STAT 415 - Final (Spring 2021)

Name: \qquad

Exam rules:

- You have 2hrs 45 minutes to to complete the exam, scan it and upload onto Gradebook.
- There are 4 Questions (The exam is worth 40 pts in total).
- This exam is open book. You are free to use your class notes and HW solutions to solve the problems.

Do not do a brain dump. Answers which are irrelevant will be penalized.
Do not blindly copy answers from the HW solutions.

- State precisely in the derivations all the results that you use.
- Explain your arguments carefully, show all your work, and write out all your steps. Credit will be given for clarity. No credit will be given for a solution without working.
- If you are caught cheating or helping someone to cheat on this exam, you will both receive a grade of zero on the exam and you will be turned in.
- If a problem requires a numerical answer, you may express answer in terms of elementary functions or cdfs (e.g. $\Gamma(r+1)$ or $r!$).
- Presentation and scanning rules (20% will be knocked off if these rules are not adhered too).

1. No light pencils. Black is easiest to read.
2. Write big; scrawls are painful to read.
3. Submit only one pdf file.
4. The solutions should be on separate pages. When uploading onto Gradescope tie each question to the number.
5. Check clarity of scan before submission.
(1) Suppose that $\left\{X_{i}\right\}_{i=1}^{n}$ are iid normal random variables with mean μ and variance σ^{2}. Let

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} .
$$

To answer the below you can use that for normal random variables with mean μ and variance σ^{2}, then $\mathrm{E}[X]=\mu, \mathrm{E}\left[X^{2}\right]=\sigma^{2}+\mu^{2}, \mathrm{E}\left[X^{4}\right]=\mu^{4}+6 \mu^{2} \sigma^{2}+3 \sigma^{4}$.
(i) What is the distribution of \bar{X} ?
(ii) Suppose we test the hypothesis $H_{0}: \mu=4$ vs $H_{A}: \mu>4$ using the classical z-test at the 1% level (with σ known). Obtain an expression for the power for the alternative $\mu=6$ (as a function of σ and n).
(iii) Show that \bar{X}^{2} is a biased estimator of μ^{2} and obtain the bias.
(iv) Obtain the mean squared error $\mathrm{E}\left[\left(\bar{X}^{2}-\mu^{2}\right)^{2}\right]$.

Hint: In the above calculation, you can use that \bar{X} is normal.
(2) Suppose that X_{i} is exponentially distributed with density $f(x ; \theta)=\theta \exp (-\theta x)$ for $x \geq 0$. We define a new random variable

$$
Y_{i}=\left\{\begin{array}{cc}
0 & 0 \leq X_{1} \leq 1 \\
1 & X_{i}>1
\end{array}\right.
$$

(i) Calculate $\mathrm{E}\left[Y_{i}\right]$.
(ii) Obtain the MLE of θ based on $\left\{Y_{i}\right\}$ (not $\left\{X_{i}\right\}$). Call this estimator $\widehat{\theta}_{Y}$

Hint: Either use Lemma 3.1, or be very careful with differentiation and use the chain rule correctly.
(iii) Obtain the asymptotic distribution of $\widehat{\theta}_{Y}$.
(vi) Obtain the MLE of θ based on $\left\{X_{i}\right\}$. Call this estimator $\widehat{\theta}_{X}$
(v) Obtain the asymptotic distribution of $\widehat{\theta}_{X}$.
(3) Suppose that $\left\{X_{i}\right\}$ follows a double exponential distribution random variables with density

$$
f(x ; \theta)=\frac{1}{2} \theta \exp (-\theta|x|) \quad x \in(-\infty, \infty)
$$

where $\theta>0$.
(i) Obtain the maximum likelihood estimator of θ.
(ii) Suppose we test the hypothesis $H_{0}: \theta=\theta_{0}$ vs $H_{A}: \theta \neq \theta_{0}$. Construct the generalized \log-likelihood ratio statistic $\log \Lambda(\underline{x})$.
(iii) Construct the asymptotic rejection region for $2 \log \Lambda(\underline{x})$ at the 5% level.
(iv) Suppose you test the hypothesis $H_{0}: \theta=1$ vs $H_{A}: \theta \neq 1$ at the 5% level using the generalized log-likelihood ratio test and the the data $(n=15)$

$$
\begin{aligned}
& -0.09166,0.49225,0.15384,-0.63384,0.29354,0.21230,-0.59322,-0.20680,0.76531 \\
& 0.22258,0.08837,-0.98747,0.06102,-0.38458,0.75048 .
\end{aligned}
$$

with summary statistics $\sum_{i=1}^{15} x_{i}=0.142$ and $\sum_{i=1}^{15}\left|x_{i}\right|=5.9$. What are the conclusions of the test?
(4) Suppose that X is a continuous random variable defined on $[0,1]$ with density f.

There are two potential candidates for the density of $X, f_{0}(x)=1$ for $x \in[0,1]$ and zero elsewhere or $f_{1}(x)=2 x$ for $x \in[0,1]$ and zero elsewhere.
We test $H_{0}: f(x)=f_{0}(x)$ versus $H_{A}: f(x)=f_{1}(x)$.
(i) Suppose we observe just one random variable (sample size is $n=1$). Using the Likelihood Ratio test, obtain the rejection region for X at the α significance level.
(ii) Suppose that $\alpha=0.1$. Do we reject the null for $x=0.95$.
(iii) Obtain the power of the test at the α signficance level (the power will be a function of the $\alpha)$.
(iv) Show that for all $\alpha \in(0,1)$ the power will be greater than α.

