STAT 415 - Final (Spring 2020)

Name: \qquad

Exam rules:

- You have 2hrs 15 minutes to to complete the exam, scan it and upload onto Gradebook.
- There are 5 Questions (The exam is worth 40 pts in total).
- This exam is open book. You are free to use your class notes and HW solutions to solve the problems.

Do not do a brain dump. Answers which are irrelevant will be penalized.
Do not blindly copy answers from the HW solutions.

- State precisely in the derivations all the results that you use.
- Explain your arguments carefully, show all your work, and write out all your steps. Credit will be given for clarity. No credit will be given for a solution without working.
- If you are caught cheating or helping someone to cheat on this exam, you will both receive a grade of zero on the exam and you will be turned in.
- If a problem requires a numerical answer, you may express answer in terms of elementary functions or cdfs (e.g. $\Gamma(r+1)$ or $r!$).
- Presentation and scanning rules (20% will be knocked off if these rules are not adhered too).

1. No light pencils. Black is easiest to read.
2. Write big; scrawls are painful to read.
3. Name at top of exam paper (this makes it easier to identify them).
4. Name the submitted file LASTNAME_FIRSTNAME.pdf
5. Submit only one pdf file.
6. The solutions should be on separate pages.
7. Check clarity of scan before submission.
(1) Suppose the random variables $\underline{X}=\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)$ have the covariance matrix

$$
\left(\begin{array}{ccccc}
1 & 1 / 2 & 0 & 0 & 0 \\
1 / 2 & 1 & 1 / 2 & 0 & 0 \\
0 & 1 / 2 & 1 & 1 / 2 & 0 \\
0 & 0 & 1 / 2 & 1 & 1 / 2 \\
0 & 0 & 0 & 1 / 2 & 1
\end{array}\right)
$$

Obtain its covariance network.
(2) Suppose $\left\{\left(X_{t}, Y_{t}\right)\right\}_{t=1}^{n}$ are independent bivariate random variables (meaning that over t they are independent), where

$$
X_{t}=2 t+\varepsilon_{t} \quad Y_{t}=\cos \left(\frac{2 \pi t}{3}\right)+e_{t}
$$

and $\left\{\varepsilon_{t}, e_{t}\right\}$ are random with $\mathrm{E}\left[\varepsilon_{t}\right]=\mathrm{E}\left[e_{t}\right]=0, \operatorname{var}\left[\varepsilon_{t}\right]=\operatorname{var}\left[e_{t}\right]=\sigma^{2}$ and $\delta=\operatorname{cov}\left(\varepsilon_{t}, e_{t}\right)$. Let

$$
S_{n}=\frac{1}{n} \sum_{t=1}^{n}\left(X_{t}-Y_{t}\right)
$$

Obtain $\mathrm{E}\left[S_{n}\right]$ and $\operatorname{var}\left[S_{n}\right]$.
(3) Suppose that $\left\{X_{i}\right\}$ are iid random variables with mean $\mu(\mu \neq 0)$ and variance σ^{2}. Let \bar{X} denote the sample mean.
(i) Obtain the asymptotic distribution of $\log \bar{X}$.
(ii) Based on (ii) construct an approximate 95% confidence interval for $\log \mu$. The confidence interval should be computable, where unknown parameters are replaced with their estimators.

4 Suppose that $\left\{X_{i}\right\}_{i=1}^{n}$ are iid Binomial random variables where $X_{i} \sim \operatorname{Bin}(m, p)$.
(i) If $n=3$ and $m=10$, obtain the rejection region for the log-likelihood ratio test at the 5% level for

$$
H_{0}: p=0.6 \text { vs } H_{A}: p=0.8
$$

Give all working (you may use R).
Hint: Recall that the Binomial distribution is the sum of Bernoulli random variables. I.e. If if $S_{n}=\sum_{i=1}^{K} \delta_{i}\left(\right.$ where $\left\{\delta_{i}\right\}$ are iid, $\delta_{i} \in\{0,1\}$ and $\left.P\left(\delta_{i}=1\right)=p\right)$, then $S_{n} \sim \operatorname{Bin}(K, p)$.
(ii) Calculate the power of the test for $p=0.8$. Briefly explain why this test should be used for detecting the alternative $p=0.8$?
(iii) You observe the data $\left(x_{1}, x_{2}, x_{3}\right)=(8,6,7)$. Based on the data what are the conclusions of the test at the 5% level.

- Bonus question (worth nothing). Submit (if you want) after the exam, through email.

Obtain an alternative rejection region for $\left(X_{1}, X_{2}, X_{3}\right)$, where the probability of a Type I error is 5% or less. Obtain the power for this new test when $p=0.8$.

5 Suppose that $\left\{X_{i}\right\}_{i=1}^{n}$ are iid normal random variables with mean μ and variance σ^{2}. We will assume in this question that μ is known.
You may use that if $Z \sim N\left(0, \sigma^{2}\right)$, then $\operatorname{var}\left[Z^{2}\right]=2 \sigma^{4}$.
(i) Obtain the maximum likelihood estimator of σ^{2}. Denote this as $\widehat{\sigma}_{M L E}^{2}$
(ii) Derive the exact distribution of $\widehat{\sigma}_{M L E}^{2}$.
(iii) Derive the asymptotic distribution of $\widehat{\sigma}_{M L E}^{2}$.
(iv) Derive the generalized log-likelihood ratio statistic for

$$
H_{0}: \sigma^{2}=\sigma_{0}^{2} \text { vs } H_{A}: \sigma^{2} \neq \sigma_{0}^{2}
$$

(v) Derive the (asymptotic) rejection region for the test statistic at the 5% level.

- Bonus Question (worth nothing), Submit (if you want) after the exam, through email.

Make a sketch of the distribution of $2 \log \Delta(\underline{x})$, under the alternative $\sigma^{2}=\sigma_{1}^{2}$. Explaining if and how the test has power.

