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Abstract

We consider a zero mean discrete time series, and define its discrete Fourier transform at

the canonical frequencies. It can be shown that the discrete Fourier transform is asymptotically

uncorrelated at the canonical frequencies if and if only the time series is second order stationary.

Exploiting this important property, we construct a Portmanteau type test statistic for testing

stationarity of the time series. It is shown that under the null of stationarity, the test statistic

is approximately a chi square distribution. To examine the power of the test statistic, the

asymptotic distribution under the locally stationary alternative is established. It is shown

to be a generalised noncentral chi-square, where the noncentrality parameter measures the

deviation from stationarity. The test is illustrated with simulations, where is it shown to have

good power.
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1 Introduction

An important assumption that is often made when analysing time series is that it is at least second

order stationary. A large proportion of the time series literature is based on this assumption. If

the assumption is not properly tested and the analysis is performed, the resulting model may be

misspecified and the forecasts obtained may be inappropriate. Therefore, it is important to check

whether the time series is second order stationary.

Over the years, various statistical tests have been proposed. One of the first tests for stationarity is

considered in Priestley and Subba Rao (1969), more recently tests have been proposed in Sachs and
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Neumann (1999) and Paparoditis (2009). We briefly mention, that there exists several CUMSUM

based tests (see Andreou and Ghysels (2008) for a review), which are specifically designed for the

detection of change points in a time series, which is a particular example of nonstationarity. In

contrast, the aforementioned stationarity tests are designed for the detection of smoothly varying

alternatives (see Sachs and Neumann (1999) for an interesting discussion on the differences between

smooth and non-smooth tests). Most of the tests for stationarity are based on comparing spectral

densities over various segments. More precisely, the test statistic proposed in Paparoditis (2009) is

an L2-based statistic, which compares the local spectral density estimator with the global spectral

density estimator. Whereas, Sachs and Neumann (1999) propose a test which detects for a changes

in the autocovariance structure from segment to segment, and is based on the observation that

under the null of stationarity the bivariate wavelets coefficient of the local spectral density is zero.

Motivated by this observation, Sachs and Neumann (1999) propose estimators of the Haar wavelet

coefficients and use a multiple testing procedure to test the significance of the wavelet coefficients.

The underlying important assumption, on which these tests for stationarity are based, is on a

delicate, subjective, choice of segments of the data. This can make the test extremely sensitive

to the segment length. Moreover, the rate of convergence to the limiting distribution (usually a

Gaussian) depends on the number of segments. Therefore, for relatively small sample sizes the

normal approximation may not be reliable. For example, the L2-statistic in Paparoditis (2009),

like most L2-tests, can be quite skewed, which can lead to large type I errors. On the other hand,

the rate of convergence of the Sachs and Neumann (1999) test statistic depends, implicitly, on the

segment length. Furthermore, since the joint distribution of the wavelet coefficients does not exist,

obtaining the power of the Sachs and Neumann (1999) test for the alternative of local stationarity

can be extremely difficult. In this paper, we propose a test based on the discrete Fourier transforms,

which is based on the entire length of data, thus avoiding a subjective choice of segment length

and its associated problems. Unlike most tests for stationarity, which are comparison based, the

proposed test is motivated by a property unique to second order stationary time series.

In Section 2 we define the Discrete Fourier transform (DFT) and show that the DFT are asymptoti-

cally uncorrelated at the canonical frequencies if and only if the time series is second order stationary.

This motivates the test statistics, which is based on the DFT. The Portmanteau type test statistics

we propose is based on the covariance function calculated using the DFT at the canonical frequen-

cies, which we call the DFT covariance. The asymptotic sampling distribution of the test statistic,

under the assumption that the time series is strictly stationary and either linear or α-mixing is

obtained in Section 3. Under the null hypothesis that the time series is strictly stationary, we show

that the asymptotic sampling distribution of the test statistic is a central chi-square. To examine

the power of the test, we consider the case of locally stationary time series (see Dahlhaus (1997)

and Dahlhaus and Polonik (2006)), and derive the distribution of the test statistic under this class

of alternatives. In Section 4 we show the distribution under this class of alternatives, is a type of

non-central chi-square, where the noncentrality parameter is of order O(T ). Furthermore, we show
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that the case of local stationarity, the DFT covariance is an estimator of the Fourier coefficients

of the locally stationary spectral density. One practical advantage of our approach is that DFT

covariance can be plotted, which can be used to indicate where the departures from stationarity

may lie.

In Section 5, we compare our test to the test for stationarity recently proposed in Paparoditis

(2009). In Section 6 we compare the two tests through simulations and we examine the type I error

and power of both tests. We show that the type I error for the our test is good and the power for

various alternatives is high.

The proofs can be found in the appendix, and some results concerning quadratic forms may be of

independent interest.

2 The Test Statistic, motivation and sampling distribution

2.1 Motivation

Let {Xt} be a zero mean time series. Suppose we observe {Xt; t = 1, . . . , T} and let JT (ωk) be its

DFT defined as

JT (ωk) =
1√
2πT

T∑

t=1

Xt exp(itωk), for 1 ≤ k ≤ T,

where ωk = 2πk
T

are the canonical frequencies. It is well known that if {Xt} is a strictly stationary

time series, whose covariances are absolutely summable then for k1 6= k2 and k1 6= T − k2 we have

cov
(
JT (ωk1), JT (ωk2)

)
= O( 1

T
). Therefore in the case of stationary processes, the discrete Fourier

transform {JT (ωk)}Tk=1 is asymptotically uncorrelated. Let

κ(t, τ) = E(Xt, Xτ ) =
1

T

T∑

k1,k2=1

E(JT (ωk1)JT (ωk2)) exp(−itωk1 + iτωk2), (1)

where z is the complex conjugate of the complex variable z. From the above we observe if

E(JT (ωk1)JT (ωk2)) = 0 for k1 6= k2 or k1 6= T−k2, then we have κ(t, τ) = κ(t−τ) for 0 ≤ t, τ ≤ T−1.

In other words, an uncorrelated discrete Fourier transform sequence implies that the original time

series is second order stationary, up to lag T . This argument can be generalised. Suppose that

E(JT (ωk1)JT (ωk2)) = O(T−1|k1 − k2|−1) for k1 6= k2, then using (1) the process is second stationary,

since for all T , κ(t, τ) = κT (t− τ) +O(log T/T ) (where κT (t− τ) = 1
T

∑T
k=1 E|JT (ωk)|2 exp(−i(t−

τ)ωk)).

Let us consider a simple example, where we show that if {Xt} are independent, heteroscedastic
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random variables, then the sequence {JT (ωk)} is not uncorrelated. Let us suppose Xt = σtεt, where

σt is a deterministic, time dependent function and {εt} are independent identically distributed (iid)

random variables with E(εt) = 0 and var(εt) = 1. In this case, the covariance of the DFT at the

canonical frequencies is

E(JT (ωk1)JT (ωk2)) =
1

2πT

T∑

t=1

σ2
t exp(it(ωk1 − ωk2)).

From the above, it is clear that cov(JT (ωk1), JT (ωk2)) 6= 0 for some k1 6= k2 (if σt is not constant

over t).

2.2 The test statistic

The above observations lead us to the following test statistic. We note that, if the the time series is

strictly stationary, then E(JT (ωk)) = 0 and var(JT (ωk)) → f(ωk) as T → ∞, where f : [0, 2π] → R

is the spectral density of the original time series {Xt} (see Priestley (1981) and Brockwell and Davis

(1987)). Therefore by standardising with
√
f(ωk), under the null of stationarity, {JT (ωk)/

√
f(ωk)}

is close to an uncorrelated, second order stationary sequence. Therefore to test for stationarity of

{Xt} we will test for randomness of the sequence {JT (ωk)/
√
f(ωk)}. The proposed test will be a

type of Portmanteau test (see Chen and Deo (2004) for applications of the Portmanteau test in

time series analysis). Of course, in reality the spectral density f(ω) is unknown, therefore we will

replace f(·) with the estimated spectral density function f̂T (·), where

f̂T (ωk) =
∑

j

1

bT
K(

ωk − ωj
b

)|JT (ωj)|2, (2)

K : [−1, 1] → R is a positive, continuous, symmetric kernel function which satisfies
∫ 1

−1
K(x)dx = 1

and
∫ 1

−1
K(x)2dx < ∞ and b is a bandwidth. We mention that so long as the bandwidth is chosen

such that T−1/2 << b << T−1/4 then it does not play any role in the asymptotic rates.

We define the empirical covariance at lag r, which is complex valued, of the discrete Fourier trans-

form as

ĉT (r) =
1

T

T∑

k=1

JT (ωk)JT (ωk+r)√
f̂T (ωk)f̂T (ωk+r)

, for 1 ≤ r ≤ T − 1. (3)

In Figures 1 and 2 plots of the DFT covariance ĉT (r) over various lags of stationary and nonstation-

ary time series are given. We observe that there is a clear difference between the DFT covariance

of stationary and nonstationary time series. In the stationary case the DFT covariances tend to be

smaller (at least for small lags r) than the DFT covariance of a nonstationary time series.
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The proposed test statistic is based on ĉT (r). We show in Lemma A.10 that if {Xt} is a strictly

stationary time series, E(X4
t ) < ∞ and the fourth order cumulants are absolutely summable, then

both the variance of the real and imaginary parts of
√
T ĉT (r) converge to 1 + κ(ωr) as T → ∞

where

κ(ωr) =
1

4π

∫ 2π

0

∫ 2π

0

f4(λ1,−λ1 − ωr,−λ2)√
f(λ1)f(λ1 + ωr)f(λ2)f(λ2 + ωr)

dλ1dλ2, (4)

ωr = 2πr/T and f4(λ1, λ2, λ3) = (2π)−3
∑∞

j1,j2,j3=−∞ cum(X0, Xj1 , Xj2 , Xj3) exp(i(λ1j1+λ2j2+λ3j3))

is the tri-spectra. Under the null hypothesis of strict stationarity, we show in Theorem 3.2 that

√
T

(
1

1 + κ(ω1)
ℜĉT (1), . . . ,

1

1 + κ(ωm)
ℑĉT (m)

)
D→ N (0, I2m), (5)

hence the empirical covariances ĉT (r) at different lags are asymptotically uncorrelated and ĉT (r) =

op(1). Motivated by the above result we define the test statistic

Tm = T
m∑

r=1

|ĉT (r)|2
1 + κ(ωr)

,

where |z|2 = zz and r 6= 0 or T/2. We note, that unlike the classical Portmanteau tests, using

covariances with a large lag is not problematic as the DFT is periodic.

We derive the asymptotic distribution of the test statistic in Section 3, under the null hypothesis

that either {Xt} statisfies the MA(∞) representation

Xt =
∞∑

j=0

ψjεt−j, (6)

where {εt} are iid random variables with E(εt) = 0, E(ε2
t ) = 1 and κ4 = cum4(εt) or that {Xt}

is a strictly stationary time series which is α-mixing (defined in Assumption 3.1, below), which

includes a large class of time series (see, for example, Doukhan (1994) and Cline and Pu (1999)).

We mention that not all linear processes are mixing hence we have separated the assumptions and

the proof of asymptotic normality for both cases is different. Under these assumptions we will show

in Corollary 3.1, below, that ĉT (r) = op(1) and Tm converges in distribution to χ2
2m. Therefore we

reject the null of strict stationarity at the α% significance level if Tm > χ2
2m(1 − α).

In the case of linearity, (4) has an interesting form. It can be shown that

κ(ωr) =
κ4

2

∣∣∣∣
1

2π

∫ 2π

0

exp(iφ(ω) − φ(ω + ωr))dω

∣∣∣∣
2

,
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where

φ(ω) = arctan
ℑA(ω)

ℜA(ω)
and A(ω) =

1√
2π

∞∑

j=0

ψj exp(iωj).

Hence in the case of linearity, if m is small then by the continuity of φ the test statistic can be

approximated by

Tm = T
m∑

r=1

|ĉT (r)|2
(1 + κ4/2)

where κ4 = cum4(ε).

Remark 2.1 (Estimation of the tri-spectra) We observe that the test statistic Tm requires es-

timates of the parameter κ(ωr). Therefore to estimate this parameter we require estimators of the

tri-spectra and spectral density. Brillinger and Rosenblatt (1967) propose an estimator of the tri-

spectra f4(·) (denote this as f̂4,T (·)), which is consistent under the assumption of strict stationarity

(our null hypothesis). Therefore, an estimator of κ(ωr) is

κ̂r,T =
1

4π

∫ 2π

0

∫ 2π

0

f̂4,T (λ1,−λ1 − ωr,−λ2)√
f̂T (λ1)f̂T (λ1 + ωr)f̂T (λ2)f̂T (λ2 + ωr)

dλ1dλ2,

where f̂T (λ2) is defined in (2). Since κ̂r,T is a consistent estimator of κ(ωr), replacing κ(ωr) in the

test statistic with κ̂r,T , does not alter the asymptotic sampling distribution of Tm.

Remark 2.2 (Practical issues) (i) Simulations demonstrate that the test is not sensitive to

the bandwidth b, and we suggest selecting the bandwidth using the method described in Beltrao

and Bloomfield (1987).

(ii) The asymptotic distribution under the null is derived under the assumptions that the spectral

density of the time series {Xt} is bounded away from zero. In practice, even if this assumption

holds, the estimated spectral density f̂T (·) may be quite close to zero. Therefore, in this case,

to prevent falsely rejecting the null, we suggest adding a small ridge to the spectral density

estimator f̂T (·) to bound it away from zero.

2.3 The power of the test and selection of m

In Section 4 we obtain the asymptotic sampling properties of the test statistic Tm, under the

alternative of local stationarity. In order to understand what nonstationary behaviour the test

statistic can detect and how to select the lag m in the test statistic, we will now outline some

of the results in Section 4. Suppose that {Xt} is a nonstationary time series, where in a small

neighbourhood of t the observations are close to stationary and has the local spectral density f( t
T
, ω).
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In Lemma 4.1 we show that ĉT (r) = B(r)+op(1), and
√
T
(
(ℜĉT (r)−ℜB(r)), (ℑĉT (r)−ℑB(r))

) D→
N (0,Σr) where Σr is defined in Theorem 4.2 and

B(r) =
1

2π

∫ 2π

0

∫ 1

0

f(u, λ)

[f(λ)f(λ+ ωr)]1/2
exp(−i2πur)dudλ. (7)

Furthermore, we show that under the alternative of local stationarity, Tm has asymptotically a non-

central generalised chi-squared distribution where the noncentrality parameter is, roughly speaking,

δm = T
∑m

r=1 |B(r)|2. Hence for large T , the test statistic Tm = O(T ) and will have close to 100%

power.

The main parameter to influence the DFT test is the choice of m. To select m, let us consider how

m may influence the power. We observe that the power of the test depends on B(r) and rewriting

B(r) we see that

B(r) =
1

2π

∫ 2π

0

F2(r, λ)dλ,

where F2(r, λ) =
∫ 1

0
f(u,λ)

[f(λ)f(λ+ωr)]1/2 exp(−i2πur)du. We show in Lemma A.2, that under Assumption

4.1, supλ |F2(r, λ)| ≤ Kr−2, therefore |B(r)| = O(r−2) and
∑

r |B(r)| <∞. Since the non-centrality

parameter δm = T
∑m

r=1 |B(r)|2, it makes sense to use only small lags r, since for large lags |B(r)|
will be small and the contribution to the noncentrality parameter δ2 with be neglible. Therefore

a large m will result in a loss of power, since under the null Tm D→ χ2
2m (this is analogous to the

Ljung-Box test for independence, using the estimated covariance at large lags results in a loss in

power). In general, relatively smooth functions contain mainly low frequency information and a

Fourier expansion of the function to 10 terms can represent a function well. Therefore, in general a

‘rule of thumb’ is to use a maximum of m = 10 in the test statistic. One method for selecting m is

to plot the estimated covariances T |ĉT (r)|2 against the lags, and use only the first m large lags to

construct the test (see Figures 1 and 2). The plot of T |ĉT (r)|2 can also serve as a useful visual aid

for ‘viewing’ the nonstationarity.

Remark 2.3 An alternative test, motivated by the asymptotic result (5) is

T ∗
m = T max

1≤r≤m

ĉT (r)|2
1 + κ(ωr)

.

Under the null of strict stationarity the asymptotic distribution of T ∗
m has the density m

2
exp(−x/2)(1−

exp(−x/2))m−1. The power of this test under the locally stationary alternative can be determined

by using Theorem 4.2. We will compare Tm and T ∗
m in the simulations.

To consider the type of nonstationary behaviour the test statistic can detect let us consider the
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Fourier expansion of the the function f(u, ω)f(ω)−1

f(u, ω)

f(ω)
=

1

2π

∑

r

∑

j

α(r, j) exp(i2πru) exp(ijω), (8)

where α(r, j) =
∫ ∫ f(u,ω)

f(ω)
exp(−i2πru − ijω)dudω. We observe that when f(u, ω) ≡ f(ω) (the

stationary situation), all the Fourier coefficients will be zero except for α(0, 0). Hence the coefficients

α(r, j) describe the nonstationary behaviour of f(u,ω)
f(ω)

at various Fourier frequencies.

Now for r << T we have that ωr = 2πr
T

→ 0 as T → ∞, hence by comparing B(r) with (8)

we observe B(r) ≈ α(r, 0). Hence for small r B(r), detects the average ‘long-term’ nonstationary

behaviour. This implies that the test can detect very slow and gradual changes in the time series,

which segment based testing methods may have problems detecting.

Remark 2.4 The other coefficients in (8), α(r, j), can be estimated by using ĉT (r, j) where

ĉT (r, j) =
1

T

T∑

k=1

JT (ωk)JT (ωk+r)√
f̂T (ωk)f̂T (ωk+r)

exp(−ijωk).

The sampling properties of ĉT (r, j) are similar to the sampling properties of ĉT (r) and the test

statistic can be modified to detect for nonzero α(r, j).

3 Sampling properties of the test statistic under the null

We now derive the asymptotic distribution of ĉT (r) and Tm under the null of strict stationarity.

To simplify the analysis of the test statistic Tm we replace the denominator in the covariance ĉT (r)

with its deterministic limit. To do this, we define the unobserved DFT covariance

c̃T (r) =
1

T

T∑

k=1

JT (ωk)JT (ωk+r)√
f(ωk)f(ωk+r)

. (9)

We will show that the difference between c̃T (r) and c̃T (r) is negligible (hence the limiting distribu-

tions of
√
T c̃T (r) and

√
T c̃T (r) are asymptotically equivalent). This is technically quite challanging

and requires some of the cumulant results developed in Brillinger (1981). In order to use these

results we require the relatively strong moment assumptions given below.

Assumption 3.1 Let us suppose that {Xt} is a strictly stationary time series and let f(ω) =
1
2π

∑∞
r=−∞ cov(X0, Xr) exp(irω).

(A) Strictly stationary linear time series
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Let us suppose that {Xt} satisfies (6).

(i)
∑∞

j=0 |jψj| <∞ (noting that this implies supω |f ′(ω)| <∞).

(ii) E(ε16
t ) <∞ (noting this implies E(X16

t ) <∞).

(B) Strictly stationary α-mixing time series

Let us suppose that {Xt} is a strictly stationary time series which is α-mixing,that is satisfies

sup
A∈σ(Xr,Xr+1,...)

B∈σ(X0,X−1,...)

|P (A ∩B) − P (A)P (B)| ≤ α(r).

(i)
∑

r |rcov(X0, Xr)| <∞ (which implies supω |f ′(ω)| <∞).

(ii) For some δ > 0 we have
∑

r |r| · |α(r)|δ/(15(1+δ)) <∞ and E|Xt|16(1+δ) <∞.

(iii) infω f(ω) > 0 and if {Xt} is a linear time series infω |ℜA(ω)|2 > 0 (where

A(ω) = (2π)1/2
∑∞

j=0 ψj exp(ijω)).

(iv) Either (a)
∑

r |r2||cov(X0, Xr)| < ∞ (implied by
∑

j |j2ψj| < ∞ in the linear case) or (b)

the derivative of the spectrum f ′(ω) is piecewise montone on the interval [0, 2π] (in other

words f ′(·) can be partitioned into a finite number of intervals which is either nonincreasing

or nondecreasing).

We use Assumption 3.1(iv) to obtain the rate of decay of the Fourier coefficients of the function
1√

f(ω)f(ω+ωr)
. We observe, that in the case the time series is linear, the assumptions are in some

sense weaker. In the results below if we state that ‘Assumption 3.1 holds’, this means that either

the linearity or the α-mixing assumption can hold.

Theorem 3.1 Suppose Assumption 3.1 is satisfied and let ĉT (r) and c̃T (r) be defined as in (3) and

(9) respectively. Then we have

√
T |ĉT (r) − c̃T (r)| = Op

(
(b+

1√
bT

) +
( 1

bT 1/2
+ b2T 1/2

)( 1

|r| +
1

T 1/2

))
. (10)

PROOF. See Appendix A.2, Lemma A.8, equation (33). �

In the following lemma we derive the asymptotic variance of c̃T (r), and show that c̃T (r) is asymp-

totically uncorrelated at different lags r, and at the real and imaginary parts.
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Lemma 3.1 Suppose Assumption 3.1 holds. Then we have

cov
(√

Tℜc̃T (r1),
√
Tℜc̃T (r2)

)
= cov

(√
Tℑc̃T (r1),

√
Tℑc̃T (r2)

)

=

{
O(T−1) r1 6= r2

1 + 1
4π

∫ 2π

0

∫ 2π

0
f4(ω1,−ω1−ωr,−ω2)√

f(ω1)f(ω1+ωr)f(ω2)f(ω2+ωr)
dω1dω2 +O( 1

T
) r1 = r2 = r

(11)

and for all r1, r2 ∈ Z, cov(
√
Tℑc̃T (r1),

√
Tℜc̃T (r2)) = O( 1

T
).

PROOF. See Appendix A.3. �

Remark 3.1 Suppose Assumption 3.1(A,iii,iv) holds. Then we have

cov(
√
Tℜc̃T (r),

√
Tℜc̃T (r)) = cov(

√
Tℑc̃T (r),

√
Tℑc̃T (r))

= 1 +
κ4

2

∣∣∣∣
1

2π

∫ 2π

0

exp(iφ(ω) − φ(ω +
2πr

T
))dω

∣∣∣∣
2

+O(
1

T
).

The proof of this result can be found in Appendix A.3.

We now show normality of ĉT (r), which we use to obtain the distribution of Tm.

Theorem 3.2 Suppose Assumption 3.1 holds. Then for fixed m we have

√
T

(
1

1 + κ(ω1)
ℜĉT (1), . . . ,

1

1 + κ(ωm)
ℑĉT (m)

)
D→ N (0, I2m), (12)

as m(b + 1√
bT

) +
(

1
bT 1/2 + b2T 1/2

)∑m
r=1

(
1

|rm| + 1
T 1/2

)
→ 0 and T → ∞, where I2m is the identity

matrix and κ(·) is defined in (4)

PROOF. See Appendix A.4. �

By using the above we are able to obtain the asymptotic distribution of Tm.

Corollary 3.1 Suppose Assumption 3.1 holds. Then for fixed m we have Tm D→ χ2
2m with

m(b+ 1√
bT

) +
(

1
bT 1/2 + b2T 1/2

)∑m
r=1

(
1
|r| + 1

T 1/2

)
→ 0, as T → ∞.

PROOF. The result immediately follows from Theorem 3.2. �
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4 Sampling properties of the test statistic under the alter-

native of local stationarity

It is useful to investigate the behaviour of the test statistic in the case that the null hypothesis

does not hold. If the covariance structure varies over time, then the limit of ĉT (r) will not be

zero. This suggests that the test statistic will have a type of non-central χ2 distribution. However,

in the case that time-varying covariance has no structure it is not clear what the limit of ĉT (r)

will be. Therefore we consider the behaviour of the test statistic for the class of locally stationary

processes, which as the name suggests is a class of processes which can locally be approximated by

a stationary time series. The asymptotic considerations for this class of processes are based on infill

asymptotics (see Robinson (1989), Dahlhaus (1997)), where we observe {Xt,T} on a increasingly

finer grid. Infill asymptotics will lead to a well defined limit of ĉT (r). Following Dahlhaus and

Polonik (2006), {Xt,T} is said to have a time-varying MA(∞) representation if it satisfies

Xt,T =
∞∑

j=0

ψt,T (j)εt−j, (13)

where {εt} are iid random variables, E(εt) = 0, var(εt) = 1.

In order for {Xt,T} to be a locally stationary time series, we will assume that ψt,T (j) closely approx-

imates the smooth function ψj(·). Hence the time-varying MA parameters {ψt,T (j)} vary slowly

over time. It can be shown that in this case, {Xt,T} is a locally stationary time series because it

can locally be approximated by a stationary time series. We will use the following assumptions.

Assumption 4.1 Let us suppose that {Xt,T} satisfies (13). Suppose, there exists a sequence of

functions ψj(u), such that ψj(u) is Lipschitz continuous and |ψj( tT ) − ψt,T (j)| ≤ T−1ℓ(j)−1, where

{ℓ(j)−1} is a positive monotonically decreasing function which satisfies
∑

j |j|2ℓ(j)−1 < ∞. Let

f(u, ω) = (2π)−1|∑∞
j=0 ψj(u) exp(ijω)|2 (hence supu,ω |∂

2f(u,ω)
∂ω2 | <∞).

(i) supu |ψj(u)| < ℓ(j)−1 and supu
∣∣dψj(u)

du

∣∣ < Kℓ(j)−1 (hence supu,ω |∂f(u,ω)
∂u

| <∞).

(ii) E(ε16
t ) <∞.

(iii) Define the integrated spectral density f(ω) =
∫ 1

0
f(u, ω)du, and assume that infω f(ω) > 0.

(iv) Either (a) supu
∑

j |ψ′′
j (u)| < ∞ (hence supu,ω |∂

2f(u,ω)
∂u2 | < ∞) or (b) A(u, ω) and ∂A(u,ω)

∂u
are

piecewise monotone functions with respect to u.

We will show in Lemma 4.1, below, that in the locally stationary case the spectral density estimator

f̂T (·) defined in (2) estimates the integrated spectrum f(ω), where f(ω) is defined in Assumption

11



4.1(iii). Roughly speaking, one can consider the integrated spectrum as the average of the locally

stationary spectrums.

As in Section 3, it is difficult to directly obtain the distribution of ĉT (r). Instead we replace the

random denominator with its deterministic limit (that is JT (ωk)/

√
f̂T (ωk) with JT (ωk)/

√
f(ωk)),

and define

c̃T (r) =
1

T

T∑

k=1

JT (ωk)JT (ωk+r)√
f(ωk)f(ωk+r)

, (14)

where f(·) is the integrated spectrum. The following result is the locally stationary analogue of

Theorem 3.1.

Theorem 4.1 Suppose Assumption 3.1 is statisfied, and let ĉT (r) and c̃T (r) be defined as in (3)

and (14) respectively. Then we have

√
T |ĉT (r) − c̃T (r)| = Op

(
1√
bT

+
( 1

bT 1/2
+ b2T 1/2

)( 1

|r| +
1

T 1/2

))
.

PROOF. In Appendix A.2, Lemma A.8, equation (34). �

From the lemma above we see that in order for the sampling properties of
√
T ĉT (r) and

√
T c̃T (r)

to coincide, we require that T−1/2 << b << T−1/4.

We now obtain the mean and variance of c̃T (r) under the alternative hypothesis of local stationarity.

Lemma 4.1 Suppose Assumption 4.1 are satisfied and let f(ω) and f(u, ω) be the integrated and

local spectrum (defined in Assumption 4.1) respectively. Then we have

E
(
f̂T (ω) − f(ω)

)2
= O

(
b2 +

1

bT

)
, (15)

E(c̃T (r)) → B(r) as T → ∞, and

cov(ℜ
√
T c̃T (r1),ℜ

√
T c̃T (r2)) → Σ

(1,1)
T,r1,r2

cov(ℜ
√
T c̃T (r1),ℑ

√
T c̃T (r2)) → Σ

(1,2)
T,r1,r2

cov(ℑ
√
T c̃T (r1),ℑ

√
T c̃T (r2)) → Σ

(2,2)
T,r1,r2

, (16)

b→ 0, bT → ∞ as T → ∞, where

Σ
(1,1)
T,r1,r2

=
1

4

(
Γ

(1)
T,r1,r2

+ Γ
(2)
T,r1,r2

+ Γ
(2)
T,r2,r1

+ Γ
(3)
T,r1,r2

)
+O(

log T

T
),

Σ
(1,2)
T,r1,r2

=
−i
4

(
Γ

(1)
T,r1,r2

+ Γ
(2)
T,r1,r2

− Γ
(2)
T,r2,r1

− Γ
(3)
T,r1,r2

)
+O(

log T

T
),

12



Σ
(2,2)
T,r1,r2

=
1

4

(
Γ

(1)
T,r1,r2

− Γ
(2)
T,r1,r2

− Γ
(2)
T,r2,r1

+ Γ
(3)
T,r1,r2

)
+O(

log T

T
),

and Γ
(i)
T,r2,r1

(i = 1, 2, 3) are defined in Lemma A.12 (in Appendix A.3).

PROOF. See Appendix A.3. �

We use the above to obtain the asymptotic distribution of Tm under the alternative. First we recall

that we estimated the standardisation of ĉT (r), κr, in Remark 2.1. In the case of local stationarity,

κ̂r,T is an estimator of

κ(ωr) =
1

4π

∫ 2π

0

∫ 2π

0

f4(λ1,−λ1 − ωr,−λ2)√
f(λ1)f(λ1 + λ2)f(λ2)f(λ2 + ωr)

dλ1dλ2,

where f(·) is the integrated spectral density and and f4(λ1, λ2, λ3) =
∫ 1

0
f4(u, λ1, λ2, λ3)du, with

f4(u, λ1, λ2, λ3) = 1
2π
A(u,−λ1 − λ2 − λ3)

∏3
i=1A(u, ωi).

Theorem 4.2 Suppose Assumption 4.1 holds. Let

Σ =

(
Σ

(1,1)
T Σ

(1,2)
T

Σ
(2,1)
T Σ

(2,2)
T

)
,

where Σ
(1,1)
T,r1,r2

, Σ
(1,2)
T,r1,r2

, Σ
(2,2)
T,r1,r2

are defined in Lemma 4.1 and Σ
(1,2)
T,r1,r2

= Σ
(2,1)
T,r1,r2

.

Furthermore define µ′ = (ℜB(1), . . . ,ℜB(m),ℑB(1), . . . ,ℑB(m)), where B(r) is defined in (7).

Then we have

√
T

((
ℜĉT (1),ℜĉT (2), . . . ,ℑĉT (m)

)
− µ′

)
D→ N (0,Σ), (17)

and

Tm D→
m∑

n=1

(
X2
n + Y 2

n

)

(1 + κ(ωr))
,

with m√
bT

+
(

1
bT 1/2 + b2T 1/2

)∑m
r=1

(
1
|r| + 1

T 1/2

)
→ 0 as T → ∞, where X2m is a normally distributed

random vector with X2m = (X1, . . . , Xm, Y1, . . . , Ym)′ and X2m ∼ N (
√
Tµ,Σ). Note the small

abuse of notation, when we say A
D→ B, we mean that the distribution of random variable A

converges to the distribution of random variable B. Hence Tm is a non-central (determined by

{T |B(r)|2}mr=1) generalised (determined by Σ and (1 + κ(ωr))) chi-squared distribution with 2m

degrees of freedom.

Remark 4.1 It is natural to ask whether there exists locally stationary tvMA(∞) processes, which

the DFT test, Tm, cannot detect. In other words, B(r) = 0 for all r 6= 0. Since one would only

13



use relatively small r (since B(r) = O(r−2)) in the test, B(r) ≈ α(r, 0) (see equation (8)), this is

equivalent to the existence of locally stationary processes were α(r, 0) = 0 for all r 6= 0.

We first consider the general case of local stationarity. We note that since f(u, ω)/f(ω) are positive

and symmetric functions (symmetric over ω), there exists a time-varying positive definite sequence

{a(u, j)}j which has the spectrum f(u, ω)/f(ω). Moreover, since
∫ 1

0
f(u, ω)du = f(ω), the func-

tions {a(u, s)} are such that
∫ 1

0
a(u, s)du = 0 for all s 6= 0 and

∫ 1

0
a(u, 0)du = 1. Based on this

construction, if the test cannot detect the alternative, this implies α(r, 0) = 0 for all r, since it is

straightforward to show that a(u, 0) = (2π)−1
∑

j α(r, 0) exp(irω). Therefore, a(u, 0) = 1 for all u,

and for the test not to detect the alternative, f(u, ω)/f(ω) must satisfy

f(u, ω)

f(ω)
= 1 +

∑

s 6=0

a(u, s) exp(isω), (18)

where {1, {a(u, s); s 6= 0}} is a positive definite sequence which depends on u and
∫ 1

0
a(u, s)du = 0.

Such a situation could possibly arise, though the conditions are so stringent it would be extremely

rare. However, in the case that we are unable to reject the null we could plot {T |ĉT (r, 1)|2}r and look

for significant coefficients. One could also re-do the test, but use T |ĉT (r, 1)|2 instead off T |ĉT (r)|2
(in the case of nonGaussianity, a small change of the variance of

√
T ĉT (r, 1) would have to be

made).

5 Comparisons with the Paparoditis test

We compare the test statistic with the test statistic recently proposed in Paparoditis (2009). Pa-

paroditis (2009) proposes the test statistic

ST =
1

N

N∑

s=1

∫ 2π

0

V 2
T (
m/2 + (s− 1)m

T
, λ)dλ (19)

where m is the segment length, N = T/m is number of segments,

VT (u, λ) =
1

m

m−1∑

j=−(m−1)

K(
λ− λj

b̃
)

(
Im(u, λ)

f̂T (λ)
− 1

)
,

b̃ is a local bandwidth (b̃ << m), f̂T the spectral density estimator defined in (2),

Im(u, λ) =
1

2πH2,m(0)

∣∣
m∑

t=1

h(
t

m
)Xt+[uT ]−m/2−1 exp(iλt)

∣∣2,

14



h(·) is a taper and Hk,m(λ) =
∑m

s=1 h(t/m)k exp(−iλs). Under the assumption that {Xt} is a

stationary linear time series Paparoditis (2009) shows that

√
Nb̃mST − µT (K,κ4, H)

D→ N (0, τ 2(K,κ4, H)), (20)

where µT (K,κ4, H) = O(
√

N
b̃

+
√
Nb̃) and τ 2(K,κ4, H) = O(1) are functions of the kernel K,

fourth order cumulant κ4 and the taper H. All terms are defined in Paparoditis (2009).

We observe that ST is the sum of squared random variables, hence ST will be quite skewed for small

sample sizes. Therefore, for small T , the normal approximation will not be particularly reliable,

this is a well known problem with many L2-based tests.

It is not possible to make a direct theoretical comparision of the power of both the Paparoditis

test and the DFT test, since both distributions under the alternative hypothesis are different and

quite complicated. However, it is interesting to note that they both share similar noncentrality

parameters. Paparoditis (2009) shows that under the null of local stationarity ST is normal, ST =

O(T 1/2), and the mean of ST is dominated by the term

T

∫ 1

0

1

2π

∫ 2π

0

(f(u, ω)

f(ω)
− 1
)2
dωdu

By using (8) we can show that

T

∫ 1

0

1

2π

∫ 2π

0

(f(u, ω)

f(ω)
− 1
)2
dωdu = T

(∑

r,j

|α(r, j)|2 − 1
)
,

where the coefficients {α(r, j)} are defined in (8). In comparison, in Section 2.3 we showed that

that ĉT (r)
P→ B(r) ≈ α(r, 0), and the power of the DFT test, Tm, is determined by {T |α(r, 0)|2}.

6 Simulations

We do the comparison for both stationary and nonstationary time series. In each case, we replicate

the time series 1000 times, and for each replication we do the test. We do the test for sample sizes

T = 64, 128, 256 and 512. For every simulation we select the bandwidth b using the cross-valiadation

method suggested in Beltrao and Bloomfield (1987) and use the Tukey kernel. To select the local

bandwidth b̃ in the Paparoditis test we use his suggested rule b̃ = b(T/m)0.25. We use the split

cosine bell taper and N = 4 in the Paparoditis test. For the DFT tests we use the test statistic Tm
(m = 1, 5, 10) and the maximum test statistic T ∗

m (m = 5, 10). We do the tests at both the 5% and

1% level. The rejection rates can be found in the tables below. We also give the average |ĉT (r)|2 for

each lag r = 1, . . . ,m over the 1000 realisations, we denote this as |c̄(r)|2 (we note that the larger

|c̄(r)|2 the more likely we are to reject the null).
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6.1 Stationary time series

We consider the the following models.

(i) Model 1. AR(2) model. Xt = 0.75Xt−1 − 0.4Xt−2 + εt. The results can be found in Tables 1

and 2. The plot of the estimated densities can be found in Figure 3.

We observe from Table 3 that for both models the rejection rates using the test Tm for

m = 1, 5, 10 tends to be about the same. There seems to be very little difference between

the rejection rates for different sample sizes. The maximum test T ∗
m tends to be a little more

conservative. The Paparoditis test performs well, and for large sample sizes tends to reject

the null less than the DFT tests.

(ii) Model 2: ARMA(1, 2) model. Xt = 0.8Xt−1 + εt + 0.3εt−1 + 2εt−2. The results can be found

in Tables 3 and 4.

The results for Model 2 tend to be slightly worse than the results for Model 1. This is probably

due to the more complicated dependence structure of the ARMA(1, 2) model than the AR(2)

model. For the relatively large sample sizes T = 256, 512 the number of rejects of the DFT

tests are mainly within in the 5% and 1% rejection level. In comparison, the Paparoditis

test seems to falsely reject a large proportion of the realisations, and this only improves for

T = 512.

Under the null both the DFT tests Tm and T ∗
m tend to reject within the stated rejection values -

suggesting that the chi-squared approximation of the test statistic is relatively good. There seems to

be little difference in rejection rates for different m, and different stationary models. Furthermore,

the average |c̄(r)|2 for both models is small (see 2 and 4). It is interesting to note that the rejection

rate at the 5% and 1% for the Paparoditis test tends to be about the same (this is probably because

the Paparoditis test statistic tends to be quite skewed). Moreover, the small sample performance

of the Paparoditis test for stationary models seems to be depend on the model.

6.2 Nonstationary time series

We now consider three nonstationary time series model. The first model combines the two stationary

models considered above. The second model is an autoregressive model where the variance of the

innovations is time-varying, this model is different to the other models in the sense that no rescaling

is used, ie. the first half of T = 512 is the time series for T = 256. The last nonstationary model

are independent random variables with time-varying variance.
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(i) Model 3: First 1/4 of time series is Model 1 and last 3/4 of time series is Model 2.

Xt =

{
2.425(0.75Xt−1 − 0.4Xt−2 + εt) t = 1, . . . , 0.25T

0.198(0.8Xt−1 + εt + 0.3εt−2 + 2εt−3) t = (0.25T + 1), . . . , T

We have standardised both time series such that both time series have variance one. The

results can be found in Tables 5 and 6. A plot of one realisation of T |ĉT (r)|2 is given in Figure

1.

As one would expect the rejection rate, for all the tests, increases with the sample size. The

Paparoditis test correctly rejects the null slighly more often than the DFT test when the

sample size is small. The rejection rate for the Paparoditis test at the 1% level is consistently

greater than the DFT tests at the 1% level.

The rejection rate for T1, T5 and T10 seem to be similar for this model. Studying Table 6

we observe that average covariance |c̄(1)|2 seems to hold the most information about the

nonstationary behaviour, hence no information is lost by using only T1 in this test.

(ii) Model 4: The variance of the innovation of the AR process changes smoothly over time.

Xt = 0.8Xt−1 + σtεt, where σt = (1
2

+ sin( 2tπ
512

) + 0.3 cos( 2tπ
512

)). The results can be found in

Tables 7 and 8.

The results in this test are quite different to the results for Model 3. Neither the DFT test or

the Paparoditis test does well for small sample sizes, though the Paparoditis is slightly better

than the DFT for T = 64 (9% compared to less than 5.5%).

However, there is a substantial increase in the rejection rate once the sample size increases

to T = 128 the rejection rate for all tests. Interestingly the rejection rate increases as the

sample sizes grows, except for T1, where the rejection rate drops from 97.9% (T = 128) to

58% (T = 256) and then increases to 100% (T = 512). An explanation for this can be found

in the average coefficients c̄(r) for different sample sizes. This model is different to the other

models in the sense that the time series with T = 256 is not a rescaled version of T = 128,

this means the average coefficients c̄(r) can change substantially with the sample size. This

can be seen from the average coefficients of c̄(1) in Tables 8. c̄(1) is large for T = 128 and

T = 512 but smaller for T = 256. This explains why T1 gives a relatively low rejection rate

when T = 256.

(iv) Model 5: Independent random variables with time-varying variance. Define the piecewise

varying function σ : [0, 1] → R

σ(u) =





1 for u ∈ {[ 5
20
, 6

20
), [14

20
, 15

20
), [16

20
, 17

20
), [18

20
, 19

20
)}

2 for u ∈ {[ 8
20
, 12

20
), [13

20
, 14

20
), [19

20
, 1]}

3 for u ∈ {[0, 5
20

), [ 6
20
, 7

20
), [12

20
, 13

20
), [15

20
, 16

20
), [17

20
, 18

20
)}
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and the time series Xt,T = σ( t
T
)εt. The results can be found in Tables 9 and 10.

The rejection rates for this model steadily increase as the sample size grows for all the DFT

tests. Though the rejection rates for Tm tends to be slightly higher for larger m. This is

because the size of the average covariances |c̄(r)|2 vary quite a lot in magnitude over r (see

Table 10), and the larger values of |c̄(r)|2 are not concentrated around r = 1. One can also see

why this is true by looking at a realisation of T |ĉT (r)|2 given in Figure 2, where we see that

the magnitudes are highly variable over different lags. On the other hand the the proportion

of rejects for the Paparoditis test is a lot less than the DFT tests.

Overall the DFT tests tend to perform consistently well for these model. But the max test T ∗
m is

more conservative than the sum test Tm and tends to reject the null less often. We observe that

there is a some difference between how Tm can perform for different values of m. Therefore to select

m it is worthwhile plotting T |ĉT (r)|2 against r, as in Figure 1 and 2, which indicates how to choose

m.

The DFT and Paparoditis test tend to comparable for Model 3 and 4. Though it seems that a large

sample size is required for the Paparoditis test to detect the nonstationarity in Model 5 (this could

be because the observations are independent).

7 Conclusions

In this article we have considered a test for second order stationarity. We proved the above result

under the assumption that the time series is strictly stationary with absolutely summable covari-

ances. But we believe this result is true even if the process is strictly stationary with long memory.

However, the proof is beyond the scope of this paper and is future research. We believe a more

indepth investigation of the real and imaginary parts of the DFT covariance ĉT (r) and ĉT (r, j)

(defined in Remark 2.4) may give an insight into the nonstationary behaviour of the time series.

Indeed ĉT (r, j) can be used to estimate the locally stationary spectral density f(u, ω). Simple two-

dimensional plots of {ĉT (r, j)} may be a simple method for ‘visualising’ the nonstationarity. We

also believe it is straightforward to extend our results to tests for second order stationarity of spatial

random fields which are defined on a lattice.
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DFT sum DFT max Paparoditis test

T1 T5 T10 T ∗
5 T ∗

10 ST
T = 64 5% level 2.3 2.8 3.5 1.8 1.1 6.1
T = 64 1% level 0.1 0.5 1 0.3 0.1 5.7
T = 128 5% level 2.7 2.6 2.4 2 1.8 12.1
T = 128 1% level 0.3 0.4 0.7 0 0.1 10.9
T = 256 5% level 2.1 1.9 2.9 2.5 2.1 1.3
T = 256 1% level 0.5 0.1 0.3 0.4 0.4 1

T = 512 5% level 4.1 2.7 4 3 4.2 0.2
T = 512 1% level 1 0.3 0.9 0.6 1.7 0.1

Table 1: The rejection rates for stationary Model 1 at the 5% and 1% level

|c̄(1)|2 |c̄(2)|2 |c̄(3)|2 |c̄(4)|2 |c̄(5)|2 |c̄(6)|2 |c̄(7)|2 |c̄(8)|2 |c̄(9)|2 |c̄(10)|2
0.004 0.004 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004

Table 2: The average |ĉT (r)|2 for stationary Model 1. T = 512

DFT sum DFT max Paparoditis test

T1 T5 T10 T ∗
5 T ∗

10 ST
T = 64 5% level 4.6 7.1 8.5 3.1 2.3 41.3
T = 64 1% level 1.8 4.2 6.5 1.4 0.7 39.2
T = 128 5% level 4.4 6.3 8.3 4.2 4 76.2
T = 128 1% level 1 3.2 5.4 1 1.3 74
T = 256 5% level 5.3 6.1 6.9 5.1 5 83
T = 256 1% level 1.3 4.1 5 1.8 1.7 81.8

T = 512 5% level 3.7 4.3 4.6 4.4 3.6 23.6
T = 512 1% level 0.7 1.8 1.7 0.9 0.9 20.2

Table 3: The rejection rates for stationary Model 2 at the 5% and 1% level

|c̄(1)|2 |c̄(2)|2 |c̄(3)|2 |c̄(4)|2 |c̄(5)|2 |c̄(6)|2 |c̄(7)|2 |c̄(8)|2 |c̄(9)|2 |c̄(10)|2
0.004 0.004 0.004 0.004 0.004 0.003 0.004 0.004 0.004 0.003

Table 4: The average |ĉT (r)|2 for stationary Model 2. T = 512
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DFT sum DFT max Paparoditis test

T1 T5 T10 T ∗
5 T ∗

10 ST
T = 64 5% level 48.9 45.3 40.8 31.3 21.5 41.9
T = 64 1% level 23.1 27.9 26.9 11.5 7.9 38.1
T = 128 5% level 88.1 86.6 80 80.2 71.6 93.3
T = 128 1% level 71.4 71.4 64.8 59.2 51.1 91.5
T = 256 5% level 99.6 99.7 99.3 99.5 99.2 99.8
T = 256 1% level 98.8 99.1 97.9 97.7 96.6 99.7

T = 512 5% level 100 100 100 100 100 100
T = 512 1% level 100 100 100 100 100 100

Table 5: The rejection rates for nonstationary Model 3 at the 5% and 1% level

|c̄(1)|2 |c̄(2)|2 |c̄(3)|2 |c̄(4)|2 |c̄(5)|2 |c̄(6)|2 |c̄(7)|2 |c̄(8)|2 |c̄(9)|2 |c̄(10)|2
0.111 0.057 0.016| 0.006 0.012| 0.012 0.008 0.006 0.008 0.009

Table 6: The average |ĉT (r)|2 for nonstationary Model 3. T = 512

DFT sum DFT max Paparoditis test

T1 T5 T10 T ∗
5 T ∗

10 ST
T = 64 5% level 3.1 3.8 5.5 1.9 2.2 9
T = 64 1% level 0.1 1.1 2.7 0.1 0.3 8.3
T = 128 5% level 97.9 95 84.7 93.9 89.4 89.9
T = 128 1% level 90.7 79.6 67.3 77 68.8 87.2
T = 256 5% level 58.1 100 100 100 100 93
T = 256 1% level 35.8 100 100 100 100 89.1

T = 512 5% level 100 100 100 100 100 100
T = 512 1% level 100 100 100 100 100 100

Table 7: The rejection rates for nonstationary Model 4 at the 5% and 1% level

T = 512 |c̄(1)|2 |c̄(2)|2 |c̄(3)|2 |c̄(4)|2 |c̄(5)|2 |c̄(6)|2 |c̄(7)|2 |c̄(8)|2 |c̄(9)|2 |c̄(10)|2
0.347 0.088 0.008| 0.006 0.006| 0.007 0.007 0.007 0.007 0.007

T = 256 |c̄(1)|2 |c̄(2)|2 |c̄(3)|2 |c̄(4)|2 |c̄(5)|2 |c̄(6)|2 |c̄(7)|2 |c̄(8)|2 |c̄(9)|2 |c̄(10)|2
0.035 0.159 0.062 0.035 0.025 0.021 0.019 0.017 0.017 0.016

T = 128 |c̄(1)|2 |c̄(2)|2 |c̄(3)|2 |c̄(4)|2 |c̄(5)|2 |c̄(6)|2 |c̄(7)|2 |c̄(8)|2 |c̄(9)|2 |c̄(10)|2
0.13 0.042 0.029| 0.024 0.022 0.022 0.021 0.022 0.021 0.02

T = 64 |c̄(1)|2 |c̄(2)|2 |c̄(3)|2 |c̄(4)|2 |c̄(5)|2 |c̄(6)|2 |c̄(7)|2 |c̄(8)|2 |c̄(9)|2 |c̄(10)|2
0.027 0.026 0.026 0.026 0.027 0.027 0.027 0.028 0.026 0.027

Table 8: The average |ĉT (r)|2 for nonstationary Model 4, calculated using T = 512, 256, 128 and 64.

A Appendix

In this appendix we prove the results from the main section.
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DFT sum DFT max Paparoditis test

T1 T5 T10 T ∗
5 T ∗

10 ST
T = 64 5% level 18.3 26.8 36 17.7 18.4 3.4
T = 64 1% level 5.5 11.9 19.3 4.3 4.4 2.6
T = 128 5% level 33.3 47.8 66.5 35.2 42.5 11.9
T = 128 1% level 14.8 27.2 44.1 15.4 18.7 9.5
T = 256 5% level 57.7 78.5 97.1 62.6 78.2 37.9
T = 256 1% level 36 58.4 87.2 38.8 52.1 32.9

T = 512 5% level 82.4 97.8 100 91.9 99.6 76.4
T = 512 1% level 65.5 92.8 100 76.7 94.9 73

Table 9: The rejection rates for nonstationary Model 5 at the 5% and 1% level

|c̄(1)|2 |c̄(2)|2 |c̄(3)|2 |c̄(4)|2 |c̄(5)|2 |c̄(6)|2 |c̄(7)|2 |c̄(8)|2 |c̄(9)|2 |c̄(10)|2
0.027 0.023 0.007 0.016 0.009 0.007 0.029 0.01 0.028 0.005

Table 10: The average |ĉT (r)|2 for nonstationary Model 5. T = 512

For short hand, when it is clear that T plays a role, we use the notation Jk := JT (ωk), J̄k = JT (−ωk),
f̂k := f̂T (ωk) and fk = f(ωk).

A.1 Some results on DFTs and Fourier coefficients

In the sections below, under various assumptions of the dependence of {Xt}, we will show asymptotic

normality and obtain the mean and variance of c̃T (r). In the case that {Xt} is a short memory,

stationary time series, then it is relatively straightforward to evaluate the variance of c̃T (r), since

{JT (ωk)JT (ωk+r)} are close to uncorrelated random variables. However, in the nonstationary case

this no longer holds and we have to use some results in Fourier analysis to derive var(c̃T (r)). To do

this we start by studying the general random variable

HT =
1

T

T∑

k=1

H(ωk)JT (ωk)JT (ωk+r),

where JT (ωk) = 1√
2πT

∑T
t=1Xt exp(2πitk

T
). We will show that under certain conditions on H(·), HT

can be written as the weighted average of Xt. Expanding JT (ωk)JT (ωk) we see that HT can be

written as

HT =
1

T

∑

t,τ

XtXτ exp(−iωrτ)
(

1

T

T∑

k=1

H(ωk) exp(iωk(t− τ))

)
.
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Figure 1: The top plot is the plot of the squared DFT covariance T |ĉT (r)|2 from one realisation
of the stationary time series model 1 (T = 512 and r = 1, . . . , 128). The lower plot is the plot of
the squared DFT covariance T |ĉT (r)|2 from one realisation of the nonstationary time series model
3 (T = 512 and r = 1, . . . , 128). The line is for χ2

2(0.95). If several DFT squared covariances are
above this line, this may indicate nonstationary behaviour
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Figure 2: The plot is the plot of the squared DFT covariance T |ĉT (r)|2 from one realisation of the
nonstationary time series model 5 (T = 512 and r = 1, . . . , 128). The line is for χ2

2(0.95).
.

Without any smoothness assumptions on H(ωk), it is not clear whether the inner sum of the above

converges to zero as |t − τ | → ∞, and if the variance of HT converges to zero. However, let us
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Figure 3: Thick line: Estimated density of test statistic of T5 for 1000 realisations of the stationary
series model 1 (T = 64, 128, 256, 512). The dotted lines are the chi-squared with 10 degrees of
freedom

suppose that supω |H ′(ω)| < ∞. In this case, the DFT of H(ω), 1
T

∑T
k=1H(ωk) exp(iωk(t − τ)), is

an approximation of the Fourier coefficient h(t − τ) =
∫
H(ω) exp(i(t − τ)ω)dω (the error in this

approximation is discussed below). Noting that the Fourier coefficients h(k) → 0 as k → ∞, we

have

HT ≈ 1

T

T∑

t=1

T∑

τ=1

XtXτh(t− τ) exp(−iωrτ).

Hence HT can be approximated by a quadratic form, where the weights decay as |t− τ | → ∞. We

now justify some of the approximations discussed above and state some well know results in Fourier

analysis. An interesting overview of results in Fourier analysis is given in Briggs and Henson (1997).

The following theorem is well known, see for example, Briggs and Henson (1997), Theorem 6.2, for

the proof.

Theorem A.1 Suppose that g[0,Ω] → R is a periodic function with period Ω. We shall assume

that either (a) supx |g′′(x)| < ∞ or (b) supx |g′(x)| < ∞ and g′(·) is piecewise montone function.

Let

a(s) =
1

Ω

∫ Ω

0

g(x) exp(isx)dx and aT (s) =
1

T

T∑

k=1

g(
Ωk

T
) exp(i

Ωk

T
).

Therefore for all s, we have in case (a) |a(s)| ≤ C supx |g′′(x)|s−2 and in case (b) |a(s)| ≤
C supx |g′(x)|s−2, where C is constant independent of s and g(·).
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Moreover sup1≤s≤T |a(s) − aT (s)| ≤ CT−2.

We now apply the above result to our setup. We will use Lemma A.1, below, to prove the asymptotic

normality result in Section A.4.

Lemma A.1 Suppose Assumption 3.1 or 4.1 is satisfied. And let f(ω) be the spectral density of the

stationary linear time series or the integrated spectral density of the locally stationary time series.

Let

GT,ωr(s) =
1

T

T∑

k=1

1

(f(ωk)f(ωk + ωr))1/2
exp(isωk) (21)

and Gωr(s) =
1

2π

∫ 2π

0

1

(f(ω)f(ω + ωr))1/2
exp(isω)dω. (22)

Under the stated assumptions we have either (f(ω)f(ω + ωr))
−1/2 has a bounded second derivative

(under Assumption 3.1(iv-a) or Assumption 4.1) or that (f(ω)f(ω + ωr))
−1/2 has a bounded first

derivative and is piecewise monotone (under Assumption 3.1(iv-b)). Therefore, |Gωr(s)| ≤ Ks−2

(K is a finite function independent of ωr), supωr

∑
s |Gωr(s)| <∞ and supωr

∑T
s=1 |GT,ωr(s)| <∞.

PROOF. The above is a straightforward application of Theorem A.1. �

We will use the result below in Sections A.2 and A.3.

Lemma A.2 Suppose Assumption 4.1 is satisfied. For 2 ≤ n ≤ 16, define the nth order cumulant

spectra as

fn(u, ω1, . . . , ωn−1) =
1

(2π)(n/2)−1

{ n−1∏

j=1

A(u, ωj)

}
A(u,−

n−1∑

j=1

ωj),

and the Fourier transform

Fn(k;ω1, . . . , ωn−1) =

∫ 1

0

fn(u, ω1, . . . , ωn−1) exp(i2πku)du. (23)

(i) If Assumption 4.1(iv)(a) holds, then supu,ω1,...,ωn
|∂2fn(u,ω1,...,ωn−1)

∂u2 | <∞ and

sup
ω1,...,ωn−1

|Fn(k;ω1, . . . , ωn−1)| ≤ C sup
u,ω1,...,ωn

|∂
2fn(u, ω1, . . . , ωn−1)

∂u2
| 1

|k|2 . (24)

(ii) If Assumption 4.1(iv)(b) holds, then supu,ω1,...,ωn
|∂fn(u,ω1,...,ωn−1)

∂u
| < ∞, ∂fn(u,ω1,...,ωn−1)

∂u
is a
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piecewise monotone function in u and

sup
ω1,...,ωn

|Fn(k;ω1, . . . , ωn−1)| ≤ C sup
u,ω1,...,ωn

|∂fn(u, ω1, . . . , ωn−1)

∂u
| 1

|k|2 . (25)

We note that the constant C is independent of the function fn(·) and k.

PROOF. We only prove (ii), the proof of (i) is similar. We note that

(2π)(n/2)−1dfn(u, ω1, . . . , ωn−1)

du
= A(u,−

n−1∑

j=1

ωj)
n−1∑

r=1

dA(u, ωr)

du

∏

j 6=r
A(u, ωj) +

∂A(u,−∑n−1
j=1 ωj)

∂u

n−1∏

j=1

A(u, ωj).

Now under Assumption 4.1, supu,ω |A(u, ω)| and supu,ω |∂A(u,ω)
∂u

| are bounded function, hence we see

from the above that supu,ω |∂fn(u,ω1,...,ωn−1)
∂u

| is bounded. Moreover, by using Theorem A.1 we have

(24). The proof of (ii) is similar, and we omit the details. �

We observe that in the stationary case A(u, ω) ≡ A(ω), then Fn(k;ω1, . . . , ωn−1) = 0 for k 6= 0.

In the following lemma we consider the error in approximation of the DFT with the Fourier coeffi-

cient.

Lemma A.3 Suppose Assumption 4.1 is satisfied. Let Fn(k;ω1, . . . , ωn−1) be defined as in (23) and

let

Fn,T (s;ω1, . . . , ωn−1) =
1

T

T∑

t=1

fn(
t

T
, ω1, . . . , ωn−1) exp(i2sπt/T ). (26)

Then under Assumption 4.1(v)(a) we have

sup
ω1,...,ωn−1

∣∣Fn,T (s;ω1, . . . , ωn−1) − Fn(s;ω1, . . . , ωn−1)
∣∣ ≤ C sup

u,ω1,...,ωn−1

|∂
2fn(u, ω1, . . . , ωn−1)

∂u2
| 1

T 2
,

and under Assumption 4.1(v)(b) we have

sup
ω1,...,ωn−1

∣∣Fn,T (s;ω1, . . . , ωn−1) − Fn(s;ω1, . . . , ωn−1)
∣∣ ≤ C sup

u,ω1,...,ωn−1

|∂fn(u, ω1, . . . , ωn−1)

∂u
| 1

T 2
,

where C is a constant independent of fn(·).

PROOF. The proof follows immediately from Theorem A.1 and Lemma A.2. �
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A.2 Proof of Theorems 3.1 and 4.1

We first gives some results which connect the sum of cumulants and mixing. The result below is

analogous to Ibragimov’s inequality for higher order cumulants. It is motivated by Neumann (1996),

Remark 3.1.

Lemma A.4 Let us suppose that {Xt} is a stationary time series and for some δ > 0 we have∑
r |r|α(r)

δ
(k−1)(1+δ) <∞ and E|Xk(1+δ)

t | <∞. Then we have

∑

t2,...,tk

k∏

i=2

(1 + |ti|)cum(Xt1 , . . . , Xtk)| ≤ Ck
(
E|Xk(1+δ)

t |
)1/(1+δ)(∑

r

|r|α(r)
1

(k−1)(1+δ)
)k−1

<∞, (27)

where Ck is a finite constant which depends only on k.

PROOF. To prove the result we use a result from (Statulevicius & Jakimavicius, 1988), Theorem

3, part (2), which states that if t1 ≤ t2 ≤ . . . ≤ tk, then for all 2 ≤ i ≤ k we have

∣∣cum(Xt1 , Xt2 , . . . , Xtk)
∣∣ ≤ 3(k − 1)!2k−1α(ti − ti−1)

δ/(1+δ)
(
E|Xk(1+δ)

t |
)1/(1+δ)

.

Now by taking the 1/(k − 1)th root of the above for all 2 ≤ i ≤ k we have

∣∣cum(Xt1 , Xt2 , . . . , Xtk)
∣∣1/(k−1) ≤ C

1/(k−1)
k α(ti − ti−1)

δ/(k−1)(1+δ))
(
E|Xk(1+δ)

t |
)1/(k−1)(1+δ)

,

where Ck = 3(k− 1)!2k−1. Since the above bound holds for all i, multiplying the above over i gives

∣∣cum(Xt1 , Xt2 , . . . , Xtk)
∣∣ ≤

(
3(k − 1)!2k−1)

(
E|Xk(1+δ)

t |
)1/(1+δ) k∏

i=2

α(ti − ti−1)
δ/(k−1)(1+δ). (28)

Finally we rewrite
∑∞

t2,...,tk=1 as the sum of orderings, that is
∑∞

t2,...,tk=1 =
∑∞

t2≤...≤tk=1 + . . .. Now

since the number of orderings is finite, we can use (28) to obtain

∞∑

t2,...,tk=1

∣∣cum(Xt1 , Xt2 , . . . , Xtk)
∣∣ ≤ Ckk!

(
E|Xk(1+δ)

t |
)1/(1+δ){∑

r

|r|α(r)δ/((k−1)(1+δ))
}k−1

<∞,

which gives result. �

Lemma A.5 Suppose either Assumption 3.1(A or B) is satisfied. Then for 2 ≤ n ≤ 16 we have

∑

k2,...,kn

(1 + |κn|)|κn(k1, . . . , kn)| <∞, (29)
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and

cum(JT (ω1), . . . , JT (ωn)) =
(2π)(n/2)−1

T n/2
fn(ω1, . . . , ωn−1)

T∑

t=1

exp(it
n∑

j=1

ωj) +O(
1

T n/2
), (30)

where fn is the nth order cumulant spectral density and κn(j1, . . . , jn−1) = cum(Xt, Xt+j1 , . . . , Xt+jn−1).

PROOF. We first prove (29). For stationary linear time series, the proof is of the above is well

known, for stationary time series which is mixing the result immediately follows from Lemma A.4.

To proof of (30) follows immediately from Brillinger (1981), Theorem 4.3.2. �

The follow result is due to Paparoditis (2009), Lemma 6.2, and is a generalisation of Brillinger

(1981), Theorem 4.3.2, to locally stationary time series.

Lemma A.6 (Paparoditis (2009), Lemma 6.2) Suppose that Assumption 4.1 holds and let fn(·)
be defined as in (23). Then for ω1, . . . , ωn ∈ [0, 2π] and 2 ≤ n ≤ 16 we have

cum(JT (ω1), . . . , JT (ωn)) =
(2π)(n/2)−1

T n/2

T∑

t=1

fn(
t

T
, ω1, . . . , ωn−1) exp(it

n∑

j=1

ωj) +O(
(log T )n−1

T n/2
).

Now the following corollary immediately follows from Lemmas A.3 and A.6.

Corollary A.1 Suppose that Assumption 4.1 holds, and let Fn(·) be defined as in (23). Then we

have

cum(JT (ωj1), . . . , JT (ωjn)) =
(2π)(n/2)−1

T (n/2)−1
Fn(j1 + . . .+ jn;ωj1 , . . . , ωjn−1) +O(

(log T )n−1

T n/2
+

1

T 2
)

and

∣∣cum(JT (ωj1), . . . , JT (ωjn))
∣∣ ≤ C

1

T (n/2)−1|j1 + . . .+ jn|
+
C(log T )n−1

T n/2
+
C

T 2
,

where ωjr = 2πjr/T , −T ≤ jr ≤ T and C is constant independent of ω.

In the lemma below we use the well known result which represents moments in terms of cumulants

Let us suppose that supt E(|Xt|n) <∞. Then we have

E(Xt1 , . . . , Xtn) =
∑

π

∏

B∈π
cum(Xi; i ∈ B), (31)

where π is a partition of {t1, t2, . . . , tn} and the sum
∑

π is done over all partitions of {t1, t2, . . . , tn}.

Lemma A.7 Let f(·) denote the spectral density or integrated spectral density. Then we have
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(i) Suppose either Assumption 3.1 or Assumption 4.1 holds, then

E

(
Jk1 J̄k1+rJ̄k2Jk2+r

{
f̂k1 f̂k1+r − E(f̂k1 f̂k1+r)

}{
f̂k2 f̂k2+r − E(f̂k2 f̂k2+r)

})
=

C

bT

(
1

|k1 − k2|2
+

log T

T

)
,

(ii) Suppose either Assumption 3.1 or Assumption 4.1 holds, then

E

{
f̂kf̂k+r − E(f̂kf̂k+r)

}4

≤ C

(bT )2

(iii) Suppose Assumption 3.1(i) holds, then we have E
{
f̂kf̂k+r

}
− fkfk+r = O(b + 1

bT
). Suppose

Assumption 3.1(iv-a) or Assumption 4.1 holds, then we have E
{
f̂kf̂k+r

}
−fkfk+r = O(b2+ 1

bT
).

(iv) Suppose Assumption 4.1 holds, then we have

E(Js1Js2Js3Js4) ≤ C
( 1

|s1 + s2|2
+ δT

)( 1

|s3 + s4|2
+ δT

)
+ C

( 1

|s1 + s3|2
+ δT

)( 1

|s2 + s4|2
+ δT

)

+C
( 1

|s1 + s4|2
+ δT

)( 1

|s2 + s3|2
) + δT

)

+
C

T

1

|s1 + s2 + s3 + s4|2
+O

((log T )3

T 2
+

1

T 2

)
,

where δT = O( log T
T

+ 1
T 2 ).

PROOF. To simplify notation in the proof we let wj = 1
bT
K(

ωj

b
). By expanding the expectation in

(i) we have

E

(
Jk1 J̄k1+rJ̄k2Jk2+r

{
f̂k1 f̂k1+r − E(f̂k1 f̂k1+r)

}{
f̂k2 f̂k2+r − E(f̂k2 f̂k2+r)

})

=
∑

j1,j2,j3,j4

wj1wj2wj3wj4

{
E(Jk1−j1 J̄k1−j1Jk1+r−j2 J̄k1+r−j2Jk1 J̄k1+rJ̄k2Jk2+rJk2−j3 J̄k2−j3Jk2+r−j4 J̄k2+r−j4)

−E(Jk1−j1 J̄k1−j1Jk1+r−j2 J̄k1+r−j2)E(Jk1 J̄k1+rJ̄k2Jk2+rJk2−j3 J̄k2−j3Jk2+r−j4 J̄k2+r−j4)

−E(Jk2−j3 J̄k2−j3Jk2+r−j4 J̄k2+r−j4)E(Jk1 J̄k1+rJ̄k2Jk2+rJk1−j1 J̄k1−j1Jk1+r−j2 J̄k1+r−j2)

+E(Jk1−j3 J̄k1−j3Jk1+r−j4 J̄k1+r−j4)E(Jk1 J̄k1+rJ̄k2Jk2+r)E(Jk2−j3 J̄k2−j3Jk2+r−j4 J̄k2+r−j4)

}
.(32)

To prove the result we first represent the above moments in terms of cumulants using (31). We

observe that many of the terms will cancel, however those that do remain will involve at least

one cumulant which has elements belong to the set {Jk1−j1 , J̄k1−j1 , Jk1+r−j2 , J̄k1+r−j2} and the set

{Jk2−j3 , J̄k2−j3 , Jk2+r−j4 , J̄k2+r−j4}, since these terms can only arise in the cumulant expansion of

E(Jk1−j1 J̄k1−j1Jk1+r−j2 J̄k1+r−j2Jk1 J̄k1+rJ̄k2Jk2+rJk2−j3 J̄k2−j3Jk2+r−j4 J̄k2+r−j4). Now by a careful anal-
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ysis of all cumulants involving elements from both these two sets we observe that the largest cumu-

lant terms are cum(Jk1−j1 , Jk2−j3) and cum(J̄k1−j1 , J̄k2−j3) (the rest are of a lower order). Therefore

recalling that
∑

j1,j2,j3,j4
wj1wj2wj3wj4 =

∑bT
j1,j2,j3,j4=1

1
(bT )4

∏
jK(

ωj

b
) and using Corollary A.1 gives

E

(
Jk1 J̄k1+rJ̄k2Jk2+r

{
f̂k1 f̂k1+r − E(f̂k1 f̂k1+r)

}{
f̂k2 f̂k2+r − E(f̂k2 f̂k2+r)

})

≤
bT∑

j1,j2,j3,j4=1

1

(bT )4

∏

ji

K(
ωji
b

)
( 1

|k1 + k2 − j1 − j3|2
+

log T

T

)2

≤ C

bT

(
1

|k1 − k2|2
+

log T

T

)
,

where C is a finite constant independent of k1 and k2.

The proof of (ii) is similar to the proof of (i), hence we omit the details. We note that if we were

to show asymptotic normality of f̂kf̂k+r, then (ii) would immediately follow from this.

We now prove (iii). By definition of f̂kf̂k+r, using Lemmas A.6 and A.1, under Assumption 3.1(i)

we have

E
{
f̂kf̂k+r

}
− fkfk+r =

∑

j1,j2

1

(bT )2
K(

wj1
b

)K(
wj2
b

)E
{
Jk−j1 J̄k−j1Jk+r−j2 J̄k+r−j2} − f(ωk)f(ωk+r)

=
∑

j1

1

bT
K(

wj1
b

)f2(ωk−j1)
∑

j2

1

bT
K(

wj2
b

)f2(ωk+r−j1) − f(ωk)f(ωk+r) +O(
1

bT
)

= O(b +
1

bT
).

Using a similar proof we can show that under Assumption 3.1(iv-a) or Assumption 4.1 we have

E
{
f̂kf̂k+r

}
− fkfk+r = O(b2 + 1

bT
). Thus proving (iii).

The proof of (iv) uses Lemma A.6 and Corollary A.1 and is straightforward, hence we omit the

details. �

In the lemma below we prove Theorems 3.1 and 4.1.

Lemma A.8 Suppose Assumption 3.1 holds. Then we have

√
T |ĉT (r) − c̃T (r)| = O

(
1√
bT

+ (b+
1

bT
) +

( 1

bT 1/2
+ b2T 1/2

)( 1

|r| +
1

T 1/2

))
. (33)

Suppose Assumption 4.1 holds. Then we have

√
T |ĉT (r) − c̃T (r)| = O

(
1√
bT

+
( 1

bT 1/2
+ b2T 1/2

)( 1

|r| +
1

T 1/2

))
. (34)
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PROOF. The proofs of (33) and (34) are very similar. Most of the time we will be obtaining the

bounds under Assumption 4.1, however in a few places the bounds under Assumption 3.1 can be

better than those under Assumption 4.1. In this case we will obtain the bounds under each of the

Assumptions (separately).

To prove both (33) and (34) we first note that by the mean value theorem evaluated to the second

order we have x−1/2 − y−1/2 = (−1/2)x−3/2(x− y) + (1/2)(−1/2)(−3/2)x
−5/2
y (x− y)2, where xy lies

between x and y. Applying this to the difference ĉT (r) − c̃T (r) we have the expansion

√
T |ĉT (r) − c̃T (r)| ≤ 1

2
I +

3

8
II,

where

I =
1√
T

∑

k

JkJ̄k+r
(fkfk+r)3/2

{
f̂kf̂k+r − fkfk+r

}
and II =

1√
T

∑

k

JkJ̄k+r
(f̄kf̄k+r)5/2

{
f̂kf̂k+r − fkfk+r

}2
.

We consider the terms I and II separately. We first obtain a bound for E|I2|. Observe that

E|I2| = 3
(
E|I2

1 | + E|I2
2 |
)
, where

I1 =
1√
T

∑

k

JkJ̄k+r
(fkfk+r)3/2

{
f̂kf̂k+r − E(f̂kf̂k+r)

}

I2 =
1√
T

∑

k

JkJ̄k+r
(fkfk+r)3/2

{
E(f̂kf̂k+r) − fkfk+r

}
,

hence we will obtain the bounds E(I2
1 ) and E(I2

2 ). Expanding E(I2
1 ) and using Lemma A.7(i) and

that fk1fk1+r is bounded away from zero gives

E(I2
1 ) ≤ 1

T

∑

k1,k2

1

(fk1fk1+rfk2fk2+r)3/2

C

bT

{ 1

|k1 − k2|2
+

log T

T

}
= O(

1

bT
). (35)

Expanding E|I2
2 | gives

E(I2
2 ) ≤ C

T

∑

k1,k2

1

(fk1fk1+rfk2fk2+r)3/2
E(Jk1 J̄k1+rJ̄k2Jk2+r) ×

(
E
{
f̂k1 f̂k1+r

}
− fk1fk1+r

)(
E
{
f̂k2 f̂k2+r

}
− fk2fk2+r

)
. (36)

The bounds for E|I2
2 | differ slightly, depending on the assumption. Under Assumption 3.1, by using

Brillinger (1981), Theorem 4.3.2, it can be shown that E(Jk1 J̄k1+rJ̄k2Jk2+r) = O(T−1) (since r 6= 0).

Moreover, by using Lemma A.7(iii) we have E
{
f̂k1 f̂k1+r

}
− fk1fk1+r = O(b + (bT )−1). Therefore
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under Assumption 3.1 we have

E(I2
2 ) = O

(
(b+

1

bT
)2
)
. (37)

Therefore, under Assumption 3.1, using (35) and (37) gives E|I|2 = O( 1
bT

+ (b+ 1
bT

)2) and

I = Op(b +
1

bT
+

1√
bT

). (38)

On the other hand, under Assumption 4.1 we do not have that E(Jk1 J̄k1+rJ̄k2Jk2+r) = O(T−1),

instead we substitute Lemma A.7(iv) into (36) and obtain

E(I2
2 ) = O

(
{ T
r2

+ 1}(b2 +
1

bT
)2
)
. (39)

Therefore, under Assumption 4.1, using (35) and (39) gives E|I|2 = O( 1
bT

+ ( T
r2

+ 1)(b2 + 1
bT

)2) and

I = Op

(
1√
bT

+
(√T
|r| + 1

)
(b2 +

1

bT
)

)
. (40)

We now obtain a bound for II. Since the spectral density f(ω) is bounded away from zero and

supω |f̂T (ω) − f(ω)| P→ 0 (see (Paparoditis, 2009), Lemma 6.1(ii)), we have II = Op(ĨI), where

ĨI =
1√
T

∑

k

(
JkJ̄k+r

{
f̂kf̂k+r − fkfk+r

}2)
.

To obtain a bound for ĨI we use that |ĨI| ≤ 3ĨI1 + 3ĨI2, where

ĨI1 =
1√
T

∑

k

(
|JkJ̄k+r|

{
f̂kf̂k+r − E(f̂kf̂k+r)

}2)
and ĨI2 =

1√
T

∑

k

(
|JkJ̄k+r|

{
E(f̂kf̂k+r) − fkfk+r

}2)
.

Using Cauchy-Schwarz inequality, Lemma A.7(ii,iv) we have

E|ĨI1| ≤ 1√
T

∑

k

E
(
|JkJ̄k+r|2

)1/2(
E
{
f̂kf̂k+r − E(f̂kf̂k+r)

}4)1/2
= O

(T 1/2

bT

( 1

|r| +
1

T 1/2

))
.

We now obtain a bound for E|ĨI2|. Using Lemma A.7(iii,iv) we have

E(ĨI2) ≤ 1√
T

∑

k

E
(
|JkJ̄k+r|2

)1/2{
E(f̂kf̂k+r) − fkfk+r

}2
= O(

√
T (b+

1

bT
)2
( 1

|r| +
1

T 1/2

)
).
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Therefore

ĨI = O

(( 1

|r| +
1

T 1/2

) 1

bT 1/2
+ b2T 1/2 +

1

b2T 5/2
+ T−1/2

)
. (41)

Hence (41) and (38) give (33) and (41) and (40) give (34). �

A.3 The expectation and variance of the covariance c̃T (r)

A.3.1 The moments under the null of strict stationarity

It is straightforward to show, under Assumption 3.1, that E(
√
T c̃T (r)) = O(T−1/2). We now obtain

the asymptotic variance of the c̃T (r) under the null of stationarity.

The following lemma immediately follows from (Brillinger, 1981), Theorem 4.3.2. We use this result

to obtain the asymptotic variance of c̃T (r), below.

Lemma A.9 Let {Xt} be a stationary time series where we denote the second and fourth order

cumulants as κ2 and κ4. Suppose
∑

k(1+ |k|)|κ2(k)| <∞ and
∑

k1,k2,k3
(1+ |ki|)|κ4(k1, k2, k3)| <∞.

Then we have

cov(Jk1Jk2 , Jk3Jk4) =

(
f(ωk1)

T

T∑

t=1

eitωk1−k3 +O(
1

T
)

)(
f(ωk2)

T

T∑

t=1

eitωk2−k4 +O(
1

T
)

)

+

(
f(ωk1)

T

T∑

t=1

eitωk1−k4 +O(
1

T
)

)(
f(ωk2)

T

T∑

t=1

eitωk2−k3 +O(
1

T
)

)

+(2π)f4(ωk1 , ωk2 ,−ωk3)
1

T 2

T∑

t=1

eitωk1+k2−k3−k4 +O(
1

T 2
). (42)

Lemma A.10 Suppose the assumptions in Lemma A.9 hold. Then we have

cov
(√

Tℜc̃T (r1),
√
Tℜc̃T (r2)

)
= cov

(√
Tℑc̃T (r1),

√
Tℑc̃T (r2)

)

=

{
O(T−1) r1 6= r2

1 + 1
2

2π
2T 2

∑T
k1,k2=1 g

(r)
T,k1

g
(r)
T,k2

f4(ωk1 ,−ωk1+r,−ωk2) +O( 1
T
) r1 = r2 = r

(43)

PROOF. To prove the result we use that ℜc̃T (r) = 1
2
(c̃T (r)+ c̃T (r)) and ℑc̃T (r) = −i

2
(c̃T (r)+ c̃T (r)),

and evaluate cov(
√
T c̃T (r1),

√
T c̃T (r2)), cov(

√
T c̃T (r1),

√
T c̃T (r2)) and cov(

√
T c̃T (r1),

√
T c̃T (r2)).

Expanding cov(
√
T c̃T (r1),

√
T c̃T (r2)) gives

cov(
√
T c̃T (r1),

√
T c̃T (r2)) =

1

T

T∑

k1,k2=1

g
(r1)
T,k1

g
(r2)
T,k2

cov(Jk1Jk1+r1 , Jk2Jk2+r2),
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where g
(r)
T,k = f(ωk)

−1/2f(ωk + ωr)
−1/2. Substituting (42) into the above it is easy to show that for

r1 6= r2 we have cov(
√
T c̃T (r1),

√
T c̃T (r2)) = O(T−1) and for r := r1 = r2 we have

cov(
√
T c̃T (r),

√
T c̃T (r))

=
2

T

T∑

k=1

(g
(r)
T,k)

2f(ωk)f(ωk+r) +
2π

T 2

T∑

k1,k2=1

g
(r)
T,k1

g
(r)
T,k2

f4(ωk1 ,−ωk1+r,−ωk2) +O(
1

T
)

= 2 +
2π

T 2

T∑

k1,k2=1

g
(r)
T,k1

g
(r)
T,k2

f4(ωk1 ,−ωk1+r,−ωk2) +O(
1

T
).

The same method gives us a similar bound for cov(
√
T c̃T (r),

√
T c̃T (r)). Similarly it can be shown

that unless r2 = T − r1 we have cov(
√
T c̃T (r1),

√
T c̃T (r2)) = O(T−1). Also, for r1 6= r2 we have

cov(
√
T c̃T (r1),

√
T c̃T (r2)) = O(T−1) Altogether this gives us (43). �

PROOF of Lemma 3.1 Under the stated assumptions the spectral density f and the tri-spectra

f4(ω1, ω2, ω3) is Lipschitz continuous, therefore using Lemma A.10 we have

cov
(√

Tℜc̃T (r1),
√
Tℜc̃T (r2)

)
= cov

(√
Tℑc̃T (r1),

√
Tℑc̃T (r2)

)

=

{
O(T−1) r1 6= r2

1 + 1
4π

∫ 2π

0

∫ 2π

0
f4(ω1,−ω1−ωr,−ω2)√

f(ω1)f(ω1+ωr)f(ω2)f(ω2+ωr)
dω1dω2 +O( 1

T
) r1 = r2 = r

(44)

and for all r1, r2, cov(
√
Tℜc̃T (r1),

√
Tℑc̃T (r2)) = O( 1

T
). And we have the required result. �

PROOF of Remark 3.1 It is well know that for a linear time series the tri-spectra can be written

in terms of the transfer function A(ω) that is

f4(ω1, ω2, ω3) =
κ4

2π
A(ω1)A(ω2)A(ω3)A(−ω1 − ω2 − ω3).

Now we recall that for a linear time series A(ω) =
√
f(ω) exp(iφ(ω)) hence substituting this into

the ratio in (43) gives

2π
f4(ωk1 ,−ωk2 − ωr,−ωk2)√

f(ωk1)f(ωk1 + ω2)f(ωk2)f(ωk2 + ωr)
= κ4 exp

(
i[φ(ωk1) − φ(ωk1 + ωr) − φ(ωk2) + φ(ωk2 + ωr)]

)
.

Substituting the above into (43) gives

T cov(c̃T (r), c̃T (r)) = 1 +
κ4

2

∣∣∣∣
1

T

∑

k

exp(i[φ(ωk) − φ(ωk + ωr)])

∣∣∣∣
2

+O(
1

T
).

Finally we note that under Assumption 3.1(i,iii) and using the chain rule on φ(ω) = arctan ℑA(ω)
ℜA(ω)

we can show that supω |φ′(ω)| < ∞. Hence the phase φ(·) is Lipschitz continuous, thus exp(iφ(ω))
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is Lipschitz continuous, and we can replace the summand in the above with an integral to give the

result. �

A.3.2 The moments under the alternative of local stationarity

We now consider some of the moment properties of c̃T (r) under the assumption of local stationarity.

Lemma A.11 Suppose Assumption 4.1 holds. Then we have

cov(Jk1Jk2 , Jk3Jk4) =
{
F2(k1 − k3;ωk1)F2(k2 − k4;ωk2) + F2(k1 − k4;ωk1)F2(k2 − k3;ωk2)

}

+
(2π)

T
F4(k1 + k2 − k3 − k3;ωk1 , ωk2 ,−ωk3)

+ O
((log T )3

T 2
+

log T

T

(
F2(k1 − k3;ωk1) + F2(k2 − k4;ωk2) +

F2(k1 − k4;ωk1) + F2(k2 − k3;ωk2)
))
, (45)

where {F2(·;ω)} and {F4(·;ωk1 , ωk2 , ωk3)} are defined in (26).

PROOF. Expanding cov(Jk1Jk2 , Jk3Jk4) in terms of cumulants gives

cov(Jk1Jk2 , Jk3Jk4) = cov(Jk1 , J̄k3)cov(Jk2 , J̄k4) + cov(Jk1 , J̄k4)cov(Jk2 , J̄k3) + cum(Jk1 , Jk2 , J̄k3 , J̄k4),

finally substituting Corollary A.1 into the above gives the result. �

PROOF of Lemma 4.1 equations (15) and (7) We first prove (15). We note that from the

definition of f̂T (ωk) in (2) and under Assumption 4.1 we have

∣∣E(f̂T (ωk)) − f(ωk)
∣∣ =

∣∣∑

j

1

bT
K(

ωk − ωj
b

)E(|JT (ωj)|2) − f(ωk)
∣∣ = O(b2). (46)

We now obtain var(f̂T (ωk)). We observe that

var(f̂T (ωk)) =
∑

j1,j2

1

(bT )2
K(

ωk − ωj1
b

)K(
ωk − ωj2

b
)cov(|JT (ωj1)|2, |JT (ωj2)|2).

Now we substitute (45) into the above to give

var(f̂T (ωk)) ≤ C
∑

j1,j2

1

(bT )2
K(

ωk − ωj1
b

)K(
ωk − ωj2

b
){|F2(j1 − j2;ωj1)F2(j2 − j1;ωj1)| +

|F2(j2 − j1;ωj1)F2(j1 − j2;−ωj1)| +
2π

T
F4(0;ωj1 ,−ωj1 , ωj2)

}
+O

((log T )3

T 2

)
.
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We observe from the above that the covariance terms dominate the fourth order cumulant term.

Moreover, by using Lemma A.2 we have supω
∑

s |F2(s;ω)| <∞, which gives var(f̂T (ωk)) = O( 1
bT

).

This together with (46) gives (15).

We now prove (7). Using Lemma A.6 for n = 2 gives

E(c̃T (r)) =
1

T

T∑

k=1

1

[f(ωk)f(ωk + ωr)]1/2
1

T

T∑

t=1

f(
t

T
, ωk) exp(−itωr) +O(

log T

T
). (47)

Now by using replacing sum with integral and using Lemma A.3 (noting

F2,T (−r;ωk) = 1
T

∑T
t=1 f( t

T
, ωk) exp(−itωr) and F2(−r;ωk) =

∫ 1

0
f(u, ωk) exp(−i2πru)du) gives

E(c̃T (r)) =
1

2π

∫ 1

0

∫ 2π

0

f(u, ω)

[f(ω)f(ω + ωr)]1/2
exp(−i2πur)dudω +O(

log T

T
+

1

T 2
), (48)

thus we have (7). �

To prove (16) in Lemma 4.1, we evaluate the limiting variance of c̃T (t) under the alternative of local

stationarity.

Lemma A.12 Suppose Assumption 4.1 holds. Then we have

cov(ℜ
√
T c̃T (r1),ℜ

√
T c̃T (r2)) =

1

4

(
Γ

(1)
T,r1,r2

+ Γ
(2)
T,r1,r2

+ Γ
(2)
T,r2,r1

+ Γ
(3)
T,r1,r2

)
+O(

log T

T
), (49)

cov(ℜ
√
T c̃T (r1),ℑ

√
T c̃T (r2)) =

−i
4

(
Γ

(1)
T,r1,r2

+ Γ
(2)
T,r1,r2

− Γ
(2)
T,r2,r1

− Γ
(3)
T,r1,r2

)
+O(

log T

T
),

cov(ℑ
√
T c̃T (r1),ℑ

√
T c̃T (r2)) =

1

4

(
Γ

(1)
T,r1,r2

− Γ
(2)
T,r1,r2

− Γ
(2)
T,r2,r1

+ Γ
(3)
T,r1,r2

)
+O(

log T

T
),

where

Γ
(1)
T,r1,r2

=
1

T

∑

k1,k2

g
(r1)
T,k1

g
(r2)
T,k2

{
F2(k1 − k2;ωk1)F2(−k1 − r1 + k2 + r2;−ωk1+r1) +

F2(k1 + k2 + r2;ωk1)F2(−k1 − r1 − k2;−ωk1+r1)
}

+
1

T 2

∑

k1,k2

g
(r1)
T,k1

g
(r2)
T,k2

F4(r2 − r1;ωk1 ,−ωk1+r1 ,−ωk2),
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Γ
(2)
T,r1,r2

=
1

T

∑

k1,k2

g
(r1)
T,k1

g
(r2)
T,k2

{
F2(k1 + k2;ωk1)F2(−k1 − r1 − k2 − r2;−ωk1+r1) +

F2(k1 − k2 − r2;ωk1)F2(−k1 − r1 + k2;−ωk1+r1)
}

+
1

T 2

∑

k1,k2

g
(r1)
T,k1

g
(r2)
T,k2

F4(−r2 − r1;ωk1 ,−ωk1+r1 ,−ωk2),

Γ
(3)
T,r1,r2

=
1

T

∑

k1,k2

g
(r1)
T,k1

g
(r2)
T,k2

{
F2(−k1 + k2;−ωk1)F2(k1 + r1 − k2 − r2;ωk1+r1) +

F2(−k1 − k2 − r2;−ωk1)F2(k1 + r1 + k2;ωk1+r1)
}

+
1

T 2

∑

k1,k2

g
(r1)
T,k1

g
(r2)
T,k2

F4(r1 − r2;−ωk1 , ωk1+r1 ,−ωk2),

and the coefficients F2(·) and F4(·) are defined in (26) and g
(r)
T,k =

{
f(ωk)f(ωk+r)

}−1/2
.

PROOF. To prove (49) we use ℜc̃T (r) = 1
2
(c̃T (r) + c̃T (r)) and ℑc̃T (r) = −i

2
(c̃T (r) + c̃T (r)), and

cov(
√
T c̃T (r1),

√
T c̃T (r2)) and cov(

√
T c̃T (r1),

√
T c̃T (r2)). Expanding cov(

√
T c̃T (r1),

√
T c̃T (r2)) we

have

cov(
√
T c̃T (r1),

√
T c̃T (r2)) =

1

T

∑

k1,k2

g
(r1)
T,k1

g
(r2)
T,k2

cov(Jk1Jk1+r1 , Jk2Jk2+r2),

now by substituting (45) into the above we obtain

cov(
√
T c̃T (r1),

√
T c̃T (r2)) = Γ

(1)
T,r1,r2

+O(
log T

T
).

Similar results can be obtained for cov(
√
T c̃T (r1),

√
T c̃T (r2)) and cov(

√
T c̃T (r1),

√
T c̃T (r2)). Using

this we obtain the required result. �

PROOF of Lemma 4.1, equation (16) This immediately follows from Lemma A.12. �

A.4 Asymptotic normality

In this section we prove asymptotic normality of
√
T c̃T (r). We will derive normality under two

set-ups (a) {Xt} is strictly stationary, mixing and satisfies Assumption 3.1(B) and (b) {Xt} is a

stationary linear time series or a locally stationary linear time series and satisfies Assumption 3.1(A)

or 4.1. Since the locally stationary linear time series model includes the stationary time series model

as a special case we show asymptotic normality of the more general locally stationary model.
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A.4.1 Asymptotic normality under strict stationarity and α-mixing

We observe that
√
T c̃T (r) can be written in the following quadratic form

√
T c̃T (r) =

1√
T

∑

t,τ

XtXτ exp(iτωr)
1

T

∑

k

1√
f(ωk)f(ωk+r)

exp(iωk(t− τ))

=
1√
T

∑

t,τ

GT,ωr(t− τ) exp(irωτ)XtXτ exp(iτωr)

=
1√
T

∑

t,τ

Gωr(t− τ) exp(iτωr)XtXτ +Op

( 1

T 1/2

)
, (50)

where Gωr(t− τ) is defined in (21) and we use that the Fourier coefficients of 1√
f(ω)f(ω+ωr)

decay at

the rate |t− τ |−2 (see Lemma A.1).

Theorem A.2 Suppose Assumption 3.1(A,iv) holds. Then we have

√
T

(
1

1 + ϕ(ω1)
ℜc̃T (1), . . . ,

1

1 + ϕ(ωm)
ℑc̃T (m)

)
D→ N (0, I2m). (51)

PROOF. We observe from (52) that

√
T c̃T (r) =

1√
T

∑

t,τ

Gωr(t− τ) exp(iτωr)XtXτ +Op

( 1

T 1/2

)
. (52)

The limiting variance of
√
T c̃T (r) is given in Lemma 3.1. Now we use the result in Lee and

Subba Rao (2010) for quadratic forms of mixing random variables and the Cramer-Wold device to

obtain the result (similar results on quadratic forms can be found in Lin (2009)). �

A.4.2 Asymptotic normality under linearity (both stationary and locally stationary)

We start by approximating
√
T c̃T (r) with a random variable which only involves current innovations

{εt}Tt=1. We make this approximation in order to use the martingale central limit theorem to prove

asymptotic normality of
√
T c̃T (r). In this section, we will make frequent appeals to Lemma A.1.

Using that the locally stationary time series model Xt,T satisfies (13) we have can write
√
T c̃T (r)
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as

√
T c̃T (r)

=
1

T 3/2

T∑

k=1

1

f(ωk)1/2f(ωk + ωr)1/2

T∑

t,τ=1

exp(i(t− τ)ωk) exp(−iτωr)
∞∑

j1,j2=0

ψt,T (j1)ψτ,T (j2)εt−j1ετ−j2

=
1

T 1/2

T∑

t,τ=1

GT,ωr(t− τ) exp(−iτωr)
∞∑

j1,j2=0

ψt,T (j1)ψτ,T (j2)
(
εt−j1ετ−j2 − E(εt−j1ετ−j2)

)
,

where {GT,ωr(s)} is the DFT defined in (21).

We now partition
√
T c̃T (r) into terms which involve ‘present’ and ‘past’ innovations. More precisely

√
T
(
c̃T (r) − E(c̃T (r)

)
=

√
T
(
dT (r) + VT (r)

)
, (53)

where

dT (r) =
1

T

T∑

t,τ=1

GT,ωr(t− τ) exp(−iτωr)
∑

0≤j1≤t−1

∑

0≤j2≤τ−1

ψt,T (j1)ψτ,T (j2)
(
εt−j1ετ−j2 − E(εt−j1ετ−j2)

)

VT (r) =
1

T

T∑

t,τ=1

GT,ωr(t− τ) exp(−iτωr)
∑

j1≥t−1 or j2≥τ−1

ψt,T (j1)ψτ,T (j2)
(
εt−j1ετ−j2 − E(εt−j1ετ−j2)

)
.

In the following lemma we obtain a bound for the remainder VT (r). Later we will show asymptotic

normality of dT (r).

Lemma A.13 Suppose Assumption 3.1(A, iii,iv) or 4.1 hold. Then we have

(
T 1/2

E|VT (r)|2
)1/2 ≤ CT−1/2,

for some finite constant C.

PROOF. We first observe that
√
TVT (r) = I1 + I2 + I3, where

I1 =
1

T 1/2

T∑

t,τ=1

GT,ωr(t− τ) exp(−iτωr)
∑

j1≥t−1

∑

0≤j2≤τ−1

ψt,T (j1)ψτ,T (j2)
(
εt−j1ετ−j2 − E(εt−j1ετ−j2)

)

I2 =
1

T 1/2

T∑

t,τ=1

GT,ωr(t− τ) exp(−iτωr)
∑

j2≥τ−1

∑

0≤j1≤t−1

ψt,T (j1)ψτ,T (j2)
(
εt−j1ετ−j2 − E(εt−j1ετ−j2)

)
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I3 =
1

T 1/2

T∑

t,τ=1

GT,ωr(t− τ) exp(−iτωr)
∑

j2≥τ−1

∑

j1≥t−1

ψt,T (j1)ψτ,T (j2)
(
εt−j1ετ−j2 − E(εt−j1ετ−j2)

)
.

We first show that E(I2
1 )1/2 = O(T−1/2). By the Minkowski’s inequality we have

E(I2
1 )1/2 ≤ 1

T 1/2

T∑

t,τ=1

|GT,ωr(t− τ)|
{

E

( ∑

j1≥t−1

∑

0≤j2≤τ−1

ψt,T (j1)ψτ,T (j2)
(
εt−j1ετ−j2 − E(εt−j1ετ−j2)

))2}1/2

.

It can be shown that

E

( ∑

j1≥t−1

∑

0≤j2≤τ−1

ψt,T (j1)ψτ,T (j2)
(
εt−j1ετ−j2 − E(εt−j1ετ−j2)

))2

≤
(
var(εt)

2 + var(ε2
t )
)[∑

j1≥t
|ψt,T (j1)|2

][ ∞∑

j2=0

|ψτ,T (j2)|2
]
.

Substituting this into the bound for E(I2
1 ), under Assumption 4.1 and using Lemma A.1 we have

E(I2
1 )1/2 ≤ 1

T 1/2
sup
τ

[ ∞∑

j2=0

|ψτ,T (j2)|2
]1/2[ T∑

s=1

|GT,ωr(s)|
] T∑

t=1

[∑

j1≥t
|ψt,T (j1)|2

]1/2

1

T 1/2
sup
τ

[ ∞∑

j2=0

|ψτ,T (j2)|2
]1/2[ T∑

s=1

|GT,ωr(s)|
] T∑

t=1

∑

j1≥t
|ψt,T (j1)| = O(T−1/2).

Using a similar method we can show that E(I2
2 )1/2 = O(T−1/2) and E(I2

3 )1/2 = O(T−1/2). Thus we

obtain the result. �

Therefore the above lemma shows that
√
T
(
c̃T (r) − E(c̃T (r)

)
=

√
TdT (r) +Op(T

−1/2).

Remark A.1 Now it is worth noting that in the case that {Xt} is a stationary linear time series,

then dT (r) has an interesting form. That is, it is straightforward to show (using (Priestley, 1981),

Theorem 6.2.1) that

√
T c̃T (r) =

1√
T

T∑

k=1

Jε(ωk)Jε(ωk+r) exp
(
i(φ(ωk) − φ(ωk+r))

)
+Op(T

−1/2),

where Jε(ω) = (2πT )−1/2
∑T

t=1 εt exp(itωk).

We use the martingale central limit theorem to show asymptotic normality of
√
TdT (r), which will

imply asymptotic normality of
√
T
(
c̃T (r)−E(c̃T (r)

)
. To do this we rewrite

√
TdT (r) as the sum of
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martingale differences

√
TdT (r)

=
1

T 1/2

T∑

s1,s2=1

(
εs1εs2 − E(εs1εs2)

) ∑

s1≤t≤T

∑

s2≤τ≤T
GT,ωr(t− τ) exp(−iτωr)ψt,T (t− s1)ψτ,T (τ − s2)

=
1

T 1/2

T∑

s=1

MT (s) where MT (s) =
(
ε2
s − 1

)
AT (s, s) + εs

s−1∑

s1=1

εs1
(
AT (s1, s) + AT (s1, s)

)

and

AT (s1, s2) =
∑

s1≤t≤T

∑

s2≤τ≤T
GT,ωr(t− τ) exp(−iτωr)ψt,T (t− s1)ψτ,T (τ − s2).

We now show that the coefficients in the martingale differences are absolutely summable.

Lemma A.14 Suppose Assumption 3.1(A, iii,iv) or 4.1 holds. Then we have

sup
T

s−1∑

s1=1

(|AT (s, s1)| + |AT (s1, s)|) <∞.

PROOF. To prove the result we note that under Assumption 4.1 and using Lemma A.1 we have

∑

s≤τ≤T

s−1∑

s1=1

|AT (s1, s)| ≤
s−1∑

s1=1

∑

s1≤t≤T
|GT,ωr(t− τ)| · |ψt,T (t− s1)| · |ψτ,T (τ − s)|

≤
[∑

t

|GT,ωr(t)|
]

sup
t,T

[∑

s

|ψt,T (s)|
]2

,

which gives the required result. �

In the theorem below we show asymptotic normality of dT (r). To accommodate both the stationary

and nonstationary case we will let the asymptotic variance of dT (r) be Vr and specify its value later.

Theorem A.3 Suppose Assumption 3.1(A,iii,iv) or 4.1 holds. Furthermore suppose that

var(
√
TdT (r),

√
TdT (r)) → Vr <∞ as T → ∞. Then we have

√
T

(
ℜ
√
TdT (r)

ℑ
√
TdT (r)

)
D→ N

(
0, Vr

)
T → ∞.

PROOF. We use the martingale central limit theorem to prove the result. We will show asymptotic

normality of ℜ
√
TdT (r). However, using the same method it straightforward to show asymptotic

normality for all linear combinations of ℜ
√
TdT (r) and ℑ

√
TdT (r) and thus by the Cramer-Wold
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device to show asymptotic normality of the random vector
(
ℜ
√
TdT (r),ℑ

√
TdT (r)

)
. Let M1,T =

ℜMT (s) and Vr,1 = (Vr)(1,1). To apply the martingale central limit theorem we need to verify that

the variance of T−1/2
∑T

d=1M1,T (s) is finite (which is assumed), Lindeberg’s condition is satisfied and
1
T

∑T
s=1 E(M1,T (s)2|Fs−1)

P→ Vr,1 (see (Hall & Heyde, 1980), Theorem 3.2). To verify Lindeberg’s

condition, we require that for all δ > 0,

LT =
1

T

T∑

s=1

E(M1,T (s)2I(T−1/2|M1,T (s)| > δ)|Fs−1)
P→ 0,

T → ∞, where I(·) is the identity function and Fs = σ(M1,T (s),M1,T (s − 1), . . . ,M1,T (1)). By

using Hölder and Markov inequalities, we obtain a bound for the following LT

LT ≤ (Tδ)−1 1

T

T∑

s=1

E(M1,T (s)4|Fs−1). (54)

Now by using Lemma A.14 we have
∑

s1

(
|AT (s, s1)| + AT (s1, s)|

)
<∞, therefore

sup
T

E
( 1

T

T∑

s=1

E(M1,T (s)4|Fs−1)
)

=
1

T
sup
T

T∑

s=1

E(M1,T (s)4) <∞.

Since 1
T

∑T
s=1 E(M1,T (s)4|Fs−1) is a positive random variable, the above result implies

1
T

∑T
s=1 E(M1,T (s)4|Fs−1) = Op(1). Substituting this into (54) gives LT

P→ 0 as T → ∞.

Finally we need to show that

1

T

T∑

s=1

E(M1,T (s)2|Fs−1) =
1

T

T∑

s=1

[
E(M1,T (s)2|Fs−1) − E(M1,T (s)2)

]
+

1

T

T∑

s=1

E(M1,T (s)2)
P→ Vr,1.(55)

Under the stated assumptions, we have 1
T

∑T
s=1 E(M1,T (s)2) → Vr,1 as T → ∞. Therefore it remains

to show

PT :=
1

T

T∑

s=1

∣∣E(M1,T (s)2|Fs−1) − E(M1,T (s)2)
∣∣ P→ 0,

which will give us (55). We will show that E(P 2
T ) → 0. To do this we note that E(PT ) = 0 and

var(PT ) =
1

T 2

T∑

d=1

var(E(M1,T (s)2|Fs−1)) +
2

T 2

T∑

s1>s2

cov(E(M1,T (s1)
2|Fs1−1),E(M1,T (s2)

2|Fs2−1)).(56)

Now by using the Cauchy Schwartz inequality and conditional expectation arguments for Fs2 ⊂ Fs1
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we have

cov(E(M1,T (s1)
2|Fs1−1),E(M1,T (s2)

2|Fs2−1))

≤
[
E
(
E(M1,T (s2)

2|Fs2−1) − E(M1,T (s2)
2)
)2]1/2[

E
(
E(M1,T (s1)

2|Fs2−1) − E(M1,T (s1)
2)
)2]1/2

.

We now show that supT
∑T

s1=s2

[
E
(
E(M1,T (s1)

2|Fs2−1)−E(M1,T (s1)
2)
)2]1/2

<∞. Let Gs = σ(εs, εs−1, . . .),

then it is clear that for all s, Fs ⊂ Gs. Therefore, we have E
[
E(M1,T (s1)

2|Fs2−1)
2
]
≤ E

[
E(M1,T (s1)

2|Gs2−1)
2
]

which gives

E

[
E(M1,T (s1)

2|Fs2−1) − E(M1,T (s1)
2)

]2

= E
[
E(M1,T (s1)

2|Fs2−1)
2
]
−
[
E(M1,T (s1)

2)
]2

≤ E
[
E(M1,T (s1)

2|Gs2−1)
2
]
−
[
E(M1,T (s1)

2)
]2
.

Expanding M1,T (s1) in terms of {εt} and using supT,t
∑

j |ψt,T (j)| < ∞, it can be shown that

E
[
E(M1,T (s1)

2|Gs2−1)
2
]
−
[
E(M1,T (s1)

2)
]2 → 0 as s1 → ∞, and

var(PT ) ≤ 1

T

T∑

s2=1

sup
s2,T

T∑

s1=s2

(
E
[
E(M1.T (s1)

2|Gs2−1)
2
]
−
[
E(M2

s1
)
]2)1/2

<∞.

Substituting the above into (57) we have var(PT ) = O(T−1), hence we have shown (55), and the

conditions of the martingale central limit theorem are satisfied, giving the required result. �

Theorem A.4 Suppose Assumption 3.1(A,iii,iv) or 4.1 holds. Furthermore suppose that

var(ℜ
√
T c̃T (1),ℑ

√
T c̃T (m)) → V <∞ as T → ∞. Then we have

√
T

(
1

1 + ϕ(ω1)
(ℜc̃T (1) − E(ℜc̃T (1))), . . . ,

1

1 + ϕ(ωm)
(ℑc̃T (m) − E(ℑc̃T (m)))

)
D→ N

(
0, V

)
.

PROOF. Using (53) and Lemma A.13 we have

√
T

(
1

1 + ϕ(ω1)
(ℜc̃T (1) − E(ℜc̃T (1))), . . . ,

1

1 + ϕ(ωm)
(ℑc̃T (m) − E(ℑc̃T (m)))

)

=
√
T
(
ℜdT (1), . . . ,ℑdT (m)

)
+Op(

1

T 1/2
),

now by using same proof as that in Theorem A.3 we obtain the result. �
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A.4.3 Proof of Theorems 3.2 and 4.2

Proof of Theorem 3.2 Using Lemma 3.1 we have

√
T

(
ℜc̃T (1), . . . ,ℑc̃T (m)

)
=

√
T

(
ℜĉT (1), . . . ,ℑĉT (m)

)
+

Op

(
m

[
(b+

1√
bT

) +
( 1

bT 1/2
+ b2T 1/2

) m∑

n=1

( 1

|rn|
+

1

T 1/2

)])
.

Lemma 3.1, implies that Tvar

(
ℜĉT (1), . . . ,ℑĉT (m)

)
→ diag(1+ϕ(ω1), . . . , diag(1+ϕ(ωm)). Com-

bining this with either Theorems A.2 or A.4, gives

√
T

(
1

1 + ϕ(ω1)
ℜc̃T (1), . . . ,

1

1 + ϕ(ωm)
ℑc̃T (m)

)
D→ N (0, I2m). (57)

Finally, since m(b+ 1√
bT

) +
(

1
bT 1/2 + b2T 1/2

)∑m
r=1

(
1
|r| + 1

T 1/2

)
→ 0, using (57) we have (51). �

PROOF of Theorem 4.2. The proof is identical to the proof of Theorem 3.2. Hence we omit the

details. �
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