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It is now widely known that Antarctic air is warming faster than the rest of the world, and
theAntarcticPeninsula has experiencedmajorwarming over the last 50years.Themonthly
mean near surface temperature at the Faraday/Vernadsky station has increased
considerably, at a rate of 0.568C per decade over the year and at 1.098C per decade over
thewinter. The increase is not the same over all the stations in theAntarctic region, and the
increase is very significant at the Faraday/Vernadsky station. Only at this station are the
minimum/maximum monthly temperatures, for the period 1951–2004, separately
available, and we believe that the increase in mean surface temperature at this station is
mainly due to the increases inminimum temperatures. Therefore, our object in this paper is
to study the variations in the minimum/maximum temperatures using a multiple
regression model with non-Gaussian correlated errors. By separately analysing the
minimum and maximum temperatures, we could clearly identify the source of increase.
The average temperature (usually calculated as (maxCmin)/2) smooths out any variation,
and may not be that informative. We model the correlated errors using a linear
autoregressive moving average model with innovations, which have an extreme value
distribution.We describe the maximum-likelihood estimation methodology and apply this
to the datasets described earlier. The methods proposed here can be widely used in other
disciplines as well. Our analysis has shown that the increase in the minimum monthly
temperatures is approximately 6.78C over 53 years (1951–2003), whereas we did not find
any significant change in themaximumtemperature over the sameperiod.Wealso establish
a relationship between the minimum monthly temperatures and ozone levels, and use this
model to obtain monthly forecasts for the year 2004 and compare it with the true values
available up to December 2004.

Keywords: Antarctic Peninsula; extreme value distributions; ozone levels;
minimum/maximum temperatures; multiple regression; time-series models
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1. Introduction

The data considered here are minimum/maximum monthly temperatures from
the Faraday/Vernadsky research station in the Antarctic Peninsula from
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G. L. Hughes and others2
January 1951 to December 2004. The dataset consists of 648 observations. The
data were obtained from the British Antarctic Survey, Cambridge (and can be
found on their website).

The daily average is calculated as the mean of the four, six hourly observations
measured each day. The minimum/maximum temperature for each month for
the early part of the record (1951–1986) was measured from a max and min
thermometer that was reset everyday. Then it was logged on to a computer from
1986 onwards (information provided by Dr Steve Colwell, BAS, Cambridge,
UK). For a complete description of the methods used to obtain the high-quality
data and quality-control methods used, we refer to Turner et al. (2004).

The Faraday/Vernadsky data are of interest because this is the longest
continuous record of any British Antarctic station. The whole Antarctic
Peninsula has experienced a major warming over the last 50 years, with major
warming of mean monthly near surface temperatures at the Faraday/Vernadsky
station (Houghton et al. 2001; Turner et al. 2002, 2005). It has been observed
that over the past 50 years, the annual mean temperatures at this station have
risen by approximately 1.098C per decade over the winter, and above 0.598C per
decade over the year. Although the temperature increase at the Faraday/
Vernadsky is substantial, there are other indications that the region of marked
warming is quite limited and restricted to an arc from the southern part of the
Peninsula through Faraday/Vernadsky to a little beyond the tip of Peninsula.

Turner et al. (2005) have fitted linear trend models to mean monthly
surface temperatures at 19 selected Antarctic stations from the datasets
available from each station. Eleven of these had warming trends and seven
had cooling trends (one station had very little data and hence was omitted for
their analysis), though the most statistically significant increase was found at
the Faraday/Vernadsky station. The Faraday/Vernadsky station is of interest
to us for two reasons, firstly because it has the longest continuous record
compared to any other station, and secondly because it has both mean
monthly temperatures and also minimum/maximum monthly temperatures.
This allows us to identify the main source of increase at this station.
Unfortunately, due to the lack of availability of minimum/maximum
temperatures at other stations, we cannot perform our analysis for other
stations, though this analysis would be possible if such minimum/maximum
temperatures were made available. We believe the increase at Faraday may be
due to an increase in minimum temperatures rather than in the maximum
temperatures. Turner and his co-authors have fitted linear trend models to
annual temperatures, and also to the four seasons, spring (September, October
and November), summer (December, January and February), autumn (March,
April and May) and winter (June, July and August) for the years January
1951–December 2005, thus using 55 observations for each analysis. The
measurements used by Turner et al. (2005) are obtained by averaging the
monthly data, and by doing this they have smoothed the data, thereby
removing any variation in the months considered. Plots of the annual surface
temperatures and the seasonal surface temperatures at the Faraday station in
Turner et al. (2005) clearly show a linear upward trend. The most significant
upward trend at the Faraday/Vernadsky station is observed during the winter
months. They computed the linear trend for mean surface temperatures using
ordinary least squares (OLS) and the confidence limits were calculated under
Proc. R. Soc. A
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the assumption that the random errors were independent and identically
normally distributed. When we analysed this data, we observed that the
residuals obtained (after removing the trend) were strongly correlated at
several lags and also the residuals were highly skewed indicating a departure
from Gaussianity. This suggests that the data require further statistical
analysis which takes into account the correlation and departure
from Gaussianity.

Possible reasons for causes in warming at Faraday/Vernadsky were considered
in King (1994) and King & Harangozo (1998). Using the climatological records
available at several stations in the western Peninsula, King & Harangozo (1998)
observed considerable interannual variability and identified two major factors for
the variability. First is the atmosphere–ice–ocean interaction, which is seen to
play an important role in controlling variability in the Peninsula. There seems to
be a strong negative correlation between winter temperatures in the region and
the winter sea-ice content just to the west of Peninsula. The Peninsula winter
temperatures are strongly correlated with the atmospheric flow and circulation
(for details refer to King & Harangozo 1998). Second is the variability in the
advection of warm masses which exerts an important control on climate (for
details see King & Harangozo 1998).

We believe this interesting relationship found between warming at
Faraday/Vernadsky and other variables studied by King and Harangozo
requires further detailed statistical analysis. A consequence of warming over
the winter months is that the small fringing of ice shelves around the Antarctic
Peninsula is retreating (Hulbe 1997; Turner et al. 2005). The change in local
climate is also demonstrated by profound ecological changes (Smith et al. 2003).

An increase in atmospheric temperature, if large enough to push summer
temperatures above freezing point, will increase mass loss directly by increasing
melting at the upper surface. Warmer sea surface temperatures may accompany
warmer air temperatures and this could also increase the rate of ice shelf melting.
There are also indirect effects of warmer air temperatures that can hasten the
decay of ice shelves.

The effects of CO2-induced climate warming on Antarctica have been
studied using numerical models that simulate ice flow and changes in ice sheet
and ice shelf size over time (Huybrechts & Oerlemans 1990; Budd et al. 1994).
One prediction of the models is that the glaciers and ice shelves of the
Peninsula are lost.

An increase in minimum temperatures could have a more dramatic effect on
the surroundings than an overall increase in temperatures. There is clearly a
connection between warming around the Antarctic Peninsula and the collapse of
Peninsula ice shelves, and unless there is a change in the observed warming
trend, further retreats of fringing of ice shelves along the Antarctic Peninsula are
inevitable. It is therefore important to forecast how quickly the temperatures are
going to increase above melting point as this is vital to the break-up of ice
shelves. Clearly, if the minimum summer temperatures increase above 08C, the
melt season will be tremendously long and the ice shelves are likely to become
very unstable. Our study attempts to analyse the trend in the minimum monthly
temperatures. We consider both maximum and minimum monthly temperatures,
though our main emphasis is on minimum temperatures and we also consider its
relationship to ozone levels.
Proc. R. Soc. A
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Figure 1. (a) Minimum monthly temperatures and (b) boxplot of minimum monthly temperatures
at the Faraday station (January 1951–December 2004).
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2. Preliminary data analysis

(a ) Data analysis of minimum monthly temperatures

In figure 1, the minimum monthly temperature series from January 1951 to
December 2004 is plotted. From the plots of the monthly mean Antarctic surface
temperatures during the aforementioned period (Turner et al. 2005), it appears that
summer temperatures after 1950 aremore often above 08C than before. The data we
plotted here are minimum monthly temperatures and we are examining whether
there is a significant increase in minimum monthly temperatures. One of our main
aims in this paper is to estimate the trend using appropriate statistical time-series
models and to see whether the coefficients are significantly different from zero. The
boxplot of the minimum monthly temperature data by month, where month 1 is
January, month 2 is February and so on is also given in figure 1. Clearly there is a
yearly cycle, but it is also seen that there is a much larger spread of temperatures in
the winter months, i.e. from June to August. The range of the entire series is
(K43.38C,K0.58C). There is some indication that the variance is changing with the
season. During the winter months, there are no ‘extreme values’ lying outside of the
‘whisker’ on the boxplots. The whisker shown is 1.5 times the inter-quartile range.
Extreme values (outliers) only exist for themonths February toMay. Furthermore,
these are only on the lower temperature side, implying that the extreme
temperatures are lower and not higher than the median. There is a clear increase
in the yearlymedianvalue over time.We consider the data analysis of ozone levels at
the same station and its relationship with temperature in a later section.
Proc. R. Soc. A
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Figure 2. (a) Maximum monthly temperatures and (b) the boxplot of maximum monthly
temperatures at the Faraday station (January 1951–December 2004).
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(b ) Data analysis of maximum monthly temperatures

We now analyse the maximum monthly temperatures to see whether there is
any asymmetric climate warming at the Faraday station. A plot of the maximum
monthly temperature data and boxplot by month are given in figure 2. The range
of this series (K2.18C, 11.88C) is quite small compared to the minimum monthly
temperatures. There is not a significant change over the period 1951–2004
compared to the minimum temperatures. From the boxplot given in figure 2, we
see that there is possibly a yearly cycle, and in most of the months some extreme
values have occurred. The median and range of values over the 54 years seems to
have remained more or less the same compared to the minimum temperatures.
(c ) Multiple regression of minimum temperature using ordinary least squares

From the aforementioned preliminary data analysis, we see that minimum
temperatures are exhibiting more dynamic behaviour. As far as we are aware, no
attempts have been made to analyse, by the regression methods, the
minimum/maximum temperatures and all the analyses we have seen so far are
for monthly, annual and seasonal data.

To motivate the analysis below, we fit a multiple regression model of the form
given in equation (4.1) to the minimum monthly temperatures with a linear
trend and seasonal component with a known periodicity of 12 months. We use
OLS to estimate the parameters in the regression and give a normal Q–Q plot
and autocorrelation plot of the residuals (removing the trend) in figure 3.
Proc. R. Soc. A
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Figure 3. (a) Normal Q–Q plot of the residuals and (b) autocorrelation plot of the residuals.
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The Q–Q plot is a graphical technique for assessing whether a dataset follows a
given distribution. Here, we are checking for the validity of the normal
assumption. There appears to be two striking features in figure 3: (i) we see in the
Q–Q plot that ca 35% of the residuals lie far from the xZy line, in fact an
estimate of the kurtosis, ððð1=nÞ

Pn
iZ1 3̂

4
i Þ=ððð1=nÞ

Pn
iZ1 3̂

2
i Þ2ÞÞ yields 3.85, which is

sufficiently different from three for us to conclude that the temperature residuals
are highly non-normal; and (ii) the temperature residuals are highly correlated.
Now it is well known (Chatfield 2004, pp. 87–88) that if multiple regression
models are fitted ignoring the correlation in errors, the models can lead to badly
misspecified models and poor forecasts, and to estimates of the regression
parameters with large mean square errors and wide confidence intervals.
All these can lead to wrong statistical conclusions.

In the following sections, we briefly discuss the estimation methodology for
minimum and maximum temperatures. We consider the estimation of multiple
regression models where the errors are correlated and the errors can be described
by linear autoregressive moving average (ARMA) models with innovations,
which have extreme value distributions. The methodology and the steps of
estimation are very general and are applicable in many other situations.
3. Multiple regression with correlated errors

In this section, we consider the maximum-likelihood estimation of the
parameters of a classical multiple regression model with correlated errors,
when the errors satisfy the ARMA model with innovations having a generalized
Proc. R. Soc. A



7Time-series models for Antarctic Peninsula
extreme value (GEV) distribution (see appendix A). Suppose we observe the
time-series {yt}, which satisfies

yt Z
Xr
jZ1

bjxj;t Cet; t Z 1;.;n; ð3:1Þ

and {et} satisfies the stationary ARMA (p, q) model

ð1Cf1BCf2B
2C/CfpB

pÞet Z ð1Cq1BCq2B
2C/CqqB

qÞht

or equivalently; fpðBÞet Z qqðBÞht; ð3:2Þ
where {ht} are independent, identically distributed random variables and each ht
has the converse GEV(g, m, s) distribution. In the above, we have used the
notation BxtZxtK1, where B is a backward shift operator and fp(B) and qq(B)
are p and q order polynomials, respectively. We assume that the regressor
variables (xjt) are non-random. In many real situations, the regressors are known
a priori and the number of variables (r) to be used is also known. However, we
note that there are various statistical procedures available for the choice of the
best set of variables, which we do not discuss in this paper. The time-series {et}
generated by equation (3.2) is assumed to be stationary and the model is
invertible. Using equation (3.2), we can write equation (3.1) as

yt Z
Xr
jZ1

bjxj;t CfpðBÞK1qqðBÞht; ð3:3Þ

noting that fp(B)
K1 is an infinite order polynomial expansion in terms of B

(Chatfield 2004, p. 46), or equivalently,

qqðBÞht ZfpðBÞ ytK
Xr
jZ1

bjxj;t

" #
; ðt Z 1; 2;.; nÞ: ð3:4Þ

Let sZmax (p, q). Assuming that the probability density function (PDF) of ht is
a converse GEV distribution (denoted by conv GEV(g, m, s) and defined in
equation (A 3) in appendix A), we can write the conditional log-likelihood
function of (hsC1,hsC2, ., hn) as

[ðh;
�
b;

�
f;

�
q;g;m;sÞZKðnKsÞlog sK

1

g
C1

� � Xn
tZsC1

log 1Cg
mKht

s

� �h i

K
Xn
tZsC1

1Cg
mKht

s

� �h iK1=g
; ð3:5Þ

provided 1Cg((mKht)/s)O0 for each t, where
�
bZðb1;.;brÞ,

�
fZðf1;f2;.;fpÞ,

�
qZðq1; q2;.; qqÞ.

By using equations (3.1) and (3.2), we have

ht Z
Xp
iZ0

fi ytKiK
Xr
jZ1

bjxj;tKi

 !
K
Xq
kZ1

qkhtKk; ð3:6Þ
Proc. R. Soc. A
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where f0Z1. In order to estimate the parameters
�
b;

�
f;

�
q;g;m;s, we substitute the

aforementioned expression for ht into equation (3.5) and maximize [ð$Þ with
respect to the parameters of interest. However, we note that {htKk} on the right-
hand side of equation (3.6) is unobserved and needs to be estimated in order to
evaluate equation (3.5). This can be done using equation (3.4) and the following
recursive procedure, since qq(B) and qp(B) are finite-order polynomials (Chatfield
2004, pp. 46–47) by setting hth0 and yth0 for all t%0, we can estimate
{ht;tZ1, .} using initial estimates of the multiple regression parameters and the
ARMA parameters (obtained following the steps mentioned later). In other words,
we define fĥtg using the recursion given in equation (3.7). We mention that an
invertible ARMA process can be represented as an AR(N) process, whose
parameters decay exponentially, and ĥt is the AR(N) representation truncated at
lag t; therefore, setting hth0 and yth0 for all t%0means that ĥt will get closer to ht
as t increases.

The maximization of the log-likelihood function (3.5) is done using a
Newton–Raphson iterative procedure, using the OLS estimates as our initial
estimates and replacing {htKk} in equation (3.6) by fĥtKkg, and doing the
maximum-likelihood estimation as if {htKk} were known. By choosing the OLS
estimates as our initial values, we are sufficiently close to the maximum of the
likelihood for the algorithm to converge to the maximum. The first and the
second order derivatives of the likelihood can be obtained either numerically or
analytically and the analytical expressions can be found in Hughes (2002).

In the following, we describe the steps for obtaining the initial estimates of the
parameters. We note that the initial estimates are consistent estimators of the
parameters, but are less efficient compared to the maximum-likelihood
estimators described earlier.

Initial parameter estimators:

(i) First estimate the regression parameters,
�
b, by the method of OLS. Let ^

�
b

be such an estimate.
(ii) Obtain

êt Z ytK
Xr
jZ1

b̂jxj;t; ðt Z 1; 2;.;nÞ:

Test the residuals fêtg for zero correlation (cf. Brockwell &Davis 1996). If we
reject the null hypothesis, we fit an ARMA(p, q) model to fêtg using the
Hannan–Rissanen (1982) method. The orders p and q are chosen using the
Bayes information criterion (BIC; for further details on the use of the Akaike
information criterion and the BIC we refer to Davison 2003). Let p̂ and q̂ be
the chosen orders and

�
f̂ and

�
q̂ be the Hannan–Rissanen estimators of

�
f and

�
q.

(iii) Using equation (3.4) and the earlier discussion, we obtain the estimated
residuals

ĥt Z
X̂p
iZ0

f̂i ytKiK
Xr
jZ1

b̂jxj;tKi

" #
K
X̂q
kZ1

q̂k ĥtKk ; ð3:7Þ

where f̂0Z1, ĥt h0 and yth0 for t%0. The residuals, fĥtg, are tested for
Gaussianity using the standard skewness and kurtosis measures (D’Agostino
& Stephens 1998). If we reject the null hypothesis, we have to search for an
Proc. R. Soc. A



9Time-series models for Antarctic Peninsula
appropriate distribution. Since we are considering in this paper theminimum
and maximum temperatures, a natural family of distributions are extreme
value distributions. The parameters, g, m and s, of the converse GEV
distribution are estimated using the computer package ISMEV (found in the R
library).
It is useful to test the residuals using the probability plots for checking the

validity of the assumption on the distribution.

The asymptotic properties of the maximum-likelihood estimates of the
parameters of the converse GEV distribution (g, m, s), as given in the appendix,
were studied in Smith (1985) when one has a random sample from the above
distribution. His conclusion was that if the shape parameter, g, lies between
K1

2!g!N, the Fisher information exists and if K1
2!g!0, then all the

asymptotic properties of the maximum-likelihood estimates (such as consistency
and normality) still hold. However, we must note that we do not observe ht, and
these have been estimated after fitting a multiple regression model. Whether the
results of Smith (1985) still hold in the present context needs to be studied and is
beyond the scope of the present paper. This is an interesting and quite
challenging problem, which we hope to consider in the future. From our
estimation of the shape parameter, using the methods described earlier for the
minimum/maximum temperatures considered, we believe that the results of
Smith (1985) still hold. The simulation studies carried out by Hughes (2002)
confirm this to some extent.
4. Time-series model for the temperatures

(a ) Model for the minimum temperatures

The aforementioned methodology also holds when the regressors are of the form
xj,tZt j, xj,tZsin(ujt) or xj,tZcos(ujt) or a mixture of both polynomials and
harmonic terms. For the temperature data considered here, there is clear
evidence that there is a dominant 12-month cycle and hence the problem of
estimating frequencies does not arise. If these were unknown, they can be
estimated using the methods advocated in Kavalieris & Hannan (1994) and also
in Quinn & Fernandes (1991).

Following a detailed estimation and order determination procedure, we
concluded that the minimum monthly temperatures could be described by a
linear trend, one periodic term (with a 12-month period) and an error term
satisfying a first-order autoregressive model with innovations satisfying a conv
GEV(g, m, s) distribution. We use the procedure described in §3 to estimate the
parameters; however, due to space limitations, we do not give specific details, but
instead, refer to Hughes (2002).

We also compared this model with other models where we included/excluded
the trend, independent Gaussian/dependent Gaussian and independent converse
GEV/dependent converse GEV. We summarize our analysis in table 1, where the
linear trend is excluded and table 2, where the linear trend is included. We note
that the bracket values are the estimated standard errors of the corresponding
parameter estimators, where the standard errors were calculated using an
estimate of the Fisher information matrix. Let {yt} be the monthly minimum
Proc. R. Soc. A
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11Time-series models for Antarctic Peninsula
temperatures. The models we fitted were of the form

yt Z zCA sin
2p

12
t

� �
CB cos

2p

12
t

� �
CbtC3t; ð4:1Þ

where the errors {3t}t: (i) are iid converse GEV(g, m, s); (ii) are iid Gaussian; (iii)
satisfy 3tZf3tK1Cht with {ht} iid Gaussian; and (iv) satisfy 3tZf3tK1Cht with
{ht} iid converse GEV(g, m, s). We mention that when we are using the converse
GEV distribution, we set the intercept parameter z to 0 to avoid over
parameterization, as the mean is absorbed into the mean of the converse GEV
distribution. In both tables, the BIC values are given; we note that typically the
model with the smallest BIC is chosen. All the models are fitted using the
monthly temperature data from January 1951 to December 2003, the resulting
model is used to obtain monthly forecasts for January–December 2004.
The estimated mean square error of the one-step ahead prediction is also given
in tables 1 and 2. Exact details on how the forecasts and mean squared errors are
calculated are given below.

On examining tables 1 and 2, we see that the linear trend b is highly
significant. We also note that there is a strong correlation (see the coefficients f)
in the errors, which is an important factor in forecasting. The most optimal
model on the bases of the minimum BIC and prediction mean squared error
seems to be the following:

yt Z 0:0105tC6:25 sin
2p

12
t

� �
C6:95 cos

2p

12
t

� �
Cet;

et Z 0:566etK1 Cht; where htwconverse GEVðK0:109;K5:71; 3:65Þ: ð4:2Þ

(b ) Goodness of fit test by probability plots

We now confirm the hypothesis that the residuals fĥtg follow a converse GEV
distribution, by using the probability plot. Suppose the random variable X has a
converse GEV distribution with parameters (g, m, s), then if

pt ZPðX%xtÞZ 1Kexp K 1C
g

s
ðmKxtÞ

h iK1=g
� �

;

this implies

Klogð1KptÞZ 1C
g

s
ðmKxtÞ

h iK1=g
:

In addition, the plot [1C(g/s)(mKxt)]
K1/g against Klog(1Kpt) is a validation

plot. Let (h1,h2,., hn) be a random sample from a converse GEV(g, m, s), and
let (h(1),h(2), ., h(n)), be its order statistics. Let ptZ((tK0.5)/n), tZ1,2,., n.
In figure 4, we plot ytZ ½1Cðĝ=ŝÞðm̂KhðtÞÞ�K1=g against xtZKlog(1Kpt), where
ĝ; m̂; ŝ are the maximum-likelihood estimates and ĥt is the estimate of ht. We
observe that the majority of the observations (yt, xt) fall on the yZx line (which
passes through the origin). Only 18 points lie significantly off the yZx line, this is
less than 3% of the total number of observations. Compare this with the Q–Q
Proc. R. Soc. A



10 2 3 4 5 6 7

2

0

4

6

8

x

y
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plot in figure 3, where ca 35% of the points lie significantly off the yZx line.
This justifies the use of the converse GEV distribution, which confirms that our
assumptions on the distribution are appropriate.
(c ) Prediction of the minimum temperatures

Consider the time-series {yt} where yt satisfies the model (4.2). Suppose we
have observations {yt, s%t0}, then the minimum mean square error forecast of
yt0Cl (lZ1,2,.) is given by

yt0ðl ÞZEðyt0Cl jys; s% t0Þ

Z bðt0 C lÞCA cosð0:523ðt0 C lÞÞCB sinð0:523ðt0 C lÞÞCet0ðlÞ;

where et0ðl ÞZfet0ðlK1ÞCEðhtÞ

EðhtÞZmC
s

g
f1KGð1KgÞg ð4:3Þ

(see appendix A). Thus, when lZ1, Eðyt0C1Kyt0ð1ÞÞ
2ZvarðhtÞZs2.

Let ŷt0ð1Þ be the one-step ahead forecast, where b, A, B, g, m and s in equation
(4.3) have been replaced with their maximum-likelihood estimates. In figure 5,
we plot the one-step ahead forecasts ŷt0ð1Þ, for the period January–December
2004. The estimated mean square error ŝ2hZð1=12Þ

P647
tZ636 ðŷtð1ÞKytC1Þ2 of the

one-step ahead forecast over this period is ŝ2hZ11:09. There is a close agreement
between the forecasts and the true values.
(d ) Model for the maximum temperatures

We now consider the maximum monthly temperatures for the period January
1951–December 2003.

As pointed out earlier, the range of the series is (K2.18C, 11.88C), which is
quite small compared to the minimum monthly temperatures. From the plot of
the series, we cannot see any significant trend in the series. There is a yearly
cycle, and from the boxplot (figure 2), we see that there are extremes in the
Proc. R. Soc. A
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13Time-series models for Antarctic Peninsula
summer months (January, February and March) and in the winter months
(June, July and August). The extremes in summer months may cause melting of
the ice shelves. In view of these observations, we do not include a trend
component in the model. Since we are analysing the maxima, it is natural for us
to assume that the innovations have a GEV distribution, GEV(g, m, s). We use
the same procedure for estimating the model as before. The time-series model for
the maximum temperature is found to be

yt Z 0:0002t
ð0:0003Þ

C 1:74
ð0:095Þ

cosð0:523tÞC 1:08
ð0:095Þ

sinð0:523tÞCet;

etwGEVðK0:260
ð0:0004Þ

; 1:08
ð0:095Þ

; 1:67Þ
ð0:047Þ

: ð4:4Þ

We note that there is no significant trend. It is interesting to note that the errors
{et} are mutually independent, but non-Gaussian. This is in contrast to the
minimum temperature data, which has a significant linear trend and correlated
errors. This implies that the diurnal temperature range is decreasing and that
asymmetric climate change is occurring in the Antarctic Peninsula.

Since the minimum temperatures are increasing and the maximum
temperatures are remaining constant over the same period, we believe that the
changes in minimum temperatures are more significant. In §5, we investigate this
data further and see whether there is any relationship between minimum
temperatures and ozone levels at the Faraday/Vernadsky station. The ozone
meteorological and ozone-monitoring unit, BAS, issues regular ozone bulletins
describing ozone levels at various stations in the Antarctic. In recent years, when
Proc. R. Soc. A



G. L. Hughes and others14
there was an increase in stratospheric temperatures, generally there was a
decrease in ozone levels at the Halley and Faraday/Vernadsky stations. For our
analysis, we consider time-series analysis of minimum temperatures and mean
monthly ozone levels at the Faraday/Vernadsky station for the period January
1958–December 2004, giving us 564 observations. (This data was made available
to us by Dr Jon Shanklin, Dr S. Colwell and Dr John Turner, BAS.)
5. Effect of mean monthly ozone levels on minimum monthly
temperatures

The influence of the human race on climate is still a matter for study and
speculation, but the ability to perturb the ozone layer is an established fact. We
next examine if the amount of ozone in the stratosphere in the Antarctic
Peninsula has a direct relationship to the minimum temperatures. If this can be
established, then it can be deduced that human activity does play some role in
increasing the temperatures in the Antarctic Peninsula and the future
temperatures can be predicted with more certainty. These stratospheric ozone
concentrations are recorded in Dobson units using a Dobson ozone spectro-
photometer. This instrument tells us how much ozone there is in the atmosphere
by comparing the intensities of two wavelengths of ultraviolet light from the Sun.
It is therefore not possible to make regular measurements of ozone during the
Antarctic winter because the station is in darkness. These missing values have
been substituted by their yearly average.

Comparing the plots of the minimum temperatures and the ozone levels in
figures 1 and 6, we see that there is a decrease in ozone levels during the years
1980–2001 and during the same period there is a steady increase in the minimum
temperatures {yt}.

For our cross-correlation analysis, we consider the detrended deseasonalized
minimum monthly temperatures and similarly the ozone levels which have also
been pre-whitened (e.g. Chatfield 2004, p. 158) during the period January
1958–December 2004. The plot of the cross correlations for various lags is given
in figure 6. There is a strong negative correlation at all lags. Further, we see that
there is a significant negative correlation at lag (K1) indicating that ozone levels
affect the future minimum temperature levels (at least one month later). Our
analysis also indicates that the ozone levels may have a long-term effect, but the
data we have is not sufficiently long to draw any significant conclusions.

We now consider the regression of the minimum temperatures {yt} on the
detrended ozone fx 0tK1g (where seasonal and linear trend in the ozone has been
removed). We have detrended the ozone to prevent a cointegration effect
between temperature and ozone (cointegration can loosely be described as
spurious correlation between two variables caused by a common trend). We fit
models of the form

yt Z zCA sin
2p

12
t

� �
CB cos

2p

12
t

� �
Cax 0tK1 CbtCet; ð5:1Þ

where {et} are random errors. Using the procedure described in §3 to estimate
the parameters, we concluded that the minimum monthly temperatures can be
described by a linear trend, one periodic term (with a 12-month period), the
Proc. R. Soc. A
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15Time-series models for Antarctic Peninsula
detrended ozone at lag (K1) and an error term satisfying a first-order
autogressive model with innovations satisfying a conv GEV(g, m, s) distribution.
Using the ozone at additional lags is not significant and hence we have excluded
them from the model.

As in §4, we give a comparison of this model with other models where we
included/excluded the trend, and modelled the errors {3t}t using: (i) iid converse
GEV(g, m, s); (ii) iid Gaussian; (iii) an AR(1) process etZfetK1Cht where {ht}
iid Gaussian; and (iv) an AR(1) process etZfetK1Cht with {ht} iid converse
GEV(g, m, s). We summarize the results in table 3, where the linear trend is
excluded and in table 4, where the linear trend is included. The most suitable
model, when ozone is included, was found to be

yt Z 0:0091tC6:61 sin
2p

12
t

 !
C7:22 cos

2p

12
t

 !
K0:0267x 0tK1 Cet;

et Z 0:562etK1 Cht; where htw converse GEVðK0:0969;K5:67; 3:59Þ:
ð5:2Þ

In figure 5, we plot the one-step ahead forecast of minimum temperatures
using the previous ozone values. The estimated mean squared error of the
forecasts calculated using model (4.2) (where the ozone is excluded) is ŝ2Z11:09
(see table 2), whereas using model (5.1), where the ozone is included, it is 10.14
(see table 4). Therefore, the forecasts obtained for the minimum temperatures,
using ozone as an auxillary variable, increase the quality of the forecasts.
Furthermore, we note that there is a small decrease in the magnitude of the
Proc. R. Soc. A
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17Time-series models for Antarctic Peninsula
coefficient (b) of the linear trend, and this may be due to the ozone variable. This
may indicate that the ozone levels can be an influencing factor for global
warming in the Antarctic region.
6. Discussion and summary

We see from the models fitted (see tables 1–4) that the minimum/maximum
temperatures can be explained by linear time-series models with innovations
having extreme value distributions. This is confirmed by the probabilistic plots.
We observe an upward trend in the minimum temperatures (approx. 6.78C over
53 years), and no significant increase in the maximum temperatures. If this is
confirmed, this may have serious effect on climate change in the Antarctic region
and may affect the rest of marine life and ecosystems (see Smith et al. 2003). Our
conclusions drawn on the basis of our model applied to minimum/maximum
temperatures seem to be similar to those drawn by Turner et al. (2005) on the
basis of average monthly temperatures; but our analysis identifies this increase to
be due to an increase in minimum temperatures and also relates this to the ozone
levels. The forecasts we obtained from January to December 2004 are very close
to the true values observed, which seems to confirm that our models are
appropriate. Indeed, the forecasting performance for minimum temperature
improved when we included in the model the ozone levels. This, together with the
cross-correlation analysis, indicates that the ozone levels may have some effect on
the minimum temperatures. The minimum/maximum data are not sufficiently
long to draw any long-term valid conclusions, but we believe that, in the future,
these methods can be used by climatologists to obtain better forecasts when more
observations are available.

Several interesting modelling questions arise from our analysis. The first is
how one should model the dependence structure of extreme value observations.
Obviously, using an ARMA process with (conv) GEV innovations may not be
the only way to do this. The second is an open question whether a random
variable, which has an ARMA representation with (conv) GEV innovations, also
belongs to the (conv) GEV family of distributions.
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Appendix A. Extreme value distributions

In this appendix, we give a brief description of the properties of extreme value
distributions used in this paper. Suppose we have a sequence of independent
identically distributed random variables with cumulative distribution function
F(x). Let MnZmax(X1,X2,. Xn). Then it is well known that

PrfMn%xgZFnðxÞ;
Proc. R. Soc. A
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and for constants anO0 and bn, so that as n/N

Pr
ðMnKbnÞ

an
%x

� �
ZFnðanxCbnÞ/HðxÞ: ðA 1Þ

When H(x) is of the form

HðxÞZ exp K 1Cg
xKmX

s

� �h iK1=g
� �

; 1Cg
xKmX

s

� �
O0;

we say the distribution is a generalized extreme value (GEV) distribution. Here,
m is a location parameter, sO0 is a scale parameter and g is the shape
parameter. The above distribution is often used in modelling data from various
disciplines (e.g. Smith 2001). The three special cases of H(x) are Gumbel,
Frechet and Weibull (cf. Gumbel 1958), which are obtained by choosing the
parameter g appropriately.

The expected value and variance of the random variable X with the above
distribution are given by (Laycock et al. 1990)

EðXÞZ
xC

s

g
Gð1KgÞ;g!1

mC9s;gZ 0

8><
>:

VarðXÞZ

s2

g2
½Gð1K2gÞKG2ð1KgÞ�;g! 1

2

s2p2

6
;gZ 0

8>>>>><
>>>>>:

ðA 2Þ

where xZmK(a/g) and 9 is the Euler’s constant.
We are often interested in the limiting probability distribution of min

(x1,x2, ., xn)ZKmax(Kx1,Kx2,., Kxn), which is given by

FY ðyÞZ 1KHðKxÞ

Z 1Kexp K 1Cg
KyCmY

s

� �� �K1=g
( )

; 1Cg
KyCmY

s

� �
O0;

where mYZKmX and the corresponding probability density function is given by

fhðyÞZ
1

s
exp K 1Cg

KyCmY

s

� �� �K1=g
( )

1Cg
KyCmY

s

� �� �Kð1Cð1=gÞÞ
;

for 1Cg
KyCmY

s

� �
O0:

ðA 3Þ

The distribution (A 3) is known as the converse GEV distribution, conv GEV
(g, m, s). Suppose the random variableYwconvGEV(g, m, s), then themean ofY is
given by EðY ÞZmCðs=gÞf1KGð1KgÞg and the variance of Y is given by (A 2).
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