STAT 415 — Midterm 2 (Spring 2021)

Name: ______

Exam rules:

- You have 90 minutes to complete the exam.
- There are **4** Questions.
- You may use the provided formula sheet (this is a closed book exam).
- You are only allowed to use a pen and pencil (or ipad for writing). You cannot use the internet to find anwers and you cannot confer with class mates.
- Explain your arguments carefully, show all your work, and write out all your steps. Credit will be given for clarity. No credit will be given for a solution without working.
- If you are caught cheating or helping someone to cheat on this exam, you will both receive a grade of zero on the exam and you will be turned in.

1. Define the bivariate random vector

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim N\left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix}\right).$$

Let $Y_1 = X_1 - X_2$ and $Y_2 = X_1 + X_2$.

Obtain (necessary and sufficient) conditions that ensure that Y_1 and Y_2 are independent random variables. [2]

2. Suppose that $\{X_t\}_{t=1}^n$ are iid (independent, identically distributed) random variables with $\mathbb{E}[X_t] = \mu$ and $\operatorname{var}[X_t] = \sigma^2$. Suppose that U and $\{X_t\}_{t=1}^n$ are independent of each other. At the time points $t = 2^k$ (k = 1, 2, 3...) X_t is corrupted with the noise U where $\mathbb{E}[U] = 0$ and $\operatorname{var}[U] = \sigma_U^2$. We observe the random variables $\{Y_t\}$ where

$$Y_t = \begin{cases} X_t & \text{if } t \neq 2^k \text{ where } k = 1, 2, 3, \dots \\ X_t + U & \text{if } t = 2^k. \end{cases}$$

Let $\bar{Y} = n^{-1} \sum_{t=1}^{n} Y_t$.

- (i) Show that \overline{Y} is an unbiased estimator of μ .
- (ii) Obtain the Mean Squared error of \bar{Y} , $E[(\bar{Y} \mu)^2]$.
- (iii) Is \bar{Y} an asymptotically consistent estimator of μ ? Prove your claim (yes or no is not enough). [4]

3. Suppose that $\{X_i\}_{i=1}^n$ are iid random variables with the exponential distribution

$$f(x; \theta) = \frac{1}{\theta} \exp(-x/\theta), \quad x \ge 0.$$

You can use that $E[X_i] = \theta$.

- (i) Obtain the maximum likelihood estimator of θ and the Fisher information $I(\theta)$.
- (ii) For a fixed sample size n, make a sketch of the log-likelihood function corresponding to a large Fisher information and a small Fisher information (and the corresponding θ). Indicate on your plots which log-likelihood will have an MLE with a small variance and which will have a large variance. [4]

4. Suppose $\{X_i\}_{i=1}^n$ are iid geometrically distributed random variables with probability mass function

$$P(X = k; \pi) = \pi (1 - \pi)^{k-1}$$
 $k = 1, 2, \dots$

You can use that $E[X_i] = 1/\pi$ and $var[X_i] = (1 - \pi)/\pi^2$.

(i) Define the new random variable

$$Y_i = \begin{cases} 1 & \text{if } X_i = 1\\ 0 & \text{if } X_i > 1 \end{cases}$$

Obtain $E[Y_i]$ and derive the method of moments estimator of p based on $\{Y_i\}$. Call this estimator $\hat{\pi}_{MoM}$

[3]

- (ii) Derive the asymptotic distribution of $\hat{\pi}_{MoM}$.
- (iii) Using $\{X_i\}$ derive the maximum likelihood estimator of π . Call this $\hat{\pi}_{MLE}$
- (iv) Derive the asymptotic distribution of $\hat{\pi}_{MLE}$ (using any of the results we derived in class). [3]
- (v) Construct asymptotic 95% confidence intervals for π using $\hat{\theta}_{MoM}$ and $\hat{\theta}_{MLE}$ (this should be two intervals).
- (vi) Compare the asymptotic variance of $\hat{\pi}_{MoM}$ and asymptotic variance of $\hat{\pi}_{MLE}$. In terms of variance which estimator is better and how does this impact the confidence interval in part (v)?
- (vii) Which of the random variables $\{Y_i\}$ and $\{X_i\}$ contain more "information" about the parameter π . [4]

Only a heuristic explanation is required you do not need to calculate the Fisher information of both estimators.