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Abstract

In this paper our object is to show that a certain class of nonstationary random

processes can locally be approximated by stationary processes. The class of pro-

cesses we are considering includes the time-varying ARCH and GARCH processes

amongst others. The measure of deviation from stationarity can be expressed as a

function of a derivative random process. This derivative process inherits many prop-

erties common to stationary processes. We also show that the derivative processes

obtained here satisfy alpha mixing properties.
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1 Introduction

Linear time-series models are often used in time-series analysis and it is usually assumed
that the underlying process is stationary. However it maybe that the assumption of sta-
tionarity is sometimes unrealistic, especially when we observe the process over long peri-
ods of time. Several nonstationary models have been introduced for example see Priestley
(1965) and Crámer (1961). But many asymptotic results available for stationary time
series are not immediately applicable to nonstationary time series. To circumvent this,
Dahlhaus (1997) used a rescaling technique to define the notion of local stationarity. By
using a time-varying spectral density function Dahlhaus (1997) defined locally stationary
processes. However, so far all these methods have been used exclusively for the analysis
of nonstationary linear processes. Here our object is to analyse nonstationary, nonlinear
random processes.

In the last 20 years nonlinear time series methods have received considerable attention,
though these have mainly been restricted to stationary processes. Standard nonlinear
models include ARCH (Engle, 1982), GARCH (Bollerslev, 1986), Bilinear (Subba Rao
(1977) and Terdik (1999)) and Random coefficient processes (Nicholls & Quinn, 1982)
etc. Often these stationary, nonlinear processes have a state-space representation, for
example, see Brandt (1986), Bougerol and Picard (1992a) and Straumann and Mikosch
(2006).

In this paper we consider nonstationary, nonlinear processes with a state-space rep-
resentation and time-dependent parameters. In particular, we consider nonstationary
process {Xt,N} which admit the time-varying state-space representation

Xt,N = At(
t

N
)Xt−1,N + bt(

t

N
), t = 1, . . . , N, (1)

where Xt,N and {bt(
t
N

)}t are p-dimensional nonstationary random vectors and {At(
t
N

)}
are p × p dimensional nonstationary random matrices.

In Section 2 we will show that, under suitable conditions on the nonstationary ran-
dom matrices and vectors {bt(

t
N

) : t ∈ Z} and {At(
t
N

) : t ∈ Z}, {Xt,N} can locally be
approximated by the stationary process {Xt(u)}, given by

Xt(u) = At(u)Xt−1(u) + bt(u), (2)

where u is fixed and {bt(u) : t ∈ Z} and {At(u) : t ∈ Z} are p-dimensional stationary
random vectors and p × p-dimensional stationary random matrices respectively. We will
prove that Xt(u) can be regarded as a stationary approximation of Xt,N for t/N close to
u. In Section 3 we define the derivative process which is a measure of deviation of Xt,N
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from the stationary process Xt(u) and obtain an exact bound for this deviation, using a
stochastic Taylor series expansion. We also show that the derivative process satisfies a
stochastic differential equation. Using the derivative process we consider some probablistic
results (such as mixing properties) associated with the observed process and Taylor series
expansions. In Section 5 we consider the particular example of the time-varying GARCH
process, and show that it satisfies all the results stated above. We mention that other
processes, such as the time-varying random coefficient AR and GARCH process also have
the representation (1) and satisfy the results in this paper. The idea of a stationary
approximation and a derivative process was established for time-varying ARCH processes
in Dahlhaus and Subba Rao (2006).

2 Nonlinear time-varying processes

2.1 Assumptions

In this section we state the assumptions and notation.
Let ‖x‖m and ‖A‖m denote the `m-norm of the vector x and matrix A. Let ‖A‖spec

denote the spectral norm, where ‖A‖spec = sup‖x‖2=1 ‖Ax‖2. Suppose Bi,j denotes the
(i, j)th element of the matrix B. Let |B|abs denote the absolute vector or matrix of B,
where (|B|abs)ij = |Bij|. We say that A ≤ B if {Ai,j ≤ Bi,j} for all i, j. Let λspec(A)
denote the largest absolute eigenvalue of the matrix A, and let supu A(u) be defined as
supu A(u) = {supu |A(u)|i,j : i = 1, . . . p, j = 1, . . . , q}. To simplify notation we will
denote the `2 norm of a vector x as ‖x‖ = ‖x‖2.

The Lyapunov exponent associated to a sequence of random matrices {At : t ∈ N} is
defined as

inf{ 1

n
E(log ‖AtAt−1 . . . At−n+1‖spec) : n ∈ N}. (3)

We make the following assumptions.

Assumption 2.1 The sequence of stochastic processes {Xt,N} has a time-varying state-
space representation defined in (1), where the random matrices {At(u)} and vectors {bt(u)}
satisfy the following assumptions:

(i) There exists an M ∈ N such that for each r ∈ {1, . . . ,M}, there exists a sequence of
independent, identically distributed, positive random matrices {At(r) : t ∈ Z} such
that

|At(u)|abs ≤ At(r) if u ∈ [
r − 1

M
,

r

M
),
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and for some δ < 0 the Lyapunov exponent of {At(r) : t ∈ Z} is less than δ. There
exists a stationary sequence {b̃t} such that supu |bt(u)|abs ≤ b̃t. Furthermore, for
each k ∈ {1, . . . ,M} and for some ε > 0, E‖b̃t‖ε

1 < ∞ and E‖At(r)‖ε
1 < ∞.

(ii) There exists a β ∈ (0, 1] and {At}, such that for all u, v ∈ [0, 1], the matrices {At(·)}
and {bt(·)} satisfy with b̃t from (i):

|At(u) − At(v)|abs ≤ C|u − v|βAt, |bt(u) − bt(v)|abs ≤ C|u − v|β b̃t.

Furthermore, for some ε > 0, E‖At‖ε < ∞.

For convenience from now on we let At(u) = 0 for u ≤ 0 and
∏−k

i=0 Ai = I (if k ≥ 1).
Assumption 2.1(i) means that the random matrices {At(u)}t are dominated by random

matrices which have a negative Lyapunov exponent. As will become clear below this
implies that {Xt,N} has a unique causal solution. Assumption 2.1(ii) is used to locally
approximate {Xt,N} by a stationary process.

2.2 The stationary approximation

Using the arguments in Bougerol and Picard (1992b), Theorem 2.5, we can show that
almost surely the unique causal solution of {Xt,N} is

Xt,N =
∞
∑

k=0

At(
t

N
) · · ·At−k+1(

t − k + 1

N
)bt−k(

t − k

N
). (4)

One of the main results in this paper is the theorem below, where we show that Xt,N

can locally be approximated by the stochastic process Xt(u). Let

Y t =
∞
∑

k=1

{

M
∑

r=1

k−1
∏

j=0

At−j(r)
}

b̃t−k. (5)

Theorem 2.1 Suppose Assumption 2.1 holds, let Xt,N , Xt(u) and Yt be defined as in (1),
(2) and(5) respectively and suppose there exists an ε > 0 such that

sup
t,N

E‖Xt,N‖ε
1 < ∞ and sup

u
E‖Yt‖ε

1 < ∞. (6)

Then we have

|Xt,N −Xt(
t

N
)|abs ≤

1

Nβ
V t,N , (7)
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|Xt(u) −Xt(w)|abs ≤ |u − w|βW t (8)

and |Xt,N −Xt(u)|abs ≤ | t

N
− u|βW t +

1

Nβ
V t,N (9)

where

V t,N = C

∞
∑

k=1

k
{

k−1
∏

j=0

At−j(i1)
}{

At−k|Xt−k−1,N |abs + b̃t−k

}

, (10)

W t = C
∞
∑

k=1

{

M
∑

r=1

k−1
∏

j=0

At−j(r)
}{

At−kY t−k−1 + b̃t−k

}

(11)

with i1 such that i1−1
M

≤ t
N

< i1
M

. Moreover V t,N converges almost surely and the series
{W t}t is a well defined stationary process.

PROOF. In the Appendix. ¤

The most notable result in the theorem above is (9). In other words the deviation
between the nonstationary process Xt,N and the stationary process Xt(u) depends on the
difference |t/N − u|. That is

|Xt,N −Xt(u)|abs ≤ | t

N
− u|βOp(1) +

1

Nβ
Op(1). (12)

A simple application of the theorem above is in the evaluation of the sampling proper-
ties of local averages of time-varying processes. For example, suppose |t0/N − u0| < 1/N
and we average Xt,N about a neighbourhood whose length (2M + 1) increases as N in-
creases but the ratio M/N → 0. Then by using the theorem above we have

1

2M + 1

M
∑

k=−M

Xt0+k,N =
1

2M + 1

M
∑

k=−M

X̃t0+k(u0) + Bt0,N , (13)

where

‖Bt0,N‖1 ≤
1

2M + 1

M
∑

k=−M

(

(
k

N
)β‖W t0+k‖1 +

1

Nβ
‖V t0+k,N‖1

)

.

To evaluate the limit of this sum, which involves showing that asymptotically Bt0,N con-
verges to zero, we require the existence of moments of Xt,N and its related processes. We
consider this in the section below.
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2.3 Existence of moments

It is worth noting that the local approximation of {Xt,N} by a stationary process requires
relatively weak assumptions on the moments of {At(u)} and {bt(u)}. However under
stronger assumptions on the moments of {At(u)} and {bt(u)} we will show that E(‖Xt,N‖n

n)
is uniformly bounded in t and N .

Define the matrix [A]n as [A]n =
{[

E(|aij|n)
]1/n

: i = 1, . . . , p, j = 1, . . . , q
}

. We now
give conditions for E‖Xt,N‖n

n < ∞ and E‖Xt(u)‖n
n < ∞.

Proposition 2.1 Suppose Assumption 2.1 holds, let Xt,N , Xt(u), V t,N and W t be defined
as in (1), (2), (10) and (11) respectively. Suppose for all r ∈ {1, . . . ,M} and for some
n ∈ [1,∞), that E‖b̃t‖n

n < ∞ and, for some δ > 0, λspec{[At(r)]n} < 1 − δ. Then

sup
t,N

E‖Xt,N‖n
n < ∞ sup

t,N
E‖V t,N‖n

n < ∞, sup
u

E‖Xt(u)‖n
n < ∞ and E‖W t‖n

n < ∞(14)

From Proposition 2.1 we see that if these conditions are satisfied then condition (6) is
satisfied with ε = n, hence the locally stationary conclusions of Theorem 2.1 immediately
follow.

We now apply the above results to the local average example in (13). Under the
assumption that all the conditions in Proposition 2.1 are satisfied with n = 1, we have

Bt0,N ≤ (
M

N
)βOp(1) +

1

Nβ
Op(1)

and

1

2M + 1

M
∑

k=−M

Xt0+k,N =
1

2M + 1

M
∑

k=−M

X̃t0+k(u0) + Op((
M

N
)β +

1

Nβ
). (15)

Therefore if the process Xt0+k(u0) were ergodic, we have Bt0,N
P→ 0 and

1

2M + 1

M
∑

k=−M

Xt0+k,N
P→ E (Xt0+k(u0)) ,

where M → 0, M/N → 0 as N → ∞. The results in the following section allow us to
obtain a tighter bound for Bt0,N .

5



3 The derivative process and its state-space repre-

sentation

In the previous section we have shown that time-varying processes can locally be approx-
imated by a stationary process. In this section, under additional conditions on {At(u)}t

and {bt(u)}t, we improve the approximation in (12) and show that a Taylor series expan-
sion of the time-varying process in terms of stationary processes, can be derived (Theorem
3.2). In order to do this we define the derivative process and show that the derivative
process also has a state-space representation.

The Taylor expansion of a given time-varying process in terms of stationary processes
is, in particular, of importance in theoretical investigations; since classical results for
stationary sequences such as ergodic theorems and central limit theorems can fruitfully
be used. In applications, it is unlikely that the stationary derivative process will be
observed. It is more likely that the derivatives of the parameters {At(

t
N

)} will either
be known or can be estimated. However the state-space representation motivates our
definition of the time-varying derivative process. If the derivatives {Ȧt(

t
N

)}t (defined
below) are known, the time-varying derivative process can be obtained from the original
time-varying process.

Here we focus our discussion on the first derivatives of the process. However under
suitable conditions all the results stated here apply to higher order derivative processes
as well.

Suppose A(u) is a p × q random matrix, we let Ȧt(u) =
{∂A(u)i,j

∂u
: i = 1, . . . , p, j =

1, . . . , q
}

. We make the following assumptions.

Assumption 3.1 The sequence of stochastic processes {Xt,N} have a time-varying state-
space representation defined in (1), {At(i)}, {b̃t} and {At} are defined as in Assumption
2.1, and {At(u)} and {bt(u)} satisfy the following properties:

(i) The process {Xt,N} satisfies Assumption 2.1 with β = 1.

(ii) Let β ′ > 0. The matrices {At(·)} and {bt(·)} are assumed to satisfy:

|At(u) − At(v)|abs ≤ C|u − v|At, |bt(u) − bt(v)|abs ≤ C|u − v|b̃t

|Ȧt(u) − Ȧt(v)|abs ≤ C|u − v|β′At, |ḃt(u) − ḃt(v)|abs ≤ C|u − v|β′

b̃t,

sup
u

|Ȧt(u)| ≤ CAt(r) and sup
u

|At(u)| ≤ CAt(r) if u ∈ [
r − 1

M
,

r

M
),
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and supu |ḃt(u)|abs ≤ Cb̃t and supu |bt(u)|abs ≤ Cb̃t where C < ∞. Therefore
{At(u)}t and {bt(u)}t belong to the Lipschitz class Lip(1 + β ′). This is a kind of
Hölder continuity of order 1 + β ′ for random matrices.

We now define the process {Ẋt(u)}t, which we call the derivative process. By formally
differentiating (2) with respect to u we have

Ẋt(u) = Ȧt(u)Xt−1(u) + At(u)Ẋt−1(u) + ḃt(u). (16)

As we shall show below, an interesting aspect of the above difference differential equation
is that its existence requires only weak assumptions on the derivative matrix Ȧt(u). In
other words, given that Xt,N is well defined, the existence of Ȧt(u) is sufficient for the
derivative process to also be well defined. This will become clear when we rewrite Ẋt(u)
as a state space model. Let Xt(2, u)T = (Ẋt(u)T ,Xt(u)T ), then it is clear that {Xt(2, u)}t

satisfies the representation

Xt(2, u) = At(2, u)Xt−1(2, u) + bt(2, u), (17)

where

At(2, u) =

(

At(u) ∂At(u)
∂u

0 At(u)

)

and bt(2, u) =

(

ḃt(u)
bt(u)

)

. (18)

Motivated by the definition of the time-varying stationary process we now define the
time-varying derivative process. We call {Xt,N (2)}t a time-varying derivative process if it
satisfies

Xt,N (2) = At(2,
t

N
)Xt−1,N (2) + bt(2,

t

N
), (19)

with {Xt,N (2)T}t = {(Ẋ T
t,N ,X T

t,N )}. The main reason for defining this process is that it

can be used to estimate the derivative process Ẋt(u), which may not be observed and in
practice maybe difficult to estimate.

Let b̃t(2)
T = (Cb̃

T

t , b̃
T

t ),

At(2, r) =

(

At(r) CAt(r)
0 At(r)

)

and At(2) =

(

At CAt

0 At

)

(20)

where C is defined as in Assumption 3.1.
We now show that it is the triangular form of the transition matrix that allows the

results in Section 2.2 to be directly applied to the derivative process. In order to do this,
in the following lemma we show that if {At(u)}t has a negative Lyapunov exponent, then
{At(2, u)}t also has a negative Lyapunov exponent.
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Lemma 3.1 Suppose Assumption 3.1 is satisfied, then for r = 1, . . . ,M , we have

inf{ 1

n
E(log ‖At(2, u) . . . At−n+1(2, u)‖spec)} < 0, (21)

inf{ 1

n
E(log ‖At(2, r) . . .At−n+1(2, r)‖spec)} < 0. (22)

PROOF. In the Appendix ¤

From the above result we can show that (17) and (19) has a unique causal solution
similar to (4). Furthermore, the following theorem follows from the lemma above.

Theorem 3.1 Suppose Assumption 3.1 holds and let {Xt,N(2)} be defined as in (19).
Then the process {Xt,N (2)} satisfies Assumption 2.1 with transition matrices {At(2, u); t ∈
Z, u ∈ (0, 1]} and innovations vectors {bt(2, u) : t ∈ Z, u ∈ (0, 1]}.
PROOF. Under Assumption 3.1 we have |At(2, u)|abs ≤ At(2, r) if u ∈ ( r−1

M
, r

M
] and

supu |bt(2, u)|abs ≤ b̃t(2). Furthermore, by using Lemma 3.1, the random matrix sequences
{At(2, u)}t and {At(2, r)}t have negative Lyapunov exponents. Hence all the conditions
in Assumption 2.1 are satisfied, and we have the result. ¤

Now with an additional weak assumption on the moments of {Xt,N(2)}, Theorem 2.1
can also be applied to the processes {Xt,N (2)} and {Xt(2, u)}. Let

Y t(2) =
∞
∑

k=1

{

M
∑

r=1

k−1
∏

j=0

At−j(2, r)
}

b̃2,t−k. (23)

Corollary 3.1 Suppose Assumption 3.1 holds. Let Xt,N(2), Xt(2, u), At(2, r), At(2),
b̃t(2), W t and Y t(2) be defined as in (19), (17), (20), (11), (23) and there exists a ε > 0
such that

sup
t,N

E‖Xt,N(2)‖ε
1 < ∞ and E‖Y t(2)‖ε

1 < ∞.

Then |Xt,N(2) −Xt(2,
t
N

)|abs ≤ 1
Nβ′ V t,N (2), |Xt(2, u) −Xt(2, w)|abs ≤ |u − w|β′

W t(2),

|Xt,N(2) −Xt(2, u)|abs ≤ | t

N
− u|β′

W t(2) +
1

Nβ′
V t,N (2), (24)
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and ‖W t‖1 ≤ ‖W t(2)‖1, where {V t,N (2)} is similar to {V t,N} defined in (10), but with
At−j(i1), X t−k−1,N and At−j replaced by At−j(2, i1), X t−k−1,N (2) and At(2) respectively
and

W t(2) = C
M
∑

r=1

∞
∑

k=1

{

k−1
∏

j=0

At−j(2, r1)
}{

At−k(2)|Y t−k−1(2)|abs + b̃t−k(2)
}

. (25)

Moreover V t,N(2) converges almost surely and the series {W t(2)}t is a well defined sta-
tionary process.

PROOF. Under Assumption 3.1 and by using Theorem 3.1 all the conditions in Theorem
2.1 are satisfied giving the result. ¤

Our object is to use the derivative process to obtain an exact expression for the
difference in (9). To do this we first show that the derivative process is almost surely
Hölder continuous.

Corollary 3.2 Suppose Assumption 2.1 holds. Let {Xt(2, u)} and {W t(2)}t be defined
as in (17) and (25) respectively. Then

Ẋt(u) =
∞
∑

k=0

k−1
∑

r=0

{[

r−1
∏

i=0

At−i(u)
]

Ȧt−r(u)
[

k−1
∏

i=r+1

At−i(u)
]}

bt−k(u) +
∞
∑

k=1

{
k−1
∏

i=0

At−i(u)}ḃt−k(u), (26)

is almost surely the unique well defined solution of (16). Furthermore,

sup
u,v

∣

∣Ẋt(u) − Ẋt(v)
∣

∣

abs
≤ |u − v|β′{Wt(2)}1,...,p, (27)

and almost surely all paths of Xt(u) belong to the Lipschitz class Lip(1 + β ′).

PROOF. By expanding (17) and using standard results in Brandt (1986) we can show
that (26) holds. To show that the right hand side of (26) is the derivative of Xt(u), we
note that both |Xt(u)| and the absolute sum on right hand side of (26) are almost surely
bounded. Thus we can exchange the summation and derivative, it immediately follows
that (26) is the derivative of Xt(u).

(27) follows immediately from Corollary 3.1 and by using (26) and (27), we have
Xt(u, ω) ∈ Lip(1 + β ′) for all ω ∈ N c, where P (N ) = 0. ¤

We now give a stochastic Taylor series expansion of {Xt,N} in terms of stationary
processes.
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Theorem 3.2 Let Xt,N (2) and Xt(2, u) be defined as in (19) and (17) respectively. Sup-
pose the assumptions of Corollary 3.1 hold. Then

(i)

Xt,N = Xt(u) + (
t

N
− u)Ẋt(u) + Op(|

t

N
− u|β′+1 +

1

N
); (28)

(ii)

Xt,N = Xt(u) + (
t

N
− u)Ẋt,N + Op(|

t

N
− u|β′+1 +

1

N
). (29)

PROOF. Let N1 be a set of zero measure such that Xt,N (ω), W t(2, ω) (defined in Corollary
3.2) and Y t(2, ω) converge for all ω ∈ N c

1 . Then by using Corollary 3.2 we have that
Xt(u, ω) ∈ Lip(1 + β ′) if ω ∈ N c

1 . By using (7), making a Taylor series expansion of
Xt(

t
N

, ω) about u and using the mean value theorem we obtain

Xt,N(ω) = Xt(u, ω) + (
t

N
− u)Ẋt(u, ω) +

(

| t

N
− u|1+β′

+
1

N

)

RN(ω),

where |RN(ω)| ≤ ‖Vt,N (ω)‖1 + ‖W t(2, ω)‖1. Therefore since P(N c
1 ) = 1 we obtain (28).

We use (24) and the method given above to prove (29). ¤

We observe that (28) means that the nonstationary process {Xt,N} can be written as
a linear combination of stationary processes.

We now show that under Assumption 3.1 and the conditions in Proposition 2.1 that
the moments of the derivative process are uniformly bounded.

Proposition 3.1 Suppose Assumption 3.1 holds. Let Xt(2, u), Xt,N(2), V t,N (2) and
W t(2) be defined as in Corollary 3.1. Suppose for each r ∈ {1, . . . ,M} and for some
n ∈ [1,∞), that E‖b̃t‖n

n < ∞ and for some δ > 0 sup1≤r≤M λspec{[At(r)]n} < 1 − δ.
Then the expectations E‖Xt,N(2)‖n

n, E‖V t,N (2)‖n
n, E‖Xt(2, u)‖n

n, E‖Y t(2)‖n
n and E‖W t(2)‖n

n

are all uniformly bounded with respect to t, N and u respectively.

PROOF. Since for each r ∈ {1, . . . ,M}, At(2, n) is a block upper triangular matrix we ob-
serve that λspec([At(2, r)]n) = λspec([At(r)]n). Therefore the same proof as in Proposition
2.1 can be used to prove the result. ¤
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We now return to the local average example in (13), and obtain a tighter bound for
the remainder Bt0,N . By using (28) we have

1

2M + 1

M
∑

k=−M

(Xt0+k,N −Xt0+k(u0)) =
1

2M + 1

M
∑

k=−M

(

k

N

)

Ẋt0+k(u0) + Rt0,N (30)

where

‖Rt0,N‖1 ≤
1

2M + 1

M
∑

k=−M

( |k|1+β′

N1+β′
+

1

N

)

(

‖W t0+k(2)‖1 + ‖V t0+k,N‖1

)

.

It follows from (30) that the size of the remainder or bias due to nonstationarity depends
on the magnitude of the derivative processes {Ẋt(u)}t. Furthermore, if the conditions
in Proposition 3.1 are satisfied with n = 2, then (E‖Bt0,N‖2

2)
1/2 = O(M

N
+ 1

N
). However

we can reduce this bound by assuming that the derivative process satisfies some mixing
conditions (note that conditions are given in Section 4 which guarantee the derivative
process is strongly mixing). Let us suppose {Ẋt(u)}t is a short memory process, then we

have 1
2M+1

∑M
k=−M

(

k
N

)

Ẋt0+k(u0) =
√

M
N

Op(1). Therefore if
√

M/N << (M/N)1+β′

, we
have

E‖Bt0,N‖2
2 = E

∥

∥

1

2M + 1

M
∑

k=−M

[Xt0+k,N −Xt0+k(u0)]
∥

∥

2

2
≤ O

([M

N

]1+β′

+
1

N

)2
.

In addition if the second derivatives {Ät(u)}t and {b̈t(u)}t were to exist, then the process
{Ẍt(u)}t can be defined in the same way as {Ẋt(u)}t and we have

1

2M + 1

M
∑

k=−M

[Xt0+k,N −Xt0+k(u0)] ≈
1

2M + 1

M
∑

k=−M

(

k2

N

)

Ẍt0+k(u0).

From the above we can see that the sum of second derivatives is the dominating term in
the remainder Bt0,N . Therefore by using E‖Bt0,N‖2

2 and var[ 1
2M+1

∑M
k=−M Xt+k(u)] we are

able to evaluate the mean squared error of the local average and thus obtain the optimal
segment length M .

4 Mixing properties of the derivative process

We now consider the mixing properties for the stationary derivative process {Xt(2, u)}.
To establish geometric mixing of {Xt(2, u)} we use Tweedie (1983), Theorem 4(ii) which
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requires φ-irreducibility of the derivative process. We state below a state-space version of
this theorem given in Basrak et al. (2002), Theorem 2.8 and Remark 2.9.

Lemma 4.1 (Basrak, Davis and Mikosch (2002)) Suppose the matrices {At} and
vectors bt are independent, identically distributed processes, such that E(log ‖At‖spec) < 0
and there exists an ε > 0 with E‖At‖ε

spec < ∞. If the process {Xt} satisfies Xt = AtXt−1 +
bt, and is φ-irreducible, then it is geometrically ergodic, hence strongly mixing with a
geometric rate.

To show that {Xt(2, u)}t is a geometrically ergodic process we require the following
lemma.

Lemma 4.2 Suppose Assumption 2.1 is satisfied and At(2, u) is defined as in (18). Then

E‖At(2, u)‖ε
spec < ∞ (31)

and {At(2, u)}t has a negative Lyapunov exponent.

PROOF. Under Assumption 2.1 and by using (49) with n = 1 we have ‖At(2, u)‖spec ≤
C‖At(2, u)‖spec, thus E‖At(2, u)‖spec ≤ 2C ′

E‖At(u)‖spec < ∞, which gives us (31). From
(21) we have that {At(2, u)} has a negative Lyapunov exponent. ¤

We now use the lemma above to prove strong mixing with geometric rate of the
stationary derivative process.

Theorem 4.1 Suppose Assumption 3.1 (with d = 1) is satisfied and let the process
{Xt(2, u)}t defined in (17) be φ-irreducible. Then the process {Xt(2, u)} is geometrically
ergodic and thus strongly mixing with a geometric rate.

PROOF. We now show that the conditions of Lemma 4.1 are satisfied, the result then
follows.

By using Lemma 4.2 there exists an m > 0 and δ < 0 such that

1

m
E log ‖At(2, u) . . . At−m+1(2, u)‖spec ≤ δ. (32)

We iterate Xt(2, u) m times and define the mth iterate process {Xm,t(2, u)}, where Xm,t(2, u) =
Xmt(2, u) and

Xm,t(2) = Cm,tm(2, u)Xm,t−1(2) + dm,tm(u),
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with Cm,t(2, u) = At(2, u) . . . At−m+1(2, u) and

dm,t(2, u) =
m−1
∑

k=1

At(2, u) . . . At−k+1(2, u)bt−k(2, u) + bt(2, u). (33)

By using (31) we have that E‖Cm,t(2, u)‖spec < ∞.
From the above it is clear {Xm,t(2, u)}t satisfies the conditions in Lemma 4.1 and is

therefore geometrically ergodic. It follows that {Xt(2, u)}t is also geometrically ergodic.
¤

A process which is strongly mixing with a geometric rate has many interesting prop-
erties. We now state one such property.

Corollary 4.1 Let {Xt(2, u)} be defined as in (17). Suppose Assumption 3.1 holds (with
d = 1), {Xt(2, u)} is φ-irreducible and E‖Xt(2, u)‖2 < ∞. Then we have

∞
∑

k=0

|cov(Xt(2, u)i,Xt+k(2, u)i)| < ∞, for i = 1, . . . , 2p,

where Xt(2, u)i denotes the ith element of the vector Xt(2, u).

PROOF. By using Theorem 4.1 we have that {Xt(2, u)} is geometrically ergodic, therefore
by using Davidson (1994), Corollary 14.3 we have the result. ¤

It follows from Corollary 4.1 that {Xt(u)}t and {Ẋt(u)}t are short memory processes.

5 An Example: time-varying GARCH

In this section we show that the time-varying GARCH admits the represention (1) and
the results in the previous section apply to the tvGARCH process. We mention that the
results below also apply to the tvARCH process, as it is a special case of the tvGARCH
process. And the conditions stated here are slightly more general than the conditions
given in Dahlhaus and Subba Rao (2006). Let 0p denote a p-dimensional zero vector, 0p×q

a p × q-dimensional zero matrix and Ip×q a p × q-dimensional with (Ip×q)i,j = 1 for all i
and j.

We first note that the sequence of processes {Xt,N} is called a time-varying Gener-
alised Autoregressive Conditional Heteroscedasticity (p, q) (tvGARCH(p, q)) process if it
satisfies

Xt,N = Ztσt,N , σ2
t,N = a0(

t

N
) +

p
∑

i=1

ai(
t

N
)X2

t−i,N +

q
∑

j=1

bj(
t

N
)σ2

t−j,N , t = 1, . . . , N(34)
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where {Zt} are independent, identically distributed random variables, with E(Zt) = 0
and E(Z2

t ) = 1. It is straightforward to show that the tvGARCH process X 2
t,N admits the

state-space representation (1), where X T
t,N = (σ2

t,N , . . . , σ2
t−q+1,N , X2

t−1,N , . . . , X2
t−p+1,N ),

bt(u)T = (a0(u), 0, . . . , 0) ∈ R
p+q−2, At(u) is a (p + q − 1) × (p + q − 1) matrix defined as

At(u) =









τ t(u) bq(u) a(u) ap(u)
Iq−1 0 0 0
Z2

t−1 0 0 0
0 0 Ip−2 0









, (35)

τt(u) = (b1(u) + a1(u)Z2
t−1, b2(u), . . . , bq−1(u)), a(u) = (a2(u), . . . , ap−1(u)) and Z2

t−1 =
(Z2

t−1, 0, . . . , 0) ∈ R
q−1 (we assume without loss of generality p, q ≥ 2).

The tvGARCH process and Assumption 2.1

Let us consider the tvGARCH(p, q). We will show if E(Z2
t ) = 1, the parameters {ai(·)} and

{bj(·)} are β-Lipschitz continuous (that is |ai(u)−ai(v)| ≤ K|u−v|β and |bj(u)−bj(v)| ≤
K|u − v|β) and satisfy

sup
u

{

p
∑

i=1

ai(u) +

q
∑

j=1

bj(u)
}

< (1 − η), (36)

then Assumption 2.1 is satisfied for the tvGARCH(p, q) process. Using the β-Lipschitz
continuity of the parameters we now show that there exist matrices At(r) which bound
At(u) and satisfy Assumption 2.1(i).

Let Kmax be such that supu,v |ai(u)−ai(v)| ≤ Kmax|u−v|β and supu,v |bj(u)− bj(v)| ≤
Kmax|u−v|β. Define ε such that ε ≤

{

η/(2Kmax(p+q))
}1/β

and ε−1 ∈ N. Let M(ε) = ε−1,
and for each r ∈ {1, . . . ,M(ε)}, i = 1, . . . , p and j = 1 . . . , q define

αi(r) =
{

ai[(k − 1)ε] + Kmaxε
β
}

and βj(r) =
{

bj[(k − 1)ε] + Kmaxε
β
}

, (37)

Therefore by using (36) and the above construction we have sup(r−1)ε≤u<rε ai(u) ≤ αi(r),
sup(r−1)ε≤u<rε bj(u) ≤ βj(r) and

p
∑

i=1

sup
(r−1)ε≤u<rε

ai(u) +

q
∑

j=1

sup
(r−1)ε≤u<rε

bj(u) ≤
p
∑

i=1

αi(r) +

q
∑

j=1

βj(r) ≤ 1 − η/2. (38)

Let

At(r) =









τ̃ t(r) βq(r) α(r) αp(r)
Iq−1 0 0 0
Z2

t−1 0 0 0
0 0 Ip−2 0









, (39)
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τ̃ t(r) = (β1(r) + α1(r)Z
2
t−1, β2(r), . . . , βq−1(r)), α(r) = (α2(r), . . . , αp−1(r)) and Z2

t−1 =
(Z2

t−1, 0, . . . , 0) ∈ R
p−1. Then it is clear that sup(r−1)ε≤u<rε |At(u)|abs ≤ At(r). To sum-

marise, we have partitioned the unit interval into M(ε) intervals, such that all the matrices
At(u) in a given interval, say [(r − 1)ε, rε), are bounded above by the matrix At(r). It
is clear that for each r, {At(r)}t are independent, identically distributed sequences of
random matrices. Since E(Z2

0 ) = 1 and
∑p

i=1 αi(r) +
∑q

j=1 βj(r) < 1 − η/2, it follows

from Lemma 5.1, that λspec{E(At(r))} ≤ (1− η/2)1/(p+q−1). By using Kesten and Spitzer
(1984), equation (1.4), we can show that {At(r)} has a negative Lyapunov exponent.

Let b̃
T

t = (supu a0(u), 0, . . . , 0) ∈ R
p+q−2. Since E(Z2

t ) = 1 we have for some K > 0
E(log ‖At(r)‖spec) ≤ E(‖At(r)‖spec) ≤ KE‖At(r)‖1 < ∞. Therefore all the conditions of
Assumption 2.1(i) are satisfied.

Finally, it is clear that there exists a constant K such that

|At(u) − At(v)|abs ≤ K|u − v|βAt and |bt(u) − bt(v)|abs ≤ K|u − v|β b̃t,

where At = (1 + Z2
t−1)I(p+q−1)×(p+q−1). Thus Assumption 2.1(ii) is satisfied.

The tvGARCH process and the stationary approximation

We now define the stationary GARCH process, {Xt(u)} which satisfies the representation

Xt(u)2 =
{

a0(u) +

p
∑

i=1

ai(u)Xt−i(u)2 +

q
∑

j=1

bj(u)σt−j(u)2
}

Z2
t . (40)

In order to show that Xt(u)2 locally approximates X2
t,N , we need to verify the conditions

in Theorem 2.1. We have shown above that Assumption 2.1 is satisfied, hence we now
only need to show the existence of the moments, E‖Xt,N‖ε

1 and E‖Yt‖ε
1. We do this by

verifying the conditions of Proposition 2.1, for ε = n (though it is enough to prove the
result for ε = 1). Suppose n ∈ [1,∞) and let µn = {E(Z2n

t )}1/n. In addition we assume

µn sup
u

{

p
∑

i=1

ai(u) +

q
∑

j=1

bj(u)
}

< 1 − η, (41)

for some η > 0. Using a similar construction to the above we now construct matrices At(r)
where At(u) ≤ At(r) for (r − 1)/M(ε) ≤ u < r/M(ε) such that λspec([At(r)]n) ≤ (1 −
η/2)1/(p+q−1), thus verifying the conditions of Proposition 2.1. Let ε =

(

η/(2µnKmax(p +

q))
)1/β

, now by using the methods given in (38), define M(ε), αi(r) and βj(r) (defined in
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(37)) and At(r) as in (39), using the new ε. It is straightforward to show

sup
u

µn

{

p
∑

i=1

αi(r) +

q
∑

j=1

βj(r)
}

< 1 − η/2. (42)

To show that λspec([At(r)]n) ≤ (1 − η/2)1/(p+q−1) we will use the following result which
is an adaption of Bougerol and Picard (1992a), Corollary 2.2, who proved the result for
µ = 1.

Lemma 5.1 Let µ > 1 and {ai : i = 1, . . . , p}, {bj : j = 1 . . . , q} be positive sequences
and

A =









τ bq a ap

Iq−1 0 0 0
µ 0 0 0
0 0 Ip−2 0









, (43)

where τ = (b1+a1µ, b2, . . . , bq−1) ∈ R
q−1, a = (a2, . . . , ap−1) ∈ R

p−2 and µ = (µ, 0, . . . , 0) ∈
R

q−1. Suppose µ(
∑p

i=1 ai +
∑q

j=1 bj) < 1 − δ, where p, q ≥ 2 and δ > 0. Then we have

λspec(A) ≤ (1 − δ)1/(p+q−1).

Now we construct the matrix A(r)∗ which is the same as A in (43), where ai, bi and µ
have been replaced by αi(r), βi(r) and µn respectively. It is clear that [A(r)]n ≤ A(r)∗.
Now by using Lemma 5.1 and (42) we then have that λspec{A(r)∗} ≤ (1 − η/2)1/(p+q−1).
Thus the conditions of Proposition 2.1 are satisfied and we have supt,N E‖Xt,N‖n

n < ∞,
(which implies supt,N E(X2n

t,N ) < ∞) and E‖Yt‖n
n < ∞.

Therefore if (41) holds with some n ≥ 1, the conditions of Theorem 2.1 are fulfilled,
and we have

X2
t,N = Xt(u)2 + (| t

N
− u|β +

1

Nβ
)Rt,N , where sup

t,N
E‖Rt,N‖n

n < ∞.

The GARCH and derivative process

We now consider the stationary derivative process associated with the tvGARCH. For-
mally differentiating (40) gives

∂X̃t(u)2

∂u
= a′

0(u) +

p
∑

i=1

{ai(u)

∂u
X̃t−i(u)2 + ai(u)

∂X̃t−i(u)

∂u

}

+

+

q
∑

j=1

{∂bj(u)

∂u
σ̃t−j(u)2 + bj(u)

∂σ̃t−j(u)2

∂u

}

,
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which we have shown in Section 3 admits a state space representation. By applying
Theorem 3.2 we have the Taylor series expansion

X2
t,N = X̃t(u)2 + (

t

N
− u)

∂X̃t(u)2

∂u
+ (| t

N
− u|1+β′

+
1

N
). (44)

Finally if (41) holds, then the conditions of Proposition 3.1 are satisfied, and E‖ ∂X̃t(u)2

∂u
‖n

n <
∞.

6 Applications

The notion of the stationary approximations and the derivative process can fruitfully be
used in many applications. The key is the representation (28) of the nonstationary process
in terms of stationary processes. As indicated by the local average example, by using this
representation classical results for stationary processes such as the ergodic theorem or
central limit theorems can (more or less easily) be used in the theoretical investigations of
nonstationary processes. An example is given in Dahlhaus and Subba Rao (2006), The-
orem 3, where the properties of a local likelihood estimator have been investigated. The
results of this paper can be used to derive similar results for the models used as examples
in the present paper (among others). The derivative process in (28) then typically leads to
bias terms due to the nonstationarity of the process. Another application for the results
in this paper is recursive online estimation for such models. Problems of this type will be
considered in future work.
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A Appendix

In this section we sketch some of the proofs of the results stated earlier. Full details can
be found in the technical report available from the author.

Most the results in this paper are based on the following theorem, which is a nonsta-
tionary version of Brandt (1986) and Bougerol and Picard (1992b), Theorem 2.5. The
proof is similar to Bougerol and Picard (1992b), Theorem 2.5, hence we omit the details.
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Lemma A.1 Suppose {At(i) : i = 1, . . . ,M} satisfy Assumption 2.1(i). Let {dt} be a
random sequence which for some ε > 0, satisfies supt E(‖dt‖ε) < ∞, the sequence {nr} be
such that n0 ≤ n1 ≤ . . . ≤ nM , (s, t] denote the integer sequence (s, t] = {s+1, s+2, . . . , t}
and J t

r,k = [t − k, t] ∩ [nr−1, nr]. Then

Y t =
∑

k≥1

{

M
∏

r=1

∏

i∈Jt
r,k

At−i(r)
}

dt−k + dt (45)

and

Y t =
∑

k≥1

k
{

M
∏

r=1

∏

i∈Jt
r,k

At−i(r)
}

dt−k (46)

converges almost surely.

We use the lemma above to prove Theorem 2.1.

PROOF of Theorem 2.1 By the triangular inequality we have

|Xt,N −Xt(u)|abs ≤ |Xt,N −Xt(
t

N
)|abs + |Xt(

t

N
) −Xt(u)|abs.

We first derive a bound for |Xt,N − Xt(
t
N

)|abs. By expanding Xt,N and Xt(
t
N

) and under
Assumption 2.1 we have

|Xt,N −Xt(
t

N
)|abs = |At(

t

N
){Xt−1,N − X̃t−1(

t

N
)}|abs

= |At(
t

N
){At−1(

t − 1

N
) − At−1(

t

N
)}Xt−2,N + At−1(

t

N
){Xt−2,N − X̃t−2(

t

N
)} +

+At(
t

N
){bt−1(

t − 1

N
) − bt−1(

t

N
)}|abs

≤ 1

Nβ
At(i1)bt−1 +

1

Nβ
At(i1)At−1|Xt−2,N |abs + At−1(i1)|Xt−2,N − X̃t−2(

t

N
)|abs.

Now by continuing the iteration above we obtain |Xt,N−Xt(
t
N

)|abs ≤ 1
Nβ V t,N , where V t,N is

defined in (10). Under Assumption 2.1 and by using (6) we have that E(log ‖AtXt−1,N‖) <
∞. Therefore by using (46) with dt := (AtXt−1,N +b̃t), we have that V t,N converges almost
surely.

Using a similar method to the above we can show

|Xt(u) −Xt(w)| ≤ |u − w|βW t,
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where W t is defined as in (11). By using Lemma A.1 we have that {W t}t converges almost
surely. Finally, (9) follows from (7) and (8). ¤

Below we make frequent use of the following inequalities (which can proved by repeated
use of the Minkowski inequality). Suppose {At}t are p × p-dimensional independent
random matrices and X a p-dimensional random vector and {At}t and X are independent,
then

(E‖AX‖n
n)1/n ≤ K‖[A]n‖spec(E‖X‖n

n)1/n and ‖[A1 . . . An]n‖spec ≤ K‖[A1]n . . . [Am]n‖spec.(47)

for some finite constant K.

PROOF of Proposition 2.1 We now show that E‖Xt,N‖n
n is uniformly bounded over

t and N . Since {At(i)}t and {b̃t}t are independent by using (47) we have

(E‖
k−1
∏

i=0

At−i(
t − i

N
)b̃t−k‖n

n)1/n ≤ K‖
k−1
∏

i=0

[At−i(
t − i

N
)]n‖specE(‖b̃t−k‖n

n)1/n.

By the above and

|Xt,N |abs ≤
∞
∑

k=0

{

k−1
∏

i=0

|At−i(
t − i

N
)|abs

}

b̃t−k ≤
∞
∑

k=0

{

M
∏

r=1

∏

i∈Jr,k

At−i(r)
}

b̃t−k,

where Ir = [ r−1
M

, r
M

), Jr = {k ≥ 0 : t−k
N

∈ Ir} and Jr,l = Jr ∩ {0, 1, . . . , l − 1}, we have

E(‖Xt,N‖n
n)1/n ≤

∞
∑

k=0

(E‖
(

M
∏

r=1

∏

i∈Jr,k

At−i(r)
)

b̃t−k‖n
n)1/n

≤
∞
∑

k=0

M
∏

r=1

∥

∥[
∏

i∈Jr,k

At−i(r)]n
∥

∥

spec
(E‖b̃t‖n

n)1/n

≤
∞
∑

k=0

M
∏

r=1

‖[A0(r)]
#(Jr,k)
n ‖spec(E‖b̃t‖n)1/n (48)

where #(Jr,k)=number of elements in the set Jr,k. Since λ([A0(i)]n) ≤ 1 − δ for i =
1, . . . ,M and by using Moulines et al. (2005), Lemma 12, there exists a K independent
of A0(r) and m such that ‖[A0(r)]

m
n ‖spec ≤ K(1 − δ/2)m. Therefore

‖[A0(r)]
#(Jr,k)
n ‖spec ≤ K(1 − δ/2)#(Jr,k).
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By substituting the above into (48) and using
∑M

r=1 #(Jr,k) = k we can show supt,N E‖Xt,N‖n
n <

∞. Using a similar method we can prove the other inequalities in (14). ¤

PROOF of Lemma 3.1 We now prove (21). Under Assumption 3.1 it is straight-
forward to show

|At(2, u) . . . At−n+1(2, u)|abs ≤ Bk(t, n)

where

Bk(t, n) =

(

At(r) . . .At−n+1(r) CnAt(r) . . .At−n+1(r)
0 At(r) . . .At−n+1(r)

)

and u ∈ [k−1
M

, k
M

). By using the above we have

Bk(t, n)Bk(t, n)T =

(

(Cn2 + 1)Rk(t, n) CnRk(t, n)
CnRk(t, n) Rk(t, n)

)

,

where Rk(t, n) = (At(r) . . .At−n+1(r))(At(r) . . .At−n+1(r))
T . By choosing C1 such that

C1(n
2 + 1) ≥ (Cn2 + 1) and C1(n

2 + 1) ≥ Cn for all n, we obtain

Bk(t, n)Bk(t, n)T ≤ C1(n
2 + 1)

(

Rk(t, n) Rk(t, n)
Rk(t, n) Rk(t, n)

)

.

It is clear the largest eigenvalue of the matrix above is C1(n
2 +1)‖At(r) . . .At−n+1(r)‖spec.

Therefore by using the above we have

‖At(2, u) . . . At−n+1(2, u)‖spec ≤ ‖Bk(t, n)‖spec ≤ C1(n
2 + 1)‖At(r) . . .At−n+1(r)‖spec. (49)

It immediately follows that {At(2, u)}t has a negative Lyapounov exponent. The proof of
(22) is similar, hence we omit this proof. ¤
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