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Abstract

A class of Fourier based statistics for irregular spaced spatial data is introduced,

examples include, the Whittle likelihood, a parametric estimator of the covariance

function based on the L2-contrast function and a simple nonparametric estimator of

the spatial autocovariance which is a non-negative function. The Fourier based statistic

is a quadratic form of a discrete Fourier-type transform of the spatial data. Evaluation

of the statistic is computationally tractable, requiring O(nb) operations, where b are

the number of Fourier frequencies used in the definition of the statistic and n is the

sample size. The asymptotic sampling properties of the statistic are derived using

both increasing domain and fixed domain spatial asymptotics. These results are used

to construct a statistic which is asymptotically pivotal.

Keywords and phrases: Fixed and increasing domain asymptotics, irregular spaced

locations, quadratic forms, spectral density function, stationary spatial random fields.

1 Introduction

In recent years irregular spaced spatial data has become ubiquitous in several disciplines as

varied as the geosciences to econometrics. The analysis of such data poses several challenges

which do not arise in data which is sampled on a regular lattice. A major obstacle is the

computational costs when dealing with large irregular sampled data sets. If spatial data are

sampled on a regular lattice then algorithms such as the Fast Fourier transform can be em-

ployed to reduce the computational burden (see, for example, (Chen, Hurvich, & Lu, 2006)).
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Unfortunately, such algorithms have little benefit if the spatial data are irregularly sampled.

To address this issue, within the spatial domain, several authors, including, (Vecchia, 1988),

(Cressie & Huang, 1999), (Stein, Chi, & Welty, 2004), have proposed estimation methods

which are designed to reduce the computational burden.

In contrast to the above references, (Fuentes, 2007) and (Matsuda & Yajima, 2009) argue

that working within the frequency domain often simplifies the computational burden. Both

authors focus on parametric estimation using a Whittle-type likelihood. (Fuentes, 2007)

assumes that the irregular spaced data can be embedded on a grid and the missing mechanism

is deterministic and “locally smooth”. A possible drawback of this construction, is that the

local smooth assumption will not hold if the locations are extremely irregular. Therefore

(Matsuda & Yajima, 2009) propose a Whittle likelihood approach to parameter estimation

which takes into account the irregular nature of the locations. The focus of most Fourier

domain estimators have been on the Whittle likelihood (the exception being the recent paper

by (Bandyopadhyay, Lahiri, & Norman, 2015), which we discuss later). In this paper we

argue that several estimators, both parametric and nonparametric can be defined within

the Fourier domain. For example, within the Fourier domain, we propose a nonparametric,

non-negative definite estimator of the spatial covariance. Nonparametric estimators of the

spatial autocovariance are often defined using kernel smoothing methods (see (Hall, Fisher,

& Hoffman, 1994)) or the empirical variogram (see (Cressie, 1993)). However, these “raw”

covariance estimators may not be non-negative functions, and a second step is required, which

involves taking the Fourier transform of a finite discretisation of the sample autocovariance,

setting negative values to zero and inverting back, to ensure that the resulting estimator is a

non-negative function. In contrast, by defining the covariance estimator within the Fourier

domain the estimator is guaranteed to be a non-negative definite function. The purpose of

this paper is two fold. The first is to demonstrate that several parameters can be estimated

within the Fourier domain. The second is to obtain a comprehensive understanding of

quadratic forms of irregular sampled spatial processes.

In order to define estimators within the Fourier domain we adopt the approach pioneered

by (Matsuda & Yajima, 2009) and (Bandyopadhyay & Lahiri, 2009) who assume that the ir-

regular locations are independent, identically distributed random variables (thus allowing the

data to be extremely irregular) and define the irregular sampled discrete Fourier transform

(DFT) as

Jn(ω) =
λd/2

n

n∑
j=1

Z(sj) exp(is′jω), (1.1)

where sj ∈ [−λ/2, λ/2]d denotes the spatial locations observed in the space [−λ/2, λ/2]d

and {Z(sj)} denotes the spatial random field at these locations. It’s worth mentioning a

similar transformation on irregular sampled data goes back to (Masry, 1978), who defines the
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discrete Fourier transform of Poisson sampled continuous time series. Using this definition,

(Matsuda & Yajima, 2009) define the Whittle likelihood by taking the weighted integral

of the periodogram, |Jn(ω)|2. Of course, in practice the weighted integral needs to be

approximated by a Riemann sum. Indeed in Remark 2, (Matsuda & Yajima, 2009), suggest

using the frequency grid {ωk = 2πk/λ;k ∈ Zd} when constructing the Whittle likelihood.

No justification is given for this discretisation. However, their observation has insight. We

prove that this transformation is “optimal” for most estimators defined within the Fourier

domain.

Motivated by the integrated Whittle likelihood, our aim is to consider estimators with

the form
∫
gθ(ω)|Jn(ω)|2dω. Such quantities have been widely studied in time series, dating

as far back as (Parzen, 1957), but has received very little attention in the spatial literature.

In practice this integral cannot be evaluated, and needs to be approximated by a Riemann

sum

Qa,Ω,λ(gθ; 0) =
1

Ωd

a∑
k1,...,kd=−a

gθ(ωΩ,k)|Jn(ωΩ,k)|2 (1.2)

where {ωΩ,k = 2πk/Ω,k = (k1, . . . , kd),−a ≤ ki ≤ a} is the frequency grid over which the

sum is evaluated. In terms of computation, evaluation of {Jn(ωΩ,k);k = (k1, . . . , kd), kj =

−a, . . . , a} requires O(adn) operations. However, once {Jn(ωΩ,k)} has been evaluated the

evaluation of Qa,Ω,λ(gθ; 0) only requires O(ad) operations.

As far as we are aware there exists no results on the sampling properties of the general

quadratic form defined in (1.2). To derive the asymptotic sampling properties of Qa,Ω,λ(gθ; 0)

we will work under two asymptotic frameworks that are commonly used in spatial statistics.

Our main focus will be the increasing domain framework, introduced in (Hall & Patil, 1994)

(see also (Hall et al., 1994) and used in, for example, (Lahiri, 2003), (Matsuda & Yajima,

2009), (Bandyopadhyay & Lahiri, 2009), (Bandyopadhyay et al., 2015) and (Bandyopadhyay

& Subba Rao, 2017)). This is where the number of observed locations n→∞ as the size of

the spatial domain λ → ∞ (we usually assume λd/n → 0). We also analyze the sampling

properties of Qa,Ω,λ(gθ; 0) within the fixed-domain framework (where λ is kept fixed but the

number of locations, n grows) considered in (Stein, 1999), (Stein, 1994), (Zhang, 2004) and

(Zhang & Zimmerman, 2005). The sampling properties of Qa,Ω,λ(gθ; 0) differ according to

the framework used.

We show in Sections 3 and 4 that Qa,Ω,λ(gθ; 0) is a consistent estimator of the functional

I(gθ;
a
Ω

) as λ→∞ and Ω→∞, where

I
(
gθ;

a

Ω

)
=

1

(2π)d

∫
[−2πa/Ω,2πa/Ω]d

gθ(ω)f(ω)dω. (1.3)

However, the choice of frequency grid ωΩ,k plays a vital role in the rate of convergence. In
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particular, we show that

E[Qa,Ω,λ(gθ; 0)] = I
(
gθ;

a

Ω

)
+O

(
log λ

λ
+

1

Ω
+

1

n

)
and

var[Qa,Ω,λ(gθ; 0)] =

{
O
(
λ−d
)

Ω > λ

O
(
Ω−d

)
Ω ≤ λ

. (1.4)

Therefore, under suitable conditions on gθ, Qa,Ω,λ(gθ; 0)
P→ I (gθ;∞) if a/Ω→∞ as a→∞

n→∞, λ→∞ and Ω→∞.

To understand the influence the user chosen frequency grid has on the sampling prop-

erties, we show that the asymptotic limit of λdvar[Qa,Ω,λ(gθ; 0)] will always be the same for

all Ω ≥ λ as λ → ∞. On the other hand, using a frequency grid which is coarser than

{2πk/λ;k ∈ Zd} leads to an estimator with a larger bias and variance. Thus balancing effi-

ciency with computational burden, in general, {Jn(ωλ,k)}k∈Zd is the optimal transformation

of the spatial data into the frequency domain. As mentioned above (Bandyopadhyay et al.,

2015) also use the Fourier domain for spatial inference, however their objectives are very

different to those in this paper. (Bandyopadhyay et al., 2015) show that the transformations

{Jn(ωΩ,k)}k are asymptotically independent if Ω/λ → 0 as λ → ∞ (this corresponds to a

very coarse frequency grid). Based on this property they use Qa,Ω,λ(g; 0), where Ω is such

that Ω/λ → 0 as λ → ∞ and Ω → ∞, to construct the empirical likelihood. The justifi-

cation for their construction is that the distribution of the resulting empirical likelihood is

asymptotically pivotal as λ→∞. The sampling properties of Qa,Ω,λ(g; 0) are not derived in

(Bandyopadhyay et al., 2015). However, it is clear from (1.4), that using a frequency grid

where Ω << λ leads to an estimator that is not optimal in the mean squared sense.

Since Qa,Ω,λ(g; 0) is optimal when using the frequency grid Ω = λ, in Section 4 we focus

on deriving the sampling properties of Qa,λ,λ(gθ; 0). We consider the slightly more general

statistic

Qa,λ,λ(gθ; r) =
1

λd

a∑
k1,...,kd=−a

gθ(ωλ,k)Jn(ωλ,k)Jn(ωλ,k+r), r ∈ Zd (1.5)

and show asymptotic normality of Qa,λ,λ(gθ; r) when the random field is stationary and

Gaussian and obtain the second order properties of Qa,λ,λ(gθ; r) when the random field is

stationary (but not necessarily Gaussian). The sampling properties of Qa,λ,λ(gθ; 0) when

the domain is kept fixed are considered in Section 4.4. The variance of Qa,λ,λ(gθ; 0) is

usually difficult to directly estimate. However, in Section 5 we show that if the locations

are independent, uniformly distributed random variables, then {Qa,λ,λ(gθ; r)} forms a ‘near
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uncorrelated’ sequence whose variance is asymptotically equivalent to Qa,λ,λ(gθ; 0). More

precisely, if Qa,λ,λ(gθ; 0) is real we define the the studentized statistic

TS =
Qa,λ,λ(gθ; 0)− I(gθ;

a
λ
)√

1
|S|
∑

r∈S |Qa,λ,λ(gθ; r)|2
,

for some fixed set S ⊂ Zd/{0}. We show that TS
D→ t2|S| as λ → ∞, where t2|S| denotes a

t-distribution with 2|S| degrees of freedom and |S| denotes the cardinality of S.

We now summarize the paper. In Section 2 we state the assumptions required in this

paper and the sampling properties of the Fourier transform {Jn(ωΩ,k)}. In Section 2.3, we

use these properties to motivate examples of estimators which have the form Qa,Ω,λ(gθ; 0).

In Section 3 we summarize the sampling properties of {Qa,Ω,λ(gθ; 0)}. In Section 4 we focus

on Qa,λ,λ(gθ; r) and these results are used to study the sampling properties of TS in Section

5. Qa,Ω,λ(gθ; 0) is a quadratic form of an irregular sampled spatial process and as far as

we are aware there exists very few results on the moment and sampling properties of such

quadratic forms. The purpose of the supplementary material, (Subba Rao, 2017b), is to take

a few steps in this direction. Many of these results build on the work of (Kawata, 1959)

and may be of independent interest. A simulation study to illustrate the performance of the

nonparametric non-negative definite estimator of the spatial covariance is given in Appendix

J, (Subba Rao, 2017b).

2 Assumptions and Examples

2.1 Assumptions and notation

In this section we state the required assumptions and notation. This section can be skipped

on first reading.

We observe the spatial random field {Z(s); s ∈ Rd} at the locations {sj}nj=1 where

sj ∈ [−λ/2, λ/2]d. Throughout this paper we will use the following assumptions on the

spatial random field.

Assumption 2.1 (Spatial random field) (i) {Z(s); s ∈ Rd} is a second order station-

ary random field with mean zero and covariance function c(s1−s2) = cov(Z(s1), Z(s2)|s1, s2).

We define the spectral density function as f(ω) =
∫
Rd c(s) exp(−is′ω)ds

(and c(s) = (2π)−d
∫
Rd f(ω) exp(is′ω)dω).

(ii) {Z(s); s ∈ Rd} is a stationary Gaussian random field.

5



We require the following definitions. For some finite 0 < C <∞ and δ > 0, let

βδ(s) =

{
C |s| ∈ [−1, 1]

C|s|−δ |s| > 1
. (2.1)

Let βδ(s) =
∏d

j=1 βδ(sj). For sequences, we define ξη(j) = C[I(j = 0) + I(j 6= 0)|j|−η] (for

some finite constant C and I(·) denotes the indicator function). To minimise notation we

will often use
∑a

k=−a to denote the multiple sum
∑a

k1=−a . . .
∑a

kd=−a. Let ‖ · ‖1 and ‖ · ‖2

denote the `1-norm and `2-norm of a vector, respectively. Let <X and =X denote the real

and imaginary parts of X. We make heavy use of the sinc function which is defined as

sinc(ω) =
sin(ω)

ω
and Sinc(ω) =

d∏
j=1

sinc(ωj). (2.2)

Define the triangle kernel, T : R → R where T (u) = 1 − |u| for u ∈ [−1, 1] and zero

elsewhere and the d-dimensional triangle kernel T (u) =
∏d

j=1 T (uj). We use the notation

{ωΩ,k = 2πk/Ω;k ∈ Zd} for a general frequency grid. If Ω > λ, we say the frequency

grid is “fine”. Conversely, if Ω < λ, we say the frequency grid is “coarse”. Further, as

mentioned in the introduction using λ = Ω is optimal, therefore to reduce notation we let

{ωk = 2πk/λ;k ∈ Zd}.
We adopt the assumptions of (Hall & Patil, 1994), (Matsuda & Yajima, 2009) and

(Bandyopadhyay & Lahiri, 2009) and assume that {sj} are iid random variables with density
1
λd
h( ·

λ
), where h : [−1/2,−1/2]d → R.

Assumption 2.2 (Non-uniform sampling) The locations {sj} are independent distributed

random variables on [−λ/2, λ/2]d, where the density of {sj} is 1
λd
h( ·

λ
), and h(·) admits the

Fourier representation

h(u) =
∑
j∈Zd

γj exp(i2πj ′u),

where
∑

j∈Zd |γj | < ∞ such that |γj | ≤ C
∏d

i=1 ξ1+δ(ji) (for some δ > 0). This assumption

is satisfied if the second derivative of h is bounded on the d-dimensional torus [−1/2, 1/2]d.

Remark 2.1 If h is such that sups∈[−1/2,1/2]d |
∂m1+...,mdh(s1,...,sd)

∂s
m1
1 ...∂s

md
d

| < ∞ (0 ≤ mi ≤ 2) but h

is not continuous on the d-dimensional torus [−1/2, 1/2]d then |γj| ≤ C
∏d

i=1 ξ1(ji) and the

above condition will not be satisfied. However, this assumption can be induced by tapering

the observations such that Z(sj) is replaced with Z̃(sj), where Z̃(sj) = t(sj)Z(sj), t(s) =∏d
i=1 t(si) and t is a weight function which has a bounded second derivative, t(−1/2) =

t(1/2) = 0 and t′(1/2) = t′(−1/2) = 0. By using Z̃(sj) instead of Z(sj), in all the derivations

below we replace the density h(s) with t(s)h(s). This means the results now rely on the
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Fourier coefficients of t(s)h(s), which decay at the rate |
∫

[−1/2,1/2]d
t(s)h(s) exp(i2πj ′s)ds| ≤

C
∏d

i=1 ξ2(ji), and thus the above condition is satisfied. Note that (Matsuda & Yajima, 2009),

Definition 2, uses a similar data-tapering scheme to induce a similar condition.

The case that the locations follow a uniform distribution is an example of a distribution

which satisfies Assumption 2.2. It gives rise to several elegant simplifications. Thus we state

the uniform case as a separate assumption.

Assumption 2.3 (Uniform sampling) The locations {sj} are independent uniformly dis-

tributed random variables on [−λ/2, λ/2]d.

Many of the results in this paper use that the locations follow a random design. This

helps in understand the sampling properties of these complex estimators. However, it can

“mask” the approximation errors when replacing sums by integrals and the role that the

sample size n plays in these approximations. To get some idea of these approximations

when the domain λ is kept fixed but n → ∞ we will, on occassion, treat the locations as

deterministic and make the following assumption.

Assumption 2.4 (Near lattice locations for d = 1) Let {sn,j; j = 1, . . . , n} denote the

locations. The number of locations n→∞ in such a way that

n−1∑
j=1

∣∣∣∣λn − (sn,(j+1) − sn,(j)
)∣∣∣∣ = O

(
λ

n

)
,

n−1∑
j=1

(
sn,(j+1) − sn,(j)

)2
= O

(
λ

n

)
where {sn,(j)}j denotes the order statistics corresponding {sn,j}j.

The integrated periodogram Qa,Ω,λ(g; 0) resembles the integrated periodogram estimator

commonly used in time series (see for example, (Walker, 1964), (Hannan, 1971), (Dunsmuir,

1979), (Dahlhaus & Janas, 1996), (Can, Mikosch, & Samorodnitsky, 2010) and (Niebuhr

& Kreiss, 2014)). However, there are some fundamental differences, between time series

estimators and Qa,Ω,λ(g; 0) which makes the analysis very different. Unlike regularly spaced

or near regularly spaced data, ‘truely’ irregular sampling means that the DFT can estimate

high frequencies, without the curse of aliasing (a phenomena which was noticed as early as

(Shapiro & Silverman, 1960) and (Beutler, 1970)). In this case, if the function gθ, in the

definition of Qa,Ω,λ(gθ; 0) is bounded, there’s no need for the frequency grid to be bounded,

and a can be magnitudes larger than λ. Below we state assumptions on the function gθ and

the frequency grid.
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Assumption 2.5 (Assumptions on gθ(·) and the size of frequency grid) Suppose

Qa,Ω,λ(gθ; r) =
1

Ωd

a∑
k=−a

gθ(ωΩ,k)Jn(ωΩ,k)Jn(ωΩ,k+r)

(i) If gθ is not a bounded function over Rd but supω∈[−C,C]d |gθ(ω)| < ∞, then we must

restrict the frequency grid {ωΩ,k;−a ≤ k1, . . . , kd ≤ a} to lie in [−C,C]d (thus a =

CΩ). Further we assume for all 1 ≤ j ≤ d, supω∈[−C,C]d |
∂gθ(ω)
∂ωj
| <∞.

(ii) If supω∈Rd |gθ(ω)| < ∞, then the frequency grid can be unbounded (in the sense that

a/Ω→∞ as a and Ω→∞). Further we assume for all 1 ≤ j ≤ d, supω∈Rd |
∂gθ(ω)
∂ωj
| <

∞.

The same assumptions apply to the “bias” corrected version of Qa,Ω,λ(g; 0) which is defined

in Section 3.

Assumption 2.6 (Conditions on the spatial process) (a) |c(s)| ≤ β2+δ(s).

Required for the bounded frequency grid, to obtain the covariance of {Jn(ωΩ,k)}k.

(b) For some δ > 0, f(ω) ≤ β1+δ(ω).

Required for the unbounded frequency grid - using this assumption instead of (a) in the

case of an bounded frequency grid leads to slightly larger errors bounds in the derivation

of the mean and variance of Qa,Ω,λ(g; r). This assumption is also used to obtain the

CLT result for both the bounded and unbounded frequency grids.

(c) For all 1 ≤ j ≤ d and some δ > 0, the partial derivatives satisfy |∂f(ω)
∂ωj
| ≤ β1+δ(ω).

We use this condition to approximate sums with integral for both the bounded and

unbounded frequency grids. It is also used to make a series of approximations to derive

the limiting variance of Qa,Ω,λ(g; r) in the case that the frequency grid is unbounded.

(d) For some δ > 0, | ∂df(ω)
∂ω1,...,∂ωd

| ≤ β1+δ(ω).

Required only in the proof of Theorem 4.1(ii)(b).

(e) For some δ > 0, |f(ω)| ≤ β2+δ(ω).

Required only for the fixed domain asymptotics.

Remark 2.2 Assumption 2.6(a) is satisfied by a wide range of covariance functions. Ex-

amples include:

(i) The Wendland covariance, since its covariance is bounded and has a compact support.
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(ii) The Matern covariance, which for ν > 0 is defined as cν(‖s‖2) = ‖s‖ν2Kν(‖s‖2) (Kν

is the modified Bessel function of the second kind); see (Stein, 1999). To see why,

we note that if ν > 0 then cν(s) is a bounded function. Furthermore, for large ‖s‖2,

cν(‖s‖2) ∼ Cν‖s‖ν−0.5
2 exp(−‖s‖2) as ‖s‖2 →∞ (where Cν is a finite constant). Thus

by using the inequality

d−1/2(|s1|+ |s2|+ . . .+ |sd|) ≤
√
s2

1 + s2
2 + . . .+ s2

d ≤ (|s1|+ |s2|+ . . .+ |sd|)

we can show |cν(s)| ≤ β2+δ(s) for any δ > 0.

Remark 2.3 Assumption 2.6(b,c,d) appears quite technical, but it is satisfied by a wide

range of spatial covariance functions. For example, the spectral density of the Matern co-

variance defined in Remark 2.2 is fν(ω) =
2ν−1Γ(ν+ d

2
)

πd/2(1+‖ω‖22)(ν+d/2) (see (Stein, 1999), page 49). It

is straightforward to show that this spectral density satisfies Assumption 2.6(b,c,d), noting

that the δ used to define β1+δ will vary with ν, dimension d and order of derivative.

If the spatial random field is non-Gaussian we require the following assumptions on the

higher order cumulants.

Assumption 2.7 (Non-Gaussian random fields) {Z(s); s ∈ Rd} is a fourth order sta-

tionary spatial random field, in the sense that E[Z(s)] = 0, cov[Z(s1), Z(s2)] = c(s1 − s2),

cum[Z(s1), Z(s2), Z(s3)] = κ2(s1−s2, s1−s3) and cum[Z(s1), Z(s2), Z(s3), Z(s4)] = κ4(s1−
s2, s1−s3, s1−s4), for some functions κ3(·) and κ4(·) and all s1, . . . , s4 ∈ Rd. We define the

fourth order spectral density as f4(ω1,ω2,ω3) =
∫
R3d κ4(s1, s2, s3) exp(−i

∑3
j=1 s

′
jωj)dω1dω2dω3.

We assume that for some δ > 0 the spatial tri-spectral density function is such that |f4(ω1,ω2,ω3)| ≤
β1+δ(ω1)β1+δ(ω2)β1+δ(ω3) and |∂f4(ω1,...,ω3d)

∂ωj
| ≤ β1+δ(ω1)β1+δ(ω2)β1+δ(ω3).

2.2 Properties of Fourier transforms

In this section we briefly summarize some of the characteristics of the Fourier transforms

Jn(ωΩ,k). These results will be used in the construction of several estimators.

Theorem 2.1 (Increasing domain asymptotics) Let us suppose that {Z(s); s ∈ Rd} is

a stationary spatial random field whose covariance function (defined in Assumption 2.1(i))

satisfies Assumption 2.6(a) for some δ > 0. Furthermore, the locations {sj} satisfy Assump-

tion 2.2. Then we have

cov [Jn(ωk1), Jn(ωk2)] = 〈γ, γ(k2−k1)〉f (ωk1) +
c(0)γk2−k1λ

d

n
+O

(
1

λ

)
, (2.3)

where the bounds are uniform in k1,k2 ∈ Zd and 〈γ, γr〉 =
∑

j∈Zd γjγr−j.
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Further, suppose Assumption 2.6(c) holds and that |γj | ≤
∏d

i=1 ξ2+δ(ji) for some δ > 0.

If Ω > λ (fine frequency grid is used), then

cov [Jn(ωΩ,k1), Jn(ωΩ,k2)] = f (ωΩ,k1)
∑

j1,j2∈Zd
γj1
γj2

Sinc

(
π

[
(j1 + j2)− λ

Ω
(k1 − k2)

])

+O

(
λd

n
+

log λ

λ

)
. (2.4)

PROOF See Appendix A, (Subba Rao, 2017b). �

Comparing (2.3) with (2.4) we see that if k1 and k2 are such that λ
2

max |ωΩ,k1−ωΩ,k2| < 1

then there is a high amount of correlation between the Fourier transforms. On the other

hand if λmax |ωΩ,k1 − ωΩ,k2| → ∞ as λ → ∞, the correlation declines. This means if the

frequency grid is very coarse, Ω << λ (as considered in (Bandyopadhyay & Lahiri, 2009)

and (Bandyopadhyay et al., 2015)) the DFTs are almost uncorrelated. On the other hand, if

the frequency grid is very fine, Ω >> λ (see (2.4)) frequencies which are close to each other

are highly correlated. These observations suggest that estimators based on Jn(ωΩ,k) don’t

gain in efficiency when Ω > λ but there will be a loss in efficiency when Ω < λ. We show

this heuristic to be true in Section 3.

The results in the above theorem give the limit within the increasing domain framework.

In Theorem G.1, (Subba Rao, 2017b), we obtain the properties of Jn(ωΩ,k) within the fixed

domain framework, where λ is kept fixed but n → ∞. The expressions are long, but we

summarize the most relevant parts in the remark below.

Remark 2.4 (Fixed domain asymptotics) (i) Let

Aλ

(
k

Ω

)
=

∫
[−λ,λ]d

T
(u
λ

)
c(u) exp

(
2iπk′u

Ω

)
du, (2.5)

where T (·) is the d-dimensional triangle kernel. Using Theorem G.1(iii), (Subba Rao,

2017b), under Assumption 2.3 (locations are uniformly distributed) we have var
[
Jn
(

2πk
Ω

)]
=

Aλ(
k
Ω

) + λdc(0)
n

.

Therefore if the sampling frequency, Ω, is chosen such that Ω ≥ 2λ, then 1
Ωd
Aλ(

k
Ω

) are

the Fourier coefficients of T
(
u
λ

)
c(u) defined on the domain [−Ω/2,Ω/2]d. In Section

2.3 we show that this fixed domain approximation can, in some cases, be used to obtain

unbiased estimators.

(ii) If the locations are not uniformly distributed, then by keeping λ fixed and using Theorem

G.1(i) we see that var
[
Jn
(

2πk
Ω

)]
is not a separable function of the spatial spectral

density and the Fourier coefficients of the random design. Whereas the approximation

10



of var
[
Jn
(

2πk
Ω

)]
as λ→∞ given in Theorem 2.1 is a separable function of the spatial

spectral density and spatial design. Using the separable approximation as the basis of

an estimation scheme is simpler than using the exact, but non-separable formula.

Remark 2.5 We observe from Theorems 2.1 that in the increasing domain framework |Jn(ωΩ,k)|2

is an estimator of the spectral density function, f(ωΩ,k) whereas within the fixed domain

framework |Jn(ωΩ,k)|2 is an estimator of the Fourier coefficient Aλ(k/Ω). However, if∫
Rd |f(ω)|dω <∞ and the ratio k/Ω is kept fixed then Aλ(

k
Ω

)→ f(ωΩ,k) as λ→∞.

2.3 Examples of estimators defined within the Fourier domain

Many parameters or quantities of interest can be written as a linear functional involving the

spectral density function f . In Theorem 2.1 and Remark 2.5 we showed that if λ is large

and the design of locations uniform then E[Jn (ωΩ,k)] ≈ f(ωΩ,k) (if the design is not uniform

then there will be an additional multiplicative constant). Motivated by this observation, in

this section we consider estimators (or criterions) which take the form (1.5). If the locations

follow a uniform distribution then for some of the examples below it is possible to reduce

the (fixed domain) bias in the estimator.

2.3.1 The Whittle likelihood

Suppose the stationary spatial process {Z(s); s ∈ Rd} has spectral density fθ0(ω) (and

corresponding covariance cθ0(s)) where θ0 is unknown but belongs to the compact parameter

space Θ. (Matsuda & Yajima, 2009) propose using the integrated Whittle likelihood to

estimate θ0. More precisely, they define the Whittle likelihood as

LI,n(θ, η2) =

∫
Ω

(
log
[
fθ(ω) + η2

]
+
|Jn(ω)|2

[fθ(ω) + η2]

)
dω,

and use (θ̂, η̂) ∈ arg minθ,η Ln(θ, η) as an estimator of θ and η (where η is an estimator of

the “ridge effect”). Of course, this integral cannot be evaluated in practice and a Riemann

sum approximation is necessary. Using {ωk = 2πk/λ;k = (k1, . . . , kd),−Cλ ≤ kj ≤ Cλ} we

approximate the integral with the sum

LS,n(θ, η2) =
1

λd

a∑
k=−a

(
log
[
fθ(ωk) + η2

]
+
|Jn(ωk)|2

[fθ(ωk) + η2]

)
.

A heuristic motivation for the above likelihood is that in the case the locations are uniformly

distributed then {Jn(ωk)} are near uncorrelated random variables with asymptotic variance

fθ0(ωk)+η2
0. If Jn(ωk) were Gaussian, uncorrelated random variables with variance fθ0(ωk)+

η2
0 then LS,n(θ, η2) would be the true likelihood. The choice of a = Cλ is necessary (where

11



C does not depend on λ), since |fθ(ω)| → 0 as ‖ω‖ → ∞ (for any norm ‖ · ‖), thus

the discretized Whittle likelihood is only well defined over a bounded frequency grid. The

choice of C is tied to how fast the tails in the parametric class of spectral density functions

{fθ; θ ∈ Θ} decay to zero.

If either Assumption 2.3 or 2.4 is satisfied, then we observe from Remark 2.4 thatAλ(
k
λ
; θ0)

is a better approximation of var[Jn(ω)] than fθ0(ωk) (where Aλ(·) is defined in (2.5)). There-

fore if Assumption 2.3 or 2.4 is satisfied, a better finite sample approximation can be obtained

by using θ̂ = arg minLS,n(θ) as an estimator of θ, where

LS,n(θ, η2) =
1

λd

a∑
k=−a

(
log

[
Aλ

(
k

λ
; θ

)
+ η2

]
+

|Jn(ωk)|2[
Aλ
(
k
λ
; θ
)

+ η2
]) (2.6)

and Aλ
(
k
λ
; θ
)

=
∫

[−λ,λ]d
T
(
u
λ

)
cθ(u) exp

(
2iπk′u
λ

)
du.

2.3.2 The spectral density estimator

We recall from Theorem 2.1 that var[Jn(ωk)] ≈ 〈γ, γ0〉f(ωk). Since f(·) is locally constant

in a neighbourhood of ω and motivated by spectral methods in time series we use f̂λ,n(ω)

as a nonparametric estimator of f (or a constant multiple of it), where

f̂λ,n(ω) =

λ/2∑
k=−λ/2

Wb(ω − ωk)|Jn(ωk)|2 =
1

bd
Qa,λ,λ(Wb, 0),

Wb(ω) = b−d
∏d

j=1W (
ωj
b

) and W : [−1/2,−1/2] → R is a spectral window. In this case we

set the number of frequencies a = λ/2, and Assumption 2.5(i) is satisfied.

2.3.3 A nonparametric non-negative definite estimator of the spatial covariance

In this section we propose a nonparametric estimator of the covariance. The estimator is

based on the representation

c(u) =
1

(2π)d

∫
Rd
f(ω) exp(iω′u)dω.

Since the expectation of |Jn(ωk)|2 is approximately f(ωk), to estimate the spatial covariance

we propose approximating the above integral with a sum and the spectral density with the

absolute square of the Fourier transform. However, using the frequency grid ωk = 2πk
λ

is problematic outside the region [−λ/2, λ/2]d. Instead, we propose using a finer grid to

estimate the covariance, namely

c̃Ω,n(u) =
1

Ωd

a∑
k=−a

|Jn (ωΩ,k)|2 exp(iu′ωΩ,k) u ∈
[
−Ω

2
,
Ω

2

]d
12



where Ω ≥ 2λ. In this case, a = a(Ω) can be chosen such that a/Ω → ∞ as a → ∞ and

Ω→∞ (thus Assumption 2.5(ii) is satisfied).

A disadvantage with the above “raw estimator” of the covariance is that there is no

guarantee that it yields a non-negative definite spatial auto-covariance function. However,

this can easily be remedied by multiplication of c̃Ω,n(u) with the triangle kernel. More

precisely, we define the estimator

ĉΩ,n(u) = T

(
u

Ω̂

)
c̃Ω,n(u)

where T (u) =
∏d

j=1 T (uj) and Ω̂ ≤ Ω. This covariance estimator has the advantage that it

is zero outside the region [−Ω̂, Ω̂]d. Moreover, ĉΩ,n(u) is a non-negative definite sequence. To

show this result, we use that the Fourier transform of the triangle kernel, T (u) is sinc2(ω
2
).

Thus the Fourier transform of ĉΩ,n(u) is

f̂Ω(ω) =

∫
[−Ω̂,Ω̂]d

ĉΩ,n(u) exp(−iω′u)du =
Ω̂d

Ωd

a∑
k=−a

|Jn(ωΩ,k)|2Sinc2

[
Ω̂

2
(ωΩ,k − ω)

]
.

Clearly, f̂Ω(ω) ≥ 0, therefore, the estimator {ĉΩ,n(u)} is a non-negative definite function

and thus a valid covariance function.

In Appendix J, (Subba Rao, 2017b), we illustrate the performance of the nonparametric

non-negative definite estimator of the spatial covariance with some simulations.

2.3.4 A nonlinear least squares estimator of a parametric covariance function

We recall that the Whittle likelihood can only be defined on a bounded frequency grid. This

can be an issue if the observed locations are dense on the spatial domain and thus contain a

large amount of high frequency information which would be missed by the Whittle likelihood.

An alternative method for parameter estimation of a spatial process is to use a different loss

function. Motivated by (Rice, 1979), the discussion on the Whittle estimator in Section 2.3.1

and Theorem 2.1 we define the quadratic loss function

Ln(θ) =
1

λd

a∑
k=−a

(
|Jn(ωk)|2 − 〈γ, γ0〉fθ(ωk)

)2
,

and let θ̂n = arg minθ∈Θ Ln(θ) or equivalently solve ∇θLn(θ) = 0, where

∇θLn(θ) = −2〈γ, γ0〉
λd

a∑
k=−a

∇θfθ(ωk)
{
|Jn(ωk)|2 − 〈γ, γ0〉fθ(ωk)

}
= −〈γ, γ0〉

[
Qa,λ,λ(2∇θfθ(·); 0)− 〈γ, γ0〉

2

λd

a∑
k=−a

fθ(ωk)∇θfθ(ωk)

]
.

13



It is well known that the distributional properties of a quadratic loss function are determined

by its first derivative. In particular, the asymptotic sampling properties of θ̂n are determined

by Qa,λ,λ(2∇θf(·; θ); 0) . In this case a can be such that a/λ→∞ as λ→∞ and Assumption

2.5(ii) is satisfied. An estimator of 〈γ, γ0〉 is given in Remark 4.1. Note that in the definition

of Ln(θ), 〈γ, γ0〉 can be replaced with σ2, in which case one is estimating a multiple of fθ0(ω).

If either Assumption 2.3 or 2.4 is satisfied then we can replace fθ(ωk) with Aλ(
k
λ
; θ), to

obtain a better fixed domain approximation.

3 A summary of the sampling properties of Qa,Ω,λ(g; 0)

In this section we consider the sampling properties of Qa,Ω,λ(g; 0) for the general frequency

grid {ωΩ,k = 2πk
Ω
}. The proof and more general results can be found in Appendix D,

(Subba Rao, 2017b). To simplify notation in this section we mainly consider the case that

the locations are uniformly distributed.

Lemma 3.1 Suppose Assumptions 2.1(i), 2.3 and 2.6(a,c) or (b,c) hold. Let I(g; a
Ω

) and

Aλ(·) be defined as in (1.3) and (2.5) respectively. Then

E [Qa,Ω,λ(g; 0)] =
c2

Ωd

a∑
k=−a

g

(
2πk

Ω

)
Aλ

(
k

Ω

)
+
c(0)λd

nΩd

a∑
k=−a

g(ωΩ,k)

(3.1)

where c2 = n(n− 1)/2. If we let λ→∞, then

E [Qa,Ω,λ(g; 0)] = c2I
(
g;
a

Ω

)
+
c(0)λd

nΩd

a∑
k=−a

g(ωΩ,k) +O

(
log λ

λ
+

1

Ω

)
.

(3.2)

PROOF See Appendix A, (Subba Rao, 2017b). �

We observe an exact expression for the expectation of Qa,Ω,λ(g; 0) is in terms of the

Fourier coefficients Aλ(k/Ω). However, an approximation of the expection of Qa,Ω,λ(g; 0)

(within the increasing domain framework) is in terms of an integral of the spectral density

function.

We apply the above results to some of the examples considered in the previous section.

The results are given in the general case that the locations are random variables but not

necessarily uniformly distributed (see Theorem 4.2 and Lemma A.2 for the details).

Example 3.1 (i) The Whittle likelihood Under Assumption 2.2, using Theorems 2.1 and

14



4.2, within the increasing domain asymptotics framework we have

E
[
LS,n(θ, η2)

]
=

1

(2π)d

∫
[−a/λ,a/λ]d

(
log
[
fθ(ω) + η2

]
+
〈γ, γ0〉fθ0(ω) + γ0η

2
0

fθ(ω) + η2

)
dω +O

(
1

λ

)
,

where fθ0(·) denotes the true spectral density, η2
0 = λdn−1c(0; θ0) (note that η2

0 =

O(λd/n)) with c(s; θ0) the corresponding spatial covariance.

Assuming Assumption 2.3 holds, within the fixed domain framework the expectation of

(2.6) is

E[LS,n(θ, η2)] =
1

λd

a∑
k=−a

(
log

[
Aλ

(
k

λ
; θ

)
+ η2

]
+

Aλ(
k
λ
; θ0)[

Aλ
(
k
λ
; θ
)

+ η2
])+O

(
1

n

(a
λ

)2d
)
,

where in the above error bound we use that the tails of Aλ(k/λ; θ) decay at the rate∏d
i=1 ξ2(ki).

(ii) The nonparametric covariance Within the increasing domain framework and using Lemma

A.2(ii), (Subba Rao, 2017b), for u ∈ [−min(λ,Ω/2),min(λ,Ω/2)]d we have

E[c̃Ω,n(u)] = 〈γ, γ0〉c(u) +O

(
log λ

λ
+

1

Ω

)
,

and E[ĉΩ,n(u)] = 〈γ, γ0〉T (u

Ω̂
)c(u) + O

(
T (u

Ω̂
)[ log λ

λ
+ 1

Ω
]
)

where 〈γ, γ0〉 is defined in

Theorem 2.1.

In order to understand the properties of c̃Ω,n(u) within the fixed domain framework we

assume that Assumption 2.3 holds. If Ω ≥ 2λ and u ∈ [−λ, λ] then by using Lemma

3.1 we have

E [c̃Ω,n(u)] =
1

Ωd

∞∑
k=−∞

Aλ

(
k

Ω

)
exp (iu′ωΩ,k) +O

(
1

n
+

1

a

)
= T

(u
λ

)
c(u) +O

(
1

n
+

1

a

)
,

where we recall T (·) denotes the triangle kernel.

In Lemma 3.1 we observe the bias c(0)λd

nΩd

∑a
k=−a g(ωΩ,k). It can be removed by using a

bias corrected version of Qa,Ω,λ(g; 0)

Q̃a,Ω,λ(g; 0) =
1

Ωd

a∑
k=−a

g(ωΩ,k) |Jn(ωΩ,k)|2 − λd

Ωdn

a∑
k=−a

g(ωΩ,k)
1

n

n∑
j=1

Z(sj)
2.

(3.3)

For the remainder of this section we focus on this bias corrected estimator. The analogous

result for Qa,Ω,λ(g; 0) can be found in Appendix H, (Subba Rao, 2017b).
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We show in Appendix D, (Subba Rao, 2017b) that in the case that {Z(u);u ∈ Rd} is a

Gaussian stationary spatial process

var
[
Q̃a,Ω,λ(g; 0)

]
≈ C1

( a
Ω

) 1

Ωd

2a∑
k1,...,kd=−2a

Sinc2

(
λ

Ω
kπ

)
where

C1

( a
Ω

)
=

1

(2π)d

∫
−[2πa/Ω,2πa/Ω]d

f(ω)2
[
g(ω)|2 + g(ω)g(−ω)

]
dω. (3.4)

Observe that the rate of convergence of var
[
Q̃a,Ω,λ(g; 0)

]
is determined by

2a∑
k1,...,kd=−2a

Sinc2

(
λ

Ω
kπ

)
=

d∏
i=1

2a∑
ki=−2a

sinc2

(
λ

Ω
kiπ

)
.

It is this term along with the following result which gives the crucial insight into the rate of

convergence for different frequency grids {ωΩ,k}. If a→∞ then

1

Ω

∞∑
k=−∞

sinc2

(
λ

Ω
kπ

)
=


1
λ

λ
Ω
< 1

1
Ω

λ
Ω
∈ Z

O
(

1
Ω

)
λ
Ω
> 1 and λ

Ω
/∈ Z,

further, if λ/Ω → ∞ then
∑∞

k=−∞ sinc2
(
λ
Ω
kπ
)
→ 1 (see Appendix D, (Subba Rao, 2017b)

for the proof). This result implies that

var[Q̃a,Ω,λ(g; 0)] =

{
O
(

1
λd

)
λ < Ω

O
(

1
Ωd

)
λ ≥ Ω

.

In other words, the frequency grid ωλ,k = 2πk
λ

or finer will yield a rate of convergence of

O(λ−d) and var[Q̃a,Ω,λ(g; 0)] ≈ λ−dC1( a
Ω

). However a coarse frequency grid ωΩ,k = 2πk
Ω

where

Ω < λ will yield a slower rate of convergence of O(Ω−d). In the theorem below we make this

precise.

For the following theorem we consider general stationary spatial random fields, this re-

quires the following definition

D1

( a
Ω

)
=

1

(2π)2d

∫
[−2πa/Ω,2πa/Ω]2d

g(ω1)g(ω2)f4 (−ω1,−ω2,ω2) dω1dω2.

(3.5)

This term arises if the spatial random field is non-Gaussian.

Theorem 3.1 Suppose Assumptions 2.1(i), 2.2, 2.5(i) or (ii), 2.6(b,c) and 2.7 hold. Let

C1(·) and D1(·) be defined as in (3.4) and (3.5) respectively.
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(i) If a fine frequency grid is used ( λ
Ω
< 1) then

λdvar
[
Q̃a,Ω,λ(g; 0)

]
= C1

( a
Ω

)[λd
Ωd

2a∑
k=−2a

Sinc2

(
λ

Ω
kπ

)]
+D1

( a
Ω

)
+O

(
`

(2)
a,Ω,λ

)
(ii) If a coarse frequency grid is used ( λ

Ω
≥ 1) then

Ωdvar[Q̃a,Ω,λ(g; 0)] = C1

( a
Ω

)[ 2a∑
k=−2a

Sinc2

(
λ

Ω
kπ

)]
+

(
Ω

λ

)d
D1

( a
Ω

)
+O

(˜̀(2)
a,Ω,λ

)
where ˜̀(2)

a,Ω,λ is defined in (D.16), Appendix D, (Subba Rao, 2017b).

PROOF See Appendix D, (Subba Rao, 2017b). �

As mentioned above, one important implication of the above result is that the rate of

convergence depends on whether the frequency grid is coarser or finer than 1/λ, where λ

is the length of the spatial domain. In terms of the asymptotic sampling properties (see

Lemma 3.1 and Theorem 3.1) there seems to be little benefit using a very fine frequency

grid, as it does not reduce the bias or variance (but is computationally costly).

We observe that if the spatial process is non-Gaussian then an additional term, D1(a/Ω),

involving the fourth order cumulant of the spatial process, arises. However, if the frequency

grid is extremely coarse in the sense that λ/Ω→∞ as λ→∞ and Ω→∞, then D1(a/Ω)

is asymptotic negligible compared with the leading term which is a function of the spectral

density. For example, if λ/Ω ∈ Z+ then

Ωdvar[Q̃a,Ω,λ(g; 0)] = C1

( a
Ω

)
+O

(
`

(2)
a,Ω,λ +

Ωd

λd

)
.

Thus if λ/Ω → ∞ as λ → ∞ and Ω → ∞ (and g(ω) = g(−ω)) we have verified condition

(C.4) in (Bandyopadhyay et al., 2015);

var
[∑a

k=−a g(ωΩ,k)|Jn(ωΩ,k)|2
]

2
∑a

k=−a |g(ωΩ,k)|2f(ωΩ,k)2

P→ 1,

which is required for their proposed spatial spectral empirical likelihood methodology. There-

fore a very coarse grid has the advantage that the term D1(·) is negligible. However, we see

from Lemma 3.1 and Theorem 3.1 that the disadvantage is that there is a substantial increase

in both variance and bias.

Since the grid, ωk = 2πk/λ, yields optimal samping properties in Section 4 we focus on

deriving sampling properties of Q̃a,λ(g; r), where

Q̃a,λ(g; r) =
1

λd

a∑
k1,...,kd=−a

g(ωk)Jn(ωk)Jn(ωk+r)− 1

n

a∑
k=−a

g(ωk)
1

n

n∑
j=1

Z(sj)
2e−is

′
jωr .

(3.6)
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4 Sampling properties of Q̃a,λ(g; r)

In this section we show that under the increasing domain framework Q̃a,λ(g; r) (defined (3.6))

is a consistent estimator of I(g; a
λ
) (or some multiple of it), where I(g; a

λ
) is defined in (1.3).

The sampling properties in the fixed domain framework are given in Section 4.4.

4.1 The expectation of Q̃a,λ(g; r)

We start with the expectation of Q̃a,λ(g; r). We show if supω∈Rd |g(ω)| < ∞, the choice of

a does not play a significant role in the asymptotic properties of Q̃a,λ(g; r). If a >> λ, the

analysis of Q̃a,λ(g; r) requires more delicate techniques. We start by stating some pertinent

features in the analysis of Q̃a,λ(g; r), which gives a flavour of our approach. By writing

Q̃a,λ(g; r) as a quadratic form it is straightforward to show that

E
[
Q̃a,λ(g; r)

]
= c2

a∑
k=−a

g(ωk)
1

λd

∫
[−λ/2,λ/2]2d

c(s1 − s2) exp(iω′k(s1 − s2)− is′2ωr)×

h
(s1

λ

)
h
(s2

λ

)
ds1ds2, (4.1)

where c2 = n(n− 1)/n2. The proof of Theorem 2.1 is based on making a change of variables

v = s1− s2 and then systematically changing the limits of the integral. This method can be

applied to the above, if a is such that the ratio a/λ is fixed for all λ. However, if the frequency

grid [−a/λ, a/λ]d is allowed to grow with λ, applying this brute force method to E
[
Q̃a,λ(g; r)

]
has the disadvantage that it aggregrates the errors within the sum of E

[
Q̃a,λ(g; r)

]
. Instead,

to further the analysis, we replace c(s1 − s2) by its spectral representation c(s1 − s2) =
1

(2π)d

∫
Rd f(ω) exp(iω′(s1−s2))dω and focus on the case that the sampling design is uniform;

h(s/λ) = λ−dI[−λ/2,λ/2](s) (later we consider general sampling densities). This reduces the

first term in E
[
Q̃a,λ(g; r)

]
to the Fourier transforms of step functions, which is the product

of sinc functions. Specifically, we obtain

E
[
Q̃a,λ(g; r)

]
=

c2

(2π)d

a∑
k=−a

g(ωk)

∫
Rd
f(ω)Sinc

(
λω

2
+ kπ

)
Sinc

(
λω

2
+ (k + r)π

)
dω

=
c2

πd

∫
Rd

Sinc(y)Sinc(y + rπ)

[
1

λd

a∑
k=−a

g(ωk)f(
2y

λ
− ωk)

]
dy,

where the last line above is due to a change of variables y = λω
2

+ kπ. Since the spectral

density function is absolutely integrable it is clear that
[

1
λd

∑a
k=−a g(ωk)f(2y

λ
− ωk)

]
is uni-

formly bounded over y and that E
[
Q̃a,λ(g; r)

]
is finite for all λ. Furthermore, if f(2y

λ
−ωk)

were replaced with f(−ωk), then what remains in the integral are two shifted sinc functions,
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which is zero if r ∈ Zd/{0}, i.e.

E
[
Q̃a,λ(g; r)

]
=

c2

πd

∫
Rd

Sinc(y)Sinc(y + rπ)

[
1

λd

a∑
k=−a

g(ωk)f(−ωk)

]
dy +R,

where

R =
c2

πd

∫
Rd

Sinc(y)Sinc(y + rπ)

[
1

λd

a∑
k=−a

g(ωk)

(
f(

2y

λ
− ωk)− f(−ωk)

)]
dy.

In the following theorem we show that under certain conditions on f , R is asymptotically

negligible.

Theorem 4.1 Let I(g; ·) be defined as in (1.3). Throughout the theorem we suppose As-

sumptions 2.1(i) and 2.3 hold. Let b(r) denote the number of zero values in r.

(i) If Assumptions 2.5(i) and 2.6(a,c) hold, then we have

E
[
Q̃a,λ(g; r)

]
=

{
O( 1

λd−b(r) ) r ∈ Zd/{0}
I (g;C) +O( 1

λ
) r = 0

(4.2)

(ii) Suppose Assumptions 2.5(ii) holds and

(a) Assumption2.6(b) holds, then supa

∣∣∣E [Q̃a,λ(g; r)
]∣∣∣ <∞.

(b) Assumption 2.6(b,c,d) holds, then we have

E
[
Q̃a,λ(g; r)

]
=

{
O
(

1
λd−b(r)

∏d−b(r)
j=1 (log λ+ log |mj|)

)
r ∈ Zd/{0}

I
(
g; a

λ

)
+O

(
log λ
λ

+ 1
n

)
r = 0

.

where {m1, . . . ,md−b(r)} is the subset of non-zero values in r = (r1, . . . , rd).

(c) If only Assumption 2.6(b,c) holds, then the O
(

1
λd−b(r)

∏d−b(r)
j=1 (log λ+ log |mj|)

)
term in (b) is replaced with the slower rate O

(
1
λ

(log λ+ log[1 + ‖r‖1])
)
.

Note that the above bounds for (b) and (c) are uniform in a.

PROOF See Appendix A, (Subba Rao, 2017b). �

We observe that if r 6= 0, then Q̃a,λ(g; r) is estimating zero as λ→∞. It would appear

that Q̃a,λ(g; r) when r 6= 0 does not contain any useful information, however in Section 5 we

show how these terms can be used to estimate nuisance parameters.
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In order to analyze E
[
Q̃a,λ(g; r)

]
in the case that the locations are not from a uniform

distribution we return to (4.1) and replace c(s1−s2) and h(·) by their Fourier representations

E
[
Q̃a,λ(g; r)

]
=

c2

πd

∑
j1,j2∈Z

γj1
γj2

1

λd

a∑
k=−a

g(ωk)

∫ ∞
−∞

f

(
2y

λ
− ωk

)
Sinc(y)Sinc(y + (r − j1 − j2)π)dy.

This representation allows us to use similar techniques to those used in the uniform sampling

case to prove the following result.

Theorem 4.2 Let I(g; ·) be defined as in (1.3). Suppose Assumptions 2.1(i) and 2.2 hold.

(i) If in addition Assumptions 2.5(i) and 2.6(a,c) hold, then we have

E
[
Q̃a,λ(g; r)

]
= 〈γ, γr〉I

(
g;
a

λ

)
+O(λ−1),

O(λ−1) is uniform over r ∈ Zd.

(ii) If in addition Assumptions 2.5(ii) and 2.6(b,c) hold, then we have

E
[
Q̃a,λ(g; r)

]
= 〈γ, γ−r〉I

(
g;
a

λ

)
+O

(
log λ+ log(1 + ‖r‖1)

λ

)
.

PROOF See Appendix A, (Subba Rao, 2017b). �

We observe that by applying Theorem 4.2 to the case that h is uniform (using that γ0 = 1

else γj = 0) gives E
[
Q̃a,λ(g; r)

]
= O(λ−1) for r 6= 0. Hence, in the case that the sampling is

uniform, Theorems 4.1 and 4.2 give similar results, though the bounds in Theorem 4.1 are

sharper.

Remark 4.1 (Estimation of
∑

j∈Zd |γj |2) The above lemma implies that E
[
Q̃a,λ(g; 0)

]
=

〈γ, γ0〉I
(
g; a

λ

)
. Therefore, to estimate I

(
g; a

λ

)
we require an estimator of 〈γ, γ0〉. To do this,

we recall that

〈γ, γ0〉 =
∑
j∈Z

|γj|2 =
1

λd

∫
[−λ/2,λ/2]d

hλ(ω)2dω.

Therefore one method for estimating the above integral is to define a grid on [−λ/2, λ/2]d

and estimate hλ at each point, then to take the average squared over the grid (see Remark 1,

(Matsuda & Yajima, 2009)). An alternative, computationally simpler method, is to use the

method proposed in (Gine & Nickl, 2008). That is, use

〈̂γ, γ0〉 =
2

n(n− 1)b

∑
1≤j1<j2≤n

K

(
sj1 − sj2

b

)2

,
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as an estimator of 〈γ, γ0〉, where K : [−1/2, 1/2]d → R is a kernel function. Note that

multiplying the above kernel with exp(−iω′rsj2) results in an estimator of 〈γ, γr〉. In the case

d = 1 and under certain regularity conditions, (Gine & Nickl, 2008) show if the bandwidth

b is selected in an appropriate way then 〈̂γ, γ0〉 attains the classical O(n−1/2) rate under

suitable regularity conditions (see, also, (Bickel & Ritov, 1988) and (Laurent, 1996)). It

seems plausible a similar result holds for d > 1 (though we do not prove it here). Therefore,

an estimator of I
(
g; a

λ

)
is Q̃a,λ(g; r)/〈̂γ, γ0〉.

4.2 The covariance and asymptotic normality

In the previous section we showed that the expectation of Q̃a,λ(g; r) depends only on the

number of frequencies a through the limit of the integral I(g; a
λ
) (if supωRd |g(ω)| <∞). In

this section, we show that a plays a mild role in the higher order properties of Q̃a,λ(g; r).

We focus on the case that the random field is Gaussian and later describe how the results

differ in the case that the random field is non-Gaussian.

Theorem 4.3 Suppose Assumptions 2.1, 2.2 hold. Let U1(r1, r2;ωr1 ,ωr2) and U2(r1, r2;ωr1 ,ωr2)

be defined as in equation (C.1), (Subba Rao, 2017b).

(i) If Assumption 2.5(i) and 2.6(a,c) also hold. Then uniformly for all 0 ≤ ‖r1‖1, ‖r2‖1 ≤
C|λ|, we have

λdcov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
= U1(r1, r2;ωr1 ,ωr2) +O

(
1

λ
+
λd

n

)
and

λdcov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
= U2(r1, r2;ωr1 ,ωr2) +O

(
1

λ
+
λd

n

)
(ii) If Assumption 2.5(ii) and 2.6(b) also hold. Then

λd sup
a,r

var
[
Q̃a,λ(g; r)

]
<∞

with λd/n→ c (where 0 ≤ c <∞) as λ→∞ and n→∞.

(iii) If Assumption 2.5(ii) and 2.6(b,c) also hold. Then uniformly for all 0 ≤ ‖r1‖1, ‖r2‖1 ≤
C|a| (for some finite constant C) we have

λdcov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
= U1(r1, r2;ωr1 ,ωr2) +O(`λ,a,n)

λdcov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
= U2(r1, r2;ωr1 ,ωr2) +O(`λ,a,n),
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where

`λ,a,n = log2(a)

[
log a+ log λ

λ

]
+
λd

n
. (4.3)

PROOF See Appendix C, (Subba Rao, 2017b). �

We now briefly discuss the above results. From Theorem 4.3(ii) we see that Q̃a,λ(g; r) is

a mean squared consistent estimator of 〈γ, γr〉I(g; a
λ
), i.e. E[Q̃a,λ(g; r) − 〈γ, γr〉I(g; a

λ
)]2 =

O(λ−d + ( log λ
λ

+ 1
n
)2) as a→∞ and λ→∞.

In order to obtain an explicit expression for the variance additional conditions are re-

quired. In particular, Theorem 4.3(iii) states that if the frequency grid is unbounded we

require some additional conditions on the spectral density function and some mild con-

straints on the rate of growth of the frequency domain a. More precisely, a should be such

that a = O(λk) for some 1 ≤ k <∞.

Remark 4.2 (Selecting a in practice) The above gives theoretical guidelines. In prac-

tice, if supω∈Rd |g(ω)| < ∞ we suggest plotting |Jn(ωk)|2 against ωk. |Jn(ωk)|2 will drop

close to zero for large ‖ωk‖1 (see Figure 1, Section J, (Subba Rao, 2017b)). Thus a should

be chosen such that it lies after this point. The precise value does not matter too much as

the results are not too sensitive to the choice of a.

The expressions for cov[λdcov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
] (see equation (C.1), (Subba Rao,

2017b)) are unwieldy, however, some simplifications can be made if ‖r1‖1 << λ and ‖r2‖1 <<

λ.

Corollary 4.1 Suppose Assumptions 2.2, 2.5 and 2.6(a,c) or 2.6(b,c) hold. Then

U1(r1, r2;ωr1 , ωr2) = Γr1−r2C1 +O (εr1,r2(λ))

U2(r1, r2;ωr1 , ωr2) = Γr1+r2C2 +O (εr1,r2(λ)) (4.4)

where Γr =
∑

j1+j2+j3+j4=r γj1
γj2
γj3
γj4

, εr1,r2(λ) = ‖r1‖1+‖r2‖1
λ

and

C1 =
1

(2π)d

∫
2π[−a/λ,a/λ]d

f(ω)2
[
|g(ω)|2 + g(ω)g(−ω)

]
dω

C2 =
1

(2π)d

∫
2π[−a/λ,a/λ]d

f(ω)2 [g(ω)g(−ω) + g(ω)g(ω)] dω.

Recall that C1 = C1(a/λ) (where C1(·) is defined in (3.4)).

In the following theorem we derive bounds for the cumulants of Q̃a,λ(g; r), which are

subsequently used to show asymptotical normality of Q̃a,λ(g; r).
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Theorem 4.4 Suppose Assumptions 2.1, 2.2, 2.5 and 2.6(b) hold. Then for all q ≥ 3 and

uniform in r1, . . . , rq ∈ Zd we have

cumq

[
Q̃a,λ(g, r1), . . . , Q̃a,λ(g, rq)

]
= O

(
log2d(q−2)(a)

λd(q−1)

)
(4.5)

if λd

n log2d(a)
→ 0 as n→∞, a→∞ and λ→∞.

PROOF See Section E, (Subba Rao, 2017b). �

From the above theorem we see that if λd

n log2d(a)
→ 0 and log2(a)/λ1/2 → 0 as λ → ∞,

n → ∞ and a → ∞, then we have λdq/2cumq(Q̃a,λ(g, r1), . . . , Q̃a,λ(g, rq)) → 0 for all q ≥ 3.

Using this result we show asymptotic normality of Q̃a,λ(g, r).

Theorem 4.5 Suppose Assumptions 2.1, 2.2, 2.5 and 2.6(b,c) hold. Let C1 and C2, be

defined as in Corollary 4.1. Under these conditions we have

λd/2∆−1/2

 <(Q̃a,λ(g, r)− 〈γ, γ−r〉I(g; a
λ
)
)

=
(
Q̃a,λ(g, r)− 〈γ, γ−r〉I(g; a

λ
)
)  D→ N (0, I2),

where

∆ =
1

2

(
<(Γ0C1 + Γ2rC2) −=(Γ2rC2)

−=(Γ2rC2) <(Γ0C1 − Γ2rC2)

)

with log2(a)

λ1/2 → 0 and λd/n→ 0 as λ→∞, n→∞ and a→∞.

PROOF See Appendix E, (Subba Rao, 2017b). �

It is likely that the above result also holds when the assumption of Gaussianity of the

spatial random field is relaxed and replaced with the conditions stated in Theorem 4.6 (below)

together with some mixing-type assumptions. We leave this for future work. However, in the

following theorem, we obtain an expression for the variance of Q̃a,λ(g; r) for non-Gaussian

random fields.

Theorem 4.6 Let us suppose that {Z(s); s ∈ Rd} is a fourth order stationary spatial ran-

dom field that satisfies Assumption 2.1(i), 2.2, 2.5, 2.7 and 2.6(a,c) or 2.6(b,c) are satisfied.

If ‖r‖1, ‖r‖2 << λ, then we have

λdcov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
= Γr1−r2(C1 +D1) +O

(
`λ,a,n +

(aλ)d

n2
+ εr1,r2(λ)

)

λdcov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
= Γr1+r2(C2 +D2) +O

(
`λ,a,n +

(aλ)d

n2
+ εr1,r2(λ)

)
,
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where C1 and C2 are defined as in Corollary 4.1 and

D1 =
1

(2π)2d

∫
2π[−a/λ,a/λ]2d

g(ω1)g(ω2)f4(−ω1,−ω2,ω2)dω1dω2

D2 =
1

(2π)2d

∫
2π[−a/λ,a/λ]2d

g(ω1)g(ω2)f4(−ω1,ω2,−ω2)dω1dω2.

PROOF See Appendix C, (Subba Rao, 2017b). �

We observe that to ensure the term (aλ)d

n2 → 0 we need to choose a such that ad = o(n2/λd).

In contrast for Gaussian random fields a = O(λk) for some 1 ≤ k < ∞ was sufficient for

obtaining an expression for the variance and asymptotic normality.

4.3 Mixed Domain verses Pure Increasing Domain asymptotics

The asymptotics in this paper are mainly done using mixed domain asymptotics, that is,

as the domain λ → ∞, the number of locations observed grows at a faster rate than λ,

in other words λd/n → 0 as n → ∞. However, as rightly pointed out by a referee, for a

given application it may be difficult to disambiguate Mixed Domain (MD) from the Pure

Increasing Domain (PID) set-up, where λd/n → c (0 < c < ∞). We briefly discuss how

the results change under PID asymptotics and the implications of this. We find that the

results point to a rather intriguing difference for spatial processes that are Gaussian and

non-Gaussian.

In the case that spatial process is Gaussian, using both MD and PID asymptotics we

have λdvar[Q̃a,λ(g; r)] = O(1) (see Theorem 4.3(i)). Furthermore, an asymptotic expression

for the variance is

λdvar[Q̃a,λ(g; r)] = Γ0[C1 + E1] +O (`λ,a,n + εr,r(λ))

where E1 = O(λd/n) is a function of the spectral density; this term is not asymptotically

negligible under PID asymptotics. From the above we see that if we choose a such that

a = O(λk) for some 1 < k < ∞ then similar results as those stated in Sections 4.1 and 4.2

hold under PID asymptotics. In the case that the process is non-Gaussian, using Theorem

4.6 we have

λdvar[Q̃a,λ(g; r)] = Γ0[C1 +D1 + E1 + F1] +O

(
`λ,a,n +

(aλ)d

n2
+ εr,r(λ)

)
,

where F1 = O(λd/n) is a function of the fourth order spectral density function. However,

there arises an additional term O((aλ)d/n2). From the proof of Theorem 4.6, we see if
(aλ)d

n2 → ∞ as a, λ, n → ∞, then λdvar[Q̃a,λ(g; r)] is not bounded. Thus, the number of

frequencies, a, should be such that (aλ)d/n2 → 0. In the case of MD asymptotics, we choose
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a such that (aλ)d/n2 → 0 and log3(a)/λ→ 0. Under these two conditions the frequency grid

can be unbounded and grow at the rate a/λ as λ → ∞. However, under PID asymptotics

(where λ = O(n1/d)) in order to ensure that (aλ)d/n2 = O(1) we require a = O(n1/d) = O(λ).

This constrains the frequency grid to be bounded. To summarize, in the case that the spatial

process is non-Gaussian and n = O(λd) in order that var[Q̃a,λ(g; r)] → 0 as λ → ∞, the

frequency grid must be bounded or a coarser frequency grid ωΩ,k (where λ > Ω) used (see

Section 3).

4.4 Fixed domain asymptotics

We now turn our attention to asymptotic sampling properties of Q̃a,λ(g; 0) when the domain

λ is kept fixed but the number of sampling locations n→∞. In order to simplify notation

we consider the case d = 1. We will assume the locations, {sn,j}, lie close to a lattice and

satisfy Assumption 2.4. It is clear that as n → ∞ the Fourier transform Jn(ωk) can be

approximated by the Fourier transform over the continuum

Jλ
(
k

λ

)
=

1

λ1/2

∫ λ/2

−λ/2
Z(s) exp

(
2πiks

λ

)
ds.

Thus asymptotic expressions for the mean and variance of Q̃a,λ(g; 0), where λ is fixed but

n→∞ are in terms of the covariances of {Jλ
(
k
λ

)
}k∈Z. In Appendix G, (Subba Rao, 2017b)

we show that

var

[
Jλ
(
k

λ

)]
= Aλ

(
k

λ

)
and cov

[
Jλ
(
k1

λ

)
,Jλ

(
k2

λ

)]
=

(−1)k1−k2+1

π(k1 − k2)

[
Bλ

(
k1

λ

)
−Bλ

(
k2

λ

)]
where

Aλ

(
k

λ

)
=

∫ λ

−λ

(
1− |u|

λ

)
c(u)e2πiu/λdu and Bλ

(
k

λ

)
=

∫ λ

0

c(u) sin

(
2πku

λ

)
du

(4.6)

These expression are used to prove the following result.

Theorem 4.7 Suppose Assumptions 2.1, 2.4 and 2.6(e) hold. Then keeping λ fixed but

letting n→∞ we have

E
[
Q̃a,λ(g; 0)

]
=

1

λ

a∑
k=−a

g (ωk)Aλ

(
k

λ

)
+O

(
1

n

[
a∑

k=−a

(|k|+ 1)|g(ωk)|

])
(4.7)
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and if supω∈R |g(ω)| <∞

var
[
Q̃a,λ(g; 0)

]
=

1

λ2

∞∑
k1,k2=−∞

g (ωk) g (ωk1)Bλ(k1, k2) +O

(
a4

n2
+
a log a

n
+

1

a

)
(4.8)

where

Bλ(k1, k2) =

{
2I(k = 0)Aλ(0)2 + I(k 6= 0)[Aλ

(
k
λ

)2
+ 1

π2k2Bλ(
k
λ
)2] k1 = k2(= k)

1
π2(k1−k2)2

[
Bλ(

k1

λ
)−Bλ(

k2

λ
)
]2

+ 1
π2(k1+k2)2

[
Bλ(

k1

λ
) +Bλ(

k2

λ
)
]2

k1 6= k2

and Aλ(·) and Bλ(·) are defined in (4.6).

PROOF See Appendix G, (Subba Rao, 2017b). �

From the above result we see that if supω∈R |g(ω)| < ∞ and the number of terms in

the definition of Q̃a,λ(g; 0), grows at a sufficiently slow rate as n → ∞ then Q̃a,λ(g; 0) is

asymptotically an unbiased estimator of
∑

k∈Z g(ωk)Aλ(
k
λ
) and the variance bounded (which

fits with the conclusions of Theorem 4.3(ii)).

We now consider a special example of an estimator defined within the frequency domain

and later compare it with the Gaussian maximum likelihood estimator for the same problem.

More precisely, we consider the case that the covariance of a spatial Gaussian process is

σ2c(u) where c(u) is known but σ2 is unknown and our aim is to estimate σ2. Let Aλ(
k
λ
) =∫ λ

−λ c(u)(1−|u|/λ) exp(2πiku/λ)du. Since E[|Jn(ωk)|2] = σ2Aλ(
k
λ
)+O(n−1(λ+ |k|)) it seems

natural to use σ̂2 as an estimator of σ2, where

σ̂2 =
1

a

a∑
k=1

|Jn(ωk)|2

Aλ(
k
λ
)
.

Note σ̂2 corresponds to the Whittle likelihood estimator of σ2 when c(·) is known. Using

Theorem 4.7, equation (4.7) we have

E[σ̂2] = σ2 +O

(
1

n

[
1

a

a∑
k=1

(|k|+ 1)|k|2
])

.

Hence, if a is chosen such that the error above goes to zero as n→∞ then σ̂2 is asymptot-

ically an unbiased estimator of σ2. Now we evaluate its variance. By using Corollary G.1,

(Subba Rao, 2017b) it can be shown that

var[σ̂2] =
1

a2

a∑
k=1

Bλ(k, k)

Aλ(
k
λ
)2

+
2

a2

a∑
k1=1

a∑
k2=k1+1

Bλ(k1, k2)

Aλ(
k1

λ
)Aλ(

k2

λ
)

+O

(
a6

n2
+
a3

n

)
.

(4.9)
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But here we run into a problem. One would expect that if a is chosen such that a3/n → 0

as a → ∞ and n → ∞, then var[σ̂2] = O(a−1). This is true for the first term on the right

hand side of the above, but it is not necessarily true for the second term, which for most

covariances will remain of order O(1) for all a. The problem is that Aλ(
k
λ
) is a continuous

function on the torus [−1, 1], thus for large k Aλ(
k
λ
) decays at the rate k−2. On the other

hand Bλ(k1/λ, k2/λ) is a function of

Bλ

(
k1

λ

)
−Bλ

(
k2

λ

)
=

1

2

∫ λ

0

c(u) sin

(
k1 − k2

λ
πu

)
cos

(
k1 + k2

λ
πu

)
du.

For most covariances c(0) 6= c(λ), consequently, using integration by parts we see that

|Bλ(
k1

λ
)−Bλ(

k2

λ
)| ∼ |k1−k2|−1 (a faster rate of convergence is not possible). Applying these

bounds to (4.9) gives var[σ̂2] = O(1). Thus even as n → ∞ and a → ∞, σ̂2 is not a mean

squared consistent estimator of σ2. One exception is when c(u) = c(λ−u) for all u ∈ [0, λ/2],

in this case Bλ(
k
λ
) = 0 for all k and var[σ̂2] ≈ a−1.

Therefore, in general, it seems that we cannot consistently estimate σ2 using a Fourier

domain approach. We conjecture that the only transformation of the data that will consis-

tently estimate σ2 is a transformation with the eigenfunctions associated with the covariance

operator c. In contrast, (Zhang, 2004) and (Zhang & Zimmerman, 2005) showed that if the

maximum likelihood were used to estimate σ2 in a Gaussian random field with covariance

σ2c(·) where c(·) is a known Matern covariance function, then even within the fixed domain

framework σ2 can be consistently estimated. This demonstrates that there exists situations

where there are clear gains by working within the likelihood framework (if the correct distri-

bution is specified). However, if the true covariance is c(u) = c(u; θ) and θ is also unknown,

then even within the Gaussian likelihood framework one cannot consistently estimate σ2 and

θ.

5 A studentized Q̃a,λ(g; 0)-statistic

The expression for the variance Q̃a,λ(g; 0) given in the examples above, is rather unwieldy

and difficult to estimate directly. In this section we describe a simple method for estimating

the variance of Q̃a,λ(g; 0) under the assumption the locations are uniformly distributed. This

estimator is used to obtain a simple studentized statistic for Q̃a,λ(g; 0). We assume in this

section that Q̃a,λ(g; 0) is a real random variable. Our approach is motivated by the method

of orthogonal samples for time series proposed in (Subba Rao, 2017a), where the idea is

to define a sample which by construction shares some of the properties as the estimator of

interest. In this section we show that {Q̃a,λ(g; r); r 6= 0} is an orthogonal sample associated

with Q̃a,λ(g; r).
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We will assume, for ease of presentation that the spatial random field is Gaussian. Using

Theorem 4.1 we have E[Q̃a,λ(g; 0)] = I
(
g; a

λ

)
+ o(1). Furthermore, noting that the Fourier

coefficients of hλ(·) for uniformly sampled locations are γ0 = 1 and γj = 0 if j 6= 0, using

Theorem 4.3 we have

λdvar[Q̃a,λ(g; 0)] = C1 +O(`λ,a,n).

In contrast, we observe that if no elements of the vector r are zero, then by Theorem 4.1

E[Q̃a,λ(g; r)] = O(
∏d

i=1[log λ+log |ri|]/λd) (slightly slower rates are obtained when r contains

zeros). In other words, Q̃a,λ(g; r) is (asymptotically) estimating zero. On the other hand,

using Theorem 4.3 we have

λdcov
[
<Q̃a,λ(g; r1),<Q̃a,λ(g; r2)

]
=

{
1
2
C1 +O

(
`λ,a,n + ‖r‖1

λ

)
r1 = r2(= r)

O (`λ,a,n) r1 6= r2, r1 6= −r2

.

A similar result holds for {=Q̃a,λ(g; r)}, furthermore we have λdcov[<Q̃a,λ(g; r1),=Q̃a,λ(g; r2)] =

O(`λ,a,n).

In summary, if ‖r‖1 is not too large, then {<Q̃a,λ(g; r),=Q̃a,λ(g; r)} are ‘near uncorre-

lated’ random variables whose variance is approximately the same as Q̃a,λ(g; 0)/
√

2. This

suggests we use {<Q̃a,λ(g; r),=Q̃a,λ(g; r); r ∈ S} to estimate var[Q̃a,λ(g; 0)], where the set

S is defined as

S = {r; ‖r‖1 ≤M, r1 6= r2 and all elements of r are non-zero} . (5.1)

This leads to the following estimator

ṼS =
λd

2|S|
∑
r∈S

(
2|<Q̃a,λ(g; r)|2 + 2|=Q̃a,λ(g; r)|2

)
=
λd

|S|
∑
r∈S

|Q̃a,λ(g; r)|2,

(5.2)

where |S| denotes the cardinality of the set S. Note that we specifically select the set S such

that no element r contains zero, this is to ensure that E[Q̃a,λ(g; r)] is small and does not

induce a large bias in ṼS

In the following theorem we obtain a mean squared bound for ṼS .

Theorem 5.1 Let ṼS be defined as in (5.2), where S is defined in (5.1). Suppose Assump-

tions 2.1, 2.3 and 2.6(a,b,c) hold and either Assumption 2.5(i) or (ii) holds. Then we have

E
(
ṼS − λdvar[Q̃a,λ(g; 0)]

)2

= O(|S|−1 + |M |λ−1 + `λ,a,n + λ−d log4d(a))

as λ→∞, a→∞ and n→∞ (where `a,λ,n is defined in (B.4)).
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PROOF. See Appendix I, (Subba Rao, 2017b). �

Thus it follows from the above result that if the set S grows at a rate such that |M |λ−1 →
0 as λ→∞, then ṼS is a mean square consistent estimator of λdvar[Q̃a,λ(g; 0)]. We use this

result to define an asymptotically pivotal statistic. Let

TS =
λd/2[Q̃a,λ(g; 0)− I(g; a

λ
)]√

ṼS

.

By using Theorem E.1, (Subba Rao, 2017b), we can immediately show that for fixed S,

TS
D→ t2|S| as λ → ∞. Therefore TS is asymptotically pivotal and can be used to construct

confidence intervals and test hypothesis about the parameter I(g; a
λ
).

We note that the same approach and studentisation can be used in the case that the

random field is non-Gaussian. However, it is trickier to relax the assumption that the

locations are uniformly distributed. This is because in the case of a non-uniform design

E[Q̃a,λ(g; r)] (r 6= 0) will not, necessarily, be estimating zero.
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Supplementary material for Statistical inference for spa-

tial statistics defined in the Fourier domain

In this paper we give the proofs for all the results in this paper. And in addition some related

results. We summarize the contents below.

• In Appendix A give the expectation calculations. These results are used to prove

Lemma 3.1 and Theorems 2.1 4.1 and Theorem 4.2 (expectation E
[
Q̃a,λ(g; r)

]
in the

case of uniform and non-uniform sampling).

• In Appendix B we derive an asymptotic expression for cov[Q̃a,λ(g; r1), Q̃a,λ(g; r2)] in

the case that the locations are uniformly sampled.

• In Appendix C we use the results in Appendix B to generalize the approximation for

cov[Q̃a,λ(g; r1), Q̃a,λ(g; r2)] to general random sampling of the locations.

• In Appendix D we use the results in Appendix B to derive an asymptotic expression

for cov[Q̃a,Ω,λ(g; r1), Q̃a,Ω,λ(g; r2)] (a general frequency grid).

• The central limit theorem using cumulants in proved in Appendix E. Furthermore,

Lemmas E.1 and E.2 are used to prove that some terms in the expansion of cov[Q̃a,λ(g; r1), Q̃a,λ(g; r2)]

are asymptotically negligible.

• In Appendix F the technical lemmas that are used throughout the appendix are stated

and proved.

• In Appendix G results in the fixed domain framework are given. These results are used

to prove Remark 2.4, Lemma 3.1 and the results in Section 4.4.

• In Appendix H the sampling properties of cov[Qa,Ω,λ(g; r1), Qa,Ω,λ(g; r2)] are derived.

• In Appendix I additional lemmas are given.

• In Appendix J simulations for the non-parametric spatial covariance estimator defined

in Section 2.3.3 are given.

A The first moment of the quadratic form

In this section we mainly focus on the expectation calculations which are used to prove

Lemma 3.1(i).
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It is clear from Section 3 and the motivation at the start of Section 4.1 that the sinc

function plays an important role in the analysis of Q̃a,Ω,λ(g; 0) and Q̃a,λ(g; r). Therefore we

now summarise some of its properties. It is well known that 1
λ

∫ λ/2
−λ/2 exp(ixω)dx = sinc(λω

2
)

and ∫ ∞
−∞

sinc(u)du = π and

∫ ∞
−∞

sinc2(u)du = π. (A.1)

We state a well known result that is an important component of the proofs in this paper.

Lemma A.1 [Orthogonality of the sinc function] For all x ∈ R∫ ∞
−∞

sinc(u)sinc(u+ x)du = πsinc(x) (A.2)

and if s ∈ Z/{0} then ∫ ∞
−∞

sinc(u)sinc(u+ sπ)du = 0. (A.3)

PROOF In Appendix F, (Subba Rao, 2017b). �

We define Q̃a,Ω,λ(g; r) where

Q̃a,Ω,λ(g; r) =
1

Ωd

a∑
k=−a

g(ωΩ,k)Jn(ωΩ,k)Jn(ωΩ,k+r)−

λd

Ωd

a∑
k=−a

g(ωΩ,k)
1

n2

n∑
j=1

Z(sj)
2 exp(−is′jωΩ,r). (A.4)

All the bias corrected estimators considered in this paper can be written in the form Q̃a,Ω,λ(g; r).

To study Q̃a,Ω,λ(g; r) we expand the above

Q̃a,Ω,λ(g; r) (A.5)

=
λd

Ωd

a∑
k=−a

g(ωΩ,k)
1

n2

n∑
j1,j2=1

j1 6=j2

Z(sj2)Z(sj2) exp(is′j1ωΩ,k − is′j1ωΩ,k+r).

In the lemma below we apply the ideas outlined at the start of Section 4.1 and the lemma

above to study E[Q̃a,Ω,λ(g; r)].

Lemma A.2 Suppose Assumptions 2.1(i), Assumptions 2.5(i) or (ii) and 2.6(b,c) hold. Let

I(g; ·) and Q̃a,Ω,λ(g; r) be defined as in (1.3) and (A.4)

(i) If Assumption 2.3 (locations follow a uniform distribution) holds then for all r ∈ Zd

E
[
Q̃a,Ω,λ(g; r)

]
= I

(
g;
a

Ω

)
Sinc

(
λπr

Ω

)
+O

 log λ+ log
(

1 + λ‖r‖1
Ω

)
λ

+
1

Ω
+

1

n

 .
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(ii) If Assumption 2.2 (locations follow any general distribution) holds then

E
[
Q̃a,Ω,λ(g; r)

]
=

∑
j1,j2∈Zd

γj1
γj2

Sinc

(
πλr

Ω
− (j1 + j2)π

)
1

(2π)d

∫
[−2πa/Ω,2πa/Ω]d

g(ω)f (−ω − ωj1) dω

+O

 1

Ω
+

log λ+ log
(

1 + λ‖r‖1
Ω

)
λ

+
1

n

 .

(iii) If Assumption 2.2 holds then

E
[
Q̃a,Ω,λ(g; 0)

]
= I

(
g;
a

Ω

)∑
j∈Zd
|γj|2 +O

(
log λ

λ
+

1

Ω
+

1

n

)
.

PROOF. To simplify notation, we let d = 1. To prove (i) we take expectation of (A.5),

replace the spatial covariance with its Fourier (spectral) representation

E
[
Q̃a,Ω,λ(g; r)

]
=

c2λ

2πΩ

a∑
k=−a

g(ωΩ,k)

∫
R
f(ω)sinc

(
λ

2
[ω + ωΩ,k]

)
Sinc

(
λ

2
[ω + ωΩ,k+r]

)
dω.

We make a change of variables y = λ
2

[ω + ωΩ,k]

E
[
Q̃a,Ω,λ(g; r)

]
=

c2

π

∫
R

sinc(y)sinc

(
y +

λπr

Ω

)[
1

Ω

a∑
k=−a

g(ωΩ,k)f

(
2y

λ
− ωΩ,k

)]
dy.

Replacing summand with integral and f(2y
λ
− ωΩ,k) with f(−ωΩ,k) (and using Lemma F.2,

equation (F.5)) we have

E
[
Q̃a,Ω,λ(g; r)

]
=

2c2

π

∫
R

sinc(y)sinc

(
y +

λπr

Ω

)∫ 2πa/Ω

−2πa/Ω

g(ω)f

(
2y

λ
− ω

)
dωdy +O

(
1

Ω

)
.

=
c2

π

∫
Rd

sinc(y)sinc

(
y +

λπr

Ω

)
dy

∫ 2πa/Ω

−2πa/Ω

g(ω)f(ω)dω

+O

(
log λ+ log(1 + |λr/Ω|)

λ
+

1

Ω

)
.

Finally by using Lemma A.1 and replacing c2 = n(n−1)/n2 with one, we have the expression

in (i).

We now prove (ii), which is similar to the proof of (i) but uses the Fourier expansion of

the location density h(·). Taking expectation

E
[
Q̃a,Ω,λ(g; r)

]
=

c2λ

2πΩ

∞∑
j1,j2=−∞

γj1γj2

a∑
k=−a

g(ωΩ,k)

∫ ∞
−∞

f(ω)sinc

(
λ

2
(ω + ωΩ,k + ωλ,j1)

)
×

sinc

(
λ

2
(ω + ωΩ,k − ωλ,j1)

)
dω.
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Using the change of variables y = λ
2
(ω + ωΩ,k + ωλ,j1) we obtain

E
[
Q̃a,Ω,λ(g; r)

]
=

c2

πΩ

∞∑
j1,j2=−∞

γj1γj2

a∑
k=−a

g(ωΩ,k)

∫ ∞
−∞

f

(
2y

λ
− ωλ,j1 − ωΩ,k

)
×

sinc(y)sinc

(
y +

λπr

Ω
− (j1 + j2)π

)
dy.

Replacing sum with an integral and using Lemma I.1(ii) gives

E
[
Q̃a,Ω,λ(g; r)

]
=

c2

2π2

∞∑
j1,j2=−∞

γj1γj2

∫ 2πa/Ω

−2πa/Ω

g(ω)

∫ ∞
−∞

f

(
2y

λ
− ωλ,j1 − ω

)
×

sinc(y)sinc

(
y +

λπr

Ω
− (j1 + j2)π

)
dydω +O

(
1

Ω

)
.

Next, replacing f(2y
λ
− ω − ωλ,j1) with f(−ω − ωλ,j1) gives

E
[
Q̃a,Ω,λ(g; r)

]
=

c2

2π2

∞∑
j1,j2=−∞

γj1γj2

∫ 2πa/Ω

−2πa/Ω

g(ω)f (−ω − ωλ,j1) dω

∫ ∞
−∞

sinc(y)sinc

(
y +

πλr

Ω
− (j1 + j2)π

)
dy

+Rn +O

(
1

Ω

)
,

where

Rn =
c2

2π2

∞∑
j1,j2=−∞

γj1γj2

∫ 2πa/Ω

−2πa/Ω

g(ω)

[
f

(
2y

λ
− ω − ωλ,j1

)
− f(−ω − ωλ,j1)

]
×
∫ ∞
−∞

sinc(y)sinc

(
y +

πλr

Ω
− (j1 + j2)π

)
dydω.

By using Lemma F.2 we have

|Rn| ≤ C
∞∑

j1,j2=−∞

|γj1γj2|
log λ+ log(1 + |λr/Ω|+ log |j1|+ log |j2|)

λ

= O

(
log λ+ log(1 + |λr/Ω|)

λ

)
.
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Using Lemma A.1 we have

E
[
Q̃a,Ω,λ(g; r)

]
=

c2

2π2

∞∑
j1,j2=−∞

γj1γj2

∫ 2πa/Ω

−2πa/Ω

g(ω)f (−ω − ωj1) dω

∫ ∞
−∞

sinc(y)sinc

(
y +

πλr

Ω
− (j1 + j2)π

)
dy

+O

(
1

Ω
+

log λ+ log(1 + |λr/Ω|)
λ

)
=

1

2π

∞∑
j1,j2=−∞

γj1γj2sinc

(
πλr

Ω
− (j1 + j2)π

)∫ 2πa/Ω

−2πa/Ω

g(ω)f (−ω − ωj1) dω +

O

(
1

Ω
+

log λ+ log(1 + |λr/Ω|)
λ

+
1

n

)
.

This proves (ii). To prove (iii) we note that when r = 0 (using Lemma A.1) sinc
(
πλr
Ω
− (j1 + j2)π

)
=

0 unless j1 = −j2. This means that (ii) reduces to

E
[
Q̃a,Ω,λ(g; 0)

]
=

1

2π

∞∑
j=−∞

|γj|2
∫ 2πa/Ω

−2πa/Ω

g(ω)f(ω + ωj)dω +O

(
log λ

λ
+

1

Ω
+

1

n

)

=
1

2π

∞∑
j=−∞

|γj|2
∫ 2πa/Ω

−2πa/Ω

g(ω)f(ω)dω +O

(
log λ

λ
+

1

Ω
+

1

n

)
,

where in the last bound of the above we use that f(·) is Lipschitz continuous and
∑

j∈Z |j||γj|2 <
∞. Thus we obtain (iii). �

PROOF of Theorem 2.1 We prove the result for d = 1. First we prove (2.3). By expanding

cov [Jn(ωk1), Jn(ωk2)] (and assuming that E[Z(s)|s] = 0) we have

cov [Jn(ωk1), Jn(ωk2)]

= c2λE [Z(s1)Z(s2) exp(is1ωk1 − is2ω2)] + n−1λE
[
Z(s)2 exp(is(ωk1 − ωk2))

]
=

c2

λ

∫
[−λ/2,λ/2]2

c(s1 − s2)eis(ωk1
−ωk2h

(s1

λ

)
h
(s2

λ

)
ds1ds2

+
c(0)

n

∫ λ/2

−λ/2
h
( s
λ

)
eis(ωk1

−ωk2
)ds,

(A.6)

where c2 = n(n−1)/2. Replacing h(s/λ) with its Fourier representation h(s/λ) =
∑∞

j=−∞ γje
i2πjs/λ

cov [Jn(ωk1), Jn(ωk2)]

=
c2

λ

∞∑
j1,j2=−∞

γj1γj2

∫ λ/2

−λ/2

∫ λ/2

−λ/2
c(s1 − s2)eis1ωj1eis2ωj2eis1ωk1

−is2ωk2ds1ds2

+
c(0)γk2−k1λ

n
.
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Changing variables in the integral (using t = s1 − s2 and s = s2), then the limits of the

integral gives

cov [Jn(ωk1), Jn(ωk2)] =
c2

λ

∞∑
j1,j2=−∞

γj1γj2

(∫ λ/2

−λ/2
e−is(ωk2

−ωj2−ωj1−ωk1
)ds

)

×

(∫ λ/2

−λ/2
c(t)eit(ωj1+ωk1

)dt

)

+
c(0)γk2−k1λ

n
+O

(
1

λ

)
,

where to obtain the remainder O( 1
λ
) we use that

∑∞
j=−∞ |γj| < ∞ (note that a similar

change in the limits of an integral is given in the proof of Theorem 2.1, (Bandyopadhyay &

Subba Rao, 2017)). Next, by using the identity∫ λ/2

−λ/2
e−is(ωk2

−ωj2−ωj1−ωk1
)ds =

{
0 k2 − j2 6= k1 + j1

λ k2 − j2 = k1 + j1

we have

cov [Jn(ωk1), Jn(ωk2)] = c2

∞∑
j=−∞

γjγk2−k1−j

∫ λ/2

−λ/2
c(t)eit(ωj1+ωk1

)dtds+
c(0)γk1−k2λ

n
+O(λ−1)

=
∞∑

j=−∞

γjγk2−k1−jf(ωk1+j) +
c(0)γk1−k2λ

n
+O

(
1

λ
+

1

n

)
.

Finally, we replace f(ωk1+j) with f(ωk1) and use the Lipschitz continiuity of f(·) to give∣∣∣∣∣
∞∑

j=−∞

γjγk2−k1−j [f(ωk1)− f(ωk1+j)]

∣∣∣∣∣ ≤ C

λ

∞∑
j=−∞

|j| · |γjγk2−k1−j| = O

(
1

λ

)
,

where the last line follows from |γj| ≤ C|j|−(1+δ)I(j 6= 0). Altogether, this gives

cov [Jn(ωk1), Jn(ωk2)] = f(ωk1)
∞∑

j=−∞

γjγk2−k1−j +
c(0)γk2−k1λ

n
+O

(
1

λ

)
.

This completes the proof for d = 1, the proof for d > 1 is the same.

To prove (2.4) we use a similar expansion to that given in (A.6)

cov [Jn(ωΩ,k1), Jn(ωΩ,k2)] = A1 + A2

where

A1 =
c2

λ

∞∑
j1,j2=−∞

γj1γj2

∫ λ/2

−λ/2

∫ λ/2

−λ/2
c(s1 − s2)eis1ωj1eis2ωj2eis1ωΩ,k1

−is2ωΩ,k2ds1ds2

A2 =
c(0)

n

∫ λ/2

−λ/2
h
( s
λ

)
eis(ωΩ,k1−k2

)ds.
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We see that the second term in (2.4) is A2, which is of order O(λ
n
). We now show that the

first term in (2.4) is an approximation of A1. Representing the spatial covariance and density

in terms of their Fourier representations we have

A1 =
λc2

(2π)

∞∑
j1,j2=−∞

γj1γj2

∫
R
f(ω)

1

λ2

∫ λ/2

−λ/2

∫ λ/2

−λ/2
eis1(ω+ωj1+ωΩ,k1

)eis2(ωj2−ω−ωΩ,k2
)ds1ds2

=
λc2

(2π)

∞∑
j1,j2=−∞

γj1γj2

∫
R
f(ω)sinc

(
λ

2
(ω + ωj1 + ωΩ,k1)

)
sinc

(
λ

2
(ω − ωj2 + ωΩ,k2)

)
dω

=
1

π

∞∑
j1,j2=−∞

γj1γj2

∫
R
f

(
2u

λ
− ωΩ,k1 − ωj1

)
sinc (u) sinc

(
u− (j1 + j2)π +

λ

Ω
(k2 − k1)π

)
du.

We replace in the above integral f
(

2u
λ
− ωΩ,k1 − ωj1

)
with f (−ωΩ,k1 − ωj1) = f (ωΩ,k1 + ωj1).

By using Lemma F.2 the remainder is bounded by O(log λ/λ), this gives

A1 =
1

π

∞∑
j1,j2=−∞

γj1γj2f (ωΩ,k1 + ωj1)

∫
R

sinc (u) sinc

(
u− (j1 + j2)π +

λ

Ω
(k2 − k1)π

)
du

+O

(
log λ

λ

)
=

∞∑
j1,j2=−∞

γj1γj2f (ωΩ,k1 + ωj1) sinc

(
(j1 + j2)π +

λ

Ω
(k1 − k2)π

)
+O

(
log λ

λ

)
.

Finally, under Assumption 2.6(c) (which gives the Lipschitz continuity of f) we replace

f(ωΩ,k1 + ωj1) with f(ωΩ,k1) to give

cov [Jn(ωΩ,k1), Jn(ωΩ,k2)] = f (ωΩ,k1)
∞∑

j1,j2=−∞

γj1γj2sinc

(
(j1 + j2)π +

λ

Ω
(k1 − k2)π

)

+
c(0)

n

∫ λ/2

−λ/2
h
( s
λ

)
eis(ωΩ,k1−k2

)ds+O

(
log λ

λ

)
,

thus giving the required result. �

PROOF of Lemma 3.1 Taking expectation of (1.2) gives

E[Qa,Ω,λ(gθ; 0)] =
1

Ωd

a∑
k=−a

gθ(ωΩ,k)E[|Jn(ωΩ,k)|2]. (A.7)

To prove equation (3.1) we substitute Theorem G.1(iii), (Subba Rao, 2017b), into the above

which immediately gives (3.1). To prove equation (3.2) we note that

E[Qa,Ω,λ(gθ; 0)] = E[Q̃a,Ω,λ(gθ; 0)] +
λd

Ωdn

a∑
k=−a

g(ωΩ,k)
1

n

n∑
j=1

E[Z(sj)
2]︸ ︷︷ ︸

=c(0)

.
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An expression for E[Q̃a,Ω,λ(gθ; 0)] is given in Lemma A.2(iii), (Subba Rao, 2017b), where

we use that γ0 = 1 and γk = 0 for k 6= 0. Substituting this expression into the above

immediately gives equation (3.2) . �

PROOF of Theorem 4.1. We first prove (i). By using the same proof used to prove

(Bandyopadhyay & Subba Rao, 2017), Theorem 1 we can show that

E

[
Jn(ωk1)Jn(ωk2)− λd

n2

n∑
j=1

Z(sj)
2eis

′
j(ωk1

−ωk2
)

]
=

{
f(ωk) +O( 1

λ
) k1 = k2(= k),

O( 1
λd−b

) k1 − k2 6= 0.
,

where b = b(k1 − k2) denotes the number of zero elements in the vector r. Therefore, since

a = O(λ), by taking expectations of Q̃a,λ(g; r) we use the above to give

E
[
Q̃a,λ(g; r)

]
=

{
1
λd

∑a
k=−a g(ωk)f(ωk) +O( 1

λ
) r = 0

O( 1
λd−b

) r 6= 0
.

Therefore, by replacing the summand with the integral we obtain (4.2).

The above method cannot be used to prove (ii) since a/λ → ∞, this leads to bounds

which may not converge. Therefore, as discussed in Section 4.1 we consider an alternative

approach. To do this we expand Q̃a,λ(g; r) as a quadratic form to give

Q̃a,λ(g; r) =
1

n2

n∑
j1,j2=1

j1 6=j2

a∑
k=−a

g(ωk)Z(sj1)Z(sj2) exp(iω′k(sj1 − sj2)) exp(−iω′rsj2).

Taking expectation gives

E
[
Q̃a,λ(g; r)

]
= c2

a∑
k=−a

g(ωk)E [c(s1 − s2) exp(iω′k(s1 − s2)− is′2ωr)]

where c2 = n(n− 1)/2. In the case that d = 1 the above reduces to

E
[
Q̃a,λ(g; r)

]
= c2

a∑
k=−a

g(ωk)E [c(s1 − s2) exp(iωk(s1 − s2)− is2ωr)]

=
c2

λ2

a∑
k=−a

g(ωk)

∫ λ/2

−λ/2

∫ λ/2

−λ/2
c(s1 − s2) exp(iωk(s1 − s2)− is2ωr)ds1ds2.

(A.8)

Replacing c(s1 − s2) with the Fourier representation of the covariance function gives

E
[
Q̃a,λ(g; r)

]
=
c2

2π

a∑
k=−a

g(ωk)

∫ ∞
−∞

f(ω)sinc

(
λω

2
+ kπ

)
sinc

(
λω

2
+ (k + r)π

)
dω.
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By a change of variables y = λω/2 + kπ and replacing the sum with an integral we have

E
[
Q̃a,λ(g; r)

]
=

c2

πλ

a∑
k=−a

g(ωk)

∫ ∞
−∞

f(
2y

λ
− ωk)sinc(y)sinc(y + rπ)dy

=
c2

π

∫ ∞
−∞

sinc(y)sinc(y + rπ)

(
1

λ

a∑
k=−a

g(ωk)f(
2y

λ
− ωk)

)
dy

=
c2

2π2

∫ ∞
−∞

sinc(y)sinc(y + rπ)

∫ 2πa/λ

−2πa/λ

g(u)f(
2y

λ
− u)dudy +O

(
1

λ

)
,

where the O(λ−1) comes from Lemma I.1(ii) in (Subba Rao, 2017b). Replacing f(2y
λ
− u)

with f(−u) gives

E
[
Q̃a,λ(g; r)

]
=

c2

2π2

∫ ∞
−∞

sinc(y)sinc(y + rπ)

∫ 2πa/λ

−2πa/λ

g(u)f(−u)dudy +Rn +O(λ−1),

where

Rn =
c2

2π2

∫ ∞
−∞

sinc(y)sinc(y + rπ)

(∫ 2πa/λ

−2πa/λ

g(u)

(
f(

2y

λ
− u)− f(−u)

)
dudy.

By using Lemma F.2 in (Subba Rao, 2017b), we have |Rn| = O( log λ+log(1+|r|)
λ

). Therefore,

by using Lemma A.1, replacing c2 with one (which leads to the error O(n−1)) and (A.1) we

have

E
[
Q̃a,λ(g; r)

]
=

c2

2π2

∫ ∞
−∞

sinc(y)sinc(y + rπ)

∫ 2πa/λ

−2πa/λ

g(u)f(−u)dudy +O

(
log λ+ log(1 + |r|)

λ

)
=

I(r = 0)

2π

∫ 2πa/λ

−2πa/λ

g(u)f(u)du+O

(
1

λ
+

log λ+ log(1 + |r|)
λ

)
,

which gives (4.3) in the case d = 1.

To prove the result for d > 1, we will only consider the case d = 2, as it highlights the

difference from the d = 1 case. By substituting the spectral representation into (4.1) we

have

E
[
Q̃a,λ(g; (r1, r2))

]
=

c2

π2λ2

a∑
k1,k2=−a

g(ωk1 , ωk2)

∫
R2

f

(
2u1

λ
− ωk1 ,

2u2

λ
− ωk2

)
×

sinc(u1)sinc(u1 + r1π)sinc(u2)sinc(u2 + r2π)du1du2.
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In the case that either r1 = 0 or r2 = 0 we use the same proof given in the case d = 1 to give

E[Q̃a,λ(g; r)] =
1

(2π)2π2λ2

∫
[−a/λ,a/λ]2

g(ω1, ω2)f (ω1, ω2)∫
Rd

sinc(u1)sinc(u1 + r1π)sinc(u2)sinc(u2 + r2π)du1du2 +Rn,

where |Rn| = O( log λ+log(1+‖r‖1)
λ

+ n−1), which gives the desired result. However, in the case

that both r1 6= 0 and r2 6= 0, we can use Lemma F.2, equation (F.8), (Subba Rao, 2017b) to

obtain

E
[
Q̃a,λ(g; (r1, r2))

]
= O

(∏2
i=1[log λ+ log |ri|]

λ2

)
thus we obtain the faster rate of convergence.

It is straightforward to generalize these arguments to d > 2. �

PROOF of Theorem 4.2 We prove the result for the case d = 1. Using the same

method used to prove Theorem 4.1 (see the arguments at the start of Section 4.1) we obtain

E
[
Q̃a,λ(g; r)

]
=

c2

2π

∞∑
j1,j2=−∞

γj1γj2

a∑
k=−a

g(ωk)

∫ ∞
−∞

f(ω)sinc

(
λω

2
+ (k + j1)π

)
sinc

(
λω

2
+ (k + r − j2)π

)
dω.

By the change of variables y = λω
2

+ (k + j1)π we obtain

E
[
Q̃a,λ(g; r)

]
=

c2

λπ

∞∑
j1,j2=−∞

γj1γj2

a∑
k=−a

g(ωk)

∫ ∞
−∞

f

(
2y

λ
− ωk+j1

)
sinc(y)sinc(y + (r − j1 − j2)π)dy.

Replacing sum with an integral and using Lemma I.1(ii) gives

E
[
Q̃a,λ(g; r)

]
=

c2

2π2

∞∑
j1,j2=−∞

γj1γj2

∫ 2πa/λ

−2πa/λ

g(ω)f

(
2y

λ
− ω − ωj1

)
dω

∫ ∞
−∞

sinc(y)sinc(y + (r − j1 − j2)π)dy

+O

(
1

λ

)
.

Next, replacing f(2y
λ
− ω − ωj1) with f(−ω − ωj1) we have

E
[
Q̃a,λ(g; r)

]
=

c2

2π2

∞∑
j1,j2=−∞

γj1γj2

∫ 2πa/λ

−2πa/λ

g(ω)f (−ω − ωj1) dω

×
∫ ∞
−∞

sinc(y)sinc(y + (r − j1 − j2)π)dy +Rn +O

(
1

λ

)
,
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where

Rn =
c2

2π2

∞∑
j1,j2=−∞

γj1γj2

∫ 2πa/λ

−2πa/λ

g(ω)

[
f

(
2y

λ
− ω − ωj1

)
− f(−ω − ωj1)

]
×
∫ ∞
−∞

sinc(y)sinc(y + (r − j1 − j2)π)dydω.

By using Lemma F.2 we have

|Rn| ≤ C
∞∑

j1,j2=−∞

|γj1| · |γj2|
log λ+ log(1 + |r − j1 − j2|)

λ

≤ C

∞∑
j1,j2=−∞

|γj1| · |γj2|
log λ+ log(1 + |r|) + log(1 + |j1|) + log(1 + |j2|)

λ
,

noting that C is a generic constant that changes between inequalities. This gives

E
[
Q̃a,λ(g; r)

]
=

c2

2π2

∞∑
j1,j2=−∞

γj1γj2

∫ 2πa/λ

−2πa/λ

g(ω)f(−ω − ωj1)dω

∫ ∞
−∞

sinc(y)sinc(y + (r − j1 − j2)π)dy +

O

(
log λ+ log(1 + |r|)

λ

)
.

Finally, by the orthogonality of the sinc function at integer shifts (and f(−ω− ωj) = f(ω +

ωj)) we have

E
[
Q̃a,λ(g; r)

]
=

1

2π

∞∑
j=−∞

γjγr−j

∫ 2πa/λ

−2πa/λ

g(ω)f(ω + ωj)dω +O

(
log λ+ log(1 + |r|)

λ
+

1

n

)

=
1

2π

∞∑
j=−∞

γjγr−j

∫ 2πa/λ

−2πa/λ

g(ω)f(ω)dω +O

(
log λ+ log(1 + |r|)

λ
+

1

n

)
thus we obtain the desired result. �

B Uniformly sampled locations with frequency grid

ωλ,k

We start by proving the results in Section 4.2 for the case that the locations are uniformly

distributed. The proof here forms the building blocks for the proof of a uniformly sampled

locations with arbitrary frequency grid ωΩ,k (see Appendix D) and for non-uniform sampled

locations (see Appendix C).

We now obtain some approximations.
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Lemma B.1 Suppose Assumptions 2.1, 2.3 and

(i) Assumptions 2.5(i) and 2.6(a,c) hold. Then we have

λdcov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
=

{
C1(ωr) +O( 1

λ
+ λd

n
) r1 = r2(= r)

O( 1
λ

+ λd

n
) r1 6= r2

and

λdcov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
=

{
C2(ωr) +O( 1

λ
+ λd

n
) r1 = −r2(= r)

O( 1
λ

+ λd

n
) r1 6= −r2

where

C1(ωr) = C1,1(ωr) + C1,2(ωr) and C2(ωr) = C2,1(ωr) + C2,2(ωr),

(B.1)

with

C1,1(ωr) =
1

(2π)d

∫
2π[−a/λ,a/λ]d

f(ω)f(ω + ωr)|g(ω)|2dω,

C1,2(ωr) =
1

(2π)d

∫
Dr

f(ω)f(ω + ωr)g(ω)g(−ω − ωr)dω,

C2,1(ωr) =
1

(2π)d

∫
2π[−a/λ,a/λ]d

f(ω)f(ω + ωr)g(ω)g(−ω)dω,

C2,2(ωr) =
1

(2π)d

∫
Dr

f(ω)f(ω + ωr)g(ω)g(ω + ωr)dω,

(B.2)

where the integral is defined as∫
Dr

=
∫ 2πmin(a,a−r1)/λ

2πmax(−a,−a−r1)/λ
. . .
∫ 2πmin(a,a−rd)/λ

2πmax(−a,−a−rd)/λ
(note that C1,1(ωr) and C1,2(ωr) are

real).

(ii) Assumptions 2.5(ii) and 2.6(b) hold. Then

λdcov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
= A1(r1, r2) + A2(r1, r2) +O(

λd

n
),

λdcov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
= A3(r1, r2) + A4(r1, r2) +O(

λd

n
),

where

A1(r1, r2) =
1

π2dλd

2a∑
m=−2a

min(a,a+m)∑
k=max(−a,−a+m)

∫
R2d

f(
2u

λ
− ωk)f(

2v

λ
+ ωk + ωr1)

g(ωk)g(ωk − ωm)×
Sinc(u−mπ)Sinc(v + (m+ r1 − r2)π)Sinc(u)Sinc(v)dudv
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A2(r1, r2) =
1

π2dλd

2a∑
m=−2a

min(a,a+m)∑
k=max(−a,−a+m)

∫
R2d

f(
2u

λ
− ωk)f(

2v

λ
+ ωk + ωr1)×

g(ωk)g(ωm − ωk)×
Sinc(u− (m+ r2)π)Sinc(v + (m+ r1)π)Sinc(u)Sinc(v)dudv

A3(r1, r2) =
1

π2dλd

2a∑
m=−2a

min(a,a+m)∑
k=max(−a,−a+m)

∫
R2d

f(
2u

λ
− ωk)f(

2v

λ
+ ωk + ωr1)×

g(ωk)g(ωm − ωk)×
Sinc(u+mπ)Sinc(v + (m+ r2 + r1)π)Sinc(u)Sinc(v)dudv

A4(r1, r2) =
1

π2dλd

2a∑
m=−2a

min(a,a+m)∑
k=max(−a,−a+m)

∫
R2d

f(
2u

λ
− ωk)f(

2v

λ
+ ωk + ωr1)×

g(ωk)g(ωk − ωm)×
Sinc(u− (m− r2)π)Sinc(v + (m+ r1)π)Sinc(u)Sinc(v)dudv

where k = max(−a,−a−m) = {k1 = max(−a,−a−m1), . . . , kd = max(−a,−a−md)},
k = min(−a+m) = {k1 = max(−a,−a+m1), . . . , kd = min(−a+md)}.

(iii) Assumptions 2.5(ii) and 2.6(b) hold. Then we have

λd sup
a

∣∣∣cov
[
Q̃a,λ(g; r), Q̃a,λ(g; r)

]∣∣∣ <∞ and λd sup
a

∣∣∣cov
[
Q̃a,λ(g; r), Q̃a,λ(g;−r)

]∣∣∣ <∞,
if λd/n→ c (0 ≤ c <∞) as λ→∞ and n→∞.

PROOF We prove the result in the case d = 1 (the proof for d > 1 is identical). We first

prove (i). By using indecomposable partitions, Theorem 2.1 and Lemma E.1 and noting that

the fourth order cumulant is of order O(1/n), it is straightforward to show that

λcov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
=

1

λ

a∑
k1,k2=−a

g(ωk1)g(ωk2)

[
cov

(
Jn(ωk1)Jn(ωk1+r1)− λ

n2

n∑
j=1

Z(sj)
2e−isjωr ,

Jn(ωk2)Jn(ωk2+r2)− λ

n2

n∑
j=1

Z(sj)
2e−isjωr

)]

=


1
λ

∑a
k=−a f(ωk)f(ωk + ωr)g(ωk)g(ωk)

+ 1
λ

∑min(a,a−r)
k=max(−a,−a−r) f(ωk)f(ωk + ωr)g(ωk)g(−ωk+r) +O( a

λ2 + λ
n
) r1 = r2

O( a
λ2 + λ

n
) r1 6= r2
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Since a = Cλ we have O( a
λ2 ) = O( 1

λ
) and by replacing sum with integral (using Lemma

I.1(i)) we have

λcov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
=

{
C1(ωr) +O( 1

λ
+ λ

n
) r1 = r2(= r)

O( 1
λ

+ λ
n
) r1 6= r2

where

C1(ωr) = C11(ωr) + C12(ωr) +O

(
1

λ

)
,

with

C11(ωr) =
1

2π

∫ 2πa/λ

−2πa/λ

f(ω)f(ω + ωr)g(ω)g(ω)dω

C12(ωr) =
1

2π

∫ 2πmin(a,a−r)/λ

2πmax(−a,−a−r)/λ
f(ω)f(ω + ωr)g(ω)g(−ω − ωr)dω.

We now show that C1(ωr) = C11(ωr) + C12(ωr) is real. It is clear that C11(ωr) is real.

Thus we focus on C12(ωr). To do this, we write g(ω) = g1(ω) + ig2(ω), therefore

=g(ω)g(−ω − ωr) = [g2(ω)g1(−ω − ωr)− g1(ω)g2(−ω − ωr)].

Substituting the above into =C12(ωr) gives us =C12(r) = [C121(r) + C122(r)] where

C121(r) =
1

2π

∫ 2πmin(a,a−r)/λ

2πmax(−a,−a−r)/λ
f(ω)f(ω + ωr)g2(ω)g1(−ω − ωr)dω

C122(r) = − 1

2π

∫ 2πmin(a,a−r)/λ

2πmax(−a,−a−r)/λ
f(ω)f(ω + ωr)g1(ω)g2(−ω − ωr)dω

We will show that C122(r) = −C121(r). Focusing on C122 and making the change of variables

u = −ω − ωr gives us

C122 =
1

2π

∫ 2πmax(−a,−a−r)/λ

2πmin(a,a−r)/λ
f(u+ ωr)f(−u)g1(−u− ωr)g2(u)du,

noting that the spectral density function is symmetric with f(−u) = f(u), and that
∫ 2πmax(−a,−a−r)/λ

2πmin(a,a−r)/λ =

−
∫ 2πmin(a,a−r)/λ

2πmax(−a,−a−r)/λ. Thus we have =C12(r) = 0, which shows that C1(ωr) is real. The proof

of λdcov[Q̃a,λ(g; r1), Q̃a,λ(g; r2)] is the same. Thus, we have proven (i).

To prove (ii) we first expand cov[Q̃a,λ(g; r1), Q̃a,λ(g; r2)] to give

λcov[Q̃a,λ(g; r1), Q̃a,λ(g; r2)]

= λ
a∑

k1,k2=−a

g(ωk1)g(ωk2)
n∑

j1,...,j4=1

(
E
[
c(sj1 − sj3)eisj1ωk1

−isj3ωk2

]
×

E
[
c(sj2 − sj4)e−isj2ωk1+r1

+isj4ωk2+r2

]
+

E
[
c(sj1 − sj4)eisj1ωk1

+isj4ωk2+r2

]
E
[
c(sj2 − sj3)e−isj2ωk1+r1

−isj3ωk2

]
+

cum
[
Z(sj1)eiωk1

sj1 , Z(sj2)e−isj2 (ωk1
+ωr2 ), Z(sj3)e−iωk2

sj3 , Z(sj4)eisj4 (ωk2
+ωr2 )

])
.

46



A “full” expansion of the above is given in (E.3). Using this expansion and Lemma E.1 we

can show that

λcov
[
Q̃a,λ(r1), Q̃a,λ(g; r2)

]
= A1(r1, r2) + A2(r1, r2) +O

(
λ

n

)
(B.3)

where

A1(r1, r2) = λ

a∑
k1,k2=−a

g(ωk1)g(ωk2)E
[
c(s1 − s3) exp(is1ωk1 − is3ωk2)

]
×

E
[
c(s2 − s4) exp(−is2ωk1+r1 + is4ωk2+r2)

]
A2(r1, r2) = λ

a∑
k1,k2=−a

g(ωk1)g(ωk2)E
[
c(s1 − s4) exp(is1ωk1 + is4ωk2+r2)

]
×

E
[
c(s2 − s3) exp(−is2ωk1+r1 − is3ωk2)

]
.

Note that the O(λ/n) term includes the error n−1[A1(r1, r2)] + A2(r1, r2)] (we show below

that A1(r1, r2) and A2(r1, r2) are both bounded over λ and a). To write A1(r1, r2) in the

form stated in the lemma we integrate over s1, s2, s3 and s4 to give

A1(r1, r2)

= λ
a∑

k1,k2=−a

g(ωk1)g(ωk2)
1

λ4

∫
[−λ/2,λ/2]4

c(s1 − s3)c(s2 − s4)

eis1ωk1
−is3ωk2e−is2ωk1+r1

+is4ωk2+r2ds1ds2ds3ds4.

By using the spectral representation theorem and integrating out s1, . . . , s4 we can write the

above as

A1(r1, r2)

=
λ

(2π)2

a∑
k1,k2=−a

g(ωk1)g(ωk2)

∫ ∞
−∞

∫ ∞
−∞

f(x)f(y)sinc

(
λx

2
+ k1π

)
sinc

(
λy

2
− (r1 + k1)π

)
sinc

(
λx

2
+ k2π

)
sinc

(
λy

2
− (r2 + k2)π

)
dxdy

=
1

π2λ

a∑
k1,k2=−a

g(ωk1)g(ωk2)

∫ ∞
−∞

∫ ∞
−∞

f(
2u

λ
− ωk1)f(

2v

λ
+ ωk1 + ωr1)

×sinc(u)sinc(u+ (k2 − k1)π)sinc(v)sinc(v + (k1 − k2 + r1 − r2)π)dudv,

where the second equality is due to the change of variables u = λx
2

+ k1π and v = λy
2
− (r1 +

k1)π. Finally, by making a change of variables k = k1 and m = k1 − k2 (k1 = −k2 + m) we

obtain the expression for A1(r1, r2) given in Lemma B.1.
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A similar method can be used to obtain the expression for A2(r1, r2)

A2(r1, r2)

=
λ

(2π)2

a∑
k1,k2=−a

g(ωk1)g(ωk2)

∫ ∞
−∞

∫ ∞
−∞

f(x)f(y)sinc

(
λx

2
+ k1π

)
sinc

(
λy

2
− (r1 + k1)π

)
sinc

(
λy

2
+ k2π

)
sinc

(
λx

2
− (r2 + k2)π

)
dxdy

=
1

π2λ

a∑
k1,k2=−a

g(ωk1)g(ωk2)

∫ ∞
−∞

∫ ∞
−∞

f(
2u

λ
− ωk1)f(

2v

λ
+ ωk1 + ωr1)

×sinc(u)sinc(u− (k2 + r2 + k1)π)sinc(v)sinc(v + (k2 + k1 + r1)π)dudv.

By making the change of variables k = k1 and m = k1 + k2 (k1 = −k2 + m) we obtain the

stated expression for A2(r1, r2).

Finally following the same steps as those above we obtain

λcov(Q̃a,λ(g; r1), Q̃a,λ(g; r2)) = A3(r1, r2) + A4(r1, r2) +O(
λ

n
),

where

A3(r1, r2) =
1

λ3

a∑
k1,k2=−a

g(ωk1)g(ωk2)

∫
[−λ/2,λ/2]4

ei(s1ωk1
+s3ωk2

)e−is2ωk1+r1
−is4ωk2+r2

×c(s1 − s3)c(s2 − s4)ds1ds2ds3ds4

A4(r1, r2) =
1

λ3

a∑
k1,k2=−a

g(ωk1)g(ωk2)

∫
[−λ/2,λ/2]4

ei(s1ωk1
+s3ωk2

)e−is2ωk1+r1
−is4ωk2+r2

×c(s1 − s4)c(s2 − s3)ds1ds2ds3ds4.

Again by replacing the covariances in A3(r1, r2) and A4(r1, r4) with their spectral represen-

tation gives (ii) for d = 1. The result for d > 1 is identical.

It is clear that (iii) is true under Assumption 2.5(a,b). To prove (iii) under Assumption

2.6(a,b) we will show that for 1 ≤ j ≤ 4, supa |Aj(r1, r2)| < ∞. To do this, we first note

that by the Cauchy Schwarz inequality we have

sup
a,λ

1

π2d

∣∣∣∣∣∣ 1

λd

min(−a+m)∑
k=max(−a,−a+m)

g(ωk)g(ωk − ωm)f(
2u

λ
− ωk)f(

2v

λ
+ ωk + ωr1)

∣∣∣∣∣∣
≤ C sup

ω
|g(ω)|2‖f‖2

2,

where ‖f‖2 is the L2 norm of the spectral density function and C is a finite constant. Thus

by taking absolutes of A1(r1, r2) we have

|A1(r1, r2)| ≤

C sup
ω
|g(ω)|2‖f‖2

2

∞∑
m=−∞

∫
R2d

|Sinc(u−mπ)Sinc(v + (m+ r1 − r2)π)Sinc(u)Sinc(v)|dudv.
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Finally, by using Lemma F.1(iii) we have that supa |A1(r, r)| < ∞. By using the same

method we can show that supa |A2(r, r)|, A3(r,−r), supa |A4(r, r)| < ∞. This completes

the proof. �

For the remainder of this section to simplify notation we mainly restrict ourselves to the

case d = 1. We now obtain simplified expressions for the terms A1(r1, r2), . . . , A4(r1, r2)

under the slightly stronger condition that Assumption 2.6(c) also holds.

Lemma B.2 Suppose Assumptions 2.5(ii) and 2.6(b,c) hold. Then for 0 ≤ |r1|, |r2| ≤ C|a|
(where C is some finite constant) we have

A1(r1, r2) =

{
C1,1(ωr) +O(`λ,a,n) r1 = r2(= r)

O(`λ,a,n) r1 6= r2

A2(r1, r2) =

{
C1,2(ωr) +O(`λ,a,n) r1 = r2(= r)

O(`λ,a,n) r1 6= r2

A3(r1, r2) =

{
C2,1(ωr) +O(`λ,a,n) r1 = −r2(= r)

O(`λ,a,n) r1 6= −r2

and

A4(r1, r2) =

{
C2,2(ωr) +O(`λ,a,n) r1 = −r2(= r)

O(`λ,a,n) r1 6= −r2

,

where C1,1(ωr), . . . , C2,2(ωr) (using d = 1) and `λ,a,n are defined in Lemma B.1.

PROOF. We first consider A1(r1, r2) and write it as

A1(r1, r2) =

1

π2

∫ ∞
−∞

∫ ∞
−∞

2a∑
m=−2a

sinc(u)sinc(v)sinc(u−mπ)sinc(v + (m+ r1 − r2)π)Hm,λ

(
2u

λ
,
2v

λ
; r1

)
dudv,

where

Hm,λ

(
2u

λ
,
2v

λ
; r1

)
=

1

λ

min(a,a+m)∑
k=max(−a,−a+m)

f

(
−2u

λ
+ ωk

)
f

(
2v

λ
+ ωk + ωr

)
g(ωk)g(ωk − ωm)

noting that f(2u
λ
− ω) = f(ω − 2u

λ
).

If f(−2u
λ

+ ωk) and f(2v
λ

+ ωk + ωr) are replaced with f(ωk) and f(ωk + ωr) respectively,

then we can exploit the orthogonality property of the sinc functions. This requires the

following series of approximations.
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(i) We start by defining a similar version of A1(r1, r2) but with the sum replaced with an

integral. Let

B1(r1 − r2; r1)

=
1

π2

∫ ∞
−∞

∫ ∞
−∞

2a∑
m=−2a

sinc(u)sinc(u−mπ)sinc(v)sinc(v + (m+ r1 − r2)π)×

Hm

(
2u

λ
,
2v

λ
; r1

)
dudv,

where

Hm

(
2u

λ
,
2v

λ
; r1

)
=

1

2π

∫ 2πmin(a,a+m)/λ

2πmax(−a,−a+m)/λ

f(ω − 2u

λ
)f(

2v

λ
+ ω + ωr1)g(ω)g(ω − ωm)dω.

By using Lemma B.3, we have

|A1(r1, r2)−B1(r1 − r2; r1)| = O

(
log2 a

λ

)
.

(ii) Define the quantity

C1(r1 − r2; r1)

=
1

π2

∫ ∞
−∞

∫ ∞
−∞

2a∑
m=−2a

sinc(u)sinc(u−mπ)sinc(v)sinc(v + (m+ r1 − r2)π)Hm(0, 0; r1)dudv.

By using Lemma B.4, we can replace B1(r1 − r2; r1) with C1(r1 − r2; r1) to give the

replacement error

|B1(r1 − r2; r1)− C1(r1 − r2; r1)| = O

(
log2(a)

[
(log a+ log λ)

λ

])
.

(iii) Finally, we analyze C1(r1 − r2; r1). Since Hm(0, 0; r1) does not depend on u or v we

take it out of the integral to give

C1(r1 − r2; r1)

=
1

π2

2a∑
m=−2a

Hm(0, 0; r1)

(∫
R

sinc(u)sinc(u−mπ)du

)
×
(∫

R
sinc(v)sinc(v + (m+ r1 − r2)π)dv

)
=

1

π2
H0(0, 0; r1)

(∫
R

sinc2(u)du

)(∫
R

sinc(v)sinc(v + (r1 − r2)π)dv

)
,
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where the last line of the above is due to orthogonality of the sinc function (see Lemma

A.1). If r1 6= r2, then by orthogonality of the sinc function we have C1(r1− r2; r1) = 0.

On the other hand if r1 = r2 we have

C1(0; r) =
1

2π

∫ 2πa/λ

−2πa/λ

f(ω)f(ω + ωr)|g(ω)|2dω = C1,1(ωr).

The proof for the remaining terms A2(r1, r2), A3(r1, r2) and A4(r1, r2) is identical, thus we

omit the details. �

Theorem B.1 Suppose Assumptions 2.1, 2.3, 2.5(ii) and 2.6(b,c) hold. Then for 0 ≤
|r1|, |r2| ≤ C|a| (where C is some finite constant) we have

λdcov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
=

{
C1(ωr) +O(`λ,a,n) r1 = r2(= r)

O(`λ,a,n) r1 6= r2

λdcov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
=

{
C2(ωr) +O(`λ,a,n) r1 = −r2(= r)

O(`λ,a,n) r1 6= −r2

,

where C1(ωr) and C2(ωr) are defined in (B.1) and

`λ,a,n = log2(a)

[
log a+ log λ

λ

]
+
λd

n
. (B.4)

PROOF. By using Lemmas B.1 and B.2 we immediately obtain (in the case d = 1)

cov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
=

{
C1(ωr) +O(`λ,a,n) r1 = r2(= r)

O(`λ,a,n) r1 6= r2

and

cov
[
Q̃a,λ(g; r1), Q̃λ,a,n(g; r2)

]
=

{
C2(ωr) +O(`λ,a,n) r1 = −r2(= r)

O(`λ,a,n) r1 6= −r2

.

This gives the result for d = 1. To prove the result for d > 1 we use the same procedure

outlined in the proof of Lemma B.2 and the above. �

The above theorem means that the variance for both the bounded and unbounded fre-

quency grid are equivalent (up to the limits of an integral).

Using the above results and the Lipschitz continuity of g(·) and f(·) we can show that

Cj(ωr) = Cj +O

(
‖r‖1

λ

)
,

where C1 and C2 are defined in Corollary 4.1.

We now derive an expression for the variance for the non-Gaussian case.
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Theorem B.2 Let us suppose that {Z(s); s ∈ Rd} is a fourth order stationary spatial ran-

dom field that satisfies Assumption 2.1(i). Suppose all the assumptions in Theorem 4.6 hold

with the exception of Assumption 2.2 which is replaced with Assumption 2.3 (i.e. we assume

the locations are uniformly sampled). Then for ‖r‖1, ‖r2‖1 << λ we have

λdcov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
=

{
C1 +D1 +O(`λ,a,n + (aλ)d

n2 + ‖r‖1
λ

) r1 = r2(= r)

O(`λ,a,n + (aλ)d

n2 ) r1 6= r2

(B.5)

λdcov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
=

{
C2 +D2 +O(`λ,a,n + (aλ)d

n2 + ‖r‖1
λ

) r1 = −r2(= r)

O(`λ,a,n + (aλ)d

n2 ) r1 6= −r2

, (B.6)

where C1 and C2 are defined in Corollary 4.1 and

D1 =
1

(2π)2d

∫
2π[−a/λ,a/λ]2d

g(ω1)g(ω2)f4(−ω1,−ω2,ω2)dω1dω2

D2 =
1

(2π)2d

∫
2π[−a/λ,a/λ]2d

g(ω1)g(ω2)f4(−ω1,ω2,−ω2)dω1dω2.

PROOF We prove the result for the notationally simple case d = 1. By using indecompos-

able partitions, conditional cumulants and (B.3) we have

λcov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
= A1(r1, r2) + A2(r1, r2) +B1(r1, r2) +B2(r1, r2) +O

(
λ

n

)
,

(B.7)

where A1(r1, r2) and A2(r1, r2) are defined below equation (B.3) and

B1(r1, r2) = λc4

a∑
k1,k2=−a

g(ωk1)g(ωk2)×

E

[
κ4(s2 − s1, s3 − s1, s4 − s1)eis1ωk1e−is2ωk1+r1e−is3ωk2eis4ωk2+r2

]
B2(r1, r2) =

λ

n4

∑
j1,...,j4∈D3

a∑
k1,k2=−a

g(ωk1)g(ωk2)×

E

[
κ4(sj2 − sj1 , sj3 − sj1 , sj4 − sj1)eisj1ωk1e−isj2ωk1+r1e−isj3ωk2eisj4ωk2+r2

]
with c4 = n(n− 1)(n− 2)(n− 3)/n2 and

D3 = {j1, . . . , j4; j1 6= j2 and j3 6= j4 but some j’s are in common}. The limits of A1(r1, r2)
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and A2(r1, r2) are given in Lemma B.2, therefore, all that remains is to derive bounds for

B1(r1, r2) and B2(r1, r2). We will show that B1(r1, r2) is the dominating term, whereas by

placing sufficient conditions on the rate of growth of a, we will show that B2(r1, r2)→ 0.

In order to analyze B1(r1, r2) we will use the result∫
R3

sinc(u1 + u2 + u3 + (r2 − r1)π)sinc(u2)sinc(u3)du1du2du3 =

{
π3 r1 = r2

0 r1 6= r2.
,

(B.8)

which follows from Lemma A.1. In the following steps we will make a series of approximations

which will allow us to apply (B.8).

We start by substituting the Fourier representation of the cumulant function

κ4(s1 − s2, s1 − s3, s1 − s4) =
1

(2π)3

∫
R3

f4(ω1, ω2, ω3)ei(s1−s2)ω1ei(s1−s3)ω2ei(s1−s4)ω4dω1dω2dω3,

into B1(r1, r2) to give

B1(r1, r2)

=
c4

(2π)3λ3

a∑
k1,k2=−a

g(ωk1)g(ωk2)

∫
R3

f4(ω1, ω2, ω3)

∫
[−λ/2,λ/2]4

eis1(ω1+ω2+ω3+ωk1
)

e−is2(ω1+ωk1+r1
)e−is3(ω2+ωk2

)eis4(−ω3+ωk2+r2
)ds1ds2ds3ds4dω1dω2dω3

=
c4λ

(2π)3

a∑
k1,k2=−a

g(ωk1)g(ωk2)

∫
R3

f4(ω1, ω2, ω3)sinc

(
λ(ω1 + ω2 + ω3)

2
+ k1π

)
×

sinc

(
λω1

2
+ (k1 + r1)π

)
sinc

(
λω2

2
+ k2π

)
sinc

(
λω3

2
− (k2 + r2)π

)
dω1dω2dω3.

Now we make a change of variables and let u1 = λω1

2
+ (k1 + r1), u2 = λω2

2
+ k2π and

u3 = λω3

2
− (k2 + r2)π, this gives

B1(r1, r2) =
c4

π3λ2

a∑
k1,k2=−a

∫
R3

g(ωk1)g(ωk2)f4

(
2u1

λ
− ωk1+r1 ,

2u2

λ
− ωk2 ,

2u3

λ
+ ωk2+r2

)
×

×sinc (u1 + u2 + u3 + (r2 − r1)π) sinc(u1)sinc(u2)sinc(u3)du1du2du3.

Next we exchange the summand with a double integral and use Lemma I.1(iii) together with

Lemma F.1, equation (F.3) to obtain

B1(r1, r2) =
c4

(2π)2π3

∫
2π[−a/λ,a/λ]2

∫
R3

g(ω1)g(ω2)f4

(
2u1

λ
− ω1 − ωr1 ,

2u2

λ
− ω2,

2u3

λ
+ ω2 + ωr2

)
×

sinc (u1 + u2 + u3 + (r2 − r1)π) sinc(u1)sinc(u2)sinc(u3)du1du2du3dω1dω2 +O

(
1

λ

)
.
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By using Lemma F.3, we replace f4(2u1

λ
− ω1 − ωr1 , 2u2

λ
− ω2,

2u3

λ
+ ω2 + ωr2) in the integral

with f4(−ω1 − ωr1 ,−ω2, ω2 + ωr2), this gives

B1(r1, r2)

=
c4

(2π)2π3

∫
2π[−a/λ,a/λ]2

g(ω1)g(ω2)f4(−ω1 − ωr1 ,−ω2, ω2 + ωr2)×∫
R3

sinc(u1 + u2 + u3 + (r2 − r1)π)sinc(u1)sinc(u2)sinc(u3)du1du2du3dω1dω2 +O

(
log3 λ

λ

)
=

c4Ir1=r2

(2π)2

∫
2π[−a/λ,a/λ]2

g(ω1)g(ω2)f4(−ω1 − ωr1 ,−ω2, ω2 + ωr2)dω1dω2 +O

(
log3 λ

λ

)
,

where the last line follows from the orthogonality relation of the sinc function in equation

(B.8).

Finally we make one further approximation. In the case r1 = r2 we replace f4(−ω1 −
ωr1 ,−ω2, ω2 + ωr2) with f4(−ω1,−ω2, ω2) which by using the Lipschitz continuity of f4 and

Lemma F.1, equation (F.3) gives

B1(r1, r1) =
c4

(2π)2

∫
2π[−a/λ,a/λ]2

g(ω1)g(ω2)f4(−ω1,−ω2, ω2)dω1dω2 +O

(
log3 λ

λ
+
|r1|
λ

)
.

Altogether this gives

B1(r1, r2)

=

{
1

(2π)2

∫
2π[−a/λ,a/λ]2

g(ω1)g(ω2)f4(−ω1,−ω2, ω2)dω1dω2 +O( log3 λ
λ

+ |r1|
λ

) r1 = r2

O( log3 λ
λ

) r1 6= r2.
.

Next we show that B2(r1, r2) is asymptotically negligible. To bound B2(r1, r2) we de-

compose D3 into six sets, the set D3,1 = {j1, . . . , j4; j1 = j3, j2 and j4 are different)},
D3,2 = {j1, . . . , j4; j1 = j4, j2 and j3 are different), D3,3 = {j1, . . . , j4; j2 = j3, j1 and j4

are different), D3,4 = {j1, . . . , j4; j2 = j4, j1 and j3 are different), D2,1 = {j1, . . . , j4; j1 = j3

and j2 = j4}, D2,2 = {j1, . . . , j4; j1 = j4 and j2 = j3}. Using this decomposition we have

B2(r1, r2) =
∑4

j=1B2,(3,j)(r1, r2) +
∑2

j=1B2,(2,j)(r1, r2), where

B2,(3,1)(r1, r2) =
|D3,1|λ
n4

a∑
k1,k2=−a

g(ωk1)g(ωk2)×

E

[
κ4(sj2 − sj1 , 0, sj4 − sj1)eisj1ωk1e−isj2ωk1+r1e−isj1ωk2eisj4ωk2+r2

]
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for j = 2, 3, 4, B2,(3,j)(r1, r2) are defined similarly,

B2,(2,1)(r1, r2) =
|D2,1|λ
n4

a∑
k1,k2=−a

g(ωk1)g(ωk2)×

E

[
κ4(sj2 − sj1 , 0, sj2 − sj1)eisj1ωk1e−isj2ωk1+r1e−isj1ωk2eisj2ωk2+r2

]
,

B2,(2,2)(r1, r2) is defined similarly and | · | denotes the cardinality of a set. By using identical

methods to those used to bound B1(r1, r2) we have

|B2,(3,1)(r1, r2)|

≤ Cλ

n(2π)3

a∑
k1,k2=−a

|g(ωk1)g(ωk2)|
∫
R3

|f4(ω1, ω2, ω3)|
∣∣∣∣sinc

(
λ(ω1 + ω3)

2
+ (k2 − k1)π

)∣∣∣∣×∣∣∣∣sinc

(
λω1

2
− (k1 + r1)π

)∣∣∣∣× ∣∣∣∣sinc

(
λω3

2
+ (k2 + r2)π

)∣∣∣∣ dω1dω2dω3 = O

(
λ

n

)
.

Similarly we can show |B2,(3,j)(r1, r2)| = O(λ
n
) (for 2 ≤ j ≤ 4) and

|B2,(2,1)(r1, r2)|

≤ λ

(2π)3n2

a∑
k1,k2=−a

|g(ωk1)g(ωk2)|
∫
R3

|f4(ω1, ω2, ω3)|
∣∣∣∣sinc

(
λ(ω1 + ω2)

2
+ (k2 − k1)π

)
×

sinc

(
λ(ω1 + ω2)

2
+ (k2 − k1 + r2 − r1)π

) ∣∣∣∣dω1dω2dω3 = O

(
aλ

n2

)
.

This immediately gives us (B.5). To prove (B.6) we use identical methods. Thus we obtain

the result. �

Note that the term B2,(2,1)(r1, r2) in the proof above is important as it does not seem

possible to improve on the bound O(aλ/n2).

B.1 Lemmas required to prove Lemma B.2 and Theorem B.1

In this section we give the proofs of the three results used in Lemma B.2 (which in turn

proves Theorem B.1).

Lemma B.3 Suppose Assumptions 2.5(ii) and 2.6(b,c) holds. Let A1(·) and B1(·) be defined

as in the proof of Lemma B.2. Then for r1, r2 ∈ Z we have

|A1(r1, r2)−B1(r1 − r2; r1)| = O

(
log2(a)

λ

)
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PROOF. To obtain a bound for the difference we use Lemma I.1(ii) to give

|A1(r1, r2)−B1(r1 − r2; r1)|

=

∫ ∞
−∞

∫ ∞
−∞

2a∑
m=−2a

|sinc(u)sinc(u−mπ)sinc(v)sinc(v + (m+ r1 − r2)π)|∣∣∣∣Hm,λ

(
2u

λ
,
2v

λ
; r1

)
−Hm

(
2u

λ
,
2v

λ
; r1

) ∣∣∣∣︸ ︷︷ ︸
≤C/λ

dudv

≤ C

λ

2a∑
m=−2a

∫ ∞
−∞
|sinc(u)sinc(u−mπ)|du

∫ ∞
−∞
|sinc(v)sinc(v + (m+ r1 − r2)π)|dv︸ ︷︷ ︸

<∞

≤ C

λ

2a∑
m=−2a

∫ ∞
−∞
|sinc(u)sinc(u−mπ)|du (from Lemma F.1(ii))

= O(
log2 a

λ
),

thus giving the desired result. �

Lemma B.4 Suppose Assumptions 2.5(ii) and 2.6(b,c) holds. Let B1(·) and C1(·) be defined

as in the proof of Lemma B.2 (with 0 ≤ |s|, |r| < C|a|). Then we have

|B1(s; r)− C1(s; r)| = O

(
log2(a)

[
log a+ log λ

λ

])
.

PROOF. Taking differences, it is easily seen that

B1(s, r)− C1(s, r)

=

∫
R2

2a∑
m=−2a

sinc(u)sinc(u−mπ)sinc(v)sinc(v + (m+ s)π)

× 1

(2π)

∫ 2πmin(a,a+m)/λ

2πmax(−a,−a+m)/λ

g(ω)g(ω + ωm)

[
f(ω − 2u

λ
)f(ω +

2v

λ
+ ωr)− f(ω)f(ω + ωr)

]
dωdvdu

= I1 + I2

where

I1 =

∫
R2

2a∑
m=−2a

sinc(u)sinc(u−mπ)sinc(v)sinc(v + (m+ s)π)

× 1

(2π)

∫ 2πmin(a,a+m)/λ

2πmax(−a,−a+m)/λ

g(ω)g(ω + ωm)f(ω +
2v

λ
+ ωr)

[
f(ω − 2u

λ
)− f(ω)

]
dωdvdu

=

∫
R

2a∑
m=−2a

sinc(v)sinc(v + (m+ s)π)Dm(v)dv
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and

I2 =

∫
R2

2a∑
m=−2a

sinc(u)sinc(u−mπ)sinc(v)sinc(v + (m+ s)π)

× 1

(2π)

∫ 2πmin(a,a+m)/λ

2πmax(−a,−a+m)/λ

g(ω)g(ω + ωm)f(ω)

[
f(ω +

2v

λ
+ ωr)− f(ω + ωr)

]
dωdvdu

=
2a∑

m=−2a

dm

∫
R

sinc(u)sinc(u−mπ)du

with

Dm(v) =∫
R

sinc(u)sinc(u−mπ)
1

(2π)

∫ 2πmin(a,a+m)/λ

2πmax(−a,−a+m)/λ

g(ω)g(ω + ωm)f(ω +
2v

λ
+ ωr)

×
[
f(ω − 2u

λ
)− f(ω)

]
dωdu

and

dm =∫
R

sinc(v)sinc(v + (m+ s)π)
1

(2π)

∫ 2πmin(a,a+m)/λ

2πmax(−a,−a+m)/λ

g(ω)g(ω + ωm)f(ω)

×
[
f(ω +

2v

λ
+ ωr)− f(ω + ωr)

]
dωdv.

Since the functions f(·) and g(·) satisfy the conditions stated in Lemma F.2, the lemma can

be used to show that

max
|m|≤a

sup
v
|Dm(v)| ≤ C

(
log λ+ log a

λ

)
and

max
|m|≤a

|dm| ≤ C

(
log λ+ log a

λ

)
.

Substituting these bounds into I1 and I2 give

|I1| ≤ C

(
log λ+ log a

λ

) 2a∑
m=−2a

∫ ∞
−∞
|sinc(v)sinc(v + (m+ s)π)|dv

|I2| ≤ C

(
log λ+ log a

λ

) 2a∑
m=−2a

∫ ∞
−∞
|sinc(u)sinc(u−mπ)|du.

Therefore, by using Lemma F.1(ii) we have

|I1| and |I2| = O

(
log2(a)

log a+ log λ

λ

)
.

Since |B1(s; r)− C1(s; r)| ≤ |I1|+ |I2| this gives the desired result. �
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C Non-uniform sampled locations with frequency grid

ωλ,k

Most of the results derived here are based on the methodology developed in the uniform

sampling case.

In order to prove Theorem 4.3(i), we define the quantities U1(·) and U2(·)

U1(r1, r2;ωr1 ,ωr2) = U1,1(r1, r2;ωr1 ,ωr2) + U1,2(r1, r2;ωr1 ,ωr2)

U2(r1, r2;ωr1 ,ωr2) = U2,1(r1, r2;ωr1 ,ωr2) + U2,2(r1, r2;ωr1 ,ωr2)

(C.1)

where

U1,1(r1, r2;ωr1 ,ωr2)

=
1

(2π)d

∑
j1+...+j4=r1−r2

γj1
γj2
γj3
γj4
×∫

D(j1+j3)

g(ω)g(ω + ωj1+j3
)f(ω + ωj1

)f(ω + ωr1−j2
)dω

U1,2(r1, r2;ωr1 ,ωr2)

=
1

(2π)d

∑
j1+j2+j3+j4=r1−r2

γj1
γj2
γj3
γj4
×∫

D(r1−j2−j3)

g(ω)g(−ω − ωr2−j3−j2
)f(ω + ωj1

)f(ω + ωr1−j2
)dω

U2,1(r1, r2;ωr1 ,ωr2)

=
1

(2π)d

∑
j1+j2+j3+j4=r1+r2

γj1
γj2
γj3
γj4
×∫

D(j1+j3)

g(ω)g(ω−j1−j3
− ω)f(ω + ωj1

)f(ω + ωr1−j2
)dω

U2,2(r1, r2;ωr1 ,ωr2)

=
1

(2π)d

∑
j1+j2+j3+j4=r1+r2

γj1
γj2
γj3
γj4
×∫

D(r1−j2−j3)

g(ω)g(ω − ωj2+j3−r1)f(ω + ωj1
)f(ω + ωr1−j2

)dω,

and the integral is defined as∫
Dr

=
∫ 2πmin(a,a−r1)/λ

2πmax(−a,−a−r1)/λ
. . .
∫ 2πmin(a,a−rd)/λ

2πmax(−a,−a−rd)/λ
.

PROOF of Theorem 4.3(i) To prove (i) we use Theorem 2.1 and Lemma E.1 which

immediately gives the result.
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PROOF of Theorem 4.3(ii) We first note that by using Lemma E.1 (generalized to

non-uniform sampling), we can show that

λcov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
= A1(r1, r2) + A2(r1, r2) +O

(
λ

n

)
(C.2)

where

A1(r1, r2) = λ
a∑

k1,k2=−a

g(ωk1)g(ωk2)cov
[
Z(s1) exp(is1ωk1), Z(s3) exp(is3ωk2)

]
×

cov
[
Z(s2) exp(−is2ωk1+r1), Z(s4) exp(−is4ωk2+r2)

]
A2(r1, r2) = λ

a∑
k1,k2=−a

g(ωk1)g(ωk2)cov
[
Z(s1) exp(is1ωk1), Z(s4) exp(−is4ωk2+r2)

]
×

cov
[
Z(s2) exp(−is2ωk1+r1), Z(s3) exp(is3ωk2)

]
.

We first analyze A1(r1, r2). Conditioning on the locations s1, . . . , s4 gives

A1(r1, r2)

=
∞∑

j1,...,j4=−∞

γj1γj2γj3γj4

a∑
k1,k2=−a

g(ωk1)g(ωk2)
1

λ3

∫
[−λ/2,λ/2]4

c(s1 − s3)c(s2 − s4)

eis1ωk1
−is3ωk2e−is2ωk1+r1

+is4ωk2+r2ei(s1ωj1+s2ωj2+s3ωj3+s4ωj4 )ds1ds2ds3ds4.

By using the spectral representation theorem and integrating out s1, . . . , s4 we can write the

above as

A1(r1, r2)

=
λ

(2π)2

∞∑
j1,...,j4=−∞

γj1γj2γj3γj4

a∑
k1,k2=−a

g(ωk1)g(ωk2)

∫ ∞
−∞

∫ ∞
−∞

f(x)f(y)sinc

(
λx

2
+ (k1 + j1)π

)
sinc

(
λy

2
− (r1 + k1 − j2)π

)
sinc

(
λx

2
+ (k2 − j3)π

)
sinc

(
λy

2
− (r2 + k2 + j4)π

)
dxdy

=
1

π2λ

∞∑
j1,...,j4=−∞

γj1γj2γj3γj4

a∑
k1,k2=−a

g(ωk1)g(ωk2)

∫ ∞
−∞

∫ ∞
−∞

f(
2u

λ
− ωk1+j1)f(

2v

λ
+ ωk1+r1−j2)

×sinc(u)sinc(u+ (k2 − k1 − j1 − j3)π)sinc(v)sinc(v − (r2 + k2 + j4 − r1 − k1 + j2)π)dudv.

(C.3)

By making a change of variables m = k1 − k2 we have

A1(r1, r2)

=
1

π2λ

∞∑
j1,...,j4=−∞

γj1γj2γj3γj4

∞∑
m=−∞

a∑
k1=−a

g(ωk1)g(ωm−k1)

∫ ∞
−∞

∫ ∞
−∞

f(
2u

λ
− ωk1+j1)×

f(
2v

λ
+ ωk1+r1−j2)sinc(u)sinc(u+ (m+ j1 + j3)π)×

sinc(v)sinc(v + (m− r2 − j4 + r1 − j2)π)dudv.
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Thus by taking absolutes we have

|A1(r1, r2)|

≤ 1

π2λ

∞∑
j1,...,j4=−∞

|γj1γj2γj3γj4|
∞∑

m=−∞

a∑
k1=−a

∣∣∣g(ωk1)g(ωm−k1)
∣∣∣ ∫ ∞
−∞

∫ ∞
−∞

f(
2u

λ
− ωk1+j1)×

f(
2v

λ
+ ωk1+r1−j2) |sinc(u)sinc(u+ (m+ j1 + j3)π)| ×

|sinc(v)sinc(v + (m− r2 − j4 + r1 − j2)π)| dudv.

Finally, by following the same series of bounds used to prove Lemma B.1(iii) we have

|A1(r1, r2)| ≤ 1

π2λ

∞∑
j1,...,j4=−∞

|γj1γj2γj3γj4 | sup
ω
|g(ω)|2‖f‖2

2

×
∞∑

m=−∞

∫
R2

|sinc(u− (m+ j1 + j3)πsinc(v + (m− r2 + r1 − j4 − j2)π)×

sinc(u)sinc(v)|dudv <∞.

Similarly we can bound A2(r1, r2) and λcov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
, thus giving the required

result. �

PROOF of Theorem 4.3(iii) The proof uses the expansion (C.2). Using this as a

basis, we will show that

A1(r1, r1) = U1(r1, r2;ωr1 , ωr2) +O(`λ,a,n)

A2(r1, r1) = U2(r1, r2;ωr1 , ωr2) +O(`λ,a,n).

We find an approximation for A1(r1, r2) starting with the expansion given in (C.3). We use

the same proof as that used to prove Lemma B.2 to approximate the terms inside the sum∑
j1,...,j4

. More precisely we let m = k1 − k2, replace
∑

k1
with an integral and use the same

methodology given in the proof of Lemma B.2 (and that
∑

j |γj| <∞). Altogether this gives

A1(r1, r2)

=
1

2π3

∞∑
j1,...,j4=−∞

γj1γj2γj3γj4

2a∑
m=−2a

∫ 2πmin(a,a+m)/λ

2πmax(−a,−a+m)/λ

f(−ω − ωj1)f(ω + ωr1−j2)

g(ω)g(ω − ωm)dω

∫
R2

sinc(u)sinc(u+ (m+ j1 + j3)π)×

sinc(v)sinc(v − (m− r2 − j4 + r1 − j2)π)dudv +O(`λ,a,n).

By orthogonality of the sinc function we see that the above is zero unless m = −j1 − j3 and
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m = r2 − r1 + j2 + j4 (and using that f(−ω − ωj1) = f(ω + ωj1)), therefore

A1(r1, r2)

=
1

2π

∑
j1+...+j4=r1−r2

γj1γj2γj3γj4

×
∫ 2πmin(a,a−j1−j3)/λ

2πmax(−a,−a−j1−j3)/λ

g(ω)g(ω + ωj1+j3)f(ω + ωj1)f(ω + ωr1−j2)dω +O(`λ,a,n).

This gives us U1,1(r1, r2;ωr1 , ωr2). Next we consider A2(r1, r2)

A2(r1, r2)

=
1

λ3

∑
j1,j2,j3,j4∈Z

γj1γj2γj3γj4

a∑
k1,k2=−a

g(ωk1)g(ωk2)×∫
[−λ/2,λ/2]4

c(s1 − s4)c(s2 − s3) exp(is1ωk1+j1) exp(is4ωk2+r2+j4) exp(−is2ωk1+r1−j2)×

exp(−is3ωk2−j3)ds1ds2ds3ds4

= λ
∑

j1,j2,j3,j4∈Z

a∑
k1,k2=−a

g(ωk1)g(ωk2)

∫
R2

f(x)f(y)sinc

(
λx

2
+ (k1 + j1)π

)
×

sinc

(
λx

2
− (k2 + r2 + j4)π

)
sinc

(
λy

2
− (k1 + r1 − j2)π

)
sinc

(
λy

2
+ (k2 − j3)π

)
dxdy.

Making a change of variables u = λx
2

+ (k1 + j1)π and v = λy
2
− (k1 + r1 − j2)π we have

A2(r1.r2)

=
1

π2λ

∑
j1,j2,j3,j4∈Z

γj1γj2γj3γj4

a∑
k1,k2=−a

g(ωk1)g(ωk2)×∫
R2

f

(
2u

λ
− ωk1+j1

)
f

(
2v

λ
+ ωk1+r1−j2

)
sinc(u)×

sinc (u− (k2 + r2 + j4 + k1 + j1)π) sinc(v)sinc (v + (k2 − j3 + k1 + r1 − j2)π) dudv.

Again by using the same proof as that given in Lemma B.2 to approximate the terms inside

the sum
∑

j1,...,j4
(setting m = k1 +k2 and relace

∑
k1

with an integral), we can approximate

A2(r1, r2) with

A2(r1, r2)

=
1

2π3

∑
j1,j2,j3,j4∈Z

γj1γj2γj3γj4

2a∑
m=−2a

∫ 2πmin(a,a+m)/λ

2π(max(−a,−a+m)/λ

g(ω)g(−ω + ωm)×∫
R2

f(−ω − ωj1)f(ω + ωr1−j2)×

sinc(u)sinc (u− (m+ r2 + j4 + j1)π) sinc(v)sinc (v + (m− j3 + r1 − j2)π) dudvdω +O(`λ,a,n).
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Using the orthogonality of the sinc function, the inner integral is non-zero when m − j3 +

r1 − j2 = 0 and m+ r2 + j4 + j1 = 0. Setting m = −r1 + j2 + j3, this implies

A2(r1, r2)

=
1

2π

∑
j1+j2+j3+j4=r1−r2

γj1γj2γj3γj4

∫ 2πmin(a,a−r1+j2+j3)/λ

2πmax(−a,−a−r1+j2+j3)/λ

g(ω)g(−ω − ωr1−j3−j2)

×f(ω + ωj1)f(ω + ωr1−j2)dω +O(`λ,a,n),

thus giving us U1,2(r1, r2;ωr1 , ωr2).

By using Lemma E.1, we can show that

λcov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
= A3(r1, r2) + A4(r1, r2) +O

(
λ

n

)
where

A3(r1, r2) = λ
a∑

k1,k2=−a

g(ωk1)g(ωk2)cov
[
Z(s1) exp(is1ωk1), Z(s3) exp(−is3ωk2)

]
×

cov
[
Z(s2) exp(−is2ωk1+r1), Z(s4) exp(is4ωk2+r2)

]
A4(r1, r2) = λ

a∑
k1,k2=−a

g(ωk1)g(ωk2)cov
[
Z(s1) exp(is1ωk1), Z(s4) exp(is4ωk2+r2)

]
×

cov
[
Z(s2) exp(−is2ωk1+r1), Z(s3) exp(−is3ωk2)

]
.

By following the same proof as that used to prove A1(r1, r2) we have

A3(r1, r2)

=
λ

(2π)2

∞∑
j1,...,j4=−∞

γj1γj2γj3γj4

a∑
k1,k2=−a

g(ωk1)g(ωk2)

∫ ∞
−∞

∫ ∞
−∞

f(x)f(y)sinc

(
λx

2
+ (k1 + j1)π

)
sinc

(
λx

2
− (k2 + j3)π

)
sinc

(
λy

2
− (r1 + k1 − j2)π

)
sinc

(
λy

2
+ (r2 + k2 − j4)π

)
dxdy

=
1

π2λ

∞∑
j1,...,j4=−∞

γj1γj2γj3γj4

a∑
k1,k2=−a

g(ωk1)g(ωk2)

∫ ∞
−∞

∫ ∞
−∞

f(
2u

λ
− ωk1+j1)f(

2v

λ
+ ωk1+r1−j2)

×sinc(u)sinc(u− (k2 + k1 + j1 + j3)π)sinc(v)sinc(v + (r2 + k2 − j4 + r1 + k1 − j2)π)dudv

=
1

π2λ

∞∑
j1,...,j4=−∞

γj1γj2γj3γj4

2a∑
m=−2a

min(a,a+m)∑
k1=max(−a,−a+m)

g(ωk1)g(ωm−k1)∫ ∞
−∞

∫ ∞
−∞

f(
2u

λ
− ωk1+j1)f(

2v

λ
+ ωk1+r1−j2)

×sinc(u)sinc(u− (m+ j1 + j3)π)sinc(v)sinc(v + (r2 +m− j4 + r1 − j2)π)dudv.
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Again using the method used to bound A1(r1, r2) gives

A3(r1, r2) =
1

2π3

∑
j1+j2+j3+j4=r1+r2

γj1γj2γj3γj4
∑
m

∫ 2πmin(a,a−j1−j3)/λ

2πmax(−a,−a−j1−j3)/λ

g(ω)g(ω−j1−j3 − ω)×

f(ω + ωj1)f(ω + ωr1−j2)dω +O(`λ,a,n) = U1,2(r1, r2;ωr1 , ωr2) +O(`λ,a,n).

Finally we consider A4(r1, r2). Using the same expansion as the above we have

A4(r1, r2)

=
1

λ3

∑
j1,j2,j3,j4∈Z

γj1γj2γj3γj4

a∑
k1,k2=−a

g(ωk1)g(ωk2)

∫
[−λ/2,λ/2]4

c(s1 − s4)c(s2 − s3) exp(is1ωk1+j1)

exp(−is4ωk2+r2−j4) exp(−is2ωk1+r1−j2) exp(is3ωk2+j3)ds1ds2ds3ds4

= λ
∑

j1,j2,j3,j4∈Z

a∑
k1,k2=−a

g(ωk1)g(ωk2)

∫
R2

f(x)f(y)sinc

(
λx

2
+ (k1 + j1)π

)
×

sinc

(
λx

2
+ (k2 + r2 − j4)π

)
sinc

(
λy

2
− (k1 + r1 − j2)π

)
sinc

(
λy

2
− (k2 + j3)π

)
dxdy

=
1

π2λ

∑
j1,j2,j3,j4∈Z

γj1γj2γj3γj4

a∑
k1,k2=−a

g(ωk1)g(ωk2)

∫
R2

f(
2u

λ
− ωk1+j1)f(

2v

λ
+ ωk1+r1−j2)×

sinc(u)sinc (u+ (k2 + r2 − j4 − k1 − j1)π) sinc(v)sinc (v − (k2 + j3 − k1 − r1 + j2)π) dudv

=
1

2π3

∑
j1,j2,j3,j4∈Z

γj1γj2γj3γj4

2a∑
m=−2a

∫ 2πmin(a,a+m)

2πmax(−a,−a+m)/λ

g(ω)g(ω − ωm)×∫
R2

f(−ω − ωj1)f(ω + ωr1−j2)×

sinc(u)sinc (u+ (r2 − j4 −m− j1)π) sinc(v)sinc (v − (j3 −m− r1 + j2)π) dudvdω +O(`λ,a,n)

=
1

2π

∑
j1+j2+j3+j4=r1+r2

γj1γj2γj3γj4

∫ 2πmin(a,a−r1+j2+j3)/λ

max(−a,a−r1+j2+j3)/λ

g(ω)g(ω − ωj2+j3−r2)

×f(ω + ωj1)f(ω + ωr1−j2)dω +O(`λ,a,n).

This gives the desired result. �

We now obtain an approximation of U1(·) and U2(·).

PROOF of Corollary 4.1 By using Lipschitz continuity of g(·) and f(·) and |γj| ≤
C
∏d

i=1 |ji|−(1+δ)I(ji 6= 0) we obtain the result. �

PROOF of Theorem 4.6 We prove the result for the case d = 1 and usingA1(r1, r2), . . . , A4(r1, r2)

defined in proof of Theorem 4.3. The proof is identical to the proof of Theorem B.2. Fol-

lowing the same notation in proof of Theorem B.2 we have

λcov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
= A1(r1, r2) + A2(r1, r2) +B1(r1, r2) +B2(r1, r2) +O

(
λ

n

)
,
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with |B2(r1, r2)| = O((aλ)2/n2) and the main term involving the trispectral density is

B1(r1, r2)

= λc4

a∑
k1,k2=−a

g(ωk1)g(ωk2)E

[
κ4(s1 − s2, s1 − s3, s1 − s4)eis1ωk1e−is2ωk1+r1e−is3ωk2eis4ωk2+r2

]

=
c4

(2π)3λ3

∞∑
j1,...,j4=−∞

γj1γj2γj3γj4

a∑
k1,k2=−a

g(ωk1)g(ωk2)

∫
R3

f4(ω1, ω2, ω3)×∫
[−λ/2,λ/2]4

eis1(ω1+ω2+ω3+ωk1+j1
)e−is2(ω1+ωk1+r1−j2 )e−is3(ω2+ωk2−j3 )

eis4(−ω3+ωk2+r2+j4
)ds1ds2ds3ds4dω1dω2dω3

=
c4λ

(2π)3

∞∑
j1,...,j4=−∞

γj1γj2γj3γj4

a∑
k1,k2=−a

g(ωk1)g(ωk2)

∫
R3

f4(ω1, ω2, ω3)×

sinc

(
λ(ω1 + ω2 + ω3)

2
+ (k1 + j1)π

)
sinc

(
λω1

2
+ (k1 + r1 − j2)π

)
×

sinc

(
λω2

2
+ (k2 − j3)π

)
sinc

(
λω3

2
− (k2 + r2 + j4)π

)
dω1dω2dω3.

Now we make a change of variables and let u1 = λω1

2
+ (k1 + r1 − j2), u2 = λω2

2
+ (k2 − j3)π

and u3 = λω3

2
− (k2 + r2 + j4)π, this gives

B1(r1, r2)

=
c4

π3λ2

∞∑
j1,...,j4=−∞

γj1γj2γj3γj4

a∑
k1,k2=−a

∫
R3

g(ωk1)g(ωk2)×

f4

(
2u1

λ
− ωk1+r1−j2 ,

2u2

λ
− ωk2−j3 ,

2u3

λ
+ ωk2+r2+j4

)
×sinc (u1 + u2 + u3 + (r2 − r1 + j1 + j2 + j3 + j4)π) sinc(u1)sinc(u2)sinc(u3)du1du2du3.

Next we exchange the summand with a double integral and use Lemma I.1(iii) together with

Lemma F.1, equation (F.3) to obtain

B1(r1, r2)

=
c4

π3(2π)2

∞∑
j1,...,j4=−∞

γj1γj2γj3γj4

∫
2π[−a/λ,a/λ]2

g(ω1)g(ω2)×∫
R3

f4

(
2u1

λ
− ω1 − ωr1−j2 ,

2u2

λ
− ω2 − ωj3 ,

2u3

λ
+ ω2 + ωr2+j4

)
×

sinc (u1 + u2 + u3 + (r2 − r1 + j1 + j2 + j3 + j4)π)×

sinc(u1)sinc(u2)sinc(u3)du1du2du3dω1dω2 +O

(
1

λ

)
.
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By using Lemma F.3, we replace f4

(
2u1

λ
− ω1 − ωr1−j2 , 2u2

λ
− ω2 − ωj3 , 2u3

λ
+ ω2 + ωr2+j4

)
with

f4 (−ω1 − ωr1−j2 ,−ω2 − ωj3 , ω2 + ωr2+j4), to give

B1(r1, r2)

=
c4

π3(2π)2

∞∑
j1,...,j4=−∞

γj1γj2γj3γj4

∫
2π[−a/λ,a/λ]2

g(ω1)g(ω2)×∫
R3

f4 (−ω1 − ωr1−j2 ,−ω2 − ωj3 , ω2 + ωr2+j4)×

sinc (u1 + u2 + u3 + (r2 − r1 + j1 + j2 + j3 + j4)π)

×sinc(u1)sinc(u2)sinc(u3)du1du2du3dω1dω2 +O

(
log3(λ)

λ

)
=

c4

(2π)2

∑
j1+j2+j3+j4=r1−r2

γj1γj2γj3γj4

∫
2π[−a/λ,a/λ]2

g(ω1)g(ω2)×

f4 (−ω1 − ωr1−j2 ,−ω2 − ωj3 , ω2 + ωr2+j4) dω1dω2 +O

(
log3(λ)

λ

)
,

where the last line follows from (B.8).

To obtain an expression for λcov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
we note that

λcov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]
= A3(r1, r2) + A4(r1, r2) +B3(r1, r2) +B4(r1, r2) +O

(
λ

n

)
,

just as in the proof of Theorem B.2 we can show that |B4(r1, r2)| = O((λa)d/n2) and the

leading term involving the trispectral density is

B3(r1, r2)

= λc4

a∑
k1,k2=−a

g(ωk1)g(ωk2)E

[
κ4(s1 − s2, s1 − s3, s1 − s4)eis1ωk1e−is2ωk1+r1eis3ωk2e−is4ωk2+r2

]

=
c4

(2π)3λ3

∞∑
j1,...,j4=−∞

γj1γj2γj3γj4

a∑
k1,k2=−a

g(ωk1)g(ωk2)

∫
R3

f4(ω1, ω2, ω3)×∫
[−λ/2,λ/2]4

eis1(ω1+ω2+ω3+ωk1+j1
)

e−is2(ω1+ωk1+r1−j2 )e−is3(ω2−ωk2+j3
)eis4(−ω3−ωk2+r2−j4 )ds1ds2ds3ds4dω1dω2dω3
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Integrating out the locations

B3(r1, r2) =
c4λ

(2π)3

∞∑
j1,...,j4=−∞

γj1γj2γj3γj4

a∑
k1,k2=−a

g(ωk1)g(ωk2)

∫
R3

f4(ω1, ω2, ω3)×

sinc

(
λ(ω1 + ω2 + ω3)

2
+ (k1 + j1)π

)
sinc

(
λω1

2
+ (k1 + r1 − j2)π

)
×

sinc

(
λω2

2
− (k2 + j3)π

)
sinc

(
λω3

2
+ (k2 + r2 − j4)π

)
dω1dω2dω3.

We make a change of variables u1 = λω1

2
+ (k1 + r1 − j2)π, u2 = λω2

2
− (k2 + j3)π and

u3 = λω3

2
+ (k2 + r2 − j4)π. This gives

B3(r1, r2)

=
c4

λ2(2π)3

∞∑
j1,...,j4=−∞

γj1γj2γj3γj4

a∑
k1,k2=−a

g(ωk1)g(ωk2)×∫
R3

f4

(
2u1

λ
− ωk1+r1−j2 ,

2u2

λ
+ ωk2+j3 ,

2u3

λ
− ωk2−r2+j4

)
×sinc (u1 + u2 + u3 + (j1 + j2 + j3 + j4 − r1 − r2)π) sinc(u1)sinc(u2)sinc(u3)du1du2du3

=
1

(2π)2

∑
j1+j2+j3+j4=r1+r2

γj1γj2γj3γj4 ×∫
2π[−a/λ,a/λ]2

g(ω1)g(ω2)f4(−ω1 − ωr1−j2 , ω2 + ωj3 ,−ω2 − ω−r2+j4)dω1dω2.

Finally, by replacing f4 (−ω1 − ωr1−j2 ,−ω2 − ωj3 , ω2 + ωr2+j4) with f4 (−ω1,−ω2, ω2) and

f4 (−ω1 − ωr1−j2 , ω2 + ωj3 ,−ω2 − ωr2+j4) with f4 (−ω1, ω2,−ω2) in B1(r1, r2) and B3(r1, r2)

respectively, and using the pointwise Lipschitz continuity of f4 and that |γj| ≤ CI(j 6=
0)|j|−(1+δ) we obtainB1(r1, r2) = D1+O

(
log3(λ)
λ

+ |r1|+|r2|
λ

)
andB3(r1, r2) = D3+O

(
log3(λ)
λ

+ |r1|+|r2|
λ

)
.

Thus giving the required result. �

D Uniformly sampled locations with general frequency

grid ωΩ,k

In this section we calculate the variance of Q̃a,Ω,λ(g; r). We prove and expand on the results

stated in Section 3. We assume that the spatial process is observed at {sj}nj=1 where sj are

iid uniformly distributed random variable defined on [−λ/2, λ/2]d. We focus on the estimator

Q̃a,Ω,λ(g; r) =
1

Ωd

a∑
k1,...,kd=−a

g(ωΩ,k)Jn(ωΩ,k)Jn(ωΩ,k+r)

− λd

Ωdn

a∑
k=−a

g(ωΩ,k)
1

n

n∑
j=1

Z(sj)
2 exp(−is′jωΩ,r), (D.1)
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and ωΩ,k = 2πk/Ω. In the previous section we considered the case Ω = λ here we consider

the case that Ω 6= λ, noting that when Ω > λ the frequency finer grid is finer and Ω < λ

corresponds to a coarser frequency grid.

The rate var[Q̃a,Ω,λ(g; r)] converges to zero as λ → ∞ depends on whether the ratio

λ/Ω < 1 or λ/Ω ≥ 1. The reason behind this difference is due to the following result.

Lemma D.1 Let T (·) denote the triangle kernel where T (x) = (1 − |x|) for |x| ≤ 1 else

T (x) = 0 and suppose α > 0. Then we have

a∑
k=−a

sinc2 (αkπ) =
1

α

∫ α

−α
T
(x
α

) sin(2π(a+ 1
2
)x)

sin(πx)
dx, (D.2)

∑
k∈Z

sinc2 (αkπ) =
1

α

∑
|k|≤bαc

T

(
k

α

)
(D.3)

and ∑
k∈Z

sinc2 (αkπ)→ 1 (D.4)

as α→∞.

PROOF. We recall that sinc(αx/2) = 1
α

∫ α/2
−α/2 e

ixωdx (Fourier transform of the rectangle

kernel α−1I−α/2,α/2(x)). Thus sinc2(αx/2) is the convolution of two rectangle kernels (which

is the triangle kernel defined on [−α, α]) and

sinc2
(α

2
ω
)

=
1

α

∫ α

−α
T
(x
α

)
exp(iωx)dx,

thus setting ω = kπ we have

sinc2 (αkπ) =
1

α

∫ α

−α
T
(x
α

)
exp(i2πkx)dx.

Substituting this into (D.2) gives

a∑
k=−a

sinc2 (αkπ) =
1

α

∫ α

−α
T
(x
α

)[ a∑
k=−a

exp(i2πkx)

]
dx =

1

α

∫ α

−α
T
(x
α

) sin(2π(a+ 1
2
)x)

sin(πx)
dx,

we note that Da(x) =
sin(2π(a+ 1

2
)x)

sin(πx)
is the Dirichlet kernel. Thus proving (D.2). Next letting

the limit in the sum a→∞ we use that the Dirichlet kernel limits to the generalized function

sin(2π(a+ 1
2
)x)

sin(πx)
→
∑
m∈Z

δm(x) as a→∞
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where δm(x) is the dirac delta function which is zero everywhere but m. Substituting this

into the the above integral gives (D.3).

To prove (D.4) we note that using (D.3) we have

∑
k∈Z

sinc2 (αkπ) =
1

α

∑
|k|≤bαc

T

(
k

α

)
=

1

α

1 + 2
∑

1≤|k|≤bαc

[
1− |k|

α

]
=

1

α

1 +
2

α

∑
1≤|k|≤bαc

(α− |k|)


=

1

α

1 +
2

α

∑
1≤|k|≤bαc

(α− bαc) +
2

α

∑
1≤|k|≤bαc

(bαc − |k|)


=

1

α

(
1 +

2

α
bαc (α− bαc) +

1

α
bαc(bαc+ 1)

)
= 1 +O

(
1

α

)
,

where bxc denotes the smallest integer less than or equal to x. Thus we see that
∑

k∈Z sinc2 (αkπ)

is uniformly bounded for all α ≥ 1 and as α→∞
∑

k∈Z sinc2 (αkπ)→ 1, thus proving (D.4).

�

We now summarize the pertinent points of the above lemma. If 0 < α ≤ 1 we have

α
∑
k∈Z

sinc2 (αkπ) = T (0) = 1⇒
∑
k∈Z

sinc2 (αkπ) =
1

α
.

On the other hand, if α > 1 then
∑

k∈Z sinc2 (αkπ) is uniformly bounded for all α. Setting

α = λ
Ω

this gives

∞∑
k=−∞

sinc2

(
λ

Ω
kπ

)
=

{
Ω
λ

λ
Ω
< 1

O (1) λ
Ω
> 1

, (D.5)

where the O(1) bound is uniform for Ω < λ.

We show in the lemmas below this simple result determines the optimal choice of fre-

quency grid. In the following lemma we obtain the first approximation under the assumption

of Gaussianity of the spatial process.

Lemma D.2 Suppose Assumptions 2.1, 2.3 and Assumptions 2.5(ii) and 2.6(b) hold. Then

(i) If λ < Ω (finer frequency grid)

λdcov
[
Q̃a,Ω,λ(g; r1), Q̃a,Ω,λ(g; r2)

]
=

λd

Ω2d
[A1(r1, r2) + A2(r1, r2)] + F1,fine,

λdcov
[
Q̃a,Ω,λ(g; r1), Q̃a,Ω,λ(g; r2)

]
=

λd

Ω2d
[A3(r1, r2) + A4(r1, r2)] + F2,fine,
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with

F1,fine and F2,fine = O

(
λd

n
+

log3(a)

n

)
(ii) If λ > Ω ≥ 1 (coarser frequency grid)

Ωdcov
[
Q̃a,Ω,λ(g; r1), Q̃a,Ω,λ(g; r2)

]
=

1

Ωd
[A1(r1, r2) + A2(r1, r2)] + F1,coarse,

Ωdcov
[
Q̃a,Ω,λ(g; r1), Q̃a,Ω,λ(g; r2)

]
=

1

Ωd
[A3(r1, r2) + A4(r1, r2)] + F2,coarse,

with

F1,coarse and F2,coarse = O

(
λd

n
+

log3(a)

n
I λ

Ω
/∈Z

)
.

where

A1(r1, r2) =
1

π2d

2a∑
m=−2a

min(a,a+m)∑
k=max(−a,−a+m)

∫
R2d

f(
2u

λ
− ωΩ,k)f(

2v

λ
+ ωΩ,k + ωΩ,r1)

g(ωΩ,k)g(ωΩ,k − ωΩ,m)Sinc

(
u− λ

Ω
mπ

)
Sinc

(
v +

λ

Ω
(m+ r1 − r2)π

)
Sinc(u)Sinc(v)dudv

A2(r1, r2) =
1

π2d

2a∑
m=−2a

min(a,a+m)∑
k=max(−a,−a+m)

∫
R2d

f(
2u

λ
− ωΩ,k)f(

2v

λ
+ ωΩ,k + ωΩ,r1)

g(ωΩ,k)g(ωΩ,m−k)Sinc

(
u− λ

Ω
(m+ r2)π

)
Sinc

(
v +

λ

Ω
(m+ r1)π

)
Sinc(u)Sinc(v)dudv

A3(r1, r2) =
1

π2d

2a∑
m=−2a

min(a,a+m)∑
k=max(−a,−a+m)

∫
R2d

f(
2u

λ
− ωΩ,k)f(

2v

λ
+ ωΩ,k + ωΩ,r1)

g(ωΩ,k)g(ωΩ,m−k)Sinc

(
u+

λ

Ω
mπ

)
Sinc

(
v +

λ

Ω
(m+ r2 + r1)π

)
Sinc(u)Sinc(v)dudv

A4(r1, r2) =
1

π2d

2a∑
m=−2a

min(a,a+m)∑
k=max(−a,−a+m)

∫
R2d

f(
2u

λ
− ωΩ,k)f(

2v

λ
+ ωΩ,k + ωΩ,r1)

g(ωΩ,k)g(ωΩ,k−m)Sinc

(
u− λ

Ω
(m− r2)π

)
Sinc

(
v +

λ

Ω
(m+ r1)π

)
Sinc(u)Sinc(v)dudv

where k = max(−a,−a −m) = {k1 = max(−a,−a − m1), . . . , kd = max(−a,−a − md)},
k = min(−a+m) = {k1 = max(−a,−a+m1), . . . , kd = min(−a+md)}.

69



PROOF. To simplify notation, we prove the result for d = 1.

Using a similar expansion to that in equation (E.3), for the case λ/Ω < 1 (“fine” frequency

grid) we have

λcov
[
Q̃a,Ω,λ(g; r1), Q̃a,Ω,λ(g; r2)

]
=

λ3

Ω2n4

∑
j1,j2,j3,j4∈D4

a∑
k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)

(
cum

[
Z(sj1)eisj1ωΩ,k1 , Z(sj3)e−isj3ωΩ,k2

]
cum

[
Z(sj2)e−isj2ωΩ,k1+r1 , Z(sj4)eisj4ωΩ,k2+r2

]
+cum

[
Z(sj1)eisj1ωΩ,k1 , Z(sj4)eisj4ωΩ,k2+r2

]
cum

[
Z(sj2)e−isj2ωΩ,k1+r2 , Z(sj3)e−isj3ωΩ,k2

])
+F1,fine (D.6)

whereas for the case λ/Ω ≥ 1 (“coarse” frequency grid)

Ωcov
[
Q̃a,Ω,λ(g; r1), Q̃a,Ω,λ(g; r2)

]
=

λ2

Ωn4

∑
j1,j2,j3,j4∈D4

a∑
k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)

(
cum

[
Z(sj1)eisj1ωΩ,k1 , Z(sj3)e−isj3ωΩ,k2

]
cum

[
Z(sj2)e−isj2ωΩ,k1+r1 , Z(sj4)eisj4ωΩ,k2+r2

]
+cum

[
Z(sj1)eisj1ωΩ,k1 , Z(sj4)eisj4ωΩ,k2+r2

]
cum

[
Z(sj2)e−isj2ωΩ,k1+r2 , Z(sj3)e−isj3ωΩ,k2

])
+F1,coarse (D.7)

where

F1,fine = λF1 and F1,coarse = ΩF1

with

F1 =
λ2

Ω2n4

∑
j1,j2,j3,j4∈D3

a∑
k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)

×
(

cum
[
Z(sj1)eisj1ωΩ,k1 , Z(sj3)e−isj3ωΩ,k2

]
cum

[
Z(sj2)e−isj2ωΩ,k1+r1 , Z(sj4)eisj4ωΩ,k2+r2

]
+cum

[
Z(sj1)eisj1ωΩ,k1 , Z(sj4)eisj4ωΩ,k2+r2

]
cum

[
Z(sj2)e−isj2ωΩ,k1+r1 , Z(sj3)e−isj3ωΩ,k2

]
+cum

[
Z(sj1)eisj1ωΩ,k1 , Z(sj2)e−isj2ωΩ,k1+r1 , Z(sj3)e−isj3ωΩ,k2 , Z(sj4)eisj4ωΩ,k2+r2

])
,

D4 = {j1, . . . , j4 = all js are different}, D3 = {j1, . . . , j4; two js are the same but j1 6=
j2 and j3 6= j4} (noting that by definition of Q̃a,Ω,λ(g, 0) more than two elements in {j1, . . . , j4}
cannot be the same). By using the same techniques used in the proof of Lemma B.1 we can

show that the first sum in (D.6) and (D.7) is equal to the A1(r1, r2) and A2(r1, r2) given at

the start of the lemma. We now bound the remainders F1,fine = λF1 and F1,coarse = ΩF1.
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To bound F1 we note that it is comprised of terms which take the form

D1 =
a∑

k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)×

cum[Z(s1)eis1ωΩ,k1 , Z(s2)e−is2ωΩ,k1+r1 , Z(s3)e−is3ωΩ,k2 , Z(s1)eis1ωΩ,k2+r2 ]

and

D2 =
a∑

k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)×

cum
[
Z(s1)eis1ωΩ,k1 , Z(s1)e−is1ωΩ,k2

]
cum

[
Z(s2)e−is2ωΩ,k1+r1 , Z(s3)eis3ωΩ,k2+r2

]
.

Thus

F1 = O

(
λ2

Ω2n
[D1 +D2]

)
.

Bounds for D1 and D2 are given in Lemma E.2. Using these bounds we have

F1 ≤ C
λ2

Ω2n

{
Ω
λ

+
(

Ω
λ

)2
+
[

Ω2

λ3 log3(a)
]
I λ

Ω
/∈Z

λ
Ω
≥ 1(

Ω
λ

)2
+ Ω

λ2 log(a) + Ω2

λ3 log3(a) λ
Ω
< 1

= C

{
λ
nΩ

+ 1
n

+
[

1
nλ

log3(a)
]
I λ

Ω
/∈Z

λ
Ω
≥ 1

1
n

+ 1
nΩ

log(a) + 1
nλ

log3(a) λ
Ω
< 1

Finally, since F1,fine = λF1 (λ < Ω) and F1,coarse = ΩF1 (λ > Ω) we have

F1,fine = O

(
λ

n
+

log3(a)

n

)
and F1,coarse = O

(
λ

n
+

log3(a)

n
I λ

Ω
/∈Z

)
.

A similar expression holds for λcov
[
Q̃a,Ω,λ(g; r1), Q̃a,Ω,λ(g; r2)

]
. Thus we obtain the required

result. �

Now we obtain approximations to A1(r1, r2), . . . , A4(r1, r2) by separating the sinc func-

tion from the spectral density. Let

C11

( a
Ω
,ωΩ,r

)
=

1

(2π)d

∫
[−2πa/Ω,2πa/Ω]d

f(ω)f(ω + ωΩ,r)|g(ω)|2dω

C12

( a
Ω
,ωΩ,r

)
=

1

2π

∫
DΩ,r

f(ω)f(ω + ωΩ,r1)g(ω)g(−ω)dω

C21

( a
Ω
,ωΩ,r

)
=

1

(2π)d

∫
[−2πa/Ω,2πa/Ω]d

f(ω)f(ω + ωΩ,r)g(ω)2dω

C22

( a
Ω
,ωΩ,r

)
=

1

(2π)d

∫
DΩ,r

f(ω)f(ω + ωΩ,r)g(ω)g(−ω)dω
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where
∫
DΩ,r

=
∫ 2πmin(a,a−r1)/Ω

2πmax(−a,−a−r1)/Ω
. . .
∫ 2πmin(a,a−rd)/Ω

2πmax(−a,−a−rd)/Ω
and define

Ã1(r1, r2) = C11

( a
Ω
,ωΩ,r

) 2a∑
m=−2a

Sinc

(
λ

Ω
mπ

)
Sinc

(
λ

Ω
(m+ r1 − r2)π

)
(D.8)

Ã2(r1, r2) = C12

( a
Ω
,ωΩ,r

) 2a∑
m=−2a

Sinc

(
λ

Ω
(m+ r1)π

)
Sinc

(
λ

Ω
(m+ r2)π

)
(D.9)

Ã3(r1, r2) = C21

( a
Ω
,ωΩ,r

) 2a∑
m=−2a

Sinc

(
λ

Ω
mπ

)
Sinc

(
λ

Ω
(m+ r1 + r2)π

)
(D.10)

and

Ã4(r1, r2) = C22

( a
Ω
,ωΩ,r

) 2a∑
m=−2a

Sinc

(
λ

Ω
(m+ r1)π

)
Sinc

(
λ

Ω
(m− r2)π

)
.

(D.11)

Lemma D.3 Suppose Assumptions 2.1, 2.3 and Assumptions 2.5(ii) and 2.6(b) hold. Let

Ã1(r1, r2), . . . , Ã4(r1, r2) be defined as in (D.8), (D.9), (D.10) and (D.11). Then for ‖r1‖1, ‖r2‖1 ≤
Ca, 1 ≤ Ω, λ ≤ a and 1 ≤ j ≤ 4

(i) if λ/Ω < 1 then

λd

Ω2d
Aj(r1, r2) =

λd

Ωd
Ãj(r1, r2) +O

(
log2(a)[log a+ log λ]

λ

)
(ii) if λ/Ω ≥ 1 then

1

Ωd
Aj(r1, r2) = Ãj(r1, r2) +O

(
(log2 a)(log λ+ log a)

Ω

)
PROOF. We prove the result for j = 1 and d = 1. We first define a sequence of approxima-

tions. We replace the sum 1
Ω

∑
k in 1

Ω
A1(r1, r2) with an integral to give

A1,1(r1, r2) =
1

π2

2a∑
m=−2a

1

2π

∫ 2πmin(a,a+m)/Ω

2πmax(−a,−a+m)/Ω

∫
R2

f(
2u

λ
− ω)f(

2v

λ
+ ω + ωΩ,r1)×

g(ω)g(ω − ωΩ,m)sinc

(
u− λ

Ω
mπ

)
sinc

(
v +

λ

Ω
(m+ r1 − r2)π

)
×

sinc(u)sinc(v)dudvdω.
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Next we replace f(2v
λ

+ ω + ωΩ,r1) in A1,1(r1, r2) with f(ω + ωΩ,r1) to give

A1,2(r1, r2) =
1

π2

2a∑
m=−2a

1

2π

∫ 2πmin(a,a+m)/Ω

2πmax(−a,−a+m)/Ω

f(ω)f(ω + ωΩ,r1)g(ω)g(ω − ωΩ,m)dω

×
∫
R2

sinc

(
u− λ

Ω
mπ

)
sinc

(
v +

λ

Ω
(m+ r1 − r2)π

)
sinc(u)sinc(v)dudv

=
1

π2

2a∑
m=−2a

sinc

(
λ

Ω
mπ

)
sinc

(
λ

Ω
(m+ r1 − r2)π

)
× 1

2π

∫ 2πmin(a,a+m)/Ω

2πmax(−a,−a+m)/Ω

f(ω)f(ω + ωΩ,r1)g(ω)g(ω − ωΩ,m)dω.

In the proof we use the notation `p(u) defined in Lemma F.1.

We first prove part (i), where the fine frequency grid is used with λ/Ω < 1. By using

Lemma I.1 (to replace summand by integral) and Lemma F.1, equation (F.1), we have

λ

Ω

∣∣∣∣ 1

Ω
A1(r1, r2)− A1,1(r1, r2)

∣∣∣∣
≤ Cλ

Ω2

2a∑
m=−2a

∫
R2

∣∣∣∣sinc

(
u− λ

Ω
mπ

)
sinc

(
v +

λ

Ω
(m+ r1 − r2)π

)
sinc(u)sinc(v)

∣∣∣∣ dudv
≤ Cλ

Ω2

2a∑
m=−2a

`1

(
λ

Ω
mπ

)
`1

(
λ

Ω
(m+ r1 − r2)π

)
= O

(
log2(a)

λ

)
.

Note that the above can also be bounded by O(log3(a)/Ω). We replace f(2u
λ
−ω)f(2v

λ
+ω+

ωΩ,r1) with f(−ω)f(ω + ωΩ,r1). By using Lemma F.2, equation (F.5) (twice) we have

λ

Ω

∣∣A1,1(r1, r2)− A1,2(r1, r2)
∣∣

≤ Cλ

Ω

2a∑
m=−2a

[
`1

(
λmπ

Ω

)
log λ+ log

(
1 + λ

Ω
|m+ r1 − r2|

)
λ

]
+

Cλ

Ω

2a∑
m=−2a

[
`1

(
λ(m+ r1 − r2)π

Ω

)
log λ+ log

(
1 + λ

Ω
|m|
)

λ

]
= O

(
log2(a)[log λ+ log(a)]

λ

)
.

The final approximation is based on replacing g(ω − ωΩ,m) with g(ω) and the limits of the

integral,
∫ min(a,a+m)/Ω

max(−a,−a+m)/Ω
with

∫ a/Ω
−a/Ω. To do this we note

λ

Ω

(
A1,2(r1, r2)− Ã1(r1, r2)

)
=
λ

Ω

2a∑
m=−2a

sinc

(
λ

Ω
mπ

)
sinc

(
λ

Ω
(m+ r1 − r2)π

)
×

1

2π

(∫ min(a,a+m)/Ω

max(−a,−a+m)/Ω

f(ω)2g(ω)g(ω − ωΩ,m)dω −
∫ a/Ω

−a/Ω
f(ω)2|g(ω)|2

)
dω.
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We assume m > 0 (though the same proof holds for m < 0) and bound the following

difference∣∣∣∣∣
∫ 2πmin(a,a+m)/Ω

2πmax(−a,−a+m)/Ω

f(ω)f(ω + ωΩ,r)g(ω)g(ω − ωΩ,m)dω −
∫ a/Ω

−a/Ω
f(ω)f(ω + ωΩ,r)|g(ω)|2

∣∣∣∣∣
≤

∣∣∣∣∣
∫ 2πmin(a,a+m)/Ω

2πmax(−a,−a+m)/Ω

f(ω)f(ω + ωΩ,r)g(ω)
[
g(ω − ωΩ,m)− g(ω)

]
dω

∣∣∣∣∣+∣∣∣∣∣
∫ 2π(−a+m)/Ω

−2πa/Ω

f(ω)f(ω + ωΩ,r)|g(ω)|2dω

∣∣∣∣∣ .
By using the Lipschitz continuity of g and the mean value theorem twice we have∣∣∣∣∣

∫ 2πmin(a,a+m)/Ω

2πmax(−a,−a+m)/Ω

f(ω)f(ω + ωΩ,r)g(ω)g(ω − ωΩ,m)dω −
∫ a/Ω

−a/Ω
f(ω)f(ω + ωΩ,r)|g(ω)|2

∣∣∣∣∣
≤ C

|m|
Ω

(D.12)

where C is a finite constant which only depends on f and g. This bound gives

λ

Ω

∣∣∣A1,2(r1, r2)− Ã1(r1, r2)
∣∣∣ ≤ C

λ

2a∑
m=−2a

∣∣∣∣sin(λΩmπ
)

sin

(
λ

Ω
(m+ r1 − r2)π

)∣∣∣∣ `0(|m+ r1 − r2|)

= O

(
log(a+ |r1|+ |r2|)

λ

)
.

Since |r1|, |r2| < a, altogether the three bounds above give

λ

Ω2
Aj(r1, r2) =

λ

Ω
Ãj(r1, r2) +O

(
log2(a)[log a+ log λ]

λ

)
and same sequence of bounds apply to Aj(r1, r2) for 2 ≤ j ≤ 4, thus proving (i).

Now we prove (ii), where the coarse frequency is used with λ/Ω > 1. From Lemma D.1

we observe that the rate of growth of Aj(r1, r2) and Ãj(r1, r2) are different when λ/Ω < 1

and λ/Ω > 1, thus requiring different standardisations. By using Lemma I.1 (to replace

summand by integral) and Lemma F.1, equation (F.1), we have∣∣∣∣ 1

Ω
A1(r1, r2)− A1,1(r1, r2)

∣∣∣∣
≤ C

Ω

2a∑
m=−2a

∫
R2

∣∣∣∣sinc

(
u− λ

Ω
mπ

)
sinc

(
v +

λ

Ω
(m+ r1 − r2)π

)
sinc(u)sinc(v)

∣∣∣∣ dudv
≤ C

Ω

2a∑
m=−2a

`1

(
λ

Ω
mπ

)
`1

(
λ

Ω
(m+ r1 − r2)π

)
= O

(
Ω log2(a)

λ2

)
.
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By using Lemma F.2, equation (F.5) (twice) we have∣∣A1,1(r1, r2)− A1,2(r1, r2)
∣∣

≤ C
2a∑

m=−2a

[
`1

(
λmπ

Ω

)
log λ+ log

(
1 + λ

Ω
|m+ r1 − r2|

)
λ

]
+

C
2a∑

m=−2a

[
`1

(
λ(m+ r1 − r2)π

Ω

)
log λ+ log

(
1 + λ

Ω
|m|
)

λ

]
= O

(
log2(a)[log λ+ log( λ

Ω
a)]

Ω

)
.

Replacing g(ω − ωΩ,m) with g(ω) and limits of the integral,
∫ min(a,a+m)/Ω

max(−a,−a+m)/Ω
with

∫ a/Ω
−a/Ω gives

the difference

A1,2(r1, r2)− Ã1(r1, r2) =
2a∑

m=−2a

sinc

(
λ

Ω
mπ

)
sinc

(
λ

Ω
(m+ r1 − r2)π

)
×

1

2π

(∫ 2πmin(a,a+m)/Ω

2πmax(−a,−a+m)/Ω

f(ω)f(ω + ωΩ,r)g(ω)g(ω − ωΩ,m)dω −
∫ a/Ω

−a/Ω
f(ω)f(ω + ωΩ,r)|g(ω)|2

)
dω,

where Ã1(r1, r2) is defined in (D.8). Finally, using (D.12) we have

∣∣∣A1,2(r1, r2)− Ã1(r1, r2)
∣∣∣ ≤ Ω

λ2

2a∑
m=−2a

∣∣∣∣sin(λΩmπ
)

sin

(
λ

Ω
(m+ r1 − r2)π

)∣∣∣∣ `0(m+ r1 − r2)

= O

(
Ω log( λ

Ω
a)

λ2

)
.

Thus the three bounds together give

1

Ω
A1(r1, r2) = Ã1(r1, r2) +O

(
(log2 a)[log λ+ log(a)]

Ω

)
.

The same sequence bounds apply to Aj(r1, r2) for 2 ≤ j ≤ 4. Thus proving (ii). �

Altogether the above gives the following corollary.

Corollary D.1 Suppose Assumptions 2.1, 2.3 and Assumptions 2.5(ii) and 2.6(b) hold.

Let Ã1(r1, r2), . . . , Ã4(r1, r2) be defined as in (D.8), (D.9), (D.10) and (D.11). Then for

‖r1‖1, ‖r2‖1 ≤ Ca

(i) If λ < Ω

λdcov
[
Q̃a,Ω,λ(g; r1), Q̃a,Ω,λ(g; r2)

]
=

λd

Ωd

(
Ã1(r1, r2) + Ã2(r1, r2)

)
+O

(
λd

n
+

log3(a)

n
+

log3(a)

λ

)
,
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λdcov
[
Q̃a,Ω,λ(g; r1), Q̃a,Ω,λ(g; r2)

]
=

λd

Ωd

(
Ã3(r1, r2) + Ã4(r1, r2)

)
+O

(
λd

n
+

log3(a)

n
+

log3(a)

λ

)
,

(ii) If λ ≥ Ω

Ωdcov
[
Q̃a,Ω,λ(g; r1), Q̃a,Ω,λ(g; r2)

]
=

(
Ã1(r1, r2) + Ã2(r1, r2)

)
+O

(
λd

n
+

log3(a)

n
+

log3(a)

Ω

)
,

Ωdcov
[
Q̃a,Ω,λ(g; r1), Q̃a,Ω,λ(g; r2)

]
=

(
Ã3(r1, r2) + Ã4(r1, r2)

)
+O

(
λd

n
+

log3(a)

n
+

log3(a)

Ω

)
,

where Ã1(r1, r2), Ã2(r1, r2), Ã3(r1, r2), Ã3(r1, r2) are defined in (D.8)-(D.11).

We now summarize the key points in the above result. Using the above result we have

var
[
Q̃a,Ω,λ(g; r)

]
= C11

( a
Ω
,ωΩ,r

) 1

Ωd

2a∑
m=−2a

sinc2

(
λ

Ω
mπ

)
+ C12

( a
Ω
,ωΩ,r

) 1

Ωd

2a∑
m=−2a

sinc2

(
λ

Ω
(m+ r)π

)
+O

(˜̀
a,Ω,λ

[
1

λd
I λ

Ω
<1 +

1

Ωd
I λ

Ω
≥1

])
.

(D.13)

where

˜̀
a,Ω,λ =

λd

n
+

log3(a)

n
I λ

Ω
/∈Z +

log2(a)[log λ+ log(a)]

Ω
IΩ≤λ +

log2(a)[log λ+ log(a)]

λ
IΩ>λ.

(D.14)

Note when r = 0, (D.13) is the same as the expression given in Section 3. This result shows

that the rate of convergence of the variance is determined by the term

1

Ω

2a∑
m=−2a

sinc2

(
λ

Ω
mπ

)
.

Using Lemma D.1 we see that the rate that the above term converges to zero depends on

whether Ω < λ or Ω ≥ λ. In particular setting a =∞

1

Ω

∞∑
m=−∞

sinc2

(
λ

Ω
mπ

)
=


1
λ

λ
Ω
< 1

1
Ω

λ
Ω
∈ Z

O
(

1
Ω

)
λ
Ω
> 1 and λ

Ω
/∈ Z
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and
∑∞

m=−∞ sinc2
(
λ
Ω
mπ
)
→ 1 as λ

Ω
→∞ . Therefore for the fine frequency grid with λ < Ω

we have

λdvar[Q̃a,Ω,λ(g; r)]

= C11

( a
Ω
,ωΩ,r

) λd
Ωd

2a∑
m=−2a

Sinc2

(
λ

Ω
mπ

)
+ C12

( a
Ω
,ωΩ,r

) λd
Ωd

2a∑
m=−2a

Sinc2

(
λ

Ω
(m+ r)π

)
+O

(˜̀
a,Ω,λ

)
.

On the other hand if a coarse frequency grid is used with λ ≥ Ω then the rate of convergence

is worse with

Ωdvar[Q̃a,Ω,λ(g; r)]

= C11

( a
Ω
,ωΩ,r

) 2a∑
m=−2a

Sinc2

(
λ

Ω
mπ

)
+ C12

( a
Ω
,ωΩ,r

) 2a∑
m=−2a

Sinc2

(
λ

Ω
(m+ r)π

)
+O

(˜̀
a,Ω,λ

)
.

The above result implies that

var[Q̃a,Ω,λ(g; r)] =

{
O(λ−d) λ

Ω
< 1

O(Ω−d) λ
Ω
≥ 1

The above results assume the spatial process is Gaussian. We now relax the assumption

of Gaussianity.

Theorem D.1 Let us suppose that {Z(s); s ∈ Rd} is a fourth order stationary spatial ran-

dom field that satisfies Assumption 2.1(i), 2.3, 2.5, 2.7 and 2.6(a,c) or 2.6(b,c). Then for

|r1|, |r2| ≤ Ca

(i) If λ < Ω

λdcov
[
Q̃a,Ω,λ(g; r1), Q̃a,Ω,λ(g; r2)

]
=
λd

Ωd

(
Ã1(r1, r2) + Ã2(r1, r2)

)
+B1(r1, r2) + +O

(˜̀(2)
a,Ω,λ

)
,

λdcov
[
Q̃a,Ω,λ(g; r1), Q̃a,Ω,λ(g; r2)

]
=
λd

Ωd

(
Ã3(r1, r2) + Ã4(r1, r2)

)
+B3(r1, r2) +O

(˜̀(2)
a,Ω,λ

)
,

(ii) If λ ≥ Ω

Ωdcov
[
Q̃a,Ω,λ(g; r1), Q̃a,Ω,λ(g; r2)

]
=
(
Ã1(r1, r2) + Ã2(r1, r2)

)
+

Ωd

λd
B1(r1, r2) + +O

(˜̀(2)
a,Ω,λ

)
,

Ωdcov
[
Q̃a,Ω,λ(g; r1), Q̃a,Ω,λ(g; r2)

]
=
(
Ã3(r1, r2) + Ã4(r1, r2)

)
+

Ωd

λd
B3(r1, r2) +O

(˜̀(2)
a,Ω,λ

)
,
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where Ã1(r1, r2), Ã2(r1, r2), Ã3(r1, r2), Ã3(r1, r2) are defined in (D.8)-(D.11)

B1(r1, r2) =
c4

π2d+1Ω2d

a∑
k1,k2=−a

∫
R3d

g(ωk1)g(ωk2)

f4

(
2u1

λ
− ωΩ,k1+r1 ,

2u2

λ
− ωΩ,k2 ,

2u3

λ
+ ωΩ,k2+r2

)
×

×Sinc

(
u1 + u2 + u3 +

λ

Ω
(r2 − r1)π

)
Sinc(u1)Sinc(u2)Sinc(u3)du1du2du3,

(D.15)

B3(r1, r2) =
c4

π2d+1Ω2d

a∑
k1,k2=−a

∫
R3d

g(ωk1)g(ωk2)

f4

(
2u1

λ
− ωΩ,k1+r1 ,

2u2

λ
+ ωΩ,k2 ,

2u3

λ
− ωΩ,k2+r2

)
×

×Sinc

(
u1 + u2 + u3 −

λ

Ω
(r2 + r1)π

)
Sinc(u1)Sinc(u2)Sinc(u3)du1du2du3

and

˜̀(2)
a,Ω,λ =

{
λd

n
+ log3(a)

n
+ log2(a)[log λ+log a]

λ
+ λ2dad

n2Ωd
λ
Ω
< 1

λd

n
+ log3(a)

n
I λ

Ω
/∈Z + log2(a)[log λ+log(a)]

Ω
+ λdad

n2
λ
Ω
≥ 1

. (D.16)

PROOF. The proof is similar to the proof of Theorem B.2. We focus on the case d = 1.

Using Lemma D.3 and expanding out (for both the case λ/Ω < 1 and λ/Ω ≥ 1) we have

cov
[
Q̃a,Ω,λ(g; r1), Q̃a,Ω,λ(g; r2)

]
=

1

Ω
Ã1(r1, r2) +

1

Ω
Ã2(r1, r2) + B̃1(r1, r2) + B̃2(r1, r2) +O

(˜̀
a,Ω,λ

[
1

λ
I λ

Ω
<1 +

1

Ω
I λ

Ω
≥1

])
,

where `a,Ω,λ, Ã1(r1, r2) and Ã2(r1, r2) are defined in Lemma D.3 and

B̃1(r1, r2) =
c4λ

2

Ω2

a∑
k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)×

E

[
κ4(s2 − s1, s3 − s1, s4 − s1)eis1ωΩ,k1e−is2ωΩ,k1+r1e−is3ωΩ,k2eis4ωΩ,k2+r2

]
B̃2(r1, r2) =

λ2

Ω2n4

∑
j1,...,j4∈D3

a∑
k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)×

E

[
κ4(sj2 − sj1 , sj3 − sj1 , sj4 − sj1)eisj1ωΩ,k1e−isj2ωΩ,k1+r1e−isj3ωΩ,k2eisj4ωΩ,k2+r2

]
with c4 = n(n−1)(n−2)(n−3)/n4 and D3 and D4 are defined in the proof of Theorem B.2.

The focus in this proof will be on the fourth order cumulant terms B̃1(r1, r2) and B̃2(r1, r2).
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First we consider the “leading term” B̃1(r1, r2). Rewriting the fourth order cumulant in

terms of the fourth order spectral density we have

B̃1(r1, r2)

=
c4λ

2

(2π)3Ω2λ4

a∑
k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)

∫
R3

f4(ω1, ω2, ω3)

∫
[−λ/2,λ/2]4

eis1(ω1+ω2+ω3+ωΩ,k1
)

e−is2(ω1+ωΩ,k1+r1
)e−is3(ω2+ωΩ,k2

)eis4(−ω3+ωΩ,k2+r2
)ds1ds2ds3ds4dω1dω2dω3

=
c4λ

2

(2π)3Ω2

a∑
k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)

∫
R3

f4(ω1, ω2, ω3)sinc

(
λ

2
(ω1 + ω2 + ω3 + ωΩ,k1)

)
×sinc

(
λ

2
(ω1 + ωΩ,k1+r1)

)
sinc

(
λ

2
(ω2 + ωΩ,k2)

)
sinc

(
λ

2
(ω3 − ωΩ,k2+r2)

)
dω1dω2dω3.

Making a change of variables we have

B̃1(r1, r2) =
c4

π3Ω2λ

a∑
k1,k2=−a

∫
R3

g(ωΩ,k1)g(ωΩ,k2)×

f4

(
2u1

λ
− ωΩ,k1+r1 ,

2u2

λ
− ωΩ,k2 ,

2u3

λ
+ ωΩ,k2+r2

)
×

×sinc

(
u1 + u2 + u3 +

λ

Ω
(r2 − r1)π

)
sinc(u1)sinc(u2)sinc(u3)du1du2du3,

thus we observe that λB̃1(r1, r2) = B1(r1, r2), defined in (D.15).

We now show that B̃2(r1, r2) is of lower order. To do so, just as in the proof of Theorem

B.2 we have

B̃2(r1, r2) =
4∑
j=1

B̃2,(3,j)(r1, r2) +
2∑
j=1

B̃2,(2,j)(r1, r2) (D.17)

where

B̃2,(3,1)(r1, r2) =
|D3,1|λ2

n4Ω2

a∑
k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)×

E

[
κ4(sj2 − sj1 , 0, sj4 − sj1)eisj1ωΩ,k1e−isj2ωΩ,k1+r1e−isj1ωΩ,k2eisj4ωΩ,k2+r2

]

for j = 2, 3, 4, B̃2,(3,j)(r1, r2) are defined similarly and

B̃2,(2,1)(r1, r2) =
|D2,1|λ2

n4Ω2

a∑
k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)×

E

[
κ4(sj2 − sj1 , 0, sj2 − sj1)eisj1ωΩ,k1e−isj2ωΩ,k1+r1e−isj1ωΩ,k2eisj2ωΩ,k2+r2

]
.
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Integrating out the locations in B̃2,(3,1)(r1, r2) and making a change of variables we have

B̃2,(3,1)(r1, r2)

=
Cλ2|D3,1|
n4Ω2(2π)3

a∑
k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)

∫
R3

f4(ω1, ω2, ω3)sinc

(
λ

2
(ω1 + ω3 + ωΩ,k2−k1)

)
×

sinc

(
λ

2
(ω1 − ωΩ,k1+r1)

)
× sinc

(
λ

2
(ω3 + ωΩ,k2+r2)

)
dω1dω2dω3

=
Cλ2|D3,1|
n4Ω2(2π)3

a∑
k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)

∫
R3

f4

(
2u1

λ
+ ωΩ,k1+r1 , ω2,

2u3

λ
− ωΩ,k2+r2

)
×sinc

(
u1 + u3 +

λ

Ω
(r1 − r2)

)
sinc(u1)sinc(u3)du1dω2du3.

This gives B̃2,(3,1)(r1, r2) = O(1/n). Next we consider B̃2,(2,1)(r1, r2). Again by integrating

out the locations and changing variables we have

B̃2,(2,1)(r1, r2)

=
λ2

(2π)3n2Ω2

a∑
k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)

∫
R3

f4(ω1, ω2, ω3)sinc

(
λ

2
(ω1 + ω2 + ωΩ,k2−k1)

)
×

sinc

(
λ

2
(ω1 + ω2 + ωΩ,k2−k1+r2−r1)

)
dω1dω2dω3

=
2λ

(2π)3n2Ω2

a∑
k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)

∫
R3

f4

(
2u1

λ
− u2 − ωΩ,k2−k1 , u2, u3

)
sinc (u1)×

sinc

(
u1 +

λ

Ω
(r2 − r1)π)

)
du1du2du3.

Thus B̃2,(2,1)(r1, r2) = O(λa/(n2Ω)). Note this bound is the same regardless of the sampling

scheme on frequencies used. Thus using (D.17) we have

|B̃2(r1, r2)| = O

(
1

n
+

λa

n2Ω

)
.

Thus (D.17) and the above prove (i) and (ii). �

We see from the above lemma that B1(r1, r2) and B3(r1, r2) are the leading higher order
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cumulant terms. We now obtain some approximations for these rather complex terms. Let

D1

( a
Ω

; r1, r2

)
=

1

(2π)2d

∫
[−2πa/Ω,2πa/Ω]2d

g(ω1)g(ω2)f4 (−ω1 − ωΩ,r1 ,−ω2,ω2 + ωΩ,r2) sinc

(
λ

Ω
(r2 − r1)π

)
D2

( a
Ω

; r1, r2

)
=

c4

(2π)2d

∫
[−2πa/Ω,2πa/Ω]2d

g(ω1)g(ω2)f4 (−ω1 − ωΩ,r1 ,ω2,−ω2 − ωΩ,r2) sinc

(
λ

Ω
(r2 + r1)π

)
.

(D.18)

Theorem D.2 Let us suppose that {Z(s); s ∈ Rd} is a fourth order stationary spatial ran-

dom field that satisfies Assumption 2.1(i), 2.3, 2.5, 2.7 and 2.6(a,c) or 2.6(b,c) are satisfied.

Let D1(·) and D2(·) be defined as in (D.18). Then all r1, r2 ∈ Zd

B1(r1, r2) = D1

( a
Ω

; r1, r2

)
+O

(
1

Ω
+

log2(λ)

λ
+

log(1 + λ
Ω
‖r1 − r2‖1)

λ
+

1

n

)
(D.19)

and

B3(r1, r2) = D2

( a
Ω

; r1, r2

)
+O

(
1

Ω
+

log2(λ)

λ
+

log(1 + λ
Ω
‖r1 − r2‖1)

λ

)
.

(D.20)

PROOF. We prove (D.19) for d = 1, the same proof applies to (D.20) and d > 1. We define

the series of approximations. Replacing 1
Ω2

∑a
k1,k2=−a with an double integral gives

B1,1(r1, r2) =
c4

π3(2π)3

∫
[−2πa/Ω,2πa/Ω]2

g(ω1)g(ω2)

∫
R3

f4

(
2u1

λ
− ω1 − ωΩ,r1 ,

2u2

λ
− ω2,

2u3

λ
+ ω2 + ωΩ,r2

)
×

×sinc

(
u1 + u2 + u3 +

λ

Ω
(r2 − r1)π

)
sinc(u1)sinc(u2)sinc(u3)du1du2du3dω1dω2.

Next replacing f4(2u1

λ
−ω1−ωΩ,r1 ,

2u2

λ
−ω2,

2u3

λ
+ω2+ωΩ,r2) with f4(−ω1−ωΩ,r1 ,−ω2, ω2+ωΩ,r2)

gives

B1,2(r1, r2) =
c4

(2π)2

∫
[−2πa/Ω,2πa/Ω]2

g(ω1)g(ω2)

f4 (−ω1 − ωΩ,r1 ,−ω2, ω2 + ωΩ,r2) sinc

(
λ

Ω
(r2 − r1)π

)
dω1dω2.
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Now we systematically take B1(r1, r2) from the above. By taking differences (see the proof

of Theorem B.2) we have

|B1(r1, r2)−B1,1(r1, r2)| = O

(
`3( λ

Ω
(r1 − r2))

Ω

)

and

|B1,1(r1, r2)−B1,2(r1, r2)| = O

(
log2(λ)

λ

)
,

thus giving the required result. �

The above result implies that in the case the process is non-Gaussian and λ
Ω
< 1 then

λdvar[Q̃a,Ω,λ(g; r)]

= C11

( a
Ω
,ωΩ,r

) λd
Ωd

2a∑
m=−2a

Sinc2

(
λ

Ω
mπ

)
+ C12

( a
Ω
,ωΩ,r

) λd
Ωd

2a∑
m=−2a

Sinc2

(
λ

Ω
(m+ r)π

)

+D1

( a
Ω

; r1, r2

)
+O

(˜̀(2)
a,Ω,λ +

log(1 + λ
Ω
|r1 − r2|)
λ

)
.

On the other hand if a coarse frequency grid is used with λ ≥ Ω then the rate of convergence

is worse with

Ωdvar[Q̃a,Ω,λ(g; r)]

= C11

( a
Ω
,ωΩ,r

) 2a∑
m=−2a

Sinc2

(
λ

Ω
mπ

)
+ C12

( a
Ω
,ωΩ,r

) 2a∑
m=−2a

Sinc2

(
λ

Ω
(m+ r)π

)

+
Ωd

λd
D1

( a
Ω

; r1, r2

)
+O

(˜̀(2)
a,Ω,λ +

log(1 + λ
Ω
‖r1 − r2‖1)

λ

)
.

E Approximations to the covariance and cumulants of

Q̃a,λ(g; r)

In this section, our objective is to obtain bounds for cumq

(
Q̃a,λ(g; r1), . . . , Q̃a,λ(g; rq)

)
, these

results will be used to prove the asymptotic expression for the variance of Q̃a,λ(g; r) (given in

Section B) and asymptotic normality of Q̃a,λ(g; r). (Fox & Taqqu, 1987), (Dahlhaus, 1989),

(Giraitis & Surgailis, 1990) (see also (Taqqu & Peccati, 2011)) have developed techniques

for dealing with the cumulants of sums of periodograms of Gaussian (discrete time) time

series, and one would have expected that these results could be used here. However, in

our setting there are a few differences that we now describe (i) despite the spatial random
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being Gaussian the locations are randomly sampled, thus the composite process Z(s) is not

Gaussian (we can only exploit the Gaussianity when we condition on the location) (ii) the

random field is defined over Rd (not Zd) (iii) the number of terms in the sums Q̃a,λ(·) is

not necessarily the sample size. Unfortunately, these differences make it difficult to apply

the above mentioned results to our setting. Therefore, in this section we consider cumulant

based results for spatial data observed at irregular locations. In order to reduce cumbersome

notation we focus on the case that the locations are from a uniform distribution.

As a simple motivation we first consider var[Q̃a,λ(1, 0)]. By using indecomposable parti-

tions we have

var[Q̃a,λ(1, 0)]

=
1

n4

n∑
j1,j2,j3,j4=1

j1 6=j2,j3 6=j4

a∑
k1,k2=−a

cov [Z(sj1)Z(sj2) exp(iωk1(sj1 − sj2)), Z(sj3)Z(sj4) exp(iωk2(sj3 − sj4))]

=
1

n4

n∑
j1,j2,j3,j4=1

j1 6=j2,j3 6=j4

a∑
k1,k2=−a

(
cum

[
Z(sj1)eisj1ωk1 , Z(sj3)e−isj3ωk2

]
cum

[
Z(sj2)e−isj2ωk1 , Z(sj4)eisj4ωk2

]
+cum

[
Z(sj1)eisj1ωk1 , Z(sj4)eisj4ωk2

]
cum

[
Z(sj2)e−isj2ωk1 , Z(sj3)e−isj3ωk2

]
+cum

[
Z(sj1)eisj1ωk1 , Z(sj2)e−isj2ωk1 , Z(sj3)e−isj3ωk2 , Z(sj4)eisj4ωk2

])
.

(E.1)

In order to evaluate the covariances in the above we condition on the locations {sj}. To

evaluate the fourth order cumulant of the above we appeal to a generalisation of the con-

ditional variance method. This expansion was first derived in (Brillinger, 1969), and in the

general setting it is stated as

cum(Y1, Y2, . . . , Yq)

=
∑
π

cum [cum(Yπ1|s1, . . . , sq), . . . , cum(Yπb|s1, . . . , sq)] , (E.2)

where the sum is over all partitions π of {1, . . . , q} and {π1, . . . , πb} are all the blocks in

the partition π. We use (E.2) to evaluate cum[Z(sj1)eisj1ωk1 , . . . , Z(sjq)e
isjqωkq ], where Yi =

Z(sji)e
isjiωki and we condition on the locations {sj}. Using this decomposition we observe

that because the spatial process is Gaussian, cum[Z(sj1)eisj1ωk1 , . . . , Z(sjq)e
isjqωkq ] can only

be composed of cumulants of covariances conditioned on the locations. Moreover, if s1, . . . , sq

are independent then by using the same reasoning we see that cum[Z(s1)eis1ωk1 , . . . , Z(sq)e
isqωkq ] =

0. Therefore, cum
[
Z(sj1)eisj1ωk1 , Z(sj2)e−isj2ωk1 , Z(sj3)eisj3ωk2 , Z(sj4)e−isj4 (ωk2

]
will only be
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non-zero if some elements of sj1 , sj2 , sj3 , sj4 are dependent. Using these rules we have

var[Q̃a,λ(1, 0)]

=
1

n4

∑
j1,j2,j3,j4∈D4

a∑
k1,k2=−a

(
cum

[
Z(sj1)eisj1ωk1 , Z(sj3)e−isj3ωk2

]
×

cum
[
Z(sj2)e−isj2ωk1 , Z(sj4)eisj4ωk2

]
+cum

[
Z(sj1)eisj1ωk1 , Z(sj4)eisj4ωk2

]
cum

[
Z(sj2)e−isj2ωk1 , Z(sj3)e−isj3ωk2

])
+

1

n4

∑
j1,j2,j3,j4∈D3

a∑
k1,k2=−a

(
cum

[
Z(sj1)eisj1ωk1 , Z(sj3)e−isj3ωk2

]
×

cum
[
Z(sj2)e−isj2ωk1 , Z(sj4)eisj4ωk2

]
+cum

[
Z(sj1)eisj1ωk1 , Z(sj4)eisj4ωk2

]
cum

[
Z(sj2)e−isj2ωk1 , Z(sj3)e−isj3ωk2

])
+

1

n4

∑
j1,j2,j3,j4∈D3

a∑
k1,k2=−a

cum
[
Z(sj1)eisj1ωk1 , Z(sj2)e−isj2ωk1 , Z(sj3)eisj3ωk2 , Z(sj4)e−isj4ωk2

]
,

(E.3)

whereD4 = {j1, . . . , j4 = all js are different}, D3 = {j1, . . . , j4; two js are the same but j1 6=
j2 and j3 6= j4} (noting that by definition of Q̃a,λ(1, 0) more than two elements in {j1, . . . , j4}
cannot be the same). We observe that |D4| = O(n4) and |D3| = O(n3), where | · | denotes

the cardinality of a set. We will show that the second and third terms are asymptotically

negligible with respect to the first term. To show this we require the following lemma.

Lemma E.1 Suppose Assumptions 2.1, 2.3, 2.5 and 2.6(b,c) hold (note we only use As-

sumption 2.6(c) to get ‘neater expressions in the proofs’ it is not needed to obtain the same

order). Then we have

sup
a

a∑
k1,k2=−a

cum[Z(s1)eis1ωk1 , Z(s2)e−is2ωk1 , Z(s3)e−is3ωk2 , Z(s1)eis1ωk2 ] = O(1)

(E.4)

sup
a

a∑
k1,k2=−a

cum
[
Z(s1)eis1ωk1 , Z(s1)eis1ωk2

]
cum

[
Z(s2)e−is2ωk1 , Z(s3)e−is3ωk2

]
= O(1).

(E.5)

PROOF. To show (E.4) we use conditional cumulants (see (E.2)). By using the conditional
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cumulant expansion and Gaussianity of Z(s) conditioned on the location we have

a∑
k1,k2=−a

cum[Z(s1)eis1ωk1 , Z(s2)e−is2ωk1 , Z(s3)e−is3ωk2 , Z(s1)eis1ωk2 ]

=
a∑

k1,k2=−a

cum[c(s1 − s2)eis1ωk1
−is2ωk1 , c(s1 − s3)e−is3ωk2

+is1ωk2 ] +

a∑
k1,k2=−a

cum[c(s1 − s3)eis1ωk1
−is3ωk2 , c(s1 − s2)e−is2ωk1

+is1ωk2 ] +

a∑
k1,k2=−a

cum[c(0)eis1(ωk1
+ωk2

), c(s2 − s3)e−is2ωk1
−is3ωk2 ]︸ ︷︷ ︸

=0 (since s1 is independent of s2 and s3)

= I1 + I2.

Writing I1 in terms of expectations and using the spectral representation of the covariance

we have

I1 =
a∑

k1,k2=−a

(
E
[
c(s1 − s2)c(s1 − s3)eis1(ωk1

+ωk2
)e−is3ωk2e−is2ωk1

]
− E

[
c(s1 − s2)eis1ωk1

−is2ωk1

]
×E
[
c(s1 − s3)eis1ωk2

−is3ωk2

])
= E1 − E2

where

E1 =
1

(2π)2

a∑
k1,k2=−a

∫ ∫
f(x)f(y)sinc

(
λ

2
(x+ y) + (k1 + k2)π

)
×

sinc

(
λ

2
x+ k1π

)
sinc

(
λ

2
y + k2π

)
dxdy

E2 =
1

(2π)2

a∑
k1,k2=−a

∫ ∫
f(x)f(y)sinc

(
λ

2
x+ k2π

)
sinc

(
λ

2
x+ k2π

)
×

sinc

(
λ

2
y + k1π

)
sinc

(
λ

2
y + k1π

)
dxdy.

To bound E1 we make a change of variables u = λx
2

+ k1π, v = λy
2

+ k2π, and replace sum

with integral (and use Lemma I.1) to give

E1 =
1

π2λ2

∫ ∫ a∑
k1,k2=−a

f(
2u

λ
− ωk1)f(

2v

λ
− ωk2)sinc(u+ v)sinc(u)sinc(v)dudv

=
1

(2π)2π2

∫ ∫
sinc(u+ v)sinc(u)sinc(v)×(∫ 2πa/λ

−2πa/λ

∫ 2πa/λ

−2πa/λ

f(
2u

λ
− ω1)f(

2v

λ
− ω2)dω1dω2

)
dudv +O(

1

λ
).
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Let G(2u
λ

) = 1
2π

∫ 2πa/λ

−2πa/λ
f(2u

λ
−ω)dω, then substituting this into the above and using equation

(F.3) in Lemma F.1 we have

E1 =
1

π2

∫ ∫
sinc(u+ v)sinc(u)sinc(v)G

(
2u

λ

)
G

(
2v

λ

)
dudv +O(

1

λ
) = O(1).

To bound E2 we use a similar technique and Lemma F.1(iii) to give E2 = O(1). Altogether,

this gives I1 = O(1). The same proof can be used to show that I2 = O(1). Altogether this

gives (E.4).

To bound (E.5), we observe that if k1 6= −k2, then cum
[
Z(s1)eis1ωk1 , Z(s1)eis1ωk2

]
=

E[c(0)eis(ωk1
+ωk2

)] = 0 otherwise cum
[
Z(s1)eis1ωk , Z(s1)e−is1ωk

]
= c(0). Using this, (E.5) can

be reduced to

a∑
k1,k2=−a

cum
[
Z(s1)eis1ωk1 , Z(s1)eis1ωk2

]
cum

[
Z(s2)e−is2ωk1 , Z(s3)e−is3ωk2

]
= c(0)

a∑
k=−a

cum
[
Z(s2)eis2ωk , Z(s3)e−is3ωk

]
=

c(0)

2π

∫ ∞
−∞

a∑
k=−a

f(x)sinc

(
λx

2
+ kπ

)
sinc

(
λx

2
+ kπ

)
dx

(
let ω =

λx

2
+ kπ

)

= c(0)

∫ ∞
−∞

1

πλ

a∑
k=−a

f

(
2ω

λ
− ωk

)
sinc2(ω)dω

=
c(0)

2π2

∫ ∞
−∞

sinc2(ω)

(∫ 2πa/λ

−2πa/λ

f

(
2ω

λ
− x
)
dx

)
dω +O

(
1

λ

)
= O(1),

thus proving (E.5). �

We now consider a generalization of the above result for general frequency grids ωΩ,k.

Lemma E.2 Suppose Assumptions 2.1, 2.3 and Assumptions 2.5(ii) and 2.6(b) hold. Sup-

pose that supω∈R |g(ω)| <∞. Then for all Ω, λ > 1 (for simplicity we assume 1 ≤ Ω, λ ≤ a)

we have ∣∣∣∣ a∑
k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)×

cum[Z(s1)eis1ωΩ,k1 , Z(s2)e−is2ωΩ,k1+r1 , Z(s3)e−is3ωΩ,k2 , Z(s1)eis1ωΩ,k2+r2 ]

∣∣∣∣
= O

(
Ω2

λ2

)
(E.6)
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and ∣∣∣∣ a∑
k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)cum
[
Z(s1)eis1ωΩ,k1 , Z(s1)e−is1ωΩ,k2

]
×

cum
[
Z(s2)e−is2ωΩ,k1+r1 , Z(s3)eis3ωΩ,k2+r2

] ∣∣∣∣
=

{
Ω
λ

+
[

Ω2

λ3 log3(a)
]
I λ

Ω
/∈Z

λ
Ω
≥ 1(

Ω
λ

)2
+ Ω

λ2 log(a) + Ω2

λ3 log3(a) λ
Ω
< 1

(E.7)

where IΩ/λ/∈Z = 1 when Ω/λ /∈ Z else it is zero.

PROOF. We start by obtaining the bound in (E.6)

D1

=
a∑

k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)cum[Z(s1)eis1ωΩ,k1 , Z(s2)e−is2ωΩ,k1+r1 , Z(s3)e−is3ωΩ,k2 , Z(s1)eis1ωΩ,k2+r2 ].

Applying the conditional cumulant formula in (E.2) by conditioning on location we have

D1

=
a∑

k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)cum[c(s1 − s2)eis1ωΩ,k1
−is2ωΩ,k1+r1 , c(s1 − s3)e−is3ωΩ,k2

+is1ωΩ,k2+r2 ] +

a∑
k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)cum[c(s1 − s3)eis1ωΩ,k1
−is3ωΩ,k2 , c(s1 − s2)e−is2ωΩ,k1+r1

+is1ωΩ,k2+r2 ] +

a∑
k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2) cum[c(0)eis1(ωΩ,k1
+ωΩ,k2

), c(s2 − s3)e−is2ωΩ,k1
−is3ωΩ,k2︸ ︷︷ ︸

=0 (since locations are independent)

] = I1 + I2.

Expanding I1 just as was done in the proof of Lemma E.1 gives I1 = E1 − E2 where

E1 =
1

(2π)2

a∑
k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)

∫ ∫
f(x)f(y)sinc

(
λ

2
[(x+ y) + ωΩ,k1+k2+r2 ]

)
×sinc

(
λ

2
[x+ ωΩ,k1+r2 ]

)
sinc

(
λ

2
[y + ωΩ,k2 ]

)
dxdy

and E2 is defined similarly. Changing variables u = λ
2

[x+ ωΩ,k1+r2 ] and v = λ
2

[y + ωΩ,k2 ]

gives

E1 =
1

π2λ2

a∑
k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)

∫ ∫
f

(
2u

λ
− ωΩ,k1+r1

)
f

(
2v

λ
− ωΩ,k2

)
sinc

(
u+ v +

λ

Ω
(r2 − r2)π

)
sinc(u)sinc(v)dudv.
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Since 1
Ω2

∑
k1,k2
|g(ωΩ,k1)g(ωΩ,k2)|f(2u

λ
− ωΩ,k1+r1)f(2v

λ
− ωΩ,k2) < ∞ we have E1 = O(Ω2

λ2 ).

Similarly we can show that E2 = O(Ω2

λ2 ), thus I1 = O(Ω2

λ2 ). The same proof can be used to

show that I2 = O(Ω2

λ2 ). Thus

|D1| = O

(
Ω2

λ2

)
and (E.6).

Next we consider D2, where

D2

=
a∑

k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)cum
[
Z(s1)eis1ωΩ,k1 , Z(s1)e−is1ωΩ,k2

]
×

cum
[
Z(s2)e−is2ωΩ,k1+r1 , Z(s3)eis3ωΩ,k2+r2

]
.

By conditioning on location and using that cum
[
Z(s1)eis1ωΩ,k1 , Z(s1)e−is1ωΩ,k2

]
= c(0)E

[
eis1ωΩ,k1−k2

]
we have

D2 = c(0)
a∑

k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)E
[
eis1ωΩ,k1−k2

]
cum

[
Z(s2)e−is2ωΩ,k1+r1 , Z(s3)eis3ωΩ,k2+r2

]
=

a∑
k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)sinc

(
λ

Ω
(k1 − k2)π

)
×∫

f(x)sinc

(
λ

2
(x+ ωΩ,k1+r1)

)
sinc

(
λ

2
(x+ ωΩ,k2+r2)

)
dx.

To bound D2 we need to consider two separate cases, when λ/Ω ∈ Z and when λ/Ω /∈ Z.

If the ratio λ/Ω ∈ Z, then for k1 6= k2, we have sinc
(
λ
Ω

(k1 − k2)π
)

= 0. This reduces the

above double summand in D2 to a single summand and

D2 = c(0)
a∑

k=−a

|g(ωΩ,k)|2
∫
f(x)sinc

(
λ

2
(x+ ωΩ,k+r1)

)
sinc

(
λ

2
(x+ ωΩ,k+r2

)
dx

=
c(0)

λ

a∑
k=−a

|g(ωΩ,k)|2
∫
f

(
2u

λ
− ωΩ,k+r1

)
sinc (u) sinc

(
u+

λ

Ω
(r2 − r2)π

)
du = O

(
Ω

λ

)
.

On the other hand, if λ/Ω /∈ Z, then D2 remains a double sum. In this case we make a

change of variables u = λ
2
(x+ ωΩ,k1+r1)

D2 =
c(0)

λ

a∑
k1,k2=−a

g(ωΩ,k1)g(ωΩ,k2)sinc

(
λ

Ω
(k1 − k2)π

)
×
∫
f

(
2u

λ
− ωΩ,k1+r1

)
sinc (u) sinc

(
u+

λ

Ω
(k2 − k1 + r2 − r1)π

)
du.
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We make the change of variable m = k2 − k1, this gives

D2 =
c(0)

λ

2a∑
m=−2a

min(a,a+m)∑
k1=max(−a,−a+m)

g(ωΩ,k1)g(ωΩ,m−k1)sinc

(
λ

Ω
mπ

)

×
∫
f

(
2u

λ
− ωΩ,k1+r1

)
sinc

(
u+

λ

Ω
(m+ r2 − r1)π

)
sinc (u) du

=
Ωc(0)

λ

2a∑
m=−2a

sinc

(
λ

Ω
mπ

)∫
R

sinc (u) sinc

(
u+

λ

Ω
(m+ r2 − r1)π

)

× 1

Ω

min(a,a+m)∑
k1=max(−a,−a+m)

g(ωΩ,k1)g(ωΩ,m−k1)f

(
2u

λ
− ωΩ,k1+r1

)
du

To bound the above we make a series of approximations. To do so, we first use the `p(u)

notation introduced in Lemma F.1 and note that
a∑

m=−a

`p

(
λ

Ω
mπ

)
≤ C

Ω

λ
logp+1(a)

and
a∑

m=−a

`0

(
λ

Ω
m

)
`p

(
λ

Ω
(m+ r2 − r1)π

)
=

∑
m≤|λe/Ω|

`0

(
λ

Ω
m

)
`p

(
λ

Ω
(m+ r2 − r1)

)
+

∑
m>|λe/Ω|

`0

(
λ

Ω
m

)
`p

(
λ

Ω
(m+ r2 − r1)

)

≤ C

{ (
Ω
λ

)2
logp

(
λ
Ω
a
)

λ
Ω
≥ 1(

Ω
λ

)
logp+1

(
λ
Ω
a
)

λ
Ω
< 1

.

(E.8)

Returning to D2, we note that the sum over 1
Ω

∑
k1

is finite. Thus we replace the sum with

an integral and define

D2,1 =
c(0)Ω

λ2π

2a∑
m=−2a

sinc

(
λ

Ω
mπ

)∫
R

∫ min(a,a+m)/Ω

max(−a,−a+m)/Ω

g(ω)g(ω − ωΩ,k1)f

(
2u

λ
− ω + ωΩ,r1

)
sinc (u) sinc

(
u+

λ

Ω
(m+ r2 − r1)π

)
dωdu.

To bound the difference we use (E.8)∣∣D2 −D2,1

∣∣ ≤ C

λ2π

2a∑
m=−2a

∣∣∣∣sinc

(
λ

Ω
mπ

)∣∣∣∣ `1

(
λ

Ω
(m+ r2 − r1)

)

≤ C

λ2π

2a∑
m=−2a

`0

(
λ

Ω
mπ

)
`1

(
λ

Ω
(m+ r2 − r1)π

)

≤ C

λ

{ (
Ω
λ

)2
log
(
λ
Ω
a
)

λ
Ω
≥ 1(

Ω
λ

)
log2

(
λ
Ω
a
)

λ
Ω
< 1

≤ C

{
Ω2

λ3 log(a) λ
Ω
≥ 1

Ω
λ2 log2(a) λ

Ω
< 1

(E.9)
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where the last bound above uses that 1 ≤ Ω, λ ≤ Ca.

Next we replace f
(

2u
λ
− ω + ωr1

)
with f (−ω + ωr1) in D2,1 and define

D2,2 =
c(0)Ω

λ2π

2a∑
m=−2a

sinc

(
λ

Ω
m

)∫
R

∫ min(a,a+m)/Ω

max(−a,−a+m)/Ω

g(ω)g(ω − ωΩ,k1)f (−ω + ωΩ,r1)

sinc (u) sinc

(
u+

λ

Ω
(m+ r2 − r1)π

)
dωdu

=
c(0)Ω

λ2π

2a∑
m=−2a

sinc

(
λ

Ω
mπ

)
sinc

(
λ

Ω
(m+ r2 − r1)π

)
×

∫ min(a,a+m)/Ω

max(−a,−a+m)/Ω

g(ω)g(ω − ωΩ,k1)f (−ω + ωΩ,r1) dω.

By using Lemma F.2, equation (F.5) this gives the bound

|D2,1 −D2,2|

≤ c(0)Ω

λ22π

2a∑
m=−2a

∣∣∣∣sinc

(
λ

Ω
mπ

)∣∣∣∣ (log λ+ log

(
1 +

λ

Ω
(|m+ r2 − r1|)

))

≤ CΩ log λ

λ2

2a∑
m=−2a

`0

(
λ

Ω
mπ

)
+
CΩ

λ2

2a∑
m=−2a

`1

(
λ

Ω
(|m|+ |r2 − r1|)π

)
.

By using (E.8) we have

|D2,1 −D2,2| ≤ C
Ω

λ2

{
log λ

(
Ω
λ

)
log
(
λ
Ω
a
)

+
(

Ω
λ

)
log2

(
λ
Ω
a
)

λ
Ω
≥ 1

log λ
(

Ω
λ

)
log
(
λ
Ω
a
)

+
(

Ω
λ

)
log2

(
λ
Ω
a
)

λ
Ω
< 1

≤ C
Ω2

λ3
log2(

λ

Ω
a). (E.10)

Finally, we bound D2,2. By using the Cauchy-Schwarz inequality and (D.5) we have

D2,2 ≤ C
Ω

λ

2a∑
m=−2a

sinc2

(
λ

Ω
m

)
≤ C

{
Ω
λ

λ
Ω
> 1(

Ω
λ

)2 λ
Ω
< 1

Altogether, by using (E.9), (E.10) and (E.11) the bound for D2 is

D2 =

{
Ω
λ

+ Ω2

λ3 log3(a)Iλ/Ω/∈Z
λ
Ω
> 1(

Ω
λ

)2
+ Ω

λ2 log(a) + Ω2

λ3 log3(a) λ
Ω
< 1

Thus giving the result. �
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We now derive an expression for var[Q̃a,λ(1, 0)], by using Lemma E.1 we have

var[Q̃a,λ(1, 0)]

=
1

n4

∑
j1,j2,j3,j4∈D4

a∑
k1,k2=−a

(
cum

[
Z(sj1)eisj1ωk1 , Z(sj3)e−isj3ωk2

]
× (E.11)

cum
[
Z(sj2)e−isj2ωk1 , Z(sj4)eisj4ωk2

]
+cum

[
Z(sj1)eisj1ωk1 , Z(sj4)eisj4ωk2

]
cum

[
Z(sj2)e−isj2ωk1 , Z(sj3)e−isj3ωk2

])
+O

(
1

n

)
.

(E.12)

In Lemma B.1 we have shown that the covariance terms above are of order O(λ−1), thus

dominating the fourth order cumulant terms which is of order O(n−1) (so long as λ << n).

Lemma E.3 Suppose that {Z(s); s ∈ Rd} is a mean zero Gaussian random process and

{sj} are iid random variables. This means conditioned on the location only the second order

cumulant is non-zero. Using this and (E.2) the following hold:

(i) cum[Z(sj1)eisj1ωk1 , . . . , Z(sjq)e
isjqωkq ] can be written as the sum of products of cumu-

lants of the spatial covariance conditioned on location. Therefore, it is easily seen that

the odd order cumulant

cum2q+1[Z(sj1) exp(isj1ωk1), . . . , Z(sj2q+1 exp(isj2q+1ωk2q+1))] = 0 for all q and regard-

less of {sj} being dependent or not.

(ii) If more than (q + 1) locations {sj; j = 1, . . . , 2q} are independent, then

cum2q[Z(sj1) exp(isj1ωk1), . . . , Z(sj2q) exp(isj2qωk2q))] = 0.

Lemma E.4 Suppose Assumptions 2.1, 2.3 2.5 and 2.6(b) are satisfied, and d = 1. Then

we have

cum3[Q̃a,λ(g, r)] = O

(
log2(a)

λ2

)
(E.13)

with λd/(log2(a)n)→ 0 as λ→∞, n→∞ and a→∞.

PROOF. We prove the result for cum3[Q̃a,λ(1, 0)], noting that the proof is identical for

general g and r. We first expand cum3[Q̃a,λ(1, 0)] using indecomposable partitions. Using
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Lemma E.3(i) we note that the third order cumulant is zero, therefore

cum3[Q̃a,λ(1, 0)]

=
1

n6

∑
j∈D

a∑
k1,k2,k3=−a

cum
[
Z(sj1)Z(sj2) exp(iωk1(sj1 − sj2)),

Z(sj3)Z(sj4) exp(iωk2(sj3 − sj4)), Z(sj5)Z(sj6) exp(iωk3(sj5 − sj6))
]

=
1

n6

∑
j∈D

∑
π(2,2,2),∈P2,2,2

A
j

2,2,2(π(2,2,2)) +
1

n6

∑
j∈D

∑
π4,2∈P4,2

A
j

4,2(π(4,2)) +
1

n6

∑
j∈D

A
j

6

= B2,2,2 +B4,2 +B6,

where D = {j1, . . . , j6 ∈ {1, . . . , n} but j1 6= j2, j3 6= j4, j5 6= j6}, A
j

2,2,2 consists of only the

product of cumulants of order two and P2,2,2 is the set of all cumulants of order two from the

set of indecomposable partitions of {(1, 2), (3, 4), (5, 6)}, Aj4,2 consists of only the product

of 4th and 2nd order cumulants and P4,2 is the set of all 4th order and 2nd order cumu-

lant indecomposable partitions of {(1, 2), (3, 4), (5, 6)}, finally A
j

6 is the 6th order cumulant.

Examples of A’s are given below

A
j

2,2,2(π(2,2,2),1)

=
a∑

k1,k2,k3=−a

cum
[
Z(sj1)eisj1ωk1 , Z(sj3)eisj3ωk2

]
cum

[
Z(sj2)e−isj2ωk1 , Z(sj5)eisj5ωk3

]
×cum

[
Z(sj4)e−isj4ωk2 , Z(sj6)e−isj6ωk3

]
=

a∑
k1,k2,k3=−a

E[c(sj1 − sj3)ei(sj1ωk1
+sj3ωk2

)]E[c(sj2 − sj5)ei(−sj2ωk1
+sj5ωk3

)]×

E[c(sj4 − sj6)e−i(sj4ωk2
+sj6ωk3

)],

(E.14)

A
j

4,2(π(4,2),1)

=
a∑

k1,k2,k3=−a

cum[Z(sj4) exp(−isj4ωk2), Z(sj6) exp(−isj6ωk3)]

cum[Z(sj1) exp(isj1ωk1), Z(sj2) exp(−isj2ωk1), Z(sj3) exp(isj3ωk2), Z(sj5) exp(isj5ωk3)],

(E.15)

A
j

6

=
a∑

k1,k2,k3=−a

cum[Z(sj1) exp(isj1ωk1), Z(sj2) exp(−isj2ωk1), Z(sj3) exp(isj3ωk2),

Z(sj4) exp(−isj4ωk2), Z(sj5) exp(isj5ωk3), Z(sj6) exp(−isj6ωk3)],

(E.16)

where j = (j1, . . . , j6).
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Bound for B222

We will show that B222 is the leading term in cum3(Q̃a,λ(g; 0)). The set D is split into four

sets, D6 where all the elements of j are different, and for 3 ≤ i ≤ 5, Di where i elements in

j are different, such that

B2,2,2 =
1

n6

3∑
i=0

∑
j∈D6−i

∑
π(2,2,2)∈P(2,2,2)

A
j

2,2,2(π(2,2,2)).

We start by bounding the partition given in (E.14), we later explain how the same bounds

can be obtained for other indecomposable partitions in P2,2,2. By using the spectral repre-

sentation of the covariance and that |D6| = O(n6), it is straightforward to show that

1

n6

∑
j∈D6

A
j

2,2,2(π(2,2,2),1)

=
∑

k1,k2,k3

c6

(2π)3λ6

∫
R3

∫
[−λ/2,λ/2]6

f(x)f(y)f(z) exp(iωk1(s1 − s2))×

exp(iωk2(s3 − s4)) exp(iωk3(s5 − s6))

exp(ix(s1 − s3)) exp(iy(s4 − s6)) exp(iz(s2 − s5))
3∏
j=1

ds2j−1ds2jdxdydz

=
c6

(2π)3

∑
k1,k2,k3

∫
R3

f(x)f(y)f(z)sinc

(
λx

2
+ k1π

)
sinc

(
λz

2
− k1π

)
×

sinc

(
λx

2
− k2π

)
sinc

(
λy

2
− k2π

)
sinc

(
λz

2
− k3π

)
sinc

(
λy

2
+ k3π

)
dxdydz,(E.17)

where c6 = n(n − 1) . . . (n − 5)/n6. By changing variables x = λx
2

+ k1π, y = λy
2
− k2π and

z = λz
2
− k3π we have

1

n6

∑
j∈D6

A
j

2,2,2(π(2,2,2),1)

=
c6

(2π)3

∑
k1,k2,k3

1

λ3

∫
R3

f(
2x

λ
− ωk1)f(

2y

λ
+ ωk2)f(

2z

λ
+ ωk3)sinc(x)sinc(z)sinc(y)

sinc(x− (k2 + k1)π)sinc(y + (k3 + k2)π)sinc(z − (k1 − k3)π)dxdydz.

(E.18)

In order to understand how this case can generalise to other partitions in P2,2,2, we represent

the ks inside the sinc function using the linear equations −1 −1 0

−1 0 1

0 1 1


 k1

k2

k3

 , (E.19)
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where we observe that the above is a rank two matrix. Based on this we make the following

change of variables k1 = k1, m1 = k2 + k1 and m2 = k1 − k3, and rewrite the sum as

1

n6

∑
j∈D6

A
j

2,2,2(π(2,2,2),1)

=
c6

(2π)3

∑
k1,m1,m2

1

λ3

∫
R3

f

(
2x

λ
− ωk1

)
f

(
2y

λ
+ ωm1−k1

)
f

(
2z

λ
+ ωk1−m2

)
sinc(x)sinc(z)sinc(y)

sinc(x−m1π)sinc(y − (m2 −m1)π)sinc(z −m2π)dxdydz

=
c6

λ2(2π)3

∑
m1,m2

∫
R3

sinc(x)sinc(x−m1π)sinc(y)sinc(y + (m1 −m2)π)sinc(z)sinc(z −m2π)︸ ︷︷ ︸
contains two linearly independent m terms

×1

λ

∑
k1

f

(
2x

λ
− ωk1

)
f

(
2y

λ
+ ωm1−k1

)
f

(
2z

λ
− ωk1−m2

)
dxdydz.

(E.20)

Finally, we apply Lemma F.1(iv) to give

1

n6

∑
j∈D6

A
j

2,2,2(π(2,2,2),1) = O

(
log2 a

λ2

)
. (E.21)

The above only gives the bound for one partition of P2,2,2, but we now show that the same

bound applies to all the other partitions. Looking back at (E.18) and comparing with (E.20),

the reason that only one of the three λs in the denominator of (E.18) gets ‘swallowed’ is

because the matrix in (E.19) has rank two. Therefore, there are two linearly independent ms

in the sinc function of (E.18), thus by applying Lemma F.1(iv) the sum
∑

m1,m2
only grows

with rate O(log2 a). Moreover, it can be shown that all indecomposable partitions of P2,2,2

correspond to rank two matrices (for a proof see equation (A.13) in (Deo & Chen, 2000)).

Thus all indecomposable partitions in P2,2,2 will have the same order, which altogether gives

1

n6

∑
j∈D6

∑
π(2,2,2)∈P1

A
j

2,2,2(π(2,2,2)) = O

(
log2 a

λ2

)
.

Now we consider the case that j ∈ D5. In this case, there are two ‘typical’ cases j =

(j1, j2, j3, j4, j1, j6), which gives

A
j

2,2,2(π(2,2,2),1) =

cum
[
Z(sj1)eisj1ωk1 , Z(sj3)eisj3ωk2

]
cum

[
Z(sj2)e−isj2ωk1 , Z(sj1)eisj1ωk3

]
×

cum
[
Z(sj4)e−isj4ωk2 , Z(sj6)e−isj6ωk3

]
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and j = (j1, j2, j1, j4, j5, j6), which gives

A
j

2,2,2(π(2,2,2),1) =

cum
[
Z(sj1)eisj1ωk1 , Z(sj1)eisj1ωk2

]
cum

[
Z(sj2)e−isj2ωk1 , Z(sj5)eisj5ωk3

]
×

cum
[
Z(sj4)e−isj4ωk2 , Z(sj6)e−isj6ωk3

]
.

Using the same method used to bound (E.21), when j = (j1, j2, j3, j4, j1, j6) A
j

2,2,2(π(2,2,2),1) =

O( log2 a
λ2 ). However, when j = (j1, j2, j1, j4, j5, j6) we use the same proof used to prove (E.5)

to give A
j

2,2,2(π(2,2,2),1) = O( 1
λ
). As we get similar expansions for all j ∈ D5 and |D5| = O(n5)

we have

1

n6

∑
j∈D5

∑
π(2,2,2)∈P2,2,2

A
j

2,2,2(π(2,2,2)) = O

(
1

λn
+

log2(a)

nλ2

)
.

Similarly we can show that

1

n6

∑
j∈D4

∑
π(2,2,2)∈P2,2,2

A
j

2,2,2(π(2,2,2)) = O

(
1

λn2
+

log2(a)

n2λ2

)

and

1

n6

∑
j∈D3

∑
π(2,2,2),∈P2,2,2

A
j

2,2,2(π(2,2,2)) = O

(
1

n3
+

log2(a)

n3λ2

)
.

Therefore, if n >> λ/ log2(a) we have B2,2,2 = O( log2(a)
λ2 ).

Bound for B4,2

To bound B4,2 we consider the ‘typical’ partition given in (E.15). Since A
j

4,2(π(4,2),1) involves

fourth order cumulants by Lemma E.3(ii) it will be zero in the case that the j are all different.

Therefore, only a maximum of five terms in j can be different, which gives

1

n6

∑
j∈D

A
j

4,2(π(4,2),1) =
1

n6

3∑
i=1

∑
j∈D6−i

A
j

4,2(π(4,2),1).

We will show that for j ∈ D5, A
j

4,2(π(4,2),1) will not be as small as O(log2(a)/λ2), however, this

will be compensated by |D5| = O(n5) (noting that |D6| = O(n6)). Let j = (j1, j2, j3, j4, j1, j6),

then expanding the fourth order cumulant in A
j

4,2(π(4,2),1) and using conditional cumulants
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(see (E.2)) we have

A
j

4,2(π(4,2),1)

=
a∑

k1,k2,k3=−a

cum[Z(sj4) exp(−isj4ωk2), Z(sj6) exp(−isj6ωk3)]

cum[Z(sj1) exp(isj1ωk1), Z(sj2) exp(−isj2ωk1), Z(sj3) exp(isj3ωk2), Z(sj5) exp(isj5ωk3)]

=
a∑

k1,k2,k3=−a

{
cum

[
c(s1 − s2)eiωk1

(s1−s2), c(s3 − s1)eis3ωk2
+is1ωk3

]
+cum

[
c(s1 − s3)ei(s1ωk1

+s3ωk2
), c(s1 − s2)eis1ωk3

−is2ωk1

]
+cum

[
c(0)eis1ωk1

+is1ωk3 , c(s2 − s3)e−is2ωk1
+is3ωk2

]}
E
[
c(s4 − s6)e−is4ωk2

−is6ωk3

]
= A

j

4,2(π(4,2),1,Ω1) + A
j

4,2(π(4,2),1,Ω2) + A
j

4,2(π(4,2),1,Ω3),

(E.22)

where we use the notation Ω to denote the partition of the fourth order cumulant into its

conditional cumulants. To bound each term we expand the covariances as expectations, this

gives

A
j

4,2(π(4,2),1,Ω1)

=
a∑

k1,k2,k3=−a

{
E
[
c(s1 − s2)c(s3 − s1)eiωk1

(s1−s2)eis3ωk2
+is1ωk3

]
E
[
c(s4 − s6)e−is4ωk2

−is6ωk3

]
−

E
[
c(s1 − s2)eiωk1

(s1−s2)
]
E
[
c(s3 − s1)eis3ωk2

+is1ωk3

]
E
[
c(s4 − s6)e−is4ωk2

−is6ωk3

]}
= A

j

4,2(π(4,2),1,Ω1,Π1) + A
j

4,2(π(4,2),1,Ω1,Π2),

where we use the notation Π to denote the expansion of the cumulants of the spatial co-

variances expanded into expectations. To bound A
j

4,2(π(4,2),1,Ω1,Π1) we use the spectral

representation theorem to give

A
j

4,2(π(4,2),1,Ω1,Π1) =

1

(2π)3

∫
R3

a∑
k1,k2,k3=−a

f(x)f(y)f(z)sinc

(
λ(x− y)

2
+ (k1 + k3)π

)
sinc

(
λx

2
+ k1π

)
×

sinc

(
λy

2
+ k2π

)
sinc

(
λz

2
− k2π

)
sinc

(
λz

2
+ k3π

)
dxdydz.

By changing variables

A
j

4,2(π(4,2),1,Ω1,Π1) =
1

π3λ3

a∑
k1,k2,k3=−a

∫
R3

f

(
2u

λ
− ωk1

)
f

(
2v

λ
− ωk2

)
f

(
2w

λ
− ωk3

)
×

sinc(u− v + (k2 + k3)π)sinc(u)sinc(v)sinc(w)sinc(w − (k2 + k3)π)dudvdw.
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Just as in the bound for B2,2,2, we represent the ks inside the sinc function as a set of linear

equations  0 1 1

0 0 0

0 1 1


 k1

k2

k3

 , (E.23)

observing the matrix has rank one. We make a change of variables m = k2 + k3, k1 = k1 and

k2 = k2 to give

A
j

4,2(π(4,2),1,Ω1,Π1)

=
1

π3λ

∫
R3

1

λ2

a∑
k1,k2=−a

f

(
2u

λ
− ωk1

)
f

(
2v

λ
− ωk2

)
f

(
2w

λ
− ωm1−k2

)
×∑

m

sinc(u− v +mπ)sinc(u)sinc(v)sinc(w)sinc(w −mπ)dudvdw

=
23

λ

∫
R3

∑
m

Gλ,m

(
2u

λ
,
2v

λ
,
2w

λ

)
sinc(u− v +mπ)sinc(u)sinc(v)sinc(w)sinc(w −mπ)dudvdw,

where Gλ,m(2u
λ
, 2v
λ
, 2w
λ

) = 1
λ2

∑a
k1,k2=−a f(2u

λ
−ωk1)f(2v

λ
−ωk2)f(2w

λ
−ωm−k2). Taking absolutes

gives

|Aj4,2(π(4,2),1,Ω1,Π1)| ≤ C

λ

∫
R3

∑
m

|sinc(u− v +mπ)sinc(w −mπ)sinc(u)sinc(v)sinc(w)|dudvdw

Since the above contains m in the sinc function we use Lemma F.1(i), equations (F.1) and

(F.2), to show

|Aj4,2(π(4,2),1,Ω1,Π1)| ≤ C

λ

∫
R3

∑
m

|sinc(u− v +mπ)sinc(w −mπ)sinc(u)sinc(v)sinc(w)|dudvdw

≤ C

λ

∑
m

`1(mπ)`2(mπ) = O(λ−1),

where the functions `1(·) and `2(·) are defined in Lemma F.1(i). Thus |Aj4,2(π(4,2),1,Ω1,Π1)| =
O( 1

λ
). We use the same method used to bound (E.21) to show that A

j

4,2(π(4,2),1,Ω1,Π2) =

O( log2(a)
λ2 ) and |Aj4,2(π(4,2),1,Ω2)| = O( 1

λ
). Furthermore, it is straightforward to see that by

the independence of s1, s2 and s3 that A
j

4,2(π(4,2),1,Ω3) = 0 (recalling that A
j

4,2(π(4,2),1,Ω3)

is defined in equation (E.22)). Thus altogether we have for j = (j1, j2, j3, j4, j1, j6) and the

partition π(4,2),1, that |Aj4,2(π(4,2),1)| = O( 1
λ
). However, it is important to note for all other

j ∈ D5 and partitions in P4,2 the same method will lead to a similar decomposition given

in (E.22) and the rank one matrix given in (E.23). The rank one matrix means one linearly
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independent m in the sinc functions, thus |Aj4,2(π4,2)| = O( 1
λ
) for all j ∈ D5 and π4,2 ∈ P4,2.

Since |D5| = O(n5) we have

1

n6

∑
j∈D5

∑
π4,2∈P4,2

A
j

4,2(π4,2) = O

(
1

λn
+

log2 a

λ2n

)
= O

(
log2 a

λ2

)

if n >> λ/ log2(a) (i.e. λ
n log2 a

→ 0). For j ∈ D4 and j ∈ D3 we use the same argument,

noting that the number of linearly independent m’s in the sinc functions goes down but to

compensate, |D4| = O(n4) and |D3| = O(n3). Therefore, if n >> log2(a)/λ, then

B4,2 =
1

n6

3∑
i=1

∑
j∈D6−i

∑
π4,2∈P4,2

A
j

4,2(π4,2) = O

(
log2 a

λ2

)
.

Bound for B6

Finally, we bound B6. By using Lemma E.3(ii) we observe that A
j

6(k1, k2, k3) = 0 if more

than four elements of j are different. Thus

B6 =
1

n6

3∑
i=2

∑
j∈D6−i

A
j

6.

We start by considering the case that j = (j1, j2, j1, j4, j1, j6) (three elements in j are the

same), then by using conditional cumulants we have

A
j

6

=
a∑

k1,k2,k3=−a

cum[Z(s1)eis1ωk1 , Z(s2)e−is2ωk1 , Z(s1)eis1ωk2 ,

Z(s4)e−is4ωk2 , Z(s1)eis1ωk3 , Z(s6)e−is6ωk3 ]

=
a∑

k1,k2,k3=−a

∑
Ω∈R

A
j

6(Ω),

where R is the set of all pairwise partitions of {1, 2, 1, 4, 1, 6}, for example

A
j

6(Ω1) = cum
[
c(s1 − s2)eiωk1

(s1−s2), c(s1 − s4)eiωk2
(s1−s4), c(s1 − s6)eiωk3

(s1−s6)
]
.
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We will first bound the above and then explain how this generalises to the other Ω ∈ R and

j ∈ D4. Expanding the above third order cumulant in terms of expectations gives

A
j

6(Ω1)

=
a∑

k1,k2,k3=−a

{
E
[
c(s1 − s2)eiωk1

(s1−s2)c(s1 − s4)eiωk2
(s1−s4)c(s1 − s6)eiωk3

(s1−s6)
]
−

E
[
c(s1 − s2)eiωk1

(s1−s2)
]
E
[
c(s1 − s4)eiωk2

(s1−s4)c(s1 − s6)eiωk3
(s1−s6)

]
−

E
[
c(s1 − s2)eiωk1

(s1−s2)c(s1 − s4)eiωk2
(s1−s4)

)
E
[
c(s1 − s6)eiωk3

(s1−s6)
]
−

E
[
c(s1 − s2)eiωk1

(s1−s2)c(s1 − s6)eiωk3
(s1−s6)

]
E
[
c(s1 − s4)eiωk2

(s1−s4)
]

+

2E
[
c(s1 − s2)eiωk1

(s1−s2)
]
E
[
c(s1 − s4)eiωk2

(s1−s4)
]
E
[
c(s1 − s6)eiωk3

(s1−s6)
]}

=
5∑
`=1

A
j

6(Ω1,Π`).

We observe that for 2 ≤ ` ≤ 5, A
j

6(Ω1,Π`) resembles A
j

4,2(π(4,2),1,Ω1,Π1) defined in (E.23),

thus the same proof used to bound the terms in (E.23) can be use to show that for 2 ≤ ` ≤ 5

A
j

6(Ω1,Π`) = O( 1
λ
). However, the first term A

j

6(Ω1,Π1) involves just one expectation, and is

not included in the previous cases. By using the spectral representation theorem we have

A
j

6(Ω1,Π1)

=
a∑

k1,k2,k3=−a

E
[
c(s1 − s2)eiωk1

(s1−s2)c(s1 − s4)eiωk2
(s1−s4)c(s1 − s6)eiωk3

(s1−s6)
]

=
1

(2π)3

a∑
k1,k2,k3=−a

∫ ∫ ∫
f(x)f(y)f(z)sinc

(
λ(x+ y + z)

2
+ (k1 + k2 + k3)π

)
sinc

(
λx

2
+ k1π

)
sinc

(
λy

2
+ k2π

)
sinc

(
λz

2
+ k3π

)
dxdydz

=
23

(2π)3λ3

a∑
k1,k2,k3=−a

∫ ∫ ∫
f(

2u

λ
− ωk1)f(

2v

λ
− ωk2)f(

2w

λ
− ωk3)×

sinc(u+ v + w)sinc(u)sinc(v)sinc(w)dudvdw.

It is obvious that the ks within the sinc function correspond to a rank zero matrix, and thus

A6(Ω1,Π1) = O(1). Therefore, A
j

6(Ω1) = O(1). A similar bound holds for all j ∈ D4, this

we have

1

n6

∑
j∈D4

A
j

6(Ω1) = O

(
1

n2

)
,
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since |D4| = O(n4). Indeed, the same argument applies to the other partitions Ω and j ∈ D3,

thus altogether we have

B6 =
1

n6

∑
Ω∈R

3∑
i=2

∑
j∈D6−i

A
j

6(Ω) = O

(
1

n2

)
.

Altogether, using the bounds derived for B2,2,2, B4,2 and B6 we have

cum3(Q̃a,λ(1, 0)) = O

(
log2(a)

λ2
+

1

nλ
+

log2(a)

λ2n
+

1

n2

)
= O

(
log2(a)

λ2

)
,

where the last bound is due to the conditions on a, n and λ. This gives the result. �

We now generalize the above results to higher order cumulants.

Lemma E.5 Suppose Assumptions 2.1, 2.3, 2.5 and 2.6(b) are satisfied, and d = 1. Then

for q ≥ 3 we have

cumq[Q̃a,λ(g, r)] = O

(
log2(q−2)(a)

λq−1

)
, (E.24)

cumq[Q̃a,λ(g, r1), . . . , Q̃a,λ(g, rq)] = O

(
log2(q−2)(a)

λq−1

)
(E.25)

and in the case d > 1, we have

cumq[Q̃a,λ(g, r1), . . . , Q̃a,λ(g, rq)] = O

(
log2d(q−2)(a)

λd(q−1)

)
(E.26)

with λd/(log2(a)n)→ 0 as λ→∞, n→∞ and a→∞.

PROOF. The proof essentially follows the same method used to bound the second and third

cumulants. We first prove (E.24). To simplify the notation we prove the result for g = 1 and

r = 0, noting that the proof in the general case is identical. Expanding out cumq[Q̃a,λ(1, 0)]

and using indecomposable partitions gives

cumq[Q̃a,λ(1, 0)]

=
1

n2q

∑
j1,...,j2q∈D

a∑
k1,...,kq=−a

cum
[
Z(sj1)Z(sj2)eiωk1

(sj1−sj2 ), . . . , Z(sj2q−1)Z(sj2q)e
iωkq (sj2q−1

−sj2q )
]

=
1

n2q

∑
j∈D

∑
b∈Bq

∑
πb∈P2b

A
j

2b(π2b)

where Bq corresponds to the set of integer partitions of q (more precisely, each parti-

tion is a sequence of positive integers which sums to q). The notation used here is sim-

ply a generalization of the notation used in Lemma E.4. Let b = (b1, . . . , bm) (noting
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∑
j bj = q) denote one of these partitions, then P2b is the set of all indecomposable par-

titions of {(1, 2), (3, 4), . . . , (2q − 1, 2q)} where the size of each partition is 2b1, 2b2, . . . , 2bm.

For example, if q = 3, then one example of an element of B3 is b = (1, 1, 1) and P2b =

P(2,2,2) corresponds to all pairwise indecomposable partitions of {(1, 2), (3, 4), (5, 6)}. Fi-

nally, A
j

2b(π2b) corresponds to the product of one indecomposable partition of the cumulant

cum
[
Z(sj1)Z(sj2)eiωk1

(sj1−sj2 ), . . . , Z(sj2q−1)Z(sj2q)e
iωkq (sj2q−1

−sj2q )
]
, where the cumulants are

of order 2b1, 2b2, . . . , 2bm (examples, in the case q = 3 are given in equation (E.14)-(E.16)).

Let

B2b =
1

n2q

∑
j∈D

∑
π2b∈P2b

A
j

2b(π2b),

therefore cumq[Q̃a,λ(1, 0)] =
∑

b∈Bq B2b.

Just as in the proof of Lemma E.4, we will show that under the condition n >> λ/ log2(a),

the pairwise decomposition B2,...,2 is the denominating term. We start with a ‘typical’ de-

composition π(2,...,2),1 ∈ P2,...,2,

A
j

2,...,2(π(2,...,2),1) =
a∑

k1,...,kq=−a

cum[Z(s1)eis1ωk1 , Z(s2q)e
−is2qωkq ]×

q−1∏
c=1

cum[Z(s2c)e
−is2cωkc , Z(s2c+1)eis2c+1ωkc+1 ].

and

1

n2q

∑
j∈D

A
j

2,...,2(π(2,...,2),1) =
1

n2q

q−1∑
i=0

∑
j∈D2q−i

A
j

2,...,2(π(2,...,2),1),

where D2q denotes the set where all elements of j are different and D2q−i denotes the set that

(2q − i) elements in j are different. We first consider the case that j = (1, 2, . . . , 2q) ∈ D2q.

Using identical arguments to those used for var[Q̃a,λ(1, 0)] and cum3[Q̃a,λ(1, 0)] we can show

that

A
j

2,...,2(π(2,...,2),1) =
a∑

k1,...,kq=−a

∫
Rq
f(xq)sinc

(
2xq
λ

+ k1π

)
sinc

(
2xq
λ

+ kqπ

)
×

q−1∏
c=1

f(xc)sinc

(
2xc
λ
− kcπ

)
sinc

(
2xc
λ
− kc+1

) q∏
c=1

dxc. (E.27)

By a change of variables we get

A
j

2,...,2(π(2,...,2),1) =
1

λq

a∑
k1,...,kq=−a

∫
Rq

q−1∏
c=1

f

(
λuc
2

+ ωc

)
sinc(uc)sinc(uc − (kc+1 − kc)π)

×f
(
λuq
2
− ω1

)
sinc(uq)sinc(uq + (kq − k1)π)

q∏
c=1

dxc.
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As in the proof of the third order cumulant we can rewrite the ks in the above as a matrix

equation 
−1 1 0 . . . 0 0

0 −1 1 . . . 0 0
...

...
...

... 0 0

−1 0 . . . . . . 0 1




k1

k2

...

kq

 ,

noting that that above is a (q − 1)-rank matrix. Therefore applying the same arguments

that were used in the proof of cum3[Q̃a,λ(1, 0)] and also Lemma F.1(iii) we can show that

A
j

2,...,2(π(2,...,2),1) = O( log2(q−2)(a)
λq−1 ). Thus for j ∈ D2q we have 1

n2q

∑
j∈D2q

A
j

2,...,2(π(2,...,2),1) =

O( log2(q−2)(a)
λq−1 ).

In the case that j ∈ D2q−1 ((2q−1)-terms in j are different) by using the same arguments

as those used to bound A2,2,2 (in the proof of cum[Q̃a,λ(1, 0)]) we have A
j

2,...,2(π(2,...,2),1) =

O( log2(q−3)(a)
λq−2 ), similarly if (2q−2)-terms in j are different, thenA

j

2,...,2(π(2,...,2),1) = O( log2(q−4)(a)
λq−3 )

and so forth. Therefore, since |D2q−i| = O(n2q−i) we have

1

n2q

∑
j∈D

|Aj2,...,2(π(2,...,2),1)| ≤ C

q∑
i=0

log2(q−2−i)(a)

λq−1−ini
.

Now by using that n >> λ/ log2(a) we have

1

n2q

∑
j∈D

|Aj2,...,2(π(2,...,2),1)| = O

(
log2(q−2)(a)

λq−1

)
.

The same argument holds for every other second order cumulant indecomposable partition,

because the corresponding matrix will always have rank (q − 1) in the case that j ∈ D2q or

for j ∈ D2q−i and the dependent sj’s lie in different cumulants (see (Deo & Chen, 2000)),

thus B2,...,2 = O( log2(q−1)(a)
λq−1 ).

Now, we bound the other extreme B2q. Using the conditional cumulant expansion (E.2)

and noting that cum2q[Z(sj1)eisj1ωk1 , . . . , Z(sj2q)e
−isj2qωkq ] is non-zero, only when at most

(q + 1) elements of j are different we have

B2q =
1

n2q

∑
j∈D

a∑
k1,...,kq=−a

cum2q[Z(sj1)eisj1ωk1 , . . . , Z(sj2q)e
−isj2qωkq ]

=
1

n2q

∑
j∈Dq+1

∑
Ω∈R2q

A
j

2q(Ω).

where R2q is the set of all pairwise partitions of {1, 2, 1, 3, . . . , 1, q}. We consider a ‘typical’

partition Ω1 ∈ R2q

A
j

2q(Ω1) =
a∑

k1,...,kq=−a

cum
[
c(s1 − s2)ei(s1−s2)ωk1 , . . . , c(s1 − sq+1)ei(s1−sq+1)ωkq

]
. (E.28)
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By expanding the above the cumulant as the sum of the product of expectations we have

A
j

2q(Ω1) =
1

n2q

∑
j∈Dq+1

∑
Ω∈R2q

∑
Π∈Sq

A
j

2q(Ω1,Π),

where Sq is the set of all partitions of {1, . . . , q}. As we have seen in both the var[Q̃a,λ(1, 0)]

and cum3[Q̃a,λ(1, 0)] calculations, the leading term in the cumulant expansion is the expec-

tation over all the covariance terms. The same result holds true for higher order cumulants,

the expectation over all the covariances in that cumulant is the leading term because the

it gives the linear equation of the ks in the sinc function with the lowest order rank (we

recall the lower the rank the less ‘free’ λs). Based on this we will only derive bounds for the

expectation over all the covariances. Let Π1 ∈ Sq, where

A
j

2q(Ω1,Π1) =
a∑

k1,...,kq=−a

E
[ q∏
c=1

c(s1 − sc+1)ei(s1−sc+1)ωkc
]
.

Representing the above expectation as an integral and using the spectral representation

theorem and a change of variables gives

A
j

2q(Ω1,Π1) =
a∑

k1,...,kq=−a

E
[ q∏
c=1

c(s1 − sc+1)ei(s1−sc+1)ωkc
]

=
1

(2π)q

a∑
k1,k2,k3=−a

∫
Rq

sinc

(
λ(
∑q

c=1 xc)

2
+ π

q∑
c=1

kc

) q∏
c=1

f(xc)sinc(xc + kcπ)

q∏
c=1

dxc

=
2q

(2π)qλq

a∑
k1,...,kq=−a

∫
Rq

sinc(

q∑
c=1

uc)

q∏
c=1

f

(
2uc
λ
− ωkc

)
sinc(uc)duc = O(1),

where the last line follows from Lemma F.1, equation (F.3). Therefore, A
j

2q(Ω1) = O(1). By

using the same method on every partition Ω ∈ Rq+1 and j ∈ Dq+1 and |Dq+1| = O(nq+1),

we have

B2q =
1

n2q

∑
j∈Dq+1

∑
Ω∈R2q

∑
Π∈S2q

Aj(Ω1,Π1) = O(
1

nq−1
).

Finally, we briefly discuss the terms B2b which lie between the two extremes B2,...,2 and

B2q. Since B2b is the product of 2b1, . . . , 2bm cumulants, by Lemma E.3(ii) at most
∑m

j=1(bj+

1) = q +m elements of j can be different. Thus

B2b =
1

n2q

q+m∑
i=q

∑
j∈Di

∑
π2b∈P2b

A
j

2b(π2b).
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By expanding the cumulants in terms of the cumulants of covariances conditioned on the

location (which is due to Gaussianity of the random field, see for example, (E.28)) we have

B2b =
1

n2q

q+m∑
i=q

∑
j∈Di

∑
π2b∈P2b

∑
Ω∈R2b

A
j

2b(π2b,Ω),

where R2b is the set of all paired partitions of {(1, . . . , 2b1), . . . , (2bm−1 + 1, . . . , 2bm)}. The

leading terms are the highest order expectations. This term leads to a matrix equation for the

k’s within the sinc functions, where the rank of the corresponding matrix is at least (m− 1)

(we do not give a formal proof of this). Therefore, B2b = O( log2(m−1)(a)
nq−mλm−1 ) = O( log2(q−2)(a)

λq−1 )

(since n >> λ/ log2(a)). This concludes the proof of (E.24).

The proof of (E.25) is identical and we omit the details.

To prove the result for d > 1, (E.26) we use the same method, the main difference is that

the spectral density function in (E.27) is a multivariate function of dimension d, there are

2dp sinc functions and the integral is over Rdp, however the analysis is identical. �

Theorem E.1 [CLT on real and imaginary parts] Suppose Assumptions 2.1, 2.3, 2.6(b,c)

and 2.5(i) or 2.5(ii) hold. Let C1 and C2, be defined as in Corollary 4.1. We define the

m-dimension complex random vectors Q̃m = (Q̃a,λ(g, r1), . . . , Q̃a,λ(g, rm)), where r1, . . . , rm

are such that ri 6= −rj and ri 6= 0. Under these conditions we have

2λd/2

C1

(
C1

C1 + <C2

<Q̃a,λ(g, 0),<Q̃m,=Q̃m

)
P→ N

(
0, I2m+1

)
(E.29)

with log2(a)

λ1/2 → 0, λd/n→ 0 as λ→∞, n→∞ and a→∞.

PROOF By using the well known identities

cov(<A,<B) =
1

2

(
<cov(A,B) + <cov(A, B̄)

)
cov(=A,=B) =

1

2

(
<cov(A,B)−<cov(A, B̄)

)
,

cov(<A,=B) =
−1

2

(
=cov(A,B)−=cov(A, B̄)

)
, (E.30)

and equation (??), we immediately obtain

λdvar[<Q̃a,λ(g; 0)] =
1

2
(C1(0) + <C2(0)) +O(`λ,a,n),

λdcov
[
<Q̃a,λ(g; r1),<Q̃a,λ(g; r2)

]
=


<
2
C1(ωr) +O(`λ,a,n) r1 = r2(= r)
<
2
C2(ωr) +O(`λ,a,n) r1 = −r2(= r)

O(`λ,a,n) otherwise
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λdcov
[
=Q̃a,λ(g; r1),=Q̃a,λ(g; r2)

]
=


<
2
C1(ωr) +O(`λ,a,n) r1 = r2(= r)

−<
2
C2(ωr) +O(`λ,a,n)) r1 = −r2(= r)

O(`λ,a,n) otherwise

and

λdcov
[
<Q̃a,λ(g; r1),=Q̃a,λ(g; r2)

]
=

{
O(`λ,a,n) r1 6= −r2

=
2
C2(ωr) +O(`λ,a,n) r1 = −r2(= r)

Similar expressions for the covariances of <Qa,λ(g; r) and =Qa,λ(g; r) can also be derived.

Finally, asymptotic normality of <Q̃a,λ(g; r) and =Q̃a,λ(g; r) follows from Lemma E.5.

Thus giving (E.29). �

PROOF of Theorem 4.4 The proof is identical to the proof Lemma E.5, we omit the

details. �

PROOF of Theorem 4.5 The proof is similar to the proof of Theorem E.1, we omit

the details.

F Technical Lemmas

We first prove Lemma A.1, then state four lemmas, which form an important component

in the proofs of this paper. Through out this section we use C to denote a finite generic

constant. It is worth mentioning that many of these results build on the work of T. Kawata

(see (Kawata, 1959)).

PROOF of Lemma A.1 We first prove (A.2). By using partial fractions and the

definition of the sinc function we have∫ ∞
−∞

sinc(u)sinc(u+ x)du =
1

x

∫ ∞
−∞

sin(u) sin(u+ x)

(
1

u
− 1

u+ x

)
du

=
1

x

∫ ∞
−∞

sin(u) sin(u+ x)

u
du− 1

x

∫ ∞
−∞

sin(u) sin(u+ x)

u+ x
du.

For the second integral we make a change of variables u′ = u+ x, this gives∫ ∞
−∞

sinc(u)sinc(u+ x)du =
1

x

∫ ∞
−∞

sin(u) sin(u+ x)

u
du− 1

x

∫ ∞
−∞

sin(u′) sin(u′ − x)

u′
du′

=
1

x

∫ ∞
−∞

sin(u)

u

(
sin(u+ x)− sin(u− x)

)
du

=
2 sin(x)

x

∫ ∞
−∞

cos(u) sin(u)

u
du =

π sin(x)

x
.

To prove (A.3), it is clear that for x = sπ (with s ∈ Z/{0}) π sin(sπ)
sπ

= 0, which gives the

result. �
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The following result is used to obtain bounds for the variance and higher order cumulants.

Lemma F.1 Define the function `p(x) = C/e for |x| ≤ e and `p(x) = C logp |x|/|x| for

|x| ≥ e.

(i) We have ∫ ∞
−∞

| sin(x) sin(x+ y)|
|x(x+ y)|

dx ≤

{
C log |y|
|y| |y| ≥ e

C |y| < e
= `1(y), (F.1)

∫ ∞
−∞
|sinc(x)|`p(x+ y)dx ≤ `p+1(y) (F.2)

and ∫
Rp

∣∣∣∣∣sinc

(
p∑
j=1

xj

)
p∏
j=1

sinc(xj)

∣∣∣∣∣ dx1 . . . dxp ≤ C, (F.3)

(ii)

a∑
m=−a

∫ ∞
−∞

∣∣∣∣ sin2(x)

x(x+mπ)

∣∣∣∣ dx ≤ C log2 a

(iii) ∫ ∞
−∞

∫ ∞
−∞

a∑
m=−a

sin2(x)

|x(x+mπ)|
sin2(y)

|y(y +mπ)|
dxdy ≤ C, (F.4)

(iv)

a∑
m1,...,mq−1=−a

∫
Rq

∣∣∣∣ q−1∏
j=1

sinc(xj)sinc(xj +mjπ)×

sinc(xq)sinc(xq + π

q−1∑
j=1

mj)

∣∣∣∣ q∏
j=1

dxj ≤ C log2(q−2)(a),

where C is a finite generic constant which is independent of a.

PROOF. We first prove (i), equation (F.1). It is clear that for |y| ≤ e that
∫∞
−∞

| sin(x) sin(x+y)|
|x(x+y)| dx ≤

C. Therefore we now consider the case |y| > e, without loss of generality we prove the result

for y > e. Partitioning the integral we have∫ ∞
−∞

| sin(x) sin(x+ y)|
|x(x+ y)|

dx = I1 + I2 + I3 + I4 + I5,
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where

I1 =

∫ y

0

| sin(x) sin(x+ y)|
|x(x+ y)|

dx I2 =

∫ 0

−y

| sin(x) sin(x+ y)|
|x(x+ y)|

dx

I3 =

∫ −y
−2y

| sin(x) sin(x+ y)|
|x(x+ y)|

dx I4 =

∫ −2y

−∞

| sin(x) sin(x+ y)|
|x(x+ y)|

dx

I5 =

∫ ∞
y

| sin(x) sin(x+ y)|
|x(x+ y)|

dx.

To bound I1 we note that for y > 1 and x > 0 that | sin(x+ y)/(x+ y)| ≤ 1/y, thus

I1 =
1

y

∫ y

0

| sin(x)|
|x|

dx ≤ C
log y

y
.

To bound I2, we further partition the integral

I2 =

∫ −y/2
−y

| sin(x) sin(x+ y)|
|x(x+ y)|

dx+

∫ 0

−y/2

| sin(x) sin(x+ y)|
|x(x+ y)|

dx

≤ 2

y

∫ −y/2
−y

| sin(x+ y)|
|(x+ y)|

dx+
2

y

∫ 0

−y/2

| sin(x)|
|x|

dx ≤ C
log y

y
.

To bound I3, we use the bound

I3 ≤
1

y

∫ −y
−2y

| sin(x+ y)|
|(x+ y)|

dx ≤ C
log y

y
.

To bound I4 we use that for y > 0,
∫∞
y
x−2dx ≤ C|y|−1, thus

I4 ≤
∫ −y
−∞

1

x2
dx ≤ C|y|−1

and using a similar argument we have I5 ≤ C|y|−1. Altogether, this gives (F.1).

We now prove (F.2). It is clear that for |y| ≤ e that
∫∞
−∞ |sinc(x)|`p(x + y)|dx ≤ C.

Therefore we now consider the case |y| > e, without loss of generality we prove the result

for y > e. As in (F.1) we partition the integral∫ ∞
−∞
|sinc(x)`p(x+ y)|dx = II1 + . . .+ II5,

where II1, . . . , II5 are defined in the same way as I1, . . . , I5 just with |sinc(x)`p(x + y)|
replacing | sin(x) sin(x+y)|

|x(x+y)| . To bound II1 we note that

II1 =

∫ y

0

|sinc(x)`p(x+ y)|dx ≤ logp(y)

y

∫ y

0

|sinc(x)|dx ≤ logp+1(y)

y
,
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we use similar method to show II2 ≤ C logp+1(y)
y

and II3 ≤ C logp+1(y)
y

. Finally to bound II4

and II5 we note that by using a change of variables x = yz, we have

II5 =

∫ ∞
y

| sin(x)| logp(x+ y)

x(x+ y)
dx ≤

∫ ∞
y

logp(x+ y)

x(x+ y)
dx

=
1

y

∫ ∞
1

[log(y) + log(z + 1)]p

z(z + 1)
dz ≤ C

logp(y)

y
.

Similarly we can show that II4 ≤ C logp(y)
y

. Altogether, this gives the result.

To prove (F.3) we recursively apply (F.2) to give∫
Rp
|sinc(x1 + . . .+ xp)|

p∏
j=1

|sinc(xj)|dx1 . . . dxp

≤
∫
Rp−1

|`1(x1 + . . .+ xp−1)

p−1∏
j=1

sinc(xj)|dx1 . . . dxp−1

≤
∫
R
|`p−1(x1)sinc(x1)|dx1 = O(1),

thus we have the required the result.

To bound (ii), without loss of generality we derive a bound over
∑a

m=1, the bounds for∑−1
m=−a are identical. Using (F.1) we have

a∑
m=1

∫ ∞
−∞

sin2(x)

|x(x+mπ)|
dx =

a∑
m=1

∫ ∞
−∞

| sin(x) sin(x+mπ)|
|x(x+mπ)|

dx

≤
a∑

m=1

`1(mπ) = C
a∑

m=1

log(mπ)

mπ

≤ C log(aπ)
a∑

m=1

1

mπ
= C log(aπ) log(a) ≤ C log2 a.

Thus we have shown (ii).

To prove (iii) we use (F.1) to give
a∑

m=−a

(∫ ∞
−∞

sin2(x)

|x(x+mπ)|
dx

)(∫ ∞
−∞

sin2(y)

|y(y +mπ)|
dy

)

≤ C
a∑

m=−a

( logm

m

)2 ≤ C
∞∑

m=−∞

( logm

m

)2 ≤ C.

To prove (iv) we apply (F.1) to each of the integrals this gives

a∑
m1,...,mq−1=−a

∫
Rq

∣∣∣∣ q−1∏
j=1

sinc(xj)sinc(xj +mjπ)sinc(xq)sinc(xq + π

q−1∑
j=1

mj)

∣∣∣∣ q∏
j=1

dxj

≤
a∑

m1,...,mq−1=−a

`1(m1π) . . . `1(mq−1π)`1(mq−1π)`1(π

q−1∑
j=1

mj) ≤ C log2(q−2) a,
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thus we obtain the desired result. �.

The proofs of Theorem 4.1, Theorems B.1 (ii), Theorem 2.1 involve integrals of sinc(u)sinc(u+

mπ), where |m| ≤ a + |r1| + |r2| and that a → ∞ as λ → ∞. In the following lemma we

obtain bounds for these integrals. We note that all these results involve an inner integral

difference of the form ∫ b

−b
g(ω)

[
h

(
ω +

2u

λ

)
− h(ω)

]
dωdu

∣∣∣∣.
By using the mean value theorem heuristically it is clear that O(λ−1) should come out of the

integral however the 2u in the numerator of h
(
ω + 2u

λ

)
makes the analysis quite involved.

Lemma F.2 Suppose h is a function which is absolutely integrable and |h′(ω)| ≤ β(ω)

(where β is a montonically decreasing function that is absolutely integrable), m ∈ R and g(ω)

is a bounded function. b can take any value, and the bounds given below are independent of

b. Then we have ∣∣∣∣ ∫ ∞
−∞

sinc(u)sinc(u+mπ)

∫ b

−b
g(ω)

[
h

(
ω +

2u

λ

)
− h(ω)

]
dωdu

∣∣∣∣
≤ C

log(λ) + log(1 + |m|)
λ

,

(F.5)

where C is a finite constant independent of m and b. If g(ω) is a bounded function with a

bounded first derivative, then we have∣∣∣∣ ∫ ∞
−∞

sinc(u)sinc(u+mπ)

∫ b

−b
h(ω)

(
g(ω +

2u

λ
)− g(ω)

)
dωdu

∣∣∣∣
≤ C

log(λ) + log(1 + |m|)
λ

.

(F.6)

In the case of double integrals, we assume h(·, ·) is such that
∫
R2 |h(ω1, ω2)|dω1dω2 < ∞,

and |∂h(ω1,ω2)
∂ω1

| ≤ β(ω1)β(ω2), |∂h(ω1,ω2)
∂ω2

| ≤ β(ω1)β(ω2) and |∂
2h(ω1,ω2)
∂ω1∂ω2

| ≤ β(ω1)β(ω2) (where

β is a montonically decreasing function that is absolutely integrable) and g(·, ·) is a bounded

function. Then if m1 6= 0 and m2 6= 0 and m1,m2 ∈ Z we have∣∣∣∣ ∫ ∞
−∞

∫ ∞
−∞

sinc(u1)sinc(u1 +m1π)sinc(u2)sinc(u2 +m2π)

∫ b

−b

∫ b

−b
g(ω1, ω2)×[

h

(
ω1 +

2u1

λ
, ω2 +

2u2

λ

)
− h(ω1, ω2)

]
dω1dω2du1du2

∣∣∣∣ ≤ C

∏2
i=1[log(λ) + log |mi|]

λ2
. (F.7)
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and ∣∣∣∣ ∫ ∞
−∞

∫ ∞
−∞

sinc(u1)sinc(u1 +m1π)sinc(u2)sinc(u2 +m2π)
1

λ2

bλ∑
−bλ

bλ∑
−bλ

g(ωk1 , ωk2)×

[
h

(
ωk1 +

2u1

λ
, ωk2 +

2u2

λ

)
− h(ωk1 , ωk2)

]
du1du2

∣∣∣∣ ≤ C

∏2
i=1[log(λ) + log |mi|]

λ2
. (F.8)

where a→∞ as λ→∞.

PROOF. To simplify the notation in the proof, we’ll prove (F.5) for m > 0 (the proof for

m ≤ 0 is identical).

The proof is based on considering the cases that |u| ≤ λ and |u| > λ separately. For

|u| ≤ λ we apply the mean value theorem to the difference h(ω + 2u
λ

)− h(ω) and for |u| > λ

we exploit that the integral
∫
u>|λ| |sinc(u)sinc(u+mπ)|du decays as λ→∞. We now make

these argument precise. We start by partitioning the integral∫ ∞
−∞

sinc(u)sinc(u+mπ)

∫ b

−b
g(ω)

(
h(ω +

2u

λ
)− h(ω)

)
dωdu = I1 + I2, (F.9)

where

I1 =

∫
|u|>λ

sinc(u)sinc(u+mπ)

∫ b

−b
g(ω)

(
h(ω +

2u

λ
)− h(ω)

)
dωdu

I2 =

∫ λ

−λ
sinc(u)sinc(u+mπ)

∫ b

−b
g(ω)

(
h(ω +

2u

λ
)− h(ω)

)
dωdu.

We further partition the integral I1 = I11 + I12 + I13, where

I11 =

∫ ∞
λ

sinc(u)sinc(u+mπ)

∫ b

−b
g(ω)

(
h(ω +

2u

λ
)− h(ω)

)
dωdu

I12 =

∫ −λ
−λ−mπ

sinc(u)sinc(u+mπ)

∫ b

−b
g(ω)

(
h(ω +

2u

λ
)− h(ω)

)
dωdu

I13 =

∫ −λ−mπ
−∞

sinc(u)sinc(u+mπ)

∫ b

−b
g(ω)

(
h(ω +

2u

λ
)− h(ω)

)
dωdu

and partition I2 = I21 + I22 + I23, where

I21 =

∫ λ

−λ
sinc(u)sinc(u+mπ)

∫ min(4|u|/λ,b)

−min(4|u|/λ,b)
g(ω)

(
h(ω +

2u

λ
)− h(ω)

)
dωdu

I22 =

∫ λ

−λ
sinc(u)sinc(u+mπ)

∫ −min(4|u|/λ,b)

−b
g(ω)

(
h(ω +

2u

λ
)− h(ω)

)
dωdu

I23 =

∫ λ

−λ
sinc(u)sinc(u+mπ)

∫ b

min(4|u|/λ,b)
g(ω)

(
h(ω +

2u

λ
)− h(ω)

)
dωdu.
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We start by bounding I1. Taking absolutes of I11, and using that h(ω) is absolutely integrable

we have

|I11| ≤ 2Γ

∫ ∞
λ

| sin(u) sin(u+ π)|
u(u+mπ)

du,

where Γ = supu |g(u)|
∫∞

0
|h(u)|du. Sincem > 0, it is straightforward to show that

∫∞
λ

sin2(u)
u(u+mπ)

du ≤
Cλ−1, where C is some finite constant. This implies |I11| ≤ 2CΓλ−1. Similarly it can be

shown that |I13| ≤ 2CΓλ−1. To bound I12 we note that

|I12| ≤
2Γ

λ

∫ −λ
−λ−mπ

| sin(u+mπ)|
|u+mπ|

du =
2Γ

λ

∫ −λ+mπ

−λ

| sin(y)|
|y|

dy

≤ 2Γ

λ
×


log λ −λ+mπ ∈ [−e, e]

log
(

λ
λ−mπ

)
−λ+mπ < −e

log λ+ log(mπ − λ) −λ+mπ > e

.

Thus, we have |I12| ≤ Cλ−1
[

log λ+ log(1 +m)
]

(where C is a finite constant). Altogether,

the bounds for I11, I12, I13 give

|I1| ≤
C(log λ+ log(1 + |m|))

λ
.

To bound I2 we apply the mean value theorem to h(ω + 2u
λ

) − h(ω) = 2u
λ
h′(ω + ζ(ω, u)2u

λ
),

where 0 ≤ ζ(ω, u)| ≤ 1. Substituting this into I23 gives

|I23| ≤
2

λ

∫ λ

−λ

| sin(u) sin(u+mπ)|
|u+mπ|

∫ b

min(4|u|/λ,b)

∣∣∣∣h′(ω + ζ(ω, u)
2u

λ

)∣∣∣∣ dωdu.
Since the limits of the inner integral are greater than 4u/λ, and the derivative is bounded by

β(ω), this means |h′(ω + ζ(ω, u)2u
λ

)| ≤ max[β(ω), β(ω + 2u
λ

)] = β(ω). Altogether, this gives

|I23| ≤
2

λ

(∫ b

min(4|u|/λ,b)
β(ω)dω

)∫ λ

−λ

| sin(u) sin(u+mπ)|
|u+mπ|

du ≤ 2Γ log(λ+mπ)

λ
.

Using the same method we obtain I22 ≤ 2Γ log(λ+mπ)
λ

. Finally, to bound I21, we cannot bound

h′(ω + ζ(ω, u)2u
λ

) by a monotonic function since ω and ω + 2u
λ

can have different signs.

Therefore we simply bound h′(ω + ζ(ω, u)2u
λ

) with a constant, this gives

|I21| ≤
8C

λ2

∫ λ

−λ

|u sin(u) sin(u+mπ)|
|u+mπ|

du ≤ 16C

λ
.

Altogether, the bounds for I21, I22, I23 give

|I2| ≤ CΓ
log λ+ log(1 +m) + log(λ+mπ)

λ
.
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Finally, we recall that if λ > 2 and mπ > 2, then (λ + mπ) < λmπ, thus log(λ + mπ) ≤
C log λ + log(1 + m). Therefore, we obtain (F.5). The proof of (F.6) is similar, but avoids

some of the awkward details that are required to prove (F.5).

Now we prove (F.7). We note that both m1 6= 0 and m2 6= 0 and m1,m2 ∈ Z (if one

of these values were zero or non-integer valued only the slower bound given in (F.5) holds).

Without loss of generality we will prove the result for m1 > 0 and m2 > 0. We first note

since m1 6= 0 and m2 6= 0, by orthogonality of the sinc function at integer shifts (see Lemma

A.1) we have∫ ∞
−∞

∫ ∞
−∞

sinc(u1)sinc(u1 +m1π)sinc(u2)sinc(u2 +m2π)

∫ b

−b

∫ b

−b
g(ω1, ω2)×[

h

(
ω1 +

2u1

λ
, ω2 +

2u2

λ

)
− h(ω1, ω2)

]
dω1dω2du1du2

=

∫ ∞
−∞

sinc(u2)sinc(u2 +m2π)

∫ ∞
−∞

sinc(u1)sinc(u1 +m1π)

∫ b

−b

∫ b

−b
g(ω1, ω2)

×h
(
ω1 +

2u1

λ
, ω2 +

2u2

λ

)
dω1du1dω2du2,

(F.10)

since in the last line h(ω1, ω2) comes outside the integral over u1 and u2. To further the

proof, we note that for m2 6= 0 we have∫ ∞
−∞

sinc(u2)sinc(u2 +m2π)

∫
|u1|>λ

sinc(u1)sinc(u1 +m1π)

∫ b

−b

∫ b

−b
g(ω1, ω2)

×h
(
ω1 +

2u1

λ
, ω2

)
dω1du1dω2du2 = 0.

(F.11)

We use this zero-equality at relevant parts in the proof.

Now we subtract (F.11) from (F.10). We use the same decomposition and notation used

in (F.9) to decompose the integral over u1 into
∫
|u1|>λ +

∫
|u1|≤λ, to give

=

∫ ∞
−∞

sinc(u2)sinc(u2 +m2π)

(∫ ∞
−∞

sinc(u1)sinc(u1 +m1π)

∫ b

−b

∫ b

−b
g(ω1, ω2)×[

h

(
ω1 +

2u1

λ
, ω2 +

2u2

λ

)
− h

(
ω1 +

2u1

λ
, ω2

)]
dω1du1

)
dω2du2

=

∫ ∞
−∞

sinc(u2)sinc(u2 +m2π)

∫ b

−b

(∫ ∞
−∞

sinc(u1)sinc(u1 +m1π)

∫ b

−b
g(ω1, ω2)×[

h

(
ω1 +

2u1

λ
, ω2 +

2u2

λ

)
− h

(
ω1 +

2u1

λ
, ω2

)]
dω1du1

)
dω2du2

=

∫ ∞
−∞

sinc(u2)sinc(u2 +m2π)

∫ b

−b
[I1(u2, ω2) + I2(u2, ω2)] du2dω2 = J1 + J2,
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where

I1(u2, ω2) =

∫
|u1|>λ

sinc(u1)sinc(u1 +m1π)×∫ b

−b
g(ω1, ω2)

[
h

(
ω1 +

2u1

λ
, ω2 +

2u2

λ

)
− h

(
ω1 +

2u1

λ
, ω2

)]
dω1du1

I2(u2, ω2) =

∫
|u1|≤λ

sinc(u1)sinc(u1 +m1π)

∫ b

−b
g(ω1, ω2)

×2u2

λ

∂h

∂ω2

(
ω1 +

2u1

λ
, ω2 + ζ1(ω2, u2)

2u2

λ

)
dω1du1

and |ζ1(ω1, u1)| ≤ 1. Note that the expression for I2(u2, ω2) applies the mean value theorem to

the difference h
(
ω1 + 2u1

λ
, ω2 + 2u2

λ

)
−h
(
ω1 + 2u1

λ
, ω2

)
= 2u2

λ
∂h
∂ω2

(
ω1 + 2u1

λ
, ω2 + ζ1(ω2, u2)2u2

λ

)
;

there is a slight abuse of notation since the derivative is applied to h before evaluating it at

(ω1 + 2u1

λ
, ω2 + ζ1(ω2, u2)2u2

λ
). Next to bound J1 we decompose the outer integral over u2 into∫

|u2|>λ and
∫
|u2|≤λ to give J1 = J11 + J12, where

J11

=

∫
|u1|>λ

∫
|u2|>λ

sinc(u1)sinc(u1 +m1π)sinc(u2)sinc(u2 +m2π)×∫ b

−b

∫ b

−b
g(ω1, ω2)

[
h

(
ω1 +

2u1

λ
, ω2 +

2u2

λ

)
− h

(
ω1 +

2u1

λ
, ω2

)]
dω1du1du2dω2

J12

=

∫
|u1|>λ

∫ b

−b
sinc(u1)sinc(u1 +m1π)

∫
|u2|≤λ

sinc(u2)sinc(u2 +m2π)×∫ b

−b
g(ω1, ω2)

2u2

λ

∂h

∂ω2

(
ω1 +

2u1

λ
, ω2 + ζ2(ω2, u2)

2u2

λ

)
dω1du1du2dω2,

and |ζ2(ω2, u2)| < 1 (applying the mean value theorem to h
(
ω1 + 2u1

λ
, ω2 + 2u2

λ

)
−h
(
ω1 + 2u1

λ
, ω2

)
).

By using the same methods used to bound I1 and I2 in (F.9) we can show that

|J11| and |J12| = O

(
(log(λ) + log |m1|)(log(λ) + log |m2|)

λ2

)
.

To bound J2 we again use that m2 6= 0 and orthogonality of the sinc function to subtract

the term ∂
∂ω2

h
(
ω1, ω2 + ζ1(ω2, u2)2u2

λ

)
(whose total contribution is zero, see (F.11)) from J2

to give

J2 =

∫ ∞
−∞

∫ b

−b
sinc(u2)sinc(u2 +m2π)

∫
|u1|≤λ

sinc(u1)sinc(u1 +m1π)

∫ b

−b
g(ω1, ω2)×

2u2

λ

[
∂h

∂ω2

(
ω1 +

2u1

λ
, ω2 + ζ1(ω2, u2)

2u2

λ

)
− ∂h

∂ω2

(
ω1, ω2 + ζ1(ω2, u2)

2u2

λ

)]
dω1dω2du1du2.
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By decomposing the outer integral of J2 over u2 into
∫
|u2|>λ and

∫
|u2|≤λ we have J2 = J21+J22,

where

J21 =

∫
|u2|>λ

∫ b

−b
sinc(u2)sinc(u2 +m2π)

∫
|u1|≤λ

sinc(u1)sinc(u1 +m1π)

∫ b

−b
g(ω1, ω2)×

2u2

λ

[
∂h

∂ω2

(
ω1 +

2u1

λ
, ω2 + ζ1(ω2, u2)

2u2

λ

)
− ∂h

∂ω2

(
ω1, ω2 + ζ1(ω2, u2)

2u2

λ

)]
dω1dω2du1du2

and

J22 =

∫
|u2|≤λ

∫ b

−b
sinc(u2)sinc(u2 +m2π)

∫
|u1|≤λ

sinc(u1)sinc(u1 +m1π)×∫ b

−b
g(ω1, ω2)

4u1u2

λ2

∂2h

∂ω1∂ω2

(
ω1 + ζ3(ω1, u1)

2u1

λ
, ω2 + ζ1(ω2, u2)

2u2

λ

)
dω1dω2du1du2

with |ζ3(ω2, u2)| < 1. Note that the expression for J22 is obtained by applying the mean

value theorem to ∂h
∂ω2

(
ω1 + 2u1

λ
, ω2 + ζ1(ω2, u2)2u2

λ

)
− ∂h

∂ω2

(
ω1, ω2 + ζ1(ω2, u2)2u2

λ

)
.

Again by using the methods used to bound I1 and I2 in (F.9) we can show that |J21| =
O(
∏2

i=1[log(λ) + log |mi|]/λ2) and |J22| = O(
∏2

i=1[log(λ) + log |mi|]/λ2). Altogether this

proves (F.7).

The proof of (F.8) follows exactly the same method used to prove (F.7) the only difference

is that the summand rather than the integral makes the notation more cumbersome. For

this reason we omit the details. �

The following result is used in to obtain expression for the fourth order cumulant term (in

the case that the spatial random field is not Gaussian). It is used in the proofs of Theorems

4.6 and B.2.

Lemma F.3 Suppose h is a function which is absolutely integrable and |h′(ω)| ≤ β(ω)

(where β is a monotonically decreasing function that is absolutely integrable), m ∈ Z and

g(ω) is a bounded function. Then we have∫
R3

sinc(u1 + u2 + u3 +mπ)sinc(u1)sinc(u2)sinc(u3)×∫ a/λ

−a/λ
g(ω)

[
h

(
2u1

λ
− ω

)
− h(−ω)

]
dωdu1du2du3 = O

(
[log(λ) + log |m|]3

λ

)
.

(F.12)

∫
R2

sinc(u1 + u2 +mπ)sinc(u1)sinc(u2)

∫ a/λ

−a/λ
g(ω)

[
h

(
2u1

λ
− ω

)
− h(−ω)

]
dωdu1du2

= O

(
[log(λ) + log |m|]3

λ

)
.

(F.13)
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PROOF. The proof of (F.12) is very similar to the proof of Lemma F.2. We start by

partitioning the integral over u1 into
∫
|u1|≤λ and

∫
|u1|>λ∫

R3

sinc(u1 + u2 + u3 +mπ)sinc(u1)sinc(u2)sinc(u3)×∫ a/λ

−a/λ
g(ω)

(
h(

2u1

λ
− ω)− h(−ω)

)
dωdu1du2du3 = I1 + I2,

where

I1 =∫
|u1|>λ

∫
R3

sinc(u1 + u2 + u3 +mπ)sinc(u1)sinc(u2)sinc(u3)

×
∫ a/λ

−a/λ
g(ω)

(
h(

2u1

λ
− ω)− h(−ω)

)
dωdu1du2du3

I2 =∫
|u1|≤λ

∫
R3

sinc(u1 + u2 + u3 +mπ)sinc(u1)sinc(u2)sinc(u3)

×
∫ a/λ

−a/λ
g(ω)

(
h(

2u1

λ
− ω)− h(−ω)

)
dωdu1du2du3.

Taking absolutes of I1 and using Lemma F.1, equations (F.1) and (F.2) we have

|I1| ≤ 4Γ

∫
|u1|>λ

|sinc(u1 +mπ)|`2(u1)du1 ≤ C

∫
|u|>λ

log2(u)

|u|
× |sinc(u+mπ)|

|u+mπ|
du,

where Γ = supω |g(ω)|
∫∞

0
|h(ω)|dω and C is a finite constant (which has absorbed Γ). De-

composing the above integral we have

|I1| ≤ C

∫
|u|>λ

log2(u)

|u|
× |sinc(u+mπ)|

|u+mπ|
du = I11 + I12,

where

I11 =

∫
λ<|u|≤λ(1+|m|)

log2(u)

|u|
× |sinc(u1 +mπ)|

|u1 +mπ|
du

I12 =

∫
|u|>λ(1+|m|)

log2(u)

|u|
× |sinc(u1 +mπ)|

|u1 +mπ|
du.

We first bound I11

I11 ≤
log2[λ(1 + |m|π)]

λ

∫
λ<|u|≤λ(1+|m|)

|sinc(u1 +mπ)|
|u1 +mπ|

du

≤ 2C log2[λ(1 + |m|π)]

λ
× log(λ+mπ) = C

(log |m|+ log λ)3

λ
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To bound I12 we make a change of variables u = λz, the above becomes

I12 ≤
C

λ

∫
|z|>1+|m|λ

[log λ+ log z]2

z(z + m
λ

)
dz = O

(
log2(λ)

λ

)
.

Altogether the bounds for I11 and I12 give |I1| ≤ C(log |m|+ log λ)3/λ.

To bound I2, just as in Lemma F.2, equation (F.5), we decompose it into three parts

I2 = I21 + I22 + I23, where using Lemma F.1, equations (F.1) and (F.2) we have the bounds

|I21| ≤
∫
|u|≤λ

|sinc(u +mπ)|`2(u)

∫ min(a,4u)/λ

−min(a,4|u|)/λ
|g(ω)|

∣∣∣∣h(2u

λ
− ω

)
− h(−ω)

∣∣∣∣ dωdu
|I22| ≤

∫
|u|≤λ

|sinc(u +mπ)|`2(u)

∫ −min(a,4|u|)/λ

−a/λ
|g(ω)|

∣∣∣∣h(2u

λ
− ω

)
− h(−ω)

∣∣∣∣ dωdu
|I23| ≤

∫
|u|≤λ

|sinc(u +mπ)|`2(u)

∫ a/λ

min(a,4|u|)/λ
|g(ω)|

∣∣∣∣h(2u

λ
− ω

)
− h(−ω)

∣∣∣∣ dωdu.
Using the same method used to bound |I21|, |I22|, |I23| in Lemma F.2, we have |I21|, |I22|, |I23| ≤
C[log(λ) + log(|m|)]3/λ. Having bounded all partitions of the integral, we have the result.

The proof of (F.13) is identical and we omit the details. �

G Fixed domain asymptotics

In this section our aim is to investigate the sampling properties of Qa,λ,Ω(g; 0) in the case

that the domain, λ, over which is the spatial process is defined in kept fixed but the number

of locations that are sampled grows (n→∞).

In the following theorem we evaluate an expression for the covariance between the Fourier

transforms when the domain is fixed. We use the following result to prove Lemma 3.1 and

the first part of Theorem 4.7.

Theorem G.1 (Fixed domain) Suppose that {Z(s); s ∈ Rd} is a second order stationary

process defined in [−λ/2, λ/2]d. Suppose that λ and Ω are both fixed. Then

(i) Under Assumption 2.2 (general random design of locations) we have

cov

[
Jn

(
2πk1

Ω

)
, Jn

(
2πk2

Ω

)]
=

(
λ

2π

)d ∑
j1,j2∈Zd

γj1
γj2

∫
Rd
f(ω)Sinc

(
λ

2

[
ω +

2πj1

λ
+

2πk1

Ω

])

×Sinc

(
λ

2

[
ω − 2πj2

λ
+

2πk2

Ω

])
dω +

c(0)

n

∫
[−λ/2,λ/2]d

h
(s
λ

)
exp

(
i
2πs′

Ω
(k1 − k2)

)
ds.
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(ii) Under Assumption 2.3 (uniform sampling of locations) we have

cov

[
Jn

(
2πk1

Ω

)
, Jn

(
2πk2

Ω

)]
=

(
λ

2π

)d ∫
Rd
f(ω)Sinc

(
λ

2

[
ω +

2πk1

Ω

])
Sinc

(
λ

2

[
ω +

2πk2

Ω

])
dω

+
c(0)λd

n
Sinc

(
2πλ

Ω
(k1 − k2)

)
.

(iii) Let Aλ(·) be defined as in (2.5), then under Assumption 2.3 (uniform sampling of

locations) we have

var

[
Jn

(
2πk

Ω

)]
= Aλ

(
k

Ω

)
+
c(0)λd

n
.

(iv) Under Assumptions 2.4 (near lattice) and 2.6(e) we have

cov

[
Jn

(
2πk1

Ω

)
, Jn

(
2πk2

Ω

)]
=

(
λ

2π

)∫
R
f(ω)Sinc

(
λ

2

[
ω +

2πk1

Ω

])
Sinc

(
λ

2

[
ω +

2πk2

Ω

])
dω +

O

(
λ

n

(
|k1|1 + |k2|1

Ω
+ 1

))
PROOF The proof of (i) immediately follows from the proof of Theorem 2.1, equation (2.4).

(ii) follows from (i) using that for a uniform density γ0 = 1 and γk = 0 for k 6= 0. (iii) follows

from (ii) with k1 = k2 = (k) and that

Aλ

(
k

Ω

)
=

(
λ

2π

)d ∫
Rd
f(ω)Sinc2

(
λ

2

[
ω +

2πk

Ω

])
dω.

Finally we prove (iv) for d = 1. We suppose the process is observed at the locations

{sj}nj=1 which satisfy Assumption 2.4 and we denote the ordered locations as s(j). Expanding

cov
(
Jn(2πk1

Ω
), Jn(2πk2

Ω
)
)

gives

cov

[
Jn

(
2πk1

Ω

)
, J

(
2πk2

Ω

)]
=

λ

n2

n∑
j1,j2=1

c (sj1 − sj1) exp

(
2πi

Ω
[sj1k1 − sj2k2]

)

=
1

2πλ

∫ ∞
−∞

f(ω)

[
λ

n

n∑
j1=1

exp

(
isj1

[
2πk1

Ω
+ ω

])][
λ

n

n∑
j2=1

exp

(
−isj2

[
2πk2

Ω
+ ω

])]
dω.

. (G.1)
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Replacing the two summands with integrals such that sj1 and sj2 become s1 and s2

cov

[
Jn

(
2πk1

Ω

)
, J

(
2πk2

Ω

)]
=

1

2πλ

∫ ∞
−∞

f(ω)

∫ λ/2

−λ/2

∫ λ/2

−λ/2
exp

(
is1

[
2πk1

Ω
+ ω

])
exp

(
−is2

[
2πk2

Ω
+ ω

])
ds1ds2dω +Rn,

where

Rn =
1

2πλ

∫ ∞
−∞

f(ω)

[
λ

n

n∑
j1=1

exp

(
isj1

[
2πk1

Ω
+ ω

])]
Dk2(ω)dω

1

2πλ

∫ ∞
−∞

f(ω)

∫ λ/2

−λ/2
exp

(
−is2

[
2πk2

Ω
+ ω

])
Dk1(ω)dsdω,

and

Dk(ω) =
λ

n

n∑
j=1

exp

(
isj

[
ω +

2πk

Ω

])
−
∫ λ/2

−λ/2
exp

(
is

[
2πk

Ω
+ ω

])
ds.

We now bound Dk(ω). Applying the mean value theorem (on the integral) we have

Dk(ω) =
λ exp(is(n)[

2πk
Ω

+ ω])

n
+

n−1∑
j=1

(
λ

n
exp

(
is(j)

[
2πk

Ω
+ ω

])
−
∫ s(j+1)

−s(j)
exp

(
is

[
2πk

Ω
+ ω

])
ds

)

=
λ exp(is(n)[

2πk
Ω

+ ω])

n
+

n−1∑
j=1

{
λ

n
exp

(
is(j)

[
2πk

Ω
+ ω

])
− (s(j+1) − s(j)) exp

(
is̃j

[
2πk

Ω
+ ω

])}
,

where s̃j ∈ [s(j), s(j+1)]. Adding and subtracting (s(j+1) − s(j)) exp
(
is(j)

[
2πk
Ω

+ ω
])

to the

above gives

Dk(ω) =
λ exp(is(n)[

2πk
Ω

+ ω])

n
+

n−1∑
j=1

(
λ

n
− (s(j+1) − s(j))

)
exp

(
is(j)

[
2πk

Ω
+ ω

])

+
n−1∑
j=1

(s(j+1) − s(j))

{
exp

(
is(j)

[
2πk

Ω
+ ω

])
− exp

(
is̃(j)

[
2πk

Ω
+ ω

])}
.

By applying the mean value theorem on the second term we have

Dk(ω) =
λ exp(is(n)[ω + 2πk

Ω
])

n
+

n−1∑
j=1

(
λ

n
− (s(j+1) − s(j))

)
exp

(
is(j)

[
2πk

Ω
+ ω

])

+i
n−1∑
j=1

(s(j+1) − s(j))(s(j) − s̃(j))

[
2πk

Ω
+ ω

]
exp

(
iŝ(j)

[
2πk

Ω
+ ω

])
,
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where ŝ(j) ∈ [s(j), s(j+1)]. Taking absolute and using Assumption 2.4 we have

Dk(ω) ≤ λ

n
+

∣∣∣∣2πkΩ
+ ω

∣∣∣∣ n−1∑
j=1

(s(j+1) − s(j))
2 +

n−1∑
j=1

∣∣∣∣λn − (s(j+1) − s(j))

∣∣∣∣ = O

(
λ

n

[
1 + ω +

2πk

Ω

])
.

We use the above to bound Rn, using that
∫
R f(ω)|ω|dω <∞ (which is true under Assump-

tion 2.6(e)) we have

|Rn| ≤ C

∫ ∞
−∞

f(ω)
λ

n

[
1 + ω +

2π(|k1|+ |k2|)
Ω

]
dω = O

(
λ

n

(
|k1|+ |k2|

Ω
+ 1

))
.

Thus substituting the bound for |Rn| into (G.2) we have proved (iv). �

The results below are used to prove the results in Section 4.4, in particular Theorem 4.7.

We focus on the case d = 1. We first consider the Fourier transform of the continuous time

anologue {Z(s); s ∈ [−λ/2, λ/2]}. It is straightforward to show

cov

[
Jλ
(
k1

Ω

)
,Jλ

(
k2

Ω

)]
(G.2)

=
2

λπ

∫ ∞
−∞

f(ω)sinc

(
λ

2

[
ω +

2πk1

Ω

])
sinc

(
λ

2

[
ω +

2πk2

Ω

])
dω

=
1

λ

∫ λ/2

−λ/2

∫ λ/2

−λ/2
c(s1 − s2) exp

(
2πis1k1

Ω

)
exp

(
−2πis2k2

Ω

)
ds1ds2 (G.3)

where

Jλ
(
k

Ω

)
=

1

λ1/2

∫ λ/2

−λ/2
Z(s) exp

(
2πiks

Ω

)
ds. (G.4)

Thus comparing the above with Theorem G.1 we have

cov

[
Jn

(
2πk1

Ω

)
, Jn

(
2πk2

Ω

)]
= cov

[
Jλ
(
k1

Ω

)
,Jλ

(
k2

Ω

)]
+ o (1) ,

where the error in the approximation depends on the sampling of the locations and are given

in Theorem G.1. We now obtain an explicit expression for the above, which helps us quantify

the dependence.

Theorem G.2 Suppose {Z(u)} is a spatial second order stationary process and Jλ
(
k
Ω

)
is

defined in (G.4). Then

cov

[
Jλ
(
k1

Ω

)
,Jλ

(
k2

Ω

)]
=

{
Aλ
(
k
Ω

)
k1 = k2(= k)

Bλ

(
k1

Ω
, k2

Ω

)
k1 ≤ k2

where

Aλ

(
k

Ω

)
=

∫ λ

−λ
T
(u
λ

)
c(u) exp

(
2iπku

Ω

)
du
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and

Bλ

(
k1

Ω
,
k2

Ω

)
=

Ω

(k1 − k2)πλ
sin

(
2πλ(k1 − k2)

Ω

)∫ λ

−λ
c(v) exp

(
2πik1v

Ω

)
dv

+
Ω

(k1 − k2)πλ
=
[
e−λiπ(k1−k2)/Ω

(∫ λ

0

c(v)e2πik2v/Ωdv −
∫ λ

0

c(v)e2πik1v/Ωdv

)]
.

PROOF For the case k1 = k2(= k) and (G.3) we have

var

[
Jλ
(
k

Ω

)]
=

1

λ

∫ λ/2

−λ/2

∫ λ/2

−λ/2
c(s1 − s2) exp

(
2πi(s1 − s2)k

Ω

)
ds1ds2

=
1

λ

∫ λ

−λ
(λ− |u|) c(u) exp

(
2πiuk

Ω

)
du =

∫ λ

−λ

(
1− |u|

λ

)
c(u) exp

(
2πiuk

Ω

)
du.

This gives Aλ(
k
Ω

). For k1 6= k2 we have

cov

[
Jλ
(
k1

Ω

)
,Jλ

(
k2

Ω

)]
=

1

λ

∫ λ/2

−λ/2

∫ λ/2

−λ/2
c(u1 − u2) exp

(
2πik1(u1 − u2)

Ω

)
exp

(
2πiu2(k1 − k2)

Ω

)
du1du2

=
1

λ

∫ λ

−λ
c(v) exp

(
2πik1v

Ω

)∫ min(λ/2,λ/2−v)

max(−λ/2,−λ/2−v)

exp

(
2πiu2(k1 − k2)

Ω

)
du2dv

= A1 + A2 + A3,

where

A1 =
1

λ

∫ λ

−λ
c(v) exp

(
2πik1v

Ω

)∫ λ/2

−λ/2
exp

(
2πiu2(k1 − k2)

Ω

)
du2dv

A2 = −1

λ

∫ 0

−λ
c(v) exp

(
2πik1v

Ω

)∫ −λ/2−v
−λ/2

exp

(
2πiu2(k1 − k2)

Ω

)
du2dv

A3 = −1

λ

∫ λ

0

c(v) exp

(
2πik1v

Ω

)∫ λ/2

λ/2−v
exp

(
2πiu2(k1 − k2)

Ω

)
du2dv.

It is easily seen that

A1 =
Ω

λ(k1 − k2)
sin

(
2πλ(k1 − k2)

Ω

)∫ λ

−λ
c(v) exp

(
2πik1v

Ω

)
dv.
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We obtain expressions for A2 and A3

A2 = −1

λ

∫ 0

−λ
c(v) exp

(
2πik1v

Ω

)[
e2πiu(k1−k2)/Ω

2πi(k1 − k2)/Ω

]−v−λ/2
u=−λ/2

=
−Ω

λ2πi(k1 − k2)

∫ 0

−λ
c(v)e2πik1v/λ

(
e−

2πi(k1−k2)
Ω

(λ
2

+v) − e−iπλ(k1−k2)/Ω
)

=
−Ωe−λiπ(k1−k2)/Ω

λ2πi(k1 − k2)

∫ 0

−λ
c(v)

(
e2πik2v/Ω − e2πik1v/Ω

)
dv

=
−Ωe−λiπ(k1−k2)/Ω

λ2πi(k1 − k2)

∫ λ

0

c(v)
(
−e−2πik1v/Ω + e−2πik1v/Ω

)
dv

Similarly

A3 = −1

λ

∫ λ

0

c(v) exp

(
2πik1v

Ω

)[
e2πiu(k1−k2)/Ω

2πi(k1 − k2)/Ω

]λ/2
u=λ/2−v

=
−Ω

λ2πi(k1 − k2)

∫ λ

0

c(v)e2πik1v/Ω
(
eλiπ(k1−k2)/Ω − e

2πi(k1−k2)
Ω

(λ
2
−v)
)

=
−Ωeλiπ(k1−k2)/Ω

λ2πi(k1 − k2)

∫ λ

0

c(v)
(
e2πik1v/Ω − e2πik2v/Ω

)
dv.

This gives

A2 + A3 =
Ω

(k1 − k2)πλ
=
[
e−λiπ(k1−k2)/Ω

(∫ λ

0

c(v)e2πik2v/Ωdv −
∫ λ

0

c(v)e2πik1v/Ωdv

)]
.

Thus

cov

[
Jλ
(
k1

Ω

)
,Jλ

(
k2

Ω

)]
=

Ω

λ(k1 − k2)
sin

(
2πλ(k1 − k2)

Ω

)∫ λ

−λ
c(v) exp

(
2πik1v

Ω

)
dv +

Ω

(k1 − k2)πλ
=
[
e−λiπ(k1−k2)/Ω

(∫ λ

0

c(v)e2πik2v/Ωdv −
∫ λ

0

c(v)e2πik1v/Ωdv

)]
.

giving the required result. �

In the following lemma we focus on the Fourier transforms Jλ
(
k
λ

)
(frequency grid is

Ω = λ).

Corollary G.1 Suppose {Z(u)} is a spatial second order stationary process and Jλ
(
k
λ

)
is

defined in (G.4). Then

cov

[
Jλ
(
k1

λ

)
,Jλ

(
k2

λ

)]
=

{
Aλ
(
k
λ

)
k1 = k2(= k)

(−1)k1−k2+1

π(k1−k2)

[
Bλ(

k1

λ
)−Bλ(

k2

λ
)
]

k1 ≤ k2
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if in addition the process is Gaussian then

cov

[∣∣∣∣Jλ(k1

λ

)∣∣∣∣2 , ∣∣∣∣Jλ(k2

λ

)∣∣∣∣2
]

=

{
Aλ
(
k
λ

)2
+ λ2

π2k2λ2Bλ(
k
λ
)2 k1 = k2(= k)

λ2

λ2π2(k1−k2)2

[
Bλ(

k1

λ
)−Bλ(

k2

λ
)
]2

+ λ2

λ2π2(k1+k2)2

[
Bλ(

k1

λ
) +Bλ(

k2

λ
)
]2

k1 6= k2

where

Aλ

(
k

λ

)
=

∫ λ

−λ
T
(u
λ

)
c(u) exp

(
2iπku

λ

)
du

and

Bλ

(
k

λ

)
=

1

λ

∫ λ

0

c(u) sin

(
2πku

λ

)
du.

PROOF. The proof for k1 = k2 is clear. The proof for k1 6= k2 follows from Theorem G.2

and using that eiπ(k1−k2) = (−1)k1−k2 and sin (2π(k1 − k2)) = 0, this gives

cov

[
Jλ
(
k1

λ

)
,Jλ

(
k2

λ

)]
=

(−1)(k1−k2−1)

λ2π(k1 − k2)

[∫ λ

0

c(v)

(
sin

(
2πk1

λ

)
− sin

(
2πk2

λ

))
dv

]
=

(−1)k1−k2+1

π(k1 − k2)

[
Bλ(

k1

λ
)−Bλ(

k2

λ
)

]
.

The result for cov
[
|Jλ
(
k1

λ

)
|2, |Jλ

(
k2

λ

)
|2
]

follows from the above, the covariance expansion

in terms of cumulants and Gaussianity of the process. �

PROOF of Theorem 4.7 The proof of (4.7) immediately follows from Lemma 3.1(ii)

with Ω = λ.

To prove (4.8) we use Remark 2.4 and Corollary G.1 which immediately gives the result.

�

H Sample properties of Qa,Ω,λ(g; r)

In this section we summarize the sampling properties of Qa,Ω,λ(g; 0) (general frequency grid

when the bias is not removed) and Qa,λ,λ(g; r) (frequency grid Ω = λ and general r). We

do not consider Qa,Ω,λ(g; r) when r 6= 0, since for the general frequency grid Qa,Ω,λ(g; r)

does not appear to have any useful sampling properties (we recall that when the locations

are uniformly sampled Q̃a,λ,λ(g; r) can be used to estimate the variance of Q̃a,λ,λ(g; 0)). We

recall that

Qa,Ω,λ(g; r) = Q̃a,Ω,λ(g; r) +GΩVΩ,r (H.1)
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where VΩ,r = 1
n

∑n
j=1 Z(sj)

2 exp(−iωΩ,rsj), GΩ = λd

nΩd

∑a
k=−a g(ωΩ,k) and Q̃a,Ω,λ(g; r) is

defined in (3.6). To simplify notation we define Qa,λ(g; r) := Qa,Ω,λ(g; r). The sampling

properties are derived under the assumption the spatial process is Gaussian and the locations

are uniformly distributed.

The expectation of Qa,Ω,λ(g; 0) (for a general frequency grid) is given in Lemma 3.1.

Below we consider the expectation of Qa,λ(g; r) (the frequency grid Ω = λ and general r).

Theorem H.1 Suppose Assumptions 2.1(i), 2.3, b = b(r) denotes the number of zero ele-

ments in the vector r ∈ Zd and

(i) Assumptions 2.5(i) and 2.6(a,c) hold. Then we have

E [Qa,λ(g; r)]

=

{
O( 1

λd−b
) r ∈ Zd/{0}

1
(2π)d

∫
ω∈2π[−C,C]d

f(ω)g(ω)dω +O( 1
λ

+ λd

n
) r = 0

(ii) Suppose the Assumptions 2.5(ii) and Assumption 2.6(b,c) hold and {m1, . . . ,md−b} is

the subset of non-zero values in r = (r1, . . . , rd), then we have

E [Qa,λ(g; r)]

=

{
O
(

1
λd−b

∏d−b
j=1 (log λ+ log |mj|)

)
r ∈ Zd/{0}

1
(2π)d

∫
ω∈Rd f(ω)g(ω)dω + c(0)

n

∑a
k=−a g(ωk) +O

(
log λ
λ

+ 1
n

)
r = 0

.

PROOF The proof of (i) immediately follows from Theorem 2.1.

The proof of (ii) follows from writing Qa,λ(g; r) as a quadratic form and taking expecta-

tions

E [Qa,λ(g; r)]

= c2

a∑
k=−a

g(ωk)
1

λd

∫
[−λ/2,λ/2]d

c(s1 − s2) exp(iω′k(s1 − s2)− is′2ωr)ds1ds2 +Wr,

where c2 = n(n− 1)/n2 and Wr = c(0)I(r=0)
n

∑a
k=−a g(ωk) (where I(r = 0) = 1 if r = 0 else

I(r = 0) = 1). We then follow the same proof used to prove Theorem 4.1. �

We now obtain an expression for the variance of Qa,λ(g; r) and Qa,Ω,λ(g; 0). All the

calculations for Q̃a,Ω,λ(g; 0) have been done in previous sections, therefore from (H.1) it is

we only need expressions for cov[VΩ,r1 , VΩ,r2 ] and cov
[
Q̃a,Ω,λ(g; r1), VΩ,r2

]
.

Lemma H.1 Suppose Assumptions 2.1, 2.3, 2.5 2.6(b,c) hold. Define

f2(ω) =

∫
Rd
f(λ)f(ω − λ)dλ.
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If Ω > λ, then

λdcov[VΩ,r1 , VΩ,r2 ] = 2c2f2 (ωΩ,r2) Sinc

(
λπ

Ω
(r1 − r2)

)
+

3λdc(0)2

n
Sinc

(
λπ

Ω
(r1 − r2)

)
+O

(
log λ+ log

(
1 + λ

Ω
‖r2 − r1‖1

)
λ

)
(H.2)

If Ω ≤ λ, then

Ωdcov[VΩ,r1 , VΩ,r2 ] =
2c2Ωd

λd
f2 (ωΩ,r2) Sinc

(
λπ

Ω
(r1 − r2)

)
+

3Ωdc(0)2

n
Sinc

(
λπ

Ω
(r1 − r2)

)
+O

(
log λ+ log

(
1 + λ

Ω
‖r2 − r1‖1

)
λ

)
(H.3)

If Ω > λ, then

λdcov
[
Q̃a,Ω,λ(g; r1), VΩ,r2

]
=

c3

πd
Sinc

(
λπ

Ω
(r1 − r2)

)∫
[−2πa/Ω,2πa/Ω]d

g(ω)f (ω) f (ω + ωΩ,r1) dω +

O

(
λd

n
+

1

Ω
+

[log λ+ log
(
1 + λ

Ω
‖r1 − r2‖1

)
]3

λ

)
. (H.4)

If Ω ≤ λ, then

Ωdcov
[
Q̃a,Ω,λ(g; r1), VΩ,r2

]
=

c3Ωd

πdλd
Sinc

(
λπ

Ω
(r1 − r2)

)∫
[−2πa/Ω,2πa/Ω]d

g(ω)f (ω) f (ω + ωΩ,r1) dω +

O

(
λd

n
+

1

Ω
+

[log λ+ log
(
1 + λ

Ω
‖r1 − r2‖1

)
]3

λ

)
. (H.5)

PROOF. We prove the result for d = 1.

To shorten the proof, we prove (H.2) and (H.3) together. We define

Ω =

{
λ Ω > λ

Ω Ω ≤ λ

Conditioning on location and using that cov[Z(s1)2, Z(s2)2|s1, s2] = 2c(s1− s2)2 (in the case
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the spatial process is Gaussian) we have

Ωcov[VΩ,r1 , VΩ,r2 ] =
Ω

n2

n∑
j1,j2=1

cov[Z(sj1)2e−isj1ωΩ,r1 , Z(sj2)2e−isj2ωΩ,r2 ]

=
Ω

n2

n∑
j1,j2=1

{
E
(
e−isj1ωΩ,r1

+isj2ωΩ,r2 cov[Z(sj1)2, Z(sj2)2|sj1 , sj2 ]
)

+cov[c(0)e−isj1ωΩ,r1 , c(0)e−isj2ωΩ,r2 ]

}
=

Ω

n2

n∑
j1 6=j2=1

E
(
2e−isj1ωΩ,r1

+isj2ωΩ,r2c(sj1 − sj2)2
)

+
Ω

n2

n∑
j=1

E
(
2e−isj(ωΩ,r1

−ωΩ,r2
)c(0)2

)
+

Ω

n

2 n∑
j=1

c(0)2E[e−isj(ωΩ,r1
−ωΩ,r2

)]

= A1 + A2

where

A1 = 2Ωc2E
[
c(s1 − s2)2 exp(−is1ωΩ,r1 + is2ωΩr2)

]
and A2 =

3Ωc(0)2

n
E [exp(−is(ωΩ,r1−r2))] .

It is clear that

A2 =
3Ωc(0)2

n
sinc

(
λπ

Ω
(r1 − r2)

)
.

Integrating out the location in A1 and using that c(u)2 = 1
2π

∫
R f2(ω) exp(−iuω)du we have

A1 = 2c2
Ω

λ2

∫
[−λ/2,λ/2]s

c(s1 − s2)2 exp(−is1ωΩ,r1 + is2ωΩ,r2)ds1ds2

=
2c2Ω

2π

∫
R
f2(ω)

1

λ2

∫
[−λ/2,λ/2]s

exp(−is1(ω + ωΩ,r1) + is2(ω + ωΩ,r2))ds1ds2dω

=
2c2Ω

2π

∫
R
f2(ω)sinc

(
λ

2
[ω + ωΩ,r1 ]

)
sinc

(
λ

2
[ω + ωΩ,r2 ]

)
dω.

With the change of variables u = λ
2
(ω + ωΩ,r1) we have

A1 =
2c2Ω

πλ

∫
R
f2

(
2u

λ
− ωΩ,r2

)
sinc (u) sinc

(
u+

λ

2
ωΩ,r2−r1

)
du

We replace f2

(
2u
λ
− ωΩ,r2

)
with f2 (−ωΩ,r2) and using Lemma F.2 gives

A1 =
2c2Ω

πλ
f2 (ωΩ,r2)

∫
R

sinc (u) sinc

(
u+

λ

2
[ωΩ,r2−r1 ]

)
du+O

(
log λ+ log

(
1 + λ

Ω
(r2 − r1)

)
λ

)

=
2c2Ω

λ
f2 (ωΩ,r2) sinc

(
λπ

Ω
(r1 − r2)

)
+O

(
log λ+ log

(
1 + λ

Ω
(r2 − r1)

)
λ

)
.
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This proves (H.2) and (H.3).

We now prove (H.4), where the frequency grid is fine (we recall that Ω > λ). Using that

cov[A,B] = cov[E[A|C],E[B|C]] + E[cov(A,B|C)] we have

λcov
[
Q̃a,Ω,λ(g; r1), VΩ,r2

]
=

λ2

n3Ω

a∑
k=−a

g(ωΩ,k)
n∑

j1,j2,j3=1

j1 6=j2

cov
[
Z(sj1)Z(sj2)eisj1ωΩ,k−isj2ωΩ,k+r1 , Z(sj3)2e−isj3ωω,r2

]

=
λ2

n3Ω

a∑
k=−a

g(ωΩ,k)
n∑

j1,j2,j3=1

j1 6=j2

E
[
2eisj1ωΩ,k−isj2ωΩ,k+r1eisj3ωΩ,r2c(sj1 − sj3)c(sj2 − sj3)

]
+

λ2

n3Ω

a∑
k=−a

g(ωΩ,k)
n∑

j1,j2,j3=1

j1 6=j2

cov
[
eisj1ωΩ,k−isj2ωΩ,k+r1c(sj1 − sj2), eisj3ωΩ,r2c(0)

]︸ ︷︷ ︸
=0 unless j1=j3 or j2=j3

=
λ2

n3Ω

a∑
k=−a

g(ωΩ,k)
n∑

j1,j2,j3∈B3

E
[
2eisj1ωΩ,k−isj2ωΩ,k+r1eisj3ωΩ,r2c(sj1 − sj3)c(sj2 − sj3)

]
+R1(H.6)

B3 = {j1, j2, j3; 1 ≤ j1, j2, j3 ≤ n; and all different} where

R1 =
λ2

n3Ω

a∑
k=−a

g(ωΩ,k)
n∑

j1,j2,j3=1,j1 6=j2
j1=j3 or j2=j3

E
[
2eisj1ωΩ,k−isj2ωΩ,k+r1eisj3ωΩ,r2c(sj1 − sj3)c(sj2 − sj3)

]
+

λ2

n3Ω

a∑
k=−a

g(ωΩ,k)
n∑

j1,j2,j3=1,j1 6=j2
j1=j3

E
[
eisj1ωΩ,k−isj2ωΩ,k+r1eisj1ωΩ,r2c(0)c(sj1 − sj2)

]
+

λ2

n3Ω

a∑
k=−a

g(ωΩ,k)
n∑

j1,j2,j3=1,j1 6=j2
j2=j3

E
[
eisj1ωΩ,k−isj2ωΩ,k+r1eisj2ωΩ,r2c(0)c(sj1 − sj2)

]
−

λ2

n3Ω

a∑
k=−a

g(ωΩ,k)
n∑

j1,j2,j3=1,j1 6=j2
j1=j3

E
[
eisj1ωΩ,k−isj2ωΩ,k+r1c(sj1 − sj2)

]
E
[
eisj1ωΩ,r2c(0)

]
−

λ2

n3Ω

a∑
k=−a

g(ωΩ,k)
n∑

j1,j2,j3=1,j1 6=j2
j2=j3

E
[
eisj1ωΩ,k−isj2ωΩ,k+r1c(sj1 − sj2)

]
E
[
eisj2ωΩ,r2c(0)

]

Following the same methods used to prove Lemma E.2 we have |R1| = O(λ/n). To find

approximations to the lead term in (H.6) we use similar arguments to those in the proof of
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Lemma B.1 to obtain

M =
λ2

n3Ω

a∑
k=−a

g(ωΩ,k)
n∑

j1,j2,j3=1

j1 6=j2 6=j3

E
[
2eisj1ωΩ,k−isj2ωΩ,k+r1eisj3ωΩ,r2c(sj1 − sj3)c(sj2 − sj3)

]

=
2c3λ

2

(2π)2Ω

a∑
k=−a

g(ωΩ,k)

∫
R2

f(x)f(y)×

sinc

(
λ

2
(x+ ωΩ,k)

)
sinc

(
λ

2
(y − ωΩ,k+r1)

)
sinc

(
λ

2
(x+ y − ωΩ,r2)

)
dxdy,

where c3 = n(n − 1)(n − 2)/n3. Now using a change of variables u = λ
2

(x+ ωΩ,k) and

v = λ
2

(y − ωΩ,k+r1) we have

M =
2c3

Ωπ2

a∑
k=−a

g(ωΩ,k)

∫
R2

f

(
2u

λ
− ωΩ,k

)
f

(
2v

λ
+ ωΩ,k+r1

)
×

sinc (u) sinc (v) sinc

(
u+ v +

λπ

Ω
(r1 − r2)

)
dudv.

Replacing the sum 1
Ω

∑
k with an integral gives

M =
c3

π3

∫ 2πa/Ω

−2πa/Ω

g(ω)

∫
R2

f

(
2u

λ
− ω

)
f

(
2v

λ
+ ω + ωΩ,r1

)
×

sinc (u) sinc (v) sinc

(
u+ v +

λπ

Ω
(r1 − r2)

)
dudvdω +O

(
1

Ω

)
.

Finally replacing f
(

2u
λ
− ω

)
f
(

2v
λ

+ ω + ωΩ,r1

)
with f (−ω) f (ω + ωΩ,r1) and using Lemma

F.3 gives

M =
c3

π3

∫ 2πa/Ω

−2πa/Ω

g(ω)f (ω) f (ω + ωΩ,r1)

∫
R2

sinc (u) sinc (v) sinc

(
u+ v +

λπ

Ω
(r1 − r2)

)
dudvdω +

O

(
1

Ω
+

[log λ+ log
(
1 + λ

Ω
|r1 − r2|

)
]3

λ

)

=
c3

π

∫ 2πa/Ω

−2πa/Ω

g(ω)f (ω) f (ω + ωΩ,r1) sinc

(
λπ

Ω
(r1 − r2)

)
dω +

O

(
1

Ω
+

[log λ+ log
(
1 + λ

Ω
|r1 − r2|

)
]3

λ

)
.

Thus we have

λcov
[
Q̃a,Ω,λ(g; r1), VΩ,r2

]
=

c3

π

∫ 2πa/Ω

−2πa/Ω

g(ω)f (ω) f (ω + ωΩ,r1) sinc

(
λπ

Ω
(r1 − r2)

)
dω +

O

(
λ

n
+

1

Ω
+

[log λ+ log
(
1 + λ

Ω
|r1 − r2|

)
]3

λ

)
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which proves (H.4). A similar proof can be used to prove (H.5), we omit the details. �

Using the result above and Corollary D.1 (under the assumption the spatial random

field is Gaussian) one can easily deduce an expression for cov[Qa,Ω,λ(g; r1), Qa,Ω,λ(g; r2)].

However, the expression is long and not so instructive. Thus in the following lemma we

restrict outselves to some special cases which are of interest. Define

C1

( a
Ω
,ωΩ,r

)
=

1

(2π)d

∫
2π[−a/Ω,a/Ω]d

f(ω)f(ω + ωΩ,r)|g(ω)|2dω +

1

(2π)d

∫
DΩ,r

f(ω)f(ω + ωΩ,r)g(ω)g(−ω − ωΩ,r)dω

C2

( a
Ω
,ωΩ,r

)
=

1

(2π)d

∫
2π[−a/Ω,a/Ω]d

f(ω)f(ω + ωΩ,r)g(ω)g(−ω)dω +

1

(2π)d

∫
DΩ,r

f(ω)f(ω + ωΩ,r)g(ω)g(ω + ωΩ,r)dω,

C3

( a
Ω
,ωΩ,r

)
=

1

πd

∫
2π[−a/Ω,a/Ω]d

g(ω)f(ω)f(ω + ωΩ,r)dω

C4 (ωΩ,r) = 2f2(ωΩ,r) (H.7)

where

f2(ω) =

∫
Rd
f(λ)f(ω − λ)dλ

and
∫
DΩ,r

=
∫ 2πmin(a,a−r1)/Ω

2πmax(−a,−a−r1)/Ω
. . .
∫ 2πmin(a,a−rd)/Ω

2πmax(−a,−a−rd)/Ω
.

Theorem H.2 [Asymptotic expression for variance] Suppose Assumptions 2.1, 2.3, 2.5

2.6(b,c) hold. Let C1( a
Ω
,ωr), C2( a

Ω
,ωr), C3( a

Ω
,ωr), C4( a

Ω
,ωr) be defined in (H.7). Let

Gλ = 1
n

∑a
k=−a g(ωk), ad = O(n). Then we have

λdcov [Qa,λ(g; r1), Qa,λ(g; r2)]

=

{
C1( a

λ
,ωλ,r) + 2<[GλC3( a

λ
,ωλ,r)] +G4 (ωλ,r) |Gλ|2 +O(`λ,a,n) r1 = r2(= r)

O(`λ,a,n) r1 6= r2

and

λdcov
[
Qa,λ(g; r1), Qa,λ(g; r2)

]
=

{
C2( a

λ
,ωλ,r) + 2Gλ<[C3( a

λ
,ωλ,r)] +G4(ωλ,r)G2

λ +O(`λ,a,n) r1 = −r2(= r)

O(`λ,a,n) r1 6= −r2

,

Further, if Ω > λ (fine frequency grid), then

λdvar [Qa,Ω,λ(g; 0)]

= C1

( a
Ω
, 0
) λd

Ωd

2a∑
m=−2a

Sinc2

(
λ

Ω
mπ

)
+ 2<

[
C3

( a
Ω
, 0
)
GΩ

]
+G4(0)|GΩ|2 +O(˜̀a,Ω,λ).
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If Ω ≤ λ, then

Ωdvar [Qa,Ω,λ(g; 0)]

= C1

( a
Ω
, 0
) 2a∑

m=−2a

Sinc2

(
λ

Ω
mπ

)
+

2Ωd

λd
<
[
C3

( a
Ω
, 0
)
GΩ

]
+

Ωd

λd
G4

( a
Ω
, 0
)
|GΩ|2

+O(˜̀a,Ω,λ),
where ˜̀a,Ω,λ is defined in (D.14).

PROOF To prove the result we use (H.1). Expanding

cov[Qa,Ω,λ(g; r1), Qa,Ω,λ(g; Ω, r2)] in terms of the covariances between Q̃a,Ω,λ(g; r) and VΩ,r

gives

cov [Qa,Ω,λ(g; r1), Qa,Ω,λ(g; r2)]

= cov
[
Q̃a,Ω,λ(g; r1), Q̃a,Ω,λ(g; r2)

]
+ |GΩ|2cov [VΩ,r1 , VΩ,r2 ] +

GΩcov
[
Q̃a,Ω,λ(g; r1), VΩ,r2

]
+GΩcov

[
VΩ,r1 , Q̃a,Ω,λ(g; r2)

]

cov
[
Qa,Ω,λ(g; r1), Qa,Ω,λ(g; r2)

]
= cov

[
Q̃a,Ω,λ(g; r1), Q̃a,Ω,λ(g; r2)

]
+G2

Ωcov
[
VΩ,r1 , VΩ,r2

]
+

GΩcov
[
Q̃a,Ω,λ(g; r1), VΩ,r2

]
+GΩcov

[
VΩ,r1 , Q̃a,Ω,λ(g; r2)

]
.

In Corollary D.1 and Lemma H.1 expressions for each of the terms above are given. By

substituting these expressions into the above we obtain the result. �

In the following lemma we show that we further simplify the expression for the asymptotic

variance (in the case r is fixed).

Corollary H.1 Suppose Assumption 2.5, 2.6(a,c) or 2.6(b,c) holds, and r is fixed. Let

C3( a
Ω
,ω) and C4(ω) be defined in (H.7). Then we have

C3(
a

λ
,ωλ,r) = C3 +O

(
‖r‖1

λ

)
,

and C4(ωλ,r) = C4 +O
(
‖r‖1
λ

)
, where

C3 =
2

(2π)d

∫
2π[−a/λ,a/λ]d

g(ω)f(ω)2dω

and C4 = C4(0).
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PROOF The proof is the same as the proof of Corollary 4.1. �

Theorem H.3 [CLT on real and imaginary parts] Suppose Assumptions 2.1, 2.3, 2.5 and

2.6(b,c) hold. Let C1 and C2 be defined as in Corollary 4.1 and C3 and C4 be defined as in

Corollary H.1. We define the m-dimension complex random vectorsQm = (Qa,λ(g, r1), . . . , Qa,λ(g, rm)),

where r1, . . . , rm are such that ri 6= −rj and ri 6= 0. Under these conditions we have

2λd/2

E1

(
E1

E1 + <E2

<Qa,λ(g, 0),<Qm,=Qm

)
P→ N

(
0, I2m+1

)
, (H.8)

where E1 = C1 + 2<[GλC3] + C4|Gλ|2 and E2 = C2 + 2Gλ<C3 + C4G
2
λ with λd

n
→ 0 and

log2(a)

λ1/2 → 0 as λ→∞, n→∞ and a→∞.

PROOF Using the same method used to prove Lemma E.5, and analogous results can be

derived for the cumulants of Qa,λ(g; r). Asymptotic normality follows from this. We omit

the details. �

Application to nonparametric covariance estimator

In this section we apply the results to the nonparametric estimator considered in Section

2.3.3. We define

c̃Ω,n(u) =
1

Ωd

a∑
k=−a

|Jn(ωΩ,k)|2 exp(iu′ωΩ,k) and ĉ,Ω,n(u) = T

(
u

Ω̂

)
c̃Ω,n(u)

where T is the d-dimensional triangle kernel. It is clear the asymptotic sampling properties

of ĉΩ,n(u) are determined by c̃Ω,n(u). Therefore, we first derive the asymptotic sampling

properties of c̃Ω,n(u). We observe that c̃Ω,n(u) = Qa,Ω,λ(e
iv′·; 0), thus we use the results in

Section 4 to derive the asymptotic sampling properties of c̃Ω,n(u). By using Theorem 3.1

and under Assumptions 2.1, 2.3 and 2.5(ii) we have

E[c̃Ω,n(u)] =
1

(2π)d

∫
2π[−a/Ω,a/Ω]d

f(ω) exp(iu′ω)dω +O

(
log λ

λ

)
= c(u) +O

((
Ω

a

)δ
+

log λ

λ

)
, (H.9)

for u ∈ [−λ/2, λ/2]d (if Ω = λ) else for u ∈ [−λ, λ]d if Ω ≥ 2λ. We recall that δ is such

that it satisfies Assumption 2.5(ii)(a). Using Theorem H.2, we have λdvar
[
Q̃a,λ,Ω(eiu

′·; 0)
]

=

Σ( a
Ω

;u) +O
(˜̀

a,λ,Ω

)
where

Σ
( a

Ω
;u
)

=

[
1

(2π)d

∫
[−2πa/Ω,2πa/Ω]d

f(ω)2 [1 + exp(2iu′ω)] dω

][
λd

Ωd

2a∑
k=−2a

Sinc2

(
λ

Ω
kπ

)]
+

2

πd

∫
[−2πa/Ω,2πa/Ω]d

exp(iu′ω)f(ω)2dω + 2f2(0)

∣∣∣∣∣ λdΩdn

a∑
k=−a

exp(iu′ωΩ,k)

∣∣∣∣∣
2

.
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Therefore, if Ωδλd/2/aδ → 0 as a→∞ and λ→∞, then by using Theorem H.3 we have

λd/2 [c̃Ω,n(u)− c(u)]
D→ N

(
0,Σ

( a
Ω

;u
))

, (H.10)

λd

n
→ 0 and log2(a)

λ1/2 → 0 as n→∞, a→∞ and λ→∞. By using (H.9) and (H.10) we have

E[ĉΩ,n(u)] = T

(
u

Ω̂

)
c(u) +O

(˜̀
a,λ,Ω

)
.

Application to parameter estimation using an L2 criterion

In this section we consider the asymptotic sampling properties of θ̂n = arg minθ∈Θ Ln(θ),

where Ln(·) is defined in Section 2.3.4 and Θ is a compact set. We will assume that there

exists a θ0 ∈ Θ, such that for all ω ∈ Rd, fθ0(ω) = f(ω) and there does not exist another

θ ∈ Θ such that for all ω ∈ Rd fθ0(ω) = fθ(ω) and in addition
∫
Rd ‖∇θf(ω; θ0)‖2

1dω < ∞.

Furthermore, we will assume that θ̂n
P→ θ0 as λ→∞.

Making the usual Taylor expansion we have λd/2(θ̂n − θ0) = A−1λd/2 1
2
∇Ln(θ0) + op(1),

where

A =
1

(2π)d

∫
Rd

[∇θfθ0(ω)][∇θ0f(ω)]′dω, (H.11)

and it is clear the asymptotic sampling properties of θ̂n are determined by ∇θLn(θ0), which

we see from (2.7) can be written as

1

2
∇θLn(θ0)

= Q̃a,λ(−∇θfθ0(·); 0)− Vλ
1

n

a∑
k=−a

∇θfθ0(ωk)︸ ︷︷ ︸
Gλ

+
1

λd

a∑
k=−a

fθ0(ωk)∇θfθ0(ωk).

Thus by using Theorem H.3 we have λd/2∇θ
1
2
Ln(θ0)

D→ N (0, B), where

B =
1

(2π)d

∫
Rd
f(ω)2 [∇θfθ(ω)] [∇θfθ(ω)]′cθ=θ0dω

+
2Gλ

πd

∫
Rd
f(ω)2∇θfθ0(ω)′dω + 2GλG

′
λf2(0)

and Gλ = 1
n

∑a
k=−a∇θfθ0(ωk). Therefore, by using the above we have

λd/2(θ̂n − θ0)
P→ N (0, A−1BA−1)

with λd

n
→ 0 and log2(a)

λ1/2 → 0 as a→∞ and λ→∞.
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I Additional proofs

In this section we prove the remaining results required in this paper.

For example, Theorems 4.1, 4.2, 4.3(i,iii), 4.6 and B.2, involve replacing sums with inte-

grals. In the case that the frequency grid is unbounded stronger assumptions are required

than in the case the frequency grid is fixed. We state the required result in the following

lemma.

Lemma I.1 Let us suppose the function g1, g2 are bounded (supω∈Rd |g1(ω)| < ∞ and

supω∈Rd |g2(ω)| <∞) and for all 1 ≤ j ≤ d, supω∈Rd |
∂g1(ω)
∂ωj
| <∞ and supω∈Rd |

∂g2(ω)
∂ωj
| <∞.

(i) Suppose a/Ω = C (where C is a fixed finite constant) and h is a bounded function

whose first partial derivative 1 ≤ j ≤ d, supω∈Rd |
∂h(ω)
∂ωj
| <∞. Then we have∣∣∣∣∣ 1

Ωd

a∑
k=−a

g1(ωΩ,k)h(ωΩ,k)− 1

(2π)d

∫
2π[−C,C]d

g1(ω)h(ω)ω

∣∣∣∣∣ ≤ KΩ−1,

where K is a finite constant independent of Ω.

(ii) Suppose a/Ω → ∞ as Ω → ∞. Furthermore, h(ω) ≤ β1+δ(ω) and for all 1 ≤ j ≤ d

the partial derivatives satisfy |∂h(ω)
∂ωj
| ≤ β1+δ(ω). Then uniformly over a we have∣∣∣∣ 1

Ωd

a∑
k=−a

g1(ωΩ,k)h (ωΩ,k)− 1

(2π)d

∫
2π[−a/Ω,a/Ω]d

g1(ω)h (ω) dω

∣∣∣∣ ≤ KΩ−1

(iii) Suppose a/Ω→∞ as Ω→∞. Furthermore, f4(ω1,ω2,ω3) ≤ β1+δ(ω1)β1+δ(ω2)β1+δ(ω3)

and for all 1 ≤ j ≤ 3d the partial derivatives satisfy |∂f4(ω1,ω2,ω3)
∂ωj

| ≤ β1+δ(ω).∣∣∣∣ 1

Ω2d

a∑
k1,k2=−a

g1(ωΩ,k1)g2(ωΩ,k2)f4 (ωΩ,k1+r1 ,ωΩ,k2 ,ωΩ,k2+r2)−

1

(2π)2d

∫
2π[−a/Ω,a/Ω]d

∫
2π[−a/Ω,a/Ω]d

g1(ω1)g2(ω2)f4 (ω1 + ωr1 ,ω2,ω2 + ωr2) dω1dω2

∣∣∣∣
≤ KΩ−1.

PROOF. We first prove the result in the univariate case. We expand the difference between

sum and integral

1

Ω

a∑
k=−a

g1(ωΩ,k)h(ωΩ,k)−
1

2π

∫ 2πa/Ω

−2πa/Ω

g1(ω)h(ω)dω

=
1

Ω

a∑
k=−a

g1(ωΩ,k)h(ωΩ,k)−
1

2π

a−1∑
k=−a

∫ 2π/Ω

0

g1(ωΩ,k + ω)h(ωΩ,k + ω)dω.
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By applying the mean value theorem for integrals to the integral above we have

=
1

Ω

a∑
k=−a

g1(ωΩ,k)h(ωΩ,k)−
1

2π

a−1∑
k=−a

∫ 2π/Ω

0

g1(ωΩ,k + ω)h(ωΩ,k + ω)dω

=
1

Ω

a−1∑
k=−a

[g1(ωΩ,k)h(ωΩ,k)− g1(ωΩ,k + ωΩ,k)h(ωΩ,k + ωΩ,k)] +
1

Ω
g1(ωΩ,a)h(ωΩ,a)

where ωΩ,k ∈ [0, 2π
Ω

]. Next, by applying the mean value theorem to the difference above we

have ∣∣∣∣∣ 1

Ω

a∑
k=−a

[g1(ωΩ,k)h(ωΩ,k)− g1(ωΩ,k + ωΩ,k)h(ωΩ,k + ωΩ,k)]

∣∣∣∣∣
≤ 1

Ω2

a∑
k=−a

[g′1(ω̃Ω,k)h(ω̃Ω,k) + g1(ω̃Ω,k)h
′(ω̃Ω,k)] (I.1)

where ω̃Ω,k ∈ [ωΩ,k, ωΩ,k + ω] (note this is analogous to the expression given in (Brillinger,

1981), Exercise 1.7.14).

Under the condition that a = CΩ, g1(ω) and h(ω) are bounded and using (I.1) it is clear

that ∣∣∣∣∣ 1

Ω

a∑
k=−a

g1(ωΩ,k)h(ωΩ,k)−
1

2π

∫ 2πa/Ω

−2πa/Ω

g1(ω)h(ω)dω

∣∣∣∣∣
≤ supω |h′(ω)g1(ω)|+ supω |h(ω)g′1(ω)|

Ω2

a∑
k=−a

1 = CΩ−1.

For d = 1, this proves (i).

In the case that a/Ω→∞ as Ω→∞, we use that h and h′ are dominated by a montonic

function and that g1 is bounded. Thus by using (I.1) we have∣∣∣∣∣ 1

Ω

a∑
k=−a

g1(ωΩ,k)h(ωΩ,k)−
1

2π

∫ 2πa/Ω

−2πa/Ω

g1(ω)h(ω)dω

∣∣∣∣∣
≤ 1

Ω2

a∑
k=−a

sup
ωΩ,k≤ω≤ωΩ,k+1

(|g′1(ω)h(ω)|+ |g1(ω)h′(ω)|)

≤ 2(supω |g1(ω)|+ supω |g′1(ω)|)
Ω2

a∑
k=0

β1+δ(ωΩ,k) ≤
C

Ω

∫ ∞
0

β1+δ(ω)dω = O(Ω−1).

For d = 1, this proves (ii).
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To prove the result for d = 2 we take differences

1

Ω2

a∑
k1=−a

a∑
k2=−a

g(ωΩ,k1 , ωΩ,k2)h(ωΩ,k1 , ωΩ,k2)− 1

(2π)2

∫ a/Ω

−2πa/Ω

∫ 2πa/Ω

−2πa/Ω

g(ω1, ω2)h(ω1, ω2)dω1dω2

=
1

Ω

a∑
k1=−a

(
1

Ω

a∑
k2=−a

g(ωΩ,k1 , ωΩ,k2)h(ωΩ,k1 , ωΩ,k2)− 1

2π

∫ 2πa/Ω

−2πa/Ω

g(ωk1 , ω2)h(ωk1 , ω2)dω2

)

+
1

2π

∫ 2πa/Ω

−2πa/Ω

(
1

λ

a∑
k1=−a

g(ωk1 , ω2)h(ωk1 , ω2)− 1

2π

∫ 2πa/Ω

−2πa/Ω

g(ω1, ω2)h(ω1, ω2)dω2

)
dω1.

For each of the terms above we apply the method described for the case d = 1; for the first

term we take the partial derivative over ω2 and the for the second term we take the partial

derivative over ω1. This method can easily be generalized to the case d > 2. The proof of

(iii) is identical to the proof of (ii).

We mention that the assumptions on the derivatives (used replace sum with integral)

can be relaxed to that of bounded variation of the function. However, since we require the

bounded derivatives to decay at certain rates (to prove other results) we do not relax the

assumption here. �

PROOF of Theorem 5.1 Making the classical variance-bias decomposition we have

E
(
ṼS − λdvar[Q̃a,λ(g; 0)]

)2

= var[ṼS ] +
(

E[ṼS ]− λdvar[Q̃a,λ(g; 0)]
)2

.

We first analysis the bias term, in particular E[ṼS ]. We note that by using the expectation

and variance result in Theorems 4.1 and B.1 respectively, we have

E[ṼS ] =
λd

|S|
∑
r∈S

var[Q̃a,λ(g; r)] +
λd

|S|
∑
r∈S

∣∣E[Q̃a,λ(g; r)]
∣∣2︸ ︷︷ ︸

=O(λ−2d
∏d
j=1(log λ+log |rj |)2)

=
1

|S|
∑
r∈S

C1(ωr) +O

(
`λ,a,n +

[log λ+ logM ]d

λd

)
= C1 +O

(
`a,λ,n +

[log λ+ logM ]d

λd
+
|M |
λ

)
.

Next we consider var[ṼS ], by using the classical cumulant decomposition we have

var[ṼS ] =
λ2d

|S|2
∑

r1,r2∈S

( ∣∣∣cov
[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]∣∣∣2 +
∣∣∣cov

[
Q̃a,λ(g; r1), Q̃a,λ(g; r2)

]∣∣∣2
+
λ2d

|S|2
∑

r1,r2∈S

cum
(
Q̃a,λ(g; r1), Q̃a,λ(g; r1), Q̃a,λ(g; r2), Q̃a,λ(g; r2)

)
+O

(
λ2d

|S|2
∑

r1,r2∈S

∣∣∣cum
(
Q̃a,λ(g; r1), Q̃a,λ(g; r1), Q̃a,λ(g; r2)

)
E
(
Q̃a,λ(g; r2)

)∣∣∣) .
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By substituting the variance/covariance results for Q̃a,λ(·) based on uniformly sampled lo-

cations in Theorem B.1 and the cumulant bounds in Lemma E.5 into the above we have

var[ṼS ] =
λ2d

|S|2
∑
r∈S

∣∣∣var
[
Q̃a,λ(g; r)

]∣∣∣2 +O

(
`λ,a,n +

log4d(a)

λd

)
= O

(
1

|S|
+ `λ,a,n +

log4d(a)

λd

)
.

Thus altogether we have the result. �

J Simulations

In this section we illustrate the performance of the nonparametric non-negative definite

estimator of the spatial covariance defined in Section 2.3.3. We compare our method to the

nonparametric estimator proposed in (Hall et al., 1994). We conduct all the simulations for

d = 1 and the observations are observed over the spatial domain [−20, 20] (λ = 40).

We use the estimator

ĉa,Ω,n(u) = T

(
u

Ω̂

)
c̃Ω,n(u),

where

c̃a,Ω,n(u) =
1

Ω

a∑
k=−a

|Jn (ωk,Ω)|2 exp(iuωk,Ω).

Since λ = 40 we use Ω = 80 and Ω̂ = 40 to construct the estimator.

To evaluate the covariance estimator proposed in (Hall et al., 1994) (from now on re-

ferred to as the HFH estimator) we use the kernel method proposed in (Hall et al., 1994)

to estimate the covariance c(u) at u = 0, 0.5, 1, 1.5, . . . , 30, we denote this estimator as

c̃HRH(u). As suggested by (Hall et al., 1994) for u = 30, 30.5 . . . , 35 we taper the covari-

ance to zero and let c̃HRH(u) = (1 − |u|−30
5

)ĉHRH(30) for u ∈ [35, 40] and let c̃HRH(u) = 0

for u ∈ [35, 40]. To ensure the estimator is non-negative definite we evaluate the Fourier

transform of {c̃HRH(u);u = 0, 0.5, 1, . . . , 40} and set negative values to zero and invert the

Fourier transform. The result is a non-negative covariance estimator of the spatial covariance

sequence. We denote this estimator as ĉHRH(u).

In the simulations we simulate from a spatial Gaussian random field with autocovariance

c(u) = exp(−|u|/R) (R denotes the range parameter) and use R = 2 (range is 5% of the

field), R = 5 (range is R = 12.5% of the field) and R = 10 (range is 25% of the field). We also

compare sample sizes n = 1000 and n = 2000. In Figure 1 we make a plot of {|Jn(ω80,k)|2}150
k=0

against {ω80,k}150
k=0 for R = 2, 5, 10 and n = 1000, 2000. The locations {uj}nj=1 are sampled

from a uniform distribution. We observe that since Jn(ω) is being sampled on a fine frequency

grid (2π/(2 × 40) compared with 2π/40) adjacent values of Jn(ω80,k) are highly correlated.
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Furthermore, as expected, when R = 10 the periodogram drops close to zero “faster” than

when R = 2. However, in all cases we see that the amplitude of |Jn(ω80,k)|2 drops to close

zero when a is larger than 100. A plot of the periodogram can be used to determine a and

in Figure 2 we give a plot of the estimator ĉa,80,k(u) for a = 50 and a = 150 together with

the (Hall et al., 1994) estimator, ĉHRH(u). The plots are for R = 2, 5, 10 and n = 1000 and

n = 2000. All the estimators are evaluated at u = 0, 0.5, . . . , 20.

In order to compare the estimators we conduct a simulation study using the specifications

given above, where 500 replications are made for each (R, n)-pair. To understand how the

choice of a influences the estimator we evaluate ĉa,Ω,n(u) for a = 50, 100, 150, 200. We

also evaluate ĉHFH(u) (defined in (Hall et al., 1994)). The simulations are done over 500

replications. For each simulation (for a given range parameter and sample size) we calculate

the square root average squared error (SASE), the average (Ave) and the (g)lobal SASE (for

u = 0, 0.5, . . . , 20). They are defined as

SASE(u) =

√√√√ 1

N

N∑
j=1

{ĉ(j)(u)− c(u)}2
,Ave(u) =

1

N

N∑
j=1

ĉ(j)(u)

and gSASE =
1

41

40∑
i=0

SASE

(
i

2

)
,

where ĉ(j)(u) denotes the estimator based on the jth replication.

The results of the simulations are reported in Tables 1-6. We observe that for most values

of a the estimator ĉa,Ω,n seems to perform better than the HRH estimator. The sensitivity

of the estimator to the choice of a depends on the location the covariance is estimating. We

observe that when n = 2000 the SASE is to roughly the same for all choices of a and all

range parameters. However, when n = 1000 for the estimator at u = 0 the SASE is larger

for larger choices of a (this is not seen for estimators at other values of u, except when the

range parameter is R = 10, when something similar is also seen at u = 2). An explanation

can be found from the way in which c̃a,Ω,n(u) is defined. We recall that

c̃a,Ω,n(u) = Q̃a,Ω,λ(e
iu·) +

(
1

n

n∑
j=1

Z(sj)
2

)
×

(
1

n

a∑
k=−a

eiu2πk/Ω

)
.

The second term on the right hand side of the above is the “so called” finite bias its expec-

tation is approximately equal to

σ2Ω

2πn

∫ 2πa/λ

−2πa/λ

eiuωdω.

If n is large or u 6= 0 the above bias will be close to zero, however for small n and u = 0

then the above may be quite large which may explain the effect that we see. Despite this the
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Figure 1: Plot of |Jn(ω80,k)|2. Top for n = 1000 and Left to Right R = 2, 5 and 10. Bottom

for n = 2000 and Left to Right R = 2, 5 and 10.

estimator is not overly sensitive to the choice of a, since we are comparing the performance

of the estimator over a very wide range of a (a = 50 − 200). It seems that the best way to

choose a is simply to make a plot of the periodogram (similar to Figure 1) and select the a

where most of the amplitudes drop close to zero.

To understand the effect sample size, n, has on the estimation scheme simulations were

conducted for R = 2 and n = 1000, 2000, 4000, 6000. We focussed on a = 50 and 100 and

also evaluated the HFH estimator. 100 replications were done for each (R, n)-pair. The

results are reported in Table 7. As the sample size increases there does not seem to any real

change in the SASE. This observations is supported by the theory developed in this paper.
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Figure 2: Plot of ĉa,80,n(u) and ĉHFH(u) evaluated at u = 0, 0.5, 1, . . . , 20. The Black line is

the true autocovariance exp(−|u|/R), Red line is ĉ50,80,n(u) (a = 50). Green line is ĉ150,80,n(u)

(a = 150). Blue line is ĉHRH(u). Left to Right R = 2, 5 and 10. Top for n = 1000 and

bottom for n = 2000.

Method c(0) = 1 c(2) = 0.3678 c(4) = 0.1353 c(6) = 0.0497 c(8) = 0.0183 c(10) = 0.0067 gSASE

a = 50
SASE 0.365 0.274 0.243 0.217 0.186 0.151 0.189

Ave 0.964 0.366 0.124 0.032 0.009 0.005

a = 100
SASE 0.388 0.274 0.244 0.218 0.188 0.154 0.190

Ave 1.056 0.350 0.126 0.036 0.008 0.001

a = 150
SASE 0.423 0.273 0.244 0.220 0.188 0.153 0.191

Ave 1.119 0.342 0.125 0.039 0.008 0.001

a = 200
SASE 0.463 0.275 0.246 0.220 0.188 0.153 0.192

Ave 1.177 0.350 0.126 0.037 0.007 0.003

HFH
SASE 0.465 0.350 0.301 0.286 0.254 0.223 0.280

Ave 1.149 0.437 0.165 0.055 0.027 0.027

Table 1: n = 1000, R = 2. Estimates evaluated at u = 0, 2, . . . , 10 and globally.
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Method c(0) = 1 c(2) = 0.3678 c(4) = 0.1353 c(6) = 0.0497 c(8) = 0.0183 c(10) = 0.0067 gSASE

a = 50
SASE 0.330 0.224 0.197 0.164 0.168 0.164 0.171

Ave 0.950 0.362 0.123 0.043 0.030 0.019

a = 100
SASE 0.333 0.225 0.197 0.164 0.169 0.166 0.171

Ave 1.017 0.349 0.124 0.047 0.029 0.016

a = 150
SASE 0.343 0.224 0.199 0.166 0.168 0.166 0.172

Ave 1.055 0.346 0.123 0.049 0.029 0.016

a = 200
SASE 0.357 0.226 0.200 0.165 0.168 0.166 0.172

Ave 1.087 0.350 0.124 0.048 0.029 0.017

HFH
SASE 0.406 0.281 0.241 0.202 0.226 0.241 0.253

Ave 1.141 0.436 0.158 0.062 0.047 0.041

Table 2: n = 2000, R = 2. Estimates evaluated at u = 0, 2, . . . , 10 and globally.

Method c(0) = 1 c(2) = 0.670 c(4) = 0.449 c(6) = 0.301 c(8) = 0.202 c(10) = 0.135 gSASE

a = 50
SASE 0.564 0.475 0.417 0.376 0.314 0.266 0.312

Ave 1.045 0.655 0.394 0.237 0.159 0.106

a = 100
SASE 0.575 0.443 0.401 0.364 0.306 0.266 0.303

Ave 1.114 0.645 0.395 0.240 0.160 0.103

a = 150
SASE 0.617 0.441 0.401 0.366 0.304 0.265 0.304

Ave 1.171 0.637 0.395 0.242 0.160 0.102

a = 200
SASE 0.660 0.444 0.402 0.368 0.305 0.266 0.306

Ave 1.227 0.645 0.396 0.241 0.160 0.104

HFH
SASE 0.747 0.609 0.519 0.471 0.422 0.384 0.456

Ave 1.236 0.790 0.490 0.308 0.227 0.176

Table 3: n = 1000, R = 5. Estimates evaluated at u = 0, 2, . . . , 10 and globally.

Method c(0) = 1 c(2) = 0.670 c(4) = 0.449 c(6) = 0.301 c(8) = 0.202 c(10) = 0.135 gSASE

a = 50
SASE 0.492 0.445 0.403 0.363 0.327 0.299 0.308

Ave 0.965 0.605 0.363 0.217 0.127 0.074

a = 100
SASE 0.508 0.445 0.402 0.364 0.328 0.297 0.308

Ave 1.007 0.598 0.364 0.219 0.127 0.073

a = 150
SASE 0.525 0.443 0.402 0.364 0.327 0.297 0.308

Ave 1.038 0.594 0.363 0.220 0.127 0.073

a = 200
SASE 0.540 0.443 0.402 0.364 0.327 0.298 0.309

Ave 1.065 0.598 0.363 0.219 0.127 0.074

HFH
SASE 0.630 0.547 0.483 0.450 0.430 0.421 0.445

Ave 1.163 0.741 0.455 0.282 0.187 0.136

Table 4: n = 2000, R = 5. Estimates evaluated at u = 0, 2, . . . , 10 and globally.
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Method c(0) = 1 c(2) = 0.819 c(4) = 0.670 c(6) = 0.549 c(8) = 0.449 c(10) = 0.368 gSASE

a = 50
SASE 0.605 0.540 0.495 0.457 0.424 0.385 0.397

Ave 1.056 0.789 0.594 0.447 0.340 0.253

a = 100
SASE 0.634 0.539 0.495 0.456 0.423 0.386 0.397

Ave 1.117 0.780 0.596 0.450 0.340 0.251

a = 150
SASE 0.668 0.535 0.495 0.457 0.424 0.386 0.398

Ave 1.172 0.774 0.594 0.452 0.339 0.250

a = 200
SASE 0.705 0.536 0.495 0.457 0.423 0.386 0.399

Ave 1.227 0.781 0.596 0.451 0.339 0.251

HFH
SASE 0.828 0.696 0.601 0.550 0.529 0.496 0.549

Ave 1.275 0.964 0.728 0.561 0.462 0.388

Table 5: n = 1000, R = 10. Estimates evaluated at u = 0, 2, . . . , 10 and globally.

Method c(0) = 1 c(2) = 0.819 c(4) = 0.670 c(6) = 0.549 c(8) = 0.449 c(10) = 0.368 gSASE

a = 50
SASE 0.737 0.674 0.608 0.551 0.502 0.458 0.471

Ave 0.987 0.742 0.551 0.408 0.308 0.229

a = 100
SASE 0.757 0.673 0.609 0.553 0.504 0.460 0.473

Ave 1.021 0.737 0.552 0.409 0.308 0.227

a = 150
SASE 0.779 0.669 0.609 0.554 0.503 0.461 0.473

Ave 1.050 0.733 0.552 0.410 0.308 0.227

a = 200
SASE 0.803 0.673 0.608 0.554 0.504 0.459 0.475

Ave 1.076 0.737 0.552 0.409 0.308 0.228

HFH
SASE 0.964 0.853 0.751 0.692 0.663 0.646 0.676

Ave 1.206 0.910 0.671 0.504 0.416 0.353

Table 6: n = 2000, R = 10. Estimates evaluated at u = 0, 2, . . . , 10 and globally.
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Method c(0) = 1 c(2) = 0.3678 c(4) = 0.1353 c(6) = 0.0497 c(8) = 0.0183 c(10) = 0.0067 gSASE

n=1000

a = 50
SASE 0.334 0.249 0.203 0.184 0.188 0.170 0.180

Ave 0.968 0.355 0.100 0.001 0.011 0.011

a = 100
SASE 0.388 0.274 0.244 0.218 0.188 0.154 0.190

Ave 1.056 0.350 0.126 0.036 0.008 0.001

HFH
SASE 0.465 0.350 0.301 0.286 0.254 0.223 0.280

Ave 1.149 0.437 0.165 0.055 0.027 0.027

n=2000

a = 50
SASE 0.321 0.235 0.209 0.212 0.227 0.209 0.192

Ave 0.943 0.356 0.118 0.026 -0.004 -0.004

a = 100
SASE 0.323 0.236 0.208 0.212 0.226 0.210 0.192

Ave 1.010 0.343 0.119 0.031 -0.005 -0.005

HFH
SASE 0.400 0.295 0.259 0.267 0.305 0.313 0.287

A 1.132 0.431 0.153 0.039 0.001 0.006

n=4000

a = 50
SASE 0.323 0.242 0.202 0.197 0.184 0.144 0.174

Ave 0.899 0.317 0.095 0.033 0.014 0.027

a = 100
SASE 0.313 0.245 0.202 0.197 0.185 0.144 0.174

Ave 0.950 0.307 0.097 0.034 0.014 0.025

HFH
SASE 0.368 0.288 0.239 0.240 0.241 0.217 0.251

Ave 1.076 0.382 0.128 0.049 0.027 0.053

n=6000

a = 50
SASE 0.322 0.235 0.211 0.195 0.180 0.173 0.181

A 0.951 0.363 0.128 0.045 0.002 -0.001

a = 100
SASE 0.319 0.236 0.211 0.195 0.180 0.172 0.181

Ave 1.001 0.352 0.128 0.049 0.001 -0.003

HFH
SASE 0.429 0.312 0.259 0.237 0.234 0.242 0.273

Ave 1.150 0.443 0.174 0.075 0.023 0.018

Table 7: n = 1000, 2000, 4000 and 6000; R = 2. Estimates evaluated at u = 0, 2, . . . , 10 and

globally. Simulations conducted over 100 replications.
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