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Abstract

The Wiener-Hopf equations are a Toeplitz system of linear equations that naturally

arise in several applications in time series. These include the update and prediction step

of the stationary Kalman filter equations and the prediction of bivariate time series. The

celebrated Wiener-Hopf technique is usually used for solving these equations, and is based

on a comparison of coefficients in a Fourier series expansion. However, a statistical interpre-

tation of both the method and solution is opaque. The purpose of this note is to revisit the

(discrete) Wiener-Hopf equations and obtain an alternative solution that is more aligned

with classical techniques in time series analysis. Specifically, we propose a solution to the

Wiener-Hopf equations that combines linear prediction with deconvolution.

The Wiener-Hopf solution requires the spectral factorisation of the underlying spectral

density function. For general spectral density functions this is infeasible. Therefore, it is

usually assumed that the spectral density is rational, which allows one to obtain a com-

putationally tractable solution. However, this leads to an approximation error when the

underlying spectral density is not a rational function. We use the proposed solution to-

gether with Baxter’s inequality to derive an error bound for the rational spectral density

approximation.
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1 Introduction

The Wiener-Hopf technique (Wiener and Hopf, 1931; Hopf, 1934) was first proposed in the 1930s

as a method for solving an integral equation of the form

g(τ) =

∫ ∞
0

h(t)c(τ − t)dt for τ ∈ [0,∞)

in terms of h(·), where c(·) is a known difference kernel and g(·) is a specified function. The above

integral equation and the Weiner-Hopf technique have been used widely in many applications

in applied mathematics and engineering (see Lawrie and Abrahams (2007) for a review). In

the 1940s, Wiener (1949) reformulated the problem within discrete “time”, which is commonly

referred to as the Wiener (causal) filter. The discretization elegantly encapsulates several prob-

lems in time series analysis. For example, the best fitting finite order autoregressive parameters

fall under this framework. The autoregressive parameters can be expressed as a finite interval

Wiener-Hopf equations (commonly referred to as the FIR Wiener filter), for which Levinson

(1947) and Durbin (1960) proposed a O(n2) method for solving these equations. More broadly,

the best linear predictor of a causal stationary time series naturally gives rise to the Wiener

filter. For example, the prediction of hidden states based on the observed states in a Kalman

filter model. The purpose of this paper is to revisit the discrete-time Wiener-Hopf equations (it

is precisely defined in (1.2)) and derive an alternative solution using the tools of linear prediction.

Below we briefly review some classical results on the Wiener filter.

Suppose that {Zt = (Xt, Yt)
′ : t ∈ Z} is a real-valued, zero mean bivariate weakly stationary

time series where {Xt} and {Yt} are defined on the same probability space (Ω,F , P ). Let

c(`) = cov(X0, X−`) and cY X(`) = cov(Y0, X−`) be the autocovariance and cross-covariance

function respectively. Let M denote the real Hilbert space in L2(Ω,F , P ) spanned by {Xt : t ∈
Z}∪ {Yt : t ∈ Z}. The inner product and norm onM is 〈U, V 〉 = cov[U, V ] and ‖U‖ = 〈U,U〉1/2

respectively. For t ∈ Z, let Ht = sp(Xj : j ≤ t) be the closed subspace of M spanned by

{Xj : j ≤ t} and PHt is the orthogonal projection of M onto Ht. The orthogonal projection of

Y0 onto H0 is

PH0(Y0) =
∞∑
j=0

hjX−j, (1.1)

were PH0(Y0) = arg minU∈H0 ‖Y0 − U‖. To evaluate {hj : j ≥ 0}, we rewrite (1.1) as a system of

linear equations. By using that PH0(Y0) is an orthogonal projection of Y0 onto H0 = sp(X` : ` ≤
0) it is easily shown that (1.1) leads to the system of normal equations

cY X(`) =
∞∑
j=0

hjc(`− j) for ` = 0, 1, .... (1.2)

The above set of equations is typically referred to as the Wiener-Hopf equations (or semi-infinite
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Toeplitz equations). There are two well-known methods for solving this equation in the frequency

domain; the Wiener-Hopf technique (sometimes called the gapped function, see Wiener (1949))

and the prewhitening method proposed in Bode and Shannon (1950) and Zadeh and Ragazz-

ini (1950). Both solutions solve for H(ω) =
∑∞

j=0 hje
ijω (see Kailath (1974), Kailath (1980)

and Orfanidis (2018), Sections 11.3-11.8). The Wiener-Hopf technique is based on the spectral

factorization and a comparison of Fourier coefficients corresponding to negative and positive fre-

quencies. The prewhitening method, as the name suggests, is more in the spirit of time series

where the time series {Xt} is whitened using an autoregressive filter. We assume the spectral

density f(ω) =
∑

r∈Z c(r)e
irω satisfies the condition 0 < infω f(ω) ≤ supω f(ω) < ∞. Then,

{Xt} admits an infinite order MA and AR representation (see Pourahmadi (2001), Sections 5-6

and Krampe et al. (2018), page 706)

Xt = εt +
∞∑
j=1

ψjεt−j, Xt −
∞∑
j=1

φjXt−j = εt t ∈ Z (1.3)

where
∑∞

j=1 ψ
2
j <∞,

∑∞
j=1 φ

2
j <∞, and {εt} is a white noise process with Eε2t = σ2 > 0.

From (1.3), we immediately obtain the spectral factorization f(ω) = σ2|φ(ω)|−2, where φ(ω) =

1 −
∑∞

j=1 φje
ijω. Given A(ω) =

∑∞
j=−∞ aje

ijω, we use the notation [A(ω)]+ =
∑∞

j=0 aje
ijω and

[A(ω)]− =
∑−1

j=−∞ aje
ijω. Both the Wiener-Hopf technique and prewhitening method yield the

solution

H(ω) = σ−2φ(ω)[φ(ω)∗fY X(ω)]+, (1.4)

where fY X(ω) =
∑

`∈Z cY X(`)ei`ω and φ(ω)∗ is a complex conjugate of φ(ω).

The normal equations in (1.2) belong to the general class of Wiener-Hopf equations of the

form

g` =
∞∑
j=0

hjc(`− j) for ` ≥ 0, (1.5)

where {c(r) : r ∈ Z} is a symmetric, positive definite sequence. The Wiener-Hopf technique

yields the solution

H(ω) = σ−2φ(ω)[φ(ω)∗G+(ω)]+, (1.6)

where G+(ω) =
∑∞

`=0 g`e
i`ω (the derivation is well-known, but for completeness we give a short

proof in Section 2.3). An alternative method for solving for {hj : j ≥ 0} is within the time

domain. This is done by representing (1.5) as the semi-infinite Toeplitz system

g+ = T (f)h+, (1.7)

where g+ = (g0, g1, g2, . . .)
′ and h+ = (h0, h1, . . .)

′ are semi-infinite (column) sequences and T (f)

is a Toeplitz matrix of the form T (f) = (c(t − τ); t, τ ≥ 0). Let {φj : j ≥ 0} (setting φ0 = −1)

denote the autoregressive coefficients corresponding to f defined as in (1.3), φ(·) be its Fourier
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transform. By letting φj = 0 for j < 0, we define the lower triangular Toeplitz matrix T (φ) =

(φt−τ ; t, τ ≥ 0). Provided that 0 < infω f(ω) ≤ supω f(ω) < ∞, it is well-known that T (f) is

invertible on `+2 = {(v0, v1, ...) :
∑∞

j=0 |vj|2 < ∞}, and the inverse is T (f)−1 = σ−2T (φ)T (φ)∗

(see, for example, Theorem III of Widom (1960)), thus the time domain solution to (1.5) is

h+ = T (f)−1g+ = σ−2T (φ)T (φ)∗g+.

In this paper, we study the Wiener-Hopf equations from a time series perspective, combining

linear prediction methods developed in the time domain with the deconvolution method in the

frequency domain. Observe that (1.5) is semi-infinite convolution equations (since the equations

only hold for non-negative index `), thus the standard deconvolution approach is not possible.

In Subba Rao and Yang (2021), we used the tools of linear prediction to rewrite the Gaussian

likelihood of a stationary time series within the frequency domain. We transfer some of these

ideas to solving the Wiener-Hopf equations. In Section 2.2, we show that we can circumvent

the constraint ` ≥ 0, by using linear prediction to yield the normal equations in (1.2) for all

` ∈ Z. In Section 2.3, we show that there exists a stationary time series {Xt} and random

variable Y ∈ sp(Xj : j ≤ 0) where Y and {Xt} induce the general Wiener-Hopf equations of the

form (1.5). This allows us to use the aforementioned technique to reformulate the Wiener-Hopf

equations as a bi-infinite Toeplitz system, and thus obtain a solution to H(ω) as a deconvolution.

The same technique is used to obtain an expression for entries of the inverse Toeplitz matrix

T (f)−1.

In practice, evaluating H(ω) in (1.4) for a general spectral density is infeasible. Typically, it

is assumed that the spectral density is rational, which allows one to obtain a computationally

tractable solution for H(ω). Of course, this leads to an approximation error in H(ω) when

the underlying spectral density is not a rational function. In Section 3 we show that Baxter’s

inequality can be utilized to obtain a bound between H(ω) and its approximation based on a

rational approximation of the general spectral density. The proofs of results in Sections 2 and 3

can be found in the Appendix.

2 A prediction approach

2.1 Notation and Assumptions

In this section, we collect together the notation introduced in Section 1 and some additional

notation necessary for the paper.

Let L2([0, 2π)) be the space of all square integral complex functions on [0, 2π) and `2 is a space

of all bi-infinite complex sequences v = (. . . , v−1, v0, v1, . . .) where
∑

j∈Z |vj|2 <∞. Similarly, we

denote `+2 = {v+ = (v0, v1, ...) :
∑∞

j=0 |vj|2 < ∞}, a space of all semi-infinite square summable

sequences. To connect the time and frequency domain through an isomorphism, we define the

4



Fourier transform F : `2 → L2([0, 2π))

F (v)(ω) =
∑
j∈Z

vje
ijω.

We define the semi- and bi-infinite Toeplitz matrices (operators) T (f) = (c(t− τ); t, τ ≥ 0) and

T±(f) = (c(t− τ); t, τ ∈ Z) on `+2 and `2 respectively. In this paper will make frequent use of the

convolution theorem; if h ∈ `2, then F (T±(f)h)(ω) = f(ω)H(ω), where f(ω) =
∑

r∈Z c(r)e
irω

and H(ω) = F (h)(ω). We will use the following assumptions.

Assumption 2.1 Let {c(r) : r ∈ Z} be a symmetric positive definite sequence and f(ω) =∑
r∈Z c(r)e

irω be its Fourier transform. Then,

(i) 0 < infω f(ω) ≤ supω f(ω) <∞.

(ii) For some K > 1 we have
∑

r∈Z |rKc(r)| <∞.

Under Assumption 2.1(i), we have the unique factorization

f(ω) = σ2|ψ(ω)|2 = σ2|φ(ω)|−2, (2.1)

where σ2 > 0, ψ(ω) = 1+
∑∞

j=1 ψje
ijω and φ(ω) = (φ(ω))−1 = 1−

∑∞
j=1 φje

ijω. We note that the

characteristic polynomials Ψ(z) = 1+
∑∞

j=1 ψjz
j and Φ(z) = 1−

∑∞
j=1 φjz

j do not have zeroes in

|z| ≤ 1 thus the AR(∞) parameters are causal or equivalently are said to have minimum phase

(see Szegö (1921) and Inoue (2000), pages 68-69).

We mention that Assumption 2.1(i) is used in all the results in this paper, whereas, Assump-

tion 2.1(ii) is only required in the approximation theorem in Section 3.

2.2 Bivariate time series and the Wiener-Hopf equations

We now give an alternative formulation for the solution of (1.2) and (1.5), which utilizes properties

of linear prediction to solve it using a standard deconvolution method. To integrate our derivation

within the Wiener causal filter framework, we start with the classical Wiener filter. For {Xt :

t ∈ Z} and Y ∈M, let

PH0(Y) =
∞∑
j=0

hjX−j. (2.2)

We observe that by construction, (2.2) gives rise to the normal equations

cov(Y,X−`) =
∞∑
j=0

hjc(`− j) ` ≥ 0. (2.3)
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Since (2.3) only holds for positive `, this prevents one using deconvolution to solve for H(ω).

Instead, we define a “proxy” set of variables for {X−` : ` < 0} such that (2.3) is valid for ` < 0.

By using the property of orthogonal projections, we have

cov(Y, PH0(X−`)) = cov(PH0(Y), X−`) for ` < 0.

This gives

cov(Y, PH0(X−`)) =
∞∑
j=0

hjcov(X−j, X−`) =
∞∑
j=0

hjc(`− j) ` < 0. (2.4)

Equations (2.3) and (2.4) allow us to represent the solution of H(ω) as a deconvolution. We define

the semi- and bi-infinite sequences c− = (cov(Y, PH0(X−`)); ` < 0), c+ = (cov(Y,X−`); ` ≥ 0),

and c± = (c−, c+). Taking the Fourier transform of c± and using the convolution theorem gives

F (c±)(ω) = H(ω)f(ω). Thus

H(ω) =
F (c±)(ω)

f(ω)
=

∑∞
`=0 cov(Y,X−`)e

i`ω +
∑∞

`=1 cov (Y, PH0(X`)) e
−i`ω

f(ω)
. (2.5)

This forms the key to the following theorem.

Theorem 2.1 Suppose {Xt} is a stationary time series whose spectral density satisfies As-

sumption 2.1(i) and Y ∈ M. Let PH0(Y) =
∑∞

j=0 hjX−j, then (hj; j ≥ 0) ∈ `+2 , (cY X(`) =

cov(Y,X−`); ` ≥ 0) ∈ `+2 and

H(ω) =

∑∞
`=0 cY X(`)

(
ei`ω + ψ(ω)∗φ`(ω)∗

)
f(ω)

, (2.6)

where φ(·) and ψ(·) are defined in (2.1) and φ`(ω) =
∑∞

s=1 φ`+se
isω for ` ≥ 0.

PROOF. See Appendix A. �

Remark 2.1 It is clear that
∑∞

`=1X`e
i`ω is not a well-defined random variable. However, it

is interesting to note that under Assumption 2.1(ii) (for K = 1)
∑∞

`=1 PH0(X`)e
−i`ω is a well

defined random variable, where
∑∞

`=1 PH0(X`)e
−i`ω ∈ H0 and

∞∑
`=1

PH0(X`)e
−i`ω = ψ(ω)

∞∑
j=0

X−jφj(ω). (2.7)

In other words, despite
∑∞

`=1X`e
i`ω not be well defined, informally its projection onto H0 does

exist.
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2.3 General Wiener-Hopf equations

We now generalize the above prediction approach to general Wiener-Hopf linear equations which

satisfy

g` =
∞∑
j=0

hjc(`− j) ` ≥ 0, (2.8)

where {g` : ` ≥ 0} and {c(r) : r ∈ Z} (which is assumed to be a symmetric, positive definite

sequence) are known. We will obtain a solution similar to (2.6) but for the normal equations in

(2.8). We first describe the classical Wiener-Hopf method to solve (2.8). Since {c(r)} is known

for all r ∈ Z, we extend (2.8) to the negative index ` < 0, and define {g` : ` < 0} as

g` =
∞∑
j=0

hjc(`− j) for ` < 0. (2.9)

Note that {g` : ` < 0} is not given, however it is completely determined by {g` : ` ≥ 0} and

{c(r) : r ∈ Z} (this can be seen from equation (2.13), below). The Wiener-Hopf technique

evaluates the Fourier transform of the above and isolates the positive frequencies to yield the

solution for H(ω). Specifically, evaluating the Fourier transform of (2.8) and (2.9) gives

H(ω)f(ω) = G−(ω) +G+(ω) (2.10)

where G−(ω) =
∑−1

`=−∞ g`e
i`ω and G+(ω) =

∑∞
`=0 g`e

i`ω. Replacing f(ω) with σ2|ψ(ω)|2 and

dividing the above with σ2ψ(ω)∗ yields

H(ω)ψ(ω) =
G−(ω)

σ2ψ(ω)∗
+

G+(ω)

σ2ψ(ω)∗
= σ−2φ(ω)∗G−(ω) + σ−2φ(ω)∗G+(ω). (2.11)

Isolating the positive frequencies in (2.11) gives the solution

H(ω) = σ−2φ(ω)[φ(ω)∗G+(ω)]+, (2.12)

this proves the result stated in (1.6). Similarly, by isolating the negative frequencies, we obtain

G−(ω) in terms of f and G+(ω)

G−(ω) =
−1∑

`=−∞

g`e
i`ω = −ψ(ω)∗[φ(ω)∗G+(ω)]−. (2.13)

Thus (2.12) and (2.13) yield an explicit solution for H(ω) and G−(ω) respectively. However, from

a time series perspective, it is difficult to interpret these formulas. We now obtain an alternative

expression for these solutions based on a linear prediction of random variables.

We consider the matrix representation, T (f)h+ = g+, in (1.7). We solve T (f)h+ = g+ by
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embedding the semi-infinite Toeplitz matrix T (f) on `+2 into the bi-infinite Toeplitz system on `2.

We divide the bi-infinite Toeplitz matrix T±(f) into four sub-matrices C00 = (c(t− τ); t, τ < 0),

C10 = (c(t − τ); t < 0, τ ≥ 0), C01 = (c(t − τ); t ≥ 0, τ < 0), and C11 = (c(t − τ); t, τ ≥ 0).

We observe that C11 = T (f). Further, we let h± = (0′,h′+)′ = (. . . , 0, 0, h0, h1, h2, . . .)
′ and

g± = (g′−,g
′
+)′ = (. . . , g−2, g−1, g0, g1, g2, . . .)

′ where g− = C00C
−1
11 g+. Then, we obtain the

following bi-infinite Toeplitz system on `2

T±(f)h± =

(
C00 C01

C10 C11

)(
0

h+

)
=

(
C01h+

C11h+

)
=

(
C01C

−1
11 g+

g+

)
=

(
g−

g+

)
= g±. (2.14)

We note that the positive indices in the sequence g± are {g` : ` ≥ 0}, but for the negative

indices, where ` < 0, it is g` = [C01C
−1
11 g+]` which is identical to g` defined in (2.9). The

Fourier transform on both sides in (2.14) gives the deconvolution f(ω)H(ω) = F (g±)(ω), which

is identical to (2.10). We now reformulate the above equation through the lens of prediction. To

do this we define a stationary process {Xt} and a random variable Y on the same probability

space which yields (2.8) as their normal equations.

We first note that since {c(r) : r ∈ Z} is a symmetric, positive definite sequence, there exists

a stationary time series {Xt} with {c(r) : r ∈ Z} as its autocovariance function (see Brockwell

and Davis (2006), Theorem 1.5.1). Using this we define the random variable

Y =
∞∑
j=0

hjX−j. (2.15)

Provided that h+ ∈ `+2 , then E[Y 2] < ∞ and thus Y belongs to the Hilbert space spanned by

{Xj : j ≤ 0} (we show in Theorem 2.2 that this is true if g+ ∈ `+2 ). By (2.8), we observe that

cov(Y,X−`) =
∑∞

j=0 hjc(`− j) = g` for all ` ≥ 0. We now show that for ` < 0

cov(Y,X−`) = [C01C
−1
11 g+]` = g`.

First, since Y ∈ sp(Xj : j ≤ 0), then cov(Y,X−`) = cov(Y, PH0(X−`)). Further, for ` < 0, the

`th row (where we start the enumeration of the rows from the bottom) of C01C
−1
11 contains the

coefficients of the best linear predictor of X−` given {Xj : j ≤ 0} i.e.

PH0(X−`) =
∞∑
j=0

[C01C
−1
11 ]`,jX−j ` < 0.
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Using the above, we evaluate cov(Y, PH0(X−`)) for ` < 0

cov(Y, PH0(X−`)) = cov

(
Y,

∞∑
j=0

[C01C
−1
11 ]`,jX−j

)

=
∞∑
j=0

[C01C
−1
11 ]`,jcov(Y,X−j) (from (2.15), gj = cov(Y,X−j))

=
∞∑
j=0

[C01C
−1
11 ]`,jgj = [C01C

−1
11 g+]` = g`.

Thus the entries of g′± = (g′−,g
′
+) are indeed the covariances: g′− = (cov(Y, PH0(X−`)); ` < 0)

and g′+ = (cov(Y,X−`); ` ≥ 0). This allows us to use Theorem 2.1 to solve general Wiener-Hopf

equations. Further, it gives an intuitive meaning to (2.9) and (2.14).

Theorem 2.2 Suppose that {c(r) : r ∈ Z} is a symmetric, positive definite sequence and its

Fourier transform f(ω) =
∑

r∈Z c(r)e
irω satisfies Assumption 2.1(i). We define the (semi) infi-

nite system of equations

g` =
∞∑
j=0

hjc(`− j) ` ≥ 0,

where (g`; ` ≥ 0) ∈ `+2 . Then, h′+ ∈ `+2 and

H(ω) =

∑∞
`=0 g`

(
ei`ω + ψ(ω)∗φ`(ω)∗

)
f(ω)

. (2.16)

PROOF. See Appendix A. �

It is interesting to observe that the solution for H(ω) given in (2.12) was obtained by compar-

ing the frequencies in a Fourier transform. Whereas the solution in Theorem 2.2 was obtained

using linear prediction. The two solutions are algebraically different. We now show that they are

the same by direct verification. Comparing the solutions (2.12) and (2.16) we have two different

expressions for H(ω)

H(ω) = σ−2φ(ω)[φ(ω)∗G+(ω)]+ =
F (g±)(ω)

f(ω)
= σ−2F (g±)(ω)|φ(ω)|2.

Therefore, the above are equivalent if

[φ(ω)∗G+(ω)]+ = F (g±)(ω)φ(ω)∗. (2.17)

In the following lemma we prove the claim above by direct verification.
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Lemma 2.1 Suppose the same set of assumptions and notations in Theorem 2.2 hold. Then

[φ(ω)∗G+(ω)]+ = φ(ω)∗
∞∑
`=0

g`
(
ei`ω + ψ(ω)∗φ`(ω)∗

)
where G+(ω) =

∑∞
`=0 g`e

i`ω.

An interesting application of Theorem 2.2 is that it can be used to obtain an expression for

T (f)−1. As mentioned in Section 1, it is well-known that T (f)−1 = σ−2T (φ)T (φ)∗. We show

below that an alternative expression for the entries of T (f)−1 = (dk,j; k, j ≥ 0) can be deduced

using the deconvolution method described in Theorem 2.2.

Corollary 2.1 Suppose the same set of assumptions and notations in Theorem 2.2 hold. Let

dk = (dk,j; j ≥ 0) denote the kth row of T (f)−1. Then, dk ∈ `+2 for all k ≥ 0 and the Fourier

transfrom Dk(ω) = F (dk)(ω) =
∑∞

j=0 dk,je
ijω is

Dk(ω) =
eikω + ψ(ω)∗φk(ω)∗

f(ω)
k ≥ 0.

Therefore,

dj,k =
1

2π

∫ 2π

0

(
eikω + ψ(ω)∗φk(ω)∗

f(ω)

)
e−ijωdω j, k ≥ 0.

PROOF. See Appendix A. �

Remark 2.2 (Multivariate extension) The case that the (autocovariance) sequence {C(r) :

r ∈ Z} is made up of d × d-dimensions, has not been considered in this paper. However, if

Σ(ω) =
∑

r∈Z C(r)eirω is a positive definite matrix with Vector MA(∞) and Vector AR(∞)

representations, then it is may be possible to extend the above results to the multivariate setting.

3 Finite order autoregressive approximations

In many applications it is often assumed the spectral density is rational (Cadzow (1982); Ahlén

and Sternad (1991), and Ge and Kerrigan (2016)). Obtaining the spectral factorization of a

rational spectral density (such as that given in (2.1)) is straightforward, and is one of the reasons

that rational spectral densities are widely used. However, a rational spectral density is usually

only an approximation of the underlying spectral density. In this section, we obtain a bound for

the approximation when the rational spectral density corresponds to a finite order autoregressive

process. We mention that using the expression in (2.16) easily lends itself to obtaining a rational

approximation and for bounding the difference using Baxter’s inequality.
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We now use the expression in (2.16) to obtain an approximation of H(ω) in terms of a best

fitting AR(p) coefficients. In particular, using that ψ(ω)∗ = [φ(ω)∗]−1, we replace the infinite

order AR coefficients in

H(ω) =

∑∞
`=0 g`

(
ei`ω + [φ(ω)∗]−1φ`(ω)∗

)
f(ω)

(3.1)

with the best fitting AR(p) coefficients. More precisely, suppose that (φp,1, ..., φp,p)
′ are the best

fitting AR(p) coefficients in the sense that it minimizes the mean squared error

(φp,1, ..., φp,p)
′ = arg min

a
‖X0 −

p∑
j=1

ajX−j‖2 = arg min
a

1

2π

∫ 2π

0

|1−
p∑
j=1

aje
ijω|2f(ω)dω (3.2)

where a = (a1, ..., ap)
′. Let φp(ω) = 1 −

∑p
j=1 φp,je

ijω and fp(ω) = σ2|φp(ω)|−2 where σ2 =

exp((2π)−1
∫ 2π

0
log f(ω)dω). We note that the zeros of φp(z) = 1 −

∑p
j=1 φp,jz

j lie outside the

unit circle. Then, we define the approximation of H(ω) as

Hp(ω) =

∑∞
`=0 g`

(
ei`ω + [φp(ω)∗]−1φp,`(ω)∗

)
fp(ω)

, (3.3)

where φp,`(ω) =
∑p−`

s=1 φp,`+se
isω for 0 ≤ ` < p and 0 if ` ≥ p. We observe that the Fourier

coefficients of Hp(ω) are the solution of T (fp)hp = g+ where hp = (hp,0, hp,1, . . .)
′ with hp,j =

(2π)−1
∫ 2π

0
Hp(ω)e−ijωdω. Thus T (fp) and T (fp)

−1 are approximations of T (f) and T (f)−1.

Observe that by using Lemma 2.1 and (2.12) we can show that

Hp(ω) = σ−2φp(ω)[φp(ω)∗G+(ω)]+ (3.4)

Below we obtain a bound for H(ω)−Hp(ω). It is worth noting that to obtain the bound we use

the expressions for H(ω) and Hp(ω) given in (3.1) and (3.3), as these expression are easier to

study than their equivalent expressions in (2.12) in (3.4).

Theorem 3.1 (Approximation theorem) Suppose that {c(r) : r ∈ Z} is a symmetric, posi-

tive definite sequence that satisfies Assumption 2.1(ii) and its Fourier transform f(ω) =
∑

r∈Z c(r)e
irω

satisfies Assumption 2.1(i). We define the (semi) infinite system of equations

g` =
∞∑
j=0

hjc(`− j) ` ≥ 0,

where (g`; ` ≥ 0) ∈ `+2 . Let H(ω) and Hp(ω) be defined as in (3.1) and (3.3). Then

∣∣H(ω)−Hp(ω)
∣∣ ≤ C

[
p−K+1 sup

s
|gs|+ p−K |G+(ω)|

]
,

11



where G+(ω) =
∑∞

`=0 g`e
i`ω.

PROOF. See Appendix A. �
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A Proofs

The purpose of this appendix is to give the technical details behind the results stated in the

main section.

PROOF of Theorem 2.1 To prove that h+ = (hj; j ≥ 0)′ ∈ `+2 , we note that since E[Y 2] <∞,

then PH0(Y ) =
∑∞

j=0 hjX−j is a well defined random variable where PH0(Y ) ∈ H0 with

var[PH0(Y )] = 〈h+, T (f)h+〉.

Furthermore, λinf‖h+‖2 ≤ 〈h+, T (f)h+〉 ≤ λsup‖h+‖2 where λinf = inf‖v‖2=1,v∈`+2
T (f)v ≥

infω f(ω) and λsup = sup‖v‖2=1,v∈`+2
T (f)v ≤ supω f(ω). Since infω f(ω) > 0, this implies

‖h+‖2 <∞.

To prove that (cY X(`); ` ≥ 0) ∈ `+2 , we recall that (2.2) leads to the matrix equation

cY X = T (f)h+ where cY X = (cY X(0), cY X(1), . . .)′. We define the operator norm ‖A‖spec =

sup‖v‖2=1,v∈`+2
‖Av‖2 and use the result that since supω f(ω) <∞, then ‖T (f)‖spec ≤ supω f(ω).

Thus ‖cY X‖2 ≤ ‖T (f)‖spec‖h+‖2 ≤ supω f(ω) · ‖h+‖2 <∞, as required.

From (2.5), we have H(ω) = F (c±)(ω)/f(ω). We next express F (c±)(ω) in terms of an

infinite order AR and MA coefficients of {Xt}. To do this we observe

F (c±)(ω) =
∞∑
`=0

cY X(`)ei`ω +
∞∑
`=1

cov
(
Y, PH0(X`)

)
e−i`ω. (A.1)

The second term on the right hand side of (A.1) looks quite wieldy. However, we show below

that it can be expressed in terms of the AR(∞) coefficients associated with f . It is well-known

that the `-step ahead forecast PH0(X`) (` > 0) has the representation PH0(X`) =
∑∞

j=0 φj(`)X−j,

12



where for ` > 0, the `-step prediction coefficients are

φj(`) =
∑̀
s=1

φj+sψ`−s (A.2)

and {φj : j ≥ 1} and {ψj : j ≥ 0} are AR(∞) and MA(∞) coefficients defined in (2.1)

(setting ψ0 = 1). Since Y ∈ M and by the projection theorem PH0(X`) ∈ H0, we have∣∣cov(Y, PH0(X`))e
−i`ω

∣∣ <∞. We now obtain an expression for cov(Y, PH0(X`))e
−i`ω using (A.2)

cov(Y, PH0(X`))e
−i`ω = cov

(
Y,

∞∑
j=0

X−j
∑̀
s=1

φj+sψ`−se
−i`ω

)

=
∑̀
s=1

∞∑
j=0

cY X(j)φj+sψ`−se
−i`ω.

Note that we can exchange the summands in the last equation above due to Fubini’s theorem:

∑̀
s=1

|ψ`−se−i`ω|
∞∑
j=0

|cY X(j)φj+s| ≤

(∑̀
s=1

|ψ`−s|

)(
∞∑
j=0

c(j)2

)1/2( ∞∑
j=1

φ2
j

)1/2

<∞.

Therefore
∞∑
`=1

cov(Y, PH0(X`))e
−i`ω =

∞∑
`=1

(∑̀
s=1

ψ`−s

∞∑
j=0

cY X(j)φj+s

)
e−i`ω.

The Fourier coefficients of the right hand side of above has a convolution form, thus, we use the

convolution theorem and rewrite

∞∑
`=1

cov(Y, PH0(X`))e
−i`ω =

∞∑
`=1

(∑̀
s=1

ψ`−s

∞∑
j=0

cY X(j)φj+s

)
e−i`ω

=

(
∞∑
`=0

ψ`e
−i`ω

)(
∞∑
s=1

∞∑
j=0

cY X(j)φj+se
−isω

)

= ψ(ω)∗
∞∑
j=0

cY X(j)
∞∑
s=1

φj+se
−isω

= ψ(ω)∗
∞∑
j=0

cY X(j)φj(ω)∗

13



where for j ≥ 0, φj(ω) =
∑∞

s=1 φj+se
isω. Substituting the above into F (c±)(ω) gives

F (c±)(ω) =
∞∑
`=0

cY X(`)ei`ω + ψ(ω)∗
∞∑
j=0

φj(ω)∗cY X(j)

=
∞∑
`=0

cY X(`)
(
e−i`ω + ψ(ω)∗φ`(ω)∗

)
. (A.3)

Note it is easily seen that F (c±)(ω) ∈ L2([0, 2π)) since ψ(ω)∗ is bounded. Finally, substituting

the above into H(ω) = F (c±)(ω)/f(ω) proves the result. �

Proof of Remark 2.1 By substituting (A.2) into
∑∞

`=1 PH0(X`)e
i`ω gives

∞∑
`=1

PH0(X`)e
i`ω =

∞∑
`=1

(
∞∑
j=0

X−j
∑̀
s=1

φj+sψ`−s

)
ei`ω

=
∞∑
j=0

X−j

∞∑
s=1

φj+se
isω

∞∑
`=s

ψ`−se
i(`−s)ω

= ψ(ω)
∞∑
j=0

X−j

∞∑
s=1

φj+se
isω = ψ(ω)

∞∑
j=0

X−jφj(ω).

We show that if Assumption 2.1(ii) is satisfied forK = 1, then the right hand side ψ(ω)
∑∞

j=0X−jφj(ω)

converges in H0. To show this, we define the partial sum

Sn = ψ(ω)
n∑
j=0

X−jφj(ω) ∈ H0.

Then, for any n < m

‖Sm−Sn‖2 = ‖
m∑
j=n

ψ(ω)φj(ω)X−j‖2 = var

(
m∑
j=n

ψ(ω)φj(ω)X−j

)
= |ψ(ω)|2(φmn (ω))′Tm−n(f)(φmn (ω))

where (φmn (ω)) = (φn(ω), ..., φm(ω))′ and Tm−n(f) = (c(t− τ); 0 ≤ t, τ ≤ m− n). Therefore,

‖Sm − Sn‖2 = |ψ(ω)|2(φmn (ω))′Tm−n(f)(φmn (ω))

≤ |ψ(ω)|2‖φmn (ω)‖22‖Tm−n(f)‖spec
≤ |ψ(ω)|2(sup

ω
f(ω))‖φmn (ω)‖22

If Assumption 2.1(ii) is satisfied for K = 1, then it is easy to show
∑∞

j=0 |φj(ω)|2 <∞. Therefore,

by Cauchy’s criterion, ‖φmn (ω)‖2 → 0 as n,m→∞, which implies ‖
∑m

j=n ψ(ω)φj(ω)X−j‖2 → 0

as n,m → ∞. Thus, using the Cauchy’s criterion again, ψ(ω)
∑∞

j=0X−jφj(ω) converges in H0.
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This shows
∑∞

`=1 PH0(X`)e
i`ω is well-defined in H0 and satisfies (2.7). �

PROOF of Theorem 2.2 We first prove that h+ ∈ `+2 . Under Assumption 2.1(i), it is

known that T (f) is invertible on `+2 (see Widom (1960), Theorem III). Using that ‖T (f)−1‖sp ≤
[infω f(ω)]−1 we have

‖h+‖2 ≤ ‖T (f)−1‖sp‖g+‖2 ≤ [inf
ω
f(ω)]−1‖g+‖2 <∞

since g+ ∈ `+2 . Thus h+ ∈ `+2 and its Fourier transform H(ω) is well-defined. We use this

result to show that there always exists a random variable Y and time series {Xt} whose normal

equations satisfy

g` =
∞∑
j=0

hjc(`− j) ` ≥ 0.

This allows us to use Theorem 2.1 to prove the result.

First, since {c(r)} is a symmetric, positive definite sequence (or equivalently f(ω) =
∑

r∈Z c(r)e
irω

is positive), by Kolmogorov’s extension theorem, there exists a weakly stationary random pro-

cess {Xt} which has the autocovariance function {c(r)} (see Brockwell and Davis (2006), The-

orem 1.5.1). We define the Hilbert space H0 = sp(Xj : j ≤ 0) and random variable Y =

PH0(Y ) =
∑∞

j=0 hjX−j. Since {hj : j ≥ 0} ∈ `+2 then Y ∈ H0. Then, by definition,

cov(Y,X−`) =
∑∞

j=0 hjc(` − j) = g` for all ` ≥ 0. This connects the equation to the random

variables.

Finally, we follow the proof of Theorem 2.1 to obtain the result. �

PROOF of Lemma 2.1 By (2.16), F (g±)(ω)φ(ω)∗ =
∑∞

`=0 g`
(
ei`ωφ(ω)∗ + φ`(ω)∗

)
. Expand-

ing the right hand side gives

F (c±)(ω)φ(ω)∗ =
∞∑
`=0

g`
(
ei`ωφ(ω)∗ + φ`(ω)∗

)
= φ(ω)∗

∞∑
`=0

g`e
i`ω +

∞∑
`=0

g`φ`(ω)∗

= −

(
∞∑
j=0

φje
−ijω

)(
∞∑
`=0

g`e
i`ω

)
+
∞∑
`=0

g`

(
∞∑
s=1

φs+`e
−isω

)
,

where we set φ0 = −1. Therefore, the k-th Fourier coefficient of F (c±)(ω)φ(ω)∗ is

−
∑

a,b≥0, b−a=k

φagb + δk<0 ·
∞∑
`=0

g`φ`−k, (A.4)

where δk<0 = 1 if k < 0 and 0 otherwise. Depending on the sign of k, (A.4) has different

15



expressions:

k < 0: Using that {(a, b) : a, b ≥ 0, b− a = k} = {(b− k, b) : b ≥ 0}, we get

−
∑

a,b≥0, b−a=k

φagb + δk<0 ·
∞∑
`=0

g`φ`−k = −
∞∑
b=0

φb−kgb +
∞∑
`=0

g`φ`−k = 0. (A.5)

k ≥ 0: The second term of (A.4) vanishes and using that {(a, b) : a, b ≥ 0, b − a = k} =

{(a, a+ k) : a ≥ 0}, we get

−
∑

a,b≥0, b−a=k

φagb + δk<0 ·
∞∑
`=0

g`φ`−k = −
∞∑
a=0

φaga+k. (A.6)

By inspection, we observe that the left hand side of (A.6) is a lag k cross-correlation between

(..., 0,−φ0,−φ1, ...) and (..., 0, g0, g1, ...). Therefore, using the convolution theorem, it is the k-th

Fourier coefficient of (
∑∞

`=0 g`e
i`ω)(

∑∞
`=0−φ`e−i`ω) = G+(ω)φ(ω)∗ (for k ≥ 0). Lastly, combining

(A.5) and (A.6), we get

F (g±)(ω)φ(ω)∗ =
∞∑

k=−∞

(
−

∑
a,b≥0, b−a=k

φagb + δk<0 ·
∞∑
`=0

g`φ`−k

)
eikω

=
∞∑
k=0

(
−
∞∑
a=0

φaga+k

)
eikω = [G+(ω)φ(ω)∗]+.

This proves the lemma. �

Proof of Corollary 2.1 Let δ`,k denote the indicator variable where δ`,k = 1 if ` = k and zero

otherwise. Since T (f)−1 = (dj,k; j, k ≥ 0) is the inverse of T (f) = (c(j − k); j, k ≥ 0), {dj,k} and

{c(r)} satisfy the normal equations

δ`,k =
∞∑
j=0

dj,kc(`− j) `, k ≥ 0. (A.7)

Thus for each k, we have a system of Wiener-Hopf equations. To find dj,k we apply Theorem

2.2. Thus for each (fixed) k ≥ 0 we obtain

Dk(ω) =
1

f(ω)

∞∑
`=0

δ`,k
(
ei`ω + ψ(ω)∗φ`(ω)∗

)
=
eikω + ψ(ω)∗φk(ω)∗

f(ω)
, (A.8)

16



where Dk(ω) =
∑∞

j=0 dj,ke
ijω. Inverting the Fourier transform yields the entries

dj,k =
1

2π

∫ 2π

0

(
eikω + ψ(ω)∗φk(ω)∗

f(ω)

)
e−ijωdω. (A.9)

Thus proving the result.

As an aside it is interesting to construct the random variable Y−k which yields the Wiener-

Hopf equation (A.7). Since {c(r)} forms a (symmetric) positive definite sequence, there exists a

stationary time series {Xt} with {c(r)} as its autocovariance. We define a sequence of random

variables {ε−k : k ≥ 0} where for k ≥ 0

ε−k = X−k − P(−k)c(X−k)

and P(−k)c denotes the orthogonal projection onto the closed subspace sp(Xr : r ≤ 0 and r 6= −k).

We standardize ε−k, where Y−k = ε−k/
√

var[ε−k], noting that var[ε−k] = cov[ε−k, X−k]. Thus by

definition cov[Y−k, X`] = δ`,k and Y−k =
∑∞

j=0 dj,kX−j. �

PROOF of Theorem 3.1 We note that under Assumption 2.1(ii),
∑

r∈Z |rKc(r)| <∞. This

condition implies
∑∞

j=1 |jKφj| <∞ (see Kreiss et al. (2011), Lemma 2.1).

To prove the result, we use Baxter’s inequality, that is for the best fitting AR(p) approximation

of f(ω) (see equation (3.2)) we have

p∑
j=1

|φp,j − φj| ≤ C
∞∑

j=p+1

|φj| (A.10)

where C is a constant that depends on f(ω) = σ2|φ(ω)|−2.
Returning to the proof, the difference H(ω)−Hp(ω) can be decomposed as

H(ω)−Hp(ω) =
∞∑
`=0

g`e
i`ω

(
1

f(ω)
− 1

fp(ω)

)
+
∞∑
`=0

g`

(
[φ(ω)∗]−1φ`(ω)∗

f(ω)
− [φp(ω)∗]−1φp,`(ω)∗

fp(ω)

)
=

∞∑
`=0

g`e
i`ω

(
1

f(ω)
− 1

fp(ω)

)
+ σ−2

∞∑
`=0

g`
[
φ(ω)φ`(ω)∗ − φp(ω)φp,`(ω)∗

]
= A(ω) +B(ω) + C(ω)
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where

A(ω) =

(
1

f(ω)
− 1

fp(ω)

) ∞∑
`=0

g`e
i`ω

B(ω) = σ−2 [φ(ω)− φp(ω)]
∞∑
`=0

g`φ`(ω)∗

C(ω) = σ−2φp(ω)
∞∑
`=0

g` [φ`(ω)∗ − φp,`(ω)∗] .

We bound each term above. First, we bound A(ω). Note that

1

f(ω)
− 1

fp(ω)
= σ−2

(
|φ(ω)|2 − |φp(ω)|2

)
= σ−2 [(φ(ω)− φp(ω))φ(ω)∗ + (φ(ω)∗ − φp(ω)∗)φp(ω)] .

Using (A.10), we have |φ(ω)| ≤
∑∞

j=1 |φj| <∞,

|φ(ω)− φp(ω)| = |
p∑
j=1

(φj − φp,j)eijω +
∞∑

j=p+1

φje
ijω|

≤
p∑
j=1

|φj − φp,j|+
∞∑

j=p+1

|φj| ≤ C
∞∑

j=p+1

|φj|, (A.11)

and

|φp(ω)| ≤ |φp(ω)− φ(ω)|+ |φ(ω)| ≤ C
∞∑

j=p+1

|φj|+
∞∑
j=1

|φj| <∞.

Therefore,∣∣∣∣ 1

f(ω)
− 1

fp(ω)

∣∣∣∣ ≤ σ−2 (|φ(ω)− φp(ω)||φ(ω)∗|+ |φ(ω)∗ − φp(ω)∗||φp(ω)|) ≤ C
∞∑

j=p+1

|φj|.

Furthermore, by Assumption 2.1(ii),

∞∑
j=p+1

|φj| ≤ p−K
∞∑

j=p+1

|jKφj| < Cp−K . (A.12)

Therefore, substituting (A.12) into A(·) gives

|A(ω)| ≤ C

(
∞∑

j=p+1

|φj|

)
·
∣∣ ∞∑
`=0

g`e
i`ω
∣∣ ≤ Cp−K

∣∣G+(ω)
∣∣
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where G+(ω) =
∑∞

`=0 g`e
i`ω. To bound B(ω) we note that

∞∑
`=0

|g`φ`(ω)| ≤
∞∑
`=0

|g`|
∞∑
s=1

|φ`+s| =
∞∑
u=1

u−1∑
`=0

|g`||φu| ≤ sup
s
|gs| ·

∞∑
u=1

|uφu|.

Thus by using the above, (A.11), and (A.12) we have

sup
ω
|B(ω)| ≤ C sup

s
|gs| ·

∞∑
u=1

|uφu| ·
∞∑

j=p+1

|φj| = O

(
sup
s
|gs| · p−K

)
.

Finally, to bound C(ω), by using (A.10) we have

∞∑
`=0

|g`| |φ`(ω)− φp,`(ω)| ≤ C

∞∑
`=0

∞∑
s=p+1

|g`||φs+`| ≤ C sup
s
|gs|

∞∑
`=0

|`φp+`|

≤ C sup
s
|gs|

∞∑
`=p+1

|`φ`| = O

(
sup
s
|gs| · p−K+1

)
.

Altogether, this yields the bound

∣∣H(ω)−Hp(ω)
∣∣ ≤ C

[
p−K+1 · sup

s
|gs|+ p−K ·

∣∣G+(ω)
∣∣] .

This proves the result. �
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