and σ2

ε .

Let

ri = Yi − E[Yi] = Yi − φXi = ξiXi + εi.

From (b) it is clear that E[ri|Xi] = 0 and E[r2
i |Xi] = σ2

ξX
2
i + σ2

ε , thus we can write

r2
i = σ2

ξX
2
i + σ2

ε + εi

where εi = r2
i − E[r2

i |Xi] hence E[εi] = 0, resembles a simple linear equation (with

hetero errors). Since r̂i is an estimator of ri we can use least squares to estimate σ2
ξ

and σ2
ε , where we replace ri with r̂i and minimise

n∑
i=1

(
r̂2
i − σ2

ξX
2
i − σ2

ε

)2

with respect to σ2
ξ and σ2

ε . These gives use explicit estimators.

(f) By conditioning on the regressors {Xi}ni=1, obtain the negative log-likelihood of {Yi}ni=1

under the assumption of Gaussianity of ξt and εt. Explain the role that (c) and (e)

plays in your maximisation algorithm.

The log-likelihood is equal to

n∑
i=1

log f(Yi|Xi; θ).

We recall from (a) and (b) that E[Yi|Xi] = φXi and var[Yi|Xi] = σ2
ε +σ2

ξX
2
i . There-

fore Yi|Xi ∼ N (φXi, σ
2
ε + σ2

ξX
2
i ). Thus the negative log likelihood is proportional

to

L(θ;Y n) =
n∑
i=1

(
log[σ2

ε + σ2
ξX

2
i ] +

(Yi − φXi)
2

σ2
ε + σ2

ξX
2
i

)
.
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We choose the parameters which minimise L(θ;Y n). We note that this means we

need to take the derivative of L(θ;Y n) with respect to the three parameters and

solve using the Newton Raphson scheme. However, the estimators obtained in (c)

and (d) can be used as initial values in the scheme.

(g) Let us assume that the regressors are iid random variables. Show that the expectation

of the negative log-likelihood is minimised at the true parameters φ, σ2
ξ and σ2

ε even

when ξt and εt are not Gaussian.

Hint: You may need to use that − log x+ x is minimum at x = 1.

Since {Xi} are iid random variables, {Yi} are iid random variables the expectation

of 1
n
L(θ;Y n) is

L(θ) = E

(
1

n
L(θ;Y n)

)
=

1

n

n∑
i=1

Li(θ)

where

Li(θ) = E log[σ2
ε + σ2

ξX
2
i ] + E

[
(Yi − φXi)

2

σ2
ε + σ2

ξX
2
i

]
= log[σ2

ε + σ2
ξX

2
i ] +

1

σ2
ε + σ2

ξX
2
i

E
[
(Yi − φXi)

2
]

Let θ0 denote the true parameter in the model. Our aim is to show that

L(θ)− L(θ0) =
1

n

n∑
i=1

(Li(θ)− Li(θ0)) ≥ 0,

where equality to zero arises when θ = θ0. Taking differences we have

Li(θ)− Li(θ0)

= log
[σ2
ε + σ2

ξX
2
i ]

[σ2
0,ε + σ2

0,ξX
2
i ]

+ E

[
(Yi − φXi)

2

σ2
ε + σ2

ξX
2
i

]
−

[
(Yi − φ0Xi)

2

σ2
0,ε + σ2

0,ξX
2
i

]

= − log
[σ2

0,ε + σ2
0,ξX

2
i ]

[σ2
ε + σ2

ξX
2
i ]

+ E

[
(Yi − φXi)

2

σ2
ε + σ2

ξX
2
i

]
− E

[
(Yi − φ0Xi)

2

σ2
0,ε + σ2

0,ξX
2
i

]

We will show that Li(θ) − Li(θ0) is non-negative for all θ and zero when θ = θ0.

This immediately implies that θ0 minimises the negative pseudo (pseudo because

we do not assume Gaussianity) likelihood.
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Our aim is to place the difference in the form −logx+ x plus an additional positive

term (it is similar in idea to completing the square), but requires a lot of algebraic

manipulation. Let

Li(θ)− Li(θ0) = Ai(θ) +Bi(θ)

where

Ai(θ) = −

(
log

[σ2
0,ε + σ2

0,ξX
2
i ]

[σ2
ε + σ2

ξX
2
i ]

)

Bi(θ) = E

[
(Yi − φXi)

2

σ2
ε + σ2

ξX
2
i

]
− E

[
(Yi − φ0Xi)

2

σ2
0,ε + σ2

0,ξX
2
i

]
.

First consider the difference

Bi(θ) = E

[
(Yi − φXi)

2

σ2
ε + σ2

ξX
2
i

]
− E

[
(Yi − φ0Xi)

2

σ2
0,ε + σ2

0,ξX
2
i

]
︸ ︷︷ ︸

=(σ2
0,ε+σ

2
0,ξX

2
i )−1var(Yi)=1

= E

[
(Yi − φXi)

2

σ2
ε + σ2

ξX
2
i

]
− 1.

Now replace φ by φ0

Bi(θ) = E

[
(Yi − φ0Xi)

2

σ2
ε + σ2

ξX
2
i

]
+ E

[
(Yi − φXi)

2 − (Yi − φ0Xi)
2

σ2
ε + σ2

ξX
2
i

]
− 1

= E

[
(εt + ξiXi)

2

σ2
ε + σ2

ξX
2
i

]
+ E

[
2(φ− φ0)(Yi − φ0Xi)Xi

σ2
ε + σ2

ξX
2
i

]
+

E

[
(φ− φ0)2X2

i

σ2
ε + σ2

ξX
2
i

]
− 1

=
E [(εt + ξiXi)

2]

σ2
ε + σ2

ξX
2
i

+ E

[
2(φ− φ0)(Yi − φ0Xi)Xi

σ2
ε + σ2

ξX
2
i

]
+

(φ− φ0)2X2
i

σ2
ε + σ2

ξX
2
i

− 1

=
σ2

0,ε + σ2
0,ξX

2
i

σ2
ε + σ2

ξX
2
i

+
(φ− φ0)2X2

i

σ2
ε + σ2

ξX
2
i

− 1.

236



Therefore, substituting this into Li(θ)− Li(θ0) we have

Li(θ)− Li(θ0)

= − log
[σ2

0,ε + σ2
0,ξX

2
i ]

[σ2
ε + σ2

ξX
2
i ]

+
σ2

0,ε + σ2
0,ξX

2
i

σ2
ε + σ2

ξX
2
i

+ (φ− φ0)2 X2
i

σ2
ε + σ2

ξX
2
i

− 1.

Let

x =
σ2

0,ε + σ2
0,ξX

2
i

σ2
ε + σ2

ξX
2
i

.

Hence

Li(θ)− Li(θ0) = − log x+ x− 1 + (φ− φ0)2 X2
i

σ2
ε + σ2

ξX
2
i

.

Since − log x+ x is minimum at x = 1 where it is 1, we can see that Li(θ)− Li(θ0)

is non-negative and zero at θ = θ0. As this is true for all i we have that

L(θ)− L(θ0) =
1

n

n∑
i=1

(Li(θ)− Li(θ0)) ≥ 0,

where equality to zero arises when θ = θ0.

This example, illustrates the versatility of the models based on the assumption of

Gaussianity. Even if the Gaussian assumption does not hold, often we can obtain

reasonable (consistent) estimators of the known parameters by treating the errors

as if they were Gaussian.

8.3 Optimal estimating functions

As illustrated in Example 8.2.2(iii,iv) there are several different estimators of the same

parameters. But which estimator does one use?

Suppose that {Yi} are independent random variables with mean {µi(θ0)} and variance

{Vi(θ0)}, where the parametric form of {µi(·)} and {Vi(·)} are known, but θ0 is unknown.

One possible estimating equation is

G1,n(θ) =
n∑
i=1

[Yi − µi(θ)] ,
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which is motivated by the observation E(G1,n(θ0)) = 0. Another estimating equation

comes from the least squares criterion

n∑
i=1

[Yi − µi(θ)]2 ,

which leads to the estimating equation

G2,n(θ) =
n∑
i=1

µi(θ)

∂θ
[Yi − µi(θ)] ,

again it can be seen that E(G2,n(θ0)) = 0. Based on the above examples, we see that by

simply weighting [Yi − µi(θ)] we obtain a valid estimating equation

G(W )
n (θ) =

n∑
i=1

wi(θ) [Yi − µi(θ)] .

We observe that E(G
(W )
n (θ0)) = 0, thus giving a valid estimating equation. But we need

to select the weights wi(θ). It seems reasonable to select the weights which minimise the

asymptotic “variance”

var
(
θ̃n
)
≈

∑n
i=1 var(gi(Yi; θ0))[

E
(∑n

i=1
∂g(Yi;θ)
∂θ
cθ0
)]2 . (8.11)

Note the above comes from (8.8) (observe the n−1 has been removed, since we have not

standardized θ̃n). Since {Yi} are independent we observe that

var(G(W )
n (θ0)) = n−1

n∑
i=1

var(gi(Yi; θ0) =
n∑
i=1

wi(θ0)2Vi(θ0)

E

(
∂G

(W )
n (θ)

∂θ
cθ0

)
= E

(
n∑
i=1

∂g(Yi; θ)

∂θ
cθ0

)

= E

(
n∑
i=1

w′i(θ0) [Yi − µi(θ0)]−
n∑
i=1

wi(θ0)µ′i(θ0)

)
= −

n∑
i=1

wi(θ0)µ′i(θ0).

Substituting the above into (8.11) gives

var
(
θ̃n
)
≈
∑n

i=1wi(θ0)2Vi(θ0)

(
∑n

i=1wi(θ0)µ′i(θ0))2
.

Now we want to choose the weights, thus the estimation function, which has the smallest

variance. Therefore we look for weights which minimise the above. Since the above is a
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ratio, and we observe that a small wi(θ) leads to a large denominator but a small numer-

ator. To resolve this, we include a Lagrangian multipler (this, essentially, minimises the

numerator by controlling the magnitude of the denominator). We constrain the numerator

to equal one; (
∑n

i=1wi(θ)µ
′(θ))2 = 1 and minimise under this constraint

n∑
i=1

wi(θ0)2Vi(θ) + λ

[ n∑
i=1

wi(θ)µ
′
i(θ)− 1

]
,

with respect to {wi(θ)} and λ. Partially differentiating the above with respect to {wi(θ)}
and λ and setting to zero gives for all i

2wi(θ)Vi(θ) + µ′i(θ) = 0 subject to
n∑
i=1

wi(θ)µ
′
i(θ) = 1.

Thus we choose

wi(θ) = − µ′i(θ)

2Vi(θ)

but standardize to ensure
∑n

i=1 wi(θ)µ
′
i(θ) = 1;

wi(θ) =

(
n∑
j=1

Vj(θ)
−1µ′j(θ)

)−1
µ′i(θ)

Vi(θ)
.

Since
(∑n

j=1 Vj(θ)
−1µ′j(θ)

)−1

is common for all weights wi(θ) it can be ignored, thus

leading to the optimal estimating function is

G(µ′V −1)
n (θ) =

n∑
i=1

µ′i(θ)

Vi(θ)
(Yi − µi(θ)) . (8.12)

The interesting point about the optimal estimating equation, is that even if the variance

has been mispecified, the estimating equation can still be used to consistently estimate θ

(it just will not be optimal).

Example 8.3.1 (i) Consider the case where {Yi} is such that E[Yi] = µi(β) = exp(β′xi)

and var(Yi) = Vi(β) = exp(β′xi). Then, dµ(β′xi)
dβ

= exp(β′xi)xi. Substituting this

yields the optimal estimating equation

n∑
i=1

(Yi − eβ
′xi)xi = 0.
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In general if E[Yi] = var[Yi] = µ(β′xi), the optimal estimating equation is

n∑
i=1

[Yi − µ(β′xi)]

µ(β′xi)
µ′(β′xi)xi = 0,

where we use the notation µ′(θ) = dµ(θ)
dθ

. But it is interesting to note that when Yi

comes from a Poisson distribution (where the main feature is that the mean and

variance are equal), the above estimating equation corresponds to the score of the

likelihood.

(ii) Suppose {Yi} are independent random variables where E[Yi] = µi(β) and var[Yi] =

µi(β)(1 − µi(β)) (thus 0 < µi(β) < 1). Then the optimal estimating equation

corresponds to

n∑
i=1

[Yi − µ(β′xi)]

µ(β′xi)[1− µ(β′xi)]
µ′(β′xi)xi = 0,

where we use the notation µ′(θ) = dµ(θ)
dθ

. This corresponds to the score function of

binary random variables. More of this in the next chapter!

Example 8.3.2 Suppose that Yi = σiZi where σi and Zi are positive, {Zi} are iid random

variables and the regressors xi influence σi through the relation σi = exp(β0 + β′1xi). To

estimate β0 and β1 we can simply take logarithms of Yi

log Yi = β0 + β′1xi + logZi.

Least squares can be used to estimate β0 and β1. However, care needs to be taken since in

general E[logZi] 6= 0, this will mean the least squares estimator of the intercept β0 will be

biased, as it estimates β0 + E[logZi].

Examples where the above model can arise is Yi = λiZi where {Zi} are iid with ex-

ponential density f(z) = exp(−z). Observe this means that Yi is also exponential with

density λ−1
i exp(−y/λi).

Remark 8.3.1 (Weighted least squares) Suppose that E[Yi] = µi(θ) and var[Yi] =

Vi(θ), motivated by the normal distribution, we can construct the weighted least squared

criterion

Ln(θ) =
n∑
i=1

[
1

Vi(θ)
(Yi − µi(θ))2 + log Vi(θ)

]
.
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Taking derivatives, we see that this corresponds to the estimating equation

Gn(θ) =
n∑
i=1

[
− 2

Vi(θ)
{Yi − µi(θ)}

dµi(θ)

dθ
− 1

Vi(θ)2
{Yi − µi(θ)}2 dVi(θ)

dθ
+

1

Vi(θ)

dVi(θ)

dθ

]
= G1,n(θ) +G2,n(θ)

where

G1,n(θ) = −2
n∑
i=1

1

Vi(θ)
{Yi − µi(θ)}

dµi(θ)

dθ

G2,n(θ) = −
n∑
i=1

[
1

Vi(θ)2
{Yi − µi(θ)}2 dVi(θ)

dθ
− 1

Vi(θ)

dVi(θ)

dθ

]
.

Observe that E[G1,n(θ0)] = 0 and E[G2,n(θ0)] = 0, which implies that E[Gn(θ0)] = 0. This

proves that the true parameter θ0 corresponds to either a local minimum or saddle point

of the weighted least squares criterion Ln(θ). To show that it is the global minimum one

must use an argument similar to that given in Section 8.2.3.

Remark 8.3.2 We conclude this section by mentioning that one generalisation of esti-

mating equations is the generalised method of moments. We observe the random vectors

{Yi} and it is known that there exist a function g(·; θ) such that E(g(Yi; θ0)) = 0. To

estimate θ0, rather than find the solution of 1
n

∑n
i=1 g(Yi; θ), a matrix Mn is defined and

the parameter which mimimises(
1

n

n∑
i=1

g(Yi; θ)

)′
Mn

(
1

n

n∑
i=1

g(Yi; θ)

)

is used as an estimator of θ.
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Chapter 9

Generalised Linear Models

To motivate the GLM approach let us briefly overview linear models.

9.1 An overview of linear models

Let us consider the two competing linear nested models

Restricted model: Yi = β0 +

q∑
j=1

βjxi,j + εi,

Full model: Yi = β0 +

q∑
j=1

βjxi,j +

p∑
j=q+1

βjxi,j + εi, (9.1)

where {εi} are iid random variables with mean zero and variance σ2. Let us suppose

that we observe {(Yi, xi,j)}ni=1, where {Yi} are normal. The classical method for testing

H0 : Model 0 against HA : Model 1 is to use the F-test (ANOVA). That is, let σ̂2
R be the

residual sum of squares under the null and σ̂2
F be the residual sum of squares under the

alternative. Then the F-statistic is

F =

(
S2
R − S2

F

)
/(p− q)

σ̂2
F

,

where

S2
F =

n∑
i=1

(Yi −
p∑
j=1

β̂Fj xi,j)
2 S2

R =
n∑
i=1

(Yi −
q∑
j=1

β̂Rj xi,j)
2

σ2
F =

1

n− p

n∑
i=1

(Yi −
p∑
j=1

β̂Fj xi,j)
2.
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and under the null F ∼ Fp−q,n−p. Moreover, if the sample size is large (p− q)F D→ χ2
p−q.

We recall that the residuals of the full model are ri = Yi− β̂0−
∑q

j=1 β̂jxi,j−
∑p

j=q+1 β̂jxi,j

and the residual sum of squares S2
F is used to measure how well the linear model fits the

data (see STAT612 notes).

The F-test and ANOVA are designed specifically for linear models. In this chapter

the aim is to generalise

• Model specification.

• Estimation

• Testing.

• Residuals.

to a larger class of models.

To generalise we will be in using a log-likelihood framework. To see how this fits in

with the linear regression, let us now see how ANOVA and the log-likelihood ratio test

are related. Suppose that σ2 is known, then the log-likelihood ratio test for the above

hypothesis is

1

σ2

(
S2
R − S2

F

)
∼ χ2

p−q,

where we note that since {εi} is Gaussian, this is the exact distribution and not an

asymptotic result. In the case that σ2 is unknown and has to be replaced by its estimator

σ̂2
F , then we can either use the approximation

1

σ̂2
F

(
S2
R − S2

F

) D→ χ2
p−q, n→∞,

or the exact distribution (
S2
R − S2

F

)
/(p− q)

σ̂2
F

∼ Fp−q,n−p,

which returns us to the F-statistic.

On the other hand, if the variance σ2 is unknown we return to the log-likelihood ratio

statistic. In this case, the log-likelihood ratio statistic is

log
S2
R

S2
F

= log

(
1 +

(S2
F − S2

R)

σ̂2
F

)
D→ χ2

p−q,
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recalling that 1
σ̂

∑n
i=1(Yi − β̂xi) = n. We recall that by using the expansion log(1 + x) =

x+O(x2) we obtain

log
S2
R

S2
F

= log

(
1 +

(S2
R − S2

F )

S2
F

)
=

S2
R − S2

F

S2
F

+ op(1).

Now we know the above is approximately χ2
p−q. But it is straightforward to see that by

dividing by (p− q) and multiplying by (n− p) we have

(n− p)
(p− q)

log
S2
R

S2
F

=
(n− p)
(p− q)

log

(
1 +

(S2
R − S2

F )

S2
F

)
=

(S2
R − S2

F )/(p− q)
σ̂2
F

+ op(1) = F + op(1).

Hence we have transformed the log-likelihood ratio test into the F -test, which we discussed

at the start of this section. The ANOVA and log-likelihood methods are asymptotically

equivalent.

In the case that {εi} are non-Gaussian, but the model is linear with iid random

variables, the above results also hold. However, in the case that the regressors have a

nonlinear influence on the response and/or the response is not normal we need to take an

alternative approach. Through out this section we will encounter such models. We will

start by focussing on the following two problems:

(i) How to model the relationship between the response and the regressors when the

reponse is non-Gaussian, and the model is nonlinear.

(ii) Generalise ANOVA for nonlinear models.

9.2 Motivation

Let us suppose {Yi} are independent random variables where it is believed that the re-

gressors xi (xi is a p-dimensional vector) has an influence on {Yi}. Let us suppose that

Yi is a binary random variable taking either zero or one and E(Yi) = P (Yi = 1) = πi.

How to model the relationship between Yi and xi? A simple approach, is to use a

linear model, ie. let E(Yi) = β′xi, But a major problem with this approach is that E(Yi),
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is a probability, and for many values of β, β′xi will lie outside the unit interval - hence

a linear model is not meaningful. However, we can make a nonlinear transformation

which transforms the a linear combination of the regressors to the unit interval. Such a

meaningful transformation forms an important component in statistical modelling. For

example let

E(Yi) = πi =
exp(β′xi)

1 + exp(β′xi)
= µ(β′xi),

this transformation lies between zero and one. Hence we could just use nonlinear regres-

sion to estimate the parameters. That is rewrite the model as

Yi = µ(β′xi) + εi︸︷︷︸
Yi−µ(β′xi)

and use the estimator β̂i, where

β̂n = arg min
β

n∑
i=1

(
Yi − µ(β′xi)

)2

, (9.2)

as an estimator of β. This method consistently estimates the parameter β, but there are

drawbacks. We observe that Yi are not iid random variables and

Yi = µ(β′xi) + σiεi

where {εi = Yi−µ(β′xi)√
Yi
} are iid random variables and σi =

√
varYi. Hence Yi has a hetero-

geneous variance. However, the estimator in (9.2) gives each observation the same weight,

without taking into account the variability between observations (which will result in a

large variance in the estimator). To account for this one can use the weighted leasts

squares estimator

β̂n = arg min
β

n∑
i=1

(Yi − µ(β′xi))
2

µ(β′xi)(1− µ(β′xi))
, (9.3)

but there is no guarantee that such an estimator is even consistent (the only way to be

sure is to investigate the corresponding estimating equation).

An alternative approach is to use directly use estimating equations (refer to Section

8.2). The the simplest one solves

n∑
i=1

(Yi − µ(β′xi)) = 0,
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where µ(β′xi). However, this solution does not lead to an estimator with the smallest

“variance”. Instead we can use the ”optimal estimation equation” given in Section 8.3

(see equation 8.12). Using (8.12) the optimal estimating equation is

n∑
i=1

µ′i(θ)

Vi(θ)
(Yi − µi(θ))

=
n∑
i=1

(Yi − µ(β′xi))

µ(β′xi)[1− µ(β′xi)]

∂µ(β′xi)

∂β
=

n∑
i=1

(Yi − µ(β′xi))

µ(β′xi)[1− µ(β′xi)]
µ′(β′xi)xi = 0,

where we use the notation µ′(θ) = dµ(θ)
dθ

(recall var[Yi] = µ(β′xi)(1− µ(β′xi))). We show

below (using the GLM machinery) that this corresponds to the score function of the

log-likelihood function.

The GLM approach is a general framework for a wide class of distributions. We recall

that in Section 1.6 we considered maximum likelihood estimation for iid random variables

which come from the natural exponential family. Distributions in this family include

the normal, binary, binomial and Poisson, amongst others. We recall that the natural

exponential family has the form

f(y; θ) = exp

(
yθ − κ(θ) + c(y)

)
,

where κ(θ) = b(η−1(θ)). To be a little more general we will suppose that the distribution

can be written as

f(y; θ) = exp

(
yθ − κ(θ)

φ
+ c(y, φ)

)
, (9.4)

where φ is a nuisance parameter (called the disperson parameter, it plays the role of the

variance in linear models) and θ is the parameter of interest. We recall that examples of

exponential models include

(i) The exponential distribution is already in natural exponential form with θ = λ and

φ = 1. The log density is

log f(y; θ) = −λy + log λ.

(ii) For the binomial distribution we let θ = log( π
1−π ) and φ = 1, since log( π

1−π ) is

invertible this gives

log f(y; θ) = log f(y; log
π

1− π
) =

(
yθ − n log

( exp(θ)

1 + exp(θ)

)
+ log

(
n

y

))
.
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(iii) For the normal distribution we have that

log f(y;µ, σ2) =

(
− (y − µ)2

2σ2
− 1

2
log σ2 − 1

2
log(2π)

)
=
−y2 + 2µy − µ2

2σ2
− 1

2
log σ2 − 1

2
log(2π).

Suppose µ = µ(β′xi), whereas the variance σ2 is constant for all i, then σ2 is the

scale parameter and we can rewrite the above as

log f(y;µ, σ2) =

µ︸︷︷︸
θ

y − µ2/2︸︷︷︸
κ(θ)

σ2
−
(
− y2

2σ2
− 1

2
log σ2 − 1

2
log(2π)

)
︸ ︷︷ ︸

=c(y,φ)

.

(iv) The Poisson log distribution can be written as

log f(y;µ) = y log µ− µ+ log y!,

Hence θ = log µ, κ(θ) = − exp(θ) and c(y) = log y!.

(v) Other members in this family include, Gamma, Beta, Multinomial and inverse Gaus-

sian to name but a few.

Remark 9.2.1 (Properties of the exponential family (see Chapter 1 for details)) (i)

Using Lemma 1.6.3 (see Section 1.6) we have E(Y ) = κ′(θ) and var(Y ) = κ′′(θ)φ.

(ii) If the distribution has a “full rank parameter space” (number of parameters is equal

to the number of sufficient statistics) and θ(η) (where η is the parameter of interest)

is a diffeomorphism then the second derivative of the log-likelihood is non-negative.

To see why we recall for a one-dimensional exponential family distribution of the

form

f(y; θ) = exp

(
yθ − κ(θ) + c(y)

)
,

the second derivative of the log-likelihood is

∂2 log f(y; θ)

∂θ2
= −κ′′(θ) = −var[Y ].
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If we reparameterize the likelihood in terms of η, such that θ(η) then

∂2 log f(y; θ(η))

∂η2
= yθ′′(η)− κ′(θ)θ′′(η)− κ′′(θ)[θ′(η)]2.

Since θ(η) is a diffeomorphism between the space spanned by η to the space spanned

by θ, log f(y; θ(η)) will be a deformed version of log f(y; θ) but it will retain prop-

erties such concavity of the likelihood with respect to η.

GLM is a method which generalises the methods in linear models to the exponential

family (recall that the normal model is a subclass of the exponential family). In the GLM

setting it is usually assumed that the response variables {Yi} are independent random

variables (but not identically distributed) with log density

log f(yi; θi) =

(
yiθi − κ(θi)

φ
+ c(yi, φ)

)
, (9.5)

where the parameter θi depends on the regressors. The regressors influence the response

through a linear predictor ηi = β′xi and a link function, which connects β′xi to the mean

E(Yi) = µ(θi) = κ′(θi).

Remark 9.2.2 (Modelling the mean) The main “philosophy/insight” of GLM is con-

necting the mean µ(θi) of the random variable (or sufficient statistic) to a linear trans-

form of the regressor β′xi. The “link” function g is a monotonic (bijection) such that

µ(θi) = g−1(β′xi), and usually needs to be selected. The main features of the link function

depends on the distribution. For example

(i) If Yi are positive then the link function g−1 should be positive (since the mean is

positive).

(i) If Yi take binary values the link function g−1 should lie between zero and one (it

should be probability).

Let g : R → R be a bijection such that g(µ(θi)) = ηi = β′xi. If we ignore the scale

parameter, then by using Lemma 1.6.3 (which relates the mean and variance of sufficient

statistics to κ(θi)) we have

dκ(θi)

dθi
= g−1(ηi) = µ(θi) = E(Yi)

θi = µ−1(g−1(ηi)) = θ(ηi)

var(Yi) =
d2κ(θi)

dθ2
i

=
dµ(θi)

dθi
. (9.6)
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Based on the above and (9.5) the log likelihood function of {Yi} is

Ln(β) =
n∑
i=1

(
Yiθ(ηi)− κ(θ(ηi))

φ
+ c(Yi, φ)

)
.

Remark 9.2.3 (Concavity of the likelihood with regressors) We mentioned in Re-

mark 9.2.1 that natural exponential family has full rank and θ(η) is a reparameterisation

in terms of η, then ∂2logf(y;η)
∂η2

is non-positive definite, thus log f(y; θ) is a concave function.

We now show that the likelihood in the presence of regressors in also concave.

We recall that

Ln(β) =
n∑
i=1

(
Yiθ(ηi)− κ(θ(ηi)) + c(Yi)

)
.

where ηi = β′xi. Differentiating twice with respect to β gives

∇2
βLn(β) = X′

n∑
i=1

∂2 log f(Yi; θ(ηi))

∂η2
i

X,

where X is the design matrix corresponding to the regressors. We mentioned above that
∂2 log f(Yi;ηi)

∂η2i
is non-positive definite for all i which in turn implies that its sum is non-

positive definite. Thus Ln(β) is concave in terms of β, hence it is simple to maximise.

Example: Suppose the link function is in canonical form i.e. θ(ηi) = β′xi (see the

following example), the log-likelihood is

Ln(β) =
n∑
i=1

(
Yiβ

′xi − κ(β′xi) + c(Yi)

)
.

which has second derivative

∇2
βLn(β) = −X′

n∑
i=1

κ′′(β′xi)X

which is clearly non-positive definite.

The choice of link function is rather subjective. One of the most popular is the

canonical link which we define below.

Definition 9.2.1 (The canonical link function) Every distribution within the expo-

nential family has a canonical link function, this is where ηi = θi. This immediately

implies that µi = κ′(ηi) and g(κ′(θi)) = g(κ′(ηi)) = ηi (hence g is inverse function of κ′).
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The canonical link is often used because it make the calculations simple (it also saves one

from ”choosing a link function”). We observe with the canonical link the log-likelihood

of {Yi} is

Ln(β) =
n∑
i=1

(
Yiβ

′xi − κ(β′xi)

φ
+ c(Yi, φ)

)
.

Example 9.2.1 (The log-likelihood and canonical link function)

(i) The canonical link for the exponential f(yi;λi) = λi exp(−λiyi) is θi = −λi = β′xi, and

λ = −β′xi. The log-likelihood is

n∑
i=1

(
Yiβ

′xi − log(β′xi)

)
.

(ii) The canonical link for the binomial is θi = β′xi = log( πi
1−πi ), hence πi = exp(β′xi)

1+exp(β′xi)
.

The log-likelihood is

n∑
i=1

(
Yiβ

′xi + ni log
( exp(β′xi)

1 + exp(β′xi)

)
+ log

(
ni
Yi

))
.

(iii) The canonical link for the normal is θi = β′xi = µi. The log-likelihood is(
− (Yi − β′xi)2

2σ2
+

1

2
log σ2 +

1

2
log(2π)

)
,

which is the usual least squared criterion. If the canonical link were not used, we would

be in the nonlinear least squares setting, with log-likelihood(
− (Yi − g−1(β′xi))

2

2σ2
+

1

2
log σ2 +

1

2
log(2π)

)
,

(iv) The canonical link for the Poisson is θi = β′xi = log λi, hence λi = exp(β′xi). The

log-likelihood is

n∑
i=1

(
Yiβ

′xi − exp(β′xi) + log Yi!

)
.

However, as mentioned above, the canonical link is simply used for its mathematical

simplicity. There exists other links, which can often be more suitable.
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Remark 9.2.4 (Link functions for the Binomial) We recall that the link function is

defined as a monotonic function g, where ηi = β′xi = g(µi). The choice of link function

is up to the practitioner. For the binomial distribution it is common to let g−1 = a well

known distribution function. The motivation for this is that for the Binomial distribution

µi = niπi (where πi is the probability of a ‘success’). Clearly 0 ≤ πi ≤ 1, hence using g−1

= distribution function (or survival function) makes sense. Examples include

(i) The Logistic link, this is the canonical link function, where β′xi = g(µi) = log( πi
1−πi ) =

log( µi
ni−µi ).

(i) The Probit link, where πi = Φ(β′xi), Φ is the standard normal distribution function

and the link function is β′xi = g(µi) = Φ−1(µi/ni).

(ii) The extreme value link, where the distribution function is F (x) = 1−exp(−exp(x)).

Hence in this case the link function is β′xi = g(µi) = log(− log(1− µi/ni)).

Remark 9.2.5 GLM is the motivation behind single index models where E[Yi|Xi] =

µ(
∑p

j=1 βjxij), where both the parameters {βj} and the link function µ(·) is unknown.

9.3 Estimating the parameters in a GLM

9.3.1 The score function for GLM

The score function for generalised linear models has a very interesting form, which we

will now derive.

From now on, we will suppose that φi ≡ φ for all t, and that φ is known. Much of the

theory remains true without this restriction, but this makes the derivations a bit cleaner,

and is enough for all the models we will encounter.

With this substitution, recall that the log-likelihood is

Ln(β, φ) =
n∑
i=1

{
Yiθi − κ(θi)

φ
+ c(Yi, φ)

}
=

n∑
i=1

`i(β, φ),

where

`i(β, φ) =

{
Yiθi − κ(θi)

φ
+ c(Yi, φ)

}
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and θi = θ(ηi).

For the MLE of β, we need to solve the likelihood equations

∂Ln
∂βj

=
n∑
i=1

∂`i
∂βj

= 0 for j = 1, . . . , p.

Observe that

∂`i
∂βj

=
∂`i
∂θi

∂θi
∂βj

=
(Yi − κ′(θi))

φ
θ′(ηi)xij.

Thus the score equation is

∂Ln
∂βj

=
n∑
i=1

[Yi − κ′(θi)]
φ

θ′(ηi)xij = 0 for j = 1, . . . , p. (9.7)

Remark 9.3.1 (Connection to optimal estimating equations) Recall from (8.12)

the optimal estimating equation is

Gn(β) =
n∑
i=1

1

Vi(β)
(Yi − µi(β))

∂

∂βj
µi(β), (9.8)

we now show this is equivalent to (9.7). Using classical results on the exponential family

(see chapter 1) we have

E[Yi] = κ′(θ) = µi(β)

var[Yi] = κ′′(θ) = Vi(β).

We observe that

∂

∂βj
µi(β) =

∂µ(θi)

∂θi︸ ︷︷ ︸
=Vi(β)

∂θi
∂βj

= Vi(β)θ′(ηi)xij,

substituting this into (9.8) gives

∂Ln
∂βj

=
n∑
i=1

[Yi − κ′(θi)]
φ

θ′(ηi)xij = 0

which we see corresponds to the score of the likelihood.

To obtain an interesting expression for the above, recall that

var(Yi) = φµ′(θi) and ηi = g(µi),
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and let µ′(θi) = V (µi). Since V (µi) = dµi
dθi

, inverting the derivative we have dθi
dµi

= 1/V (µi).

Furthermore, since dηi
dµi

= g′(µi), inverting the derivative we have dµi
dηi

= 1/g′(µi). By the

chain rule for differentiation and using the above we have

∂`i
∂βj

=
d`i
dηi

∂ηi
∂βj

=
d`i
dηi

∂ηi
∂θi

∂θi
∂βj

(9.9)

=
d`i
dθi

dθi
dµi

dµi
dηi

∂ηi
∂βj

=
d`i
dθi

(
dµi
dθi

)−1(
dηi
dµi

)−1
∂ηi
∂βj

=
(Yi − κ′(θi))

φ
(κ′′(θi))

−1(g′(µi))
−1xij

=
(Yi − µi)xij
φV (µi)g′(µi)

Thus the likelihood equations we have to solve for the MLE of β are
n∑
i=1

(Yi − µi)xij
φV (µi)g′(µi)

=
n∑
i=1

(Yi − g−1(β′xi))xij
φV (g−1(β′xi))g′(µi)

= 0, 1 ≤ j ≤ p, (9.10)

(since µi = g−1(β′xi)).

(9.10) has a very similar structure to the Normal equations arising in ordinary least

squares.

Example 9.3.1 (i) Normal {Yi} with mean µi = β′xi.

Here, we have g(µi) = µi = β′xi so g′(µi) = dg(µi)
dµi
≡ 1; also V (µi) ≡ 1, φ = σ2, so

the equations become

1

σ2

n∑
i=1

(Yi − β′xi)xij = 0.

Ignoring the factor σ2, the LHS is the jth element of the vector XT (Y − Xβ′), so

the equations reduce to the Normal equations of least squares:

XT (Y −Xβ′) = 0 or equivalently XTXβ′ = XTY.

(ii) Poisson {Yi} with log-link function, hence mean µi = exp(β′xi) (hence g(µi) =

log µi). This time, g′(µi) = 1/µi, var(Yi) = V (µi) = µi and φ = 1. Substituting

µi = exp(β′xi), into (9.10) gives
n∑
i=1

(Yi − eβ
′xi)xij = 0.

254



9.3.2 The GLM score function and weighted least squares

The GLM score has a very interesting relationship with weighted least squares. First

recall that the GLM takes the form

n∑
i=1

(Yi − µi)xij
φV (µi)g′(µi)

=
n∑
i=1

(Yi − g−1(β′xi))xij
φVig′(µi)

= 0, 1 ≤ j ≤ p. (9.11)

Next let us construct the weighted least squares criterion. Since E(Yi) = µi and var(Yi) =

φVi, the weighted least squares criterion corresponding to {Yi} is

Si(β) =
n∑
i=1

(Yi − µ(θi))
2

φVi
=

n∑
i=1

(Yi − g−1(β′xi))
2

φVi
.

The weighted least squares criterion Si is independent of the underlying distribution and

has been constructed using the first two moments of the random variable. Returning to

the weighted least squares estimator, we observe that this is the solution of

∂Si
∂βj

=
n∑
i=1

∂si(β)

∂µi

∂µi
∂βj

+
n∑
i=1

∂si(β)

∂Vi

∂Vi
∂βj

= 0 1 ≤ j ≤ p,

where si(β) = (Yi−µ(θi))
2

φVi
. Now let us compare ∂Si

∂βj
with the estimating equations corre-

sponding to the GLM (those in (9.11)). We observe that (9.11) and the first part of the

RHS of the above are the same, that is

n∑
i=1

∂si(β)

∂µi

∂µi
∂βj

=
n∑
i=1

(Yi − µi)xij
φV (µi)g′(µi)

= 0.

In other words, the GLM estimating equations corresponding to the exponential family

and the weighted least squares estimating equations are closely related (as are the corre-

sponding estimators). However, it is simpler to solve
∑n

i=1
∂si(β)
∂µi

∂µi
βj

= 0 than ∂Si
∂βj

= 0.

As an aside, note that since at the true β the derivatives are

E

( n∑
i=1

∂si(β)

∂µi

∂µi
∂βj

)
= 0 and E

(
∂Si
∂βj

)
= 0,

then this implies that the other quantity in the partial sum, E
(
∂Si
∂βj

)
is also zero, i.e.

E

( n∑
i=1

∂si(β)

∂Vi

∂Vi
∂βj

)
= 0.
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9.3.3 Numerical schemes

The Newton-Raphson scheme

It is clear from the examples above that usually there does not exist a simple solution

for the likelihood estimator of β. However, we can use the Newton-Raphson scheme to

estimate β (and thanks to the concavity of the likelihood it is guaranteed to converge to

the maximum). We will derive an interesting expression for the iterative scheme. Other

than the expression being useful for implementation, it also highlights the estimators

connection to weighted least squares.

We recall that the Newton Raphson scheme is

(β(m+1))′ = (β(m))′ − (H(m))−1u(m)

where the p× 1 gradient vector u(m) is

u(m) =

(
∂Ln
∂β1

, . . . ,
∂Ln
∂βp

)′
cβ=β(m)

and the p× p Hessian matrix H(m) is given by

H
(m)
jk =

∂2Ln(β)

∂βj∂βk
cβ=β(m) ,

for j, k = 1, 2, . . . , p, both u(m) and H(m) being evaluated at the current estimate β(m).

By using (9.9), the score function at the mth iteration is

u
(m)
j =

∂Ln(β)

∂βj
cβ=β(m) =

n∑
i=1

∂`i
∂βj
cβ=β(m)

=
n∑
i=1

d`i
dηi

∂ηi
∂βj
cβ=β(m) =

n∑
i=1

d`i
dηi
cβ=β(m)xij.
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The Hessian at the ith iteration is

H
(m)
jk =

∂2Li(β)

∂βj∂βk
cβ=β(m) =

n∑
i=1

∂2`i
∂βj∂βk

cβ=β(m)

=
n∑
i=1

∂

∂βk

(
∂`i
∂βj

)
cβ=β(m)

=
n∑
i=1

∂

∂βk

(
∂`i
∂ηi

xij

)
cβ=β(m)

=
n∑
i=1

∂

∂ηi

(
∂`i
∂ηi

xij

)
xik

=
n∑
i=1

∂2`i
∂η2

i

cβ=β(m)xijxik (9.12)

Let s(m) be an n× 1 vector with

s
(m)
i =

∂`i
∂ηi
cβ=β(m)

and define the n× n diagonal matrix W̃ (m) with entries

W̃ii = −d
2`i
dη2

i

.

Then we have u(m) = XT s(m) and H = −XT W̃ (m)X and the Newton-Raphson iteration

can succinctly be written as

(β(m+1))′ = (β(m))′ − (H(m))−1u(m)

= (β(m))′ + (XT W̃ (m)X)−1XT s(m).

Fisher scoring for GLMs

Typically, partly for reasons of tradition, we use a modification of this in fitting statistical

models. The matrix W̃ is replaced by W , another diagonal n× n matrix with

W
(m)
ii = E(W̃

(m)
ii

∣∣β(m)) = E

(
−d

2`i
dη2

i

∣∣β(m)

)
.

Using the results in Section 1.6 we have

W
(m)
ii = E

(
−d

2`i
dη2

i

|β(m)

)
= var

(
d`i
dηi

∣∣β(m)

)
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so that W = var(s(m)|β(m)), and the matrix is non-negative-definite.

Using the Fisher score function the iteration becomes

(β(i+1))′ = (β(m))′ + (XTW (m)X)−1XT s(m).

Iteratively reweighted least squares

The iteration

(β(i+1))′ = (β(m))′ + (XTW (m)X)−1XT s(m) (9.13)

is similar to the solution for least squares estimates in linear models

β = (XTX)−1XTY

or more particularly the related weighted least squares estimates:

β = (XTWX)−1XTWY

In fact, (9.13) can be re-arranged to have exactly this form. Algebraic manipulation gives

(β(m))′ = (XTW (m)X)−1XTW (m)X(β(m))′

(XTW (m)X)−1XT s(m) = (XTW (m)X)−1XTW (m)(W (m))−1s(m).

Therefore substituting the above into (9.13) gives

(β(m+1))′ = (XTW (m)X)−1XTW (m)X(β(m))′ + (XTW (m)X)−1XTW (m)(W (m))−1s(m)

= (XTW (m)X)−1XTW (m)
(
X(β(m))′ + (W (m))−1s(m)

)
:= (XTW (m)X)−1XTW (m)Z(m).

One reason that the above equation is of interest is that it has the ‘form’ of weighted least

squares. More precisely, it has the form of a weighted least squares regression of Z(m) on

X with the diagonal weight matrix W (m). That is let z
(m)
i denote the ith element of the

vector Z(m), then β(m+1) minimises the following weighted least squares criterion

n∑
i=1

W
(m)
i

(
z

(m)
i − β′xi

)2
.

Of course, in reality W
(m)
i and z

(m)
i are functions of β(m), hence the above is often called

iteratively reweighted least squares.
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9.3.4 Estimating of the dispersion parameter φ

Recall that in the linear model case, the variance σ2 did not affect the estimation of β.

In the general GLM case, continuing to assume that φi = φ, we have

si =
d`i
dηi

=
d`i
dθi

dθi
dµi

dµi
dηi

=
Yi − µi

φV (µi)g′(µi)

and

Wii = var(si) =
var(Yi)

{φV (µi)g′(µi)}2
=

φV (µi)

{φV (µi)g′(µi)}2

=
1

φV (µi)(g′(µi))2

so that 1/φ appears as a scale factor in W and s, but otherwise does not appear in the

estimating equations or iteration for β̂. Hence φ does not play a role in the estimation of

β.

As in the Normal/linear case, (a) we are less interested in φ, and (b) we see that φ

can be separately estimated from β.

Recall that var(Yi) = φV (µi), thus

E((Yi − µi)2)

V (µi)
= φ

We can use this to suggest a simple estimator for φ:

φ̂ =
1

n− p

n∑
i=1

(Yi − µ̂i)2

V (µ̂i)
=

1

n− p

T∑
i=1

(Yi − µ̂i)2

µ′(θ̂i)

where µ̂i = g−1(β̂′xi) and θ̂i = µ−1g−1(β̂′xi). Recall that the above resembles estimators

of the residual variance. Indeed, it can be argued that the distribution of the above is

close to χ2
n−p.

Remark 9.3.2 We mention that a slight generalisation of the above is when the disper-

sion parameter satisfies φi = aiφ, where ai is known. In this case, an estimator of the φ

is

φ̂ =
1

n− p

n∑
i=1

(Yi − µ̂i)2

aiV (µ̂i)
=

1

n− p

n∑
i=1

(Yi − µ̂i)2

aiµ′(θ̂i)
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9.3.5 Deviance, scaled deviance and residual deviance

Scaled deviance

Instead of minimising the sum of squares (which is done for linear models) we have been

maximising a log-likelihood Li(β). Furthermore, we recall

S(β̂) =
n∑
i=1

r2
i =

n∑
i=1

(
Yi − β̂0 −

q∑
j=1

β̂jxi,j −
p∑

j=q+1

β̂jxi,j
)2

is a numerical summary of how well the linear model fitted, S(β̂) = 0 means a perfect fit.

A perfect fit corresponds to the Gaussian log-likelihood −n
2

log σ2 (the likelihood cannot

be larger than this).

In this section we will define the equivalent of residuals and square residuals for GLM.

What is the best we can do in fitting a GLM? Recall

`i =
Yiθi − κ(θi)

φ
+ c(Yi, φ)

so

d`i
dθi

= 0 ⇐⇒ Yi − κ′(θi) = 0

A model that achieves this equality for all i is called saturated (the same terminology is

used for linear models). In other words, will need one free parameter for each observation.

Denote the corresponding θi by θ̃i, i.e. the solution of κ′(θ̃i) = Yi.

Consider the differences

2{`i(θ̃i)− `i(θi)} =
2

φ
{Yi(θ̃i − θt)− κ(θ̃i) + κ(θi)} ≥ 0

and 2
n∑
i=1

{
`i(θ̃i)− `i(θi)

}
=

2

φ
{Yi(θ̃i − θt)− κ(θ̃i) + κ(θi)}.

Maximising the likelihood is the same as minimising the above quantity, which is always

non-negative, and is 0 only if there is a perfect fit for all the ith observations. This

is analogous to linear models, where maximising the normal likelihood is the same as

minimising least squares criterion (which is zero when the fit is best). Thus Ln(θ̃) =∑n
i=1 `i(θ̃i) provides a baseline value for the log-likelihood in much the same way that

−n
2

log σ2 provides a baseline in least squares (Gaussian set-up).
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Example 9.3.2 (The normal linear model) κ(θi) = 1
2
θ2
i , κ

′(θi) = θi = µi, θ̃i = Yt

and φ = σ2 so

2{`i(θ̃n)− `i(θi)} =
2

σ2
{Yi(Yi − µi)−

1

2
Y 2
i +

1

2
µ2
i } = (Yi − µi)2/σ2.

Hence for Gaussian observations 2{`i(θ̃i) − `i(θi)} corresponds to the classical residual

squared. �

In general, let

Di = 2{Yi(θ̃i − θ̂i)− κ(θ̃i) + κ(θ̂i)}

We call D =
∑n

i=1 Di the deviance of the model. If φ is present, let

D

φ
= 2{Ln(θ̃)− Ln(θ̂)}.

φ−1D is the scaled deviance. Thus the residual deviance plays the same role for GLM’s

as does the residual sum of squares for linear models.

Interpreting Di

We will now show that

Di = 2{Yi(θ̃i − θ̂i)− κ(θ̃i) + κ(θ̂i)} ≈
(Yi − µ̂i)2

V (µ̂i)
.

To show the above we require expression for Yi(θ̃i− θ̂i) and κ(θ̃i)−κ(θ̂i). We use Taylor’s

theorem to expand κ and κ′ about θ̂i to obtain

κ(θ̃i) ≈ κ(θ̂i) + (θ̃i − θ̂i)κ′(θ̂i) +
1

2
(θ̃i − θ̂i)2κ′′(θ̂i) (9.14)

and

κ′(θ̃i) ≈ κ′(θ̂i) + (θ̃i − θ̂i)κ′′(θ̂i) (9.15)

But κ′(θ̃i) = Yi, κ
′(θ̂i) = µ̂i and κ′′(θ̂i) = V (µ̂i), so (9.14) becomes

κ(θ̃i) ≈ κ(θ̂i) + (θ̃i − θ̂i)µ̂i +
1

2
(θ̃i − θ̂i)2V (µ̂i)

⇒ κ(θ̃i)− κ(θ̂i) ≈ (θ̃i − θ̂i)µ̂i +
1

2
(θ̃i − θ̂i)2V (µ̂i), (9.16)
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and (9.15) becomes

Yi ≈ µ̂i + (θ̃i − θ̂i)V (µ̂i)

⇒ Yi − µ̂i ≈ (θ̃i − θ̂i)V (µ̂i) (9.17)

Now substituting (9.16) and (9.17) into Di gives

Di = 2{Yi(θ̃i − θ̂i)− κ(θ̃i) + κ(θ̂i)}

≈ 2{Yi(θ̃i − θ̂i)− (θ̃i − θ̂i)µ̂i −
1

2
(θ̃i − θ̂i)2V (µ̂i)}

≈ (θ̃i − θ̂i)2V (µ̂i) ≈
(Yi − µ̂i)2

V (µ̂i)
.

Recalling that var(Yi) = φV (µi) and E(Yi) = µi, φ
−1Di behaves like a standardised

squared residual. The signed square root of this approximation is called the Pearson

residual. In other words

sign(Yi − µ̂i)×

√
(Yi − µ̂i)2

V (µ̂i)
(9.18)

is called a Pearson residual. The distribution theory for this is very approximate, but a

rule of thumb is that if the model fits, the scaled deviance φ−1D (or in practice φ̂−1D)

≈ χ2
n−p.

Deviance residuals

The analogy with the normal example can be taken further. The square roots of the

individual terms in the residual sum of squares are the residuals, Yi − β′xi.
We use the square roots of the individual terms in the deviances residual in the same

way. However, the classical residuals can be both negative and positive, and the deviances

residuals should behave in a similar way. But what sign should be used? The most obvious

solution is to use

ri =

{
−
√
Di if Yi − µ̂i < 0

√
Di if Yi − µ̂i ≥ 0

Thus we call the quantities {ri} the deviance residuals. Observe that the deviance resid-

uals and Pearson residuals (defined in (9.18)) are the same up to the standardisation√
V (µ̂i).

262



Diagnostic plots

We recall that for linear models we would often plot the residuals against the regressors

to check to see whether a linear model is appropriate or not. One can make similar

diagnostics plots which have exactly the same form as linear models, except that deviance

residuals are used instead of ordinary residuals, and linear predictor values instead of fitted

values.

9.4 Limiting distributions and standard errors of es-

timators

In the majority of examples we have considered in the previous sections (see, for example,

Section 2.2) we observed iid {Yi} with distribution f(·; θ). We showed that

√
n
(
θ̂n − θ

)
≈ N

(
0, I(θ)−1

)
,

where I(θ) =
∫
−∂2 log f(x;θ)

∂θ2
f(x; θ)dx (I(θ) is Fisher’s information). However this result

was based on the observations being iid. In the more general setting where {Yi} are

independent but not identically distributed it can be shown that(
β̂ − β

)
≈ Np(0, (I(β))−1)

where now I(β) is a p× p matrix (of the entire sample), where (using equation (9.12)) we

have

(I(β))jk = E

(
−∂

2Ln(β)

∂βj∂βk

)
= E

(
−

n∑
i=1

d2`i
dη2

i

xijxik

)
= (XTWX)jk.

Thus for large samples we have(
β̂ − β

)
≈ Np(0, (XTWX)−1),

where W is evaluated at the MLE β̂.

Analysis of deviance

How can we test hypotheses about models, and in particular decide which explanatory

variables to include? The two close related methods we will consider below are the log-

likelihood ratio test and an analogue of the analysis of variance (ANOVA), called the

analysis of deviance.
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Let us concentrate on the simplest case, of testing a full vs. a reduced model. Partition

the model matrix X and the parameter vector β as

X =
[
X1 X2

]
β =

(
β1

β2

)
,

where X1 is n× q and β1 is q × 1 (this is analogous to equation (9.1) for linear models).

The full model is η = Xβ′ = X1β1 +X2β2 and the reduced model is η = X1β
′
1. We wish

to test H0 : β2 = 0, i.e. that the reduced model is adequate for the data.

Define the rescaled deviances for the full and reduced models

DR

φ
= 2{Ln(θ̃)− sup

β2=0,β1

Ln(θ)}

and

DF

φ
= 2{Ln(θ̃)− sup

β1,β2

Ln(β)}

where we recall that Ln(θ̃) =
∑T

i=1 `t(θ̃i) is likelihood of the saturated model defined in

Section 9.3.5. Taking differences we have

DR −DF

φ
= 2
{

sup
β1,β2

Ln(β)− sup
β2=0,β1

Ln(θ)
}

which is the likelihood ratio statistic.

The results in Theorem 3.1.1, equation (3.7) (the log likelihood ratio test for composite

hypothesis) also hold for observations which are not identically distributed. Hence using

a generalised version of Theorem 3.1.1 we have

DR −DF

φ
= 2
{

sup
β1,β2

Ln(β)− sup
β2=0,β1

Ln(θ)
} D→ χ2

p−q.

So we can conduct a test of the adequacy of the reduced model DR−DF
φ

by referring to a

χ2
p−q, and rejecting H0 if the statistic is too large (p-value too small). If φ is not present

in the model, then we are good to go.

If φ is present (and unknown), we estimate φ with

φ̂ =
1

n− p

n∑
i=1

(Yi − µ̂i)2

V (µ̂t)
=

1

n− p

n∑
i=1

(Yi − µ̂i)2

µ′(θ̂n)

(see Section 9.3.4). Now we consider DR−DF
φ̂

, we can then continue to use the χ2
p−q

distribution, but since we are estimating φ we can use the statistic

DR −DF

p− q
÷ DF

n− p
against F(p−q),(n−p),

as in the normal case (compare with Section 9.1).
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9.5 Examples

Example 9.5.1 Question Suppose that {Yi} are independent random variables with the

canonical exponential family, whose logarithm satisfies

log f(y; θi) =
yθi − κ(θi)

φ
+ c(y;φ),

where φ is the dispersion parameter. Let E(Yi) = µi. Let ηi = β′xi = θi (hence the

canonical link is used), where xi are regressors which influence Yi. [14]

(a) (m) Obtain the log-likelihood of {(Yi, xi)}ni=1.

(ii) Denote the log-likelihood of {(Yi, xi)}ni=1 as Ln(β). Show that

∂Ln
∂βj

=
n∑
i=1

(Yi − µi)xi,j
φ

and
∂2Ln
∂βk∂βj

= −
n∑
i=1

κ′′(θi)xi,jxi,k
φ

.

(b) Let Yi have Gamma distribution, where the log density has the form

log f(Yi;µi) =
−Yi/µi − log µi

ν−1
+

{
− 1

ν−1
log ν−1 + log Γ(ν−1)

}
+

{
ν−1 − 1

}
log Yi

E(Yi) = µi, var(Yi) = µ2
i /ν and νi = β′xi = g(µi).

(m) What is the canonical link function for the Gamma distribution and write down

the corresponding likelihood of {(Yi, xi)}ni=1.

(ii) Suppose that ηi = β′xi = β0 + β1xi,1. Denote the likelihood as Ln(β0, β1).

What are the first and second derivatives of Ln(β0, β1)?

(iii) Evaluate the Fisher information matrix at β0 and β1 = 0.

(iv) Using your answers in (ii,iii) and the mle of β0 with β1 = 0, derive the score

test for testing H0 : β1 = 0 against HA : β1 6= 0.

Solution

(a) (m) The general log-likelihood for {(Yi, xi)} with the canonical link function is

Ln(β, φ) =
n∑
i=1

(
Yi(β

′xi − κ(β′xi))

φ
+ c(Yi, φ)

)
.
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(ii) In the differentiation use that κ′(θi) = κ′(β′xi) = µi.

(b) (m) For the gamma distribution the canonical link is θi = ηi = −1/µi = −1/beta′xi.

Thus the log-likelihood is

Ln(β) =
n∑
i=1

1

ν

(
Yi(β

′xi)− log(−1/β′xi)

)
+ c(ν1, Yi),

where c(·) can be evaluated.

(ii) Use part (ii) above to give

∂Ln(β)

∂βj
= ν−1

n∑
i=1

(
Yi + 1/(β′xi)

)
xi,j

∂Ln(β)

∂βi∂βj
= −ν−1

n∑
i=1

1

(β′xi)

)
xi,ixi,j

(iii) Take the expectation of the above at a general β0 and β1 = 0.

(iv) Using the above information, use the Wald test, Score test or log-likelihood

ratio test.

Example 9.5.2 Question: It is a belief amongst farmers that the age of a hen has a

negative influence on the number of eggs she lays and the quality the eggs. To investigate

this, m hens were randomly sampled. On a given day, the total number of eggs and the

number of bad eggs that each of the hens lays is recorded. Let Ni denote the total number

of eggs hen i lays, Yi denote the number of bad eggs the hen lays and xi denote the age of

hen i.

It is known that the number of eggs a hen lays follows a Poisson distribution and the

quality (whether it is good or bad) of a given egg is an independent event (independent of

the other eggs).

Let Ni be a Poisson random variable with mean λi, where we model λi = exp(α0+γ1xi)

and πi denote the probability that hen i lays a bad egg, where we model πi with

πi =
exp(β0 + γ1xi)

1 + exp(β0 + γ1xi)
.

Suppose that (α0, β0, γ1) are unknown parameters.

(a) Obtain the likelihood of {(Ni, Yi)}mi=1.
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(b) Obtain the estimating function (score) of the likelihood and the Information matrix.

(c) Obtain an iterative algorithm for estimating the unknown parameters.

(d) For a given α0, β0, γ1, evaluate the average number of bad eggs a 4 year old hen will

lay in one day.

(e) Describe in detail a method for testing H0 : γ1 = 0 against HA : γ1 6= 0.

Solution

(a) Since the canonical links are being used the log-likelihood function is

Lm(α0, β0, γ1) = Lm(Y |N) + Lm(N)

=
m∑
i=1

(
Yiβxi −Ni log(1 + exp(βxi)) +Niαxi − αxi + log

(
Ni

Yi

)
+ logNi!

)
∝

m∑
i=1

(
Yiβxi −Ni log(1 + exp(βxi)) +Niαxi − αxi

)
.

where α = (α0, γ1)′, β = (β0, γ1)′ and xi = (1, xi).

(b) We know that if the canonical link is used the score is

∇L =
m∑
i=1

φ−1
(
Yi − κ′(β′xi)

)
=

m∑
i=1

(
Yi − µi

)
and the second derivative is

∇2L = −
m∑
i=1

φ−1κ′′(β′xi) = −
m∑
i=1

var(Yi).

Using the above we have for this question the score is

∂Lm
∂α0

=
m∑
i=1

(
Ni − λi

)
∂Lm
∂β0

=
m∑
i=1

(
Yi −Niπi

)
∂Lm
∂γ1

=
m∑
i=1

((
Ni − λi

)
+
(
Yi −Niπi

))
xi.
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The second derivative is

∂2Lm
∂α2

0

= −
m∑
i=1

λi
∂2Lm
∂α0∂γ1

= −
m∑
i=1

λixi

∂2Lm
∂β2

0

= −
m∑
i=1

Niπi(1− πi)
∂2Lm
∂β0∂γ1

= −
m∑
i=1

Niπi(1− πi)xi

∂2Lm
∂γ12

= −
m∑
i=1

(
λi +Niπi(1− πi)

)
x2
i .

Observing that E(Ni) = λi the information matrix is

I(θ) =


∑m

i=1 λi 0
∑m

i=1 λiπi(1− πi)xi
0

∑m
i=1 λiπi(1− πi)

∑m
i=1 λiπi(1− πi)xi∑m

i=1 λiπi(1− πi)xi
∑m

i=1 λiπi(1− πi)xi
∑m

i=1

(
λi + λiπi(1− πi)

)
x2
i

 .

(c) We can estimate θ0 = (α0, β0, γ1) using Newton-Raphson with Fisher scoring, that

is

θi = θi + I(θi)
−1Si−1

where

Si−1 =


∑m

i=1

(
Ni − λi

)∑m
i=1

(
Yi −Niπi

)
∑m

i=1

((
Ni − λi

)
+
(
Yi −Niπi

))
xi.

 .

(d) We note that given the regressor xi = 4, the average number of bad eggs will be

E(Yi) = E(E(Yi|Ni)) = E(Niπi) = λiπi

=
exp(α0 + γ1xi) exp(β0 + γ1xi)

1 + exp(β0 + γ1xi)
.

(e) Give either the log likelihood ratio test, score test or Wald test.
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Chapter 10

Count Data

In the previous chapter we generalised the linear model framework to the exponential

family. GLM is often used for modelling count data, in these cases usually the Binomial,

Poisson or Multinomial distributions are used.

Types of data and the distribution:

Distribution Regressors Response variables

Binomial xi Yi = (Yi, N − Yi) = (Yi,1, Yi,2)

Poission xi Yi = Yi

Multinomial xi Yi = (Yi,1, Yi,2, . . . , Yi,m) (
∑

j Yi,j = N)

Distribution Probabilities

Binomial P (Yi,1 = k, Yi,2 = N − k) =
(
N
k

)
(1− π(β′xi))

N−kπ(β′xi)
k

Poission P (Yi = k) = λ(β′xi)k exp(−β′xi)
k!

Multinomial P (Yi,1 = k1, . . . , Yi,m = km) =
(

N
k1,...,km

)
π1(β′xi)

k1 . . . πm(β′xi)
km

In this section we will be mainly dealing with count data where the regressors tend

to be ordinal (not continuous regressors). This type of data normally comes in the form

of a contingency table. One of the most common type of contingency table is the two by

two table, and we will consider this in the Section below.

Towards the end of this chapter we use estimating equations to estimate the parameters

in overdispersed models.
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10.1 Two by Two Tables

Consider the following 2× 2 contingency table

Male Female Total

Blue 25 35 60

Pink 15 25 40

Total 40 60 100

Given the above table, one can ask if there is an association between gender and

colour preference. The standard method is test for independence. However, we could also

pose question in a different way: are proportion of females who like blue the same as the

proportion of males who like blue. In this case we can (equivalently) test for equality of

proportions (this equivalance usually only holds for 2 by 2 tables).

There are various methods for testing the above hypothesis

• The log-likelihood ratio test.

• The Score test

• The Wald test.

• Through Pearson residuals (which is the main motivation of the chi-squared test for

independence).

There can be so many tests for doing the same thing. But recall from Section 2.8.2

that asymptotically all of these tests are equivalent; for a large enough sample size their

p-values are nearly the same.

We go through some examples in the following section.

10.1.1 Tests for independence

Approach 1: Pearson and log-likelihood ratio test

The chi-square test for independence is based upon the Pearson residuals:

T1 =
∑
i,j

(Oi,j − Ei,j)2

Ei,j
,
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where Oi,j are the observed numbers and Eij are the expected numbers under indepen-

dence. We recall that by modelling the counts are a multinomial distribution we can show

that the test statistic T1 is asymptotically equivalent to the a log-likelihood ratio test.

Approach 2: Score test

Let us consider the altenative approach, testing for equality of proportions. Let πM denote

the proportion of males who prefer pink over blue and πF the proportion of females who

prefer pink over blue. Suppose we want to test that H0 : πF = πM against H0 : πF 6= πM .

On method for testing the above hypothesis is to use the test for equality of proportions

using the Wald test, which gives the test statistic

T2 =
π̂F − π̂M
I(π)−1/2

=
π̂F − π̂M√
π̂
(

1
NF

+ 1
NM

) ,
where

π̂ =
NM,P +NF,P

NM +NF

and NM NF correspond to the number of males and females and NM,P and NF,P the

number of males and females who prefer pink.

Approach 3: modelling

An alternative route for conducting the test, is to parameterise πM and πF and do a test

based on the parametrisation. For example, without loss of generality we can rewrite πM

and πF as

πF =
exp(γ)

1 + exp(γ)
πM =

exp(γ + δ)

1 + exp(γ + δ)
.

Hence using this parameterisation, the above test is equivalent to testing H0 : δ = 0

against HA : δ 6= 0. We can then use the log likelihood ratio test to do the test.

10.2 General contingency tables

Consider the following experiment. Suppose we want to know whether ethnicity plays a

role in the number of children a females has. We interview a sample of women, where we
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1 2 3

Background A 20 23 28

Background B 14 27 23

determine her ethnicity and the number of children. The data is collected below in the

form of a 3× 2 contingency table.

How can such data arise? There are several ways this data could have been collected,

and this influences the model we choose to fit to this data. Consider the general R × C
table, with cells indexed by (i, j). Note that in the above example R = 2 and C = 3.

(a) The subjects arise at random, the study continues until a fixed time elapses. Each

subject is categorised according to two variables. Suppose the number in cell (i, j)

is Yij, then it is reasonable to assume Yij ∼ Poisson(λij) for some {λij}, which will

be the focus of study. In this case the distribution is

P (Y = y) =
C∏
i=1

R∏
j=1

λ
yij
ij exp(−λij)

yij!

(b) The total number of subjects is fixed at N , say. The numbers in cells follow a

multinomial distribution: (Yij) ∼M(N ; (πij)):

P (Y = y) =
N !∏C

i=1

∏R
j=1 yij!

C∏
i=1

R∏
j=1

π
yij
ij

if
∑

i

∑
j yij = N .

(c) One margin is fixed: say {y+j =
∑C

i=1 yij} for each j = 1, 2, . . . , R. In each column,

we have an independent multinomial sample

P (Y = y) =
R∏
j=1

(
y+j!∏C
i=1 yij!

C∏
i=1

ρ
yij
ij

)

where ρij is the probability that a column-j individual is in row i (so ρ+j =∑C
i=1 ρij = 1).

Of course, the problem is without knowledge of how the data was collected it is not

possible to know which model to use. However, we now show that all the models are
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closely related, and with a suitable choice of link functions, diffferent models can lead to

the same conclusions. We will only show the equivalence between cases (a) and (b), a

similar argument can be extended to case (c).

We start by show that if πij and λij are related in a certain way, then the log-likelihoods

of both the poisson and the multinomial are effectively the same. Define the following log-

likelihoods for the Poisson, Multinomial and the sum of independent Poissons as follows

LP (λ) =
C∑
i=1

R∑
j=1

(
yij log λij − λij − log yij!

)

LM(π) = log
N !∏C

i=1

∏R
j=1 yij!

+
C∑
i=1

R∑
j=1

yij log πij

LF (λ++) = N log λ++ − λ++ − logN !.

We observe that LP is the log distribution of {yi,j} under Poisson sampling, LM is the log

distribution of {yi,j} under multinomial sampling, and LF is the distribution of
∑

ij Yij,

where Yij are independent Poisson distributions each with mean λij, N =
∑

ij Yij and

λ++ =
∑

ij λij.

Theorem 10.2.1 Let LP ,LM and LF be defined as above. If λ and π are related through

πij =
λij∑
s,t λst

λij = λ++πij,

where λ++ is independent of (i, j). Then we have that

LP (λ) = LM(π) + LF (λ++).

PROOF. The proof is straightforward. Consider the log-likelihood of the Poisson

LP (λ) =
C∑
i=1

R∑
j=1

(
yij log λij − λij − log yij!

)

=
C∑
i=1

R∑
j=1

(
yij log λ++πij − λ++πij − log yij!

)

=

[ C∑
i=1

R∑
j=1

yij log πij + logN !−
C∑
i=1

R∑
j=1

log yij!

]
+

C∑
i=1

R∑
j=1

(
yij log λ++ − λ++ − logN !

)
= LM(π) + LF (λ++).

Which leads to the required result. �
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Remark 10.2.1 The above result means that the likelihood of the independent Poisson

conditioned on the total number of participants is N , is equal to the likelihood of the

multinomial distribution where the relationship between probabilities and means are given

above.

By connecting the probabilities and mean through the relation

πij =
λij∑
s,t λst

and λij = λ++pij,

it does not matter whether the multinomial distribution or Possion distribution is used

to do the estimation. We consider a few models which are commonly used in categorical

data.

Example 10.2.1 Let us consider suitable models for the number of children and ethnicity

data. Let us start by fitting a multinomial distribution using the logistic link. We start y

modelling β′xi. One possible model is

β′x = η + α1δ1 + α2δ2 + α3δ3 + β1δ
∗
1 + β2δ

∗
2,

where δi = 1 if the female has i children and zero otherwise, δ∗1 = 1 if female belongs to

ethnic group A and zero otherwise, δ∗2 = 1 if female belongs to ethnic group B and zero

otherwise. The regressors in this example are x = (1, δ1, . . . , δ
∗
2). Hence for a given cell

(i, j) we have

β′xij = ηij = η + αi + βj.

One condition that we usually impose when doing the estimation is that
∑3

i=1 αi = 0 and

β1 + β2 = 0. These conditions mean the system is identifiable. Without these conditions

you can observe that there exists another {α̃i}, {β̃i} and η̃, such that ηij = η + αi + βj =

η̃ + α̃i + β̃j.

Now let understand what the above linear model means in terms of probabilities. Using

the logistic link we have

πij = g−1(β′xij) =
exp(η + αi + βj)∑
s,t exp(η + αs + βt)

=
exp(αi)∑
s exp(αs)

× exp(βj)∑
t exp(βt)

,

where πij denotes the probability of having i children and belonging to ethnic group j and

xij is a vector with ones in the appropriate places. What we observe is that the above
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model is multiplicative, that is

πij = πi+π+j

where πi+ =
∑

j πij and π+j =
∑

i πi+. This means by fitting the above model we are

assuming independence between ethnicity and number of children. To model dependence

we would use an interaction term in the model

β′x = η + α1δ1 + αtδ2 + α3δ3 + β1δ
∗
1 + β2δ

∗
1 +

∑
i,j

γijδiδ
∗
j ,

hence

ηij = η + αi + βj + γij.

However, for R × C tables an interaction term means the model is saturated (i.e. the

MLE estimator of the probability πij is simply yij/N). But for R× C × L, we can model

interactions without the model becoming saturated i.e.

ηijk = η + αi + βj + εk + γij

models an interaction between R and C but independence from L. These interactions may

have interesting interpretations about the dependence structure between two variables. By

using the log-likelihood ratio test (or analysis of deviance), we can test whether certain

interaction terms are significant.

We transform the above probabilities into Poisson means using λij = γπij. In the case

there is no-interaction the mean of Poisson at cell (i, j) is λij = γ exp(η + αi + βj).

In the above we have considered various methods for modelling the probabilities in a

mulitnomial and Poisson distributions. In the theorem we show that so long as the

probabilities and Poisson means are linked in a specific way, the estimators of β will be

identical.

Theorem 10.2.2 (Equivalence of estimators) Let us suppose that πij and µij are de-

fined by

πij = πij(β) λij = γπij(β),
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where γ and β = {αi, βj} are unknown and C(β) is a known function of β (such as∑
i,j exp(αi + βj) or 1). Let

LP (β, γ) =
C∑
i=1

R∑
j=1

(
yij log γπij(β)− γπij(β)

)

LM(β) =
C∑
i=1

R∑
j=1

yij log πij(β)

LF (β, γ) = N log γ − γ,

which is the log-likelihoods for the Multinomial and Poisson distributions without unnec-

essary constants (such as yij!). Define

(β̂P , γ̂P ) = arg maxLP (β, γ)

β̂B = arg maxLM(β) γ̂F = arg maxLF (β, γ).

Then β̂P = β̂M and γ̂P = γ̂M = N/C(β̂M).

PROOF. We first consider LP (β, γ). Since
∑

i,j pi,j(β) = 1 and
∑

i,j yi,j = 1 we have

LP (β, γ) =
C∑
i=1

R∑
j=1

(
yij log γC(β)πij(β) + γC(β)πij(β)

)

=
C∑
i=1

R∑
j=1

(
yij log πij(β)

)
+N log γC(β)− C(β)γ.

Now we consider the partial derivatives of LP to obtain

∂LP
∂β

=
∂LM
∂β

+ γ
∂C(β)

∂β

(
N

γC(β)
− 1

)
= 0

∂LP
∂γ

=

(
N

γ
− C(β)

)
= 0.

Solving the above we have that β̂P and γ̂P satisfy

γ̂P =
N

Ĉ(β)

∂LM
∂β
cβ=β̂P

= 0. (10.1)

Now we consider the partial derivatives of LM and LC
∂LM
∂β

= 0
∂LF
∂γ

=

(
N

γ
− C(β)

)
= 0. (10.2)

Comparing the estimators in (10.1) and (10.2) it is clear that the maximum likelihood

estimators of β based on the Poisson and the Binomial distributions are the same. �
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Example 10.2.2 Let us consider fitting the Poisson and the multinomial distributions to

the data in a contingency table where πij and λij satisfy

λij = exp(η + β′xij) and πij =
exp(β′xij)∑
s,t exp(β′xs,t)

.

Making a comparison with λij(β) = γC(β)πij(β) we see that γ = exp(η) and C(β) =∑
s,t exp(β′xs,t). Then it by using the above theorem the estimator of β is the parameter

which maximises

C∑
i=1

R∑
j=1

(
yij log

exp(β′xij)∑
s,t exp(β′xs,t)

)
,

and the estimator of γ is the parameter which maximises

N log exp(η)C(β̂)− exp(η)C(β̂),

which is η = logN − log(
∑

s,t exp(β̂′xs,t)).

10.3 Overdispersion

The binomial and Poisson distributions have the disadvantage that they are determined

by only one parameter (π in the case of Binomial and λ in the case of Possion). This can

be a disadvantage when it comes to modelling certain types of behaviour in the data. A

type of common behaviour in count data is overdispersed, in the sense that the variance

appears to be larger than the model variance.

Checking for overdispersion

• First fit a Poisson model to the data.

• Extract the Pearson residuals from the data (see Section 9.3.5), for the Poisson it is

ri =
(Yi − µ̂i)

φ1/2V (µi)1/2
=
Yi − µ̂i√

µi
.

If the model is correct, the residuals {ri} should be ‘close’ to a standard normal

distribution. However, in the case of overdispersion it is likely that the estimated

variance of ri will be greater than one.

• Plot ri against µi.
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10.3.1 Modelling overdispersion

Modelling overdispersion can be done in various ways. Below we focus on Poisson-type

models.

Zero inflated models

The number of zeros in count data can sometimes be more (inflated) than Poisson or

binomial distributions are capable of modelling (for example, if we model the number of

times a child visits the dentist, we may observe that there is large probability the child

will not visit the dentist). To model this type of behaviour we can use the inflated zero

Poisson model, where

P (Y = k) =

(
(1− p)(1− exp(−λ)) = 1− p+ p exp(−λ) k = 0

p exp(−λ)λk

k!
k > 0

.

We observe that the above is effectively a mixture model. It is straightforward to show

that E(Y ) = pλ and var(Y ) = pλ(1 + λ(1− p)), hence

var(Y)

E(Y)
= (1 + λ(1− p)).

We observe that there is more dispersion here than classical Poisson where var(Y)/E(Y) =

1.

Modelling overdispersion through moments

One can introduce overdispersion by simply modelling the moments. That is define a

psuedo Poisson model in terms of its moments, where E(Y) = λ and var(Y) = λ(1 + δ)

(δ ≥ 0). This method does not specify the distribution, it simply places conditions on the

moments.

Modelling overdispersion with another distribution (latent variable)

Another method for introducing overdispersion into a model is to include a ‘latent’ (un-

observed) parameter ε. Let us assume that ε is a positive random variable where E(ε) = 1

and var(ε) = ξ. We suppose that the distribution of Y conditioned on ε is Poisson, i.e.

P (Y = k|ε) = (λε)k exp(−λε)
k!

. The introduction of latent variables allows one to generalize
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several models in various directions. It is a powerful tool in modelling. For example, if

one wanted to introduce dependence between theYis one can do this by conditioning on

a latent variable which is dependent (eg. the latent variable can be a time series).

To obtain the moments of Y we note that for any random variable Y we have

var(Y ) = E(Y 2)− E(Y )2 = E

(
E(Y 2|ε)− E(Y |ε)2

)
+ E

(
E(Y |ε)2

)
− E

(
E(Y |ε)

)2

= E

(
var(Y |ε)

)
+ var(E(Y |ε)),

where we note that var(Y |ε) =
∑∞

k=0 k
2P (Y = k|ε)−(

∑∞
k=0 kP (Y = k|ε))2 and E(Y |ε) =∑∞

k=0 kP (Y = k|ε). Applying the above to the conditional Poisson we have

var(Y ) = E(2(λε)− (λε)) + var(λε)

= λ+ λ2ξ = λ(1 + λξ)

and E(Y ) = E(E(Y |ε)) = λ.

The above gives an expression in terms of moments. If we want to derive the distribution

of Y , we require the distribution of ε. This is normally hard in practice to verify, but

for reasons of simple interpretation we often let ε have a Gamma distribution f(ε; ν, κ) =
νκεk−1

Γ(κ)
exp(−νε), where ν = κ, hence E(ε) = 1 and var(ε) = 1/ν(= ξ). Therefore in

the case that ε is a Gamma distribution with density f(ε; ν, ν) = ννεν−1

Γ(ν)
exp(−νε) the

distribution of Y is

P (Y = k) =

∫
P (Y = k|ε)f(ε; ν, ν)dε

=

∫
(λε)k exp(−λε)

k!

ννεk−1

Γ(ν)
exp(−νε)dε

=
Γ(k + ν)

Γ(ν)k!

ννλk

(ν + λ)ν+λ
.

This is called a negative Binomial (because in the case that ν is an integer it resembles

a regular Binomial but can take infinite different outcomes). The negative binomial only

belongs to the exponential family if ν is known (and does not need to be estimated). Not

all distributions on ε lead to explicit distributions of Y . The Gamma is popular because

it leads to an explicit distribution for Y (often it is called the conjugate distribution).

A similar model can also be defined to model overdispersion in proportion data, using

a random variable whose conditional distribution is Binomial (see page 512, Davison

(2002)).
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Remark 10.3.1 (Using latent variables to model dependence) Suppose Yj condi-

tioned on {εj} follows a Poisson distribution where P (Yj = k|εj) =
(λεj)

k exp(−λεj)
k!

and

Yi|εi and Yj|εj are conditionally independent. We assume that {εj} are positive contin-

uous random variables with correlation cov[εi, εj] = ρi,j. The correlations in εj induce a

correlation between Yj through the relation

cov [Yi, Yj] = E

cov [Yi, Yj|εi, εj]︸ ︷︷ ︸
=0(a.s.)

+ cov

E[Yi|εi]︸ ︷︷ ︸
=λεi

,E[Yj|εj]︸ ︷︷ ︸
=λεj


= λ2cov (εi, εj) = λ2ρij.

10.3.2 Parameter estimation using estimating equations

We now consider various methods for estimating the parameters. Some of the methods

described below will be based on the Estimating functions and derivations from Section

9.3.1, equation (9.10).

Let us suppose that {Yi} are overdispersed random variables with regressors {xi} and

E(Yi) = µi with g(µi) = β′xi. The natural way to estimate the parameters β is to

use a likelihood method. However, the moment based modelling of the overdispersion

does not have a model attached (so it is not possible to use a likelihood method), and the

modelling of the overdispersion using, say, a Gamma distribution, is based on a assumption

that is hard in practice to verify (that the latent variable is Gaussian). An alternative

approach is to use moment based/estimating function methods which are more robust

to misspecification than likelihood methods. In the estimation we discuss below we will

focus on the Poisson case, though it can easily be generalised to the non-Poisson case.

Let us return to equation (9.10)
n∑
i=1

(Yi − µi)xij
φV (µi)g′(µi)

=
n∑
i=1

(Yi − µi)xij
φV (µi)

dµi
dηi

= 0 1 ≤ j ≤ p. (10.3)

In the case of the Poisson distribution, with the log link the above is
n∑
i=1

(Yi − exp(β′xi))xij = 0 1 ≤ j ≤ p. (10.4)

We recall if {Yi} are Possion random variables with mean exp(β′xi), then variance of the

limiting distribution of β is

(β̂ − β) ≈ Np(0, (X
TWX)−1),
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since the Fisher information matrix can be written as

(I(β))jk = E

(
−∂

2Ln(β)

∂βj∂βk

)
= E

(
−

n∑
i=1

d2`i
dη2

i

xijxik

)
= (XTWX)jk.

where

W = diag

(
E(−∂

2`1(η1)

∂η2
1

), . . . ,E(−∂
2`n(ηn)

∂η2
n

)

)
= diag (exp(β′x1), . . . , exp(β′xn)) .

However, as we mentioned in Section 9.3.1, equations (10.3) and (10.4) do not have

to be treated as derivatives of a likelihood. Equations (10.3) and (10.4) can be viewed as

estimating equation, since they only use the first and second order moments of {Yi}. Hence

they can be used as the basis of the estimation scheme even if they are not as efficient as

the likelihood. In the overdispersion literature the estimating equations (functions) are

often called the Quasi-likelihood.

Example 10.3.1 Let us suppose that {Yi} are independent random variables with mean

exp(β′xi). We use the solution of the estimating function

n∑
i=1

g(Yi; β) =
n∑
i=1

(Yi − exp(β′xi))xij = 0 1 ≤ j ≤ p.

to estimate β. Using Theorem 8.2.2 we derive the asymptotic variance for two models:

(i) E(Yi) = exp(β′xi) and var(Yi) = (1 + δ) exp(β′xi) (δ ≥ 0).

Let us suppose that E(Yi) = exp(β′xi) and var(Yi) = (1 + δ) exp(β′xi) (δ ≥ 0).

Then if the regularity conditions are satisfied we can use Theorem 8.2.2 to obtain

the limiting variance. Since

E

(
−∂
∑n

i=1 g(Yi; β)

∂β

)
= XTdiag (exp(β′x1), . . . , exp(β′xn))X

var

(
n∑
i=1

g(Yi; β)

)
= (1 + δ)XTdiag

(
exp(β′x1), . . . , exp(β′xn)

)
X,

the limiting variance is

(1 + δ)(XTWX)−1 = (1 + δ)(XTdiag (exp(β′x1), . . . , exp(β′xn))X)−1.
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Therefore, in the case that the variance is (1 + δ) exp(β′xi), the variance of the

estimator using the estimating equations
∑n

i=1 g(Yi; β), is larger than for the regular

Poisson model. If δ is quite small, the difference is also small. To estimate δ we

can use

n∑
i=1

(Yi − exp(β̂′xi))
2

exp(β̂′xi)
.

(ii) E(Yi) = exp(β′xi) and var(Yi) = exp(β′xi)(1 + ξ exp(β′xi)).

In this case we have

E

(
−∂
∑n

i=1 g(Yi; β)

∂β

)
= XTWX and var(

n∑
i=1

g(Yi; β)) = XT W̃X,

where

W = diag

(
exp(β′x1), . . . , exp(β′xn)

)
W̃ = diag

(
exp(β′x1)(1 + ξ exp(β′x1)), . . . , exp(β′xn)(1 + ξ exp(β′xn))

)
.

Hence the limiting variance is

(XTWX)−1(XT W̃X)(XTWX)−1.

We mention that the estimating equation can be adapted to take into count the

overdispersion in this case. In other words we can use as an estimator of β, the β

which solves

n∑
i=1

(Yi − exp(β′xi))

(1 + ξ exp(β′xi))
xij = 0 1 ≤ j ≤ p.

Though we mention that we probably have to also estimate ξ when estimating β.

10.4 A worked problem

(1) (a) Suppose that U is a Poisson distributed random variable with mean λ. Then

for k ≥ 0,

P (U = k) =
λke−λ

k!
. (10.5)
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(i) Let us suppose U1, . . . , Un are independent, identically distributed random

variables from a Poisson distribution. What is the maximum likelihood

estimator of λ?

(ii) For several count data sets it has been observed that there is an excessive

number of zeros. To model ‘inflated-zero’ count data, the zero-inflated

Poisson distribution model was proposed, where the observations are mod-

elled as

Y = δU,

where δ and U are independent random variables, δ takes on value either

zero or one with P (δ = 0) = p, P (δ = 1) = (1 − p), and U has a Poisson

distribution as defined as in (10.5).

Briefly explain why this model can account for an excessive number of

zeros.

(iii) Show that the estimator defined in (i) is a biased estimator of λ when the

observations come from a zero-inflated Poisson distribution.

(b) In this part of the question we consider the zero-inflated Poisson regression

model, proposed in Lambert (1992), which is defined as

Yj = δjUj,

where δj and Uj are independent random variables, P (δj = 0) = p, P (δj =

1) = (1− p), and Uj has a Poisson distribution with mean λj = eβxj and xj is

a fixed covariate value. Our objective is to first construct crude estimators for

p and β and to use these estimates as the initial values in an iterative scheme

to obtain the maximum likelihood estimator.

(i) Estimation of β. What is the distribution of Yj conditioned on Yj > 0 and

xj?

Argue that, for each k = 1, 2, . . .,

P (Yj = k|Yj > 0) =
e−λjλkj/k!

(1− e−λj)
. (10.6)

Let Y + be the vector of all the non-zero Yjs. Use result (10.6) to define a

conditional log-likelihood for Y + given that all the Yjs in Y + are positive.
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Determine the derivative of this conditional log-likelihood, and explain

how it can be used to determine an estimate of β. Denote this estimator

as β̂.

(ii) Estimation of p. Define the dummy variable

Zj =

{
0 if Yj = 0

1 if Yj > 0.

Use Z1, . . . , Zn to obtain an explicit estimator of p in terms of Y1, . . . , Yn,

x1, . . . , xn and β̂.

Hint: One possibility is to use estimating equations.

(iii) We may regard each δj as a missing observation or latent variable. What

is the full log-likelihood of (Yj, δj), j = 1, . . . , n, given the regressors

x1, . . . , xn?

(iv) Evaluate the conditional expectations E[δj|Yj = k], k = 0, 1, 2, . . ..

(v) Use your answers in part (iii) and (iv) to show how the EM-algorithm can

be used to estimate β and p. (You need to state the criterion that needs

to be maximised and the steps of the algorithm).

(vi) Explain why for the EM-algorithm it is important to use good initial values.

Reference: Zero-inflated Poisson Regression, with an application to defects in man-

ufactoring. Diane Lambert, Technometrics, vol 34, 1992.

Solution

(1) (a) Suppose that U is a Poisson distributed random variable, then for k ≥ 0,

P (U = k) =
λke−λ

k!
. (10.7)

(i) Let us suppose {Uj} independent, identically distributed random variables

from a Poisson distribution. What is the maximum likelihood estimator

of λ?

It is clear that it is the sample mean, λ̂ = 1
n

∑n
j=1 Uj

(ii) For several count data sets it has been observed that there is an excessive

number of zeros. To model ‘inflated-zero’ count data, the zero-inflated

284



Poisson distribution model was proposed where the observations are mod-

elled as

Y = δU,

δ and U are random variables which are independent of each other, where

δ is random variable taking either zero or one, P (δ = 0) = p, P (δ = 1) =

(1− p) and U is a Poisson random variable as defined as in (10.7) Briefly

explain why this model can is able to model excessive number of zeros.

The probability of zero is P (Y = 0) = p + (1 − p)e−λ. Thus if p

is sufficiently large, the chance of zeros is larger than the usual

Poisson distribution (for a given λ).

(ii) Show that the estimator defined in (i) is a biased estimator of λ when the

observations come from an zero-inflated Poisson distribution.

E[λ̂] = (1− p)λ, thus when p > 0, λ̂ underestimates λ.

(b) In this part of the question we consider the zero-inflated poisson regression

model, proposed in Lambert (1992), which is defined as

Yj = δjUj

where δj and Uj are random variables which are independent of each other, δj

is an indicator variable, where P (δj = 0) = p and P (δj = 1) = (1− p) and Uj

has a Poisson regression distribution with

P (Uj = k|xj) =
λkj e

−λj

k!

where λj = eβxj and xj is an observed regressor. Our objective is to first

construct initial-value estimators for p and β and then use this to estimate as

the initial values in when obtaining the maximum likelihood estimator.

(i) Estimation of β First obtain the distribution of Yj conditioned on Yj > 0

and xj.

We note that P (Yj > 0) = P (δj = 1, Uj > 0) = P (δj = 1)P (Uj > 0) =

(1 − p)(1 − eλj). Similarly P (Yj = k, Yj > 0) = P (Uj = k, δj = 1) =

(1− p)P (Uj = k). Thus

P (Yj = k|Yj > 0) =
λkj exp(−λj)
(1− eλj)k!
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Let Y + = {Yj > 0} (all the non-zero Yj). Obtain the conditional log-

likelihood of Y + conditioned on Yj > 0 and x = (x1, . . . , xn). Derive the

score equation and explain how β can be estimated from here. Denote this

estimator as β̂.

The log-conditional likelihood is proportional to

LC(β) =
∑
Yj>0

[
Yj log λj − λj − log(1− eλj)

]
=

∑
Yj>0

{
βYjxj − eβxj − log(1− eβxj)

}
.

Thus to estimate β we differentiate the above wrt β (giving the

score) and numerically solve the folling equation wrt β∑
Yj>0

Yjxj =
∑
Yj>0

xje
βxj

{
1− 1

1− eβxj

}
.

(ii) Estimation of p Define the dummy variable

Zj =

{
0 if Yj = 0

1 if Yj > 0.

Use {Zj} to obtain an explicit estimator of p in terms of Y , x and β̂.

Hint: One possibility is to use estimating equations.

We solve the estimating equation

n∑
j=1

[Zj − E(Zj)] = 0,

wrt p. It is clear that E(Zj) = P (Zj = 1) = (1 − P (Zj = 0)) =

(1− p)(1− e−λj). Thus the estimating equation is

n∑
j=1

[
Zj − (1− p)(1− e−λj)

]
= 0.

Replacing λj with λ̂j = eβ̂xj and solving for p yields the estimator

p̂ = 1−
∑n

j=1 Zj∑n
j=1[1− exp(−eβ̂xj)]

.
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(iii) What is the complete log-likelihood of {Yj, δj; j = 1, . . . , n} (acting as if

the variable δj is observed) given the regressors {xj}?

The distribution of (Yj, δj) is

P (Yj = k, δj) = [P (Uj = k)P (δj = 1)]δj [P (δj = 0)]1−δj .

Thus the log-likelihood of {Yj, δj; j = 1, . . . , n} is

LF (p, β) =
n∑
j=1

δj [Yj log λj − λj + log(1− p)] +
n∑
j=1

(1− δj) log p.

(iv) Evaluate the conditional expectations E[δj|Yj > 0] and E[δj|Yj = 0].

E[δj|Yj > 0] = 1 (since if Yj > 0 then the only choice is δj = 1),

E[δj|Yj = 0] = P (δj = 1|Yj = 0) =
(1− p)e−λj

p+ (1− p)e−λj

and

E[1− δj|Yj = 0] = P (δj = 0|Yj = 0) =
p

p+ (1− p)e−λj

(v) Use your answers in part (iii) and (iv) to show how the EM-algorithm can

be used to estimate β and p (you need to state the criterion that needs to

be maximise and the steps of the algorithm).

Splitting the sum
∑n

j=1 into
∑

Yj>0 and
∑

Yj=0, and taking expec-

tations of LF with respect to Y gives

Q(θ; θ∗) =
∑
Yj>0

[Yj log λj − λj + log(1− p)]

+
∑
Yj=0

(
(1− p∗)e−λ∗j

p∗ + (1− p∗)e−λ∗j

)
[λj + log(1− p)]

+
∑
Yj=0

(
p∗

p∗ + (1− p∗)e−λ∗j

)
log p

= Q1(β; θ∗) +Q2(p; θ∗),

where λ∗j = exp(β∗xj), θ = (p, β), θ∗ = (p∗, β∗),

Q1(β; θ∗) =
∑
Yj>0

[Yj log λj − λj] +
∑
Yj=0

(1− π∗)λj

Q2(p; θ∗) =
∑
Yj>0

log(1− p) +
∑
Yj=0

[
(1− π∗j ) log(1− p) + π∗j log p

]
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and

π∗j =
p∗

p∗ + (1− p∗)e−λ∗j
.

Using Q(θ; θ∗) we can then implement the EM-algorithm:

1. Let p∗ = p̂ and β∗ = β̂. Then evaluate Q1(β; θ∗) and Q2(p; θ∗).

2. Differentiate Q1(β; θ∗) wrt β and Q2(p; θ∗) wrt p (keeping θ∗

fixed) and solve for p and θ (needs to be done numerically).

Set the solution θ∗ = θ̂.

3. Evaluate Q1(β; θ∗) and Q2(p; θ∗) with respect to the new θ∗ and

go back to (2).

4. Keep iterating until convergence.

(vi) Explain why in the EM-algorithm it is important to use good initial values.

The EM algorithm is an iterative scheme which successively max-

imises the likelihood. However, if it climbs to a local maximum

it will stay at that point. By using initial values, which are con-

sistent, thus relatively close to the global maximum we can be

reasonably sure that the EM-algorithm converged to a global

maximum (rather than a local one).
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Chapter 11

Survival Analysis with explanatory

variables

11.1 Survival analysis and explanatory variables

In this section we build on the introduction to survival analysis given in Section 12. Here

we consider the case that some explanatory variables (such as gender, age etc.) may have

an influence on survival times. See also Section 10.8, Davison (2002).

We recall that in Section 12, the survivial times {Ti} were iid random variables, which

may or may not be observed. We observe Yi = min(ci, Ti) and the indicator variable δi

which tells us whether the individual is censored or not, that is δi = 1 if Yi = Ti (ie. the

ith individual was not censored) and other zero otherwise. In this case, we showed that

the likelihood (with the censoring times {ci} treated as deterministic) is given in (6.4) as

Ln(θ) =
n∑
i=1

(
δi log f(Yi; θ) + (1− δi) log

(
1− F (Yi; θ)

))
=

n∑
i=1

δi log h(Ti; θ)−
n∑
i=1

H(Yi; θ),

where f(t; θ), F(t; θ) = P (Ti ≥ t), h(t; θ) = f(t; θ)/F(t; θ) and H(t; θ) =
∫ t

0
h(y; θ)dy =

− logF(t; θ) denote the density, survival function, hazard function and cumulative hazard

function respectively.

We now consider the case that the survival times {Ti} are not identically distributed

but determined by some regressors {xi}. Furthermore, the survival times could be cen-
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sored, hence we observe {(Yi, δi, xi)}, where Yi = min(Ti, ci). Let us suppose that Ti has

the distribution specified by the hazard function h(t;xi, β) (hence the hazard depends on

both parameters and explanatory variables xi, and we want to analyse the dependency

on xi. It is straightforward to see that the log-likelihood of {(Yi, δi, xi)} is

Ln(β) =
n∑
i=1

δi log h(Ti;xi, β)−
n∑
i=1

H(Yi;xi, β).

There are two main approaches for modelling the hazard function h:

• Proportional hazards (PH). The effect of xi is to scale up or down the hazard

function

• Accelerated life (AL). The effect of xi is to speed up or slow down time.

We recall that from the hazard function, we can obtain the density of Ti, though for

survival data, the hazard function is usually more descriptive.

In the sections below we define the proportional hazard and accelerated life hazard

function and consider methods for estimating β.

11.1.1 The proportional hazards model

Proportional hazard functions are used widely in medical applications.

Suppose the effect of x is summarised by a one-dimensional non-negative hazard ratio

function ψ(x; β) (sometimes called the risk score). That is

h(t;x, β) = ψ(x; β)h0(t),

where h0(t) is a fully-specified baseline hazard. We choose the scale of measurement for

x so that ψ(0) = 1, i.e. h0(t) = h(t; 0, β). It follows that

H(t;x, β) = ψ(x; β)H0(t)

F(t;x, β) = F0(t)ψ(x;β)

f(t;x, β) = ψ(x)(F0(t))ψ(x;β)−1f0(t).

Recall that in question 5.4.5 (HW5), we showed that if F(x) was a survival function, then

F(x)γ also defines a survival function, hence it corresponded to a well defined density. The
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same is true of the proportional hazards function. By defining h(t;x, β) = ψ(x; β)h0(t),

where h0 is a hazard function, we have that h(t;x, β) is also a viable hazard function.

A common choice is ψ(x; β) = exp(β′x), with β to be estimated. This is called the

exponential hazard ratio.

MLE for the PH model with exponential hazard ratio

The likelihood equations corresponding to h(t;x, β) and H(t;x, β) are

Ln(β) =
n∑
i=1

δi log exp(β′xi)h0(Yi)−
n∑
i=1

exp(β′xi)H0(Yi)

=
n∑
i=1

δi
[
β′xi) + log h0(Yi)

]
−

n∑
i=1

[
exp(β′xi))H0(Yi)

]
,

where the baseline hazard h0 and H0 is assumed known. The derivative of the above

likelihood is

∂Ln(β)

∂βj
=

n∑
i=1

δixij −
n∑
i=1

xije
β′xiH0(Yi) = 0 1 ≤ j ≤ p.

In general ther is no explicit solution for β̂, but there is in some special cases. For

example, suppose the observations fall into k disjoint groups with xij = 1 if i is in group

j, 0 otherwise. Let mj be the number of uncensored observations in group j, that is

mj =
∑

i δixij. Then the likelihood equations become

∂LT (β)

∂βj
= mj −

∑
i

δie
βjH0(Yi) = 0

hence the mle estimator of βj is

β̂j = log
[
mj/

∑
i

δiH0(Yi)
]
.

Another case that can be solved explicitly is where there is a single explanatory variable

x that takes only non-negative integer values. Then ∂Ln
∂β

is just a polynomial in eβ and

may be solvable.

But in general, we need to use numerical methods. The numerical methods can be

simplified by rewriting the likelihood as a GLM log-likelihood, plus an additional term
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which plays no role in the estimation. This means, we can easily estimate β using existing

statistical software. We observe that log-likelihood can be written as

Ln(β) =
n∑
i=1

δi
[
β′xi) + log h0(Yi)

]
−

n∑
i=1

[
exp(β′xi))H0(Yi)

]
=

n∑
i=1

δi
[
β′xi) + logH0(Yi)

]
−

n∑
i=1

exp(β′xi)H0(Yi) +
n∑
i=1

δi log
h0(Yi)

H0(Yi)
.

Hence the parameter which maximises Ln(β) also maximises L̃n(β), where

L̃n(β) =
n∑
i=1

δi
[
β′xi) + logH0(Yi)

]
−

n∑
i=1

exp(β′xi)H0(Yi).

In other words the likelihoods Ln(β) and L̃n(β) lead to the same estimators. This means

that we can use L̃n(β) as a means of estimating β. The interesting feature about L̃n(β)

is that it is the log-likelihood of the Poisson distribution where δi is the variable (though

in our case it only takes zero and one) with mean λi = exp(β′xi)H0(Yi). Hence we can

do the estimation of β within the GLM framework, where we use a Poisson log-likelihood

(δi, xi) as the observations and regressors, and model the mean λi as exp(β′xi)H0(Yi).

It is worth mentioning that the above estimation method is based on the assumption

that the baseline hazard h0 is known. This will not always be the case, and we may want

to estimate β without placing any distributional assumptions on h. This is possible using

a Kaplan Meier (semiparametric) type likelihood. The reader is referred to a text book

on survival analysis for further details.

11.1.2 Accelerated life model

An alternative method for modelling the influence of explanatory variables (regressors)

on the response is to use the accelerated life model. An individual with explanatory

variables x is assumed to experience time speeded up by a non-negative factor ξ(x),

where we suppose ξ(0) = 1, i.e. x = 0 represents the baseline again. Thus:

F(t;x) = F0(ξ(x)t)

f(t;x) = ξ(x)f0(ξ(x)t)

h(t;x) = ξ(x)h0(ξ(x)t).
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If there were only a small number of possible values for ξ(x), either through x being very

discrete (ordinal), or because of the assumed form for ξ, we could just take the unique

values of ξ(x) as parameters, and estimate these (the same can be done in the PH case).

Except in the case mentioned above, we usually assume a parametric form for ξ and

estimate the parameters. As with the PH model, a natural choice is ξ(x) = eβ
′x.

Popular choices for the baseline F0 is exponential, gamma, Weibull, log-normal and

log-logistic.

MLE for the AL model with exponential speed-up

In this section we will assume that ξ(x) = exp(β′x). Hence F(t;x) = F0(exp(β′x)t).

There are various methods we can use to estimate β. One possibility is to go the likeihood

route

Ln(β) =
n∑
i=1

δi log h0

(
exp(β′xi)Yi

)
−

n∑
i=1

exp(β′xi)H0(exp(β′xi)Yi),

where the baseline hazard function h0 is known. But this would mean numerically max-

imising the likelihood through brute force. To use such a method, we would require a

good initial value for β. To obtain a good initial value, we now consider an alternative

method for estimating β.

Let us define the transformed random variable W = log T + β′x. The distribution

function of W is

P{W < w} = P{log T < w − β′x}

= 1− P{T ≥ exp(w − β′x)}

= 1−F(ew−β
′x) = 1−F0(ew)

Thus, W has a distribution that is independent of x, and indeed is completely known if

we assume the baseline is fully specified. Hence log T satisfies the linear model

log Ti = µ0 − β′xi + εi,

where E(W ) = µ0 and εi are iid random variables with mean zero.

Hence if the observations have not been censored we can estimate β′x, by minimising

the log-likelihood
n∑
i=1

(
β′xi + log f0(log Ti + β′xi)

)
.
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However, an even simplier method is to use classical least squares to estimate β. In other

words use the µ and β which minimise

n∑
i=1

(
log Ti − µ− β′xi

)2

as estimators of µ0 and β respectively. Hence, this gives us the best Minimum Variance

Linear Unbiased Estimator (MVLUE) of β. But it is worth mentioning that a likelihood

based estimator gives a smaller asymptotic variance. If there is censoring, there are more

complicated algorithms for censored linear models, or use Newton-Raphson for solving

the likelihood equations.

Unlike, the proportional hazard models, there is no connection between parameter

estimation in accelerated life models and GLM.

11.1.3 The relationship between the PH and AL models

The survivor functions under the two models are PH with hazard ratio function ψ:

F(t;x) = (F0(t))ψ(x) and AL with speed-up function ξ: F(t;x) = F0(ξ(x)t). Let us

suppose the baseline survival distribution in both cases is the Weibull with

F0(t) = exp

{
−
(
t

θ

)α}
Hence using this distribution the proportional hazards and accelerated life survival func-

tions are

FPH(t;x) = exp

{
−
(
t

θ

)α
ψ(x)

}
and FAL(t;x) = exp

{
−
(
tξ(x)

θ

)α}
.

Comparing the above survival functions we see that if ξ(x) ≡ (ψ(x))1/α, then we have

FPH(t;x) = FAL(t;x).

In fact, it is quite easy to show that this is the only case where the two models coincide.

11.1.4 Goodness of fit

As in most cases of statistical modelling we want to verify whether a model is appropriate

for a certain data set. In the case of linear models, we do this by considering the residual

sum of squares and for GLM we consider the deviance (see Section 9.3.5). The notion of

‘residual’ can be extended to survival data. We recall that ‘residuals’ in general should be
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pivotal (or asymptotically pivotal) in the sense that their distribution should not depend

on the unknown parameters. We now make a tranformation of the survival data which is

close to pivotal if the survival distribution and model are correctly specified.

Let us first consider the case that the data is not censored. Let Ti denote the survival

time, which has the survival and cumulative hazard functions Fi and Hi(t) = − logFi(t)
(later we will introduce its dependence on the explanatory variable xi). Let us consider

the distribution of Hi(Ti). The distribution function of Hi(Ti) is

P (Hi(Ti) ≤ y) = P (logFi(Ti) > −y)

= P (Fi(Ti) > exp(−y))

= P (1− Fi(Ti) ≥ exp(−y)) = P (F (Ti) ≤ 1− exp(−y))

= P (Ti ≤ F−1(1− exp(−y))) = F (F−1(1− exp(−y))) = 1− exp(−y).

Hence the distribution of Hi(Ti) is a exponential with mean one, in other words it does

not depend on any unknown parameters.

Therefore in the case of uncensored data, to check for adequency of the model we

can fit the survival models {F(t, xi; β)} to the observations {Ti} and check whether the

transformed data {H(Ti, xi; β̂)} are close to iid exponentials. These are called the Cox-

Snell residuals, they can be modified in the case of censoring.
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