STAT 415 - Midterm 1 (Spring 2021)

Name: Solutions

Exam rules:

- You have 90 minutes to complete the exam.
- There are 4 Questions.
- You may use the provided formula sheet.
- You are only allowed to use a pen and pencil (or ipad for writing). You cannot use the internet to find anwers and you cannot confer with class mates.
- Explain your arguments carefully, show all your work, and write out all your steps. Credit will be given for clarity. No credit will be given for a solution without working.
- If you are caught cheating or helping someone to cheat on this exam, you will both receive a grade of zero on the exam and you will be turned in.

1. Define the bivariate random vector

$$
\begin{aligned}
\underline{U}=\binom{X}{Y} & =0.2 Z_{1} \underline{e}_{1}+2 Z_{2} \underline{e}_{2} \\
& =0.2\binom{Z_{1} / 2}{Z_{1}}+2\binom{Z_{2}}{-Z_{2} / 2}
\end{aligned}
$$

where Z_{1}, Z_{2} are id normal standard random variables, $\underline{e}_{1}^{\prime}=(1 / 2,1)$ and $\underline{e}_{2}^{\prime}=(1,-1 / 2)$.
(i) Suppose that $\{\underline{U}\}_{i=1}^{n}$ are id random variables where $\underline{U}_{i} \sim \underline{X}$. Draw a plot (a plot as a guide is given) of 30 or so typical realisations of $\{\underline{U}\}_{i=1}^{n}$ (plotting X against Y); enough to get the general behaviour of \underline{U}.

* Vanation on es very small.
* Variation on e_{2} is loge

(ii) Derive the distribution of (X, Y).

$$
\begin{aligned}
\binom{x}{y} & =\left(\begin{array}{cc}
0.1 & 2 \\
0.2 & -1
\end{array}\right)\binom{z_{1}}{z_{2}} \\
\Rightarrow \quad E\binom{x}{y} & =\left(\begin{array}{cc}
0.1 & 2 \\
0.2 & -1
\end{array}\right) E\binom{z_{1}}{z_{2}}=\left(\begin{array}{cc}
0.1 & 2 \\
0.2 & -1
\end{array}\right)\binom{0}{0}=\binom{0}{0} \\
\operatorname{var}\binom{x}{y} & =\left(\begin{array}{cc}
0.1 & 2 \\
0.2 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0.1 & 0.2 \\
2 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
4.01 & -1.98 \\
-1.98 & 1.04
\end{array}\right) \quad \begin{array}{l}
\text { Negate corelation } \\
\text { matches the plat. }
\end{array}
\end{aligned}
$$

$\operatorname{Sine}\binom{z_{1}}{z_{2}} \sim N\left(\binom{0}{0},\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right)$
$\Rightarrow\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}0.1 & 2 \\ 0.2 & -1\end{array}\right)\binom{z_{1}}{z_{2}} \quad$ is normal
(leer combination of normal is normal)

$$
\binom{z_{1}}{z_{2}} \sim N\left(\binom{0}{0},\left(\begin{array}{cc}
4.01 & -1.98 \\
-1.98 & 1.04
\end{array}\right)\right)
$$

2. Suppose that $\left\{Z_{i}\right\}_{i=1}^{3}$ are ied random variables with mean 0 and variance 1 . Let

$$
Y_{1}=Z_{1}+Z_{2}, \quad Y_{2}=Z_{1}-Z_{2}, \quad Y_{3}=Z_{1}+Z_{2} Z_{3}
$$

Obtain the covariance matrix of $\left(Y_{1}, Y_{2}, Y_{3}\right.$, and make a network plot based on its covariance structure.

$$
\begin{aligned}
& \operatorname{var}\left(y_{1}\right)=2, \operatorname{var}\left(y_{2}\right)=2, \\
& \operatorname{var}\left(y_{3}\right)=\operatorname{var}\left(z_{1}\right) \operatorname{tar}\left(z_{2} z_{3}\right)=\operatorname{vor}\left(z_{1}\right)+\operatorname{ver}\left(z_{2}\right) \operatorname{vor}\left(z_{9}\right)=2 \\
& \operatorname{cov}\left(y_{1}, y_{2}\right)=\operatorname{var}\left(z_{1}\right)+\operatorname{var}\left(z_{2}\right)=1-1=0 \\
& \operatorname{cov}\left(y_{1}, y_{3}\right)=\operatorname{var}\left(z_{1}\right)+\operatorname{cov}\left(z_{2}, z_{2} z_{3}\right) \\
&=1+E\left(z_{2}^{2} z_{3}\right)=1+E\left(z_{2}^{2}\right) E\left(z_{3}\right) \\
&=1+0=1 \\
& \operatorname{cov}\left(y_{2}, y_{3}\right)=\operatorname{var}\left(z_{2}\right)-\operatorname{cov}\left(z_{2}, z_{2} z_{3}\right)=1 \\
& \operatorname{var}\left[\begin{array}{l}
2 \\
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{cc}
0 & 2
\end{array}\right]
\end{aligned}
$$

The network

3. Suppose the estimator $\widehat{\theta}_{n}$ is an unbiased estimator of θ (i.e. $\mathrm{E}\left[\widehat{\theta}_{n}\right]=\theta$), $\operatorname{var}\left[\widehat{\theta}_{n}\right]=\mathrm{E}\left[\left(\widehat{\theta}_{n}-\theta\right)^{2}\right]=$ σ^{2} / n and $\mathrm{E}\left[\left(\widehat{\theta}_{n}-\theta\right)^{3}\right]=\kappa_{3} / n^{3 / 2}$.
(i) Show that $\widehat{\theta}_{n}^{3}$ is a biased estimator of θ^{3}, and obtain the bias.
(ii) Shows that asymptotically $\widehat{\theta}_{n}^{3}$ is an unbiased estimator of θ^{3}.
(iii) Using that $\sqrt{n}\left(\widehat{\theta}_{n}-\theta\right) \xrightarrow{\mathcal{D}} N\left(0, \sigma^{2}\right)\left(\right.$ or $\left.\widehat{\theta}_{n} \xrightarrow{\mathcal{D}} N\left(\theta, \sigma^{2} / n\right)\right)$. Obtain the asymptotic distribution of $\widehat{\theta}^{3}$.
(State the main condition under which it will hold).

$$
\begin{aligned}
& \text { (1) Use } E\left[\left(\hat{\theta}_{n}-\theta\right)^{3}\right] \text { and expand. } \\
& \begin{aligned}
& E\left[\left(\hat{\theta}_{n}-\theta\right)^{3}\right]=E\left[\hat{\theta}_{n}^{3}\right]-3 E\left[\hat{\theta}_{n}^{2} \theta\right]+3 E\left[\hat{\theta}_{n} \theta^{2}\right] \\
&-\theta^{3} \\
&=E\left[\hat{\theta}_{n}^{3}\right]-3 \theta E\left[\hat{\theta}_{n}^{2}\right]+3 \theta^{2} E\left[\hat{\theta}_{n}\right]-\theta^{3} \\
&=E\left[\hat{\theta}_{n}^{3}\right]-3 \theta\left[\operatorname{var}\left(\hat{\theta}_{n}\right)+\left(E\left[\hat{\theta}_{n}\right)\right)^{2}\right]+2 \theta^{3} \\
&=E\left[\hat{\theta}_{n}^{3}\right]-3 \theta\left[\frac{\sigma^{2}}{n}+\theta^{2}\right]+2 \theta^{3} \\
&=\underbrace{E\left[\hat{\theta}_{n}^{3}\right]-\frac{3 \theta \sigma^{2}}{n}-\theta^{3}}_{\underbrace{}_{\text {alas }}} \\
& \Rightarrow E\left[\hat{\theta}_{n}^{3}\right]=\theta^{3}+\underbrace{\frac{3 \theta \sigma^{2}}{n}+\frac{k_{3}}{n^{3 / 2}}}_{n^{3 / 2}}
\end{aligned}
\end{aligned}
$$

$$
\text { Bras }=E\left[\hat{\theta}_{n}^{3}\right]-\theta^{3}=\frac{3 \theta 6^{2}}{n}+\frac{k_{3}}{n^{3 / 2}}
$$

* Remember Bias the centrality of the eshmats

$$
\lim _{n \rightarrow \infty}(B \mid a s)=\lim _{n \rightarrow \infty}\left[\frac{3 \theta 6^{2}}{n}+\frac{k_{3}}{n^{3 / 2}}\right]=0
$$

Thus $\hat{\theta}_{n}^{3}$ is an asymptohcally unbiased eshmate of 0^{3}
(iii) Asympithe distribution

$$
\begin{aligned}
& \sqrt{n}(\hat{\theta}-\theta) \\
& g(\hat{\theta})=\hat{\theta}^{3} \\
\Rightarrow & g^{\prime}(\theta)=3 \theta^{2} \quad g^{\prime}(\theta) \neq 0 \\
\Rightarrow & \sqrt{n}\left[\hat{\theta}^{3}-\theta^{3}\right] \xrightarrow{D} N\left(0,\left[3 \theta^{2}\right]^{2} 6^{2}\right)
\end{aligned}
$$

$$
=N\left(0,9 \theta^{4} 6^{2}\right)
$$

Lite version $\quad \hat{\theta}^{3} \rightarrow N\left(\theta^{3}, \frac{9 \theta^{4} 6^{2}}{n}\right)$
4. Suppose that

$$
\left(\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right) \sim N\left(\left(\begin{array}{l}
\mu \\
\mu \\
\mu
\end{array}\right),\left(\begin{array}{ccc}
\sigma^{2} & 0 & 0 \\
0 & \sigma^{2} & 0 \\
0 & 0 & \sigma^{2}
\end{array}\right)\right)
$$

Define the two random variables

$$
\begin{aligned}
& Y_{1}=\left(X_{2}-X_{3}\right) \\
& Y_{2}=\left(-2 X_{1}+X_{2}+X_{3}\right)^{2}
\end{aligned}
$$

(i) Show that Y_{1} and Y_{2} are independent.
(ii) Are Y_{1} and Y_{2} independent if X_{1}, X_{2}, X_{3} are id (non-normal) random variables with $\mathrm{E}\left[X_{i}\right]=0$ and $\operatorname{var}\left[X_{i}\right]=\sigma^{2}$? Explain why. Marks will be given for the correct answer not yes or no. [2]
(1) Defure the random verable

$$
z=-2 x_{1}+x_{2}+x_{3}
$$

Since $\left(x_{1}, x_{2}, x_{3}\right)$ ore jointly normal, then
(Y, z) are joint normal (Ines conkenation of) normal random enables are normal).

Aim Show $\operatorname{\omega v}\left[y_{1}, z\right]=0 \Rightarrow y_{1}$ and z
are independent (sure y, and z ore normal).

$$
\operatorname{cov}\left[y_{1}, z\right)=\operatorname{ver}\left(x_{2}\right)-\operatorname{ver}\left(x_{3}\right)=6^{2}-6^{2}=0
$$

$=\delta \quad Y$, and Z are endependent (by nomality)
$\Rightarrow Y_{1}$ and z^{2} ere independent. Since
$Z^{2}=Y_{2}$, the emples Y_{1} and Y_{2} ce independent. Thus proury the claim in (i)
(ii) If $\left(x_{1}, x_{2}, x_{2}\right)$ are ind but nat normal, then

$$
\operatorname{cov}\left[y_{1}, z\right]=0
$$

BUT Y_{1} and z are not normal, then the does nt enply that Y, and Z ane independent. In general lack of correlation does nt enply independence. Thine of et this way

$$
\begin{aligned}
& y_{1}=\left(x_{2}-x_{R}\right) \\
& z=-2 x_{1}+x_{2}+x_{3}
\end{aligned}
$$

Both Y_{1} and z shore the same vocables,
only in exceptional situations (such as normality) would Y_{1} and z be independent.

