STAT 415 - Final (Spring 2020)

Name: Solutions

Exam rules:

- You have ?? to complete the exam, scan it and upload onto Ecampus.
- There are? Questions.
- This exam is open book. You are free to use your class notes and HW solutions to solve the problems.
Do not do a brain dump. Answers which are irrelevant will be penalized.
Do not blindly copy answers from the HW solutions.
- State precisely in the derivations all the results that you use.
- Explain your arguments carefully, show all your work, and write out all your steps. Credit will be given for clarity. No credit will be given for a solution without working.
- If you are caught cheating or helping someone to cheat on this exam, you will both receive a grade of zero on the exam and you will be turned in.
- If a problem requires a numerical answer, you may express answer in terms of elementary functions or cdfs (e.g. $\Gamma(r+1)$ or $r!$).
- Presentation and scanning rules (20% will be knocked off if these rules are not adhered too).

1. No pencils. Black pen is easiest to read.
2. Write big; scrawls are painful to read.
3. Name at top of exam paper (this makes it easier to identify them).
4. Name the submitted file LASTNAME_FIRSTNAME.pdf
5. Submit only one pdf file.
6. The solutions should be on separate pages.
7. Check clarity of scan before submission.
(1) Suppose the random variables $\underline{X}=\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)$ have the covariance matrix

$$
\left(\begin{array}{ccccc}
1 & 1 / 2 & 0 & 0 & 0 \\
1 / 2 & 1 & 1 / 2 & 0 & 0 \\
0 & 1 / 2 & 1 & 1 / 2 & 0 \\
0 & 0 & 1 / 2 & 1 & 1 / 2 \\
0 & 0 & 0 & 1 / 2 & 1
\end{array}\right)
$$

Obtain its covariance network.

$$
x_{1}-x_{2}-x_{3}-x_{4}-x_{5}
$$

(2) Suppose $\left\{\left(X_{t}, Y_{t}\right)\right\}_{t=1}^{n}$ are independent bivariate random variables (meaning that over t they are independent), where

$$
X_{t}=2 t+\varepsilon_{t} \quad Y_{t}=\cos \left(\frac{2 \pi t}{3}\right)+e_{t}
$$

and $\left\{\varepsilon_{t}, e_{t}\right\}$ are random with $\mathrm{E}\left[\varepsilon_{t}\right]=\mathrm{E}\left[e_{t}\right]=0, \operatorname{var}\left[\varepsilon_{t}\right]=\operatorname{var}\left[e_{t}\right]=\sigma^{2}$ and $\delta=\operatorname{cov}\left(\varepsilon_{t}, e_{t}\right)$. Let

$$
S_{n}=\frac{1}{n} \sum_{t=1}^{n}\left(X_{t}-Y_{t}\right)
$$

Obtain $\mathrm{E}\left[S_{n}\right]$ and $\operatorname{var}\left[S_{n}\right]$.

$$
\text { (a) } \begin{aligned}
E\left[S_{n}\right] & =\frac{1}{n} \sum_{t=1}^{n}\left\{E\left(x_{t}\right)-E\left(y_{t}\right)\right] \\
& =\frac{1}{n} \sum_{t=1}^{n}\left\{2 t-\omega s\left(\frac{2 \pi t}{3}\right)\right\}
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
\operatorname{var}\left[s_{i}\right] & =\frac{1}{n^{2}} \sum_{\sum_{=1}}\left\{\operatorname{var}\left(x_{t}-y_{t}\right)\right\} \\
& =\frac{1}{n^{2}} \sum_{t=1}\left\{\operatorname{val}\left(x_{t}\right)-2 \cos \left(x_{t}, y_{t}\right)+\operatorname{va}\left(y_{t}\right)\right\} \\
& =\frac{26^{2}-2 \rho}{n}
\end{aligned}
$$

(3) Suppose that $\left\{X_{i}\right\}$ are id random variables with mean $\mu(\mu \neq 0)$ and variance σ^{2}. Let \bar{X} denote the sample mean.
(i) Obtain the asymptotic distribution of $\log \bar{X}$.
(ii) Based on (ii) construct an approximate 95% confidence interval for $\log \mu$. The confidence interval should be computable, where unknown parameters are replaced with their estimators.

- By Theorem $1.1 \quad \sqrt{n}(\bar{x}-\mu) \xrightarrow{D} N\left(0,6^{2}\right)$
- By Lemma I.I $\sqrt{n}[g(\bar{x})-g(\mu)] \xrightarrow{P} N\left(0, g^{\prime}(\mu)^{2} \sigma^{2}\right)$

$$
\begin{aligned}
& g(\bar{x})=\log \bar{x} \quad g^{\prime}(\mu)=\frac{1}{\mu} \\
\Rightarrow & I f \mu \neq 0 \\
& \sqrt{n}[\log \bar{x}-\log \mu] \xrightarrow{p}\left(0, \frac{1}{\mu^{2}} \times 6^{2}\right)
\end{aligned}
$$

The asymptotic standard error of $\log \bar{x}$

$$
\sqrt{\frac{\sigma^{2}}{n \mu^{2}}}
$$

To eshmate the stander err we use

$$
\sigma^{2} \longmapsto \quad s_{n}^{\prime}=\frac{1}{n-1} \sum_{l=1}^{n}\left(x_{l}-\bar{x}\right)^{2}
$$

$\mu^{2} \mapsto \bar{X}^{2}$. Thus appraxmate $95^{\circ} \%$ CI for $\log \mu$ is

$$
\left[\log \bar{x} \pm 1.96 x \sqrt{\frac{s^{2}}{n \bar{x}^{2}}}\right]
$$

4 Suppose that $\left\{X_{i}\right\}_{i=1}^{n}$ are id Binomial random variables where $X_{i} \sim \operatorname{Bin}(m, p)$.
(i) If $n=3$ and $m=10$, obtain the rejection region for the log-likelihood ratio test at the 5% level for

$$
H_{0}: p=0.6 \text { vs } H_{A}: p>0.6 .(0.8)
$$

Give all working (you may use R).
O Explain why this test should be weed
(ii) Calculate the power of the test for $p=0.8$. Pr detector $\mathbf{p}=0.8$
(iii) You observe the data $\left(x_{1}, x_{2}, x_{3}\right)=(8,6,7)$, based on the data what are the conclusions of the test at the 5% level.
(iv) Bonus question. Marks will only be given if you get full marks in the other parts of this question, this is only for those who want a small challange. If you do not do it you will not be penalized.
Obtain an alternative rejection region for $\left(X_{1}, X_{2}, X_{3}\right)$, where the probability of a Type I error is 5% or less. Obtain the power for this new test when $p=0.8$.

The likelihood is

$$
L_{n}(p)=\prod_{l=1}^{n}\binom{m}{x_{l}} p^{x_{l}}(1-p)^{m-x_{l}}
$$

The log-likelihood under the null is

$$
2_{n}\left(p_{0}\right)=\sum_{i=1}^{n}\left\{\log \left(n_{i}\right)+x_{t} \log p+\left(m-x_{0}\right) \log (1-p)\right\}
$$

The log-likelehood under the alternative is

$$
\begin{aligned}
\mathscr{L}_{n}\left(p_{i}\right) & =\sum_{i=1}^{n}\left\{\log \left(\hat{x}_{x}\right)+x_{L} \log p_{i}+\left(m-x_{i}\right) \log \left(1-p_{i}\right)\right\} \\
\log L R(\underline{x}) & =\mathscr{L}_{n}\left(p_{1}\right)-\mathscr{L}_{n}\left(p_{0}\right) \\
& =\sum_{l=1}^{n} x_{c} \log \frac{p_{1}}{p_{0}}+\left(m-x_{l}\right) \log \frac{\left(1-p_{1}\right)}{\left(1-p_{0}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{l=1}^{n} x_{l}\left\{\log \frac{p_{1}}{1-p_{1}}-\log \frac{p_{0}}{1-p_{0}}\right\} \\
& \left.+m n \log \left(\frac{1-p_{4}}{1-p_{0}}\right)\right\} \\
& p\left\{\log L R(\underline{x}) \geqslant k \mid H_{0}\right\} \\
& =p\{\sum_{i=1}^{n_{1}} x_{c} \cdot \underbrace{\left(\log \frac{p_{1}}{1-p_{1}}-\log \frac{p_{0}}{1-p_{i}}\right.}_{\gamma}) \quad \gamma>0 \\
& \left.\left.\geqslant k-m_{n} \log \left(\frac{1-p_{1}}{1-p_{1}}\right) \right\rvert\, H_{0}\right\} \\
& =p\left\{\sum_{i=1}^{n} x_{L} \geqslant T \mid H_{0}\right\}
\end{aligned}
$$

Sine $\quad x_{6} \sim \operatorname{Bin}\left(m, p_{0}\right) \quad($ under null) $\sum_{l=1}^{n} X_{l} \sim \operatorname{Bun}\left(m n, p_{0}\right) \quad(m$ der null $)$ $p_{0}=0.6 \quad n \times m=30$. Using R the rejection region is $C_{0.05}=\{29,24, \ldots, 30\}$

$$
p\left\{\sum x_{L} \in C_{0.05} \mid p=0.6\right\}=0.43
$$

(ii) The power of the test for $p=0.8 \mathrm{is}$

$$
\sin \{d \operatorname{binom}(c(23: 30), 30,0.8)\}=76 \%
$$

* There exist no other test (rejection region of $\left.\left(x_{1}, x_{2}, x_{3}\right)\right)$ with type $1 \mathrm{ers}=\sigma \%$, with power greater than 76%.
(iii) Since $8+6+7=21 \notin C_{0.05}$. We cannot regent the null at the 5% level. These es no evidence in the data to suggest $p>0.6$.

5 Suppose that $\left\{X_{i}\right\}_{i=1}^{n}$ are id normal random variables with mean μ and variance σ^{2}. We will assume in this question that μ is known.
You may use that if $Z \sim N\left(0, \sigma^{2}\right)$, then $\operatorname{var}[Z]=2 \sigma^{4}$.
(i) Obtain the maximum likelihood estimator of σ^{2}. Denote this as $\widehat{\sigma}_{M L E}^{2}$
(ii) Derive the exact distribution of $\widehat{\sigma}_{M L E}^{2}$.
(iii) Derive the asymptotic distribution of $\widehat{\sigma}_{M L E}^{2}$.
(iv) Derive the generalized log-likelihood ratio statistic for

$$
H_{0}: \sigma^{2}=\sigma_{0}^{2} \text { vs } H_{A}: \sigma^{2} \neq \sigma_{0}^{2}
$$

(v) Derive the (asymptotic) rejection region for the test statistic at the 5% level.
(i) The likelihood is

$$
f_{n}\left(\sigma^{2}\right)=-\frac{n}{2} \log \sigma^{2}-\frac{1}{2 n \sigma^{2}} \sum_{l=1}^{n}\left(x_{l}-\mu\right)^{2}
$$

$$
\frac{\partial \mathscr{L}_{n}}{\partial \sigma^{2}}=-\frac{n}{2 \sigma^{2}}-\frac{1}{2 n \sigma^{4}} \sum_{l=1}^{n}\left(x_{l}-\mu\right)^{4}=0
$$

$$
\begin{aligned}
& \text { LE } \hat{\sigma}_{n}^{2}=\frac{1}{n} \sum_{L=1}^{n}\left(x_{L}-\mu\right)^{2} \\
& \text { (ii) Since }\left(\frac{\left(x_{L}-\mu\right.}{6}\right)^{2} \sim x_{1}^{2} \text { and }\left\{x_{L}\right\} \text { ore } \\
& \text { ind, then } \hat{\sum}_{l=1}^{1}\left(\frac{x_{L}-\mu}{6}\right)^{2} \rightarrow x_{n}^{2} \\
& \Rightarrow s_{n}^{2} \sim \frac{6^{2}}{n} x_{n_{6}}^{2}
\end{aligned}
$$

(ii) Since $y_{j}=\left(x_{l}-\mu\right)^{2}$ are ld rus. with $E\left(Y_{j}\right)=6^{2}$ and $\operatorname{var}\left(y_{j}\right)=26^{4}$.

Then by the CLT

$$
\sqrt{n}\left[S_{n}-6^{2}\right] \xrightarrow{D} N\left(0,26^{4}\right)
$$

(iv) Grocer the null

$$
\begin{aligned}
\mathscr{L}_{n}\left(\sigma_{\sigma}^{2}\right) & =-\frac{n}{2} \log \sigma_{0}^{2}-\frac{1}{2 \sigma_{0}{ }^{2}} \sum_{L=1}^{n}\left(x_{L}-\mu\right)^{2} \\
& =\frac{n}{2} \log \sigma_{0}^{2}-\frac{n}{2} \times \frac{\hat{\sigma}_{n}^{2}}{\sigma_{0}^{2}}
\end{aligned}
$$

Under the alternative

$$
\begin{aligned}
\mathscr{L}_{n}\left(\hat{\sigma}_{n}^{2}\right) & =-\frac{n}{2} \log \hat{\sigma}_{n}^{2}-\frac{1}{2 \hat{\sigma}_{n}^{2}} \sum_{l=1}^{n}\left(x_{l}-\mu\right)^{2} \\
& =-\frac{n}{2} \log \hat{\sigma}_{n}^{2}-\frac{n}{2 \hat{\sigma}_{n}^{2}} \times \hat{\sigma}_{n}^{2} \\
& =-\frac{n}{2} \log \hat{\sigma}_{n}^{L}-\frac{n}{2}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\log \underline{\Lambda}(\underline{x}) & =\mathscr{L}_{n}\left(\hat{\sigma}_{n}^{2}\right)-L_{n}\left(\sigma_{0}^{2}\right) \\
& =-\frac{n}{2} \log \frac{\hat{\sigma}_{n}^{2}}{\sigma_{0}^{2}}+\frac{n}{2} \frac{\hat{\sigma}_{n}^{2}}{\sigma_{0}^{2}}-\frac{n}{2} \\
& =\frac{n}{2}\left\{\frac{\hat{\sigma}_{n}^{2}}{\sigma_{0}^{2}}-\log \frac{\hat{\sigma}_{n}^{2}}{\sigma_{0}^{2}}-1\right\} \\
2 \log \Omega(\underline{x}) & =n\left\{\frac{\hat{\sigma}_{n}^{2}}{\sigma_{0}^{2}}-\log \frac{\hat{\sigma}_{n}^{2}}{\sigma_{0}^{2}}-1\right\}
\end{aligned}
$$

(v) Under the null hypotheses

$$
2 \log \Lambda(\underline{x}) \xrightarrow{D} x^{2}
$$

Thus for a large n, we reject the null at the 5%-level ely

$$
n\left\{\frac{\hat{\sigma}_{n}^{2}}{\sigma_{0}^{2}}-\log \frac{\hat{\sigma}_{n}^{2}}{\sigma_{0}^{2}}-1\right\} \geq \underbrace{\Delta .84}
$$

Bonus Queshon
Take a bol at

$$
n\{\underbrace{\frac{\hat{\sigma}_{n}^{2}}{\sigma_{0}^{2}}-\log \frac{\hat{\sigma}_{n}^{2}}{\sigma_{0}^{2}}-1}\}
$$

Thus
$\left[\frac{\hat{\sigma}_{n}^{2}}{\sigma_{0}{ }^{2}}-\log \frac{\hat{\sigma}_{n}^{2}}{\sigma_{0}^{2}}-1\right\}$ is smallest
when $\hat{G}_{n}{ }^{2} \approx \sigma_{0}^{2}$; which es true when Ho es tree. This the deshbution of $2 \log \Lambda(\underline{x})$

However, of H_{A} is tree we see from
(1) that $\frac{2}{n} \log \Delta(\underline{x})$ will be not be close to ger. Thus $2 \log \Lambda(\underline{x})$ will be "Lerge". This means under the alternative

