
TAMU, STAT 415

Mathematical Statistics II: Demystifying statistics

Suhasini Subba Rao

Spring, 2021



Contents

Contents

1 Introduction and Review 6

1.1 Why we spoil statistics with maths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Joint distributions of random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Euclidean space and matrix multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Inner (scalar) products and projections . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Orthonormal basis expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Parseval’s identity and other L2-norm identities . . . . . . . . . . . . . . . . . . . . 15
1.3.4 Orthonormal vectors and random coe�cients . . . . . . . . . . . . . . . . . . . . . 17
1.3.5 Matrix multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Expectation, variance and covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.1 Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.2 Example: Interpreting the covariance of bivariate data . . . . . . . . . . . . . . . . 21
1.4.3 The variance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.4 Properties of the variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5 Modes of convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5.1 The mean squared error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5.2 Convergence in probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.5.3 Sampling distributions and the central limit theorem . . . . . . . . . . . . . . . . . 32
1.5.4 Functions of sample means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.6 A historical perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 Classical distributions and the first foray into sampling distributions 41

2.1 The Multivariate Gaussian distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.1.1 Motivation through the bivariate Gaussian . . . . . . . . . . . . . . . . . . . . . . . 41
2.1.2 The general multivariate Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 Relatives of the Gaussian distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.1 The chi-square distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.2 The t-distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2.3 The F-distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3 The exponential class of distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2



Contents
2.4 The sample mean and variance: Sampling distributions . . . . . . . . . . . . . . . . . . . . 57

2.4.1 The sample mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4.2 The sample variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4.3 The t-statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.5 Con�dence intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.5.1 Con�dence interval for the mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.5.2 Con�dence interval for the variance . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.6 A historical perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3 Parameter Estimation 77

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2 Estimation: Method of moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.2.3 Sampling properties of method of moments estimators . . . . . . . . . . . . . . . . 81
3.2.4 Application of asymptotic results to the construction of con�dence intervals . . . . 85

3.3 Monte Carlo methods and correcting for the lack of normality . . . . . . . . . . . . . . . . 87
3.3.1 The parametric Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3.2 The nonparametric Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3.3 The power transform approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.4 Estimation: Maximum likelihood (MLE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.4.3 Evaluation of the MLE for more complicated distributions . . . . . . . . . . . . . . 105

3.5 Sampling properties of the MLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.5.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.5.2 The distributional properties of the MLE . . . . . . . . . . . . . . . . . . . . . . . . 108

3.6 The Fisher information matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.6.1 Example: Exponential distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.6.2 Example: Poisson distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.6.3 A useful identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.7 The curious case of the uniform distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.8 What is the best estimator? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.8.1 Measuring e�ciency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.8.2 The Cramer-Rao Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.9 Su�ciency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.9.1 Application of su�ciency to estimation: Rao-Blackwellisation . . . . . . . . . . . . 130

3



Contents
3.10 What happens if we get the assumptions wrong . . . . . . . . . . . . . . . . . . . . . . . . 131
3.11 A historical perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4 Hypothesis testings 133

4.1 A short review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.1.1 The simple hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.1.2 Composite hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.2 The likelihood ratio test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.2.1 Toy Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.2.2 Example: The normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.2.3 Example: The Binomial distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.2.4 Exponential family (with one parameter) . . . . . . . . . . . . . . . . . . . . . . . . 148
4.2.5 Non-monotonic likelihood ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.3 The most powerful test: The Neyman-Pearson Lemma . . . . . . . . . . . . . . . . . . . . 153
4.3.1 My heuristic understanding of the LRT and the Neyman Pearson Lemma . . . . . . 156

4.4 Generalized Likelihood Ratio Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.4.1 Example: Normal data (variance known), two-sided test . . . . . . . . . . . . . . . 158
4.4.2 Example: Normal data (variance unknown), two-sided test . . . . . . . . . . . . . . 160
4.4.3 Example: Binomial distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.5 Asymptotic sampling properties of the generalized likelihood ratio test under the null
hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.5.1 Example: Binomial distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.5.2 Example: The chi-square goodness of �t test . . . . . . . . . . . . . . . . . . . . . . 168
4.5.3 P-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

4.6 Con�dence intervals and hypothesis tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.6.1 Example: The binomial distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5 Comparing two populations 173

5.1 Comparing two independent samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
5.1.1 Example: Independent two sample data . . . . . . . . . . . . . . . . . . . . . . . . 173
5.1.2 Modelling assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.1.3 Pooling information: The pooled sample variance . . . . . . . . . . . . . . . . . . . 177
5.1.4 The independent two sample t-test . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.2 Generalized likelihood ratio test and the independent two sample t-test . . . . . . . . . . . 180
5.3 Matched data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.3.1 Example: matched data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
5.3.2 Model assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

4



Contents
5.3.3 Why the independent two sample t-test should notbe used for matched data . . . . 187
5.3.4 The matched paired t-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
5.3.5 Application to data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6 ANOVA 191

6.1 Post-hoc analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.1.1 Studentised range distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.2 Proof of one-way ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5



1 Introduction and Review

1 Introduction and Review

1.1 Why we spoil statistics with maths

To understand the aims and objectives of this course, we start with a motivating example. Weather stations
around the world are constantly collecting data (temperature, air pressure and ozone levels to name but a
few). To publish this data in a coherent fashion, it is often summarized, in such a way that one easily �nds
pertinent trends. For example, if you search for temperature data on the web, you will usually �nd that the
monthly average temperature (at a particular longitude and latitude) is published.

Over the past thirty years or so, scientists have been monitoring the temperatures in Antarctica. The
concern is that rises in temperatures in this region will lead to a melting of glaciers and rises in ocean
levels. Therefore, we focus our attention on the temperatures collected at Faraday station (later called the
Vernadsky research base: a brief history can be found here https://www.bas.ac.uk/about/about-bas/

history/british-research-stations-and-refuges/faraday-f/), which has a long history of climatic
research (dating back to 1947). From 1951-2004, the monthly temperatures have been published by the
British Antarctic Survey. What makes their data set quite unique is that they collect the monthly extremes
(max and mins) not just the averages. A plot of the monthly extremes is given in Figure 1.1. As our aim is
to understand if the temperatures are rising, we regress the minimum and maximum temperatures against
time. However, as this is monthly data, it will have a clear seasonality and that too must be included in
the regression. This often done by including a seasonal component in the regression model such as a sine
and cosine function with a 12 month period. Thus we �t the following linear regression model to both the
maximum and minimum temperatures

yt = β0 + βS sin
(
2πt
12

)
+ βC cos

(
2πt
12

)
+ β2t + εt (1.1)

to the data.

Remark (Modelling periodicities, such as temperatures). Monthly temperatures are likely to be periodic

with a period of 12 months. A periodic sequence, with a period of 12 months is a sequence {d12(t)} where

d12(t) = d12(t + 12) = d12(t + 24) = . . . for all t . We can model all period sequences with a period of 12 months

6
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1 Introduction and Review

Figure 1.1: Monthly minimum (left) and monthly maximum (right).

using sin and cosine functions;

d12(t) =
6∑

s=1

(
as sin

(
2πt
12 s

)
+ bs cos

(
2πt
12 s

))
.

A simple calculation shows that the d12(t) based on this construction is periodic with period 12. As there can be

12 di�erent coe�cients for {d12(t)} there are 12 di�erent coe�cients {as ,bs }6s=1. Thus the above construction

is able to model any 12-period sequence. However, this can lead to too many parameters to estimate (lack of

parsimony). Thus we often focus on the �rst sin and cosine regressors a1 sin
( 2π t

12
)
+ b1 cos

( 2π t
12

)
, because in

general this contains “most” of the information in {d12(s)}.

The estimation of the parameters in (1.1) is done in R using the lm command, which �ts the model using
the method of least squares. The R output is given below for the maximum temperatures.
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1 Introduction and Review
The left output gives the coe�cient estimates, together with with their standard errors. You may recall,
from previous statistics classes (STAT212, for instance), that standard errors are instrumental to any data
analysis; they quantify the uncertainty we associate with an estimator (we de�ne this precisely below).
And to determine if a coe�cient is statistically signi�cant we calculate the ratio

t value = Estimate
Std. Error ,

where signi�cance of each individual coe�cient can be determined by using a t-test (this is the p-value
given in Pr(> |t |)). The analysis of the variance on the right measures the reduction in the squared error as
each variable is added to the model. The bigger and more dramatic the reduction the smaller the p-value as
given by Pr(> F ). Studying the p-values we observe that the seasonal terms (sin and cosine) are statistically
signi�cant. However, despite the time coe�cient being positive, there is no signi�cant evidence of an
increase in the temperatures over time (observe the large p-value corresponding to time in both outputs.
Recall when there is no statistical evidence of an increase there are two possible explanations (a) there
really is no increase or (b) the noise in the data is too large, that it is masks an increase.

We conduct a similar analysis using the minimum temperatures. The output is given below

Studying the p-values in this output we observe that the seasonal component is statistically signi�cant
and also the linear increase in temperatures over time. The data suggests that there is an increase in the
monthly minimum temperatures over time. This is very interesting. To summarize, there is no evidence of
an increase in the monthly maximum temperatures, but there is evidence of an increase in the minimum
temperatures. But before we make any such conclusions, we have to decide if the analysis is valid. This
means taking a step back and understanding where all the standard errors, p-values etc come from. If they
have been calculated incorrectly, then the conclusions of the analysis may be wrong.

First we make a plot of a histogram of the residuals

ε̂t = yt − β̂0 − β̂S,1 sin
(
2πt
12

)
− β̂C,1 cos

(
2πt
12

)
− β̂2t .

8



1 Introduction and Review
This is given in Figure 1.2. We observe that the distribution of the residuals of the maximum temperatures
look symmetric, but the distribution of the residuals of the minimum temperatures appear left skewed.

Figure 1.2: Histogram of residuals: Minimum of left and maximum of right.

(1) Clearly the residuals for the minimum temperatures are not normal (the normal/Gaussian distribution
is symmetric). Does that matter, do we require normality for the analysis?

(2) What about the standard errors, how are they calculated? How, was the data collected? The data
has been collected over time. Often data that has been collected over time, are dependent. The
independence assumption probably does not hold. To demonstrate that there is possible dependence,
the estimated autocorrelation (ACF) plot of the residuals is given in Figure 1.3. We observe what
appears to be dependence (this is beyond this course, and will be discussed in a time series course).
Does dependence in�uence the standard errors? If it does, where will it e�ect the conclusions of the
study?

Though we cannot answer, all the above questions in this course; time series data tends to be extremely
complex. In this course, we will hopefully understand why things work. And if we understand why they
work, we can also understand when procedures may not work, and how it can in�uence the conclusions
that we draw.

1.2 Joint distributions of random variables

Please Review STAT 414, and pay particular attention to the joint distribution of discrete and continuous
random variables. We give a quick summary of what you need to know. Suppose that X = (X1, . . . ,Xn) is a

9



1 Introduction and Review

Figure 1.3: The estimated autocorrelation plot of the minimum residuals.

discrete random vector. Then their joint probability mass function is

pX (x1,x2, . . . ,xn) = PX (X1 = x1, . . . ,Xn = xn).

Suppose that (X1, . . . ,Xn) is a vector of continuous random variables then the joint density is a piecewise
continuous function fX (x1, . . . ,xn) where

PX ((X1,X2, . . . ,Xn) ∈ A) =

∫
A
fX (x1, . . . ,xn)dx1 . . .dxn .

De�nition 1.1 (Independence). The random variables X1,X2, . . . ,Xn are said to be independent if their joint

distribution (or density) function can be written as the product of their marginal distributions

FX1, ...,Xn (x1, . . . ,xn) = FX1(x1)FX2(x2) . . . FXn (xn) for all x1, . . . ,xn .

Below, we generalize the above notion to independence between vectors.
De�nition 1.2. Suppose Y = (Y1, . . . ,Yp ) and X = (X1, . . . ,Xq) are random vectors. X and Y are said to be

independent if joint cumalative distribution function of X and Y can be written as the product of the joint

distributions

FX ,Y (x ,y) = FX (x)FY (y).

De�nition 1.3 (iid). The random variables {Xi }
n
i=1 are said to be independent and identically distributed (iid

for short) if {Xi }
n
i=1 are independent and the marginal distribution is the same for all the random variables.

Remark (Conditional probabilities). We recall that the conditional probability of event A given B is

P(A|B) =
P(A ∩ B)

P(B)
.

10



1 Introduction and Review
The two events A and B are statistically independent if P(A|B) = P(A) (occurence of event B has no impact on

the probability of event A). Suppose A is an event corresponding to random variables X (technically we say

that A belongs to a sigma-algebra generated by X , but this is not a technical course) and B corresponds to the

random variable Y . If X and Y are independent random variables as de�ned above, then P(A|B) = P(A) and A

and B are independent events.

1.3 Euclidean space and matrix multiplication

In this section we review some results from linear algebra, focusing on this simple case of �nite dimension
Euclidean space. In statistics we store data as vectors (or matrices), therefore either implicitly or explictly we
are manipulating vectors. A solid understanding of linear algebra will help in both the mathematical proofs
but also writing good and fast pieces of code. For example, the empirical correlation can be understood
in terms of projections of one vector onto another. Thus rather than a code the correlation as an n-loop
(which takes time) we can simply write it as dot/scalar/inner product which is computationally faster.

Reminder: if α is a scalar (a number) and x is a vector, then

α

©«
x1

x2
...

xd

ª®®®®®®¬
=

©«
αx1

αx2
...

αxd

ª®®®®®®¬
.

1.3.1 Inner (scalar) products and projections

We de�ne the inner product (also called the scalar product) between the vector x ∈ Rd and y ∈ Rd as

〈x ,y〉 =
d∑
i=1

xiyi .

Observe that by de�nition 〈x ,y〉 = 〈y ,x 〉 (the inner product is symmetric). Inner products satisfy some
basic properties. The one we will use is

〈αx + βz,y〉 = α 〈x ,y〉 + β 〈z,y〉

where α , β ∈ R, which is easily veri�ed. The Euclidean distance is the length of the vector x , and is
‖x ‖ =

√
〈x ,x〉 =

√∑d
i=1 x

2
i (this is easily understood by considering vectors on R2 and measuring the

distance from the origin (0, 0) to the vector). Often it is useful to deal with the the standardized vector

x

‖x ‖
.
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1 Introduction and Review
The standardisation means that the length of this vector (its Euclidean distance) is one. In Euclidean space,
inner products have a useful geometric properties. We state these below.

Remark (Interpreting a zero inner product). If 〈x ,y〉 = 0, then x and y are orthogonal. This means the angle

between the two vectors is 90 degrees. In R2 there will only be one vector (up to a scalar constant) y that is

orthogonal to x . In R3 a plane is orthogonal to x .

De�nition 1.4 (Projection). The projection of y onto x is αx , where the value α such that the innerproduct

between y − αx and x is zero. The value α is obtained by solving

〈 y − αx︸ ︷︷ ︸
red dashed line

,x〉 = 0

= 〈y,x〉 − α 〈x ,x〉 = 0⇒ α =
〈y,x〉

〈x ,x〉
=
〈y,x〉

‖x ‖2
.

Relationship to least squares The projection of y onto x is the same as �nding the α which minimises the
least squares criterion

L(α) =
n∑
j=1
(yj − αx j ) (= 〈y − αx ,y − αx〉).

Di�erentiating L(α) with respect to α and setting to zero gives

α =
〈y,x〉

〈x ,x〉
=
〈y,x〉

‖x ‖2
.

We give an example for dimension d = 2. Consider the vectors x and y where

y =

(
2
1

)
and x =

(
1/4
1/2

)
.

The vectors y and x are the blue line and dashed
blue line on the plot. The standardized vector x

‖x ‖ =

5−1/2(1, 2)′ is the yellow point on the plot. The projec-
tion of y onto the line {αx ;α ∈ (−∞,∞)} is the red
point on the yellow dashed line which is orthogonal
with the red dashed line in the plot. This point is αx
where

α =
〈y,x〉

‖x ‖2
=

16
5 = 3.2.
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1 Introduction and Review
Observe that 〈y,x〉 can be viewed as a measure of similarity between the vectors x and y. If 〈y,x〉 = 0, the
vectors are orthogonal and there is no similarity between the vectors.

In the next section we describe the orthogonal representation of vectors. We have already come across this,
in the above example. The yellow projection vector (4/5, 8/5)′ and the red vector (6/5,−3/5) are orthogonal
(observe that they are at right angles). They form the building blocks of y:

y =

(
2
1

)
=

(
4/5
8/5

)
︸   ︷︷   ︸
=αx

+

(
6/5
−3/5

)
.

1.3.2 Orthonormal basis expansion

The vectors e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1) form what is called an orthonormal basis (de�ned
below) ofR3. It is clear that anyy = (y1,y2,y3) ∈ R

3 can writen asy = y1e1+y2e2+y3e3 (a linear combination
of the basis). However, this basis is far from unique. We can rewrite y in terms of any orthonormal basis.
Below we show how this possible using the idea of projections de�ned in the previous section.

The d-vectors {e j }dj=1 is an orthonormal basis of Rd if for all 1 ≤ i, j ≤ d we have

〈ei , e j 〉 =

{
1 i = j

0 i , j
.

Note from above, the length of the vectors are 〈ei , ei 〉 = ‖ei ‖
2 = 1. Orthonormal basis are not unique (there

are an uncountable number of di�erent orthonormal basis on Rd ).

For a given orthonormal basis {e j }dj=1 in Rd , we now show that we can decompose any vector y ∈ Rd as a
weighted sum of the orthogonal basis. This is easily seen by using the projection argument given in the
previous section. Projecting y onto e1 gives

α1 =
〈y, e1〉

‖e1‖
2 = 〈y, e1〉.

The remainder (residual) is y − 〈y, e1〉e1 (which is orthogonal to e1). Next we project y − α1e1 onto e2. This
gives the coe�cient

α2 =
〈y − α1e1, e2〉

‖e2‖
2 =

〈y, e2〉 − α1〈e1, e2〉

‖e2‖
2 = 〈y, e2〉.

Thus the residual after projecting on e1 and e2 is

y − α1e1 − α2e2.

13



1 Introduction and Review
Iterating this we obtain the orthonormal basis expansion

y =
d∑
j=1
〈y , e j 〉e j .

Thus we have decomposedy into vectors into orthogonal building block. Each coe�cient α j 〈y , e j 〉 describes
the how much of the vector e j is required to build y. Rewriting y in terms of a basis {e j }

d
j=1 is the same we

writing y in terms of a rotation of the usually axis.

Remark (Projection onto planes in Rd ). Suppose that {e j }dj=1 is an orthonormal basis of Rd , and de�ne the

plane, Π, as all linear combination of the vectors {e j }
r
j=1 (where r < d) i.e.

Π =

{
r∑
s=1

αses ; α1, . . . ,αr ∈ R

}
.

Since {e j }
s
j=1 are orthogonal, the projection of y ∈ Rd onto Π can be done sequentially by projecting onto each

es , this gives the projection

PΠ(y) =
r∑
s=1
〈es ,y〉es .

Example 1.1 (Examples of orthonormal basis on R2). (i) The simplest example is

e1 =

(
1
0

)
, e2 =

(
0
1

)
Clearly for any x2 ∈ R

2 we have

x2 = x1e1 + x2e2.

(ii) Another orthonormal basis is

e1 =
1
√

2

(
1
1

)
, e2 =

1
√

2

(
1
−1

)
,

It is easy to show that 〈e1, e2〉 = (1 − 1)/2 = 0. For the purpose of visualisation, it is useful to plot the
basis.

Using the above basis, any vector x ′ = (x1,x2) ∈ R
2 can be written as

x =

(
x1

x2

)
= 〈x , e1〉e1 + 〈x , e2〉e2

=

(
(x1 + x2)
√

2

)
1
√

2

(
1
1

)
+

(
(x1 − x2)
√

2

)
1
√

2

(
1
−1

)
.

14



1 Introduction and Review
Example 1.2 (Examples of orthonormal basis on R3). (i) The simplest example is

e1 =
©«

1
0
0

ª®®®¬ , e2 =
©«

0
1
0

ª®®®¬ , e3 =
©«

0
0
1

ª®®®¬
(ii) An alternative orthonormal basis is

e1 =
1
√

3

©«
1
1
1

ª®®®¬ , e2 =
1
√

2

©«
0
1
−1

ª®®®¬ , e3 =
1
√

6

©«
−2
1
1

ª®®®¬
Again you can show that 〈e1, e2〉 = 〈e1, e3〉 = 〈e2, e3〉 = 0 (please do this).

Using the above basis, any vector x ∈ R3 can be written as

©«
x1

x2

x2

ª®®®¬ = 〈x , e1〉e1 + 〈x , e2〉e2 + 〈x , e3〉e3

=

(
x1 + x2 + x3
√

3

)
1
√

3

©«
1
1
1

ª®®®¬ +
(
x2 + x3
√

2

)
1
√

2

©«
0
1
−1

ª®®®¬ +
(
−2x1 + x2 + x3

√
6

)
1
√

6

©«
−2
1
1

ª®®®¬ .
One way to construct the above basis is to use properties of sins and cosines;

e2 =
1
√

2

©«
cos(2π × 0/3)
cos(2π × 1/3)
cos(2π × 2/3)

ª®®®¬ ≈
1

1.5

©«
1
−0.5
−0.5

ª®®®¬ and e3 =
1
√

2

©«
sin(2π × 0/3)
sin(2π × 1/3)
sin(2π × 2/3)

ª®®®¬ ≈
1
√

1.5

©«
0

0.866
−0.866

ª®®®¬ .
1.3.3 Parseval’s identity and other L2-norm identities

The purpose of this section is to state some useful identities. In order to derive the t-distribution, MLE for
normal random variables, two sample t-test and the ANOVA one needs to establish several identities. One
method for establishing these identities is to use cumbersome and not very enlightening chug and plug
methods. Another, is to use some powerful results from linear algebra. The approach in this class is to use
the latter. I summarize the most pertinent results from linear algebra below.

Parseval’s identity

We will use the representation

y =
d∑
j=1
〈y, e j 〉e j ,

15



1 Introduction and Review
to write the Euclidean distance interms of y in terms of 〈y, e j 〉. First observe that if the basis is e1 =

(1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0),. . ., ed = (0, 0, 0, . . . , 1), then it is clear that
∑d

j=1y
2
j =

∑n
j=1〈y, e j 〉

2 (since
〈y, e j 〉

2 = y2
j ). We show below that this is true for any orthonormal basis:

d∑
j=1

y2
j = 〈y,y〉

=

d∑
j1, j2=1

〈y, e j1〉〈y, e j1〉〈e j1 , e j2〉

=

d∑
j=1
〈y, e j 〉

2. (1.2)

This is called Parseval’s identity.

A useful extension to the above equality is the following result

‖y − 〈y, e1〉e1‖
2 =

d∑
j=2
〈y, e j 〉

2.

The proof follows the same argument as that given above1.

We now give a useful application of this result. Suppose e1 = d
−1/2(1, . . . , 1), then 〈y, e1〉 = d

−1/2 ∑d
j=1yj =

d1/2ȳ (where ȳ is the average of the elements in y). Thus

〈y, e1〉e1 = d
1/2ȳd−1/2(1, . . . , 1) = ȳ(1, . . . , 1).

Therefore

y − 〈y, e1〉e1 = (y1 − ȳ,y2 − ȳ, . . . ,yd − ȳ).

Suppose {e j }
d
j=2 are orthonormal to e1, then we have

‖y − 〈y, e1〉e1‖
2 =

d∑
j=1
(yj − ȳ)

2 =
d∑
j=2
〈y, e j 〉

2. (1.3)

1The precise proof is that since y − 〈y, e1〉e1 =
∑d
j=2〈y, e j 〉e j , then

‖y − 〈y, e1〉e1‖
2 = 〈y − 〈y, e1〉e1,y − 〈y, e1〉e1〉

= 〈

d∑
j=2
〈y, e j 〉e j ,

d∑
j=2
〈y, e j 〉e j 〉 =

d∑
j=1
〈y, e j 〉

2.

Or alternatively simply use that y − 〈y, e1〉e1 is the projection of y onto the subspace spanned by {e j }
d
j=2, and the result

immediately follows from Parseval’s identity.
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1 Introduction and Review
L2 norm of orthogonal transformations and their determinant

So now we state one more useful result. Suppose that {e j }
d
j=1 are orthonormal (row) vectors in Rd . De�ne

the orthogonal transformation matrix E where

E ′ =
(
e ′1 e ′2 . . . e ′d

)
.

Then consider the transformation of the column vector y = Ex . It can be shown thatEx2
2 =

x2
2 . (1.4)

PROOF. This result is straightfoward to show, using that E ′X = Id we haveEx2
2 = 〈‖Ex ,Ex〉 = x ′E ′E ′x = x ′Idx =

x2
2 .

�

Finally, another useful identity. A well known result is that det(AB) = det(A) det(B). This implies that

det(E)2 = 1

since 1 = det(Id ) = det(E ′E) = det(E) det(E ′) = det(E)2. This implies

det(E ′ΣE) = det(E ′) det(Σ) det(E) = ± det(Σ). (1.5)

1.3.4 Orthonormal vectors and random coe�icients

We now connect orthogonal vector to random vectors. De�ne the two orthogonal vectors e ′1 = (1, 0) and
e ′2 = (0, 1) and the random vector

Y =

(
Y1

Y2

)
= Z1e1 + Z2e2

where Zi are iid random variables (assume normal). e1 gives the coordinate of the vector and Z1 the
corresponding length. Thus X is a combination of these two orthogonal vectors. If you simulated Y you
would get a symmetric dust cloud. We but we need not stick to orthogonal vectors on the x and y-axis.
Also the lengths on each axis need not be the same. Consider the random vector

Y = 2Z1e1 + 0.3Z2e2,

where Z1 and Z2 are iid standard normal random variables and e1 and e2 are orthonormal vectors. Here the
constribution from e1 tends to be more than e2. A dust cloud of Y will be an ellipse. You will simulate Y in
HW1.

Any random vector can be decomposed in terms of orthogonal vectors, jus like above. This forms the basis
of principal component analysis (PCA).
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1.3.5 Matrix multiplication

In this section we review how matrices are multiplied. We start with the simple case A is an m × n matrix
and x is a n-dimension column vector. Then we have

Ax =

©«
a1

a2
...

am

ª®®®®®®¬
x =

©«
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

ª®®®®®®¬
©«
x1

x2
...

xn

ª®®®®®®¬
=

©«
a11x1 + a12x2 + . . . + a1nxn

a21x1 + a22x2 + . . . + a2nxn
...

am1x1 + am2x2 + . . . + amnxn

ª®®®®®®¬
=

©«
〈a1,x〉

〈a2,x〉
...

〈am ,x〉

ª®®®®®®¬
Note that aj is row vector and x is a column vector, but 〈aj ,x〉 treats them as all having the same alignment
(which is techically not quite right, but hardly matters). Therefore the Ax is simply the innerproduct
between each row vectors of A with the column vector x . It can be considered as a linear transformation
of the vector x . Notice that the number of columns of A must match the number of rows in x , else the
innerproduct and Ax in not well de�ned.

De�nition 1.5 (Transpose). The transposition A′ switches the column vectors into a row vectors and row

vectors into column vectors i.e. using the above de�nitions

x ′ =
(
x1 x2 . . . xn

)

A′ =

©«
a11 a12 . . . am1

a12 a22 . . . am2
...

...
. . .

...

a1n a2n . . . amn

ª®®®®®®¬
=

(
a′1 a′2 . . . a′m

)
.

Suppose A is an n × n matrix, this is called a squared matrix. If A′ = A it is called a symmetric matrix.

Symmetric matrices are very important in statistics, as all variance matrices (de�ned below) are symmetric.

Based on the above de�nition we observe

(Ax)′ = x ′A′ =
(
〈a1,x〉 〈a2,x〉 . . . 〈am ,x〉

)
.

Further if y is am-dimension column vector, then

y ′Ax =
m∑
i=1

yi 〈ai ,x〉 =
m∑
i=1

n∑
j=1

ai, jyix j .

Example 1.3. Suppose x = (x1,x2, . . . ,xn)
′.

18
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(i) Then xx ′ is an n × n matrix:

xx ′ =

©«
x1

x2
...

xn

ª®®®®®®¬
(
x1 x2 . . . xn

)
=

©«

x2
1 x1x2 . . . x1xn

x2x1 x2
2 . . . x2xn

x3x1 x3x2 . . . x3xn
...

...
. . .

...

xnx1 xnx2 . . . x2
n

ª®®®®®®®®®¬
(ii) Then x ′x is a scalar:

x ′x =
(
x1 x2 . . . xn

) ©«
x1

x2
...

xn

ª®®®®®®¬
= x2

1 + x
2
2 + . . . + x

2
n = 〈x ,x〉.

We can generalize this notion to the product of them × n matrix A and n × p matrix B as follows

AB =

©«
a1

a2
...

am

ª®®®®®®¬
(
b1,b2, . . . ,bp

)
=

©«
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

ª®®®®®®¬
©«
b11 b12 . . . b1p

b21 b22 . . . b2p
...

...
. . .

...

bn1 bn2 . . . bnp

ª®®®®®®¬
=

©«
〈a1,b1〉 〈a1,b2〉 . . . 〈a1,bp〉

〈a2,b1〉 〈a2,b2〉 . . . 〈a2,bp〉
...

...
. . .

...

〈am ,b1〉 〈am ,b2〉 . . . 〈am ,bp〉

ª®®®®®®¬
ThusAB is comprised ofmp innerproducts. The number of columns inA must match the number of columns
in B, else AB is not well de�ned.

Clearly AB is not commutative (in general, you cannot change the order: AB , BA)

Transpose: Observe the general identity:

(AB)′ = B′A′.

1.4 Expectation, variance and covariance

1.4.1 Expectation

Statisticians almost always deal with averages of a sample. This is because the averages (in most situations)
converge to its corresponding expectation. We start with the de�nition of the average and then de�ne the
expectation (we completely avoid the use of measures, sigma algebras etc).
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Suppose the random variable X is a discrete valued random variable2 taking values {ki } and distribution
p(ki ). Suppose we observe multiple realisations {xi }, then the averages

1
n

n∑
i=1

xi and 1
n

n∑
i=1

д(xi )

will (almost surely) limit to the following “expectation”:

E[X ] =
∞∑
i=0

kip(ki ) and in general E[д(X )] =
∞∑
i=0

д(ki )p(ki ).

respectively, where д is any function. This is called the expectation of the random variable X and д(X ). If X
is a continuous value random3 variable with density f (x) then the expectation of X and д(X ) is

E[X ] =
∫
R
x f (x)dx and in general E[д(X )] =

∫
д(x)f (x)dx .

The expection can easily generalised to a vector by taking the expectation entrywise. Let X = (X1, . . . ,Xd )

be a random row vector, then

E(X ) =
(

E(X1) E(X2) . . . E(Xd )

)
=

(
µ1 µ2 . . . µd

)
= µ

The joint expectation, E(XY ), generalizes the above de�nition, and is taken over the joint distribution of
(X ,Y ).
Lemma 1.1 (Expectation of products of independent random variables). Suppose that X and Y are indepen-

dent random variables. Then

E(XY ) = E(X )E(Y ).

Example 1.4 (Expectations of mixtures). In statistics often modelling data with mixtures of distributions is

useful. Let X , Y and U be independent random variables. Let U be a Bernoulli random variable U ∈ {0, 1},
where P(U = 0) = p and P(U = 1) = 1 − p. De�ne the new random variable

Z = UX + (1 −U )Y .

The expectation

E[Z ] = E[UX + (1 −U )Y |U = 0]P(U = 0) + E[UX + (1 −U )Y |U = 1]P(U = 1)

= E[(1 −U )Y |U = 0]P(U = 0) + E[UX |U = 1]P(U = 1)

= pE[Y ] + (1 − p)E[X ].

By a similar argument we have Z 2 = (UX + (1 −U )Y )2 = (U 2X 2 + (1 −U )2Y 2 + 2U (1 −U )XY

E[Z 2] = E[(Z 2 |U = 0]P(U = 0) + E[Z 2 |U = 1]P(U = 1)

= E[(1 −U )2Y 2 |U = 0]P(U = 0) + E[U 2X 2 |U = 1]P(U = 1)

= pE[Y 2] + (1 − p)E[X 2].
2For example, the binomial or Poisson distribution.
3For example, the normal distribution
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1.4.2 Example: Interpreting the covariance of bivariate data

Suppose we observe the bivariate data(
−0.26
2.78

)
,

(
−1.51
0.25

)
,

(
−0.86
−1.89

)
, . . . ,

(
3.78
7.17

)
,

In total we observe 200 vectors.

On the right we have made a scatter plot of the above
data set. Clearly, there appears to be some sort of “lin-
ear” dependence between the the two variables. How
to measure this? One solution is to use the similar-
ity measure (inner product) described in the previous
section.

To do this, we rewrite the bivariate vectors as two 200-dimension vectors

x = (x1,x2, . . . ,x200) =
(
−0.26, −1.51, −0.86, . . . 3.78

)
y = (y1,y2, . . . ,y200) =

(
2.78, 0.25, −1.89, . . . 7.17

)
,

If the vectors are “similar” they will almost lie on the same line and have a “large” inner product. We �rst
centralize the vectors by subtracting the average for each vector and then evaluate the (average) inner
product

n−1〈x − x̄1,y − ȳ1〉 = 1
n

200∑
i=1
(xi − x̄)(yi − ȳ)

which in this example is 4.7. The average squared spread of the data is

1
n

n∑
i=1
(xi − x̄)

2 and 1
n

n∑
i=1
(yi − ȳ)

2,

which for this example is 5.9 and 6.7 respectively. Thus a summary of the inner products is

1
n
X ′X =

(
1
n
∑200

i=1(xi − x̄)
2 1

n
∑200

i=1(xi − x̄)(yi − ȳ)
1
n
∑200

i=1(xi − x̄)(yi − ȳ)
1
n
∑200

i=1(yi − ȳ)
2

)
=

(
5.9 4.7
4.7 6.7

)
.
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If the pairs (Xi ,Yi ) are independent realisation (over i) from a distribution. As we increase the number of
realisation (see Section 1.4.1) the above estimates the following expection

1
n

200∑
i=1
(xi − x̄)(yi − ȳ) → E [(X − E(X ))(Y − E(Y ))] .

This is called the covariance between the random variables X and Y .

Taking the limit of the above over all possible realisations we have

var(X ) = E
[
(X − E(X ))2

]
and var(Y ) = E

[
(Y − E(Y ))2

]
,

which is called the variance of the random variables X and Y respectively4.

We recall that in Section 1.3.1 we discuss standardized vectors. Where we divide a vector by the distance to
ensure it has a length one. We do this to our data vectors x and y:

(x1 − x̄ ,x2 − x̄ , . . . ,xn − x̄)√∑n
i=1(xi − x̄)

2

(y1 − ȳ,y2 − ȳ, . . . ,yn − ȳ)√∑n
i=1(yi − ȳ)

2
.

Then the projection of one vector onto the other (it does not matter which way round it is) is∑n
i=1(x1 − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)
2 ∑n

i=1(yi − ȳ)
2
=

n−1 ∑n
i=1(x1 − x̄)(yi − ȳ)√

n−1 ∑n
i=1(xi − x̄)

2n−1 ∑n
i=1(yi − ȳ)

2
.

This measures the linear dependence between the two vectors, after taking into account their length.
Both the numerator and denominator are averages, thus as the sample size grows, the above limits to the
correlation between (X ,Y ), which is de�ned as

cov(X ,Y )√
var(X )var(Y )

.

Below we give an example of a data set where there is little or no correlation.

4Often we use the notation E[(X − µ)2] and E(X − µ)2 interchangably. When you see E(X − µ)2 remember it means (X − µ)2 is
evaluated �rst, then the expectation of (X 2 − 2X µ + µ2) evaluated.
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A scatter plot of a di�erent data set. There does not
appear to be any linear dependence between them.
The inner product is

n−1〈x − x̄1,y − ȳ1〉 = 1
200

200∑
i=1
(xi − x̄)(yi − ȳ) = 0.621

and ∑n
i=1(x1 − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)
2 ∑n

i=1(yi − ȳ)
2
= 0.111.

The spread of the bivariate data and its linear dependence can be succinctly summarized in terms of a
matrix:

1
n
X ′X =

(
1
n
∑n

i=1(xi − x̄)
2 1

n
∑n

i=1(xi − x̄)(yi − ȳ)
1
n
∑n

i=1(xi − x̄)(yi − ȳ)
1
n
∑n

i=1(yi − ȳ)
2

)
1
n

n∑
i=1

(
(xi − x̄)

(yi − ȳ)

) (
(xi − x̄), (yi − ȳ)

)
=

(
4.55 0.62
0.62 6.77

)
.

This limits to the variance matrix

var
(
X

Y

)
=

(
var(X ) cov(X ,Y )

cov(Y ,X ) var(Y )

)
,

which is an important tool in statistics. We formalize the above to higher dimensions below.

1.4.3 The variance matrix

The covariance between the random variables (X ,Y ) is a combination of its joint moments. Using the rules
of expectations we have

cov(X ,Y ) = E((X − E(X ))(Y − E(Y ))) = E(XY ) − E(X )E(Y ).

This represents a covariance in terms of its expectations. However, often it is easier to stick with the
covariance and to deal with the covariance rather than turning it into an expectation (see Example 1.6).
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As mentioned in the previous section, the covariance is a measure of linear dependence between X and Y .
If two random variables are independent, then their covariance is zero. But the converse is not necessarily
true.

Example 1.5. Suppose X ,Y ,Z are zero mean independent random variables. De�ne the variablesU1 = ZX

andU2 = ZY , clearly they are dependent. However,

cov(U1,U2) = 0.

See HW1.

The variance is a special case of the covariance

cov(X ,X ) = var(X ) = E(X − E(X ))2 = E(X 2) − E(X )2.

Generalising the above to matrices, the variance of the vector X = (X1, . . . ,Xd ) is the pairwise covariance
between each element in the vector

var(X ) = E
(
(X − E(X ))(X − E(X ))′

)
=

©«
var(X1) cov(X1,X2) . . . cov(X1,Xd )

cov(X2,X1) var(X2) . . . cov(X2,Xd )

...
...

. . .
...

cov(Xd ,X1) cov(Xd ,X2) . . . var(Xd )

ª®®®®®®¬
.

Clearly var(X ) is a square symmetric matrix: since

cov(Xi ,X j ) = E((Xi − E(Xi ))(X j − E(X j ))) = cov(X j ,Xi ).

In general we can de�ne the covariance between two vectors as follows. Suppose X = (X1, . . . ,Xp ) and
Y = (Y1, . . . ,Yq). Then cov(X ,Y ) is a (p × q)-matrix where

cov(X ,Y ) =

©«
cov(X1,Y1) cov(X1,Y2) . . . cov(X1,Yq)

cov(X2,Y1) cov(X2,Y2) . . . cov(X2,Yq)
...

...
. . .

...

cov(Xp ,Y1) cov(Xp ,Y2) . . . cov(Xp ,Yq)

ª®®®®®®¬
.

Example 1.6. (i) SupposeU ,V ,W are iid random variables with mean zero and variance one. De�ne the

random vector

X =
©«
X1

X2

X3

ª®®®¬ =
©«

2U +V
V +W

3W

ª®®®¬ .
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The expectation of X is E[X ] = (0, 0, 0)′ and pairwise covariance is

var(X1) = cov(2U +V , 2U +V ) = cov(2U , 2U ) + cov(2U ,V ) + cov(V , 2U ) + cov(V ,V )

= 4var(U ) + 4cov(U ,V ) + var(U ) = 4 + 4 × 0 + 1 = 5

cov(X1,X2) = cov(2U +V ,V +W ) = cov(2U ,V ) + cov(2U ,W ) + cov(V ,W ) + cov(V ,V ) = var(V ) = 1.

Applying the above technique to all combinations gives the variance matrix

var [X ] = var
©«

2U +V
V +W

3W

ª®®®¬ =
©«

5 1 0
1 2 3
0 3 9

ª®®®¬ .
Observe the zero entries in the matrix. This tells us there is no correlation between X1 and X3; which

is clear as they do not share a common random variable. The pairwise dependence structure can be

illustrated using the following network plot:

(ii) SupposeU ,V ,W ,Z are iid random variables with mean zero and variance one. De�ne the random vector

X =

©«
X1

X2

X3

X4

ª®®®®®®¬
=

©«
2U +V
V +W

3W + Z
Z +U

ª®®®®®®¬
.

The expectation of X is E[X ] = (0, 0, 0, 0)′ and variance

var [X ] = var

©«
2U +V
V +W

3W + Z
Z +U

ª®®®®®®¬
=

©«
5 1 0 2
1 2 3 0
0 3 10 1
2 0 1 2

ª®®®®®®¬
.

The pairwise dependence structure can be illustrated using the following network plot:

1.4.4 Properties of the variance

We summarize all properties.
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Example 1.7. Suppose E((X1,X2)) = (µ1, µ2) and

var((X1,X2)) =

(
cov(X1,X1) cov(X1,X2)

cov(X2,X1) cov(X2,X2)

)
=

(
σ11 σ12

σ21 σ22

)
.

De�ne the new random variable Y = α0 + α1X1 + α2X2, then

E(Y ) = α0 + α1µ1 + α2µ2

and

var(Y ) = α2
1σ1,1 + α1α2σ12 + α1α2σ21 + α

2
2σ22 = α

2
1σ11 + 2α1α2σ12 + α

2
2σ22

= (α1,α2)

(
σ11 σ12

σ21 σ22

) (
α1

α2

)
.

We summarize below some properties of expectations and covariances of vectors which we will use:

1. Suppose Y = aX + b. Then E[Y ] = aE[X ] + b and var(aX + b) = a2var(X ).

Remember A shift of b has an impact on the mean but not on the variance (spread) of the transformed
random variable.

2. Suppose Y =
∑n

i=1 aiXi (where Xi are random an ais are constant). Then E[Y ] =
∑n

i=1 aiE[Xi ] and

var[Y ] =
n∑

i, j=1
aiajcov(Xi ,X j ). (1.6)

3. Suppose that X ′ = (X1, . . . ,Xd ), b = (b1, . . . ,bn)
′ and A is a n ×d matrix (X is a random vector, b and

A is a constant vector and matrix).

Let Y = (Y1, . . . ,Yn)
′ = AX + b. Then we have E(Y ) = AE(X ) + b and

var(Y ) = var
(
AX

)
= Avar(X )A′. (1.7)

To understand why the above holds, assume E[X ] = 0. Then by using Example 1.3 we have

var(Y ) = E
(
YY ′

)
= E


©«
Y1

Y2
...

Yn

ª®®®®®®¬
(
Y1 Y2 . . . Yn

)
= E

©«
Y 2

1 Y1Y2 . . . Y1Yn

Y2Y1 Y 2
2 . . . Y2Yn

...
...

. . .
...

YnY1 YnY1 . . . Y 2
n

ª®®®®®®¬
= E[AXX ′A′] = AE[XX ′]A′ = Avar(X )A′.

4. De�ne the random vectorsX ′ = (X1, . . . ,Xp ) andY ′ = (Y1, . . . ,Yq). SupposeA and B are two constant
matrices. Then

cov
(
AX ,BY

)
= Acov(X ,Y )B′.
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Example 1.8. [The sample mean]

De�ne

X̄n = n
−1(X1 + . . . + Xn).

Suppose that {Xi } are iid random variables with mean µ and variance σ 2. Then we have

E(X̄n) = n
−1[E(X1) + . . . + E(Xn)] = µ .

And the variance is

var(X̄n) = cov
(
n−1

n∑
i=1

Xi ,n
−1

n∑
i=1

Xi

)
= n−2

n∑
i1,i2=1

cov(Xi1 ,Xi2)︸         ︷︷         ︸
=0 if i1,i2

= n−2
n∑
i=1

var(Xi ) =
σ 2

n
.

Note the above can be shown by using rules of variances of sums (1.6). Alternatively for those who like matrices

we observe that

X̄n = (1/n, 1/n, . . . , 1/n)Xn = n
−11Xn ,

where X ′n = (X1, . . . ,Xn). Then by using (1.7) we have

var(X̄n) = (1/n, 1/n, . . . , 1/n)var(Xn)

©«
1/n
...

1/n

ª®®®¬ = n
−21var(Xn)1′.

By expanding out we can see that 1var(Xn)1′ is the sum of all entries in matrix var(Xn)

1var(Xn)1
′ =

n∑
i1,i2=1

cov(Xi1 ,Xi2) =

n∑
i=1

var(Xi ).

This gives an alternative derivation for the same result. They are both the same, choose the method which suits

you best.

Observe where we required the assumption of independence. We required the assumption of independence (or at

least no correlation) to set cov(Xi1 ,Xi2) = 0 when i1 , i2. If there is dependence, this may not hold (see HW1)!

1.5 Modes of convergence

Convergence of the sample mean is a complex idea, and there are several ways of measuring it. In this
section we review some standard measures.
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But why do we care? Convergence matters, because we never (rarely; an exception is the 2020 census)
observe the population, we can never observe the population parameter. We can only come up with some
estimator of it based on a sample. But how do we know this estimator is any good? That it even gets “close”
to the true parameter for a very large sample size. To answer this question we need to study di�erent modes
of convergence. In this section, we focus on the sample mean (as you would have studied it in previous
classes). In subsequent chapters we consider more sophisticated estimators, but the basic ideas are the same
(indeed most estimator can be written as a type of sample mean).

First recall that sample mean is

X̄n =
1
n

n∑
i=1

Xi

where we assume that {Xi } are iid random variables with mean µ and variance σ 2. It can be shown with
the exception of the most extraordinary situations (by extraordinary we mean a set which has measure
zero, it rarely happens), X̄n → µ, this is called almost sure convergence. This means as the sample size
grow it will get closer and closer to the population mean µ. Though useful, it is not very informative.

To illustrate the ideas in this section we consider a running example. We simulate from an chi-square
distribution (we de�ne this formally in the next chapter, however, the type of distribution does not impact
the discussion in this section) with one degree of freedom, this means E(X ) = µ = 1 and var(X ) = σ 2 = 2.
For the sample sizes n = 1, . . . , 500 we evaluate the sample mean. Thus for each realisation, we have a
trajectory of the sample means from n = 1 to n = 500. In Figure 1.4 we give a plot of �ve trajectories; each
coloured line corresponds to a speci�c j where

x̄ j,n =
1
n

n∑
i=1

x j,i n = 1, . . . , 500

We observe that each trajectory appears to approach one as n grows. Keep in mind, for a given data set
{x j,i }

n
i=1, we can only observe one x̄ j,n = n−1 ∑n

i=1 x j,i (for example, for the sample size n = 20, it may be
the red curve at n = 20). Since µ is unknown), we do not know how close x̄ j,n is µ. In practice we will never
know the di�erence (x̄ j,n − µ). But there are various ways of measuring the “typical” behaviour of X̄n . We
describe them in the sections below.

1.5.1 The mean squared error

One measure is the mean squared distance. By mean squared error we mean the average squared distance
between each trajectory (for a �xed n) and the mean µ, where the average is taken over all possible
realisations. In Figure 1.5 we give the trajectories of 100 realisations (from n = 1, . . . , 500), we denote each
realisation as x̄ j,n = n−1 ∑n

i=1 xi, j . An estimate the mean squared error at sample size n we calculate:
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Figure 1.4: Trajectories of �ve di�erent sample means for sample sizes n=1,. . . ,500.

Figure 1.5: 100 di�erent trajectories for sample sizes n=1,. . . ,100. In red is the standard error
√

2/n of the
sample mean.

1
100

100∑
i=1
(x̄ j,n − µ)

2,

where x̄i,n denotes the jth trajectory of the plot at sample size n and µ = 1. A plot of these average squared
error is given in Figure 1.6 However, the true mean squared error should be over all realisations. We recall,

29



1 Introduction and Review

Figure 1.6: The average squared error evaluated over 100 di�erent realisations (dots and red) and the mean
squared error 2/100 (blue).

that this is simply the expectation of the squared di�erence (X̄n − µ):

E
(
X̄n − µ

)2
.

By simply expanding the expectation it can be shown that

E
(
X̄n − µ

)2
= E

(
X̄n − E(X̄n) + E(X̄n) − µ

)2

= E
(
X̄n − E(X̄n)

)2
+ 2 E

(
X̄n − E(X̄n)

)︸             ︷︷             ︸
=0

E
(
E(X̄n) − µ

)
+ E

(
E(X̄n) − µ

)2

= E
(
X̄n − E(X̄n

)2
+

(
E(X̄n) − µ

)2
= var(X̄n)︸   ︷︷   ︸

variance

+
(
E(X̄n) − µ

)2
.︸           ︷︷           ︸

bias squared

(1.8)

This is the “classical” decomposition of the mean squared error of an estimator in terms of its variance and
its bias squared.
De�nition 1.6 (Bias and standard error). Suppose θ̂n is an estimator of a parameter θ . The bias of θ̂n is

de�ned as

Bθ (θ̂n) = (E[θ̂n] − θ )

and the standard error de�ned as the square root of the variance of the estimator:

s .e(θ̂n) =

√
var(θ̂n).
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The mean squared error is

E
(
θ̂n − θ

)2
= var(θ̂n) + Bθ (θ̂n)2.

We proved the above mean square error decomposition in (1.8).

Example 1.9. Suppose θ̂1 and θ̂2 are two unbiased estimators of θ . Show that for all 0 ≤ a ≤ 1, θ̂3 =

aθ̂1 + (1 − a)θ̂2 is an unbiased estimator of θ . Assume that θ̂1 and θ̂2 are independent, with var(θ̂1) = σ
2
1 and

var(θ̂2) = σ
2
2 . How should the constant a be chosen in order to minimize the variance of θ̂3?

Solution Just by taking expectations we have

E[θ̂3] = aE[θ̂1] + (1 − a)E[θ̂2] = aθ + (1 − a)θ = θ .

Under the assumption of independence we have

var[θ̂3] = a2σ 2
1 + (1 − a)2σ 2

2

To minimise the above take derivatives wrt a and set to zero

d f (a)

a
= 2aσ 2

1 − 2(1 − a)σ 2
2 = 0.

This gives a = σ 2
2

σ 2
1+σ

2
2
. It needs to be checked this is the minimum (and not maximum).

De�nition 1.7 (A means squared consistent estimator). An estimator, θ̂n is mean square consistent estimator

of θ , if

E
[
θ̂n − θ

]2
→ 0

as n →∞.

For our example, where we consider the sample mean E(X̄n) = µ (see Example 1.8), the bias is zero for all
sample sizes and E

(
X̄n − µ

)2
= var(X̄n) = σ

2/n (also from Example 1.8). The the average squared errors
given in Figure 1.6 is a good approximation of 2/n (since σ 2 = 2); compare the red and blue lines. To
summarise, the mean squared error gives the average squared distance from the estimator to the population
parameter. It is not an asymptotic result, i.e. it holds for any sample size. However, it does not give any
guarantees on the proportion of realisations which are within, say two standard errors (square root of
the MSE if the bias is zero) of the population parameter. For that we need to know the distribution of the
estimator. But �rst we describe convergence in probability.

1.5.2 Convergence in probability

Convergence in probability is evaluated at every n. Roughly speaking it is the “proportion” of trajectories
X̄n , at sample size n, which deviates from µ by more than ε . If this proportion converges to zero for every ε
as n →∞, then the estimator converges in probability to µ. Formally, if for every ε > 0 we have

P(|X̄n − µ | > ε) → 0
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as n →∞. Then we say X̄n
P
→ µ as n →∞.

Convergence in probability is a weaker form of convergence than almost sure convergence and convergence
in mean square. This means almost sure convergence and convergence in mean square imply convergence
in probability, but the converse is not true. Though this is very important, it is something that we do not
worry too much about in this class. But we should keep in mind that there exists strange examples, where
convergence in probability can occur but not almost sure convergence. That is, examples where, as n grows,
collectively the group of trajectories become tightly gathered about the µ (increasingly bunched together).
But individually, many trajectory on an in�nite number of occasions deviates far from µ. Thus, individually
these trajectories do not converge to µ (so no almost sure convergence). It is di�cult to illustrate. But we
make an attempt in Figure 1.7; we observe that in general all the trajectories are congregating about the
mean, µ = 1, but there are excursions; each individually trajectory is not converging to µ = 1.

Figure 1.7: Trajectories of �ve sample means (observe the individual excursions away from one).

1.5.3 Sampling distributions and the central limit theorem

We return to the trajectories in Figure 1.5. For sample sizes n = 1, 5, 10 and 100 we make a histogram of

X̄ and
√
n
(X̄n − µ)

σ

together with a QQplot of
√
n
(X̄n−µ)

σ against the quantiles of a standard normal distribution. The reason we
consider the “z-transform”

√
n
(X̄n−µ)

σ (recall we make this transform when looking up the z-tables) is that it
mean zero and variance one (it standardizes X̄n). This is is similar to taking a cross section across Figure
1.5 n = 1, 5, 10 and 100 and studying the distribution of the trajectories at each of these intersections. The
plots are given in Figures 1.8 - 1.11.
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Figure 1.8: Sample size n = 1. Histogram of X , (X − 1)/
√

2 and the QQplot against a standard normal
distribution. Using 100 replications.
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Figure 1.9: Sample size n = 5. Histogram of X̄5,
√

5(X̄5 − 1)/
√

2 and the QQplot against a standard normal
distribution. Using 100 replications.

n=10

sample size

0 1 2 3 4 5 6

0
10

20
30

40

n=10

sample size

−2 −1 0 1 2 3

0
5

10
15

20

−2 −1 0 1 2

−1
0

1
2

normal quantiles

qu
an

tile
s 

of
 s

am
pl

e 
m

ea
n

Figure 1.10: Sample size n = 10. Histogram of X̄10,
√

10(X̄10 − 1)/
√

2 and the QQplot against a standard
normal distribution. Using 100 replications.

De�nition 1.8 (Sampling distribution of an estimator). The distribution of an estimator is called the sampling

distribution of the estimator. For the X̄n described in our running sample, the sampling distribution of X̄n are
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Figure 1.11: Sample size n = 100. Histogram of X̄100,
√

100(X̄100 − 1)/
√

2 and the QQplot against a standard
normal distribution. Using 100 replications.

the histograms given in Figures 1.8-1.11.

De�nition 1.9 (Quantile Quantile plot). A Quantile Quantile plot (QQplot for short) is a useful method for

checking if the data can plausibly come from a conjectured distribution. It plots the ordered data against the

corresponding quantiles of the corresponding distribution. In Figure 1.8-1.11, we have plotted ordered sample

means (for a given sample size) against the quantiles of a standard normal distribution.

More precisely, suppose we observe the data Y1,Y2, . . . ,Yn (these could be raw data or several averages, as given

in this example). We order the data from the smallest number to the largest, often denotedY(1,n),Y(2,n), . . . ,Y(n,n).

If {Yi } came from a standard normal distribution we would expect the median of the data, Y(n/2,n) to closely

match the 50% (median) quantile in the standard normal distribution (which is zero). Similarly, we would

expect Y(n/4,n) to close match the �rst quartile of a standard normal (which is -0.674, you can get these numbers

from the z-tables) and Y(3n/4,n) to close match the third quartile of a standard normal (which is 0.674).

Extending this argument, we would expect thatY(i,n) roughly matches the quantile corresponding the probability

i/n in the normal distribution. Based on this argument, we de�ne the n quantiles in a standard normal

distribution. Let zi,n be such that

P(Z ≤ zi,n) =
(i − 0.5)

n
,

where Z is a standard normal distribution (mean zero and variance one). We subtract use (i − 0.5)/n rather

than i/n to avoid the case P(Z ≤ zn,n) = 1 (when i = n). {zi,n} are called the standard normal quantiles (you

can �nd them in the z-tables). A standard normal QQplot is a plot of {(zi,n ,Y(i,n))}ni=1. The line is usually (but

not always) the line corresponding to (zi,n , zi,n). If the data is normal, it will the QQplot will lie close to the line.

In R, the function qqplot plots the data against the quantiles of the normal distribution whose mean and

variance are the sample mean and variance calculated from the data. The function qqlines makes a line which

goes through the 25th and 75th quantiles of the standard normal distribution and corresponding data.
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Studying the plots from n = 1, 5, 10 and 100 we �rst observe that the histogram of the �rst plot becomes
narrower as the sample size grows (this corresponds to the trajectories in Figure 1.5 getting increasingly
bunched together). This is because the standard error σ/

√
n gets smaller as the sample size grows. Further,

the histograms tend to resemble a normal distribution as the sample size grow. Observe further, as the
sample size grow the quantiles of standardized sample mean match well the quantiles of the standard
normal distribution. This is called the central limit theorem, and we state this formally below. We mention
that in our example, the distribution of the original data {Xi } is skewed (see the plot in Figure 1.8, which is
the histogram of Xi , since the sample size is n = 1). The skew in the original distribution means that it
takes a larger sample size for the samling distribution of the sample mean to be close to normal. Observe
that when n = 10, evidence of a skew is still seen in the QQplot, but it is no longer so evident for n = 100.

We state the central limit theorem in its simplest form.

Theorem 1.1

Suppose that {Xi } are iid random variables with mean µ and variance σ 2 (a �nite variance is a
necessary condition). Let

X̄n =
1
n

n∑
i=1

Xi .

Using the results in Section 1.4.1 we have

E(X̄n) =
1
n

n∑
i=1

E(Xi ) = µ and var(X̄n) =
σ 2

n
.

Then

√
n

(
X̄n − µ

) D
→ N(0,σ 2) n →∞.

This means that the density (or histogram) associated with the random variable
√
n

(
X̄n − µ

)
gets more and

more standard normal looking as the number of Xis used to construct the X̄n increase. By dividing by σ
and using the results in Section 1.4.1 we have

E
[
√
n

(
X̄n − µ

)
σ

]
= 0 var

[
√
n

(
X̄n − µ

)
σ

]
= 1

and
√
n

(
X̄n − µ

)
σ

D
→ N (0, 1)

as n →∞. Alternatively, if we want to apply the above results, then we can write the above result as

X̄n
D
→ N

(
µ,
σ 2

n

)
.
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This way of writing the result corresponds to the left hand side histogram in Figures 1.8-1.11.

However, the actual sample size required for the normal approximation to hold well depends on the
characteristics of the distribution of Xi . The factor that plays the largest role is the skewness (asymmetry)
of the original distribution. The greater the level of asymmetry in the density or pmf of Xi , the larger the
sample size required for the normal approximation to hold. This e�ect is easily seen in simulations. Further,
as can be seen from the QQplots, the deviance between the distribution of the sample mean and normal
distribution di�ers greatest in the tails. The asymmetric is measured using skewness, which we de�ne in
the section below.

De�nition 1.10 (Summary of di�erent modes of convergence). (i) Almost sure convergence. This is where

all the trajectories (except for the really weird and exceptional ones) converge to the mean, µ. In some

sense this is the easiest to understand. We often denote this as X̄n
a .s .
→ µ.

(ii) Mean squared convergence. This is essentially the average square distance between the trajectory (at

sample size n) and µ. If the estimator converges in mean square then E(X̄n − µ)
2 → 0 as n →∞.

(iii) Convergence in probability: If for every ε > 0 we have

P(|X̄n − µ | > ε) → 0

as n →∞. Then we say X̄n
P
→ µ as n →∞.

(iv) Convergence in distribution: we may write

√
n

(
X̄n − µ

)
σ

D
→ N(0, 1)

or
√
n

(
X̄n − µ

)
/σ

D
→ Z , where Z is a standard normal random variable.

Skewness: Measure of asymmetry

Skewness is usually de�ned using the third moment

S3 =
E(Xi − µ)

3

σ 3

To understand why this measure asymmetry assume µ = 0 (without loss of generality). It is easily seen if
the the distribution is symmetric about the mean, then S3 = 0;

E(X 3) =

∫ ∞

−∞

x3 f (x)dx =

∫ ∞

0
x3 f (x)dx +

∫ 0

−∞

x3 f (x)dx

=

∫ ∞

−∞

x3 f (x)dx =

∫ ∞

0
x3 f (x)dx +

∫ 0

−∞

x3 f (−x)dx (change variables x = −y)

=

∫ ∞

−∞

x3 f (x)dx =

∫ ∞

0
x3 f (x)dx −

∫ ∞

0
y3 f (y)dy = 0,
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essentially the positives in (Xi − µ)

3 cancel with the negatives (this is best seen with a picture)5 If the
distribution is not symmetric then this cancellation may not be possible and S3 may not be zero. It can be
shown that the size of |S3 | together with the sample size e�ects the quality of the normal approximation of
the distribution of the sample mean. For the χ 2 distribution withm-df (we de�ne it formally in the next
chapter), S3 =

√
8/m. Observe that the level of skewness decreases asm grows.

Suppose we observe the iid random variables {Xi }
n
i=1, we can estimate E(X − µ)3 with the centralized

average

µ̂3 = n
−1

n∑
i=1
(Xi − X̄ )

3

and the variance σ 2 with

σ̂ 2 = n−1
n∑
i=1
(Xi − X̄ )

2.

This gives an estimator of S3

Ŝ3 =
n−1 ∑n

i=1(Xi − X̄ )
3

σ̂ 3
n

.

1.5.4 Functions of sample means

In statistics many estimators we encounter are averages or functions of averages. Suppose X̄n
P
→ µ and

√
n(X̄n − µ)

D
→ N (0,σ 2), what happens to X̄ 2

n? By the continuous mapping theorem

X̄ 2
n
P
→ µ2.

Further, if µ , 0, then
√
n(X̄ 2

n − µ
2)
D
→ N (0, 4µ2σ 2)

as n →∞.

In general, we have the following result (usually called the continuous mapping theorem).

Lemma 1.2

Suppose X̄n
P
→ µ as n →∞ and д is a continuous function, then

д(X̄n)
P
→ д(µ),

as n →∞. Furthermore, if
√
n(X̄n − µ)

D
→ N (0,σ 2) and д′(µ) , 0 then we have

√
n[д(X̄n) − д(µ)]

D
→ N (0, [д′(µ)]2σ 2) (1.9)

5A simpler proof uses that x3 f (x) is an odd function and this integrates to zero.
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1 Introduction and Review
as n →∞.

PROOF. The proof is beyond this course, but a rough outline of the normality result is given below. The
second order mean value theorem of д(X̄n) about д(µ) gives

д(X̄n) − д(µ) = (X̄n − µ)д
′(µ) +

1
2 (X̄n − µ)

2д′′(αµ + (1 − α)X̄n).

Since X̄n
P
→ µ, (X̄n − µ)

2 << ((X̄n − µ)); thus the �rst term of the RHS of the above “dominates” the second
term and we have

д(X̄n) − д(µ) ≈ (X̄n − µ)д
′(µ).

Note this is why we require д′(µ) , 0. Since we have asymptotic normality of (X̄n − µ) and д′(µ) is a
constant, we have the result. �

This result turns out to be very useful in many of the methods we discuss in the subsequent chapters.

To illustrate the result, in Figures 1.12 and 1.13 we give a plot of the histogram of X̄ 2
n (for two di�erent

sample sizes n = 200 and 1000, conducted over 1000 replications) in the case that µ = 0 and µ = 0.5. We
recall that д′(µ) = 2µ) and that for (1.9) to hold, we require д′(µ) , 0. If this condition is violated, as is
the case that µ = 0, then this result does not hold. This is clearly seen in Figure 1.12, for both the sample
sizes n = 200 and n = 1000, the distributions is clearly not normal. On the other hand, when µ = 0.5, then

Figure 1.12: The histogram of X̄ 2
n when µ = 0: Left n = 200, Right: n = 1000.

д′(0.5) , 0, thus (1.9) should hold when n is large. In Figure 1.13 we see that this is indeed the case. For
n = 200, there appears to be a small right skew, which appears to have almost diminished when n = 1000.
This essentially illustrates the power of (1.9); a transformation of the sample mean is also asymptotically
normal, so long as д′(µ) , 0.
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1 Introduction and Review

Figure 1.13: The histogram of X̄ 2
n when µ = 0.5: Left n = 200, Right: n = 1000.

Example 1.10 (Transformations to reduce skewness). In a simulation, I draw from a Poisson with λ = 0.5, 5
times and evaluate the sample mean (this is done several times). The histogram for the distribution of X̄5 is

the top plot in Figure 1.14. Observe the huge skew. We now take a power transform; X̄ α
5 using α = 1/2. The

histogram of the lower plot in Figure 1.14. Observe that after taking the square root of the sample mean, it is

normal looking. I found that taking a square root is a lot better than taking a cube root. This is a neat trick for

making estimators more normal in their distribution. Note that from Lemma 1.2 we have

√
n(X̄ 1/2

n − λ
1/2)

D
→ N

(
0, λ × [λ−1/2/2]2

)
.

The above can be generalized to functions of several averages. Suppose {Xi } and {Yi } are iid random
variables with mean µX and µY (respectively) and variance

Σ =

(
var (X ) cov(X ,Y )

cov(Y ,X ) var(Y )

)
.

Let X̄n = n
−1 ∑n

i=1 Xi and Ȳn = n
−1 ∑n

i=1 Yi . Suppose the multivariate CLT holds (see STAT414, for details)
such that

√
n

(
X̄n − µX

Ȳn − µY

)
D
→ N (0, Σ) .

Let Zn = д(X̄n , Ȳn), where X̄n = n
−1 ∑n

i=1 Xi and Ȳn = n
−1 ∑n

i=1 Yi . If

д(µ1, µ2) =

(
∂д(x ,y)

∂x
,
∂д(x ,y)

∂y

)
c(x=µx ,y=µy ) , 0,
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Figure 1.14: Top plot histogram of X̄5. Lower plot histogram of X̄ 1/2
n .

then we have

√
n

(
д(X̄n , Ȳn) − д(µX , µY )

) D
→ N

(
0,д(µX , µY )Σд(µX , µY )′

)
.

Research 1. Run some simulations for di�erent functions of averages. Plot the histogram and calculate the

standard deviations in the simulations. Do they match the results given above for su�ciently large n?

1.6 A historical perspective

The Central Limit Theorem dates back to Laplace in 1810. In 1824, Poisson gave a more rigourous proof of
the result. However, the �rst rigourous version of the proof was established by Lyapunouv in 1901. In 1922
Lindeburg, established the result under the weaker condition that only the �rst and second moments of the
random variable are �nite (this turns out to be su�cient and necessary condition).
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2 Classical distributions and the �rst foray into sampling distributions

2 Classical distributions and the first foray into
sampling distributions

2.1 The Multivariate Gaussian distribution

2.1.1 Motivation through the bivariate Gaussian

Suppose that Z1 and Z2 are iid normal random variables with mean zero and variance one. Below is a plot
of Z1 against Z2 over 500 replications.

If we made a histogram of the above, it would resemble the joint density of Z1 and Z2. Because Z1 and Z2

are independent, their joint density is the product of the marginals. The joint density is

fZ1,Z2(z1, z2) = fZ1(z1)fZ2(z2)

=
1
√

2π
exp

(
−

1
2z

2
1

)
×

1
√

2π
exp

(
−

1
2z

2
2

)
=

1
(2π ) exp

(
−

1
2 (z

2
1 + z

2
2)

)
=

1
(2π ) exp

(
−

1
2

(
z1 z2

) (
1 0
0 1

) (
z1

z2

))
=

1
(2π ) exp

(
−

1
2

(
z1 z2

)
I−1
2

(
z1

z2

))
(2.1)
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The variance matrix of Z = (Z1,Z2)

′ is

var
(
Z1

Z2

)
=

(
1 0
0 1

)
= I2.

The appearance of var[Z ] = I2 in fZ1,Z2 is not a coincidence. A perspective plot and contour plot is given
in Figure 2.1. The perspective plot gives you an idea of which regions of (z1, z2) in R2 are more likely to
arise. The contour plot is a “birds eye” view of the density (like a contour map); each line corresponds to
where fZ1,Z2 is the same. From the perspective and contour may we observe that the density is completely
symmetric.

Let λ1 and λ2 denote two constants (for the examples below we set λ1 =
√

0.9 and λ2 =
√

0.1). We transform
(Z1,Z2) using the transformation

X =

(
X1

X2

)
= λ1

(
1
1

)
Z1 + λ1

(
1
−1

)
Z2 =

(
λ1 λ2

λ1 −λ2

) (
Z1

Z2

)
= AZ .

The variance (matrix) of X is

var[X ] =
(
λ2

1 + λ
2
2 λ2

1 − λ
2
2

λ2
1 − λ

2
2 λ2

1 + λ
2
2

)
= AA′.

The correlation between (X1,X2) is

cor(X1,X2) =
λ2

1 − λ
2
2

λ2
1 + λ

2
2
.

A plot of X1 against X2 is given in Figure 2.2. We observe the alignment of the points have changed
dramatically and appear to lie on an ellipse. To evaluate the bivariate density of X ′ = (X1,X2) we note that
the iid random variables Z ′ = (Z1,Z2) can be rewritten in terms of X ′ = (X1,X2):

Z =

(
Z1

Z2

)
=

(
λ1 λ2

λ1 −λ2

)−1 (
X1

X2

)
= A−1X .

Using this, (2.1) and the change variables for multiple integrals (see your Calculus III book, Chapter 13.11)
we can derive the joint density of X ′ = (X1,X2) (we do not give the details here, but it is straightforward).
The joint density of (X1,X2) is

fX1,X2(x1,x2) =
1

| det(A)|2π exp ©«−1
2

(
X1 X2

) (
λ1 λ1

λ2 −λ2

)−1 (
λ1 λ2

λ1 −λ2

)−1 (
X1

X2

)ª®¬
=

1√
(2π )2 det(Σ)

exp
(
−

1
2X
′Σ−1X

)
,
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ZD

Y

Z

Bivariate Normal: cor = 0

ZD

Y

Z

Bivariate Normal: cor = 0

Bivariate Normal Density cor = 0

−6 −4 −2 0 2 4 6

−
4

−
2

0
2

4

Figure 2.1: Perspective plot (at di�erent angles) and contour map of the bivariate iid random variables.
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2 Classical distributions and the �rst foray into sampling distributions

Figure 2.2: Left: Plot of (Z1,Z2) and Right: Plot of transformed X = AZ (with λ1 =
√

0.9 and λ2 =
√

0.1).

since Σ = AA′. A perspective plot and contour plot for λ1 =
√

0.9 and λ2 =
√

0.1 is given in Figure 2.3. From
the perspective and contour may we observe that the density is not symmetric at all rotations. The main
spread is along the X1 = X2 line.

The plots in Figure 2.3 are for the case λ1 =
√

0.9 and λ2 =
√

0.1. In Figure 2.4 we give the analogous plots
for λ1 =

√
0.1 and λ2 =

√
0.9. In general, any jointly bivariate Gaussian random variable has the joint

density

fX1,X2(x1,x2) =
1√

(2π )2 det(Σ)
exp

(
−

1
2X
′Σ−1X

)
.

This derivations is based on the fact that any jointly normal random variable can be expressed as X = AZ

(where Z = (Z1,Z2) are iid standard normal random variables).

In the following section we generalize the joint density from (X1,X2) to the joint density of a d-dimensional
multivariate Gaussian.

2.1.2 The general multivariate Gaussian

The random vector X ′d = (X1, . . . ,Xd ) is jointly normal (also called Gaussian, I switch between the two)
with mean µ ′ and variance Σ if the joint density of Xd (assuming Σ is invertible, that is there exists a unique
matrix Σ−1 where ΣΣ−1 = Id ) is

fXd
(x) =

1√
(2π )d det(Σ)

exp
(
−

1
2 (x − µ)

′Σ−1(x − µ)

)
where det(Σ) denotes the determinant of the matrix Σ (you will need to look it up, to �nd out what it exactly
is, we rarely use it, and when we need it I will give you the pertinent results). I tend to be a sloppy and will
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ZD

Y
Z

Bivariate Normal: cor = 0.8

ZD

Y

Z

Bivariate Normal: cor = 0.8

Bivariate Normal Density cor = 0.8
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−
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0
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Figure 2.3: Perspective plot (at di�erent angles) and contour map of the bivariate dependent random
variables (λ1 =

√
0.9 and λ2 =

√
0.1).
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ZD

Y
Z

Bivariate Normal: cor = −0.8
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Z

Bivariate Normal: cor = −0.8

Bivariate Normal Density cor = −0.8
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Figure 2.4: Perspective plot (at di�erent angles) and contour map of the bivariate dependent random
variables (λ1 =

√
0.1 and λ2 =

√
0.9).
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switch between the notation det(Σ) and |Σ| for determinant of a matrix. The inverse Σ−1 is a matrix where
Σ−1Σ = ΣΣ−1 = Id (generalisation of the inverse of a real number a). Often we denote the distribution of
Xd as

Xd ∼ Nd (µ, Σ).

In general the density looks awful. In this course, you will never have to explicitly evaluate the above
density in the case the Xis are dependent. But the joint density nicely simpli�es if the random variables are
uncorrelated. We show why below.

If {Xi }
d
i=1 are Gaussian random variables with mean µi , variance σ 2 and cov(X j1 ,X j2) = 0 for j1 , j2. Then

var(Xd ) = Σ =

©«
σ 2 0 . . . 0
0 σ 2 . . . 0
...
...
. . .

...

0 0 . . . σ 2

ª®®®®®®¬
= σ 2

©«
1 0 . . . 0
0 1 . . . 0
...
...
. . .

...

0 0 . . . 1

ª®®®®®®¬
= σ 2Id .

This is a diagonal matrix with inverse

Σ−1 =
1
σ 2

©«
1 0 . . . 0
0 1 . . . 0
...
...
. . .

...

0 0 . . . 1

ª®®®®®®¬
= σ−2Id .

Using algebra the joint density is

fXd
(x) =

1√
(2π )d |σ 2Id |

exp
(
−

1
2 (x − µ)(σ

2Id )
−1(x − µ)′

)
=

d∏
i=1

1
√

2πσ 2
exp

(
−
(xi − µi )

2

2σ 2

)
=

d∏
i=1

fXi (xi ).

Observe that the joint density is the product of the marginals. Thus if the Gaussian random variables are
uncorrelated, then they are independent.

The multivariate Gaussian distribution is a “work horse” in statistics. It drives many modern statistical
methods (often it is assumed in the background). It has many useful properties. One of these is that any
linear combination/transformation of jointly Gaussian random variables is also Gaussian. This means
that all one has to do is evaluate the mean and variance of the linear transformation (see Section 1.4) and
transformation will be Gaussian with the new evaluated mean and variance. Below, we give some examples
(return to Section 1.4 and practice these).
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1. Suppose X ∼ N (µ,σ 2) and let Y = aX + b. Then by using the results in Sections 1.4.1 and 1.4.3 we

have

E(Y ) = aµ + b var(Y ) = a2σ 2.

Thus

Y ∼ Nd
(
aµ + b,a2σ 2) .

A commonly used transformation is the z-transform:

σ−1 (X − µ) ∼ Nd (0, 1) .

2. Suppose Yi are independent, normal random variables with E[Yi ] = β0 + β1xi and var[Yi ] = σ 2

(independence means cov(Yi ,Yj ) = 0 if i , j). Then

©«
Y1

Y2
...

Yd

ª®®®®®®¬
∼ Nd

©«
©«
β0 + β1x1

β0 + β1x2
...

β0 + β1xd

ª®®®®®®¬
,σ 2Id

ª®®®®®®¬
.

To do Write out the density of Y .

3. If Xd ∼ Nd (µ, Σ) where Σj1, j2 = σj1 j2 . Then any linear combination of Xd ; Y =
∑d

j=1 α jX j is normal
with mean

∑d
j=1 α jµ j and variance

var(
d∑
j=1

α jX j ) = αΣα
′ =

d∑
j1, j2=1

α j1α j2cov(X j1 ,X j2) =

d∑
j1, j2=1

α j1α j2σj1 j2

where α = (α1, . . . ,αd ) and the (j1, j2) entry of Σ is σj1 j2 . In summary

d∑
j=1

α jX j ∼ N

(
d∑
j=1

α jµ j ,
d∑

j1, j2=1
α j1α j2σj1 j2

)
same as saying αXd ∼ N

(
αµ

d
,αΣα ′

)
4. Generalising the above if Y1 =

∑d
j=1 α jX j and Y2 =

∑d
j=1 βjX j , then(

αXd

βXd

)
∼ N

((
α

β

)
µ
d
,

(
α

β

)
Σ(α ′, β ′)

)
= N

((
αµ

βµ

)
,

[
αΣα ′ αΣβ ′

βΣα ′ βΣβ ′

])
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5. If Xd ∼ Nd (µ, Σ) then (

AXd + b
)
∼ Nd

(
Aµ + b,AΣA′

)
.

A commonly used transformation is Y = Σ−1/2(X − µ). This gives

E[Y ] = Σ−1/2E[X − µ] = 0

and

var[Y ] = var
[
Σ−1/2X

]
= Σ−1/2var(X )Σ−1/2

= Σ−1/2ΣΣ−1/2 = Σ−1/2Σ1/2Σ1/2Σ−1/2 = Id .

Therefore

Y = Σ−1/2
(
Xd − µ

)
∼ Nd (0, Id ) .

6. If X and Y are p and q dimensional random vectors which are jointly normal and cov(X ,Y ) = 0 (a
matrix of zeroes), then

var

[(
X

Y

)]
=

(
A 0
0 B

)
where var(X ) = A and var(Y ) = B. The above is known as a block diagonal matrix. Further, it can be
shown that X and Y are independent of each other (your HW).

7. Suppose E is an orthonormal transformation matrix as de�ned Section 1.3.3. If this sounds scary
thing of a system of orthonomal vectors such as {(1, 2)/

√
5, (−2, 1)/

√
5} of {(1, 1)/

√
2, (1,−1)/

√
2}

which give the 2 × 2 matrix

E =
1
√

5

(
1 2
−2 1

)
or E = 1

√
2

(
1 1
−1 1

)
.

Let X ∼ N (µ, Σ) and de�ne the linear transform Y = EX . Then by using equations (1.4) and (1.5) the
density of fY is

1√
(2π )d det(E ′ΣE)

exp
(
−

1
2 (y − Eµ)

′(E ′ΣE)−1(y − Eµ)

)
(2.2)

In the special case Σ = Id we have E ′IdE = E ′ = E = Id the density of EX is
1√
(2π )d

exp
(
−

1
2 (y − Eµ)

′(y − Eµ)

)
De�nition 2.1. We say Z has a standard normal distribution if Z has a normal distribution with mean zero

and variance one.

Research 2. The inverse of the variance matrix Σ is called the precision matrix. It has many interesting

properties (related to linear regression, conditional independence and graphical models). You may want to read

up on it.
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2.2 Relatives of the Gaussian distribution

2.2.1 The chi-square distribution

Suppose Z1, . . . ,Zn are iid standard normal random variables. Then the distribution of

Z 2
1 + . . . + Z

2
n ∼ χ

2
n ,

where χ 2
n denotes a (central) chi-square distribution with n degrees of freedom (df for short). For example,

the distribution of Z 2 is a chi-square with one df. In general if X1, . . . ,Xn are iid normal random variables
with mean µ and variance σ 2, then(

X1 − µ

σ

)2
+ . . . +

(
Xn − µ

σ

)2
∼ χ 2

n .

An analytic form for the density exists. But the plots of the densities are more illuminating. A plot of the
density of a chi-square distribution for various degrees of freedom is given in Figure 2.5. Observe, that as

Figure 2.5: Plot of di�erent chi-squared densities. Stolen from Wiki

n moves away from one the hump of the chi-square distribution moves along the x-axis (the mode is at
max(0,n − 2)). This makes sense, as n grows, more and more positive random variables are being summed
together (without any standardisation), so

∑n
i=1 X

2
i grows. This impacts the mean and variance, as we can

see in the following lemma.

Lemma 2.1

If Yn has a chi-square distribution with n df. Then E[Yn] = n, var[Yn] = 2n and skewness is S3 =
√

8/n.

Using the above result and the rules of variances given in Section 1.4.3 we have: if Yn has a chi-square
distribution with n degrees of freedom, then

var(n−1Yn) = n
−2(2n) = 2n−1.
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2.2.2 The t-distribution

Suppose that Z0, . . . ,Zn are iid standard normally distributed random variables with a standard normal
distribution. Then the ratio

Tn =
Z0√

n−1 ∑n
i=1 Z

2
i

is said to have a t-distribution with n-df. Often we write it as Z = Z0 and Un =
∑n

i=1 Z
2
i , then

Tn =
Z√

n−1Un

,

has a t-distribution with n df. The density of a t-distribution with n df is given by

fn(x) =
Γ(n + 1)/2
√
nπΓ(n/2)

(
1 + x2

n

)−(n+1)/2
x ∈ R,

where Γ denotes gamma function. From the formula we observe that for large x (ignoring some constants)

fn(x) ∼
1

|x |−(n+1) .

Further, fn(x) is a proper density for all n > 0 (and not just the integers). The non-integer case has useful
applications too (you may have used it in the independent two sample t-test when the population variances
are assumed di�erent). A plot of the density for di�erent integer values is given in Figure 2.6.

Figure 2.6: Plot of di�erent t-densities. Black curve corresponds to a normal distribution. Stolen from Wiki
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Lemma 2.2

If Tn has t-distribution with n df. Then for n > 1 E[Tn] = 0 and for n > 2 var[Tn] = n/(n − 2).

If the df is too low, the moments do not exist. This is because the tails of the t-distribution for low df are
very “thick”. Thick tails mean that extremes are likely to happen with a large probability. This means
functions can happen with a “large” probability, such that E(T 2

n ) is not �nite.

Example 2.1 (What does a moment being unde�ned or non-existent mean?). Let us look at the case n = 1
(this is also called the Cauchy distribution). The density of the t-distribution reduces to

f1(x) =
Γ(1)

√
πΓ(1/2)

1
(1 + x2)

x ∈ R

=
1

π (1 + x2)
.

This is a distribution which is symmetric about zero. We would expect it to have a mean that it is zero. But this

turns out not to be the case because the expectation is not de�ned. We now explain why:

E(T1) =

∫ ∞

−∞

x f1(x)dx =

∫ ∞

−∞

x

π (1 + x2)
dx

=

∫ 0

−∞

x

π (1 + x2)
dx +

∫ ∞

0

x

π (1 + x2)
dx .

Let us consider the last term in the above integral and partition it into two sums withM being “large”∫ ∞

0

x

π (1 + x2)
dx =

∫ M

0

x

π (1 + x2)
dx︸                ︷︷                ︸

some number

+

∫ ∞

M

x

π (1 + x2)
dx

=

∫ M

0

x

π (1 + x2)
dx︸                ︷︷                ︸

some number

+

∫ ∞

M

x

π (1 + x2)︸     ︷︷     ︸
≈x−1

dx

To see why in the second term, for large x , x
(1+x 2) ≈ 1/x divide the numerator and denominator by x :

x

1 + x2 =
1

1/x + x2/x
=

1
1/x + x ≈

1
x
.

Recall elementary calculus; ∫ y

M

1
x
dx = logy − logM .

Thus letting y →∞ gives
∫ ∞
M

1
xdx = ∞. Therefore, the above gives∫ ∞

0

x

π (1 + x2)
dx = ∞.
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2 Classical distributions and the �rst foray into sampling distributions
Using a similar set of argument we have

∫ 0
−∞

x
π (1+x 2)dx = −∞. Thus E[X ] is not well de�ned (since −∞ +∞

has no logical meaning).

On the other hand, by the same argument, we can show that E[X 2] = ∞. Thus for the t-distribution with 1df,

the second moment does not exist.

Remark. Note if Z andUn are not independent, then Tn = Z/(Un/n) does not a have t-distribution with n df.

2.2.3 The F-distribution

Suppose that Up and Vq are two independent random variables with a chi-square distribition with p and q

degrees of freedom. Then the ratio

Up/p

Vq/q

has an F -distribution with (p,q) degrees of freedom.

Example 2.2. Suppose that Tn has t distribution with n degrees of freedom. Then T 2
n has an F -distribution

with (1,n) degrees of freedom.

2.3 The exponential class of distributions

There exists a general, algebraic expression that characterises the Gaussian distribution, chi-squared
distribution, binomial distribution and many other distributions to boot.

If X comes from the exponential class of distribution, then it has a “parametric” density/distribution with
the form

f (x ;θ ) = exp [s(x)T (θ ) + b(θ ) + c(x)] x ∈ A,

⇒ log f (x ;θ ) = s(x)T (θ ) + b(θ ) + c(x), (2.3)

where the functions s,T ,b and c are all known. The only unknown is the parameter θ , which though
unknown, it is known to belong to the parameter space Θ. Usually, Θ is the set of all parameters where
f (x ;θ ) is a proper density/distribution (integrates to one and is positive). It is important to note that the set
A does not depend on the parameter θ . IfA is a fuction of θ , then f (x ;θ ) does not belong to the exponential
family. This is very important and is the reason that the exponential family does not include the uniform
distribution whose support is a function of the parameter θ . The exponential family also excludes other
important distributions such as the t-distribution and the Weibull distribution.
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2 Classical distributions and the �rst foray into sampling distributions
The above is for the single parameter case. For multiple parameters, the generalisation is

f (x ;θ ) = exp
[
K∑
i=1

si (x)Ti (θ ) + b(θ ) + c(x)

]
x ∈ A, (2.4)

where A does not involve the unknown parameter θ and θ = (θ1,θ2, . . . ,θK ) (usually the number of terms
Ti (θ ) match the dimension of θ ; the number of parameters). We give below some examples of distribution
families which can be written in the above form.

This large class of distributions (we give examples below) is mainly considered because it is has interesting
mathematical properties and it is also practically very useful. We will not dwell too much on the actual
properties of the class of distributions, but will occasionally discuss it. The main point of interest for this
course, is that distributions which belong to the exponential family have similar type of estimation and
inferential properties (see Chapter 3). Furthermore, the likelihood corresponding to distributions from the
exponential family (see Chapter 3 for the de�nition of a likelihood) are easy to maximise because they are
concave functions (if you are interested it is worth investigating this further).

Example 2.3. (i) The exponential distribution is for positive continuous response random variables. It has

the pdf is f (x ; λ) = λ exp(−λx), which can be written as

log f (x ; λ) = (−xλ + log λ) x ≥ 0.

The parameter space is Θ = (0,∞). Therefore s(x) = −x and b(λ) = log λ.

(ii) The binomial distribution is for positive discrete response random variables with outcomes {0, 1, . . . ,n}.
The probability mass function is

P(X = k ;π ) =
(
n

k

)
πk (1 − π )n−k , k = 0, . . . ,n.

The parameter space is π ∈ [0, 1]. Sometimes, have a parameter space which is restricted is not convenient

for estimation. So we “reparameterize” let θ = log( π
1−π ), then the log of the pmf is

log f (x ;θ ) = log f (y; log π

1 − π ) = xθ − n log
( exp(θ )
1 + exp(θ )

)
+ log

(
n

x

)
.

Since log( π
1−π ) is bijective (we can go from θ to π and back again), the equivalent parameter space of θ

is Θ ∈ (−∞,∞).

(iii) The normal distribution is for continuous response random variables. It is characterised by its mean and

variance, µ and σ 2 respectively. Its logarithm is

log f (x ; µ,σ 2) =

(
−
(x − µ)2

2σ 2 +
1
2 logσ 2 +

1
2 log(2π )

)
=

(
µx

σ 2 −
x2

2σ 2 +
µ2/2
σ 2 +

1
2 log(2π )

)
x ∈ (−∞,∞).
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2 Classical distributions and the �rst foray into sampling distributions
The parameter space is

Θ = {µ ∈ (−∞,∞),σ 2 ∈ [0,∞)}.

(iv) The Poisson is a positive discrete response random variable whose set of possible outcomes is {0, 1, 2, . . .}.
The probability mass function is

P(X = k) =
λk exp(−λ)

k! k ≥ 0.

The parameter space is Θ ∈ (0,∞). The log distribution can be written as

log f (x ; λ) = x log λ − λ + logx !.

An alternative parameterisation is to let λ = log µ.

(v) The Gamma distribution distribution is for continuous response positive random variables. It has density

f (x ; λ,α) = λα

Γ(α)
xα−1 exp(−λx) x ≥ 0.

The parameter space is

Θ = {α ∈ (0,∞), β ∈ (0,∞)}.

The exponential distribution is a special case of the Gamma. A plot of several di�erent Gamma distribu-

tions is given in Figure 2.7

Figure 2.7: Plot of di�erent gamma distributions. Stolen from Wiki

(vi) Other members in this family include the beta, Multinomial and inverse Gaussian to name but a few.

Example 2.4 (Example of distributions that do not belong to the exponential family). (i) The uniform

distribution where the support of the distribution is the unknown parameter (HW problem).
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2 Classical distributions and the �rst foray into sampling distributions
• The Weibull distribution (which is usually used to model failure times):

f (x ; λ,k) =
(
k

λ

) (x
λ

)k−1
exp

(
−

[x
λ

]k )
x ≥ 0

where Θ = {(k, λ),k ∈ (0,∞), λ ∈ (0,∞)}. Then

log f (x ; λ,k) = −
(x
λ

)k
+ (k − 1) logx − (k − 1) log λ + logk − log λ.

Observe that in the case k , 1, the parameter (x/λ)k = f (x , λ,k) cannot be separated into T (λ,k)s(x).

Because of this, the Weibull distribution does not belong to exponential family. So does not inherit some

of their nice properties.

A plot of several di�erent Weibull distributions is given in Figure 2.8.

Figure 2.8: Plot of di�erent Weibull distributions. Stolen from Wiki

So far the reparameterisation of a distribution n terms of the exponential family seems to be an algebraic
exercise. However, the exponential family has been widely studied in statistics. This is because

• Under certain conditions, if the data comes from a distribution which belongs to the exponential
family then is extremely simple to estimate the parameters. We cover this later, but maximisation of
the likelihood (which is often quite �endish) is straightforward for the exponential family.

• The exponential family has useful properties. For example all the information about the parameters
in the distribution can be described in terms of their so called su�cient statistics. Loosely speaking,
this is a function of the observed data.
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2 Classical distributions and the �rst foray into sampling distributions
2.4 The sample mean and variance: Sampling distributions

2.4.1 The sample mean

Suppose {Xi }
n
i=1 are iid random variables with mean µ and variance σ 2. The most obvious estimator of µ is

the sample mean

X̄n =
1
n

n∑
i=1

Xi .

By using the results in Example 1.8 we have

E(X̄n) = n
−1[E(X1) + . . . + E(Xn)] = µ

and

var(X̄n) = n
−2

n∑
i1,i2=1

cov(Xi1 ,Xi2) = n
−2

n∑
i=1

var(Xi ) =
σ 2

n
.

If {Xi }
n
i=1 are normally distributed, then X̄n is normal, regardless of the sample size. On the other hand, if

{Xi }
n
i=1 is not normally distrbute then only for “su�ciently” large sample size is X̄n close to normal (this is

the central limit theorem coming into play; see Section 1.5).

Usually
√

var(X̄n) is called the standard error of the sample mean i.e.

s .e . =
σ
√
n
,

which you would have encountered in an elementary statistics. Recall from Example 1.8 that we need
uncorrelatedness of {Xi } for this to be the correct standard error. If there is correlation between the Xis the
standard error will be di�erent. Look back at the calculation and see what happens to the standard error.

2.4.2 The sample variance

Suppose we observe X1, . . . ,Xn which are iid random variables with mean µ and variance σ 2. Suppose µ is
known and σ 2 is unknown (this rarely ever happens). Then an estimator of σ 2 is

s2
n =

1
n

n∑
i=1
(Xi − µ)

2.

If {Xi } are iid normal, then (Xi − µ)/σ are iid standard normal random variables it immediately follows
from Section 2.2.1 that

ns2
n/σ

2 =
n∑
i=1

(
Xi − µ

σ

)2
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2 Classical distributions and the �rst foray into sampling distributions
should follow a χ 2 distribution with n degrees of freedom. Therefore

s2
n ∼

σ 2

n
χ 2
n

i.e. the distribution of s2
n is the same as a χ 2

n random variable multipled by σ 2/n.

A more realistic situation is that both µ and σ 2 are unknown. We know that a reasonable estimator of µ is
X̄ . An estimator of σ 2 is based on a similar idea. First let us return to the iid random variables {Xi } where
Xi ∼ N (µ,σ 2). An alternative but equivalent representation of Xi is to write Xi as an equation:

Xi = µ + εi

where εi is called the residual with E[εi ] = 0 and var[εi ] = E[ε2
i ] = σ

2. Since E[ε2
i ] = σ

2, one can use the
average of {ε2

i }
n
i=1 as an estimator of σ 2. However, εi = Xi − µ is not observed. Thus n−1 ∑

i ε
2
i cannot be

used as an estimator. Instead we can replace the residual with its estimate. We recall that X̄ is an estimator
of µ thus an estimator of εi is the estimated residual

ε̂i = Xi − X̄ .

This then leads to the potential estimator

1
n

n∑
i=1

ε̂2
i =

1
n

n∑
i=1
(Xi − X̄n)

2.

However, the classical estimator of the sample variance is not exactly the above, but something very close

s2
n =

1
(n − 1)

n∑
i=1
(Xi − X̄n)

2. (2.5)

Why we divide by (n − 1) rather than n will become clear in Theorem 2.3 (and its subsequent proof).

Remark. In the extreme case, we only observeX1. We can estimate the mean with X̄1 = X1. But it is impossible

to estimate the variance, since the data contains no information about the spread of the data. Therefore s2
n is

only meaningful when n > 1.

We now show that the distribution of s2
n with an appropriate standardisation follows a χ 2-distribution with

(n − 1) degrees of freedom (df for short).

Theorem 2.3

Suppose X1, . . . ,Xn are iid random variables with mean µ and variance σ 2. Let s2
n be de�ned as in

(2.5). Then

E[s2
n] = σ

2
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2 Classical distributions and the �rst foray into sampling distributions
If, in addition, Xi ∼ N (µ,σ 2), then

(n − 1)
s2
n

σ 2 ∼ χ
2
n−1,

and s2
n and X̄n are independent random variables.

To prove the result, we focus on the case that Xi ∼ N (µ,σ 2). Though seemingly complex, the proof below
simply relies on properties of Gaussian random variables and basic results from linear algebra such as
projections and orthonormal basis (which we reviewed in the previous chapter).
Remark. Like most important results there are several di�erent ways to prove it. One proof uses that the

sample mean and sample variance X̄n and s2
n , are independent. This result can be shown by evaluating the

covariance between X̄n and (Xi − X̄n):

cov
(
X̄n ,Xi − X̄n

)
= cov

(
Xi , X̄n) − cov(X̄n , X̄n

)
= cov

(
Xi ,

1
n

n∑
j=1

X j

)
−var (X̄n)

=
1
n

n∑
j=1

cov(Xi ,X j ) −
σ 2

n
=

1
n

cov(Xi ,Xi ) −
σ 2

n

=
σ 2

n
−
σ 2

n
= 0 for all i .

Since X̄n and {Xi − X̄n}
n
i=1 are uncorrelated and jointly normal they are independent. Using this, the moment

generating function of
∑n

i=1(Xi − µ)
2 is written in terms of the moment generating function of n(X̄n − µ)

2

times the moment generating function of s2
n . From which one can deduce that the moment generating function

corresponding to s2
n is a χ 2 with (n − 1)-df.

The proof we give is based on linear transformation of the observations and projections. These ideas can easily

be generalised to the independent two-sample t-test, ANOVA and linear regression. But it does require the

results from Section 1.3.2.

We prove Theorem 2.3 in the case n = 2 and 3. The proof below will help answer the following questions:

• Why divide by (n − 1) and not n?

We show below that by dividing by (n − 1) rather than n, the resulting estimator is unbiased. This
e�ect is most pronounced in small sample sizes (when n = 2 it is obvious). For relatively large sample
sizes the di�erence between (n − 1) and n is not so large.

• Why (n − 1) df? What does a df mean anyway?

We show below that one interpretation of df is the number of independent random variables used to
construct the estimator.
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• Does the estimator get better as the sample size grows?

As with most estimators as the sample size grows the estimator improves. The improvement in the
estimator is measured with the standard error which is the standard deviation of the estimator.

The proof hinges on an appropriate transformation of the observed data vector

X ′ = (X1,X2, . . . ,Xn).

This is how we store the data, so making meaningful transformation of it is a very natural thing to do.

Important preliminaries

An important property we will use is that for normally distributed random variables, no correlation implies
independence (this is not true for other distributions). We consider some simple examples below.
Example 2.5. Suppose that (X1,X2)

′ ∼ N ((µ, µ)′,σ 2I2). Then X1 and X2 are independent.

(i) Show that the two transformations; Y = (X1 + X2) and U = (X1 − X2)
2 are independent too. U is not

normal, butW = (X1 − X2) is normal (as it is a linear combination of jointly normal random variables).

SinceU =W 2, independence of Y andW will imply independence of Y andU =W 2. We now show that

cov(Y ,W ) = 0:

cov(Y ,W ) = cov(X1 + X2,X1 − X2) = cov(X1,X1) − cov(X1,X2) + cov(X2,X1) − cov(X2,X2)

= σ 2 − 0 + 0 − σ 2 = 0.

Thus, by joint normality of (Y ,W ), Y andW are independent. This immediately implies any transfor-

mation of Y andW are independent. Thus Y andU =W 2 are independent.

(ii) Show that the two transformations; Y = (X1 + X2) and U = (X1 − 2X2)
2 are dependent. As above we

show that Y andW = (X2 − 2X2) are dependent, which will usually mean that Y and U = W 2 are

dependent too. We now show that cov(Y ,W ) , 0:

cov(Y ,W ) = cov(X1 + X2,X1 − 2X2) = cov(X1,X1) − 2cov(X1,X2) + cov(X2,X1) − 2cov(X2,X2)

= σ 2 − 0 + 0 − 2σ 2 = −σ 2.

Thus we have shown Y andW are dependent (if σ 2 > 0). Thus, Y andU =W 2 are dependent.1

1There can arise very strange examples where two random variables are dependent but their squares are not. For example if
X ,Y and δ are independent random variables where δ = {−1, 1}. Then U1 = δX and U2 = δY are dependent, but U 2

1 = X 2 and
U2 = Y 2 are indepedendent. But you can ignore such cases in this course (the technical reason for this is due to their sigma
algebras, but do not even think about this).
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Proof of Theorem 2.3 in the case the sample size is n = 2

Let

s2
2 =

1
2 − 1

[
(X1 − X̄2)

2 + (X2 − X̄2)
2]

and

X̄2 =
1
2 (X1 + X2) .

We will show that E[s2
2] = σ

2 and s2
2
σ 2 ∼ χ

2
1 . This is the same as saying that the density of s2

2
σ 2 has the shape

of a χ 2 with one df.

We observe that s2
2 contains the sum of squares of normal random variables. Therefore it seems reasonable

that the distribution of s2
2 is a chi-square “type” distribution. Moreover, since s2

2 is the sum of two random
variables, it would, on �rst appearances, appear that s2

2 should follow a χ 2
2 with two df and not one as stated

above. However, a more careful study shows that s2
2 = Y

2
1 + Y

2
2 , where

Y1 = (X1 − X̄2) =
1
2 (X1 − X2) and Y2 = (X2 − X̄2) =

1
2 (X2 − X1).

Clearly Y1 = −Y2, thus besides the sign change Y1 and Y2 are the same (Y2 does not convey any additional
information), they are certainly not independent. Therefore

s2
2 =

1
2 − 1

[
(X1 − X̄2)

2 + (X2 − X̄2)
2] = (

1
√

2
[X1 − X2]

)2
= Z 2, (2.6)

where Z = 1√
2 [X1 − X2]. Since Z is the sum of two random variable whose joint distribution is normal,

then by the properties of a normal distribution (see Section 2.1), Z must also be normal, characterized by
E[Z ] and var(Z ). Using the rules of expectations and variances given in Section 1.4.1 we have

E (Z ) = 1
√

2
[E(X1) − E(X2)] =

1
√

2
[µ − µ] = 0

var (Z ) = 1
2

var(X1) + var(X2) − 2cov(X1,X2)︸         ︷︷         ︸
0

 = σ
2.

Thus Z ∼ N (0,σ 2). Therefore

E[s2
2] = E[Z 2] = var(Z ) + E[Z ]2︸︷︷︸

=0

= σ 2.

Observe that in the de�nition of s2
2 we divide by one and not two. The reason for this becomes apparent

from the calculation above, this is to ensure that s2
2 is an unbiased estimator of σ 2. Further, since s2

2 = Z 2

= normal squared. Then Z/σ ∼ N (0, 1). Thus s2
s
σ 2 is a standard normal squared, leading to s2

s
σ 2 ∼ χ 2

1 (a
chi-square distribution with one df). This proves the �rst part of Theorem 2.3 in the case n = 2.
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We now discuss the relationship of the sample mean X̄2 = 2−1(X1+X2) and sample variance s2

2 . We will show
that they are independent of each other. Since s2

2 = Z 2, we need only show that X̄2 and Z are independent
of each other2 . Further, because X̄2 and Z are a linear combination of jointly normal random variables, they
must be normal too3. We show that the vector (X̄ ,Z ) is a linear transformation of (X1,X2) (importantly, it
is an orthogonal transformation, based on the orthogonormal vectors e1 and e2 (see Example 1.1));

Place the vector X 2 = (X1,X2)
′ on the plot on the right. The

projection ofX 2 onto the blue line gives the coe�cient 〈e1,X 2〉 =

2−1/2(X1 + X2) = 21/2X̄ . The projection of X 2 onto the red line
gives the coe�cient 〈e2,X 2〉 = 2−1/2(X2 − X2) = Z ;(

X̄

Z

)
︸ ︷︷ ︸
=Y 2

=

(
2−1/2〈e1,X 2〉

〈e2,X 2〉

)
=

(
1/2 1/2

1/
√

2 −1/
√

2

)
︸                  ︷︷                  ︸

E2

(
X1

X2

)
︸  ︷︷  ︸
=X 2

.

The transformed vector Y ′2 = (X̄ ,Z ) is normal with mean (µ, 0)′ and variance

var(Y 2) = var(E2X 2) = E2var(X 2)E
′
n

=

(
1/2 1/2

1/
√

2 −1/
√

2

) (
1 0
0 1

) (
1/2 1/

√
2

1/2 −1/
√

2

)
=

(
1/2 0
0 1

)
. (2.7)

An alternative argument for proving (2.7) uses that e1 and e2 forms and orthonormal basis, and has the
advantage that it simply uses properties without the need for brute force calculations. We brie�y summarize
it now. Using the notation from Example 1.1 we have(

1/2 1/2
1/
√

2 −1/
√

2

)
=

(
2−1/2e1

e2

)
where e1 = (1/

√
2, 1/
√

2) and e2 = (1/
√

2,−1/
√

2) are an orthonormal basis of R2. E.g. using the or-
thonormality (that is e1e

′
1 = e2e

′
2 = 1 and e1e

′
2=0) property of the vectors and that var(X 2) = σ 2I2 we

have

var(Y 2) =

(
2−1e1e

′
1 2−1/2e1e

′
2

2−1/2e2e
′
1 e2e

′
2

)
= σ 2

(
2−1〈e1, e1〉 2−1/2〈e1, e2〉

2−1/2〈e2, e1〉 〈e2e2〉

)
= σ 2

(
1/2 0
0 1

)
.

2Random variables are independent if their distributions are a product of their marginals. If X and Y are independent, then д(X )
and h(Y ) are also independent (for any function д and h) .

3Brute force calculations give

cov
(
2−1(X1 + X2),

1
√

2
(X1 − X2)

)
=

1
23/2 (var(X1) − cov(X1,X2) + cov(X1,X2) − var(X2))

=
1

23/2

(
σ 2 − 0 + 0 − σ 2

)
= 0.
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Figure 2.9: Left: Bivariate data (X1,X2) from a iid normal N (3, 0.25). Right: Data transformed onto new axis
independent normal (but not identically distributed). With Y1 = X̄2 axis: N (3, 0.25/2) and Y2 = Z

axis: N (0, 0.25). The green lines indicate the means. Observe that E[Y1] = 3, thus contains
information on the mean and E[Y 2

2 ] = 0.25, thus contains information on the variance.

In summary, (
X̄

Z

)
∼ MNV2

((
µ

0

)
,σ 2

(
1/2 0
0 1

))
See Figure 2.9 for the transformation from X to Y . Observe that the mean of the data cloud gets shifted
from (3, 3) to (3, 0) and the spread on Y1 is slightly less than the spread on Y2.

Since the variance matrix of (X̄ ,Z ) is diagonal (and the distribution is normal), the distribution of (X̄ ,Z )
are independent random variables.
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Remark. An alternative way to view the above, is as the coe�cients of the orthogonal expansion(

X1

X2

)
= 21/2X̄2e1 + Ze2,

where 21/2X̄2 = 〈e1,X 2〉 = 2−1/2(X1 + X2) and Z = 〈e2,X 2〉 = 2−1/2(X1 − X2). Since var[(X1,X2)] = σ
2I2,

then var[(21/2X̄2,Z )] = σ
2I2

4.

Rearranging the above expansion gives(
X1

X2

)
− 21/2X̄2e1 = Ze2 ⇒

(
X1 − X̄2

X2 − X̄2

)
= Ze2.

Thus by using (1.3) we have

(X1 − X̄ )
2 + (X2 − X̄ )

2 = Z 2.

This gives an alternative proof exactly to the identity (2.5). This method is how we tackle the case n = 3 (and

will later be used to prove the ANOVA expressions).

To summarize, we have shown that X̄ and Z = 2−1/2(X1 − X2) are independent. This proving that X̄ and
s2

2 = Z 2 are independent. This proves the last part of Theorem 2.3.

Remark. The above proof allows us to understand when Theorem 2.3 does not exactly hold.

(i) Suppose we drop the assumption of Gaussianity and assume that {Xi } are iid random variables with

mean µ and variance σ 2 (but not Gaussian). We still have that(
X̄

Z

)
︸ ︷︷ ︸
=Y 2

=

(
1/2 1/2

1/
√

2 −1/
√

2

)
︸                  ︷︷                  ︸

E2

(
X1

X2

)
︸  ︷︷  ︸
=X 2

,

where E(Y ′2) = E(X̄ ,Z ) = (µ, 0) with variance

var(Y 2) =

(
1/2 0
0 1

)
.

However, in the Gaussian case (X̄ ,Z ) are independent because (X1,X2) are uncorrelated and Gaussian.

In the non-Gaussian case (X̄ ,Z ) is an uncorrelated vector but not independent. For non-Gaussian random

variables orthogonal transformations can induce dependence even though the orthogonal transforms are

uncorrelated. This result means that X̄2 and σ 2
2 are not independent of each other. Further, Z 2 is not a χ 2

1 .

(ii) In the case that (X1,X2) are correlated (but could still be Gaussian), the vector (X̄ ,Z ) is no longer

uncorrelated. Thus even in the case of Gaussianity, X̄2 and s2
2 are dependent.

Before we move on to the case n = 3, we brie�y discuss the meaning of degrees of freedom and also the
relationship of Z with X̄2.

4The proof is given previously, but try to do it yourself.
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2 Classical distributions and the �rst foray into sampling distributions
Degrees of freedom

The degree of freedom is ubiquitious in statistics and usually refers to the number of independent random
variables used to build an estimator. In this example, it is the number used to build the sample variance.
When n = 2 “it looks like two”, but because have to estimate the mean (so one piece of information has
already been used), it turns out to be only one. Often df is considered a measure of the “e�ective” sample
size, that is the number of independent random variables required to build an estimator.

Remark (E�ective sample size (small digression)). As an extreme consider the sample X1, . . . ,Xn where

Xi = Z for all i (the same random variable for the entire sample). The sample size is n, but the e�ective sample

size (the amount of independent pieces of information the sample contains) is only one.

Proof of Theorem 2.3 in the case sample size is n = 3

Though the idea of the proof for n = 3 is similar to that of n = 2, the proof is a little more complicated. We
give the proof below, pointing out the similarities and the di�erences. Let

s2
3 =

1
3 − 1

[
(X1 − X̄3)

2 + (X2 − X̄3)
2 + (X3 − X̄3)

2]
and

X̄3 =
1
3 (X1 + X2 + X3) .

Again let

Y1 = (X1 − X̄3) =
1
3 (2X1 − X2 − X3), Y2 = (X2 − X̄3) =

1
3 (2X2 − X1 − X3)

Y3 = (X3 − X̄3) =
1
3 (2X3 − X1 − X2).

It is easily seen that

Y3 = −(Y1 + Y2).

Since Y3 is just a linear combination of Y1 and Y2, it contains no additional information. Thus the e�ective
sample size of Y1,Y2,Y3 is two (and not three) and

s2
3 =

1
3 − 1

(
Y 2

1 + Y
2
2 + (Y1 + Y2)

2) .
This is analogous to the case n = 2 (however Y1 and Y2 are still dependent).

We have shown that s2
3 really involves two dependent random variables (and not three), this is a start, but

not enough. Our next objective is to show the stronger result, that s2
3 can be written as the sum of squares

two independent normal random variables, each with mean zero and variance σ 2. To do this we �rst de�ne
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2 Classical distributions and the �rst foray into sampling distributions
the vector e1 = 3−1/2(1, 1, 1). We project X 3 onto this vector, because the coe�cient of this vector is the
sample mean X̄ : precisely the vector

〈X 3, e1〉e1 = 31/2X̄3e1

is the projection of the vector X 3 = (X1,X2,X3) onto the line in R3 de�ned by the vector e1. The remainder
after the projection onto e1 is

X 3 − 31/2X̄3e1 =
(
X1 − X̄3, X2 − X̄3, X3 − X̄3

)
.

The vector X 3 − 31/2X̄3e1 is the residuals vector (after removing the sample mean from Xn)5. The residuals
vector lies on a plane in R3 (called a subspace) that is orthogonal to the line de�ned by the vector e1. The
residuals vector is commonly studied in statistics, and will usually lie on a subspace of Rn .

The plane in R3 which is orthogonal to e1 (need to draw a picture here) can be described by two orthonormal
vectors (which are orthogonal to e1). These two vectors are not unique, but for the purpose of illustration
we use Example 1.2 and set

e2 =
1
√

2

(
0 1 −1

)
, e3 =

1
√

6

(
−2 1 1

)
.

Since e1, e2 and e3 are orthonormal, by using Section 1.3.2 we have the representation

X 3 = 〈X 3, e1〉e1 + 〈X 3, e2〉e2 + 〈X 3, e3〉e3

= 31/2X̄3e1 + 〈X 3, e2〉︸   ︷︷   ︸
=Z2

e2 + 〈X 3, e3〉︸   ︷︷   ︸
=Z3

e3.

Thus

X 3 − 31/2X̄3e1 =
©«
X1

X2

X3

ª®®®¬ − 31/2X̄3−1/2
©«

1
1
1

ª®®®¬ =
©«
X1 − X̄

X2 − X̄

X3 − X̄

ª®®®¬ = Z2e2 + Z3e3.

Now the interesting part: we show that Z1 =
√

3X̄3, Z2 = 〈X 3, e2〉 and Z3 = 〈X 3, e3〉 are uncorrelated
random variables. This result, decomposes (X1 − X̄3,X2 − X̄3,X3 − X̄3) into the sum of two orthogonal
vectors, where the coe�cients of the vectors are independent. With this we show that s2

3 = 2−1(Z 2
2 + Z

2
3 ).

But �rst we show that Z1, Z2 and Z3 are normally distributed independent random variables. From the
de�nitions of Z1,Z2 and Z3 we have

©«
√

3X̄
〈X 3, e2〉

〈X 3, e3〉

ª®®®¬ =

©«
Z1

Z2

Z3

ª®®®¬ =
©«

1/
√

3 1/
√

3 1/
√

3
0 1/

√
2 −1/

√
2

−2/
√

6 1/
√

6 1/
√

6

ª®®®¬
©«
X1

X2

X3

ª®®®¬
= E3X 3.

5We observe that X 3 − 31/2X̄3e1 contains the building blocks of the sample variance s2
3
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Since Y ′3 = (Z1,Z2,Z3) is a linear combination of Gaussian random variables it is multivariate Gaussian
with mean

©«
E(Z1)

E(Z2)

E(Z3)

ª®®®¬ =
©«

µ/
√

3 + µ/
√

3 + µ/
√

3
0 + µ/

√
2 − µ/

√
2

−2µ/
√

6 + µ/
√

6 + µ/
√

6

ª®®®¬ =
©«

31/2µ

0
0

ª®®®¬
and variance

var(Y 3) = var(E3X 3)

= E3 var(X 3)︸  ︷︷  ︸
=σ 2I3

E∗3 = σ
2E3E

∗
3 .

Using that e1, e2 and e3 are orthonormal vectors we have

var(Y 3) = σ
2
©«
e1e
′
1 e1e

′
2 e1e

′
3

e2e
′
1 e2e

′
2 e2e

′
3

e3e
′
1 e3e

′
2 e3e

′
3

ª®®®¬ =
©«
σ 2 0 0
0 σ 2 0
0 0 σ 2

ª®®®¬
Altogether this gives

©«
√

3X̄3

Z2

Z3

ª®®®¬ ∼ N3

©«
©«

31/2µ

0
0

ª®®®¬ ,
©«
σ 2 0 0
0 σ 2 0
0 0 σ 2

ª®®®¬
ª®®®¬

the joint density of Y 3 is the product of its normal marginal densities. Therefore Z1,Z2 and Z3 are mutually
independent. We discuss the role of Z1 = X̄3 at the end of this subsection and return to(

X1 − X̄3, X2 − X̄3, X3 − X̄3

)
= Z2e2 + Z3e3,

and obtain an expression for the sample variance using the above. By exploiting the orthonormality of the
vectors we have

3∑
j=1
(X j − X̄3)

2 = 〈(Z2e2 + Z3e3), (Z2e2 + Z3e3)〉

=

3∑
j1, j2=2

Z j1Z j2 〈e j1 , e j2〉

= Z 2
1 〈e1, e1〉 + Z1Z2〈e1, e2〉 + Z2Z1〈e2, e1〉 + Z

2
2 〈e2, e2〉

= Z 2
2 + Z

2
3 ,

note that above is Parseval’s identity given in (1.2). Using this we can easily evaluate the expectation of s2
3

E[s2
3] =

1
3 − 1E

[ 3∑
j=1
(X j − X̄3)

2

]
=

1
2E

(
Z 2

2 + Z
2
3
)
= σ 2.
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Since Z2,Z3 are iid random variables with mean µ and variance σ 2 we have

2
σ 2 s

2
3 =

1
σ 2

(
Z 2

2 + Z
2
3
)
=

([
Z2
σ

]2
+

[
Z3
σ

]2
)
∼ χ 2

2 .

This proves Theorem 2.3 for the case n = 3. The proof for general n is similar.

Let us summarize the main ingredients of the proof. We have shown that the residuals (X1 − X̄3,X2 −

X̄3,X3 − X̄3) lie on a two dimensional plane in R3. That the residuals can be decomposed as the sum of two
random variables Z2 and Z3. That X̄ = Z1, Z2 and Z3 are independent. And that s2

2 = 2−1(Z 2
2 + Z

2
3 ). Thus

proving Theorem 2.3.

However, it is worth taking a step back on re�ecting on what we have shown. The main ingredient is that
the observed vector X 3, whose distribution is

©«
X1

X2

X3

ª®®®¬ ∼ N3

©«
©«
µ

µ

µ

ª®®®¬ ,
©«
σ 2 0 0
0 σ 2 0
0 0 σ 2

ª®®®¬
ª®®®¬ .

is linear transformed such that the result©«
√

3X̄3

Z2

Z3

ª®®®¬ =
©«
e ′1

e ′2

e ′3

ª®®®¬
©«
X1

X2

X3

ª®®®¬ ∼ N3

©«
©«

31/2µ

0
0

ª®®®¬ ,
©«
σ 2 0 0
0 σ 2 0
0 0 σ 2

ª®®®¬
ª®®®¬

are independent random variables. But most importantly not identically distributed. Each variable contains
di�erent pieces of information. The �rst variable, X̄3 contains information on the mean, µ. However, Z2

and Z3 are identically distributed containing information of the variance but nothing on the mean.
Remark (Connections to Principle Component Analysis). From the above above you should have noticed

that

X 3 = 31/2Z1e1 + Z2e2 + Z3e3.

This is a decomposition of X 3 into three orthonormal vectors whose coe�cients are uncorrelated random

variables. If var(X 3) = σ
2I3 ({Xi }

3
i=1 are independent random variables), the basis and representation is not

unique. However, in the general case that var(X 3) is general matrix, then this representation is usually unique

and the orthogonal basis e1, e2 and e3 conveys interesting information about “patterns” in the data.

For the proof in the case n > 3 we use the same ideas. We de�ne n-orthonormal vectors {e j }nj=1 where the
�rst vector is e1 = n−1/2(1, 1, 1 . . . , 1) which transform Xn to a di�erent basis. The coe�cients of Xn on
this new basis are:

Yn = EnXn =

©«
e1

e2
...

en

ª®®®®®®¬
Xn =

©«

√
nX̄

〈e2,Xn〉

...

〈en ,Xn〉

ª®®®®®®¬
Xn
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Since {Xi } are iid normal, the joint distribution of Yn is normal with mean E[EnXn] = (µ, 0 . . . , 0)′ and
variance var(EnXn) = Envar(Xn)E

∗
n = σ

2EnE
∗
n = σ

2In ;

Yn ∼ N

©«

©«

√
nµ

0
0
...

0

ª®®®®®®®®®¬
,σ 2

©«

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...
...
...
. . .

...

0 0 0 . . . 1

ª®®®®®®®®®¬

ª®®®®®®®®®¬
.

We use the above construction to prove the result.

The sampling distribution of the sample variance s2
n

Using Lemma 2.1 and Theorem 2.3 we can obtain the sampling properties of the sample variance s2
n de�ned

in (2.5).

We observe from the proof of Theorem 2.3 that there exists (n − 1) iid standard normal random variables
where

s2
n

σ 2 =
1

(n − 1)
(
Z 2

1 + . . . + Z
2
n−1

)︸                ︷︷                ︸
χ 2
n−1

.

Thus by using Lemma 2.3 (or properties of expectations) we have s2
n = σ

2 (which we already know) and

var
(
s2
n

σ 2

)
=

1
(n − 1)2 var(χ 2

n−1) =
1

(n − 1)2 2(n − 1) = 2
n − 1 ,

where var(χ 2
n−1) = 2(n − 1). Since σ−4var(s2

n) = 2/(n − 1) we have var(s2
n−1) = 2σ 4/(n − 1). The standard

error associated with var(s2
n−1) is √

2
n − 1σ

2.

Thus as n →∞ the standard error of the variance estimator goes to zero (the estimator improves as the
sample size grows). Furthermore, we observe that the distribution of s2

n has a σ 2χ 2
n−1/(n − 1). This is the

exact distribution of s2
n−1 (no approximation involved). A plot of the distributions for n = 11, 26 and 51

(with σ 2 = 1/2) in given in Figure 2.10.

We observe from Figure 2.10 that as n grows the distribution s2
n coalescing about σ 2 = 1/2. This �ts with

exactly how we understand averages to behave. We recall that

s2
n =

σ 2

(n − 1)
(
Z 2

1 + . . . + Z
2
n−1

)
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Figure 2.10: Distribution of s2
n for n = 11, 26 and 51 with σ 2 = 1/2. Green = 11, Red = 26 and Blue = 51.

is an average of iid random variables (where var(Z 2
i ) = 2). Thus its standard error decreases as n grows (this

explains the coalescing). Further, from the central limit theorem (Section 1.5), the average of iid random
variables are close to normal for large sample sizes. Thus s2

n should also be close to normal when n is large.
However, Z 2

i is skewed; the skewness is S3 =
√

8, which is quite large. This means a relatively large sample
size n, is required for s2

n to be close to normal. Refer to the example and plots considered at the start of
Section 1.5 and Figures 1.8 - 1.11, where the random variables were sampled from a chi-squared distribution
with one degree of freedom (these averages have the same distribution as a sample variance of the form
s2
n+1).

2.4.3 The t-statistic

In an introductory statistics class you would have studied the t-test and constructed con�dence intervals,
both of which involve the t-statistic. We will return to these procedures later in the course. But we start by
deriving the sampling distribution of the t-statistic.

Suppose X1, . . . ,Xn are iid, normally distributed random variables with mean µ and standard deviation σ 2.
Let X̄n denote the sample mean, which we have shown is an unbiased estimator of µ. Further, since {Xi }
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2 Classical distributions and the �rst foray into sampling distributions
are iid normal by using Section 2.1 we can show that

X̄n ∼ N

(
µ,
σ 2

n

)
.

Since linear transformations preserve normality we have
√
n(X̄n − µ)

σ
∼ N (0, 1) . (2.8)

We now turn our attention to

Z =

√
n(X̄n − µ)

σ
. (2.9)

Recall that σ/
√
n is the standard error which measures the uncertainty we associate with the estimator X̄ . Z

can be treated as a “measure” of distance, between X̄ and µ relative to the standard error. Transformations
of the type Z are crucial in statistical inference. If Z is too large, then µ is an implausible candidate for the
mean. To determine if the distance Z is large or not we require the distribution of Z . Under the normal
assumptions on {Xi }, (2.8) shows that Z is a standard normal free of any parameters (in statistics this is
called a pivotal quantity). Observe that if n = 2, then var[X̄2] = σ

2/2 and
√

2(X̄2 − µ)

σ
∼ N (0, 1) . (2.10)

Thus even with n = 2, 95% of transformations
√

2(X̄2−µ)
σ with lie with [−1.96, 1.96].

However, σ is usually unknown. Thus we replace σ in Z , with the sample standard deviation sn , de�ned in
(2.5);

s2
n =

1
n − 1

n∑
i=1
(Xi − X̄ )

2.

For example when n = 2

s2
2 = (X1 − X̄ )

2 + (X2 − X̄ )
2 = 2(X1 − X2)

2.

It is clear that in general this must be a pretty crude (and usually awful) estimator of σ 2 and this will be
re�ected in the estimation scheme. Using this we de�ne the t-statistic

Tn =
√
n
(X̄n − µ)

sn
. (2.11)

Whereas the distribution of Z is a standard normal, the distribution of t is not normal despite the numerator
√
n(X̄ − µ) being normal. This is because t involves the ratio of two random variables; the numerator is a

random variable which is normally distributed and the denominator involves a random variables, which we
have shown in Theorem 2.3 is the square root of a chi. It is useful to understand the impact of dividing
(X̄n − µ) by sn rather than σ .
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Example 2.6 (The case n = 2). SupposeX1 andX2 are iid normal random variables with mean µ and variance

σ 2. Our aim is compare

z =

√
2(X̄ − µ)
σ

with T2 =

√
2(X̄ − µ)
s2

where s2 is the sample variance based on X1 and X2. We recall from Theorem 2.3 that s2
2 = σ

2χ 2
1 (σ 2 times

chi-square with one df). We observe that

P(s2 < σ ) = P
(
s2

2 < σ
2) = P

(
σ 2χ 2

1 < σ
2) = P(χ 2

1 < 1) = 0.682 using tables or R.

and

P

(
s2 <

1
2σ

)
= P

(
s2

2 <
1
4σ

2
)
= P

(
σ 2χ 2

1 <
1
4σ

2
)
= P(χ 2

1 < 1/4) = 0.382 using tables or R.

Thus means there is a 68.2% chance s2 underestimates σ and a 38.2% chance s2 underestimates σ by more than

a factor two. This has severe consequences on the t-transform;

P(T2 > z) = P

(
T2 =

√
2(X̄ − µ)
s2

>

√
2(X̄ − µ)
σ

)
= P (s2 < σ ) = 0.682

and

P(T2 > 2z) = P

(
T2 =

√
2(X̄ − µ)
s2

> 2
√

2(X̄ − µ)
σ

)
= P

(
s2 <

1
2σ

)
= 0.382.

• For small samples, X1, . . . ,Xn may underestimate the spread, thus s2
n under estimates σ .

• Simulate T2, T3 and T10 and compare this to a standard normal (with histograms and QQplots).

By using Theorem 2.3, under the assumption that {Xi } are iid normal, X̄n and s2
n are independent and s2

n is
the sum of squares of (n − 1) independent normal random variables. Thus by dividing the numerator and
denominator in Tn by σ we have

Tn =
√
n
(X̄ − µ)/σ

sn/σ
=

√
n(X̄ − µ)/σ

sn/σ

=
Z0√

1
n−1

∑n−1
i=1 Z 2

i

where {Zi }ni=0 are iid standard normal random variables. Using the de�nition of the t-distribution in Section
2.2.2, we that Tn ∼ tn−1. We state this result in the following theorem.

Theorem 2.4

Suppose {Xi }
n
i=1 are iid normal random variables with mean µ and variance σ 2. Let X̄n and s2

n denote
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the sample mean and variance respectively. Then we have

Tn =
√
n
(X̄n − µ)

sn
∼ tn−1 (2.12)

Example 2.7 (The in�uence of di�erent sample sizes). When n = 2, then T2 ∼ t1. The sample standard

deviation is s2
2 = 2(X1 − X2)

2, which could be “too close” to zero. This means that there is a 5% chance that the

ratio

Tn =
√

2 (X̄2 − µ)√
2(X1 − X2)2

will be larger than 12.71 (look up the t-tables); this exactly �ts with your calculations in HW4, Q1, where you

showed that the tails are so thick, the second moment is in�nite! Compare this with (2.10), where the same

data is used but the population standard deviation is used in the denominator. It will be extremely rare that
√

2(X̄2−µ)
σ is more than 12.71.

However, observe, that as soon as one uses three observations to calculate the standard deviation, the corre-

sponding t-distribution has 2df. The thickness of the tail reduces dramatically from 12.71 to 4.30.

Remark. The t-distribution result is the exact distribution of the t-statistic. If the data is not iid normal, then

the result does not hold. However, simulations show that for using the t-distribution as an approximation of the

distribution of non-normal data is relatively robust (if the data does not deviate much from normality). See

HW4. However, one must careful. Once the assumption of normality of the data is dropped, the there can be

huge deviations from the t-distribution. For example, if the data is discrete (for example from a Binomial or

Poisson distribution), then there is positive chance that all the data is the same. Resulting in a zero sample

standard deviation. Of course, in this case there is a positive probability the t-transform is∞.

When the sample size, n, is small the random variable Tn has a larger number of outliers/extremes than
the standard normal distribution. You can see this from the t-tables, where the critical value at the 2.5%
level for a t-distribution with one df is 12.7 as compared with 1.96 which is the corresponding critical value
of a standard normal distribution. However, for large sample sizes the Tn-statistic has a tn−1-dustribution
which is close to normality. One can measure how “extremal” a distribution is as compared with the normal
distribution using kurtosis, which is de�ned below.

A QQplot of a t-statistic (generated with iid normal random variables and n = 3, replicated 1000 times)
against a standard normal distribution is given in 2.11). Observe the signature S shape and that the t-statistic
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can take large values (a few of the really extreme t-statistic, larger than 30 were removed to make the plot
clearer). To check if it is t-distribution, we plot the same values against a t-distribution with d f = 2. We
observe a close match.

Figure 2.11: The quantiles of the t-statisic, n = 3, against a standard normal (left) and t-distribution with
df=2 (right).

Kurtosis: Measuring extremes

Kurtosis is a measure of frequency of extremes or outliers in a distribution. The tails of a normal distribution
decay very fast, so the chance of outliers is quite slim. We recall that for normally distributed data, “most”
observations are with three standard deviations of the mean. For the distributions which have more mass
in the tails, this happens more often. One measure for the extremal events is to consider the fourth moment
of a distribution (the second moment measures the variance). If a random variable is normally distrubuted
with mean µ and variance σ 2 it can be shown that

E[X − µ]4 = 3σ 4

Based on the above, Karl Pearson de�ned the notion of kurtosis as

K4 =
E[X − µ]4

σ 4 .

For a normal distribution K4 = 3. For a distribution with more mass in the tails, K4 will be larger. Thus
often K4 − 3, is called the excess kurtosis. It is used to measure the extremal behaviour of a distribution
as compared with the normal distribution. If K4 − 3 is larger than zero, than it has more extremes than a
normal distribution (or thicker tails). For a t-distribution with n-df the excess kurtosis is

K4 − 3 = 6
n − 4 for n > 4.

74



2 Classical distributions and the �rst foray into sampling distributions
For 2 ≤ n ≤ 4, K4 does not exist because the tail of the corresponding t-distribution decreases so slow, that
large values of X can happen frequently. So frequently that E[X 4] = ∞. To estimate K4 from the data we
replace expectations with their sample means to give the estimator

K̂4 =
n−1 ∑n

i=1(Xi − X̄n)
4

s4
n

.

2.5 Confidence intervals

A (1 − α)100% con�dence interval for the parameter θ based on the data X = (X1, . . . ,Xn), is an interval
Cα (X ), where

P
(
θ ∈ Cα (X )

)
= 1 − α .

Note that the interval Cα (X ) is not unique. However, our main requirement is that it for a stated level of
con�dence it is as narrow as possible.

2.5.1 Confidence interval for the mean

Suppose {Xi }
n
i=1 are iid normally distributed random variables with mean µ and variance σ 2. We have

shown that

X̄ ∼ N

(
µ,
σ 2

n

)
.

Thus based on the above (given that σ 2 is known), then

P

(
µ ∈

[
X̄ ± zα/2

σ
√
n

] )
= 1 − α

= P

(
X̄ − zα/2

σ
√
n
≤ µ ≤ X̄ − zα/2

σ
√
n

)
.

where zα/2 is such that zα/2 = P(Z ≥ zα/2) with Z ∼ N (0, 1). Thus a (1 − α)100% CI for µ is[
X̄ − zα/2

σ
√
n
, X̄ + zα/2

σ
√
n

]
.

This the classical 95% interval that we see in an intro statistics class. But the interval in not unique. By
using the same argument can easily construct (non-symmetric) intervals which have the same level of
con�dence. The interesting aspect of this interval is that it is the narrowest.
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2 Classical distributions and the �rst foray into sampling distributions
2.5.2 Confidence interval for the variance

Suppose {Xi }
n
i=1 are iid normally distributed random variables with mean µ and variance σ 2. Let s2

n =

(n − 1)−1 ∑n
i=1(Xi − X̄ ). We have shown in Theorem 2.3 that

(n − 1)s2
n

σ 2 ∼ χ 2
n−1.

Based on the above we have

P

(
(n − 1)s2

n

σ 2 ∈
[
χ 2
n−1(1 − α/2), χ 2

n−1(α/2)
] )
= α

where P(χ 2
n−1 ≥ χ 2

n−1(α/2)) = α/2. Rearranging the above gives

= P

(
χ 2
n−1(1 − α/2) ≤

(n − 1)s2
n

σ 2 ≤ χ 2
n−1(α/2)

)
= P

(
χ 2
n−1(1 − α/2)
(n − 1)s2

n
≤

1
σ 2 ≤

χ 2
n−1(α/2)
(n − 1)s2

n

)
= P

(
χ 2
n−1(1 − α/2)
(n − 1)s2

n
≤

1
σ 2 ≤

χ 2
n−1(α/2)
(n − 1)s2

n

)
= P

(
(n − 1)s2

n

χ 2
n−1(α/2)

≤ σ 2 ≤
(n − 1)s2

n

χ 2
n−1(1 − α/2)

)
= α .

Thus a (1 − α)100% CI for σ 2 is [
(n − 1)s2

n

χ 2
n−1(α/2)

,
(n − 1)s2

n

χ 2
n−1(1 − α/2)

]
.

Observe that unlike the interval for the mean, this interval is not symmetric.

2.6 A historical perspective
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3 Parameter Estimation

3.1 Introduction

Over the past 50 years, statisticians, computer scientists and engineers have developed an amazing array of
algorithms for extracting interesting features from data. The current vogue name for this huge array of
algorithms is machine learning. However, it is worth bearing in mind, that the data is collected through
“experiments” (either physical experiment, sample surveys etc). If we redo the experiment and collect a new
set of data, the numbers in the new data set are unlikely to match the numbers in the old data set. Further
the estimates from both data sets are unlikely to be the same. So what exactly are the numbers that we
have extracted from the data?

Given that multiple experments give rise to di�erent values, we can treat our observations as random and
the estimator as a random variable (Rice, nicely describes this on page 257), this is the same as the multiple
trajectories for the sample mean seen in Figure 1.4. Once we understand that for each sample, we obtain an
estimator, and these are random variables with a sampling distribution (see De�nition 1.8). Then we can
start to understand what we are estimating. The estimator is an estimate of a parameter in the sampling
distribution, usually its mean. But this is not very informative, without understanding what underpins
this distribution. To do this, we make assumptions about how the data is collected. In this course, we will
usually assume that the data {Xi }

n
i=1 are iid random variables from a certain distribution, that is a function

of an unknown parameter (this is often called the the data generating process). The sampling distribution
and the data generating process are closely related. And the estimator is an estimate of a parameter in the
data generating process. We often call this the population parameter and treat {Xi }

n
i=1 as iid sample from

the population.

De�nition 3.1 (Statistical inference). Statistical inference is the mapping of what we estimate from the data

onto the entire population, which is unobserved. Formally, we say we drawing conclusions or making inference,

about the underlying population based on the observed sample.

Recall, that in Section 1.5 we made inference on the population mean based on the sample mean.

In summary, point estimation involves two main steps:

• Find methods and algorithms which allow us to evaluate features in the data. This is called a point
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estimate.

• Underlying all algorithms is a model and an unobserved population from which the data is collected.
The task of a statistician is to make inference about parameters in the population based on the
estimator at hand.

Often to construct an estimator we assume that the observations come from a certain family of distributions.
In this chapter, we will assume that the {Xi } is an iid sample from a known family of distributions { f (x ;θ )}
where θ = (θ1, . . . ,θp ) are a small number of unknown parameters, which we aim to estimate. The family
of distributions is determined either from scienti�c evidence (how the data was collected) or empirical
evidence (for example making a histogram of the data).

In most real life situation, the true distribution is unlikely to be known. We can only make intelligent
guesses on what it should be. Keep in mind the famous quotes made by various statistician over the
past hundred years: "All models are wrong but some models are useful." Therefore, it is also important to
understand what the estimator is actually estimating when the model has not been correctly speci�ed (for
example, the data comes from a beta-distribution but we estimate the parameters as if it came from an
exponential). However, this analysis is beyond this course.

Let us recall the set-up. We assume that we observe the iid random variables {Xi }
n
i=1 which come from the

known family of distributions { f (x ;θ )} where θ = (θ1, . . . ,θp ) and θ ∈ Θ. Θ is called the parameter space,
it is the set of all parameters where f (x ;θ ) makes sense as a density (it is positive and integrates to one).
Our objective is to estimate θ , this estimator is called a point estimator.

3.2 Estimation: Method of moments

The method of moments was developed over a hundred twenty years ago, and is a precursor of the maximum
likelihood estimator, described in a later section. It may not be the most e�cient estimator (de�ned in
Section 3.8) and is prone to �nite sample bias. But it is extremely simple to evaluate and is conceptionally
easy to understand. We start with a few motivating examples. A nice description is given in Section 8.4 of
Rice.

3.2.1 Motivation

Often use the notation

µr = E(X r
i )

for the r th moment.
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(i) Suppose the random variableX is exponentially distributed with density f (x ; λ) = λ exp(−λx) (x ≥ 0),

then

E(X ) = 1
λ
.

Thus

λ =
1
µ1
.

(ii) Suppose the random variables X has a Poisson distribution with probability mass function f (k ; λ) =
λk exp(−λ)

k ! . Then

E(X ) = λ.

Thus λ = µ1

(iii) Suppose the random variablesX has a normal distribution with density f (x ; µ,σ 2) = (2πσ 2)−n/2 exp(−(x−
µ)2/σ 2). Then

E(X ) = µ and E(X 2) = σ 2 + µ2.

Thus µ = µ1 and σ 2 = µ2 − µ
2
1

(iv) Suppose the random variable X has Gamma distribution distribution with density f (x ; λ, β) =
βα

Γ(α )x
α−1 exp(−βx). Then

E(X ) = α

β
and E(X 2) =

α(α + 1)
β2 .

Thus

µ1 =
α

β
and µ2 = µ

2
1 +

µ1
β
.

Hence

β =
µ1

µ2 − µ
2
1

α =
µ2

1
µ2 − µ

2
1
.

Thus the parameters in the distribution are embedded within the moments of the estimators. And we
can rewrite the parameters as a function of the moments. Thus by estimating the moments, we can also
estimate the parameters by simply substituting the moment estimators into the formula for parameters in
terms of the moment. Moments are like means, they can easily be estimated by taking the average. For
example, an estimator of µr = E[X r

i ] based on the iid random variables {Xi } is

µ̂r =
1
n

n∑
i=1

X r
i .

Therefore if θ = д(µ1, . . . , µK ), then the method of moments estimator θ is

θ̂n = д(µ̂1, . . . , µ̂K ).
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3.2.2 Examples

Example 3.1. (i) Suppose the random variable X is exponentially distributed with density f (x ; λ) =
λ exp(−λx), then a moments estimator of λ is

λ̂n =
1
µ̂1
.

(ii) Suppose the random variables X has a Poisson distribution with probability mass function f (k ; λ) =
λk exp(−λ)

k ! . Then λ̂n = µ̂1.

(iii) Suppose the random variablesX has a normal distributionwith density f (x ; µ,σ 2) = (2πσ 2)−n/2 exp(−(x−
µ)2/σ 2). Then µ̂ = µ̂1 and σ̂ 2 = µ̂2 − µ̂

2
1

(iv) Suppose the random variableX has Gamma distribution distributionwith density f (x ; β,α) = βα

Γ(α )x
α−1 exp(−βx).

Then

β̂n =
µ̂1

µ̂2 − µ̂
2
1

α̂n =
µ̂2

1
µ̂2 − µ̂

2
1
.

Method of moment estimators are usually not unique, an example is given below.

Example 3.2. Consider the exponential distribution f (x ; λ) = λ exp(−λx). Basic algebra gives

E (X r ) = λ

∫ ∞

0
xr exp(−λx)dx

=
λ

λr

∫ ∞

0
(λx)r exp(−λx)dx (change variables y = λx)

=
1
λr

∫ ∞

0
yr exp(−y)dy

=
1
λr

Γ(r + 1),

where Γ(r + 1) is the gamma function (and does not depend on λ). Thus for all r ≥ 1 we have

λ =

(
Γ(r + 1)

µ

)1/r

Based on the above, for any r we can use

λ̂r,n =

(
Γ(r + 1)
µ̂r

)1/r

as an estimator of λ. Question: which moments estimator should one use?

The take home message from the above example is that moments estimator do not have to depend on the
�rst few moments. They can depend on higher order moments, the can also depend on moments of the
transformed data, for example even {logXi }.
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3.2.3 Sampling properties of method of moments estimators

In this section we derive the sampling properties of the method of moments estimators. We start by
considering the estimator of the rate λ in the exponential distribution. From the previous section we observe
that the moments estimator is

λ̂n =
1
X̄n
.

We simulate the estimator in the case that λ = 1.5 and a plot of 5 trajectories (n = 1, . . . , 100) is given in
Figure 3.1. We observe that they all appear to converge to the truth λ = 1.5 as n →∞. Indeed this should be
the case. Since X̄n

P
→ µ, by using Lemma 1.2 we have that λ̂n

P
→ 1/µ. This means the method of moments

estimator is asymptotically consistent. In general it will converge to the true parameter as the sample size
grows. This is true for all method of moment estimators.

Figure 3.1: 5 trajectories of λ̂n . The pink dashed line is the truth = 1.5.

To obtain the sampling distribution and variance of λ̂n we use the results in Section 1.5.4. We observe
that λ̂n = д(X̄n), thus by using (1.9), on transformations of sample means we can obtain the asymptotic
distribution of λ̂n . Since д′(µ) = −1/µ2 , 0 we have

√
n(λ̂n − λ)

D
→ N

(
0, var(X )

µ4

)
= N (0, λ2) (3.1)

as n →∞. Thus the asymptotic sampling variance of the estimator is

σ 2
λ̂n
=
λ2

n
.

The corresponding standard error for λ̂n
λ
√
n
.
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Of course this standard error is quite useless if we want to use it to construct con�dence intervals, since λ
is unknown. However, we overcome this issue by replacing λ with its estimator λ̂n to yield the estimated
(asymptotic) sampling variance

σ̂ 2
λ̂n
=
λ̂2
n

n
.

Since we know by Lemma 1.2 that λ̂n
P
→ λ, then we have λ̂2

n
P
→ λ2, thus for su�ciently large n, σ̂ 2

λ̂n
is a

good approximation of σ 2
λ̂n

.

To see how good the above approximations of the sampling distribution of λ̂n and its true �nite sample
variance we conduct some simulations. For n = 3, . . . , 100 we simulate from an exponential with λ = 1.5
and evaluate λ̂n we do this 500 times.

Comparing the asymptotic and empirical variance

We evaluate the empirical variance:

σ̂ 2
n =

1
500

500∑
i=1
(λ̂i,n − λ̄n)

2 with λ̄n =
1

500

500∑
i=1

λ̂i,n (3.2)

this should be close to the true variance (since it was done over 500 replications). In Figure 3.2 we plot
nσ̂ 2

n against n. Recall that asymptotic sampling variance is λ2/n. It is not the “true” �nite sample variance
(which can usually only be evaluated through simulations). However, we would expect that nσ̂ 2

n (de�ned in
(3.2)) to be “close” to λ2 for “large” n. We do see that this is the case, for n > 40 they are closely aligned, but
for smaller n the match is not so close.

Comparing the asymptotic and �nite sample sampling distributions

We observe a similar e�ect for the sampling distribution of the estimators. We recall that the result in (3.1)
is an asymptotic approximation of the true �nite sample distribution λ̂n . In other words, for a su�ciently
large n

λ̂n ∼ N

(
λ,
λ2

n

)
.

To see how close this approximation is to the truth, in Figures 3.3-3.5 we make a histogram of the estimates
(evaluated over 500 replication) together with a histogram of the corresponding normal approximation.
We observe that for sample size n = 5 the true sampling distribution of λ̂5 is right skewed and normal
approximation is really quite bad. For sample size n = 20, the true sampling distribution has less of a right
skew, and the sampling distribution is better. And for sample size n = 100 there appears to be a close match
in the true sampling distribution and the normal approximation. In summary, for relatively large sample
sizes the asymptotic variance λ2/n and normal approximation are quite good approximations of the true
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Figure 3.2: A plot of the sampling variance times the sample size for n=3,. . . ,100. The blue line is nσ̂ 2
n , the

red line is the λ2 = 1.52 = 2.25.

Figure 3.3: Expnential distribution. Left: True sampling distribution when n = 5. Asymptotic normal
distribution N (1.5, 2.25/5)

variance and sampling distribution of the estimator. But for small sample sizes some caution is required
when applying these approximations (to constructing con�dence intervals and testing). As can be clearly
seen the quality of the normal approximation as asymptotic variance is not so good when the sample size is
small.

The above results concern the method of moments estimator corresponding to the exponential distribution.
However, similar results also hold for general method of moments estimators. Some examples be given in
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Figure 3.4: Exponential distribution. Left: True sampling distribution when n = 20. Asymptotic normal
distribution N (1.5, 2.25/20)

Figure 3.5: Exponential distribution. Left: True sampling distribution when n = 100. Asymptotic normal
distribution N (1.5, 2.25/100)

your homework. However, to get more practice, in the section below we consider the asymptotic sampling
properties of the moments estimator of the gamma distribution.

Sampling properties of the Gamma distribution

Suppose that {Xi } are iid random variables with Gamma distribution with density f (x ; β ,α) = βα

Γ(α )x
α−1 exp(−βx).

Suppose (for simplicity) that β is known. Then the method of moments estimator can simply be constructed
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using the �rst moment since

E[X ] = α

β
α = βE[X ].

This yields the moment estimator

α̂n = βX̄n

of α . Using Theorem 1.1 we have

√
n (α̂n − α)

D
→ N

(
0, β2var(X )

)
, (3.3)

where we note that var(X ) = α/β2. Thus the asymptotic variance of α̂n is α .

3.2.4 Application of asymptotic results to the construction of confidence intervals

From a practical perspective the reason the asymptotic sampling properties of the moments estimators
are of interest is to construct con�dence intervals for the parameter we are estimating. We recall from
elementary statistics that if {Xi } are iid random variables with mean µ and variance σ 2, then the sample
mean X̄n satis�es the following distributional results

√
n(X̄n − µ)

D
→ N(0,σ 2).

Thus for su�ciently large n we roughly have

X̄n ≈ N

(
µ,
σ 2

n

)
.

This result is used to construct the (1 − α)100% con�dence interval for the mean µ[
X̄n − zα/2

σ
√
n
, X̄ + zα/2

σ
√
n

]
.

The idea being that if X̄ is normally distributed, then for every 100 intervals constructed on average
(1 − α)100% of them would contain the population mean µ. To understand this, in Figure 3.6, left plot, we
construct 100 95% con�dence intervals (for n = 3 based on iid normal observations). We observe that in
this simulation, 3 out of 100 do not contain the population mean. If the population variance is unknown we
replace σ with the estimator sn , this induces additionally variability. We observe in Figure 3.6 (right plot) that
by simply replacing σ with s3 (but still using iid normal observations) and still using the normal distribution
to construct the CI means that the CI has less con�dence than the 95% that is stated (18 con�dence intervals
out of 100 do not contain the mean). Since we know that for normal data Tn =

√
n(X̄ − µ)/sn ∼ tn−1, when

constructing the CI we replace the normal distribution with the t-distribution with (n − 1)-df:[
X̄n − tα/2,n−1

sn
√
n
, X̄ + tα/2,n−1

sn
√
n

]
.
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Figure 3.6: Con�dence intervals µ using X̄ , where Xi ∼ N (µ = 5,σ 2 = 102) and n = 3 (over 100 replications).
Left: Con�dence interval constructed using z-values and σ = 10 is used. Right: Left: Con�dence
interval constructed using z-values and s3 is used.

To see how e�ective using the t-distribution is, in
the plot on the right, we simulate 100 con�dence
intervals (using iid normal observations, sample
size n = 3). We use sn and the t-distribution to
construct the CI. We observe that out 3 out of 100
do not contain the con�dence interval. Hence
the t-distribution does improve the “coverage” of
the con�dence interval.

For non-normal data and small sample sizes neither[
X̄n − zα/2

sn
√
n
, X̄ + zα/2

sn
√
n

]
nor

[
X̄n − tα/2,n−1

sn
√
n
, X̄ + tα/2,n−1

sn
√
n

]
is truely a (1 − α)100% for the mean µ.

We now apply the same ideas described above to obtain con�dence intervals parameter estimators. We
observe the iid random variables {Xi }

n
i=1 which has density f (x ;θ ). Suppose the method of moments

estimator of θ is θ̂n and it can be shown that

√
n(θ̂n − θ )

D
→ N

(
0,σ 2

θ
)
.

For a su�ciently large n we roughly have

θ̂n ≈ N

(
θ ,
σ 2
θ

n

)
.
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This result is used to construct the (1 − α)100% con�dence interval for θ ;[

θ̂n − zα/2
σθ
√
n
, θ̂ + zα/2

σθ
√
n

]
.

Note that often we have to estimate σ̂θ , in which case we replace σθ with its estimator σ̂θ to yield the
interval [

θ̂n − zα/2
σ̂θ
√
n
, θ̂ + zα/2

σ̂θ
√
n

]
.

Observe that we did not replace zα/2 with the corresponding t-distribution, because it is not really clear
if the t-distribution is able to model correctly the additional uncertainty caused by replacing σθ with its
estimator σ̂θ .

3.3 Monte Carlo methods and correcting for the lack of normality

We now investigate how to estimate the �nite sample distribution of estimators. We focus on the method
of moment estimators, but the methods described below also apply to many other estimators.

3.3.1 The parametric Bootstrap

For many estimators asymptotic normality can be shown. But as demonstrated in Figures 3.3-3.5 (and the
variance estimator in Figure 3.2) this approximation is not very reliable when the sample size is small. The
plots given on the left hand side of Figures 3.3-3.5 are the histograms corresponding to the true sampling
distribution and the blue line in Figure 3.2 is the true variance. In an ideal world we would use this
distribution and variances for inference (constructing con�dence intervals etc, we cover this in a later
chapter). But the simulations are based on the simulating the exponential distribution with true underlying
parameter (look at the R code in Chapter3Rcode). In reality the true parameter is unknown (else we would
not be estimating it).

To get round this problem we can estimate the �nite sampling distribution by simulating from the distribution
using the estimated parameter. To demonstrate what we mean by this, we return to the exponential
distribution.

• The idea is to sample from an exponential distribution with sample size n = 20.

• Suppose we observe

demo = 0.5475, 0.0089, 1.1269, 0.7519, 0.5628, 0.8547, 1.9941, 0.7383, 0.0529, 0.0243

0.5029, 0.4628, 0.3951, 0.7799, 2.3609, 1.3204, 0.1754, 1.5920, 1.0729, 0.7659,
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which are drawn from an exponential distribution (with λ = 1.5, which is treated as unknown). The
sample mean is 0.805 and the method od moments estimator of λ is λ̂20 = X̄−1 = 1.243.

• The bootstrap step is based on simulating from an exponential distribution with λ = 1.243 for n = 20
and calculate λ̂∗20 from these simulated values. We use the ∗ notation to denote the fact that λ̂∗20 is
estimated from simulated or the bootstrap sample.

We repeat this several times (say 500 times), storing λ̂∗20 for each replication.

• A plot of the estimated histogram together with the true distribution is given in Figure 3.7. Further the
QQplot of the estimated distribution against true distribution (calculated based on the true parameter
λ = 1.5) is given in Figure 3.8. We observe a relatively close match, though there is a slight shift.

• Based on this simulation, the estimated variance is 0.115, whereas the true sampling variance of λ̂20

is 0.135.

• For every sample, the estimated distribution will change a little.

From the demonstration above and Figures 3.7 and 3.8 we observe that the Monte Carlo method appears to
capture the right skew in the sampling distribution of λ̂20, which the normal approximation given in Figure
3.4 clearly does not.

Figure 3.7: Left: True sampling distribution when n = 20. Right: Distribution based on sampling from
estimated exponential with λ̂n = 1.243.

The Monte Carlo method described above can be generalised to many distributions. The “take home”
message is that we replace the unknown parameter with the estimated parameter, when conducting the
replications. Monte Carlo methods are also nicely described in Rice, Section 8.4, page 264-265.
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Figure 3.8: QQplot of quantiles of true distribution of λ̂n (calculated through simulations) against the
estimated distribution of λ̂n based on the estimated parameter.

3.3.2 The nonparametric Bootstrap

Monte Carlo methods, as described, above are very useful. However, by sampling from an exponential
distribution we make the assumption the observed data has really been drawn from an exponential dis-
tribution. If this is not the case, then this method will not give a good approximation of the sampling
distribution of the estimator. It can be completely wrong.

There are more general methods, which allow for what we called misspeci�cation of the distribution. These
are nonparametric methods (where the distribution is not assumed known). This entails sampling not
from the conjectured distribution (such as the exponential) but sampling (with replacement) from the data
itself. This is often called the nonparametric bootstrap. It is robust to misspeci�cation of the distribution. A
bootstrap sample in R can be obtained using the command sample(data,replace = T).

We outline the nonparametric bootstrap for the exponential example described in the previous section.

• Start with the data

demo = 0.5475, 0.0089, 1.1269, 0.7519, 0.5628, 0.8547, 1.9941, 0.7383, 0.0529, 0.0243

0.5029, 0.4628, 0.3951, 0.7799, 2.3609, 1.3204, 0.1754, 1.5920, 1.0729, 0.7659,

• Sample from demo with replacement. For example, one bootstrap sample is

> temp = sample(demo,replace = T)

> temp

[1] 0.3480 0.4494 0.3645 3.5009 0.9539 0.1917 0.7354 0.8323 0.2294 0.6017 0.8323 2.2859
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[13] 0.1917 0.7354 0.4627 0.2294 0.1917 0.0348 0.1917 0.4627

The estimator corresponding to the above is λ̂∗20 = 1.446.

• We repeat the bootstrap procedure described above. For each sample we evaluate λ̂∗20 and store it.
We do this many times (I did it 500, but the more the better).

• A histogram of the bootstrap estimates of λ̂20 is given in Figure 3.9. A QQplot using the bootstrap
quantiles against the true quantiles is given in Figure 3.10.

• The bootstrap estimated variance of λ̂20 is 0.169, whereas the true sampling variance of λ̂20 is 0.135
(calculated using simulation).

A possible reason for the over estimation in the bootstrap standard error is that there is slightly more
spread in the original data set than the spread of the true, underlying exponential distribution. The
nonparametric bootstrap mimics the properties of the data from which it samples from.

• For every sample demo, the estimated bootstrap distribution will change (as this distribution is
random and depends on the original sample).

Based on this one sample, the nonparametric bootstrap seems to estimate the true sampling distribution
quite well. It is comparable to the parametric bootstrap described in the previous section.

Figure 3.9: Left: True sampling distribution when n = 20. Right: Distribution based on the boostrap samples.
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Figure 3.10: QQplot of quantiles of true distribution of λ̂n (calculated through simulations) against the
estimated distribution of λ̂n based on the estimated parameter.

Using the bootstrap to construct con�dence intervals

We use the above idea to estimate the distribution of the z-transform

z =

√
n(λ̂n − λ)

λ̂n
, (3.4)

which can be used to estimate the critical values in a 95% CI. The above z-transform is often called a pivotal

statistic.

• The data:

demo = 0.5475, 0.0089, 1.1269, 0.7519, 0.5628, 0.8547, 1.9941, 0.7383, 0.0529, 0.0243

0.5029, 0.4628, 0.3951, 0.7799, 2.3609, 1.3204, 0.1754, 1.5920, 1.0729, 0.7659,

• Use the data to estimate λ; λ̂ = 1/x̄ = 1.242.

• Next we sample from demo with replacement. For example, one bootstrap sample is

> temp = sample(demo,replace = T)

> temp

[1] 0.3480 0.4494 0.3645 3.5009 0.9539 0.1917 0.7354 0.8323 0.2294 0.6017 0.8323 2.2859

[13] 0.1917 0.7354 0.4627 0.2294 0.1917 0.0348 0.1917 0.4627

The estimator corresponding to the above is λ̂∗20 = 1.446. The corresponding bootstrap z-transform
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corresponding to (3.4) replaces λ with the estimate from the data λ̂ = 1/x̄ = 1.242 and λ̂ with λ̂∗20:

z∗ =

√
n(λ̂∗20 − λ̂)

λ̂∗20
.

• We repeat the bootstrap procedure described above. For each sample we evaluate z∗ and store it. We
do this many times (I did it 500, but the more the better). Using these samples we have the distribution
function of z∗, F̂ ∗(u).

• A histogram of the bootstrap estimates of z∗ is given in Figure 3.11 (in the case the true λ = 1.5.).

• Next calculate the 2.5% and 97.5% quantiles using the quantile function in R. For this example it is
−1.63 and 1.39 respectively. We use this to construct the 95% con�dence interval for λ with[

λ̂20 − 1.63 × λ̂20
√

20
, λ̂20 + 1.39 × λ̂20

√
20

]
with λ̂20 = 1.24.

Warnings It is tempting to believe that the bootstrap is the true distribution and not an estimator of it. We
emphasize that the bootstrap distribution of z∗ is only an estimator of the distribution of the standardized
statistic in (3.4). Indeed in the example in Figure 3.11 the bootstrap seems to underestimate the spread. The
bootstrap quantile of 2.5% and 97.5% is −1.63 and 1.39 whereas the “truth” is −2.29 and 1.70 respectively.

Figure 3.11: Left: Distribution of (3.4) for λ = 1.5 and n = 20 (over a few thousand replications). Right:
Bootstrap estimate of the distribution of (3.4) for λ = 1.5 (over 2000 bootstrap replications)
based on the data demo.

The bootstrap is conceptionally simple to understand. It can be shown that the bootstrap is able to capture
the skewness of the (�nite sampling) distribution of the estimator but this is an asymptotic result. The
actually details are quite delicate (using Edgeworth expansion) and is beyond this class.
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3.3.3 The power transform approach

As mentioned above the bootstrap is able to capture in the skewness in the sampling distribution of the
estimator (which is useful in inference). An alternative approach, is transform the estimator in such a way
to remove the skewness in the sampling distribution.

We recall from HW2, Question 3, that for skewed random variables, the sampling distribution of the sample
mean tends to be skewed for small sample sizes. As seen from the simulations above, bootstrap methods
tend to capture the skewness. An alternative approach is to make a power transform, for the form θ̂αn ,
similiar to that described in HW2, question 3. By using Lemma 1.2 we have

√
n

(
θ̂αn − θ

α
)
D
→ N

(
0, [αθα−1]2σ 2

θ
)
.

But we also recall from HW2, question 3, that for α < 1 the power transform tends to reduce the skewness
of the parameter and obtain a better approximate the normal distribution. Thus we can construct a 95%
con�dence interval for θα using[

θ̂αn − 1.96 ×
[αθα−1]2σ 2

θ

n1/2 , θ̂αn + 1.96 ×
[αθα−1]2σ 2

θ

n1/2

]
= [L,U ] .

Since θ = (θα )1/α , a 95% con�dence interval for θ is [L1/α ,U 1/α ].

Of course, it is necessary to select the optimal α , Chen and Deo (2004) propose a method for selecting the
“best” α based on minimising the skewness of the sampling distribution (beyond this course).

3.4 Estimation: Maximum likelihood (MLE)

3.4.1 Motivation

Empirical evidence suggests that the life time of an incandescent light bulb follows an exponential dis-
tribution with density f (x ; λ) = λ exp(−λx) with mean lifetime λ−1. It is well known that the light bulb
manufactoring industry did their level best to ensure that light bulbs did not last “too long”, if it lasted too
long it would reduce pro�ts (sounds rather like what manufacturers today and goes contrary to the circular
economy, but I digress). An interesting summary is give in wiki and here.

Suppose a manufacturer has three options on their machine for producing light bulbs with a mean life time
of 750 hours, 1000 hours or 1250 hours. However, the settings on the machine are stuck and the writing has
worn away so noone knows the setting it is stuck at. It can be either 750 hours, 1000 hours or 1250 hours.
To �gure it out, 20 light bulbs are produced in the stuck setting machine and their lifetimes measure. The
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data is summarized below.

x = 202.5, 962.4, 342.4, 596.1, 1331.8, 902.8, 501.7, 1393.1, 620.8, 1604.2, 241.0

372.6, 143.0, 1420.5, 74.7, 2342.4, 1072.3, 1309.2, 1650.7, 163.7

The sample mean is 862.4, which is slightly closer to 1000 than 750. But simply comparing the sample means
is really not enough. It makes sense to consider the joint distribution of the data, which we believe comes
from an exponential distribution. Under the assumption that the lifetime of the light bulbs are independent
of each other the joint density is the product of the marginals

fX (x ; λ) =
20∏
i=1

λ exp (−λxi ) = λ20 exp
(
−λ

n∑
i=1

xi

)
= λ20 exp (−λ20x̄20)

= λ20 exp (−λ × 20 × 862.4) .

But unlike applications in probability, we are not using the joint density to calculate the probability of an
event. The data is observed, it cannot change. Our aim is to select the λ based on the observed data; the λ
that most likely to give the observed data. The idea in statistics is that a “typical” sample is most likely to
be drawn from the maximum of the density (close to the peak). Thus from a statistical perspective fX (x ; λ)
is a likelihood function, and is a function of λ rather than x . Often to emphasis the dependence on λ we
rewrite the fX (x ; λ) as

L(λ;x) = = λ20 exp
(
−λ

n∑
i=1

xi

)
= λ20 exp (−λ × 20 × 862.4) .

A plot of L(λ;x) is given in Figure 3.12 (see the left hand plot). However, often to make the plot easier to
read the logarithm of the likelihood is used

L(λ;x) = = 20 log λ − λ
n∑
i=1

xi = 20 log λ − 862.4λ.

Since log is a monotonic transform, it does not change the the characterisics in L(λ;x). The log-likelihood
is given on the right hand side of Figure 3.12. As the potential candidates are mean= λ−1 = 750, 1000, 1250,
these correspond to the red vertical lines in the plots. From the plot we observe that λ−1 = 1250 is unlikely
given the observed data. Visually it is di�cult to tell the di�erence between 750, 1000, but the actual
log-likelihoods at these values are given in the table below.

λ−1 750 100 1250
log-likelihood -155.399 -155.403 -156.416

We observe that just by a very small margin, λ−1 = 750 maximises the likelihood over λ−1 = 1000. Thus
based on the observed data set, using the likelihood criterion we make the decision that the setting is stuck
at 750 hours. In fact in this case, we have made the correct decision, the sample was generated from an
exponential with mean λ−1 = 750. But we do observe from the plots in Figure 3.12 that the likelihood
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Figure 3.12: Left: Likelihood. Right: log-likelihood.

(and equivalently log-likelihood) is maximised at λ−1 = 862.4 (the sample mean). Thus if any value of λ−1

were a potential candidate for the mean, using λ−1 = 862.4 or equivalently λ = 862.4−1 appears to be the
most likely. This is exactly the maximum likelihood estimator of λ based on the exponential distribution
(interestingly it is the same as the method of moments estimator too).

We now formally de�ne the likelihood for iid random variables. Let us suppose that {Xi }
n
i=1 are iid random

variables with density f (x ;θ ), the likelihood is de�ned as

Ln(θ ;X ) =
n∏
i=1

f (Xi ;θ )

and the log-likelihood is the logarithm of the likelihood

Ln(θ ;X ) =
n∑
i=1

log f (Xi ;θ ).

The maximum likelihood estimator (denoted from now on as MLE) is de�ned as parameter which maximises
the likelihood. If you like maths notation we say

θ̂mle = arg max
θ ∈Θ

Ln(θ ;X ) = arg max
θ ∈Θ
Ln(θ ;X ),

where Θ denotes the parameter space (see Section 2.3, recall it is all parameters where f (x ,θ ) is a density
or probability mass function). The MLE is said to be the estimator that is most consistent with the observed
data (it is most likely given the data).

Remember the data vector X is observed, so we are maximising over the unknown parameter θ .

Often it is easier reparametrize a distribution. For example, for the exponential distribution f (x ; λ) =
λ exp(−λx) we require that λ > 0, but if we rewrite λ = exp(γ ), then γ ∈ (−∞,∞) (the parameter space of γ
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is not restricted). In this reparametrized world we can write the exponential distribution as

д(x ;γ ) = exp(γ ) exp [− exp(γ )x] .

In the following lemma we show that if the mapping λ ⇒ exp(γ ) is one-to-one and onto (a bijec-
tion/invertible), then the MLE of γ and λ yield (after transformation) the same values.

Lemma 3.1 (The invariance property). The invariance property of the MLE says that it makes no di�erence

which parameterization we use for inding the MLE. If θ̂ is the MLE of θ and д(θ ) is a one-to-one (and onto)

function (invertible), then д(θ̂ ) is the MLE of д(θ ).

The proof is straightforward. We may not use this property so much in this course, but is very useful in
applied statistics. For example, in generalized linear models etc.

3.4.2 Examples

We now give some examples of distributions and their MLE. We note that in general to maximise the
likelihood

L(θ ;X ) =
n∏
i=1

f (Xi ;θ ) equivalently Ln(θ ;X ) =
n∑
i=1

log f (Xi ;θ ),

over the parameter space Θ, we di�erentiate L(θ ;X ) with respect to θ and set the derivative to zero and
solve for θ (there are some issues which arise if the maximum happens at the boundary of the parameter
space, which is beyond this course).

We also evaluate the second derivative at the solution to ensure it is the (local maximum, local because
there could be a few maximums). If d2L(θ ;X )

dθ 2 is negative (or negative de�nite), then we can be sure we
have “caught” the (local) maximum. Often it will not be possible to obtain an explicit expression for the
maximum, and we discuss strategies on dealing with this in a later section.

The Normal/Gaussian distribution

Suppose {Xi } are iid random variables, then the Gaussian likelihood is

L(θ ;Xn) =

n∏
i=1

{
1

(2πσ 2)1/2
exp

(
−
(Xi − µ)

2

2σ 2

)}
=

1
(2πσ 2)n/2

exp
[
−

∑n
i=1(Xi − µ)

2

2σ 2

]
.

Often (especially for the exponential family of distributions) it is easier to take the logarithm and maximise
that

Ln(θ ;Xn) = −
n

2 log(2π )︸     ︷︷     ︸
irrelevant

−
n

2 logσ 2 −

∑n
i=1(Xi − µ)

2

2σ 2 .
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Evaluating the partial derivative of Ln(θ ;X ) with respect to µ and σ 2 and setting to zero gives

∂Ln(θ ;Xn)

∂µ
=

∑n
i=1(Xi − µ)

σ 2 = 0

∂Ln(θ ;X )
∂σ 2 = −

n

2
1
σ 2 +

∑n
i=1(Xi − µ)

2

2σ 4 .

Solving the above gives

µ̂n =
1
n

n∑
i=1

X 2
i σ̂ 2

n =
1
n

n∑
i=1
(Xi − µ̂n)

2,

which is the same as the method of moments estimator.

An alternative derivation of the MLE (which on �rst appearances does not appear to have any advantages)
is based on transforming the data vector Xn = (X1, . . . ,Xn). It is uses the transformation proof described
in Section 2.4.2 used to prove Theorem 2.3 together with identity (2.2) (orthonormal transformations of
a normally distributed vector). We recall, we had de�ned n-orthonormal vectors {e j }nj=1 where the �rst
vector is e1 = n

−1/2(1, 1, 1 . . . , 1) which transform Xn to a di�erent basis. The coe�cients of Xn on this new
basis are:

Yn = EnXn =

©«
e1

e2
...

en

ª®®®®®®¬
Xn =

©«

√
nX̄

〈e2,Xn〉

...

〈en ,Xn〉

ª®®®®®®¬
.

Since {Xi } are iid normal, the joint distribution of Yn is normal with mean E[EnXn] = (n
1/2µ, 0 . . . , 0)′ and

variance var(EnXn) = Envar(Xn)E
∗
n = σ

2EnE
∗
n = σ

2In ;

Yn ∼ N

©«

©«

√
nµ

0
0
...

0

ª®®®®®®®®®¬
,σ 2

©«

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...
...
...
. . .

...

0 0 0 . . . 1

ª®®®®®®®®®¬

ª®®®®®®®®®¬
Since {Yj } are independent the joint density of {Yj } is the product of the marginals:

Ln(µ,σ
2;Yn) =

1
√

2πσ 2
exp

(
−

1
2σ 2 (Y1 −

√
nµ)2

) n∏
j=2

1
√

2πσ 2
exp

(
−

1
2σ 2Y

2
j

)
=

1
√

2πσ 2
exp

(
−

1
2σ 2 (
√
nX̄ −

√
nµ)2

) n∏
j=2

1
√

2πσ 2
exp

(
−

1
2σ 2Y

2
j

)
=

1
√

2πσ 2
exp

(
−

n

2σ 2 (X̄ − µ)
2
) n∏
j=2

1
√

2πσ 2
exp

(
−

1
2σ 2Y

2
j

)
.
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This leads to the log-likelihood of the transformed data

Ln(θ ;Yn) = −
n

2 log(2π )︸     ︷︷     ︸
irrelevant

−
n

2 logσ 2 −
n(X̄n − µ)

2

2σ 2 −

∑n
i=2 Y

2
i

2σ 2 . (3.5)

Further, by using (2.2) we have that the transformed data Y = EX and the original data X have exactly the
same likelihood;

Ln(θ ;Yn) = −
n

2 log(2π )︸     ︷︷     ︸
irrelevant

−
n

2 logσ 2 −
n(X̄n − µ)

2

2σ 2 −

∑n
i=2 Y

2
i

2σ 2

= −
n

2 log(2π )︸     ︷︷     ︸
irrelevant

−
n

2 logσ 2 −

∑n
i=1(Xi − µ)

2

2σ 2 = Ln(θ ;Xn) (3.6)

Thus we can obtain the MLE of Yn without any loss in information. Observe the �rst entry of Yn contains
information on the mean, but the rest do not. Di�erentiating this likelihood with respect to µ and σ 2 gives

∂Ln(θ ;Yn)

∂µ
=

n(X̄n − µ)

σ 2 = 0

∂Ln(θ ;X )
∂σ 2 = −

n

2
1
σ 2 +

(X̄n − µ)
2

2σ 4 +

∑n
i=2 Y

2
i

2σ 4 .

Solving the above gives the MLE

µ̂n =
1
n

n∑
i=1

X 2
i σ̂ 2

n =
1
n

n∑
i=2

Y 2
i .

Now on �rst impression it would appear that the estimators are di�erent, since 1
n
∑n

i=2 Y
2
i looks di�erent to

n−1 ∑n
i=1(Xi − µ̂n)

2. But using equation (1.3) in Section 1.3.2 we have that

σ̂ 2
n =

1
n

n∑
i=2

Y 2
i = n

−1
n∑
i=1
(Xi − µ̂n)

2.

Thus the MLE estimators for both transformations of the data are the same. Which it will always be. An
advantage of the transformed data is that the mean information is contained in only coe�cient, whereas
the variance information is encrypted in the other coe�cients of the vector.

Take home message: So long as the matrix En is known (and non-singular) no information is lost or gained
in the transform EnXn . But in terms of estimation sometimes it is easier to deal with the transformed data.

Note that the MLE estimator of σ 2 has a bias (which goes away for large n). We know from Theorem 2.3
that the unbiased estimator of σ 2 is

s2
n =

1
(n − 1)

n∑
i=1
(Xi − µ̂n)

2.

Observe that the MLE coincides with the moments estimator for the normal distribution.
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Exponential distribution

We now derive the MLE of the exponential distribution. Suppose that {Xi } are iid exponential, then the
likelihood is

L(θ ;Xn) =

n∏
i=1
[λ exp(−λXi )] = λ

n exp(−λ
n∑
i=1

Xi ).

The log likelihood is

Ln(θ ;Xn) = n log λ − λ
n∑
i=1

Xi . (3.7)

Di�erentiating the above wrt λ gives

dLn(θ ;Xn)

dλ
=
n

λ
−

n∑
i=1

Xi = 0.

Thus the MLE is

λ̂n =
n∑n

i=1 Xi
=

1
X̄n
.

Again, the MLE coincides with the moments estimator for the normal distribution.

The Poisson distribution

We now derive the MLE of the Poisson distribution. Suppose that {Xi } are iid poisson, then the likelihood is

L(θ ;Xn) =

n∏
i=1

λXi exp(−λ)
Xi !

.

The log likelihood is

Ln(θ ;Xn) =

n∑
i=1
[Xi log λ − λ − logXi ] = 0.

Di�erentiating the above wrt λ gives

dLn(θ ;Xn)

dλ
= λ−1

n∑
i=1

Xi − n.

This gives the MLE is

λ̂n =
1
n

n∑
i=1

Xi = X̄n .

Again, the MLE coincides with the moments estimator for the normal distribution.
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The Gamma distribution

We now derive the MLE of the gamma distribution. Suppose that {Xi } are iid gamma, then the likelihood is

L(θ ;Xn) =

n∏
i=1

βα

Γ(α)
X α−1
i exp(−βXi )

The log-likelihood is

Ln(θ ;Xn) =

n∑
i=1
[(α − 1) logXi − βXi + α log β − log Γ(α)] .

Di�erentiating the above wrt β and α gives

∂Ln

∂β
=

n∑
i=1

[
−Xi +

α

β

]
= 0

∂Ln

∂α
=

n∑
i=1

[
logXi + log β − Γ′(α)

Γ(α)

]
= 0.

Thus, solving the above we can rewrite the solution of β in terms of α (this is often called pro�ling)

β̂(α) =
α

X̄n
.

Substituting this into the next derivative gives
n∑
i=1

[
logXi + log α

X̄n
−
Γ′(α)

Γ(α)

]
= 0.

But to solve the above we need to use a numerical routine.

We note that the above MLE does not coincide (in an obvious way) to the method of moments estimator
described in Section 3.2.1.

Research 3. In many of the examples above we showed that the MLE in the exponential family coincides

with the method of moments estimators (the exception is the Gamma). This is not a coincidence, and there are

reasons for it.

The curious amongst youmaywant to investigate why. Hint: As a start youmaywant to evaluate the expectation

of X and logX for the Gamma distribution. Then study the properties of moments of the exponential (natural)

family.

The Uniform distribution

Let us suppose {Xi }are iid random variables with a uniform distribution with density

f (x ;θ ) = 1
θ

x ∈ [0,θ ]

f (x ;θ ) = 0 x < [0,θ ].
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We can write the density as f (x ,θ ) = θ−1I[0,θ ](x), where I[0,θ ](x) is an indicator function which is one
between [0,θ ] and zero elsewhere (please draw it). Based on this the likelihood is

L(θ ,X ) =

[
n∏
i=1

θ−1I[0,θ ](Xi )

]
.

Now recall that in a likelihood we treat the data as �xed and the parameter θ as variable. Thus L(θ ,X i )

is a function of θ . The log-likelihood has no meaning. Instead, it is easier to just directly maximise the
likelihood. Since the data is kept �xed and L(θ ,X ) is a function of θ , we observe (by making a plot) that
L(θ ,X ) is zero for any Xi ≤ θ ≤ Xi+1. Thus L(θ ,X ) is zero for θ ≤ maxi Xi (see below).

Since the data is kept �xed and L(θ ,X ) is a function of θ , we observe
(see plot on the left) that L(θ ,X ) is zero for any Xi ≤ θ ≤ Xi+1. Thus
L(θ ,X ) is zero for θ ≤ maxi Xi . But for θ > maxi (Xi ), it drops at the
rate θ−n . The way to visualize this is to think of a simple data set
X1 = 2, X2 = 2.5 and X3 = 3.2. L(θ ,X ) = 0 if θ < 3.2 (since this event
cannot happen), thus θ must be 3.2 or greater. And the MLE if 3.2.

Thus, L(θ ,X ) is maximised at θ = maxi (Xi ), and the maximum likelihood estimator for the uniform
distribution is

θ̂n = max
1≤i≤n

Xi .

Inflated Poisson distribution

The Poisson distribution is often used to model count data. A plot of a Poisson mass function for di�erent
values of λ is given in Figure 3.13. We observe that when λ is small, there is a large mass at zero, then it
rapidly drops. On the other hand if λ is large, then the mass tends to be very small at zero. This gives a
dichotomy in modelling. Either the probabilities will be large at zero and small elsewhere, or small at zero
and large elsewhere. Such data can arise, but often we require more �exibility in the distribution.

There arises many real life situations where the chance of observing zero outcomes is very high, but also
the chance of observing 5, 6, 7, can also be high. The regular Poisson cannot model both these behaviour
simultaneuously. But by mixing two distributions more �exible characteristics can be achieved. For example,
suppose

U ∈ {0, 1} a Bernoulli random variable

V ∈ {0, 1, 2, . . .} a Poisson random variable
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Figure 3.13: Left: Mass function of the Poisson distribution (stolen from Wiki)

where

P(U = 0) = p P(U = 1) = 1 − p

P(V = k) =
λk exp(−λ)

k!

We de�ne a new random variables which mixes the Bernoulli and the Poisson:

X = UV .

We observe that

P(X = 0) = P(X = 0|U = 0)P(U = 0) + P(X = 0|U = 1)P(U = 1)

= p + exp(−λ)(1 − p)

P(X = k) = P(X = k |U = 0)︸              ︷︷              ︸
=0

P(U = 0) + P(X = k |U = 1)P(U = 1)

=
λk exp(−λ)(1 − p)

k! k = 1, 2, . . .

Thus combining the two sets of probabilities we can write

P(X = k) = [p + exp(−λ)(1 − p)]I (k=0)
[
λk exp(−λ)(1 − p)

k!

]1−I (k=0)

k = 0, 1, 2, . . .
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where I (·) is an indicator variable: I (k = 0) = 1 of k = 0 and I (k = 0) = 0 if k , 0 (it is like the if and else

function when we code). A plot for di�erent λ is given in Figure 3.14. Observe that even for large λ, the
probability at zero can be large as well as “far” from zero.

Figure 3.14: In�ated Poisson distribution for p = 0.3, λ = 1 (red), λ = 4 (purple) and λ = 10 (red).

The above model is called the In�ated zero Poisson model and it was �rst proposed by Diane Lambert for
modelling manufacturing defects. Observe that the inclusion of the Bernoulli random variables allows one
to model a large number of zeros without the need to use the Poisson distribution. This distribution does
not belong to the exponential family.

Given the iid observations {Xi } the likelihood function is

L(θ ,Xn) =

n∏
i=1

(
[p + exp(−λ)(1 − p)]I (Xi=0)

[
λXi exp(−λ)(1 − p)

Xi !

]1−I (Xi=0))
and the log-likelihood is

Ln(θ ,Xn) =

n∑
i=1

I (Xi = 0) log [p + exp(−λ)(1 − p)] +
n∑
i=1
[1 − I (Xi = 0)] [Xi log λ − λ − logXi ! + log(1 − p)] .
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The derivatives are

∂Ln(θ ,Xn)

∂p
=

n∑
i=1

I (Xi = 0) 1 − exp(−λ)
p + exp(−λ)(1 − p) −

n∑
i=1
[1 − I (Xi = 0)] 1

1 − p = 0

∂Ln(θ ,Xn)

∂λ
=

n∑
i=1

I (Xi = 0) − exp(−λ)(1 − p)
p + exp(−λ)(1 − p) +

n∑
i=1
[1 − I (Xi = 0)]

[
Xi

λ
− 1

]
= 0.

An analytic solution does not exist for the above and a numerical routine needs to be used (note that a
moment type of estimator is possible).

Using constraints: Lagrange multipliers

This section goes beyond the syllabus of this course, but it is important when constructing likelihoods. In
some examples, one needs to place constraints on the parameters. The simplest case is the multinomial
distribution. The multinomial distribution is a generalisation of the binomial distribution. To construct a
binomial distribution, we use that for each trial, Xs , there are two options “success” and “failure”, where the
probability of a success is π . However, for many data sets, each trial may have more than two options, for
examples in a survey, one may give a person several fruit K di�erent options and ask which is their favourite
fruit. To simplify notation, we label each fruit r for 1 ≤ r ≤ K . The person can only answer one fruit,
where the probability of fruit i being selected is πr . In this set-up, suppose N people are random selected
(with replacement) asked the fruit question. Let M = (M1, . . . ,MK ) denote total number of responses for
each fruit. For example Mr denotes the number of people out of N who like fruit r . The sample space is
{(m1, . . . ,mK ); 0 ≤ mi ≤ N ,

∑K
r=1mr = K}. It can be shown that

P (M1 =m1,M2 =m2, . . . ,MK =mk ) =

(
N

m1, . . . ,mK

)
πm1

1 . . . π
mK
K .

This is called a multinomial distribution. Suppose that n surveys are conducted and in each survey Ni

people are asked which was their favourite fruit, we observe the random vector {M = (Mi,1, . . . ,Mi,K )}
n
i=1.

The log-likelihood is

Ln(π1, . . . ,πK ) =
n∑
i=1

K∑
r=1

Mi,r logπr +
n∑
i=1

log
(

Ni

Mi,1, . . . ,Mi,K

)
.

However, we observe that we have an additional condition on the parameters, that is the probabilities∑K
r=1 πr = 1 (thus in the end we only estimate (K − 1) parameters not K , since the πK = 1−π1 − . . .−πK−1).

We can either place this condition into the likelihood itself:

Ln(π1, . . . ,πK−1) =
n∑
i=1

[
K−1∑
r=1

Mi,r logπr +Mi,K log(1 − π1 − . . . − πK−1)

]
n∑
i=1

log
(

Ni

Mi,1, . . . ,Mi,K

)
or we include an Lagrange muliplier. This is done by including an extra “dummy” variable into the likelihood

Ln(π1, . . . ,πK , λ) =
n∑
i=1

K∑
r=1

Mi,r logπr +
n∑
i=1

log
(

Ni

Mi,1, . . . ,Mi,K

)
− λ

(
K∑
r=1

πr − 1
)
,
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the last term forces the

∑K
r=1 πr = 1. This can be seen when we di�erentiate Ln(π1, . . . ,πK , λ) with respect

to {πr }Kr=1 and λ:

∂

∂πs
Ln(π1, . . . ,πK , λ) =

n∑
i=1

Mi,s

πs
− λ 1 ≤ s ≤ K

∂

∂λ
Ln(π1, . . . ,πK , λ) =

K∑
r=1

πr − 1.

Thus when we solve the (K + 1) equations above (by setting them to zero), the very last one constrains∑K
r=1 πr = 1. In this example, the there is not much advantage of adding the additional term λ

(∑K
r=1 πr − 1

)
.

But often placing restrictions to the parameters in a likelihood using Lagrange multipliers can be extremely
useful.

3.4.3 Evaluation of the MLE for more complicated distributions

Most methods are designed for minimisation of a criterion. Therefore to use these methods we de�ne the
negative of the likelihood (which simply turns the likelihood upside down). Therefore, the parameter which
maximises the likelihood is the same as the parameter which minimises the negative likelihood. Brute force
or minimisation of a function (such as a likelihood) in R can be achieved using the function optim or nlm.
The type of algorithm that one uses is very important. If the likelihood function is concave (equivalent to
the negative of the likelihood being convex), the maximising can be achieved using the Newton-Raphson
algorithm or related convex optimisation schemes.

We illustrate the above routine in R for the MLE of the gamma distribution.

# Simulate from a gamma function alpha = 9, beta = 2

# often alpha is called the shape and beta the rate.

xdata = rgamma(n=100,shape =9,rate =2)

# Below is the negative-likelihood based on

# gamma distribution using the generated data.

LikeGamma = function(par){

n = length(xdata) # xdata is the data vector we input into likelihood

alpha = par[1]; beta = par[2]

loglik = (alpha-1)*sum(log(xdata))- beta*sum(xdata) + n*alpha*log(beta) - n*log(gamma(alpha))

nloglik= -loglik

return(nloglik)
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}

## "minimization" using optim function

## par: initial value; fn = function to minimize

# As initial value we give the vector alpha = 3 and

# beta = 3.

# A better initial value is to give the Moments estimator

# this would speed up the algorithm and if the

# likelihood was not concave (which for this example it is)

# it is more likely to converge to its global minimum.

fit.optim = optim(par= c(3,3), fn=LikeGamma, hessian = T)

fit.optim$par

fit.optim$convergence

solve(fit.optim$hessian) #inverse hessian

# solve(fit.optim$hessian) gives the asymptotic variance

# of the estimator. See Section 3.5.2 below.

Many of the algorithms require an initial value for the estimator θ̂ , to start the algorithm o�. If you can
provide an initial values which is based on a crude estimator of θ (such as a method of moments estimator),
this would be great.

Optimisation for a concave distribution is relatively straightfoward. Given any initial value you are usually
gauranteed to get to the global maximum of the distribution. Under quite general conditions most of the
distributions in the exponential are concave, so are ideal for maximising. However, if the distribution is not
concave (which often happens in the case of mixtures of distributions as studied in HW2 or the in�ated
Poisson), then the routine can run into problems. For example, it may converge to a local maximum rather
than a global maximum. Typically, runs the routine with several initial values in the hope of �nding a
global maximum, but this is far from a simple task.

Remark (The EM-algorithm). The Expectation-Maximisation algorithm is an algorithm designed for speci�-

cally maximising the likelihood. It works by constructing a likelihood based on the observed data and unobserved

data. By using a “clever” choice of unobserved data the combined likelihood (often complete likelihood) has

a simple form. The EM-algorithm is based on maximisation of the conditional expectation of this complete

likelihood. The precise details are beyond this course.

Remark (Pro�ling). So called pro�ling the likelihood is another strategy for maximising the likelihood.
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3.5 Sampling properties of the MLE

3.5.1 Consistency

It can be shown that the MLE (under certain conditions) is asymptotically consistent. This means that if the
distribution is correctly speci�ed then θ̂n

P
→ θ0 (where θ0 is the true parameter in the distribution) as the

sample size grows. The proof of this result is quite technical and beyond this class, but we give a heuristic
(some ideas) as to why the Maximum likelihood estimator actually works. Rice discusses this in Section
8.5.2.

Let us suppose that Xi are iid random variables with density f (x ;θ0) the true parameter θ0 but it is known
it belongs to the parameter space Θ. The log-likelihood

Ln(θ ;X ) = 1
n

n∑
i=1

log f (Xi ;θ ).

We observe that we divide by n in the above de�nition to turn the sum into an average (which we like), in
terms of estimation it does not change anything. Since Ln(θ ;X ) is an average of iid random variables (in
this case {log f (Xi ,θ )}) as n grows large it limits to its expectation (see Section 1.4.1)

L(θ ) = E [log f (X ;θ )] .

We recall that the expectation is de�ned as

E [log f (X ;θ )] =
∫
[log f (x ,θ )]f (x ,θ0)dx ,

observe this is a function of θ .

Idea of heuristic proof We need to show that in the ideal situation that we have an in�nite sample size
and thus the observed likelihood is E [log f (X ;θ )]. That the θ that maximises this likelihod is the true
population parameter θ0 (that generates the density f (x ;θ0)). If this did not hold. Then the MLE estimator
cannot work. This is the bare minumum requirement for the method to work. Such result form the basics
in any statistical method. If it does not work for an in�nite data set it cannot work for any data set!

Returning to the proof To show that L(θ ) = E [log f (X ;θ )] is maximised at θ0 we take the derivative
with respect to θ and show that the derivative is zero at θ0. Thus

dL(θ )

dθ
=

d

dθ

∫
[log f (x ,θ )]f (x ,θ0)dx .

We make the assumption that the derivative can be put inside the integral (which for many distributions
does hold, but not all):

dL(θ )

dθ
=

∫
d

dθ
[log f (x ,θ )]f (x ,θ0)dx =

∫
d f (x ,θ )

dθ

1
f (x ,θ )

f (x ,θ0)dx .
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Thus at θ0 we have

dL(θ )

dθ
cθ=θ0 =

∫
d f (x ,θ )

dθ
cθ=θ0

1
f (x ,θ0)

f (x ,θ0)dx

=

∫
d f (x ,θ )

dθ
cθ=θ0dx =

d

dθ

∫
f (x ,θ )dx︸         ︷︷         ︸
=1

cθ=θ =
d1
dθ
= 0.

The take home message in the above proof is that the density of pmf integrates to one, it does not depend
on a parameter.

Using the above result as a starting point, we obtain the following result.

Lemma 3.1

Suppose that {Xi }
n
i=1 are iid random variables with density f (x ;θ0). Let θ̂n be the MLE of θ based on

{Xi }
n
i=1. Then

θ̂n
P
→ θ0

we n →∞.

3.5.2 The distributional properties of the MLE

The aim in this section is to study the sampling properties of the MLE. These results will be used in later
chapter for testing and constructing con�dence intervals. As we mentioned above many MLE estimators
are the same as the method of moments estimator. And we we showed in Section 3.2.3 that the methods of
moments estimator is usually asymptotically normal in distribution. In this section we show that (under
certain conditions) all MLE estimators are asymptotically normal.

We �rst illustrate this result with an example. We consider the MLE of the parameters in the Gamma
distribution (which is not, in an obvious way, a method of moments estimator). We simulate from a Gamma
distribution with α = 9 and β = 2. For simplicity, we treat β = 2 as known and only estimate α1. The
simulations were done over 400 realisations for n = 1, . . . , 100. We estimate α using the routine outlined
above and denote the MLE for sample size n as α̂n .

1Keep in mind the distribution will change a little if we estimate both. Further the variances will be di�erent if we estimate only
one parameters rather than both.
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Figure 3.15: Left: trajectories of Gamma estimator α = 9

Figure 3.16: Left: Estimated bias. Right: variance × sample size when α = 9. The red dotted line is the
asymptotic time samples size (I (α)−1).

In Figure 3.15 we observe that each realisation does appear to “converge” to the true parameter as the
sample size grows. In Figure 3.16 we observe that the estimator has a “�nite” sample bias, but the bias
decreases as the sample size grows. The n times the variance �uctuates quite a lot but it around 8.5 − 9
(8.5 is the asymptotic variance times n) for a n larger than 30. Finally, in Figure 3.17 we make a plot of the
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Figure 3.17: Top: Distribution of the standardized sample mean Zn =
√
nI (α)(α̂n − 9) (n = 3 and n = 20).

Bottom: QQplot against standard normal quantiles.

histogram and QQplot against the standard normal of

Zn =
√
nI (α)(α̂n − 9),

we discuss what I (α) is below. But we observe that for n = 3, the estimator appears to have a small right
skew, which is reduced n = 20.

These results allude to the result that as the sample size grows, like the method of moment estimators, the
distribution of the maximum likelihood estimator asymptotically becomes normal.
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Theorem 3.2

Suppose {Xi } are iid random variables with parametric distribution f (x ,θ0), where θ0 is unknown.
The density f (x ,θ ) is smooth over θ (such that we can evaluate its derivative) and the support of the
density does not depend on the parameter θ . Then asymptotically the MLE is√

nI (θ0)
(
θ̂n − θ0

)
D
→ N(0, 1),

as n →∞, where

I (θ0) = −

∫ ∞

−∞

(
d2 log f (x ;θ )

dθ 2

)
cθ=θ0 f (x ;θ0)dx

From the above result for a large enough n we say that

θ̂n ∼ N

(
θ0,

1
nI (θ0)

)
.

Important The Fisher information matrix is always evaluated at the true parameter. Thus

I (θ ) = −

∫ ∞

−∞

(
d2 log f (x ;θ )

dθ 2

)
f (x ;θ )dx

the θ in the d2 log f (x ;θ )
dθ 2 must match the θ in the density f (x ,θ ).

The above thoerem is stated for univariate MLE estimators. However, a similar results hold for the MLE of
several parameters (for example the MLE of both α and β in the geometric distribution). In this case we
replace I (θ ) with a matrix, which is the Hessian of the log-likelihood.

Application We apply this result to construct an approximate 95% con�dence interval for θ0. Suppose we
evaluate the MLE θ̂n , then the approximate 95% CI for θ0 is[

θ̂n − 1.96 × 1√
nI (θ0)

, θ̂n + 1.96 × 1√
nI (θ0)

]
.

Of course θ0 is unknown to calculate I (θ0) instead we replace with its estimator I (θ̂n) to give the approximate
95% CI for θ θ̂n − 1.96 × 1√

nI (θ̂n)

, θ̂n + 1.96 × 1√
nI (θ̂n)

 .
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Outline of proof of Theorem 3.2

The precise proof of Theorem 3.2 is quite technical. But we give the basic ideas here. In many respects the
proof resembles the proof of Lemma 1.2. Even though θ̂n does not appear to be an average, at the estimation
method is an average; the log-likelihood which is the sum (or average) of log f (Xi ,θ ). As the log-likelihood
is an average it will asymptotically be normal, which implies (in a way described below) that θ̂n can also be
written as an average and will be asymptotically normal.

We �rst recall that since

θ̂n = arg maxLn(θ ),

then in general (if θ̂n lies inside the parameter space and not on the boundary), θ̂n is the solution of

dLn(θ )

dθ
cθ=θ̂n

= 0.

We recall that dLn (θ )
dθ is

dLn(θ )

dθ
= n−1

n∑
i=1

d log f (Xi ;θ )
dθ

,

we divide by n to turn the derivative of the likelihood into an average, which does not change the estimator.
Now by using the mean value theorem and expanding dLn (θ )

dθ cθ=θ̂n
about θ0 (the true parameter) gives

dLn(θ )

dθ
cθ=θ̂n

≈
dLn(θ )

dθ
cθ=θ0 + (θ̂n − θ0)

d2Ln(θ )

dθ 2 cθ=θ̂n
,

see the illustration in Figure 3.18 to understand why. Since dLn (θ )
dθ cθ=θ̂n

this gives

dLn(θ )

dθ
cθ=θ0 ≈ −(θ̂n − θ0)

d2Ln(θ )

dθ 2 cθ=θ̂n
,

observe that the above involves the Fisher information before taking expectation (often called the observed
Fisher information). Going back to the de�nitions of the likelihood we have

1
n

n∑
i=1

d f (Xi ,θ0)

dθ
≈ (θ̂n − θ0)

−1
n

n∑
i=1

d f (Xi ,θ0)

dθ 2 .

Since −1
n

∑n
i=1

df (Xi ,θ0)
dθ 2 is an average we will replace it by its expectation, which is the Fisher information

I (θ0). This gives

1
n

n∑
i=1

d f (Xi ,θ0)

dθ
≈ (θ̂n − θ0)nI (θ0).

Thus

(θ̂n − θ0) ≈ (nI (θ0))
−1 1
n

n∑
i=1

d f (Xi ,θ0)

dθ
.
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Figure 3.18: Illustration of mean value theorem.

Observe that I (θ0)
−1 is a constant, so the limiting distribution of (θ̂n − θ0) is determined by

Ȳn =
1
n

n∑
i=1

d f (Xi ,θ0)

dθ
,

which is an average of iid random variables. Further, we have shown in Section 3.5.1, that E[log f (X ;θ )] is
maximised at θ = θ0, which is equivalent (under certain conditions) to dE[log f (X ;θ )]/dθcθ=θ0 = 0. Thus
E[Ȳn] = 0. Now by the CLT in Theorem 1.1 we have that√

nJ (θ0)Ȳn
D
→ N (0, 1) and

√
nȲn

D
→ N (0, J (θ0))

where

J (θ0) = var
(
d f (Xi ,θ0)

dθ
cθ=θ0

)
.

Thus altogether we have

(θ̂n − θ0) ≈ (nI (θ0))
−1Ȳn

D
→ N

(
0, I (θ0)

−1 J (θ0)I (θ0)
−1) n →∞.

Finally, in Lemma 3.3 we prove that J (θ0) = I (θ0). Thus the above reduces to

(θ̂n − θ0)
D
→ N

(
0, (nI (θ0))

−1) n →∞,

which is what we want to show.
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Example: Gamma distribution

Consider the Gamma example considered above where α = 2 in the distribution is assumed known. The
log-likelihood is

Ln(θ ;Xn) =

n∑
i=1
[(α − 1) logXi − βXi + α log β − log Γ(α)] .

Di�erentiating the above wrt α gives

∂Ln(θ ;Xn)

∂α
=

n∑
i=1

[
logXi + log β − Γ′(α)

Γ(α)

]
.

So

∂ log f (Xi ,θ )

∂α
=

[
logXi + log β − Γ′(α)

Γ(α)

]
and

−
∂2 log f (Xi ,θ )

∂α2 =

[
Γ′′(α)

Γ(α)
−
Γ′(α)2

Γ(α)2

]
.

Notice that the second derivative does not depend on the data. This is quite common for distributions
in the exponential family (under certain parameterisations of the parameter), but is not the rule for all
distributions. Often the second derivative will depend on the observed data. Based on the above, the Fisher
information is

I (α) = −E
[
∂2 log f (Xi ,θ )

∂α2

]
=

[
Γ′′(α)

Γ(α)
−
Γ′(α)2

Γ(α)2

]
.

Therefore the limiting distribution of α is√
n

(
Γ′′(α)

Γ(α)
−
Γ′(α)2

Γ(α)2

)
(α̂n − α)

D
→ N(0, 1). (3.8)

This is exactly what we observed in Figures 3.16 and 3.17; the asymptotic variance is 1/(nI (α)) and the
standardized estimator is close to a standard normal for a large enough sample size.

Given the MLE α̂n the approximate 95% con�dence interval for α is[
α̂n − 1.96 ×

(
n

(
Γ′′(α̂n)

Γ(α̂n)
−
Γ′(α̂n)

2

Γ(α̂n)2

))−1/2
, α̂n + 1.96 ×

(
n

(
Γ′′(α̂n)

Γ(α̂n)
−
Γ′(α̂n)

2

Γ(α̂n)2

))−1/2]
.
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Example: Exponential distribution

The exponential data the log-likelihood is

Ln(θ ;Xn) = n log λ − λ
n∑
i=1

Xi .

Di�erentiating the above wrt λ gives

∂Ln(θ ;Xn)

∂λ
=
n

λ
−

n∑
i=1

Xi .

So

∂ log f (Xi,λ)

∂λ
=

1
λ
− Xi .

and the second derivative is

d2 log f (Xi,λ)

dλ2 = −
1
λ2 .

Thus the Fisher information is

I (λ) = −E
(
d2 log f (Xi,λ)

dλ2

)
=

1
λ2 .

Therefore the limiting distribution of α is√
n

1
λ2

(
λ̂n − λ

)
D
→ N(0, 1).

Based on the above the approximate 95% CI for λ is[
λ̂n − 1.96 × λ̂n

√
n
, λ̂n + 1.96 × λ̂n

√
n

]
.

3.6 The Fisher information matrix

We recall that for iid random variables {Xi } with mean µ and the variance σ 2, the sample mean (for large
n) is approximately

X̄n ∼ N

(
µ,
σ 2

n

)
.

And for Theorem 3.2, the MLE (for large n) is approximately

θ̂n ∼ N

(
θ0,

1
nI (θ0)

)
.
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Comparing the two results we observe that σ 2 and In(θ0)

−1 play similar roles. It is clear σ 2 is small when
the variance of Xi is small. What we want to do is understand when In(θ0)

−1 is small or equivalently, the
Fisher information In(θ0) is large. However, why should the (asymptotic) variance of the MLE involve the
second derivative of the likelihood and what it actually means can be quite di�cult to understand. We
make an attempt in this section.

The Fisher information matrix I (θ ) is really quite a cryptic object, even its name appears nonsensical!
The word Fisher comes from Ronald Fisher, so no need to explain that part. But the word information
appears strange; roughly speaking nI (θ ) describes how much information the data contains about the true
parameter. Below, we try to explain why.

Background: First we recall from our calculus days, that the size of the second derivative at the maximum
of a function corresponds to how peaky or curvey it is at the maximum. The “larger” the second derivative
the more the curvature (peaky) the likelihood is a the maximum. The “smaller” the second derivative the
�atter the function is about the maximum. Recall, that when the second derivative is zero, we have a saddle
point. These insights are useful in the discussion below.

3.6.1 Example: Exponential distribution

For simplicity we focus on the exponential distribution (though the discussion below applies to most
distributions). We recall from equation (3.7) that the exponential density is f (x ;θ ) and the log-density is

log f (X , λ) = log λ − λX .

The second derivative is

d2

dλ2 log f (X , λ) = −
1
λ2 .

Thus the information matrix is

I (λ) = −E
[
d2

dλ2 log f (X , λ)

]
=

1
λ2 .

Thus for a the data set {Xi }
n
i=1 the information matrix is

nI (λ) =
n

λ2 .

Observe that for the exponential distribution d2

dλ2 log f (X , λ) does not depend on the data. So the curvature
of the likelihood is the same for all data sets. However, for other distributions d2

dλ2 log f (X , λ) will depend
on the data, which is why we consider the mean/expected curvature of log f (X , λ). The larger nI (λ), the
greater the information in the data about λ. This is easily understood, by studying the likelihood. Since
nI (λ) corresponds to the (expected) negative second derivative of the likelihood, it measures the steepness
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of the likelihood about the true, population parameter. The large nI (λ) the more pronounced the likelihood
about the peak, and the “easier” it is to �nd the maximum. To see this, we simulate from two di�erent
exponential distributions, with λ = 1 and λ = 100 and sample size n = 10. For λ = 1, we generate the
numbers:

2.0546 0.9861 0.3977 1.9480 0.8082 0.8082 0.0491 2.5444 0.4528 0.9950.

The sample mean is 1.101 and the log-likelihood is given in Figure 3.19. For λ = 100, we generate the
numbers:

0.0008424 0.0321545 0.0009847 0.0070063 0.0044617

0.0470954 0.0076897 0.0055562 0.0000079 0.0050735.

The sample mean is 0.01108 and the likelihood and log-likelihood is given in Figure 3.20. What we observe

Figure 3.19: The likelihood (left) and corresponding log likelihood (right) for one simulation for an expo-
nential distribution with λ = 1 and n = 10. nI (λ) = 10/λ2 = 10.

is when λ is small, the likelihood is more peaked about the maximum. We are better able to �nd the
maximum; this corresponds to a smaller variance and “more” information in the data about the underlying
parameter (thus nIn(λ) is large or equivalently the asymptotic variance (nIn(λ))−1 is small). On the other
hand, when λ is large, the likelihood is more “�at” about the maximum. Making it much harder to “�nd” the
maximum. It is di�cult to distinguish the maximum from other values in the neighbourhood. This means
there is “less” information in the data about the underlying parameter (thus nIn(λ) is small or equivalently
the asymptotic variance (nIn(λ))−1 is large). If you run the same simulation, but with a larger n, you will
see that the likelihood gets increasingly steeper about its maximum.
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Figure 3.20: The likelihood and corresponding log-likelihood for one simulation from an exponential
distribution with λ = 100 and n = 10. nI (λ) = 10/λ2 = 10/1002. Observe that the true λ = 100
is far from the maximum in the data set and how shallow this curve is.

In summary The data holds more information about λ, if the λ in the exponential density is small. We
observe that small λ, corresponds to a �atter density (see Figure 3.21).

Figure 3.21: Density of exponential for di�erent λ. When λ is small, Fisher information is large.

Example 3.3 (An alternative parameterisation of the exponential distribution). An alternative but commonly

used parameterisation for the exponential distribution is

f (x ; µ) = 1
µ

exp (−x/µ) x ≥ 0

for any µ > 0. Comparing µ with θ above we observe that µ = θ−1. Using this parametrisation, a random

118



3 Parameter Estimation
variable with density f (x ; µ) has expectation E[X ] = µ. The log density is

log f (x ; µ) = − log µ − x

µ

and its derivatives are

d log f (x ; µ)
dµ

= −
1
µ
+

x

µ2

d2 log f (x ; µ)
dµ2 =

1
µ2 −

2x
µ3

Based on the above the Fisher information matrix of µ is

I (µ) = −E
(
d2 log f (X ; µ)

dµ2

)
= −

1
µ2 +

2E[X ]
µ3

= −
1
µ2 +

2µ
µ3 =

1
µ2 .

Thus we observe that the smaller µ is the larger the Fisher information.

In summary The data holds more information about µ, if the µ in the exponential density is small. We make a

plot for this parametisation of the exponential density in Figure 3.22). We observe that small µ, corresponds to a

density concentrated about zero (see Figure 3.22).

Figure 3.22: Density of exponential for di�erent µ. When µ is small, Fisher information is large.

3.6.2 Example: Poisson distribution

In now obtain the Fisher information matrix for the Poisson distribution. We recall the probability mass
function for the Poisson distribution is

p(x ; λ) = λx exp(−λx)
x ! x ≥ 0.
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The log pmf is

logp(x ; λ) = x log λ − λx − logx !

and its derivatives are

d logp(x ; λ)
dλ

=
x

λ
− λ

d2 logp(x ; λ)
dλ2 = −

x

λ2 .

Thus the Fisher information matrix is

I (λ) = −E
[
d2 logp(x ; λ)

dλ2

]
=

E[X ]
λ2 =

1
λ
.

Thus we observe that Fisher information matrix is large for very small λ. This means the the data holds
more information about λ, if the λ small. Note from Figure 3.23 that small λ corresponds to a pmf that is
concentrated close to zero.

Figure 3.23: Left: Mass function of the Poisson distribution. Small λ corresponds to a mass concentrated
close to zero.

We recall (from Section 3.4.2) that the MLE for λ is λ̂n = X̄ and by using Theorem 1.1 we have for large n

λ̂n ∼ N

(
λ,

var[X ]
n

)
= N

(
λ,
λ

n

)
.

But this exactly the same answer as the limiting distribution result in Theorem 3.2;

λ̂n ∼ N

(
λ,

1
nI (λ)

)
= N

(
λ,
λ

n

)
.
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3.6.3 A useful identity

We now give a useful identity which links the variance of d log Ln (θ ;X )
dθ cθ=θ0 to E

(
d2 log Ln (θ ;X )

dθ 2 cθ=θ0

)
. This is

useful in obtaining “nice” expressions for the Fisher information.

Lemma 3.3

E
(
d logLn(θ ;X )

dθ
cθ=θ0

)2
= −E

(
d2 logLn(θ ;X )

dθ 2 cθ=θ0

)
.

PROOF. To prove this result we use the fact that the likelihood Ln is a density/distribution, thus it integrates
to one: ∫

Ln(θ ,x)dx = 1.

Now by di�erentiating the above with respect to θ gives
∂

∂θ

∫
Ln(θ ,x)dx = 0.

Thus ∫
∂Ln(θ ,x)

∂θ
dx = 0⇒

∫
∂ logLn(θ ,x)

∂θ
Ln(θ ,x)dx = 0

Di�erentiating again with respect to θ and taking the derivative inside gives∫
∂2 logLn(θ ,x)

∂θ 2 Ln(θ ,x)dx +

∫
∂ logLn(θ ,x)

∂θ

∂Ln(θ ,x)

∂θ
dx = 0

⇒

∫
∂2 logLn(θ ,x)

∂θ 2 Ln(θ ,x)dx +

∫
∂ logLn(θ ,x)

∂θ

1
Ln(θ ,x)

∂Ln(θ ,x)

∂θ
Ln(θ ,x)dx = 0

⇒

∫
∂2 logLn(θ ,x)

∂θ 2 Ln(θ ,x)dx +

∫ (
∂ logLn(θ ,x)

∂θ

)2
Ln(θ ,x)dx = 0

Thus

−E
(
∂2 logLn(θ ,X )

∂θ 2

)
= E

(
∂ logLn(θ ,X )

∂θ

)2
.

Note in all the derivations we are evaluating the second derivative of the likelihood at the true parameter θ

of the underlying distribution. �

3.7 The curious case of the uniform distribution

We recall that if {Xi } are iid random variables with uniform density f (x ,θ ) = θ−1I[0,θ ](x). The uniform
distribution is one of those distributions that do not satisfy the so called “regularity” conditions mentioned
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above (this is because the support of the distribution involves the parameter, thus Lemma 3.3 does not
hold). We do not maximise the likelihood (or log-likelihood) by di�erentiating it. We would expect that its
sampling properties are also strange, we now show that they are.

We recall from Section 3.4.2, that the MLE is

θ̂n = max
1≤i≤n

(Xi ).

The sampling distribution of θ̂n is actually quite straightforward to derive. It turns on that for the uniform
distribution its MLE not asymptotically normal. We start with the distribution function:

Pθ

(
θ̂n ≤ x

)
= P

(
max

1≤i≤n
(Xi ) ≤ x

)
= P (X1 ≤ x and X2 ≤ x and . . . and Xn ≤ x) =

n∏
i=1

P(Xi ≤ x)︸           ︷︷           ︸
by independence

=
xn

θn
.

This gives the distribution function. The density is the derivative of the distribution function with respect
to x

fθ̂n (x) =
dPθ

(
θ̂n ≤ x

)
dx

= n
xn−1

θn
x ∈ [0,θ ]

Thus the distribution is the MLE is n xn−1

θn , which is not anywhere near normal, even for large n. This is one
strange distribution. Now we obtain a very strange variance. We start with the expectation:

E[θ̂n] = n
∫ θ

0
x
xn−1

θn
dx =

n

θn

[
xn+1

n + 1

]θ
x=0
=

n

n + 1θ .

Thus there is a �nite sample bias:

E[θ̂n] − θ =
n

n + 1θ − θ =
−1
n
θ ,

which tends to zero as n →∞. Next we consider the variance. We start with the second moment:

E[θ̂ 2
n] = n

∫ θ

0
x2x

n−1

θn
dx =

n

θ

[
xn+2

n + 2

]θ
x=0
=

n

n + 2θ
2.

Thus

var[θ̂n] = = E[θ̂ 2
n] − (E[θ̂n])2 =

n

n + 2θ
2 −

n2

(n + 1)2θ
2

= n

(
1

n + 2 −
n

(n + 1)2

)
θ 2

= n

(
n + 1 − n

(n + 2)(n + 1)2

)
θ 2 =

n

(n + 1)2(n + 2)θ
2.
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Now observe what happens to the variance as n gets large

var[θ̂n] =
n

(n + 1)2(n + 2)θ
2 =

1
(n + 1)2(n/n + 2/n)θ

2 ∼
1

(n + 1)2θ
2.

The standard error for the MLE is√
var[θ̂n] =

1
(n + 1)

√
(n/n + 2/n)

θ ∼
1

(n + 1)θ .

This is (much, much) faster than the usual standard error of the sample mean which is σ/
√
n. Thus the

variance of the MLE for the uniform distribution is in general “very good” for small sample sizes (indeed
the bias and the variance are of the same “size”). But we do observe that the standard error for the MLE
depends on the parameter θ . Thus the larger θ , the more spread out the data and the larger that standard
error of the MLE.

Figure 3.24 o�ers an intuitive explanation as to why the MLE for the uniform distribution is so “good”.

Figure 3.24: A “typical” set of realisations from a uniform distribution with θ = 10. Sample sizes n = 2, 22 =

4, 23 = 8, 24 = 16, 25 = 32, 26 = 64. Red point is the MLE.

3.8 What is the best estimator?

Remember We measure the quality of an estimator by its mean squared error, or variance (if it is close to
unbiased). If the estimator is close to unbiased and its true variance very di�cult to evaluate, then studying
its asymptotic variance is the simplest thing to do. For example, the variance of 1/X̄n is usually very di�cult
to derive but we can use the asymptotic variance given in Lemma 1.2.
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3.8.1 Measuring e�iciency

For many di�erent procedures there is no unique estimation method. For example, in the previous sections
we considered the method of moments estimator of the Gamma distribution and the MLE for the Gamma
distribution. Given the array of estimation methods how would one choose a particular method. It seems
sensible to use the estimator which has the greatest chance of “concentrating” about true parameter. There
are various ways to measure this, but one method is the mean squared error E[θ̂n − θ ]2, and to select the
method with the smallest MSE for a given n. We recall (see Section 1.5.1) that

E[θ̂n − θ ]2 = var(θ̂n) +
(
E[θ̂n] − θ

)2︸         ︷︷         ︸
bias squared

.

Assuming that the estimator in unbiased (or nearly unbiased), then one would compare the variances of the
estimator. Often this is not easy to derive (especially for �nite sample sizes), but the asymptotic variance
can often be derived.
Example 3.4 (Gamma distribution). The asymptotic variance of the method of moments estimator based on

the �rst moment (as given in (3.3)) is approx(
α̂MoM,n − α

) D
→ N

(
0, α
n

)
.

Similarly, by using the MLE estimator (see (3.8)) we approximately have

(
α̂MLE,n − α

) D
→ N

(
0,n−1

(
Γ′′(α)

Γ(α)
−
Γ′(α)2

Γ(α)2

)−1)
.

Thus the asymptotically most e�cient estimator is the one with the smallest variance

1
n

(
Γ′′(α)

Γ(α)
−
Γ′(α)2

Γ(α)2

)−1
vs

α

n
. (3.9)

De�nition 3.2 (E�ciency). Given the two estimators θ̂1,n and θ̂2,n which are unbiased (or it is very small),

we measure the e�ciency of θ̂1,n relative to θ̂2,n using the following measure:

e�(θ̂1,n , θ̂2,n) =
var(θ̂1,n)

var(θ̂2,n)
.

Example 3.5 (Gamma distribution (cont)). For the gamma distribution example, the (asymptotic) relative

e�ciency (since we do not have an analyic expression for the variance of α̂mle,n) based on (3.9)

asye�(θ̂MoM,n , θ̂MLE,n) =
α

n
×

(
1
n

(
Γ′′(α)

Γ(α)
−
Γ′(α)2

Γ(α)2

)−1)−1

= α

(
Γ′′(α)

Γ(α)
−
Γ′(α)2

Γ(α)2

)
.
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A plot of asye�(θ̂MoM,n , θ̂MLE,n) is given in Figure 3.25. We observe that asye�(θ̂MoM,n , θ̂MLE,n) > 1, thus
(asymptotically) the MLE estimator tends to be more e�cient than the method of moments estimator (an

explanation as to why is given in the next section). However, as α grows, the relative e�ciency converges to one.

This means that for large α (asymptotically) there is very little di�erence in performance of the estimators.

Figure 3.25: A plot of asye�(θ̂MoM,n , θ̂MLE,n) for the Gamma distribution.

In the following two sections we explain why the MLE (under uncertain regularity conditions) performs so
well.
Example 3.6 (The method of moments estimator and MLE for the uniform distribution parameter).

HW Question: Compare di�erent method of moment estimators of exponential distribution.

3.8.2 The Cramer-Rao Bound

As we mentioned in the previous section, di�erent estimators may have di�erent mean squared errors. Any
one family of distributions may have an in�nite number of di�erent estimator to select. How, do we know
if we have the best estimator or if it can be improved. If there existed a lower bound for mean squared error,
we can use this as a bench mark to compare the estimator with. If the variance of our estimator attains the
lower bound or it is only slightly higher than it, then there is no need to search for a better estimator.

We now state a classical result where such a lower bound is obtained. This result only applies to the class
of estimators which are unbiased, nevertheless it is extremely powerful and useful. It is interesting to note
that was independently derived by C.R. Rao when he was only 24 years old and Harold Cramer.
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Theorem 3.4

Suppose {Xi }
n
i=1 are iid random variables with density f (x ;θ ). Let T (X1, . . . ,Xn) be an unbiased

estimator of θ i.e. E[T (X1, . . . ,Xn)] = θ . Then under certain regularity conditions on the density we
have

var[T (X1, . . . ,Xn)] ≥
1

nI (θ )
,

where I (θ ) denotes the Fisher information matrix corresponding X .

This result gives a lower bound on how small the variance of an unbiased estimator can actually be.
Interestingly, we previously showed that asymptotic variance of the MLE is (nI (θ ))−1. This means that for
�nite samples the MLE may not be best estimator of θ , but at least asymptotically (this means for large
samples), using the MLE will usually yield an estimator that is close to the best. This observation justi�es
the frequent use of the MLE in estimation.

3.9 Su�iciency

Suppose you are an astronaut/cosmonaut exploring Pluto (the unfortunate x-planet). You are collecting
rock samples and want to transmit their weights to earth. However, it takes several minutes to transmit
one piece of information (the weight of one rock) and you have 1000 rocks. It would take several days to
transmit all the information about the rocks to earth. The people on earth are getting quite impatient and
want the information as fast as possible. What do you do? Is it really necessary to give the people on earth
the exact data (data speci�c information). May be it is su�cient to produce a synthetic data (based on the
information you send then), which reproduces the main features in the true data as closely as possible. If
such information were su�cient, we should transmit the maximum information about the distribution of
the data.

We now make this precise, by de�ning the notion of a su�cient statistic.
De�nition 3.3 (Su�ciency). Suppose the joint distribution of X = (X1, . . . ,Xn) depends on the unknown

parameter θ . LetT (X ) be a function of the data X . ThenT (X ) is called a su�cient statistic for the parameter θ ,

if the conditional distribution of X given T (X ) does not depend on the parameter θ . Formally we write this as

F (X |T (X )) = д(X ).

In other words, the conditional distribution of F conditioned on the su�cient statistic T (X ) does not depend on

the parameter θ . The distribution function д(X ) does not depend on θ .

126



3 Parameter Estimation
The above above de�nition tells us the following. Suppose the sample mean X̄n is a su�cient statistic
for the population mean µ (for some distribution). If we observe the the sample mean X̄n = 3. Then the
conditional distribution of X1, . . . ,Xn conditioned on n−1 ∑n

i=1 Xi = 3 does not depend on the population
mean µ. Returning to our the example of you collecting rocks samples from Pluto. If it is known that the
distribution of the weight of rocks comes form a known parametric family, with unknown parameter θ ,
and T (X ) is a su�cient statistic for θ . Rather than transmitting the weights of 1000 rocks to earth you can
simply evaluate and send t = T (X ) to earth (which only takes a few minutes). And the people back on earth
can produce a synthetic data set by drawing samples from numbers from the conditional density

f (X1 = x1, . . . ,Xn = xn |T (X ) = t),

which is known (since the parametric density is known and the above conditional density does not depend
on unknown parameters). This procedure does not give the entire data set, but gives a reconstruction of
the data set based on some vital information about it.

The above is a rather arti�cal example. But a su�cient statistic contains all the important ingredi-
ents/information about the unknown parameter. And “most” good estimators will be a function of the
su�cient statistic. We show in Section 3.9.1, that a su�cient statistic can be used to improve an estimator
(so it is closely related to estimation).

But we start by giving an example of a su�cient statistic and then state necessary and su�cient conditions
for su�ciency. This leads to a simple method for obtaining a su�cient statistic from a distribution and data.

Example 3.7 (Bernoulli random variables). Suppose {Xi }
n
i=1 are iid Bernoulli random variables where

P(Xi = 0) = 1 − π and P(Xi = 1) = π . We now show that Tn(X ) =
∑n

i=1 Xi is a su�cient statistic for π .

Note that the joint distribution of X1, . . . ,Xn is

P (X1 = x1, . . . ,Xn = xn) =
n∏
i=1
(1 − π )1−xiπxi ,

which clearly depends on π . We will show that P(X1 = x1,X2 = x2, . . . ,Xn = xn |Tn(X ) = t) does not depend

on π . There are two ways this can be shown.

We �rst use the brute force method. Using the classical P(A|B) = P(A ∩ B)/P(B) we have

P(X1 = x1,X2 = x2, . . . ,Xn = xn |Tn(X ) = t) =
P(X1 = x1,X2 = x2, . . . ,Xn = xn ,Tn(X ) = t)

P(Tn(X ) = t)
.

To evaluate the joint probability P(X1 = x1,X2 = x2, . . . ,Xn = xn ,Tn(X ) = t) we �rst consider a some simple

example n = 2 and Tn(X ) = 1, then

P(X1 = 1,X2 = 1,Tn(X ) = 1) = 0 but P(X1 = 1,X2 = 0,Tn(X ) = 1) = P(X1 = 1,X2 = 0) = π (1 − π ).
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Using the above, in general we observe that

P(X1 = x1,X2 = x2, . . . ,Xn = xn ,Tn(X ) = t) =

{
π t (1 − π )n−t

∑n
i=1 xi = t

0
∑n

i=1 xi , t

This deals with the numerator. Next, we consider the denominator: since Tn =
∑n

i=1 Xi ∼ Bin(n,p), then

P(Tn = t) =
(n
t

)
π t (1−π )n−t . Putting the numerator and denominator together gives the conditional probability

P(X1 = x1,X2 = x2, . . . ,Xn = xn |Tn(X ) = t) =


π t (1−π )n−t

(nt )π
t (1−π )n−t

∑n
i=1 xi = t

0
(nt )π

t (1−π )n−t
∑n

i=1 xi , t

=


1
(nt )

∑n
i=1 xi = t

0
∑n

i=1 xi , t

In other words, if
∑n

i=1 xi = t then

P(X1 = x1,X2 = x2, . . . ,Xn = xn |Tn(X ) = t) =
1(n
t

) .
A simpler method would be to use basic combinatorical arguments.

To summarize, what we observe is that if the total number of successes is known, than P(X1 = x1,X2 =

x2, . . . ,Xn = xn |Tn(X ) = t) does not depend on the underlying parameter π . Thus Tn(X ) =
∑n

i=1 Xi is a

su�cient statistic for π .

In general it is di�cult to “come up” with su�cient statistics. The following result gives necessary and
su�cient conditions for a su�cient statistic.

Theorem 3.5

A necessary and su�cient condition forT (X ) to be a su�cient statistic for θ is that the joint probability
function of X (either density or probability mass function) can be factorised as follows

fX (x1, . . . ,xn ;θ ) = h(x1, . . . ,xn)д [T (x1, . . . ,xn);θ ] .

Remark: The important aspect of this result, is that the function h(·) does not depend on θ . All the
information on the function θ is contained in the function д(·;θ ).

It is often (but not always) easier to consider the log of the joint probability function. By the factorisation
theorem the log probability is

log fX (x1, . . . ,xn ;θ ) = logh(x1, . . . ,xn) + logд [T (x1, . . . ,xn);θ ] .
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Example: The exponential distribution

Suppose {Xi } are iid random variables with exponential density f (x ; λ) = λ exp(−λx). Then the log of the
joint density is

log fX (x1, . . . ,xn ; λ) =
n∑
i=1

log f (x ; λ) = n log λ − λ
n∑
i=1

xi︸︷︷︸
=T (x1, ...,xn )

= logд (T (X1, . . . ,Xn), λ) .

All the data is summarized in T (x) =
∑n

i=1 xi . Thus by the factorisation theorem T (x) is a su�cient statistic
for λ.

Example: The normal distribution

We use the log-expansion given in Example 2.3. The log of the normal density is

log fX (x1, . . . ,xn ; λ) =
n∑
i=1

log f (x ; λ) = µ

σ 2

n∑
i=1

xi −
1

2σ 2

n∑
i=1

x2
i +

nµ2/2
σ 2 +

n

2 log(2π ).

Again we see that the data is “clustered together” in two terms
∑n

i=1 xi and
∑n

i=1 x
2
i . Thus we observe that

T1(x) =
∑n

i=1 xi and T2(x) =
∑n

i=1 x
2
i are together su�cient statistics for µ and σ 2.

Example: All distributions in the exponential family

The above two examples both come from the exponential family, with good reason. All distributions which
come from the exponential family can be summarized in a few su�cient statistics (that do not depend on
the sample size). To understand why, we recall from Section 2.3 that a family of distributions belong to the
exponential family if they can be written as

f (x ;θ ) = exp
[
K∑
j=1

sj (x)Tj (θ ) + b(θ ) + c(x)

]
x ∈ A,

where A does not depend on the parameter θ and θ = (θ1, . . . ,θK ). Thus if {Xi } are iid random variables
with distribution f (x ;θ ), then their joint density is

log fX (x1, . . . ,xn ; λ) =
n∑
i=1

[
K∑
j=1

sj (xi )Tj (θ ) + b(θ ) + c(xi )

]
=

K∑
j=1

n∑
i=1

sj (xi )Tj (θ ) + nb(θ )︸                            ︷︷                            ︸
д[T1(x ), ...,TK (x );θ ]

+

n∑
i=1

c(xi )︸   ︷︷   ︸
logh(x1, ...,xn )

.

Thus T1(x), . . . ,TK (x) are collectively su�cient statistics for θ . Observe that since T1(x), . . . ,TK (x) does
not depend on the sample size, we are able to summarize important aspects of the data in just K terms.
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Example: The uniform distribution (not in exponential family)

The uniform distribution is an example of a distribution that does not belong to the exponential family
but whose number of su�cient statistics does not depend on the sample size. We recall that if {Xi } are iid
random variables with uniform density, then their joint density (see Section 3.4.2) is

fX (x1, . . . ,xn ;θ ) = θ−n
n∏
i=1

I[0,θ ](xi ),

where I[0,θ ](x) is the indicator variable, which is one for x ∈ [0,θ ] and zero elsewhere. With some thought
we observe that this can be written as

fX (x1, . . . ,xn ;θ ) = θ−nI[0,θ ](max
i

xi ).

Thus T (x) = maxi xi is a su�cient statistic for θ .

Example: The Weibull distribution; su�icient statistic cannot be reduced

We now show that the su�cient statistics of the Weibull distribution cannot be reduced to just a few (which
do not depend on the sample size).

Suppose that {Xi } are iid random variables with the Weibull distribution;

f (x ; λ,k) =
(
k

λ

) (x
λ

)k−1
exp

(
−

[x
λ

]k )
x ≥ 0.

The log of the joint density is

log fX (x1, . . . ,xn ; λ,k) = − 1
λk

n∑
i=1

xki + (k − 1)
n∑
i=1

logxi − n(k − 1) log λ + n logk − n log λ.

Now suppose that k is assumed known. Then
∑n

i=1 x
k
i is a su�cient statistic for λ; since

log fX (x1, . . . ,xn ; λ,k) = − 1
λk

n∑
i=1

xki − n(k − 1) log λ − n log λ︸                                          ︷︷                                          ︸
д(T (x );λ)

+ (k − 1)
n∑
i=1

logxi︸               ︷︷               ︸
h(x )

.

However, no such su�cient statistic exists for k (except for the original data).

3.9.1 Application of su�iciency to estimation: Rao-Blackwellisation

Su�ciency has various applications in statistcis. But we conclude this section with a very elegant application
to estimation. The theorem below is called the Rao-Blackwell theorem.
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Theorem 3.6

Suppose that θ̂ = θ̂ (X ) is an estimator of θ based on the random variables X (and E[θ̂ 2] < ∞) and
T (X ) is a su�cient statistic for θ . De�ne the “new estimator” θ̃ = E[θ̂ (X )|T (X )].

Then

E
[
θ̃ − θ

]2
≤ E

[
θ̂ − θ

]2
.

PROOF. The proof is straightforward (but will not be tested). We �rst note that by iterated expectation we
have

E
(
θ̂
)
= E

(
E

[
θ̂ |T (X )

] )
= E

(
θ̃
)

Thus the bias of both θ̂ and θ̃ are the same. Next we focus on the variance. By using the well known
conditonal variance identity (see HW2) we have

var[θ̂ ] = var[E[θ̂ |T (X )]] + E
(
var[θ̂ |T (X )]

)
.

Since E
(
var[θ̂ |T (X )]

)
≥ 0, this immediately implies that

var[θ̂ ] ≥ var[E[θ̂ |T (X )]] = var[θ̃ ].

Thus giving the required result. �

The Rao-Blackwell theorem allows one to improve an estimator by conditioning on a su�cient statistic. It
also makes is understand that “good estimators” should be functions of the su�cient statistic. If you return
to the MLE, in particular the MLE of the exponential family, you will observe that the maximum likelihood
estimator is a function of the su�cient statistics (this will take some algebraic manipulation). This gives
credence to the claim that the MLE yield good estimators.

Under stronger conditions on the su�cient statistic, one can show that if an unbiased estimator is a function
of the su�cient statistic it cannot be improved (this result is beyond this class but is related to minimal
su�ciency and completeness). It has the smallest/minimal variance.
Remark. The MLE will be a function of the su�cient statistic. Under the additional condition of minimal

su�ciency and that the estimator is unbiased, then it will have the smallest variance that an estimator can

have.

3.10 What happens if we get the assumptions wrong

NEED TO DO.

131
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3.11 A historical perspective

Mention Jackknife (bias reduction) proposed by Maurice Quenouille. Discuss Blackwell one of the early
Afro-American statistician who made fundamental contributions to statistics.

Also discuss C.R.Rao.
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4 Hypothesis testings

4 Hypothesis testings

The aim of this chapter is to develop an understanding of a statistical test. In particular, why we use certain
types of tests. We start by reviewing some of the testing methods you have previously encountered.

4.1 A short review

Let us start with the simplest example you may have encountered. Suppose {Xi } are iid normal random
variables with mean µ (which is unknown) and variance σ 2, which for now is assumed known. Let
X̄n = n

−1 ∑n
i=1 Xi . From Section 2.1 we have

X̄n ∼ N

(
µ,
σ 2

n

)
.

Our aim is to use the results above to make a decision between two hypotheses, the null and the alternative.
We recall that the null and alternative are not treated as “equals”. A statistical test is a decision process,
where we either reject the null in favour of the alternative, or do not reject the null. As it is a decision
process, we can alway make a mistake. We recall that if we falsely reject the null, when the null is true, this
is called a type I error. If on the other hand, we do not reject the null when the alternative is true, this is
called a type II error. The emphasis is always on having full control of the null hypothesis and the type I
error. The classical example is a criminal trial where H0: innocent against HA: guilty. Usually our aim is to
ensure that the number of innocent people that are convicted of a crime is minimal and no more than a
certain percentage. Thus we are controlling the the type I error.

4.1.1 The simple hypothesis

A simple hypothesis is when the distribution under both the null and alternative are completely speci�ed.
Let us return to the iid normal example and test H0 : µ = µ0 vs HA : µ = µ1. The test is conducted at the
α%-level. This means the type I error is α%. In most situations a simple hypothesis is a highly unrealistic
situation. However, it does allow us to get a handle on what a statistical test can actually do. We will show
later that for simple hypothesis tests one can construct a test which is optimal (is best at detecting the
alternative); this is called the Neyman-Pearson Lemma. Once such a test can be constructed we can use it to
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compare it with testing procedures in the more realistic set up that the hypotheses is not simple. This will
allow us to decide if these testing procedures are as good as the optimal testing procedures. Interestingly,
there will be situations where they are.

To �x ideas, let us consider the example where H0 : µ = 1 against HA : µ = 4 (and σ 2 = 1 is assumed known)
and n = 1. The test is conducted at the 5% level. We reject the null if the sample mean X̄ ≥ 1 + 1.64 × σ√

n

(where in this case σ = 1 and n = 1). A plot of the two densities and the rejection region is given in Figure
4.1. The area to the right of the blue/red is the rejection region. And if the null hypothesisis true, there
is a 5% chance this can happen. We often formally write the above decision as follows. Let C denote the

Figure 4.1: H0 : N (1, 1) vs HA : N (4, 1) with n = 1. Area to the right of blue/red line and below blue curve
is 5% (under H0).

rejection region. Then given the data X we de�ne the variable

δ (X ) =

{
1 X ∈ C

0 C < C

If δ (X ) = 1 we reject the null, and:

(i) P(δ (X ) = 1|H0) is the Type I error.

(ii) P(δ (X ) = 1|HA) is the power of the test. The Type II error is

P(δ (X ) = 0|HA) = 1 − P(δ (X ) = 1|HA).

Returning to the example, suppose C = [2.64,∞), then

P
(
δ (X ) = 1|H0

)
= P (X ≥ 2.64|H0) = P

(
X − 1

1 ≥
2.64 − 1

1

)
= P(Z ≥ 1.64) = 0.05, (4.1)
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since Z ∼ N (0, 1).

But why use this rejection region?. We could easily �nd other regions where the P(X ∈ R |H0) = 5%.
For example, if we let R1 = (−∞,−0.64), then using the same calculation as above, we can show that
P(X ∈ R1 |H0) = 0.05. Why not use a rejection region which is the union of disjoint intervals.

There is a good reason to use C = [2.64,∞) It transpires that the region C = [2.64,∞) is the best region
to use, because it keeps the type I error at 5%, but maximises the probability (power) of detecting the
alternative HA : µ = 4. The power can easily be calculated for this rejection region C by calculating the
area below the red curve (to the right of the blue/red line)

P
(
δ (X ) = 1|HA

)
= P (X ≥ 2.64|HA) = P

(
X − 4

1 ≥
2.64 − 4

1

)
= P(Z ≥ −1.36) = 0.913.

In constrast, by the same argument, the rejection region R1(−∞,−0.64) would have led to a power close to
zero (P(X ∈ R1 |Ha) = P(X ≤ −0.64|HA) = P(Z ≤ −4.64) ≈ 0). Visually, it is clear from Figure 4.1 that C is
the rejection region which maximises the power since it is in the direction of the alternative. Interestingly
the actual value of θ1 plays no role in the test, only its direction with respect to θ0 (which determines the
location of the rejection region; either left or right of θ0).

To summarize:

• If we reduce the level α (the type I error), then the rejection interval gets pushed further to the right.
This reduces the power of test (the probability of detecting the alternative).

• If we increase the sample size, but keep the level at, say 5%, then the rejection region becomes

C =

[
1 + 1.64 × 1

√
n
,∞

)
.

And the power of the test is

P
(
δ (X ) = 1|HA

)
= P

(
X̄ ≥ 1 + 1.64n−1/2 |HA

)
= P

(
X̄ − 4
n−1/2 ≥

1 + 1.64n−1/2 − 4
n−1/2

)
= P(Z ≥ −3n1/2 + 1.64).

Clearly, the power grows with the sample size (but the type I error remains the same).

• For any alternative µ1 > µ0, the general rejection region is

C =

[
µ0 + zα ×

σ
√
n
,∞

)
.

• Again, you should ask yourself why use the critical region

C =

{
Xn ; X̄ ≥ µ0 + zα

σ
√
n

}
why not another region R ⊂ Rn where P(X ∈ R |H0) = α?
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Example 4.1 (General means). Let H0 : µ = µ0 vs HA : µ = µ1 (where µ1 > µ0). To test this hypothesis, we

observe the iid normal random variables {Xi }
n
i=1 with mean µ and variance σ 2. We use the z-test at the α

signi�cance level, our objective is to calculate the power of the test.

The rejection region is C = [µ0 + zασ/
√
n,∞). Thus the power of the test is

P
(
X̄ ≥ µ0 + zασ/

√
n |µ = µ1

)
= P

(√
n(X̄ − µ1)

σ
≥

√
n(µ0 + zασ/

√
n − µ1)

σ
|H0

)
= P

(
Z ≥

√
n(µ0 − µ1)

σ
+ zα |H0

)
.

The power should always be illustrated with a plot.

4.1.2 Composite hypothesis

The case of the sample hypothesis is the simplest setting for a hypothesis test. In most real life settings
it is not realistic to assume that the distribution is fully speci�ed by the the null and alternative. When
this is not the case, we are in composite hypothesis framework. Composite hypothesis can arise in several
di�erent ways. For example, the alternative hypothesis may not be completely speci�ed, examples include
HA : µ > µ0 (unlike previously where HA : µ = µ1) or HA : µ < µ0 or HA : µ , µ0. Alternatively, it could be
that neither the null or alternatively are completely speci�ed. For example, the hypothesis may concern the
mean µ, but the variance σ 2 is unknown. We consider some examples below.

One sided tests

Suppose we observe the iid normal random variables {Xi } with mean µ and variance σ 2. Once again the
variance is assumed known. We consider tests of the form H0 : µ = µ0 against HA : µ > µ0. Observe this is
a composite hypothesis in the alternative (as the distribution null hypothesis is completely speci�ed, it is
Xi ∼ N (µ0,σ

2)). Again the aim is to control the Type I error, but in such a way that the power is maximised.
Since the rejection region for the simple hypothesis does not depend on the alternative µ1 (on its direction
with respect to µ0), exactly the same rejection region described in the simple hypothesis test applies to the
one-sided test. Thus at the 5% level, the rejection region is

C =

[
µ0 + 1.64 × σ

√
n
,∞

)
.

And, in general, at α% level the rejection region

C =

[
µ0 + zα ×

σ
√
n
,∞

)
.

If tests is the form H0 : µ = µ0 against HA : µ < µ0, then at the 5% level the rejection region is

C =

[
µ0 − 1.64 × σ

√
n
,∞

)
.
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Two sided tests

How to perform the two-sided test where H0 : µ = µ0 vs HA : µ , µ0 is not so clear cut. The intervals
described above for one-sided tests do not apply to the two sided. For example, if we use the rejection region
[µ0 + 1.64 × σ√

n ,∞), but for the alternative µ < µ0, then the test has no power. The standard compromise is
to evenly “distribute” the rejection region on both sides of µ0. Such that the rejection region at the 5% level
is

C− ∪C+ where C− =
(
−∞, µ0 − 1.96 × σ

√
n
,∞

]
and C+ =

[
µ0 + 1.96 × σ

√
n
,∞

)
.

Further, at any α level the rejection region is

C− ∪C+ where C− =
(
−∞, µ0 − zα/2 ×

σ
√
n
,∞

]
and C+ =

[
µ0 + zα/2 ×

σ
√
n
,∞

)
.

A compositive null hypothesis (when the variance is unknown): The t-test

In the previous tests we have assumed the variance is known and thus the distribution under the null was
fully speci�ed. As we have shown in Section 2.4.3 this is usually not a realistic assumption. In this case we
replace σ 2 with its estimator. Suppose {Xi } are iid random variables with mean µ and variance σ 2. Our aim
is to test H0 : µ = µ0 vs HA : µ > µ0. Then the t-statistic is

Tn =
(X̄ − µ0)

sn/
√
n
=

√
n(X̄ − µ0)

sn
,

which measures the standardized distance between µ0 and X̄ . We know that under the null hypothesis that
Tn ∼ tn−1. Thus rejection region for the test (at the α signi�cance level) is

C =

[
µ0 + tn−1,α ×

sn
√
n
,∞

)
.

4.2 The likelihood ratio test

By the mid 1920s there was a whole bunch of di�erent tests for various di�erent hypothesis (the t-test,
independent sample t-test, the chi-square test for independence to name but a few). However, at that time
it still was not clear what exactly linked all these tests together and what test, if any, was better than
another. Then in a series of seminal papers Neyman and Pearson introduced the principle of likelihood1.
This method linked many of the tests already in use and introduced new testing methods. Further, in 1933,
Neyman and Pearson showed that the principle of likelihood (what is now called the likelihood ratio test)

1To understand the Neyman and Pearson thought process, here are their 1928 and 1933 papers, the latter gives the Neyman-Pearson
Lemma.
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in fact was the most e�cient (or powerful testing method). This is now referred to as the Neyman-Pearson
Lemma (and will be discussed below). We start with this section by introducing the likelihood ratio test
(in a subsequent section we show that a variant of this test includes the t-test and various other tests as a
special case).

We focus �rst on the case of a simple hypothesis. Suppose the random vector X = (x1, . . . ,xn) has either
the density f (x ;θ0) or f (x ;θ1) (it two distributions could also be f0 and f1, it does not matter) ). We do not
know which, but we place importance on the null hypothesis (i.e. we only reject the null if the evidence
points away from it) and pose the null and alternative as the simple hypothesis H0 : θ = θ0 vs HA : θ , θ1.
The Likelihood ratio test is based on the ratio

f (X ;θ1)

f (X ;θ 0)
=

Ln(θ1;X )
Ln(θ 0;X )

(note that without any loss of generality we can switch the ratio around f (x ;θ0)
f (x ;θ 1)

). Keep in mind the joint
density and the likelihood are the same. The rationale for considering this ratio is similiar to the likelihood
estimator; in general data tends to lie where the probability mass function is largest. Thus if we are choosing
between two density functions, we select the density which dominates the other for a given data set. We
return to the ratio

LR(X ) =
f (X ;θ1)

f (X ;θ 0)
=

Ln(θ1;X )
Ln(θ 0;X ) .

Treating f (x ;θ 0) and f (x ;θ 0) as probabilities if LR(x) > 1 then the probability of x under the alternative is
greater than under the null. Conversely, if LR(x) < 1 then the probability of x under the null is greater
than under the alternative. This would make a sensible method for deciding between the null and the
alternative. But in statistical test both distributions are not given the same weighting. The emphasis is
always on disproving the null. Thus to err on the cautious side, rather than using the threshold 1 for making
the decision we select a Kα that is larger than one. How large depends on the choice of the type I error.

More precisely, we reject the null hypothesis if LR(x) is su�ciently “large” (the situation that the null seems
implausible). We select a threshold Kα and the corresponding rejection region Cα where

Cα =

{
x ;

f(x ;θ1)

f(x ;θ0)
≥ Kα

}
=

{
x ;

Ln(θ1;x)
Ln(θ 0;x) ≥ Kα

}
and Kα is chosen such that P(X ∈ Cα |H0) = α . I.e. keeping in mind that LR(X ) is a random variable we
choose K such that

P
(
LR(X ) ≥ Kα

��H0
)
= α .

On �rst impression it is not clear how the likelihood ratio test is related to the z-test described above. Below
we show that they are in fact equivalent (the same).
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4.2.1 Toy Example

We start with a rather arti�cial example to understand what the likelihood ratio test is actually doing.
Suppose that X is a continuous random variable de�ned on [0, 1] with density f .

There are two potential candidates for the density
of X , f0(x) = 1 for x ∈ [0, 1] and zero elsewhere or
f1(x) = 2x for x ∈ [0, 1] and zero elsewhere. The plot
on the left gives both densities. Remember, the height
of the density indicates the likelihood of that x value
happening.
Observe that if x = 0.5 each density is equally likely.
For x close to zero, f0 is more likely, whereas for x
close to one f1 is more likely.

We use the likelihood ratio test to test H0 : f (x) = f0(x) versus HA : f (x) = f1(x). We use the sample size
n = 1 (very unrealistic in practice, but at least it presents us with the idea of the method). The likelihood
ratio is

LR(X ) =
2X
1 .

Now we need to isolate X to construct a rejection region for X under the null hypothesis being true;

Cα = {x ;LR(x) ≥ Kα }

where Kα is such that

P(X ∈ Cα |H0) = P (LR(X ) ≥ Kα |H0 : f = f0) = α .

We now evaluate Cα

P (LR(X ) ≥ Kα |H0 : f = f0) = P (2X ≥ Kα |H0 : f = f0) = P

(
X ≥

Kα
2 |H0 : f = f0

)
=

∫ 1

Kα /2
dx = 1 − Kα

2 = α .
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Thus Kα = 2(1 − α) and the rejection region is

Cα = {x ≥ 1 − α }.

Thus for x > 1 − α we reject the null. Observe for a very small α , this means that the rejection point is very
close to one.

Example Suppose α = 0.1. We observe x = 0.95, since 0.95 ∈ C0.1 = {x ≥ 1 − 0.1}, we reject the null. In
other words, given the data there is evidence at the 10% level that the alternative is true.

Power calculation We recall that the power is the ability of the test to reject the null, that is the probability
an observation lies in Cα when HA is true. For this example it is

P (LR(X ) ≥ Kα |HA : f = f1) = P (X ∈ CαKα |HA : f = f1)

=

∫ 1

Kα /2
2xdx = 1 − (1 − α)2 = α(2 − α).

Observe that since α ∈ (0, 1), then P (LR(X ) ≥ Kα |HA) = α(2 − α) > α .

For n > 1, calculation of the rejection region becomes more di�cult (but the power of the test increases
for a given α ). Below we consider more realistic examples, where calculation of the rejection region is
straightforward even for n > 1.

Keep in mind the basic recipe. Calculate the rejection region by isolating the random variables in the
likelihood ratio.

4.2.2 Example: The normal distribution

Below we will go through a series of (sometimes awful) algebraic manipulations. This is because often the
likelihood ratio is a complicated function of the X s. Thus �guring out that distribution of LR(X ) under the
null is not feasible. However, by its very construction the distribution of the random variable X is speci�ed
under the null. Therefore we will transform the likelihood ratio through algebraic manipulation to isolate
the X s (or sum of X s). Often this is done by taking the log of the likelihoods, but not always.

Now you may ask what allows us to do this. The reason is the rejection region. The rejection region consists
of the values of X where this ratio is bigger than a threshold. The probability of X lying in this set under
the null is α (say 5%). The algebraic manipulations do not change this set. It is like saying for what values of
x is x2 − 2 > 11, this is exactly the same as the set of x where x > 3 or x < −3. They are equivalent sets;
di�erent formulas, but the same set.
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Simple hypothesis

Let us suppose that {Xi } are iid normal random variables. We want to test H0 : µ = µ0 vs HA : µ , µ1 with
σ known.

The case n = 1 (when the likelihood and the marginal density are the same)

We consider the normal example considered in Section 4.1.1, with H0 : µ = 1 against HA : µ = 4 (and σ 2 = 1
is assumed known) and n = 1. Since log is a monotonic function, analysis of the ratio is equivalent to the
analysis of log f (x ;θ1)

f (x ;θ 0)
. In this example we have

LR(x) =
exp

(
−(x − 4)2/2

)
exp (−(x − 1)2/2) ,

isolating the x is di�cult. Thus we take logarithms (which does not change anything but simpli�es the
calculation of the rejection region)

logLR(x) = log f (x ; µ1 = 4)
f (x ; µ0 = 1) = −

1
2 (x − 4)2 + 1

2 (x − 1)2 = x(4 − 1) − 1
2 (4

2 − 12), (4.2)

a plot is given in Figure 4.2. Observe that the ratio logLR(x), monotonically grows the further to the right
x is from θ0 = 1 (this can be interpretated as stronger evidence against the null hypothesis). Our aim is to
�nd the region C where

P (X ∈ C |µ = 1) = P (LR(X ) ≥ K |µ = 1) = P (logLR(X ) ≥ logK |µ = 1)

= P

(
X (4 − 1) − 1

2 (4
2 − 12) ≥ logK |H0

)
= P

(
X ≥ 3−1 logK + 3−1 1

2 (4
2 − 12)|H0

)
= α .

Thus setting K̃ = 3−1 logK + 3−1 1
2 (4

2 − 12) and α = 5% we �nd that

P
(
X ≥ K̃ |µ = 1

)
= 0.05 ⇒ P

©«
X − 1

1︸︷︷︸
=Z

≥
K̃ − 1

1︸︷︷︸
=1.64

����µ = 1
ª®®®®¬
= 0.05.

Though in practice this is not necessary, if you really wanted to �nd the threshold K then solve

K̃ = 3−1 logK + 3−1 1
2 (4

2 − 12) = 1 + 1.64.

This gives

logK = 3 × (1 + 1.64) − 15/2 = −0.708 K = 0.49.
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Figure 4.2: H0 : N (1, 1) vs HA : N (4, 1) with n = 1 log. The left hand plot is of the two densities under the
null and alternative hypothesis. The red/blue line is the rejection region at the 5% level using
the z-test. The Right hand plot is equation logLR(x) in (4.2). For normal observations the LRT(x)
is linear. The red horizontal line corresponds the rejection value logK on the y-axis (it is not
zero). If logLR(x) is greater than this value we reject the null (at the 5% level). This is for all x
to the right of the vertical red line. Observe the log-likelihood ratio is monotonically increasing
with x .

logK = −0.708 corresponds to the red horizonal dotted line on the right hand plot in Figure 4.2 (though it
is not so clear). Thus we have the rejection region

C =

{
x ; f(x ; µ1 = 4)

f(x ; µ0 = 1) ≥ K

}
=

{
X − 1

1 ≥ 1.64
}
= {X ≥ 2.64} ,

where P(C |µ = 1)P(X ≥ 2.64|µ = 1) = 0.05. The interesting observation is that this rejection region is
the same as the one constructed using the z-test (see equation (4.1). Further, more for any alternative
HA : µ = µ1 (where µ1 > 1) we have that

logLR = log f (x ; µ1)

f (x ; µ0 = 1) = −
1
2 (x − 1)2 + 1

2 (x − µ1)
2 = x(µ1 − 1) − 1

2 (µ
2
1 − 12).

Thus we observe that logLR is a monotonic function in x , and following the same calculations as above if
we set α = 0.05 the rejection region is

C =

{
x ; f(x ; µ1)

f(x ; µ0 = 1) ≥ K = 0.49
}
= {x ≥ 1 + 1.64}

where P(C |µ = 1) = 0.05. Thus the rejection region is (a) the same as in the z-test (see equation (4.1)) and
(b) it is the same for any µ1 > 1 (we later learn that this means for the normal distribution, this test is
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uniformly most powerful for any alternative µ1 > 1). The above construction is for n = 1, but the argument
is easy to generalise to any n.

General sample size n. The likelihood is the joint density

Suppose x = (x1, . . . ,xn), it is straightforward to show that for n iid random variables we have

logLR(x) = log
f (x ; µ1)

f (x ; µ0 = 1) = Ln(µ1;x) − Ln(µ0 = 1;x)

= −
n

2 (x̄ − 1)2 + n

2 (x̄ − µ1)
2 = nx̄(µ1 − 1) − n

2 (µ
2
1 − 12).

Using the same argument as in the case n = 1, this corresponds to the rejection region

C =

{
x ;

f(x ; µ1)

f(x ; µ0 = 1) ≥ K

}
=

{
x ;

Ln(µ1;x)
Ln(µ0 = 1;x) ≥ K

}
= {x̄ ≥ 1 + 1.64n−1/2}

where P(C |µ = 1) = 0.05. We observe that the value of µ1 plays no role in the construction of this region.

Power Calculation The power of the test is identical to the power in the z-test (since both the LR-test and
the z-test are identical). As a reminder the Power is calculated as

P
(
X̄ ≥ 1 + 1.64n−1/2 |HA

)
= P

(
X̄ ≥ 1 + 1.64n−1/2 |X̄ ∼ N (µ1, 1/n)

)
= P

(
X̄ − µ1

n−1/2 ≥
1 − µ1 + 1.64n−1/2

n−1/2 |HA

)
= P

(
Z ≥

1 − µ1 + 1.64n−1/2

n−1/2

)
,

where Z ∼ N (0, 1).

Composite hypothesis (one-sided test): Normal distribution (known variance)

We observe that for the normal distribution the rejection region is the same for all µ1 > µ0 (it does not
depend on µ1).

Thus, suppose we observe n iid normal random variables with mean µ and variance σ 2. The hypothesis
H0 : µ = µ0 vs HA : µ > µ0 leads to the the rejection region

C =

{
x̄ ≥ µ0 + zα

σ

n1/2

}
where P(C |µ0) = P(X̄ ≥ µ0 + zα

σ
n1/2 |µ0) = α . Comparing C , with the rejection region in the z-test, we

observe that the likelihood ratio test and the z-test are equivalent for the one-sided tests (and the variance
is known) of iid normal random variables.
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Composite hypothesis (one-sided test): Normal distribution (unknown variance)

It can be shown that when the variance is unknown the log-likelihood ratio test and the t-test are equivalent
for the one-sided tests for iid normal random variables (see Cox and Hinkley (1974), Example 5.5, page 142).
This is not covered in the syllabus.

4.2.3 Example: The Binomial distribution

Simple hypothesis

We consider the LR test for the binomial distribution where X = Bin(m = 10,p) (where we simply observe
one X ∼ Bin(m = 10,p)). The hypothesis is H0 : p = p0 = 0.3 vs HA : p = p1 = 0.6. The log likelihood ratio
is

logLR(X ) = log
(
10
X

)
pX1 (1 − p1)

10−X − log
(
10
X

)
pX0 (1 − p0)

10−X

= X logp1 + (10 − X ) log(1 − p1) − X logp0 − (10 − X ) log(1 − p0)

= X

[
log

(
p1

1 − p1

)
− log

(
p0

1 − p0

)]
+ 10 (log(1 − p1) − log(1 − p0)) . (4.3)

The table for the probabilities at the logLR is given below:

Outcome 0 1 2 3 4 5 6 7 8 9 10
H0 : p = 0.3 0.0282 0.1211 0.2335 0.2668 0.2001 0.1029 0.0368 0.0090 0.0014 0.0001 0.0000
HA : p = 0.6 0.0001 0.0016 0.0106 0.0425 0.1115 0.2007 0.2508 0.2150 0.1209 0.0403 0.0060

logLR -5.5962 -4.3434 -3.0906 -1.8379 -0.5851 0.6677 1.9204 3.1732 4.4259 5.6787 6.9315
P(X ≥ k |p = 0.3) 1.0000 0.9718 0.8507 0.6172 0.3504 0.1503 0.0473 0.0106 0.0016 0.0001 0.0000
P(X ≥ k |p = 0.6) 1.0000 0.9999 0.9983 0.9877 0.9452 0.8338 0.6331 0.3823 0.1673 0.0464 0.0060

Remark (Comparing the log LR(x) of normal and binomial). The log LR(X ) for the binomial and normal

look very di�erent. But we observe that if p1 > p0 then the logLR(X ) of the binomial can be written as

logLR(X ) = αX + β,

where α is positive. Thus as X increases, logLR(X ) increases in X . Thus

P

(
f (X ,p = 0.6)
f (X ,p = 0.3) ≥ K |X ∼ Bin(10,p = 0.3)

)
= 0.05

= P

(
log f (X ,p = 0.6)

f (X ,p = 0.3) ≥ logK |X ∼ Bin(10,p = 0.3)
)

= P (αX + β ≥ logK |X ∼ Bin(10,p = 0.3))

= P

©«
X ≥

logK − β
α︸      ︷︷      ︸
K̃

��X ∼ Bin(10,p = 0.3)

ª®®®®®¬
= 0.05.
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If we set K̃ = 6, the we have

P

(
f (X ,p = 0.6)
f (X ,p = 0.3) ≥ K |X ∼ Bin(10,p = 0.3)

)
= 0.05

= P (X = 6) + P (X = 7) + . . . + P (X = 10) = 0.0473.

We write this formally below.

We observe that the logLR(X ) increases withX , which is what we would expect. A plot of both distributions
(under null and alternative) and logLR(X ) against X is given in Figure 4.3.

As x gets larger H0 : p = 0.3 becomes less likely and HA : p = 0.6 becomes more likely. The likelihood ratio
test rejects the null when the ratio exceeds the threshold K , where

P

(
f (X ,p = 0.6)
f (X ,p = 0.3) ≥ K |X ∼ Bin(10,p = 0.3)

)
= 0.05.

From the table we observe the probabilities are discrete, so �nding an x, where we have exactly 0.05 is
not possible. Eric Lehmann found ways to deal with this case. But instead we simply look for the nearest
approximation. Since LR(X ) increases with X , we just select the smallest X , where we get a probability
under the null less than 0.05. From the table above we observe that

P (X ≥ 6|X ∼ Bin(10,p = 0.3)) = 0.0473.

Thus we have the rejection region:

C =

{
x ; f (x ,p = 0.6)

f (x ,p = 0.3) ≥ exp(1.9204)
}
= {x ≥ 6}

where P(C |p = 0.3) = 0.0473.

Power Calculation, under alternative p = 0.6 The power calculation is the probabilityX lies in the rejection
region under the alternative

P (X ∈ C |p = 0.6) = P (X = {6, 7, . . . , 10}|p = 0.6) =
10∑
k=6

P(X = k |p = 0.6)

= 0.6331,

which can be read from the above table and is the sum of the red heights for the Binomial in Figure 4.3.

The composite hypothesis

To motivate where we are going in the case of composite hypothesis, we start by considering a di�erent
alternative hypothesis (but same null as in the previous example). We test H0 : p = p0 = 0.3 vs HA : p =
p1 = 0.8. The likelihood ratio table is given below.

145



4 Hypothesis testings

Figure 4.3: H0 : p = 0.3 vs HA : p = 0.6. Left hand side: Plot of both probability mass functions under
the null and the alternative hypothesis. Right hand side: Plot of logLR(x) against x given in
equation (4.3). Probability of a realisation x being on the right of the vertical blue line is under
5% under the null. Observe that the log-likelihood ratio logLR(x) is increasing with x .

Outcome 0 1 2 3 4 5 6 7 8 9 10
H0 : p = 0.3 0.0282 0.1211 0.2335 0.2668 0.2001 0.1029 0.0368 0.0090 0.0014 0.0001 0.0000
HA : p = 0.8 0.0000 0.0000 0.0001 0.0008 0.0055 0.0264 0.0881 0.2013 0.3020 0.2684 0.1074

logLR -12.5276 -10.2940 -8.0604 -5.8269 -3.5933 -1.3597 0.8739 3.1075 5.3411 7.5747 9.8083
P(X ≥ k |p = 0.3) 1.0000 0.9718 0.8507 0.6172 0.3504 0.1503 0.0473 0.0106 0.0016 0.0001 0.0000
P(X ≥ k |p = 0.8) 1.0000 1.0000 1.0000 0.9999 0.9991 0.9936 0.9672 0.8791 0.6778 0.3758 0.1074

Analogous to the alternative HA = 0.6, we observe logLR(x) grows with x (it is a monotonic function in x ).
For this reason the rejection region is the same as in the previous case where HA : p = 0.6. Returning to the
new alternative HA : p = 0.8 we have

C =

{
x ; f (x ,p = 0.8)

f (x ,p = 0.3) ≥ exp(0.8739)
}
= {S10 ≥ 6} (4.4)

where P(C |p = 0.3) = 0.0473.

Power Calculation, under alternative p = 0.8 The power calculation is the probabilityX lies in the rejection
region under the alternative

P (X ∈ C |p = 0.8) = P (X = {6, 7, . . . , 10}|p = 0.8) =
10∑
k=6

P(X = k |p = 0.8)

= 0.9672,

which can be read from the above table. Observe that the power for the test H0 : p = 0.3 vs HA : p = 0.8 is
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0.9672, which is quite a lot greater than the power for the test H0 : p = 0.3 vs HA : p = 0.6 (the power is
0.6331) derived in the previous section.

We deduce from these two examples and the general expression (4.3), that for any alternative p > 0.3 the
rejection region is the same C . Thus the rejection region of the likelihood ratio test corresponding to the
one-sided hypothesis H0 : p = 0.3 vs HA : p > 0.3 is the same C de�ned in (4.4)2.

Recall from elementary statistics, when testing H0 : p = p0 against HA : p > p0, to obtain the rejection
region one used the binomial distribution under the null (see the plot in Figure 4.4). This is exactly what
was done above. Thus the likelihood ratio is equivalent to the binomial one-sided test. In Section 4.3 we
show that there is no other test that will give better power at the same level. This gives a strong justi�cation
for using these testing methods.

Figure 4.4: The red region is the rejection region for H0 : p = 0.3 vs HA : p > 0.3.

Review of normal and binomial examples We observe that for both the binomial and normal distribution
the rejection region for the LRT with the composite the hypothesis is the same as that in for simple
hypothesis tests.
Remark (One sided tests “pointing” right and left). In all the above examples, the alternative was “pointing”

to the right of the null HA : µ > µ0 or HA : p > p0. More precisely, µ1 − µ0 > 0 (for the mean in the normal) or

p1 − p0 > 0 (for the probability in the Binomial). This immediately gave a rejection region which was on the

right hand tail of the distribution. In a homework, you will consider similar examples, but where the alternative

is such that HA : µ < µ0 or HA : p < p0 (i.e. µ1 − µ0 < 0 or p1 − p0 < 0). This will lead to a change in the

2Note that P(C |H0) = 0.0473, thus the test is not conducted at precisely the 5% level. The boundary of the rejection region is
between 5 and 6. To overcome the boundary issue Lehmann (1958) proposes using a random boundary of 5 and 6.
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direction of the rejection region. The rejection region will be on the left hand tail of the distribution.

You would have learnt this in introductory statistics classes. The reason these tests are used (and the obsession

as to whether the rejection region lies) is because they are log-likelihood ratio tests. We will show in Section 4.3

have maximum power and cannot be bettered.

4.2.4 Exponential family (with one parameter)

This section will not be tested. An interesting feature that binds the normal and the binomial simple
hypothesis test is that for any θ > θ0 (single parameter under any alternative greater than the null) the
likelihood ratio LR = f (x : θ )/f (x : θ0) is a monotonically non-decreasing function in x . This gives rise to
a rejection region which is one connected interval that does not depend on the alternative value θ (besides
its direction with respect to θ0). This result is does not hold true for all distributions. But it does hold for
the single parameter distributions in the exponential family (with a natural parameterisation). To see why,
suppose Xi are iid random variables, with density f (x ,θ ), which can be written as

f (x ;θ ) = exp [s(x)θ + b(θ ) + c(x)] x ∈ A,

⇒ log f (x ;θ ) = s(x)θ + b(θ ) + c(x),

where θ is a univariate parameter. Observe that both the normal distribution (with known variance) and
binomial distribution have this representation.

Suppose we test H0 : θ = θ0 vs HA : θ = θ1 (where θ1 > θ0), then the log-likelihood ratio is

logLR(x) = (θ1 − θ0)
n∑
i=1

s(xi ) + b(θ1) − b(θ0). (4.5)

Example 4.2. We demonstrate that the normal and binomial can be written as (4.5).

(i) Normal observations:

logLR(x) = log
f (x ; µ1)

f (x ; µ0)
=

n∑
i=1

[
−

1
2σ 2 (xi − µ1)

2 +
1

2σ 2 (xi − µ0)
2
]
=

∑n
i=1 xi
σ 2 (µ1 − µ0) −

1
2σ 2 (µ

2
1 − µ

2
0),

(ii) Binomial observations:

logLR(x) = log
p(x ,p1,m)

p(x ,p0,m)
=

n∑
i=1

xi

[
log

(
p0

1 − p0

)
− log

(
p1

1 − p1

)]
+ nm (log(1 − p0) − log(1 − p1)) .

Thus to determine the rejection region we use that

P(LR(x) ≥ K) = P

(
(θ1 − θ0)

n∑
i=1

s(xi ) + b(θ1) − b(θ0) ≥ K |H0

)
= P

(
(θ1 − θ0)

n∑
i=1

s(xi ) ≥ K̃ |H0

)
.
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This corresponds to a region C = {y;y =

∑n
i=1 s(xi ) ≥ k} where k is such that P(

∑n
i=1 s(Xi ) ≥ k |H0) = α .

Observe once again that this rejection region does not depend on θ1. Thus in general for the test H0 : θ = θ0

vs HA : θ > θ0 the rejection region is

C =

{
y;y =

n∑
i=1

s(xi ) ≥ k

}
P

(
n∑
i=1

s(Xi ) ≥ k |H0

)
= α .

4.2.5 Non-monotonic likelihood ratios

In the examples above, the likelihood ratio is monotonic in x , this gives rise to a rejection region which is
one continuous interval. This is not always the case. The purpose of this example is to show that for many
distributions the rejection region using the LR-test can be very di�cult to analytically calculate.

Example 1

Suppose the random variable X is a discrete random variables with X ∼ {0, 1, 2, 3, 4, 5} there are two
competing distributions for X :

k 0 1 2 3 4 5
P0 P0(X = 0) = 0.1 P0(X = 1) = 0.2 P0(X = 2) = 0.3 P0(X = 3) = 0.1 P0(X = 4) = 0.1 P0(X = 5) = 0.2
P1 P1(X = 0) = 0.3 P1(X = 1) = 0.1 P1(X = 2) = 0.1 P1(X = 3) = 0.2 P1(X = 4) = 0.1 P1(X = 5) = 0.2

Aim Using just one random variable test H0 : X ∼ P0 vs HA : X ∼ P1. We do the test at the 20% level using
the likelihood ratio test. The derivation is given below:

k 0 1 2 3 4 5
P0 P0(X = 0) = 0.1 P0(X = 1) = 0.2 P0(X = 2) = 0.3 P0(X = 3) = 0.1 P0(X = 4) = 0.1 P0(X = 5) = 0.2
P1 P1(X = 0) = 0.3 P1(X = 1) = 0.1 P1(X = 2) = 0.1 P1(X = 3) = 0.2 P1(X = 4) = 0.1 P1(X = 5) = 0.2
P1
P0

0.3
0.1 = 3 0.1

0.2 = 0.5 0.1
0.3 = 0.333 0.2

0.1 = 2 0.1
0.1 = 1 0.2

0.2 = 1
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Using the above we observe

P

(
P1(X )

P0(X )
≥ 0.33|H0

)
= 1

P

(
P1(X )

P0(X )
≥ 0.5|H0

)
= 1 − P(X = 2|H0) = 1 − 0.3 = 0.7

P

(
P1(X )

P0(X )
≥ 1|H0

)
= 1 − P(X = 2|H0) − P(X = 1|H0) = 1 − 0.3 − 0.2 = 0.5

P

(
P1(X )

P0(X )
≥ 2|H0

)
= P(X = 0|H0) + P(X = 3|H0) = 1 − 0.3 − 0.2 − 0.1 − 0.2 = 0.2

P

(
P1(X )

P0(X )
≥ 3|H0

)
= P(X = 3|H0) = 1 − 0.3 − 0.2 − 0.1 − 0.2 − 0.1 = 0.1

Using the above we can obtain the threshold, since

P

(
P1(X )

P0(X )
≥ 2|H0

)
= P(X = 2|H0) + P(X = 3|H0) = 0.2,

the rejection region is any X where P1(X )
P0(X )

≥ 2. We see this corresponds to the set R = {0, 3}. Thus if our
observed data x is in the set R = {0, 3} we reject the null at the 20% level.

The power of the test This is the probability X lies in R = {0, 3} if the true distribution is f1;

P(X ∈ {0, 3}|HA) = P(X = 0|HA) + P(X = 3|HA) = 0.3 + 0.2 = 0.5.

Example 2

We start with a very simple example, that gives rise to a very complicated rejection region under the LR-test.
Suppose that X is normally distributed (to keep things simple we stick with sample size n = 1). As the null
hypothesis is H0 : X ∼ N (µ0,σ

2
0 ) vs HA : X ∼ N (µ1,σ

2
1 ) (where µ0, µ1,σ

2
0 and σ 2

1 ) are all known numbers.
The di�erence between this example and the previous example is that we do not assume the variance is
the same under the null and the alternative. Our aim is to construct the rejection region (which is always
calculated under the null that X ∼ N (µ0,σ

2
0 )) and then to calculate the power (which is calculated under

the alternative).
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Calculating the rejection region for X at the α% level. The log-likelihood ratio

log f0(X )

f1(X )
= log

(2πσ 2
1 )
−1/2 exp(−(2σ 2

1 )
−1(X − µ1)

2)

(2πσ 2
0 )
−1/2 exp(−(2σ0)−2(X − µ0)2)

= −
1

2σ 2
1
(X − µ1)

2 +
1

2σ 2
0
(X − µ0)

2 −
1
2 logσ 2

0 +
1
2 logσ 2

1

=

(
1

2σ 2
0
−

1
2σ 2

1

)
X 2 − 2X

(
µ1

2σ 2
1
−

µ0

2σ 2
0

)
+

(
µ2

0
2σ 2

0
−

µ2
1

2σ 2
1

)
−

1
2 log

σ 2
0
σ 2

1

= q2(X , µ0, µ1,σ
2
0 ,σ

2
1 ) −

1
2 log

σ 2
0
σ 2

1
.

To simply notation we set q2(X ) = q2(X , µ0, µ1,σ
2
0 ,σ

2
1 ), but keep in mind that the coe�cients of this

quadratic polynomial depend on the parameters. Thus using the above to obtain the rejection region we
need to calculate

P

(
log f0(X )

f1(X )
≥ logK

����H0

)
= P

(
q2(X ) −

1
2 log

σ 2
0
σ 2

1
≥ logK

����H0

)
= P

(
q2(X , µ0, µ1,σ

2
0 ,σ

2
1 ) ≥ K̃

����H0

)
.

where K̃ = 1
2 log σ 2

0
σ 2

1
+ logK . The rejection region is di�cult to construct. But we give an illustration below

(where we assume that σ 2
0 ≤ σ 2

1 and µ0 < µ1). A plot of the normal distribution under the null and the
alternative is given, together with the quadratic polynomial.

The vertical dotted like corresponds to the threshold Kα . If q2(X ) ≥ Kα then we reject the null at the α
level. This corresponds to the purple checked area, which is the rejection region. The α% level is the purple
area below the green normal curve under the null. This example illustrates that with a small change of the
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null and alternative, the rejection region starts to depend on the alternative distribution and can become
highly complex.

Power Calculation The power of the test (not shown). Is the area of below under red curve in the checked
purple area.

Example 3

Here we consider an even more complicated example. Consider the following null and alternative

H0 : f0(x) = N (2.5, 1)

HA : f1(x) =
1
2 (N (1, 1) + N (4, 1))

A plot of both densities is given in Figure 4.5 (left hand plot). The log ratio

LR(x) =
f1(x)

f0(x)
=

0.5 exp
(
−2−1(x − 1)2

)
+ 0.5 exp

(
−2−1(x − 4)2

)
exp (−2−1(x − 2.5)2)

is given in the right plot of Figure 4.5. Recall we reject the null for su�ciently large values of LR, but this
happens over two disconnected regions. Observe that logLR(x) looks linear in x , though it is not. However,
it is symmetric about x = 2.5. Suppose we only observe one random variable X , which comes from either

Figure 4.5: Left: Blue density (null), red density (alternative). Right: the non-monotonic likelihood ratio
LR(x).

152



4 Hypothesis testings
f0 or f1. Even in this simple setting, calculation of the rejection region is not simple since

P (logLR(X ) ≥ logK |X ∼ f0)

= P

(
log

[
0.5 exp

(
−2−1(X − 1)2

)
+ 0.5 exp

(
−2−1(X − 4)2

) ]
−

1
2 (X − 2.5)2 ≥ logK |X ∼ N (2.5, 1)

)
.

Observe that unlike the normal and binomial distribution considered in the previous section it is di�cult to
isolate X on its own. Further, the critical region of X will depend on the null and the alternative (unlike the
binomial and normal). Since logLR(x) is symmetric about x = 2.5 the rejection region will be symmetric
about 2.5. But I suspect that an analytic expression for the rejection region cannot be evaluate.

Power Calculation The power calculation is the probability X lies in the rejection region under the alterna-
tive. But gosh this is di�cult to calculate!

4.3 The most powerful test: The Neyman-Pearson Lemma

In the examples above we have shown that the both the one-sided z-test, the one-sided binomial test are
examples of the Likelihood Ratio test. There are several other examples of tests which can be written within
the likelihood framework. Further, the generalized likelihood ratio (we describe this in Section 4.4, below)
includes an even wider array of tests. During the late 1920s and early 1930s when Neyman and Pearson
were developing the framework they realized that this could not be coincidence, that there must be a reason
that the likelihood framework was so powerful. This lead to the Neyman-Pearson lemma, which we state
below.

Before we state the result, we recall that every statistical test comes with a rejection region (they are
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synonyms), where the probability the data lies in that region, under the null hypothesis is the Type I error.
The Power of the test is the probability that the data lies in the rejection region under the alternative being
true. Given a data set X = (X1, . . . ,Xn) ∈ R

n (this can be {0, 1, . . . ,m}n in the case of n iid Binomial withm

trials). There are many (sometimes in�nite) ways of dividing Rn into a rejection region and non-rejection
region. The Neyman-Pearson Lemma shows that the LR-test gives the “best” region.

Theorem 4.1

Suppose H0 and HA are two simple hypotheses. Consider the test that rejects the null whenever the
likelihood ratio is greater than a threshold K , such that the probability this occurs under H0 is α . Then
any other test with signi�cant level α or under, has power less than or equal to the likelihood ratio
test.

The above result tells us that for two simple hypotheses, the most powerful test is the likelihood ratio test.
No other test can do a better job of detecting the alternative (under the constraint the signi�cance level is α
or less). Therefore, for normal data (with known variance) the z-test is the best, and for binomial data the
binomial test has the best power (for simple hypothesis).
Example 4.3. Let us consider the example X ∼ Bin(N = 25,p = 0.3). We test the hypothesis

H0 : p = 0.3 vs HA : p > 0.3.

The distribution under the null is given in the plot below.

The LR-test at the 5% level is the red region

C0.05 = {X = 12, 13, . . . , 25}.

Note that P(C0.05 |p = 0.3) = 0.044. Observe that for p = 0.6 the power of this test is

P(C0.05 |p = 0.6) = P(X ≥ 12|p = 0.6) =
25∑
j=12

P(X = j |p = 0.6) = 0.922.
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The power is 92.2% for this alternative. The Neyman-Pearson lemma states this rejection region (at the 5% level)

has the greatest power for any alternative p > 0.3. To see check if this case, consider a di�erent test with a

di�erent decision rule. Consider the rejection region A0.05 = {X = 4}. Now it is easily seen that

P(A0.05 |p = 0.3) = P(X = 4|p = 0.3) = 0.057,

which is relatively close to 5%. Suppose we rejected the null if X = 4, would this decision rule have much power

for the alternative p > 0.3? Let is calculate the power with the alternative p = 0.6. That is calculating the
chance of on observation being equal to 4 under the alternative p = 0.6:

P(A0.05 |p = 0.6) = P(X = 4|p = 0.6) =
(
25
4

)
0.64(1 − 0.6)25−4 = 0.00000721.

This means there is a 0.000721% of detecting the alternative under this decision rule. This is awful! This test

has barely any power. Clearly, this test is much worse than the LR-test!

The Neyman-Pearson lemma concerns simple hypothesis. But in some situations it can be extended to
composite hypothesis. We give a classical example below.

Example 4.4 (Normal distribution and one-parameter exponential family: One sided test). Recall that
for the normal one-sided tests considered in the previous sections. The construction of the rejection region is

completely speci�ed by the null hypothesis (sample size and signi�cance level) but it does not depend on the

value of the alternative. Thus for every simple alternative the same test has maximum power. Thus because the

test is the most powerful and is the same for every alternative, it is said to be uniformly most powerful.

Indeed for any one-sided test in the natural (one-parameter) exponential class, the Likelihood Ratio test is

uniformly most power (this result also holds for other distributions too) for the hypothesis H0 : θ = θ0 vs

HA : θ > θ0

But we show below, that by a simple change of the test, and uniformity may no longer hold.

Example 4.5 (Normal distribution: Two sided test (uniformity does not hold)). Suppose that we test

H0 : µ = µ0 vs HA : µ , µ0. Consider the alternative µ1 > µ0, then the test with the most power for this

alternative yields the rejection region

C =

{
x̄ ; x̄ ≥ µ0 + zα

σ

n1/2

}
at the α level. However, such a test has no power against the alternative µ < µ0. This means, if µ < µ0 the

chance that x̄ ∈ C is extremely small (less than α%!), this is what we mean by no power.

Indeed if µ < µ0 then the test with the best power has rejection region

C =

{
x̄ ; x̄ ≥ µ0 − zα

σ

n1/2

}
,
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which results in the same problem, such a test has no power for µ > µ0. Thus for the two sided test, there is no

single test which has the highest power for all the possible alternatives.

Note that the two-sided z-test does not give optimal power. Since the rejection regions on both side of the null

are narrower than the one-sided rejection region.

In summary, the Neyman-Pearson lemma and its extension to uniformly most power test, give credence to
the likelihood ratio test.

The proof of the Neyman-Pearson lemma is extremely simple, but it does not appeal to my intution as to
why it works. In the following subsection, I try to reason why the LRT is the most powerful test (this is not
part of the syllabus).

4.3.1 My heuristic understanding of the LRT and the Neyman Pearson Lemma

Consider the two simple hypothesis H0 : θ = θ0 and HA : θ = θ1. Our aim is to show that the LRT is the
most powerful test for this alternative. We recall that a test is a decision process where

δ (x) =

{
1 (Reject Null) x ∈ C

0 (Do not reject Null) x < C

We start with the conditions that are required. The region C should be such that

P
(
δ (X )|θ = θ0

)
=

∫
R
δ (x)f (x ;θ0)dx =

∫
C
f (x ;θ0)dx = α ,

where α is the type I error (typically 5%). But the region C should lead to the maximum power, that is P(C),
where

P
(
δ (X )|θ = θ1

)
=

∫
R
δ (x)f (x ;θ1)dx =

∫
C
f (x ;θ1)dx = P(C)

should be maximum. Our aim is to show that the LRT leads to the test with maximal power. In particular,
�nd the region C which maximises power under the constraint that P

(
δ (X )|θ = θ0

)
= α . To solve this

we use the method of Calculus of Variations (Lagrange multipliers). We want to �nd the region C which
maximises;

L(C, λ) =

∫
C
f (x ;θ1)dx − λ

(∫
C
f (x ;θ0)dx − α

)
.

The solution is found by di�erentiating the above wrt C and λ (di�erentiating wrt λ forces the constraint
f (x ;θ0)dx = α ). Di�erentiating over C is a little tricky (for my brain). So I start with the case n = 1 i.e.
x = x . In this case C reduces to a sequence {C`,1,C`,2} and we have

L(C, λ) =

∫
C
f (x ;θ1)dx − λ

(∫
C
f (x ;θ0)dx − α

)
=

∑̀∫ C`,2

C`,1

f (x ;θ1)dx − λ

(∑̀∫ C`,2

C`,1

f (x ;θ0)dx − α

)
.
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Di�erentiating wrt to C`,1,C`,2 and λ gives

∂

∂C`,2
L(C, λ) =

[
f (C`,2;θ1) − λ f (C`,2;θ0)

]
= 0

∂

∂C`,1
L(C, λ) = −

[
f (C`,1;θ1) − λ f (C`,1;θ0)

]
= 0

∂

∂λ
L(C, λ) =

∫
C
f (x ;θ0)dx − α = 0.

Solving the above, we observe that the boundary of the regions are de�ned by the points where

f (x ;θ1)

f (x ;θ0)
= λ.

And within each region [C`,1,C`,2], we have f (c ;θ1) − λ f (c ;θ0) ≥ 0. To satisfy condition (4.6), we choose λ
such that the set

C =

{
x ; f (x ;θ1)

f0(x ;θ0)
≥ λ

}
satis�es P(C |θ = θ0) = α . To summarize in the case n = 1, the log-likelihood ratio test is most optimal.

The proof is probably more illuminating for the case n ≥ 2. In this case the optimising equation is

L(C, λ) =

∫
C
f (x ;θ1)dx − λ

(∫
C
f (x ;θ0)dx − α

)
.

Note thatC is a region or multiple regions. Then, roughly speaking (using dodgy calculus), taking derivatives
along C gives

∂

∂C
L(C, λ) =

∫
∂C

[
f (x ;θ1)dx − λ f (x ;θ0)dx

]
= 0

∂

∂λ
L(C, λ) =

∫
C
f (x ;θ0)dx − α = 0.

Note that ∂C is the boundary of the region, and (4.6) gives conditions on the boundary. It shows that the
boundary should be de�ned by

f (x ;θ1)

f (x ;θ0)
= λ.

In other words, ∂C(x) de�nes the contour on Rn where the function д(x) = f (x ;θ1)
f (x ;θ0)

= λ. The derivative of
function f (x ;θ1)dx − λ f (x ;θ0) along ∂C(x) is zero (just like when we �nd parameters which maximise a
function). Inside this region f (x ;θ1)dx − λ f (x ;θ0) > 0. Thus we choose the λ such that the set

C =

{
x ;

f (x ;θ1)

f0(x ;θ0)
≥ λ

}
satis�es the condition P(C |θ = θ0) = α . Thus gives the most e�cient (powerful) test for the simple
hypothesis.
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4.4 Generalized Likelihood Ratio Test

The likelihood ratio test is remarkable in the sense that it is the test with the greatest power for simple
hyothesis. And in certain situations it also has greatest power for some composite hypothesis. However,
in most composite hypothesis test the likelihood ratio test cannot be evaluated (since the parameters are
unknown). In this section we discuss a generalisation of the likelihood ratio test, which may not have the
optimality properties of the likelihood ratio test but nevertheless performs relatively well. We recall that
the likelihood ratio test is based on evaluating the ratio or log ratio under the two hypothesis

f (x ;θ1)

f (x ;θ0)
or log f (x ;θ1) − log f (x ;θ0),

where f (x ,θ ) is the joint density of x . Alternatively (and equivalently) we can view the above as likelihoods
and log-likelihoods

Ln(θ1;X )
Ln(θ0;X ) or Ln(θ1) − Ln(θ0).

If this quantity is su�ciently large, the null is deemed implausible. However, the above can only be evaluated
for simple hypothesis (since the distribution under the null and alternative are fully speci�ed). Let us
consider two (possibly composite) hypothesis Ω0 and Ω1. For the generalized likelihood ratio test, one �nds
the parameter which maximises likelihood in both the parameter spaces and computes the subsequent
likelihood. Namely, the generalized likelihood is

Λ(x) =
supθ1∈Ω1 f (x ;θ1)

supθ0∈Ω0 f (x ;θ0)
=

supθ1∈Ω1 Ln(θ1)

supθ0∈Ω0 Ln(θ0)
.

Just as in the likelihood ratio test, we �nd the threshold K , such P
(
Λ(x) ≥ K |H0

)
= α . If Λ(x) ≥ K we

reject the null hypothesis at the α signi�cance level.

4.4.1 Example: Normal data (variance known), two-sided test

Suppose {Xi } are iid normal random variables with mean µ and variance σ 2 (we assume the variance σ 2 is
known). We test H0 : µ = µ0 vs HA : µ , µ0. To prove the result we use the transformation

Yn = EnXn =

©«
e1

e2
...

en

ª®®®®®®¬
Xn =

©«

√
nX̄

〈e2,Xn〉

...

〈en ,Xn〉

ª®®®®®®¬
.
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where {e j }nj=1 are orthonormal vectors and e1 = n

−1/2(1, 1, 1 . . . , 1). Which was exactly the same transfor-
mation used the derivation of the MLE for the normal distribution. By using (3.6) we have

Ln(µ;Xn) = −
n

2 logσ 2 −

∑n
i=1(Xi − µ)

2

2σ 2

= −
n

2 logσ 2 −
n(X̄n − µ)

2

2σ 2 −

∑n
i=2 Y

2
i

2σ 2 = Ln(µ;Yn).

Thus simplicity of calculation we use the (log)-likelihood of the transformed data given in equation (3.5)

Ln(µ;Y ) = −n2 log 2π − n

2 logσ 2 −
n

2σ 2 (X̄ − µ)
2 −

1
2σ 2

n∑
i=2

Y 2
i

Under the null hypothesis the (log)-likelihood is completely speci�ed:

Ln(µ0;Y ) = −n2 log 2π − n

2 logσ 2 −
n

2σ 2 (X̄ − µ0)
2 −

1
2σ 2

n∑
i=2

Y 2
i .

Whereas under the alternative we have

max
µ ∈R/{µ0 }

Ln(µ;Y ) = −
n

2 log 2π − n

2 logσ 2 −
n

2 (X̄ − X̄ )
2 −

1
2σ 2

n∑
i=2

Y 2
i

= −
n

2 log 2π − n

2 logσ 2 −
1

2σ 2

n∑
i=2

Y 2
i .

The log-likelihood ratio Thus the (log) likelihood ratio is

logΛ(x) = log
supθ1∈Ω1 f (x ;θ1)

supθ0∈Ω f (x ;θ0)
=

n

2σ 2 (X̄ − µ0)
2.

Multiplying by two gives

2 logΛ(X ) = n

(
X̄ − µ0
σ

)2
.

Under the null hypothesis

2 logΛ(X ) = n
(
X̄ − µ0
σ

)2
=

(
(X̄ − µ0)

σ/
√
n

)2
∼ χ 2

1 .

From the above, we observe that generalized log-likelihood ratio test, at the α-level is the K such that

P
(
logΛ(x) ≥ K |H0

)
= P

(
n

(
X̄ − µ0
σ

)2
≥ K |H0

)
= P(χ 2

1 ≥ K) = α . (4.6)

Thus we use the threshold K = χ 2
1 (α). Or equivalently we use that

P
(
logΛ(x) ≥ K |H0

)
= P

(
n

(
X̄ − µ0
σ

)2
≥ K |H0

)
= P

(
|X̄ − µ0 |

σ/
√
n
≥ K1/2 |Z ∼ N (0, 1)

)
= P(|Z | ≥ zα/2) = α .
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This corresponds to the usual regular region for the two-sided test (using the z-test);

C− ∪C+ where C− =
(
−∞, µ0 − 1.96 × σ

√
n
,∞

]
and C+ =

[
µ0 + 1.96 × σ

√
n
,∞

)
.

Thus the generalised likelihood ratio test and the two-sided z-test are equivalent (the same) testing proce-
dures.

In statistical software if a two-sided z-test is conducted always the p-value quoted is the smallest area times two.
The reason behind this is given in (4.6). The p-value is

P

©«
logΛ(X )︸    ︷︷    ︸

Random variable

≥ n

(
x̄ − µ0
σ

)2

︸        ︷︷        ︸
observed data

|H0

ª®®®®®¬
= P

(
χ 2

1 ≥ n

(
x̄ − µ0
σ

)2
)
= 2 × P

(
Z ≥

����√n(x̄ − µ0)

σ

����) .
From above we observe that the p-value is the two times the smallest area in the normal distribution.

4.4.2 Example: Normal data (variance unknown), two-sided test

We test H0 : µ = µ0 vs HA : µ , µ0 (but the variance is assumed unknown). We will show that the
generalised likelihood ratio test when the variance is unknown is equivalent to the two-sided t-test.

Suppose that {Xi } are iid normal random variables with mean µ and variance σ 2. Again for simplicity of
calculation we use the likelihood of the transformed data and (3.6)

log f (y; µ,σ 2) = −
n

2 logσ 2 −

∑n
i=1(xi − µ)

2

2σ 2

= −
n

2 logσ 2 −
n(x̄n − µ)

2

2σ 2 −

∑n
i=2y

2
i

2σ 2 = log f (x ; µ,σ 2)

By using that
∑n

i=2y
2
i = (n − 1)s2

n (recall Section 2.4.2) we have

log f (y; µ,σ 2) = −
n

2 log(σ 2) −
n

σ 2 (x̄ − µ)
2 −
(n − 1)
σ 2 s2

n︸     ︷︷     ︸
=σ −2 ∑n

i=2 y
2
i

.

Thus under the null hypothesis µ = µ0 the MLE of σ 2 is

σ̂ 2
0 =

1
n

n∑
i=1
(xi − µ0)

2 =
1
n

(
(n − 1)s2

n + n(x̄ − µ0)
2) ,

where s2
n = (n − 1)−1 ∑n

i=1(xi − x̄)
2. To see why the equivalence in (4.7) is true use linear algebra (you do

not have to). This results in the maximum log-likelihood (under null)

log f̂0(x ; µ0, σ̂
2
0 ) = −

n

2 log(σ̂ 2
0 ) −

n

2 .
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Under the alternative, the MLE of µ and σ 2 is

µ̂1 = x̄ σ̂ 2
1 =

1
n

n∑
i=1
(xi − x̄)

2 =
(n − 1)

n
s2
n .

This results in the maximum the log-likelihood (under the alternative)

log f̂1(x ; µ̂, σ̂ 2
1 ) = −

n

2 log(σ̂ 2
1 ) −

n

2

The log-likelihood ratio Thus the (log) likelihood ratio is

logΛ(x) = log f̂1(x ; µ̂, σ̂ 2
1 ) − log f̂0(x ; µ0, σ̂

2
0 ) = −

n

2 log
σ̂ 2

1
σ̂ 2

0
=
n

2 log
( 1
n ((n − 1)s2

n + n(x̄ − µ0)
2)

n−1
n s2

n

)
=

n

2 log
(
1 + (x̄ − µ0)

2)
n−1
n s2

n

)
=

n

2 log
(
1 + n(x̄ − µ0)

2)

(n − 1)s2
n

)
Thus we want to �nd the region where

P
(
logΛ(x) ≥ eK |H0

)
= P

(
log f̂1(X ; µ̂, σ̂ 2

1 ) − log f̂0(X ; µ0, σ̂
2
0 ) ≥ K |H0

)
= α .

This is equivalent to �nding a region where

P
(
logΛ(x) ≥ eK |H0

)
= P

(
log f̂1(X ; µ̂, σ̂ 2

1 ) − log f̂0(X ; µ0, σ̂
2
0 ) ≥ K |H0

)
= P

(
1 + n(X̄ − µ0)

2

(n − 1)s2
n
≥ e2K/n |H0

)
= P

(
n(X̄ − µ0)

2

s2
n

≥ (n − 1)(e2K/n − 1)|H0

)
= α .

Setting R = n−1
n (e

K − 1) we have

P
(
log f̂1(X ; µ̂, σ̂ 2

1 ) − log f̂0(X ; µ0, σ̂
2
0 ) ≥ K |H0

)

= P

©«
n(X̄ − µ0)

2

s2
n︸       ︷︷       ︸
=T 2

n

≥ K̃ |H0

ª®®®®®®¬
= α .

Thus we choose R such that

P
(
T 2
n ≥ K̃

)
= P

(
|Tn | ≥ K̃1/2

)
= α ,

noting thatT 2
n follows a F1,n−1 = t2

n−1-distribution (under the null). SinceTn = n1/2(X̄ −µ0)/sn , this is exactly
the two-sided t-test. Thus the generalized likelihood ratio test and the two-sided t-test are equivalent tests.
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In statistical software if a two-sided t-test is conducted always the p-value quoted is the smallest area times two.
This is because the p-value is

P

©«
logΛ(X )︸    ︷︷    ︸

Random variable

≥ n

(
x̄ − µ0
sn

)2

︸        ︷︷        ︸
observed data

|H0

ª®®®®®¬
= P

(
t2
n−1 ≥ n

(
x̄ − µ0
sn

)2
)
= 2 × P

(
tn−1 ≥

����√n(x̄ − µ0)

sn

����) .
From above we observe that the p-value is the two times the smallest area in the t-distribution.

4.4.3 Example: Binomial distribution

Suppose that {Xi }
n
i=1 are iid random variables which follow a Binomial distribution, i.e. Xi ∼ Bin(m,p).

Examples of such data could be that in each of n = 30 cities around the US,m = 20 people were sampled.
In each sample of 20, they were asked whether they liked orange juice, yes or no. Let Xi be the number
of people out of 20 in city i who liked orange juice. We assume that the preference of the orange juice is
homogenuous over the entire of the US. This means there is no city where the preference is more than
another city. Consequently we can treat {Xi } as iid random variables (which are Binomial random variables,
as long as the m = 20 is far smaller than the population size; we require this assumption because the
sampling is done without replacement; see HW1, Q1).

Suppose we test H0 : p = p0 vs HA : p , p0. We now construct the generalized log-likelihood ratio test for
this procedure. The log-likelihood is

Ln(p;X ) =
n∑
i=1

log
(
m

X

)
pXi (1 − p)m−Xi

=

n∑
i=1

[
log

(
m

X

)
+ Xi logp + (m − Xi ) log(1 − p)

]
.

Observe that Y =
∑n

i=1 Xi ∼ Bin(nm,p), so we could apply the same approach to Y , but for now we ignore
this (they are both equivalent). Under the null hypothesis the log-likelihood is

Ln(p0;X ) =
n∑
i=1

[
log

(
m

X

)
+ Xi logp0 + (m − Xi ) log(1 − p0)

]
.

Under the alternative hypothesis we need to deduce the maximum likelihood estimator of p and plug it
into the log-likelihood. The MLE (deduced by di�erentiating with respect to p) is

dLn(p;X )
dp

=
1
p

n∑
i=1

Xi −
1

(1 − p)
∑
i

(m − Xi ) = 0.
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Basic algebra gives

p̂ =
X̄

m
=

∑n
i=1 Xi

nm
.

Thus the maximum of the likelihood under the alternative is

Ln(p̂;X ) =
n∑
i=1

[
log

(
m

X

)
+ Xi log p̂ + (m − Xi ) log(1 − p̂)

]
.

The log-likelihood ratio Thus the (log) generalized likelihood ratio for the binomial is

logΛ(X ) =
n∑
i=1

[
Xi log p̂ + (m − Xi ) log(1 − p̂)

]
−

n∑
i=1
[Xi logp0 + (m − Xi ) log(1 − p0)] .

This can be rewritten as

logΛ(X ) =
n∑
i=1

[
Xi log p̂

p0
+ (m − Xi ) log (1 − p̂)1 − p0

]
= mn(1 − p̂) log

(
1 − p̂
1 − p0

)
+mnp̂ log p̂

p0
, (4.7)

which you may observe is the generalized likelihood ratio for the Binomial(nm,p)!

Note, that unlike the normal example considered above, it is unclear what the distribution of logΛ(X ) is
under the null hypothesis. This makes construction of the rejection region di�cult. An approximation of
the distribution of logΛ(X ) is given in the following section.

4.5 Asymptotic sampling properties of the generalized likelihood ratio

test under the null hypothesis

The two examples we considered above concern the normal distribution. Thus the exact distribution of the
generalized likelihood ratio test under the null hypothesis can be derived. But for the binomial example,
the exact distribution of Λ(x) under the null is not simple to derive. This makes obtaining the rejection
regions for “determining” when Λ(x) is too large impossible. For general distributions obtaining the �nite
sample distribution of the test statisic is not possible (though bootstrap methods do exist for obtaining
approximations). Instead we resort to asymptotic sampling properties. This means �nding the approximate
distribution of Λ(x). This approximation is close/good when the sample size is large, but may not be so
good when the sample size is small.
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To simplify the discussion we consider the simplest case that the null hypothesis, θ = θ0 is simple (the
�nite sampling distribution is completely described by the null hypothesis), but the alternative hypothesis
is composite, θ ∈ Ω. Further, the null hypothesis is nested in the sense that θ0 ∈ Ω. Note that this seems
di�erent to the previous cases where H0 : θ = θ0 and HA : θ , θ0 (hence the two hypothesis are disjoint),
but they are almost the same since if we complete the set (−∞,θ0) ∩ (θ0,∞) we obtain R, which contains θ0.
We consider the null and alternative H0 : θ = θ0 vs HA : θ ∈ Θ and generalized likelihood ratio test

Λ(X ) =
maxθ ∈Ω f (x ;θ )

f (x ,θ0)
=

Ln(θ̂n)

Ln(θ0)

and logΛ(X ) = Ln(θ̂n) − Ln(θ0).

where θ̂n = arg maxθ ∈Ω Ln(θ ) (see Section 3.4). If it can be shown that the the maximum likelihood estimator
(see Section 3.5) is asymptotic normal such that

√
n

(
θ̂n − θ

)
D
→ N (0, [I (θ )]−1), (4.8)

where I (θ ) is the Fisher information matrix of the univariate density f (x ,θ ). If this holds, we obtain the
following result.

Theorem 4.2

Under certain “regularity” conditions we can show that under the null hypothesis (θ = θ0) we have

2 logΛ(X ) D→ χ 2
d , as n →∞, (4.9)

where d is the dimension of the parameter vector θ .

This and more general versions of the result is often referred to as Wilks’ theorem. A heuristic proof of the
result is by making a second order Taylor expansion of log f (x ,θ ) about log f (x ,θ0) (which is beyond the
syllabus).

Remark. This result is quite remarkable. It says that that under the null hypothesis, the asymptotic distribution

of 2Λ(x) D→ χ 2
d does not depend in any way on the distribution under the null. It does not even include parameters

which are unknown! Contrast this with the distribution of the MLE (4.8), whose variance is the Fisher information

matrix (and depends on parameters we do not know).

Example 4.6 (Comparing the distribution of the Generalized LR-test for the normal data with Theorem
4.2). Below we discuss how the exact distributions obtain in Section 4.4.1 and 4.4.2 relate to the asymptotic

distribution in Theorem 4.2.

(i) Section 4.4.1: Normal data, with σ 2 known
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We showed that

2 logΛ(x) =
(√

n(X̄ − µ0)

σ

)2
.

Under the null hypothesis 2 log∆(x) ∼ χ 2
1 . This exactly matches the asymptotic distribution result in

Theorem 4.2 (no large sample size required!).

(ii) Section 4.4.2: Normal data, with σ 2 unknown

We showed that

2 logΛ(X ) = n log
(
1 + n(x̄ − µ0)

2

(n − 1)s2
n

)
Now it is not immediately clear how this links to the chi. But we can do some approximations. You may

recall from your Calc I class, if x is “small”, then log(1 + x) ≈ x . Applying this approximation to the

above3 we have

2 logΛ(X ) ≈ n

[
n(x̄ − µ0)

2)

(n − 1)s2
n

]
.

Note that n/(n − 1) ≈ 1 for large n. Using this gives

2 logΛ(X ) ≈
[
n(x̄ − µ0)

2)

s2
n

]
=

[√
n(x̄ − µ0))

sn

]2
,

which for large n is close to a χ 2
1 -distribution (since for large n, sn ≈ σ ). As stated by Theorem 4.2.

Remark (Power). • Unlike the likelihood ratio test. The generalized likelihood ratio test will usually not

have optimal power for any given alternative.

For example, we know that for normal data with known variance that the one-sided z-test test has optimal

power. However, using the generalized t-test for the two-sided hypothesis does not have optimal power

(since the one-sided test does!). However, the generalized likelihood ratio test does have good power, which

we discuss below.

• We observe that both the two-sided t and z-test have statistical power (the ability to detect the alternative,

with a high probability, when it is true). The same is true for the general generalized LR-test using the

chi-square distribution approximation. It can be shown that if the alternative is true, then logΛ(x) tends
to be very large (especially for large sample sizes). The reason for this goes back to Theorem 3.2, but the

exact details are beyond this class.

3 n(x̄−µ0)2)
(n−1)s2

n
will be quite “small” under the null, since n(x̄−µ0)2)

s2
n

has a t2
n−1 = F1,n−1-distribution.
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A heuristic proof of Wilks’ Theorem

We observe that 2 logΛ(X ) asymptotically follows a χ 2-distribution. Which may seem a little surprising, as
up to now most of the results we have considered are asymptotically normal. But we recall that

logΛ(X ) = log f (X ; θ̂n) − log f (X ,θ0)

= Ln(θ̂n) − Ln(θ0),

where Ln(·) is the log-likelihood. Since θ̂n is the MLE, it maximises the likelihood. Thus for any other θ ∈ Θ
we have Ln(θ̂n) ≥ Ln(θ ). Since logΛ(x) is non-negative, the normal distribution is an unlikely candidate.
Next, we recall that Wilks’ Theorem states that 2 logΛ(X ) is asymptotic a chi-square. This suggests that
2 logΛ(X ) can be written as the square of standard normal random variables. Why this should be true, is
not immediately obvious. However, the clue is by making a Taylor expansion (mean value theorem) of θ0

about θ̂ . For simplicity we restrict ourselves to the case that θ is one-dimension (such as the exponential
and Poisson distribution given in HW10). Then by making a second order Taylor expansion of Ln(θ0)

about Ln(θ̂n) we have

Ln(θ0) ≈ Ln(θ̂n) + (θ0 − θ̂n)
dLn(θ )

dθ
cθ=θ̂n

+
1
2 (θ0 − θ̂n)

2d
2Ln(θ )

dθ 2 cθ=θ̂n
.

Recall how the likelihood is maximised, we di�erentiate Ln(θ ) wrt θ and use the θ which solves dLn (θ )
dθ = 0.

This immediately implies that dLn (θ )
dθ cθ=θ̂n

= 0. This insight reduces the above expansion to

Ln(θ0) ≈ Ln(θ̂n) +
1
2 (θ0 − θ̂n)

2d
2Ln(θ )

dθ 2 cθ=θ̂n
.

Rearranging the above “equation” gives

2
[
Ln(θ̂n) − Ln(θ0)

]
≈ −(θ̂n − θ0)

2d
2Ln(θ )

dθ 2 cθ=θ̂n

⇒ 2 logΛ(X ) ≈ −(θ̂n − θ0)
2d

2Ln(θ )

dθ 2 cθ=θ̂n
. (4.10)

The beauty of the above approximation is that 2 logΛ(X ) is the square of θ̂n − θ0, which we know from
Theorem 3.2 is asymptotically normal. Which starts to give us some clues as to where the chi-square comes
from. Next let us look at the second derivative. From the de�nition of the log-likelihood we have

d2Ln(θ )

dθ 2 cθ=θ̂n
=

n∑
i=1

d2 log f (Xi ,θ )

dθ 2 cθ=θ̂n
≈

n∑
i=1

d2 log f (Xi ,θ )

dθ 2 cθ=θ0 .

The above replacement is because for large n, the MLE θ̂n is “close” to the truth θ0. Dividing by n to turn
the second derivative of the log-likelihood into an average gives

1
n

d2Ln(θ )

dθ 2 cθ=θ̂n
≈

1
n

n∑
i=1

d2 log f (Xi ,θ )

dθ 2 cθ=θ0 ≈ E
(
d2 log f (Xi ,θ )

dθ 2 cθ=θ0

)
= −nI (θ0).
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Thus for “large” n we have

d2Ln(θ )

dθ 2 cθ=θ0 ≈ −nI (θ0) (4.11)

Substituting (4.11) into (4.10) gives

2 logΛ(X ) ≈ (θ̂n − θ0)
2nI (θ0) =

(√
nI (θ )(θ̂n − θ0)

)2
.

But from Theorem 3.2 we know that for large n that

√
n

(
θ̂n − θ

)
D
→ N (0, [I (θ )]−1),

This implies that √
nI (θ )

(
θ̂n − θ

)
D
→ N (0, 1).

Therefore

2 logΛ(X ) =
(√

nI (θ )(θ̂n − θ0)
)2
= Z 2 ∼ χ 2

1 .

Thus heuristically proving for the case d = 1.

4.5.1 Example: Binomial distribution

Recall the Binomial example, where {Xi }
n
i=1 are iid random variables which follow a Binomial distribution,

i.e. Xi ∼ Bin(m,p). Suppose we test H0 : p = p0 vs HA : p , p0. From equation (4.7) we observe that the
log-likelihood ratio is

logΛ(X ) = mn(1 − p̂) log
(

1 − p̂
1 − p0

)
+mnp̂ log p̂

p0
.

Observe that the number of variables being estimated is d = 1. Thus by using the (4.9) with d = 1, under
the null hypothesis we have

2 logΛ(X ) = 2mn(1 − p̂) log
(

1 − p̂
1 − p0

)
+ 2mnp̂ log p̂

p0
.

In other words, for a su�ciently large n (remember m is kept �xed it is n that grows) the distribution of
2Λ(X ) follows a chi-square distribution under the null. From the chi-tables we know that

P
(
χ 2

1 ≥ 3.84
)
= 0.05.

Thus if we do a test at the 5% level, then the approximate rejection region is

C0.05 =
{
X ; 2 logΛ(X ) ≥ 3.84

}
.
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Example Suppose we want to test the hypothesis that the proportion of people who like orange juice is
H0 : p = 0.4 vs HA : p , 0.4.

A polling organisation asks m = 20 people (via telephone so we can keep social distancing) in each city,
and samples n = 30 cities. If they like orange juice yes or no. Let Xi be the number of people out of 20 who
like orange juice. The observed data is

x = (9, 13, 8, 11, 9, 11, 10, 9, 12, 11, 11, 9, 12, 11, 10, 10, 11, 12, 11, 10, 8, 8, 16, 13, 8, 12, 12, 9, 7, 11).

Under the null hypothesis p0 = 0.4 but under the alternative we use the MLE estimator which is

p̂ =
9 + 13 + . . . + 11

20 × 30 =
314

20 × 30 = 0.52.

Substituting this into ∆(x) gives

2 logΛ(x) = 2 × 20 × 30(1 − 0.52) log
(
1 − 0.52
1 − 0.4

)
+ 2 × 20 × 30 × 0.52 log 0.52

0.4 ≈ 35.

Since 35 >> 3.84 we reject the null at the 5% level (in fact at most reasonable levels!).

Sanity Check Recall that Y =
∑n

i=1 Xi ∼ Bin(nm,p). Therefore we could apply the normal approximation
of the binomial distribution (covered in an introductory statistics class) to p̂. Suppose we test H0 : p = −p0

against HA : p , p0, then the test statistic you would have used is

T =
(p̂ − p0)√

p(1 − p)/(mn)
.

Under the null, for a large n is T D
→ N (0, 1) or equivalently T 2 ∼ χ 2

1 . Given p̂ = 0.52 we have

T =
(0.52 − 0.4)√

0.6 × 0.4/(20 × 30)
= 6.

Thus T 2 = 36, which is very close to 2Λ(x) = 35. This is not a coincidence, it can be shown that 2Λ(x) ≈ T 2.

4.5.2 Example: The chi-square goodness of fit test

Suppose the null is H0 : π1 = π̃1, . . . ,πm = π̃m (where {π̃i } are some pre-set probabilities) and HA : the
probabilities are not the given probabilities. Hence we are testing restricted model (where we do not have
to estimate anything) against the full model where we estimate the probabilities using πi = Yi/n.

The log-likelihood ratio in this case is

W = 2
{

arg max
π
Ln(π ) − Ln(π̃ )

}
.
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4 Hypothesis testings

Under the null we know thatW = 2
{

arg maxπ Ln(π )−Ln(π̃ )
} P
→ χ 2

m−1 (because we have to estimate (m−1)
parameters). We now derive an expression forW and show that the Pearson-statistic is an approximation
of this.

1
2W =

m−1∑
i=1

Yi log
(Yi
n

)
+ Ym log Ym

n
−

m−1∑
i=1

Yi log π̃i − Ym log π̃m

=

m∑
i=1

Yi log
( Yi
nπ̃i

)
.

Recall that Yi is often called the observed Yi = Oi and nπ̃i the expected under the null Ei = nπ̃i . Then
W = 2

∑m
i=1Oi log

(Oi
Ei

) P
→ χ 2

m−1. By making a Taylor expansion of x log(xa−1) about x = a we have
x log(xa−1) ≈ a log(aa−1) + (x − a) + 1

2 (x − a)
2/a. We let O = x and E = a, then assuming the null is true

and Ei ≈ Oi we have

W = 2
m∑
i=1

Yi log
( Yi
nπ̃i

)
≈ 2

m∑
i=1

(
(Oi − Ei ) +

1
2
(Oi − Ei )

2

Ei

)
.

Now we note that
∑m

i=1 Ei =
∑m

i=1Oi = n hence the above reduces to

W ≈

m∑
i=1

(Oi − Ei )
2

Ei

D
→ χ 2

m−1.

We recall that the above is the Pearson test statistic. Hence this is one methods for deriving the Pearson
chi-squared test for goodness of �t.

Example: The independent two-sample t-test

See Chapter 5.

4.5.3 P-values

4.6 Confidence intervals and hypothesis tests

In this section we demonstrate the duality between certain hypothesis tests and con�dence intervals.
Previously, you probably saw something similar to this in an elementary statistics class.

We start with a motivating example. Suppose {Xi } are iid normal random variables with mean µ and
variance σ 2 (we assume the variance σ 2 is known). We test H0 : µ = µ0 vs HA : µ , µ0. We recall from
Section 4.4.1 the generalized (log) likelihood ratio is

logΛ(x) = log
supθ1∈Ω1 f (x ;θ1)

supθ0∈Ω f (x ;θ0)
=

n

2σ 2 (X̄ − µ0)
2.
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4 Hypothesis testings
If µ0 is the true mean, than 2 logΛ(x) ∼ χ 2

1 . Our objective is to show that the generalized likelihood ratio
test can be used to construct a con�dence interval for θ . To do so we emphasis the role of µ on the notation
logΛ(x) and let

2 logΛ(x ; µ) = n

(
X̄ − µ

σ

)2
.

We use as a (1 − α)100% con�dence interval (or set) for µ the region

Cα (x) =

{
µ; 2 logΛ(x ; µ) = n

(
x̄ − µ

σ

)2
< χ1(1 − α)2

}
.

We will show that this is a (1 − α)100% con�dence interval for the mean and gives rise to the con�dence
interval as we know it. It is immediately clear that

µ ∈ Cα (X ) if and only if n
(
X̄ − µ

σ

)2
< χ1(1 − α)2.

This implies that

P
(
µ ∈ Cα (X )|µ

)
= P

(
n

(
X̄ − µ

σ

)2
< χ 2

1−α |µ

)
= 1 − α .

Thus Cα (X ) is a (1 − α)100% con�dence interval for µ.

We now show that Cα (X ) is the same set as the classical con�dence interval for the mean µ. If(
(X̄ − µ)

σ/
√
n

)2
≤ χ 2

1 (1 − α)

(this corresponds to not rejecting the null), then equivalently

−

√
χ 2

1 (1 − α) ≤
(X̄ − µ)

σ/
√
n
≤

√
χ 2

1 (1 − α).

Multipling by σ/
√
n

−

√
χ 2

1 (1 − α)
σ
√
n
≤ (X̄ − µ) ≤

√
χ 2

1 (1 − α)
σ
√
n

or that µ lies in the interval [
X̄ −

√
χ 2

1 (1 − α)
σ
√
n
, X̄ +

√
χ 2

1 (1 − α)
σ
√
n

]
.

In other words, we do not reject the null at the α% level if and only if µ lies in the interval[
X̄ − zα/2

σ
√
n
, X̄ + zα/2

σ
√
n

]
,

which is exactly the (1 − α)% con�dence interval for the mean µ.
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Summary There is an equivalence between a statistical test and the con�dence interval. I.e. if(

(X̄ − µ0)

σ/
√
n

)2
≤ χ 2

1 (1 − α).

then µ0 lies in the interval [
X̄ − zα/2

σ
√
n
, X̄ + zα/2

σ
√
n

]
.

Equivalently if µ0 lies in the interval[
X̄ − zα/2

σ
√
n
, X̄ + zα/2

σ
√
n

]
, then

(
(X̄ − µ0)

σ/
√
n

)2
≤ χ 2

1 (1 − α)

and we do not reject the null.

This observation can be generalized to any test on a parameter.

Theorem 4.3

Converting a test into a con�dence interval.

We observe the random vector X . We test H0 : θ = θ0 against HA : θ , θ0. Suppose X ∈ Rα (θ0), then
we not reject the null at the α% level. Using this we de�ne the interval

Cα (X ) =
{
θ ;X ∈ Rα (θ )

}
.

Then Cα (X ) is a (1 − α)100% con�dence interval for θ .

Converting a con�dence interval into a test.

Suppose Cα (X ) is a (1 − α)100% con�dence interval for the θ . De�ne the interval

Rα (θ ) =
{
X ;θ ∈ Cα (X )

}
.

Then, if we test H0 : θ = θ0 against H0 : θ , θ0 the nonrejection region at the α% level is Rα (θ0).

Comparing the theorem with the motivating example above, we set

Rα (µ0) =

[
µ0 −

√
χ 2

1 (1 − α)
σ
√
n
, µ0 +

√
χ 2

1 (1 − α)
σ
√
n

]
and

Cα (X ) =

[
X̄ − zα/2

σ
√
n
, X̄ + zα/2

σ
√
n

]
.
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4.6.1 Example: The binomial distribution

The statement of Theorem 4.3 is a little confusing. But is easiest understood with an example. Let us return
to the binomial example in Section 4.5.1. Setm = 1 and let n be large (or visa-versa). If we test H0 : p = p0

vs HA : p , p0, then from (4.7) the log-likelihood ratio is

2 logΛ(X ;p0) = 2n(1 − p̂) log
(

1 − p̂
1 − p0

)
+ 2np̂ log p̂

p0
,

where p̂ = X/n. If the null holds, for su�ciently large m we have 2 logΛ(X ;p0) ≤ χ 2
1 (this follows from

Theorem 4.2). Therefore, we do not reject the null if

2 logΛ(X ;p0) < χ 2
1 (1 − α).

We use this result to construct an (1 − α)% con�dence interval for p. We use as the (1 − α)100% con�dence
interval p, all p such that

Cα (X ) =
{
p; 2 logΛ(X ;p) < χ 2

1 (1 − α)
}
=

{
p; 2n(1 − p̂) log

(
1 − p̂
1 − p

)
+ 2np̂ log p̂

p
< χ 2

1 (1 − α)
}
.

And the reason this is a (1 − α)100% con�dence interval is that for any given p

P
(
p ∈ Cα (X )|p

)
= P

(
2 logΛ(X ;p) < χ 2

1 (1 − α)|p
)
≈ 1 − α for large enough n.
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5 Comparing two populations

5.1 Comparing two independent samples

5.1.1 Example: Independent two sample data

It is conjectured that exposure to di�erent light colours may in�uence the strength egg shells of hens. A
team of animal science students decided to investigate this. Hens were randomly assigned to two di�erent
light treatments: red light or white light. The hens either spent 6 weeks exposed to only red light or 6
weeks only exposed to white light (both with dark inbetween). After 6 weeks the strength of the eggs for
each hen was measured (in terms of the Haugh index) and A snapshot of the data is summarized below,
note that each column corresponds to one hen.

Treatment
White Light 99.85 99.62 104.82 108.36 107.75 108.01
Red Light 102.12 108.37 99.05 98.58 99.52

We observe in the way that the experiment was designed that there is no dependence between the hens
in treatment groups and between the treatment groups. Thus we can assume all the observations are
independent. This is a big assumption and can determine the type of procedure that one uses. If this
assumption does not hold but procedures assuming independent was done, then the results of the test are
not valid. And can give rise to spurious conclusions.

Remark (How data is presented in a spreadsheet). In most spreadsheets the data won’t be presented as above.

Usually the data is presented as follows:

Observation X1 X2 Y1 Y2 X3 . . . Xn Ym

Treatment A A B B A . . . A B

One row (or column) contains the treatment an “individual” is given and another row (column) is the response

given the treatment. For example, the treatment could be white or red light and the observation is the strength

of the egg corresponding to that light treatment.

Our objective is to see if di�erent light treatments give rise to eggs with di�erent shell strengths. Of course,
one cannot compare individual eggs. So by di�erent, we mean in the sense of parameters within both
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5 Comparing two populations
populations. The most common parameter of comparison that one uses (but it is not the only one) is the
population means. We now state the model assumptions. But before we start with the modelling, we �rst
plot the data. Comparing the two shapes of the histograms is di�cult. They do not “look” alike, but this

Figure 5.1: Histogram of Haugh index of given di�erent light treatments. Left: Red Treatment (sample
mean 103.1). Right: White Treatment (sample mean 101.7) Sample sizes in both groups is 101.

could be due to sampling variation. It is di�cult to tell if they are normal (a QQplot would be useful).
However, we do observe di�erences in the sample means. The question we must ask ourselves is if this
di�erence is statistically signi�cant.

5.1.2 Modelling assumptions

We start with some formal de�nitions. We assume that {Xi }
n
i=1 and {Yj }mj=1 are independent random

variables (both between and within groups) where

Xi ∼ N (µ1,σ
2) and Yj ∼ N (µ2,σ

2).

Observe that we have made the assumption that the variance is the same for both sets of random variables.
In other words, the data is assumed to have come from a normal distribution. Often you may see Xi and Yj

written in the following equivalent way

Xi = µ1 + εi and Yj = µ2 + ϵj (5.1)

where {εi , ϵj } are independent, identically distributed normal random variables with mean zero and variance
σ 2. This equivalent representation separates the mean from the noise. It is very similar in �avour to the
representation of a linear regression model.

Based on the above model a hypothesis of interest is

H0 : µ1 − µ2 = 0 vs H0 : µ1 − µ2 , 0.
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5 Comparing two populations
This can easily be generalized to test

H0 : µ1 − µ2 = δ vs H0 : µ1 − µ2 , δ .

One way of testing this hypothesis is to estimate µ1 − µ2, by estimating it with X̄ − Ȳ . Thus we need to
obtain the distributional properties of X̄ − Ȳ . Since Xi ∼ N (µ1,σ

2) and Yj ∼ N (µ2,σ
2), by the assumption

of independence and Section 2.1 we have(
X̄

Ȳ

)
∼ N

((
µ1

µ2

)
,

(
σ 2/n 0

0 σ 2/m

))
.

Since X̄ and Ȳ are jointly normal, X̄ − Ȳ is normal too with

E
(
X̄ − Ȳ

)
= E(X̄ ) − E(Ȳ ) = µ1 − µ2

and

var
(
X̄ − Ȳ

)
= cov(X̄ − Ȳ , X̄ − Ȳ )

= var[Ȳ ] + var[X̄ ] − 2 cov(X̄ , Ȳ )︸     ︷︷     ︸
=0

=
σ 2

n
+
σ 2

m
.

Using the above the distribution of X̄ − Ȳ is

X̄ − Ȳ ∼ N

(
µ1 − µ2,

σ 2

n
+
σ 2

m

)
.

Thus under the null hypothesis H0 : µ1 − µ2 = 0 we have

X̄ − Ȳ ∼ N

(
0, σ

2

n
+
σ 2

m

)
.

Therefore to test if µ1 − µ2 = 0 we use the distance X̄ − Ȳ but take into account its standard error
√

σ 2
n +

σ 2
m .

Under the null it is clear that the z-transform is

Z =
X̄ − Ȳ√
σ 2
n +

σ 2
m

∼ N (0, 1) .

But if the alternative is true then

X̄ − Ȳ√
σ 2
n +

σ 2
m

=
X̄ − Ȳ − (µX − µY )√

σ 2
n +

σ 2
m︸                  ︷︷                  ︸

=Z∼N (0,1)

+
µ1 − µ2√
σ 2
n +

σ 2
m︸      ︷︷      ︸

=mean
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this gives

X̄ − Ȳ√
σ 2
n +

σ 2
m

∼ N
©«
µ1 − µ2√
σ 2
n +

σ 2
m

, 1
ª®®¬ . (5.2)

It is the “size” of µ1−µ2√
σ 2
n +

σ 2
m

that gives the statistical test power.

Using what we learnt in Section 4.1; under the null Z = X̄−Ȳ√
σ 2
n +

σ 2
m

is a standard normal, then the rejection

region at the α level is ������� X̄ − Ȳ√
σ 2
n +

σ 2
m

������� ≥ zα/2.

Or equivalently, we reject the null if X̄ − Ȳ lies in C− ∪C+ where

C− =

(
−∞,−zα

√
σ 2

n
+
σ 2

m

]
C− =

[
zα

√
σ 2

n
+
σ 2

m
,∞

)
.

Note that P(X̄ − Ȳ ∈ C− ∪C+ |H0) = α .

Power of the test Of course there is no point to a test, if it does not have power in detecting the alternative.
Without loss of generality let us assume that µ1 − µ2 = δ > 0. The power in the test is

P
(
X̄ − Ȳ ∈ C− ∪C+ |µ1 − µ2 = δ

)
≈ P

(
X̄ − Ȳ ∈ C+ |µ1 − µ2 = δ

)
,

since if δ > 0 it is unlikely that X̄ − Ȳ ≤ −zα/2
√

σ 2
n +

σ 2
m . Thus

P
(
X̄ − Ȳ ∈ C− ∪C+ |µ1 − µ2 = δ

)
≈ P

(
X̄ − Ȳ ≥ zα/2

√
σ 2

n
+
σ 2

m
|µ1 − µ2 = δ

)

= P
©«Z +

µ1 − µ2√
σ 2
n +

σ 2
m

≥ zα/2
ª®®¬

= P
©«Z ≥ −

δ√
σ 2
n +

σ 2
m

+ zα/2
ª®®¬ ,

where Z ∼ N (0, 1). Now for a given δ , σ 2, µ1 and µ2 this probability can easily be calculated. As is always
the case, the larger δ , or m and n the larger the power (if you have doubts try di�erent values and calculate
the power).

Observation The testing procedure assumes that the variance σ 2 is known. This will not usually be the
case. In the following section we consider a method for estimating σ 2.
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5.1.3 Pooling information: The pooled sample variance

Our aim in this section is to estimate σ 2. The method we propose turns out to be MLE estimator of σ 2

under the assumption the the means are di�erent (see Section 5.2).

The following derivation of the sample variance is based on the estimation of residuals. Let us return to
“model” in (5.1), where we wrote Xi and Yj as

Xi = µ1 + εi and Yj = µ2 + ϵj

where {εi , ϵj } are independent, identically distributed normal random variables with E[εi ] = 0, E[ϵi ] = 0,
var[εi ] = σ 2 and var[ϵi ] = σ 2. The random variables εi and ϵj are often called the residuals in the model (the
part of the model that cannot be explained by the mean). The are not observed, but they can be estimated
using what is called the sample residuals. We estimate µ1 and µ2 with X̄ and Ȳ respectively. Thus the
estimated residuals are

ε̂i = Xi − X̄ and ϵ̂j = Yj − Ȳ .

We can imagine that if the sample size is “large” then X̄ and Ȳ are “close” to µ1 and µ2 respectively. Thus
approximately

E[̂εi ] ≈ E[εi ] = 0

E[̂ε2
i ] ≈ E[ε2

i ] = σ
2

E[ϵ̂i ] ≈ E[ϵi ] = 0

E[ϵ̂2
i ] ≈ E[ϵ2

i ] = σ
2.

What the above tells us that the expectation of the square of the estimated residuals is the almost the
variance σ 2. As the variance is the same for both {Xi } and {Yj } we “pool” the two bits of information to
obtain a better estimator.

To pool the information, we recall if the expectation of a random variable is equal to θ , the sample mean of
the random variables is a good estimator of θ . By this principle, the average of all the squared residuals
should yield a good estimator of the variance:

σ̂ 2 =
1

m + n

(
n∑
i=1
(Xi − X̄ )

2 +
m∑
j=1
(Yj − Ȳ )

2

)
.

Observe in the above we have pooled information from both the X s and Y s.

But the above estimator is biased. We now show why. Recall from Theorem 2.3 that

E
(

1
n − 1

n∑
i=1
(Xi − X̄ )

2

)
= σ 2 and E

(
1

m − 1

m∑
j=1
(Yj − Ȳ )

2

)
= σ 2.
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Rearranging the above gives

E
(

n∑
i=1
(Xi − X̄ )

2

)
= (n − 1)σ 2 and E

(
m∑
j=1
(Yj − Ȳ )

2

)
= (m − 1)σ 2.

Using these expectations we have

E[σ̂ 2] =
1

m + n

(
E[

n∑
i=1
(Xi − X̄ )

2] + E[
m∑
j=1
(Yj − Ȳ )

2]

)
=

1
m + n

(
E[(n − 1)σ 2 + (m − 1)σ 2)

=
m + n − 2
m + n

σ 2 = σ 2 −
2

m + n
σ 2.

Thus the estimator σ̂ 2 has a small bias (the bias is− 2
m+nσ

2). An unbiased estimator ofσ 2 is the pooled sample variance
which is

ŝ2
p =

1
m + n − 2

(
n∑
i=1
(Xi − X̄ )

2 +
m∑
j=1
(Yj − Ȳ )

2

)
=

1
m + n − 2

(
(n − 1)s2

X + (m − 1)s2
Y
)
,

where s2
X and s2

Y are the unbiased sample variance estimators

s2
X =

1
n − 1

n∑
i=1
(Xi − X̄ )

2 and s2
Y =

1
m − 1

m∑
j=1
(Yj − Ȳ )

2.

We recall from Theorem 2.3 that

(n − 1)s2
X =

n∑
i=1
(Xi − X̄ )

2 ∼ σ 2χ 2
n−1 and (m − 1)s2

Y =

m∑
j=1
(Yj − Ȳ )

2 ∼ σ 2χ 2
m−1.

Since {Xi } and {Yj } are independent of each other, then (n − 1)s2
X and (m − 1)s2

Y are independent. Further
if χ 2

n−1 and χ 2
m−1 are independent chi-square random variables then χ 2

n−1 + χ
2
m−1 has a χ 2

m+n−2-distribution.
Thus altogether we have

(i) Unbiased pooled sample variance

E[s2
p ] = σ

2.

(ii) Distribution of the pooled sample variance(
n∑
i=1
(Xi − X̄ )

2 +
m∑
j=1
(Yj − Ȳ )

2

)
=

(
(n − 1)s2

X + (m − 1)s2
Y
)
∼ σ 2χ 2

n+m−2. (5.3)

(iii) Independence from sample mean

Since
∑n

i=1(Xi − X̄ )
2 and

∑m
j=1(Yj − Ȳ )

2 are independent of X̄ and Ȳ (again by Theorem 2.3) we have
that (X̄ − Ȳ ) are independent of s2

p .
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5 Comparing two populations
Very important the above derivations are based in the assumption (a) independence (b) same variance in
both groups (extremely important) and (c) normality of the random variables.

Remark (Alternative, but worse estimators of the variance). You may wonder why we do not use

1
2

(
s2
X + s

2
Y
)

(5.4)

as an estimator of σ 2. This estimator can also be used. In fact ifm = n the pooled sample variance and the

above are the same. However, in the casem , n, the pooled sample variance gives a larger weight to the group

with the larger sample size:

σ̂ 2 =
(n − 1)

m + n − 2s
2
X +

(m − 1)
n +m − 2s

2
Y ,

which leads to an estimator with a smaller variance and bias (is better) than (5.4).

5.1.4 The independent two sample t-test

In the previous section we obtained an estimator of σ 2. We recall from (5.2) that if σ 2 is known then

(X̄ − Ȳ ) − (µX − µY )

σ
√

1
n +

1
m

∼ N (0, 1) . (5.5)

And from (5.3) that the pooled sample variance s2
p is independent of X̄ − Ȳ and (n +m − 2)s2

p/σ
2 ∼ χ 2

n+m−2.
Thus replacing σ with sp yields

T =
(X̄ − Ȳ ) − (µX − µY )

sp

√
1
n +

1
m

. (5.6)

To obtain the distribution of T we divide the numerator and denominator by σ (which does not change
tn+m−2) this gives

T =

(
σ

sp

)
(X̄ − Ȳ ) − (µX − µY )

σ
√

1
n +

1
m

∼
Z

χm+m−2/
√
m + n − 2

∼ tn+m−2 (5.7)

Returning to the test

H0 : µ1 − µ2 = 0 vs H0 : µ1 − µ2 , 0.

We use as the rejection region at the α-level, all X̄ where

|T | =

������� (X̄ − Ȳ )sp

√
1
n +

1
m

������� ≥ tn+m−2,α/2. (5.8)

Thus if |T | ≥ tn+m−2,α/2 we reject the null hypothesis, and there is evidence that µ1 , µ2.

Extending the above to the one-sided set-up is straightforward.
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5 Comparing two populations
5.2 Generalized likelihood ratio test and the independent two sample

t-test

Our aim in this section is to show that independent two-sample t-test falls within the generalized log-
likelihood ratio t-test. The proof mirrors the proof of showing that the two-sided t-test for one sample
was equivalent to the generalized likelihood ratio t-test (described in Section 4.4.2). This section is not
in the syllabus but may be of interest to you. We consider the simplest setting that the mean of the two
populations under the null are the same:

H0 : µ1 − µ2 = 0 vs H0 : µ1 − µ2 , 0.

The generalized likelihood ratio test is constructed under the following assumptions:

• The variances in both groups are the same.

• The two groups {Xi }
n
i=1 and {Yj }mj=1 are independent with Xi ∼ N (µ1,σ

2) and Yj ∼ N (µ2,σ
2).

To obtain the likelihoods, we de�ne the concatonated (n +m)-dimension vector Zn+m

Z ′n+m = (X1, . . . ,Xn ,Y1, . . . ,Ym) ,

and n-dimension andm-dimension vector X ′ = (X1, . . . ,Xn) and Y ′ = (Y1, . . . ,Ym). Since

Zn+m ∼ N
©«©«

µ
1
µ

2

ª®¬ ,σ 2In+m
ª®¬ .

The log-likelihood for Z is

Ln+m(µ1, µ2,σ
2;Zn+m) = −

n +m

2 logσ 2 −
1

2σ 2

n∑
i=1
(Xi − µ1)

2 −
1

2σ 2

m∑
j=1
(Yi − µ2)

2 (5.9)

(we have ignored the n+m
2 log(2π ) term). The aim is to obtain an expression for the generalized log-likelihood

ratio statistic:

log∆(z) = sup
µ1,µ2,σ 2

Ln+m(µ1, µ2,σ
2;Zn+m)︸                                  ︷︷                                  ︸

log-likelihood under alternative

− sup
µ0,σ 2
Ln+m(µ0, µ0,σ

2;Zn+m)︸                               ︷︷                               ︸
log-likelihood under null

= Ln+m(µ̂1, µ̂2, σ̂
2
1 ;Zn+m) − Ln+m(µ̂0, µ̂0, σ̂

2
0 ;Zn+m). (5.10)

We will show that

log∆(z) = m + n

2 log
(
1 +

nm
n+m

(
X̄ − Ȳ

)2

(n +m − 2)s2
n+m−2

)
, (5.11)

from which we derive the independent sample t-test.
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5 Comparing two populations
Deriving (5.11) through brute force is extremely painful (but possible; see most standard text books). Instead,
we use results in linear-algebra to ease the pain and make the proof more informative.

The main result we use is stated in Section 2.1, point (7). If one makes an orthonormal transform of the
normal random vector Z , then the likelihood of Z and EZ are exactly the same. We have used this result
frequently namely in Sections 3.4.2, 4.4.1 and 4.4.2. It is so useful, we use it again here. Our objective is
to �nd two orthonormal transforms, one suitable for the null and the other suitable for the alternative
hypothesis.

A useful orthonormal transform for the alternative hypothesis

t is clear that if the alternative is true, we do not need to “pool” the sample means together and the MLE for
µ1 and µ2 should be the sample means X̄ and Ȳ . This we simply use the constructions from Section 2.4.2
and the constructions in Sections 3.4.2, 4.4.1 and 4.4.2.

De�ne the n-dimension orthonormal vectors e1,n , . . . , en,n where

e1,n = n
−1/2(1, . . . , 1)

and {e j,n}nj=2 are orthonormal to e1,n (examples include sines and cosines the discrete Haar transform, it
actually does not matter what this basis is, except that it exists). Similarly one can de�ne the m-dimension
orthonormal vectors f

1,m
, . . . , f

m,m
where

f
1,m
=m−1/2(1, . . . , 1)

and { f
j,m
}mj=2 are orthonormal to f

1,m
. Using these vectors we can de�ne a (n +m) × (n +m) matrix which

transforms Zn+m such that

W n+m = EZn+m =

©«

〈X , e1,n〉

〈Y , f
1,m
〉

〈X , e2,n〉

〈X , e3,n〉
...

〈Y , f
m,m
〉

ª®®®®®®®®®®®®¬
=

©«

√
nX̄
√
mȲ

U2

U3
...

Vm

ª®®®®®®®®®®®®¬
∼ N

©«

©«

√
nµ1
√
mµ2

0
0
...

0

ª®®®®®®®®®®®®¬
,σ 2In+m

ª®®®®®®®®®®®®¬
.

This gives rise to the log-likelihood (see equation (3.5) for an analogous calculation)

Ln(µ1, µ2,σ
2;Z ) = Ln(µ1, µ2,σ

2;W )

= −
(n +m)

2 logσ 2 −
n

2σ 2 (X̄ − µ1)
2 −

m

2σ 2 (Ȳ − µ1)
2 −

1
σ 2

n∑
i=2

U 2
i −

1
σ 2

m∑
j=2

V 2
j .
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Di�erentiating the above wrt µ1, µ2 and σ 2 leads to the MLE estimators

µ̂1 = X̄ , µ̂2 = Ȳ and

σ̂ 2
1 =

1
n +m

(
n∑
i=2

U 2
i +

m∑
j=2

V 2
j

)
=

1
n +m

[
n∑
i=1
(Xi − X̄ )

2 +
m∑
j=1
(Yj − Ȳ )

2

]
.

Substituting this into Ln(µ1, µ2,σ
2;Z ) gives

Ln(µ̂1, µ̂2, σ̂
2
1 ;Z ) = Ln(µ̂1, µ̂2, σ̂

2
1 ;W )

= −
(n +m)

2 log σ̂ 2
1 −
(n +m)

2 .

A useful orthonormal transform for the null hypothesis

Finding the transform when the null is true is a little more tricky. Under the null, {Xi }, {Yj } are iid normal
random variables and the MLE of µ should “pool” the sample means together. Thus the �rst vector we use
is the (n +m)-dimension vector

h1,n+m = (n +m)
−1(1, 1, 1, 1, . . . , 1).

But we want to keep the vectors {ei,n}ni=2 and { f
j,m
}mj=2, to cancel out the 1

σ 2
∑n

i=2U
2
i and 1

σ 2
∑m

j=2V
2
j when

we subtract the null from the alternative. Thus we still keep the (n +m − 2) (n +m)-dimension vectors

ei = (ei,n , 0) i = 2, . . . ,n and f
j
= (0, f

j,m
) j = 2, . . . ,m.

Altogether this gives (n +m − 1)-orthonormal transform vectors {h1,n+m , ei , f j
}; with a little thought you

can see that h1,n+m is orthogonal to ei and f
j

and further that ei and f
j

are orthogonal to each other. But
we need one more vector to complete the basis. If you get a cup of tea and spends a few moments thinking
you start to realize there is only vector that can be orthonormal to the others and it is

h2,n+m =

√
nm

m + n

©«(1/n), . . . , (1/n)︸              ︷︷              ︸
nof these

, (−1/m), . . . , (−1/m)︸                    ︷︷                    ︸
mof these

ª®®¬ .
This completes the orthonormal basis over Rn+m . Using these vectors we de�ne the orthonormal transform
matrix F and the transform FZn+m . Under the null the distribution of FZn+m we have

Sn+m = FZn+m =

©«

〈Z ,h1,n〉

〈Z ,h2,m〉

〈X , e2,n〉

〈X , e3,n〉
...

〈Y , f
m,m
〉

ª®®®®®®®®®®®®¬
=

©«

√
n +m(nX̄ +mȲ )

〈Z ,h2,m〉

U2

U3
...

Vm

ª®®®®®®®®®®®®¬
∼ N

©«

©«

√
n +mµ0

0
0
0
...

0

ª®®®®®®®®®®®®¬
,σ 2In+m

ª®®®®®®®®®®®®¬
.
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This gives rise to the log-likelihood (see equation (3.5) for an analogous calculation)

Ln(µ0, µ0,σ
2;Z ) = Ln(µ0, µ0,σ

2; S)

= −
(n +m)

2 logσ 2 −
(n +m)

2σ 2 (Z̄ − µ)
2 −

1
2σ 2 〈Z ,h2,m〉

2 −
1
σ 2

n∑
i=2

U 2
i −

1
σ 2

m∑
j=2

V 2
j .

By di�erentiating the above wrt σ 2 and µ0 the MLE estimators of σ 2 and µ0 are

µ̂0 =
1

n +m

(
n∑
i=1

Xi +

m∑
j=1

Yj

)
=

1
n +m

(
nX̄ +mȲ

)
σ̂ 2

0 =
1

n +m

(
〈Z ,h2,m〉

2 +
n∑
i=2

U 2
i +

m∑
j=2

V 2
j

)
.

Substituting this into Ln(µ0, µ0,σ
2;Z ) gives

Ln(µ̂0, µ̂0, σ̂
2
0 ;Z ) = Ln(µ̂0, µ̂0, σ̂

2
0 ;W )

= −
(n +m)

2 log σ̂ 2
0 −
(n +m)

2 .

The log-generalized likelihood ratio statistic

Substituting the above likelihoods into (5.10) gives

log∆(z) = Ln+m(µ̂1, µ̂2, σ̂
2
1 ;Zn+m) − Ln+m(µ̂0, µ̂0, σ̂

2
0 ;Zn+m)

=
m + n

2 log
(
σ̂ 2

1
σ̂ 2

0

)
=

m + n

2 log
(
〈Z ,h2,m〉

2 +
∑n

i=2U
2
i +

∑m
j=2V

2
j∑n

i=2U
2
i +

∑m
j=2V

2
j

)
=

m + n

2 log
(
1 +

〈Z ,h2,m〉
2∑n

i=2U
2
i +

∑m
j=2V

2
j

)
.

We now make some simplications of the above. We recall from Section 2.4.2 that

n∑
i=2

U 2
i =

n∑
i=2
〈ei,n ,X 〉

2 =
n∑
i=1
(Xi − X̄ )

2

m∑
j=2

V 2
j =

m∑
j=2
〈f

j,n
,Y 〉2 =

m∑
j=1
(Yi − Ȳ )

2.

Therefore, from the de�nition of the pooled sample variance we have

s2
n+m =

1
n +m − 2

(
n∑
i=2

U 2
i +

m∑
j=2

V 2
j

)
.
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Further Before we evaluate the generalised log-likelihood ratio we mention that

〈Z ,h2,m〉
2 = 〈Z ,h1,m〉

2 − nX̄ 2 −mȲ 2

=
1

n +m

(
nX̄ +mȲ

)2
− nX̄ 2 −mȲ 2

=
nm

n +m

(
X̄ − Ȳ

)2
.

The above can be directly veri�ed or follows immediately from Parseval’s identity. These two identities give

log∆(z) = m + n

2 log
(
1 +

nm
n+m

(
X̄ − Ȳ

)2

(n +m − 2)s2
n+m−2

)
,

which proves (5.11)

Finally we need to evaluate the rejection region for {Xi } and {Yj } under the null such that

P
(
logΛ(z) ≥ K |H0

)
= P

(
m + n

2 log
(
1 +

nm
n+m

(
X̄ − Ȳ

)2

(n +m − 2)s2
n+m−2

)
≥ K |H0

)
= P

(
nm
n+m

(
X̄ − Ȳ

)2

s2
n+m−2

≥ K̃ |H0

)
,

where K̃ = (n +m − 2)e2K/(m+1) − 1. Using that

nm

n +m

(
X̄ − Ȳ

)2

s2
n+m−2

=

(
1
n
+

1
m

)−1
(X̄ − Ȳ )2

s2
n+m−2

it is clear that under the null and by using (??) we have

nm

n +m

(
X̄ − Ȳ

)2

s2
n+m−2

=

(
1
n
+

1
m

)−1
(X̄ − Ȳ )2

s2
n+m−2

∼ t2
n+m−2 = F1,n+m−2.

Thus

P
(
logΛ(z) ≥ K |H0

)
= P

((
1
n
+

1
m

)−1
(X̄ − Ȳ )2

s2
n+m−2

≥ K̃

����H0

)
= α .

Thus under the generalized log-likelihood ratio test we reject the null when(
1
n
+

1
m

)−1/2
|X̄ − Ȳ |

sn+m−2
≥ tn+m−2,α/2,

which is identical to the independent two-sample t-test.

5.3 Matched data

5.3.1 Example: matched data

Biologists want to understand how the weight of mammals changes from birth to a week after birth. In
their investigation they focussed on new born calves. They randomly sampled 44 calves at various di�erent
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farms and took their weight at birth and then one week later. Plots of the data are given in Figure 5.2.
Observe that the data set comes in pairs, where i denotes the individual calf, Xi the weight of the calf at

Figure 5.2: Left: The histogram of the 44 calves at week 0 and week 1. Right: A scatterplot of the calf data,
Week 1 weight plotted against Birth weight.

birth and Yi the weight of the calf at week 1. Other examples of matched data include (i) the running times
of a person at a high altitude and a low altitude (ii) the response of an individual before and after treatment
(iii) even data at is collected at the same time in the year.

In this data set we do observe a drop in the sample mean from birth to Week 1. Our objective is to investigate
if this is statistically signi�cant using the test

H0 : µBirth − µWeek1 = 0 vs HA : µBirth − µWeek1 , 0.

The type of testing procedure used depends the relationship between (Xi ,Yi ). A scatter plot of the pairs
{(Xi ,Yi )}

n
i=1 is on the right plot of Figure 5.2. We observe a clear “dependence” between the two variables.

This is a violation of a fundamental assumption in the independent two sample t-test. Below we obtain a
model for matched data that allows for dependence.

5.3.2 Model assumptions

For matched data, we usually match each individual pairing as following

Xi = δi + µ1 + εX ,i and Yi = δi + µ2 + εY ,i i = 1, . . . ,n. (5.12)

Observe that for each pairing we allow for an “individual e�ect” δi . This individual e�ect allows for the
individual weight of a calf, inate running ability of a person (regardless of the altitude) etc.

It is important to understand the assumptions behind matched data and similarities and dissimilarities to
independent sample data. We list the main points below.
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We �rst state some assumptions that are similar to those for the independent sample t-test.

(i) The pairings {Xi ,Yi }
n
i=1 are independent over the individuals.

(i) The data is jointly normal.

However, there are di�erences between matched and independent two sample data that are important to
emphasis:

(i) For a given individual i , the errors εX ,i and εY , j can be correlated. In other words, cov(εX ,i , εY ,i ) , 0.
However we assume that the pairs {εX ,i , εY ,i }

n
i=1 are identically distributed covariance is the same

over all i i.e. cov(εX ,i , εY ,i ) = ρ, var[Xi ] = σ
2
X and var[Yi ] = σ 2

Y .

(ii) Unlike the independent sample t-test each pair can have its own mean. Observe the common mean
δi for each pair.

Remark. Allowing for dependence in the errors cov(εX ,i , εY ,i ) or a mean speci�c to each individual, δi depends

on the data. For example, in terms of the calf data, my personal preference is to model each calves weight with

an individual mean. Where this mean is speci�c to the, say this calves family. Either way we require a term

that models the clear linear dependence seen in Figure 5.2. It does not matter which way this is done.

Once again we want to compare the means between two di�erent distributions and the hypothesis of
interest is

H0 : µ1 − µ2 = 0 vs H0 : µ1 − µ2 , 0.

As in the independent two sample t-test the focus is on the di�erence of the sample means that is

D̄ = X̄ − Ȳ .

But the variance of X̄ − Ȳ is di�erent to the variance in the independent two sample t-test. This can make a
fundamental di�erence to the analysis we should do. We discuss this issue in the following section, but �rst
we focus on the variance of D̄:

var[D̄] = var[n−1
n∑
i=1

Xi − n
−1

n∑
i=1

Yi ]

= var[n−1
n∑
i=1
(Xi − Yi )] now we use the independence assumption

=
1
n2

n∑
i=1

var(Xi − Yi ) =
1
n2

n∑
i=1
[var(Xi ) + 2cov(Xi ,Yi ) + var(Yi )]

=
1
n

(
σ 2
X − 2ρ + σ 2

Y
)
.

Thus any method we use based on the di�erence X̄ − Ȳ should estimate var[D̄] correctly. If we do not do
this, the standard errors will be incorrect leading to the misleading statistical conclusions. We show in the

186



5 Comparing two populations
following section, that the pooled sample variance described in Section 5.1.3 is estimating a completely
di�erent quantity. The implication of this is that applying the independent sample t-test to matched data
can lead to spurious results.

5.3.3 Why the independent two sample t-test should not be used for matched data

The problem with applying the independent sample t-test to matched data is that the pooled variance
cannot consistently (correctly) estimate the true variance. From the above the standard error of X̄ − Ȳ is√

1
n

(
σ 2
X − 2ρ + σ 2

Y

)
. (5.13)

But the estimated standard error which ignores the pairing between the data is (with n =m) leads to the
estimator: √

s2
p

(
1
n
+

1
n

)
=

√
s2
X + s

2
Y

2

(
2
n

)
=

√
1
n

(
s2
X + s

2
Y

)
. (5.14)

• Comparing (5.13) and (5.14) we observe that the covariance −2ρ between the pairings is not being
estimated. Not estimating this covariance means the standard error is not being correctly estimated.
Often the covariance will be positive (see the calf plot). If this is the case than the true standard error
is such that √

1
n

(
σ 2
X − 2ρ + σ 2

Y

)
<

√
1
n

(
σ 2
X + σ

2
Y

)
,

thus the standard error has been overestimated.

• But another (related error) has incurred. It “looks” like s2
X and s2

Y are estimating the variance σ 2
X and

σ 2
X . Thus turns out not to be the case. We explain why below.

To understand what is happening we recall that

s2
X =

1
n − 1

n∑
i=1
(Xi − X̄ )

2 =
1

n − 1

n∑
i=1

ε̂2
X ,i .

where ε̂X ,i are the “estimated residuals”

ε̂X ,i = Xi − X̄ = δi + µ1 + εX ,i −
1
n

n∑
j=1

(
δ j + µ1 + εX , j

)
= εX ,i −

1
n

n∑
j=1

εX , j + δi −
1
n

n∑
j=1

δ j

≈ εX ,i + δi −
1
n

n∑
j=1

δ j ,
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since for “large” n we have 1

n
∑n

j=1 εX , j ≈ E[εX , j ] = 0. But observe that that “mean term” δi − 1
n
∑n

j=1 δ j

remains (which we do not want). This gives

ε̂2
X ,i ≈ ε

2
X ,i − 2εX ,i

(
δi −

1
n

n∑
j=1

δ j

)
+

(
δi −

1
n

n∑
j=1

δ j

)2

.

Therefore for large n

s2
X =

1
n − 1

n∑
i=1

ε̂2
X ,i ≈

1
n − 1

n∑
i=1

ε2
X ,i +

2
n − 1

n∑
i=1

εi

(
δi −

1
n

n∑
j=1

δ j

)
+

1
n − 1

n∑
i=1

(
δi −

1
n

n∑
j=1

δ j

)2

.

This is a little beyond this course one can show that the above is approximately

s2
X =

1
n − 1

n∑
i=1

ε̂2
X ,i ≈ σ 2 +

1
n − 1

n∑
i=1

(
δi −

1
n

n∑
j=1

δ j

)2

.

The main point is that by not removing the correct mean, the variance estimator s2
X completely misses its

mark and will over estimate it. Leading to a “sample standard deviation” which is far larger than it should
be. Subsequently, this will lead to a standard error that is “too large” making it di�cult to reject the null.
We observe exactly this e�ect in the data analysis of the calf data in Section 5.3.5.

To summarize, the variance estimator in the independent two sample t-test does not correctly estimate the
true variance of X̄ − Ȳ because

(i) The variance estimator does not estimate the covariance ρ = cov(cov(Xi ,Yi ).

(ii) It does not estimate σ 2
X and σ 2

Y . Indeed it tends to over estimate it.

In conclusion the z-transform

Z =
n1/2(X̄ − Ȳ )√(

s2
X + s

2
Y

)
will not be standard normal or t-distribution under the null hypothesis because the standardisation is
completely wrong.

The �x to this issue is very simple, we brie�y outline it below.

5.3.4 The matched paired t-test

Clearly when there is a dependence between the pairs, {Xi } and {Yi } should not be treated as independent
of each other. Instead we overcome the common individual mean and estimation of the covariance by
simply taking di�erences

Di = Xi − Yi = δi + µ1 + εX ,i − δi − µ2 − εY ,i

= µ1 − µ2︸  ︷︷  ︸
µd

+ εX ,i − εY ,i︸      ︷︷      ︸
=ϵi

,
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observe we relable the residual ϵi = εX ,i − εY ,i and the mean as µd = µ1 − µ2. Thus we have transformed
two samples into one sample. It is simple to show that the sample mean of {Di } is

D̄ = X̄ − Ȳ ,

and the sample variance

s2
d =

1
n − 1

n∑
i=1
(Di − D̄)

consistently estimates σ 2
X − 2ρ + σ 2

Y . This allows us to apply the one-sample t-test to the di�erences:

H0 : µd = 0 and H0 : µd , 0.

Conclusion If there is any doubt that there may be matching in the data always use a matched t-test. Even if
there is no matching in the data, the variance estimator using a matched t-test will still consistently estimate
the variance. And the matched t-test will give always valid results even if the data has no matching.

5.3.5 Application to data

The calf data

We conclude this section by analysing the calf data presented at the start of the section. Because I was too
lazy to upload the data into R I did it in JMP.

In Figure 5.3 the output in JMP using the independent two sample t-test is given. Recall that due to the
dependence between the variables this is a completely inappropriate test. We observe that the standard
error is s .e . = 1.74 which results in a t-value of t = −2.17 = −3.78/1.74). This gives a p-value which is
relative small (3%) but not overwhelmingly so. Keep in mind the standard error of 1.74.

Figure 5.3: The output when applying independent two sample t-test to the calves data (the incorrect test).

Next we apply the matched paired t-test for the same data. Given the linear dependence we observe between
the variables, this appears to be the appropriate test. The results of the test are given in Figure 5.4. The
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di�erences in the sample means is −3.78 (which is the same as for the independent two sample t-test, and
as expected). But we observe a dramatic decrease in the standard error, which when estimated correctly
is s .e . = 0.63 (compare this with the standard error for the independent two sample t-test which gives a
standard error of 1.74). The resulting t-value is t = −3.78/0.63 = −5.94. The t-value is far larger than the
t-value corresponding to the independent sample t-test, making the results of the test more signi�cant.
Indeed,the p-value for the matched t-test is less than 0.01% and is highly signi�cant.

Figure 5.4: The output when applying independent two sample t-test to the calves data (the correct test).

The hens and eggs shells data

Figure 5.5: The independent two sample t-test applied to light treatment and strength of egg shell data.
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6 ANOVA

6.1 Post-hoc analysis

Under the null

max |X̄i − X̄ j |

sp
√

2/n

6.1.1 Studentised range distribution

https://en.wikipedia.org/wiki/Studentized_range_distribution

6.2 Proof of one-way ANOVA

We recall that the ANOVA statistics is (in the case of three groups)

Theorem 6.1

Suppose {{Xs,i }
n2
s=1}

K
s=1 are iid normal random variables with mean µ and variance σ 2. We de�ne the

F -statistic

F =

∑M
s=1 ns (X̄s − X̄ )

2∑K
s=1

∑ns
i=1(Xs,i − X̄s )2

,

where X̄s denotes the group means and X̄ the global mean. Then F ∼ Fs−1,n−s .

We prove the results for three groups, with {Xi }
n1
i=1, {Yi }n2

i=1 and {Zi }n3
i=1 with group sample means X̄ , Ȳ and

Z̄ respectively. Precisely, we prove that

U

V
=

n1(X̄ − W̄ )
2 + n1(Ȳ − W̄ )

2 + n3(Z̄ − W̄ )
2∑n1

i=1(X1,i − X̄ )2 +
∑n2

i=1(Y1,i − Ȳ )2 +
∑n3

i=1(Z1,i − Z̄ )2
∼ F2,n1+n2+n3−3,
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where

W̄ =
1

n1 + n2 + n3

(
n1∑
i=1

Xs,i +

n2∑
i=1

Ys,i +
n3∑
i=1

Zs,i

)
.

The proof uses similar construction to the proof of Theorem 2.3. First by showing the numerator are
denominator are independent and then showing that the numerator and denominator follow a chi-square
distribution. In line with the proof Theorem 2.3 we prove the result using orthogonal projections.

We start by de�ning the (n1 + n2 + n3)-dimensional vector

W =
©«
X

Y

Z

ª®®®¬
Under the stated the assumptions we have W ∼ N (µ1,σ 2In1+n2+n2). We will write W in terms of an
appropriate orthonormal basis to prove the result.

Let {̃ei }
n1
i=1 denote a basis of Rn1 where ẽ ′1 = n−1/2

1 (1, . . . , 1), { f̃
i
}
n2
i=1 denote a basis of Rn2 where f̃

′

1
=

n−1/2
2 (1, . . . , 1) and {̃д

i
}
n3
i=1 denote a basis of Rn3 where д̃′

1
= n−1/2

3 (1, . . . , 1). For all 1 ≤ i ≤ ns we de�ne
the (n1 + n2 + n3)-dimensional vectors

ei =
©«
ẽi

0
0

ª®®®¬ , f
i
=

©«
0
f̃
i

0

ª®®®¬ , д
i
=

©«
0
0
д̃
i

ª®®®¬
By construction {{ei }

n1
i=1, { f i

}
n2
i=1, {дi

}
n3
i=1} forms an orthogonal basis of Rn1+n2+n3 . Thus we can represent

W as

W = 〈e1,W 〉e1 + 〈f 1
,W 〉 f

1
+ 〈д

1
,W 〉д

1
+

n1∑
i=2
〈ei ,W 〉ei +

n2∑
i=2
〈f

i
,W 〉 f

i
+

n3∑
i=2
〈д

i
,W 〉д

i
.

Using thatW ∼ N ((µ11n1
, µ21n2

, µ11n2
)′,σ 2In1+n2+n2), and the orthonormality of the basis we can show that

{〈ei ,W 〉}, {〈f i ,W 〉} and {〈д
i
,W 〉} are iid normal random variables with variance σ 2, where for i > 1,

E[〈ei ,W 〉] = 0 (since 〈e1, ei 〉 =
∑n1

s=1 1×ei,s = 0) further for i = 1 we have 〈e1,W 〉 =
√
n1X̄ , 〈f

1
,W 〉 =

√
n2Ȳ

and 〈д
1
,W 〉 =

√
n3Z̄ . Thus under the assumption that the group means are all di�erent the vectorW can

be rewritten as

©«

〈e1,W 〉

〈f
1
,W 〉

〈д
1
,W 〉

〈e2,W 〉
...

〈д
n3
,W 〉

ª®®®®®®®®®®®®¬
∼ MVNn1+n2+n+3

©«



√
n1µ1
√
n2µ2
√
n3µ3

0


,σ 2In1+n2+n2

ª®®®®®®¬
. (6.1)
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Observe that all the information about the population means in each group are encoded in the �rst three
entries of this transformed vector. Therefore, by using the same arguments to those in Theorem 2.3 we have

W − 〈e1,W 〉e1 + 〈f 1
,W 〉 f

1
+ 〈д

1
,W 〉д

1
=

n1∑
i=2
〈ei ,W 〉ei +

n2∑
i=2
〈f

i
,W 〉 f

i
+

n3∑
i=2
〈д

i
,W 〉д

i

⇒

©«
X −
√
n1X̄ ẽ1

Y −
√
n2Ȳ f̃

1
Z −
√
n3Z̄ f̃

1

ª®®®¬ =

n1∑
i=2
〈ei ,W 〉ei +

n2∑
i=2
〈f

i
,W 〉 f

i
+

n3∑
i=2
〈д

i
,W 〉д

i
.

The Euclidean distance of the above vector together with Parseval’s equality in (1.2) gives

n1∑
i=1
(Xi − X̄ )

2 +
n2∑
i=1
(Yi − Ȳ )

2 +
n2∑
i=1
(Zi − Z̄ )

2 =
n1∑
i=2
〈ei ,W 〉

2 +
n2∑
i=2
〈f

i
,W 〉2 +

n3∑
i=2
〈д

i
,W 〉2. (6.2)

Thus

V =
n1∑
i=1
(Xi − X̄ )

2 +
n2∑
i=1
(Yi − Ȳ )

2 +
n2∑
i=1
(Zi − Z̄ )

2 ∼ χ 2
n1+n2+n3−3.

Furthermore, thanks to the orthgonal decomposition, V is independent of

〈e1,W 〉e1 + 〈f 1
,W 〉 f

1
+ 〈д

1
,W 〉д

1
=
√
n1X̄e1 +

√
n2Ȳ f

1
+
√
n3Z̄д1

.

This proves that the numerator, U , and denominator, V , are independent.

The �nal part of the proof involves rewriting √n1X̄e1 +
√
n2Ȳ f

1
+
√
n3Z̄д1

in terms of a di�erent orth-
normal basis (which includes the global average W̄ as a coe�cient). De�ne the vector h1 = (n1 + n2 +

n3)
−1/2(1, 1, . . . , 1), and the orthonormal vectors h2 and h3 which form a basis for the space spanned by

(e1, f 1
,д

1
). Thus

√
n1X̄e1 +

√
n2Ȳ f

1
+
√
n3Z̄д1

= 〈h1,W 〉h1 + 〈h2,W 〉h2 + 〈h3,W 〉h3,

where (n1 + n2 + n3)
1/2W̄ . Therefore

√
n1X̄e1 +

√
n2Ȳ f

1
+
√
n3Z̄д1

− 〈h1,W 〉h1 = 〈h2,W 〉h2 + 〈h3,W 〉h3.

Since h1 and h2 are orthonormal transformation vectors we have var(〈h1,W 〉) = σ 2 and 〈h2,W 〉) = σ 2.
Under the null hypothesis that the population means in all three groups are the same. This gives

E(〈h2,W 〉) =
n1∑
i=1

h2,iE(Xi ) +

n2∑
i=1

h2,n1+iE(Yi ) +
n3∑
i=1

h2,n1+n2+iE(Zi )

= µ
n1+n2+n3∑

i=1
h2,i = µ〈h1,h2〉 = 0.
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By the same argument E(〈h3,W 〉) = 0. Therefore under the null all the group means are the same we have

©«

〈h1,W 〉

〈h2,W 〉

〈h3,W 〉

〈e2,W 〉
...

〈д
n3
,W 〉

ª®®®®®®®®®®®®¬
∼ MVNn1+n2+n+3

([ √
mµ

0

]
,σ 2In1+n2+n2

)
(6.3)

where m = n1 + n2 + n3. Thus, by using (1.2), and noting that e1, f 1
and д

1
are n1, n2 and n3-dimension

vectors containing the same quantity (under the null) we have√n1X̄e1 +
√
n2Ȳ f

1
+
√
n3Z̄д1

− 〈h1,W 〉h1

2

2
= n1(X̄ − W̄ )

2 + n2(Ȳ − W̄ )
2 + n3(Z̄ − W̄ )

2 = 〈h2,W 〉
2 + 〈h3,W 〉

2 ∼ χ 2
2 ,

where ‖x ‖22 =
∑d

i=1 x
2
i . Altogether, by using (6.2) and the above we obtain the result, in the case K = 3. The

same proof can be generalized to the case K > 3.

In summary W ∼ N(µ1,σ 2In1+n2+n3). However, we have shown that, equivalently, W can be written in
terms of orthnormal vectors whose coe�cients are uncorrelated and contain information that can be used
to test for di�erences between the group population means. For precisely we have the decomposition

W = (n1 + n2 + n3)
1/2W̄h1 + 〈h2,W 〉h2 + 〈h3,W 〉h3︸                       ︷︷                       ︸

√
n1X̄ e1+

√
n2Ȳ f 1

+
√
n3Z̄д1

−〈h1,W 〉h1

+

n1∑
i=2
〈ei ,W 〉ei +

n2∑
i=2
〈f

i
,W 〉 f

i
+

n3∑
i=2
〈д

i
,W 〉д

i
.

This decomposes theW into the global mean vector into three independent blocks:

• The global mean vector.

• Di�erences between each group sample mean and the global mean

• The residuals after removing the group mean.

From this expansion we immediately obtain the classical decomposition of SSTW − (n1 + n2 + n3)
1/2W̄h1

2

2
= ‖〈h2,W 〉h2 + 〈h3,W 〉h3‖

2
2 +

 n1∑
i=2
〈ei ,W 〉ei +

n2∑
i=2
〈f

i
,W 〉 f

i
+

n3∑
i=2
〈д

i
,W 〉д

i

2

2

.

Since

SST =

W − (n1 + n2 + n3)
1/2W̄h1

2

2
=

n1∑
i=1
(Xi − W̄ )

2 +
n2∑
i=1
(Yi − W̄ )

2 +
n2∑
i=1
(Zi − W̄ )

2

SSB = ‖〈h2,W 〉h2 + 〈h3,W 〉h3‖
2
2 = n1(X̄ − W̄ )

2 + n2(Ȳ − W̄ )
2 + n3(Z̄ − W̄ )

2

SSW =

 n1∑
i=2
〈ei ,W 〉ei +

n2∑
i=2
〈f

i
,W 〉 f

i
+

n3∑
i=2
〈д

i
,W 〉д

i

2

2

=

n1∑
i=1
(Xi − X̄ )

2 +
n2∑
i=1
(Yi − Ȳ )

2 +
n2∑
i=1
(Zi − Z̄ )

2

The above expansion yields the well known result SST = SSB + SSW . �
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