STAT 415 - Midterm 1 (Spring 2021)

Name: \qquad

Exam rules:

- You have 90 minutes to complete the exam.
- There are 4 Questions.
- You may use the provided formula sheet.
- You are only allowed to use a pen and pencil (or ipad for writing). You cannot use the internet to find anwers and you cannot confer with class mates.
- Explain your arguments carefully, show all your work, and write out all your steps. Credit will be given for clarity. No credit will be given for a solution without working.
- If you are caught cheating or helping someone to cheat on this exam, you will both receive a grade of zero on the exam and you will be turned in.

1. Define the bivariate random vector

$$
\begin{aligned}
\underline{U}=\binom{X}{Y} & =0.2 Z_{1} \underline{e}_{1}+2 Z_{2} \underline{e}_{2} \\
& =0.2\binom{Z_{1} / 2}{Z_{1}}+2\binom{Z_{2}}{-Z_{2} / 2}
\end{aligned}
$$

where Z_{1}, Z_{2} are iid normal standard random variables, $\underline{e}_{1}^{\prime}=(1 / 2,1)$ and $\underline{e}_{2}^{\prime}=(1,-1 / 2)$.
(i) Suppose that $\{\underline{U}\}_{i=1}^{n}$ are iid random variables where $\underline{U}_{i} \sim \underline{X}$. Draw a plot (a plot as a guide is given) of 30 or so typical realisations of $\{\underline{U}\}_{i=1}^{n}$ (plotting X against Y); enough to get the general behaviour of \underline{U}.

(ii) Derive the distribution of (X, Y).
2. Suppose that $\left\{Z_{i}\right\}_{i=1}^{3}$ are iid random variables with mean 0 and variance 1 . Let

$$
Y_{1}=Z_{1}+Z_{2}, \quad Y_{2}=Z_{1}-Z_{2}, \quad Y_{3}=Z_{1}+Z_{2} Z_{3}
$$

Obtain the covariance matrix of $\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)$ and make a network plot based on its covariance structure.
3. Suppose the estimator $\widehat{\theta}_{n}$ is an unbiased estimator of θ (i.e. $\mathrm{E}\left[\widehat{\theta}_{n}\right]=\theta$), $\operatorname{var}\left[\widehat{\theta}_{n}\right]=\mathrm{E}\left[\left(\widehat{\theta}_{n}-\theta\right)^{2}\right]=$ σ^{2} / n and $\mathrm{E}\left[\left(\widehat{\theta}_{n}-\theta\right)^{3}\right]=\kappa_{3} / n^{3 / 2}$.
(i) Show that $\widehat{\theta}_{n}^{3}$ is a biased estimator of θ^{3}, and obtain the bias.
(ii) Shows that asymptotically $\widehat{\theta}_{n}^{3}$ is an unbiased estimator of θ^{3}.
(iii) Using that $\sqrt{n}\left(\widehat{\theta}_{n}-\theta\right) \xrightarrow{\mathcal{D}} N\left(0, \sigma^{2}\right)$ (or $\left.\widehat{\theta}_{n} \xrightarrow{\mathcal{D}} N\left(\theta, \sigma^{2} / n\right)\right)$. Obtain the asymptotic distribution of $\widehat{\theta}^{3}$.
(State the main condition under which it will hold).
4. Suppose that

$$
\left(\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right) \sim N\left(\left(\begin{array}{l}
\mu \\
\mu \\
\mu
\end{array}\right),\left(\begin{array}{ccc}
\sigma^{2} & 0 & 0 \\
0 & \sigma^{2} & 0 \\
0 & 0 & \sigma^{2}
\end{array}\right)\right)
$$

Define the two random variables

$$
\begin{aligned}
& Y_{1}=\left(X_{2}-X_{3}\right) \\
& Y_{2}=\left(-2 X_{1}+X_{2}+X_{3}\right)^{2}
\end{aligned}
$$

(i) Show that Y_{1} and Y_{2} are independent.
(ii) Are Y_{1} and Y_{2} independent if X_{1}, X_{2}, X_{3} are iid (non-normal) random variables with $\mathrm{E}\left[X_{i}\right]=0$ and $\operatorname{var}\left[X_{i}\right]=\sigma^{2}$? Explain why. Marks will be given for the correct answer not yes or no. [2]

