STAT 415 - Midterm 1 (Spring 2020)

Answer: Solutions should be written below each question.

Name: \qquad

Exam rules:

- You have 75 minutes to complete the exam.
- There are 5 Questions.
- You will get a formula sheet.
- You are only allowed to use a pen and pencil.
- Explain your arguments carefully, show all your work, and write out all your steps. Credit will be given for clarity. No credit will be given for a solution without working.
- If you are caught cheating or helping someone to cheat on this exam, you will both receive a grade of zero on the exam and you will be turned in.
- If a problem requires a numerical answer, you may express answer in terms of elementary functions or cdfs (e.g. $\Gamma(r+1)$ or $r!$).

1. Suppose

$$
\underline{e}_{1}=\binom{1}{1}, \quad \underline{e}_{2}=\binom{1}{-1}
$$

Define the bivariate random vector

$$
\begin{aligned}
\underline{X}=\binom{X}{Y} & =0.2 Z_{1} \underline{e}_{1}+2 Z_{2} \underline{e}_{2} \\
& =0.2\binom{Z_{1}}{Z_{1}}+2\binom{Z_{2}}{-Z_{2}}
\end{aligned}
$$

where Z_{1}, Z_{2} are iid normal random variables.
(i) Suppose that $\{\underline{X}\}_{i=1}^{n}$ are iid random variables where $\underline{X}_{i} \sim \underline{X}$. Draw on the plot below 20 or so typical realisations of $\{\underline{X}\}_{i=1}^{n}$ (plotting X against Y), enough to get the general behaviour of \underline{X}.

(ii) Explain your answer.
2. Suppose $\left\{X_{i}\right\}$ and U are independent random variables, where $\mathrm{E}\left[X_{i}\right]=0, \operatorname{var}\left[X_{i}\right]=\sigma_{X}^{2}, \mathrm{E}[U]=\mu$ and $\operatorname{var}[U]=\sigma_{U}^{2}$. Let $Z_{i}=X_{i}+U$ and $S_{n}=\frac{1}{n} \sum_{i=1}^{n} Z_{i}$.
(i) Calculate $\mathrm{E}\left[S_{n}\right]$.
(ii) Calculate $\operatorname{var}\left[S_{n}\right]$.
(iii) Calculate the mean squared error $\mathrm{E}\left[S_{n}-\mu\right]^{2}$. What happens to the mean squared error as $n \rightarrow \infty$? [2]
(iv) Is S_{n} an asymptotically consistent estimator of μ, either in probability or mean squared error. Give a reason for your answer.
(3) Suppose that $\left\{Z_{i}\right\}_{i=1}^{3}$ are iid standard normal random variables $\left(Z_{i} \sim N(0,1)\right)$.
(i) Let $Y_{1}=Z_{1}+Z_{2}, Y_{2}=Z_{2}$ and $Y_{3}=Z_{2}+Z_{3}$.

Calculate the variance matrix of $\underline{Y}^{\prime}=\left(Y_{1}, Y_{2}, Y_{3}\right)$. Draw the associated covariance network.
(ii) Let $X_{1}=Z_{1}+Z_{2} Z_{3}, X_{2}=Z_{2}$ and $X_{3}=Z_{2}+Z_{3}$.

Calculate the variance matrix of $\underline{X}^{\prime}=\left(X_{1}, X_{2}, X_{3}\right)$. Draw the associated covariance network. [5]
4. Suppose that X_{1} and X_{2} are iid normal random variables with mean μ and variance σ^{2}. Let $\bar{X}=2^{-1}\left(X_{1}+X_{2}\right)$ and $s_{2}^{2}=\left(X_{1}-\bar{X}\right)^{2}+\left(X_{2}-\bar{X}\right)^{2}$.
(i) Show that \bar{X} and s_{2}^{2} are independent random variables (credit will be given for a coherent argument, state precisely all results that you use).
Hint: Use that $s_{2}^{2}=\left(X_{1}-X_{2}\right)^{2} / 2$.
(ii) Define the T and Z-transforms: $T_{2}=\frac{\sqrt{2}(\bar{X}-\mu)}{s_{2}}$ and $Z=\frac{\sqrt{2}(\bar{X}-\mu)}{\sigma}$. Calculate

$$
P\left(T_{2}>\frac{3}{2} Z\right)
$$

Give your answer in terms of an appropriate χ^{2} distribution. You may use that $s_{2}^{2} \sim \sigma^{2} \chi_{1}^{2}$.
5. Suppose that $\left\{X_{i}\right\}$ are iid random variables drawn from an exponential distribution with density $\lambda \exp (-\lambda x)$ where $x \geq 0$.
(i) Let $\bar{X}_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$. State the limiting distribution of \bar{X}_{n} (giving the correct mean and variance).
(ii) Obtain the first moment of X_{i} and the method of moments estimator of λ (based on the first moment)?

