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Abstract

In this paper we define a spatio-temporal model with location dependent parameters

to describe temporal variation and spatial nonstationarity. We consider the prediction

of observations at unknown locations using known neighbouring observations. Further

we propose a local least squares based method to estimate the parameters at unob-

served locations. The sampling properties of these estimators are investigated. We

also develop a statistical test for spatial stationarity. In order to derive the asymptotic

results we show that the spatially nonstationary process can be locally approximated

by a spatially stationary process. We illustrate the methods of estimation with some

simulations.
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local stationarity, polynomial interpolation, spatio-temporal models, testing for spatial

stationarity.

1 Introduction

The modelling of spatial data has been an active area of research, because of its vast potential
in applications to ecology, the environmental sciences and finance amongst others. If at a
given time, we have observations over various locations (equally or unequally spaced) we
can find a suitable spatial model or covariance function to describe the dependence over
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space (cf. Whittle (1954), Mardia and Marshall (1984) Cressie (1993), Johns et al. (2003),
Hallin et al. (2004), Guan et al. (2004) and Lu et al. (2004)). In the situation where time
is not fixed, then we have observations over both space and time, and there are various
ways to model this type of data. For instance, often it is assumed that the observations
are Gaussian, therefore to model the dependence a covariance is often fitted. Generally it is
supposed that the process is spatially stationary and the covariance has a particular structure
(usually isotropic or anisotropic). In this case likelihood methods are often used to estimate
the parameters (c.f. Cressie and Huang (1999), Shitan and Brockwell (1995), Matsuda and
Yajima (2004), Zhang (2004) and Jun and Stein (2007)). However many factors could cause
the process to be spatially nonstationary, therefore it would be of interest to develop methods
of estimation and theory for such processes.

We observe if we fix a location, the observations at that location can be considered
as a time series. This inspires us to define a spatio-temporal process in terms of its time
dynamics. Let us suppose that for every fixed location, the resulting time series has an AR
representation, where the innovations are samples from a spatial process. By assuming the
innovations are observations on a spatial process, dependence between two observations in
space can be modelled. More precisely, we define the location dependent autoregressive (AR)
process {Xt(u) : u ∈ [0, 1]2}t, where Xt(u) satisfies the representation

Xt(u) =

p
∑

j=1

aj(u)Xt−j(u) + σ(u)ξt(u) t = 1, . . . , T, (1)

with u = (x, y) ∈ [0, 1]2, and {aj(·); j = 1, . . . , p} and σ(·) are nonparametric functions. We
suppose the innovations {ξt(u) : u ∈ [0, 1]2} are independent over time and are spatially
stationary processes, with E[ξt(u)] = 0 and var[ξt(u)] = 1. We observe if the {aj(·)} are not
constant over space, then {Xt(u)} is a spatially nonstationary process. We mention that the
location dependent AR process is used to fit ozone and house price data in Gilleland and
Nychka (2005) and Gelfand et al. (2003) respectively. An integrated spatially stationary AR
process is considered Storvik et al. (2002). We note that the results in this paper do not rely
on any distributional assumptions on ξt(u).

In Section 2 we consider the prediction of observations at unknown locations, using known
neighbouring observations. The predictor requires an estimate of aj(·) at the unobserved
location. In Section 2 we propose two methods for estimating the AR functions {aj(·)}.
Both methods are based on a localised least squares criterion. The first estimator is a
localised least squares estimator with constant regressors, whereas the second estimator is a
local linear least squares estimator. In Section 3 we consider the sampling properties of both
estimators. We consider the two cases where (i) the number of locations are kept fixed and
time T → ∞ and (ii) both the number of locations and T → ∞. In the case that the number
of locations is fixed, we show that both estimators are asymptotically normal but biased (in
probability). However, if the parameters are sufficiently smooth, the linear interpolating
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least squares estimator yields a bias which is smaller than the constant interpolating least
squares estimator. In the case that the number of locations (m) also grow, the estimators
are asymptotically consistent.

In Section 4 we develop a test for spatial stationarity, which is based on testing for ho-
mogeneity. We evaluate the limiting distribution of the test statistic under the null and
alternative hypotheses of spatial stationarity and nonstationarity. We note that the ‘rough-
ness’ of the parameters {aj(·)} determine the power of the test.

To illustrate the methods and test for spatial stationarity, in Section 5 we consider some
simulations. If aj(·) is smooth we show that the local linear estimator is better than the
local least squares estimators. However when the parameter aj(·) is relatively rough (its first
derivative does not exists everywhere), then the two estimation methods are comparable.

An outline of the proofs can be found in the Appendix. The full details and some
additional results can be found in the accompanying technical report Subba Rao (2007).

2 Estimation of location parameters at an unobserved

location

2.1 The model and assumptions

Throughout this paper we let u = (x, y) and for s = 0, . . . ,m, we suppose us = (xs, ys). We
note that (x, y) can denote the spatial coordinates, but it is straightforward to generalise the
results in this paper to higher dimensions. Let {ξt(u) : u ∈ [0, 1]2} be a spatially stationary
process and cξ(u) = cov{ξt(0), ξt(u)}. Let ‖ · ‖∞ denote the sup-norm of a vector, ‖ · ‖2

denote the Euclidean norm and ‖ · ‖1 the `1-norm. Suppose A is a p×p matrix, then ‖A‖spec

denotes the spectral norm of A, Aij denotes the (i, j)th element of A, A·,j , the jth column
of A, and bj the jth element of the vector b. Let A′ denote the transpose of matrix A.

We make the following assumptions

Assumption 2.1 Suppose the process {Xt(u)} satisfies (1). Furthermore,

(i) The innovations ξt(u) are independent over time, and spatially, strictly stationary.

(ii) Let {λj(u) : j = 1, . . . , p} be the roots of the characteristic polynomial xp−∑p
j=1 aj(u)xp−j.

For some δ > 0, we assume that supu,j |λj(u)| ≤ (1 − δ).

(iii) The second order partial derivatives of aj(u) and σ(·) exist and all the partial derivatives
up to the second order are uniformly bounded over [0, 1]2.

(iv) For some C > 0, infu σ(u) > C.

(v) For some η > 0, E(|ξt(u)|4+η) < ∞.
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Assumption 2.1(i,ii) means that the process {Xt(u)} is stationary over time. We use
Assumption 2.1(ii,iii) to show that in a local neighbourhood of u, Xt(u) can be approximated
by a spatially stationary process. We use Assumption 2.1(iv,v) to prove asymptotic normality
of the estimators defined below. It is worth mentioning that most of the results in this paper
do not require any additional assumptions on the distribution of {Xt(u)}.

In order to study the least squares estimators, below, we use the notation ḟ(u) =

(∂f(u)
∂x

,
∂f(u)

∂y
)′.

We will make frequent use of the well known result that since for fixed u, {Xt(u)}t is an
AR(p) process it has the unique solution

Xt(u) =
∞
∑

k=0

ζk(u)ξt−k(u), (2)

where ζk(u) = σ(u)[A(u)k]1,1, with

A(u) =















a1(u) a2(u) . . . ap−1(u) ap(u)
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 . . . . . . 1 0















(3)

and satisfies supu |ζk(u)| ≤ Kρk for some finite K and 1 − δ < ρ < 1.

Remark 2.1 (Spatio-temporal Covariance) In spatial statistics often the dependence of
a process is characterised through its covariance. In the case of the location dependent AR
process, the covariance across both space and time is

cov[Xt1(u1), Xt2(u2)] = cξ(u1 − u2)
∞
∑

k=0

ζk(u1)ζk+t2−t1(u2). (4)

A spatio-temporal process {Yt(u)} is said to be space-time separable, if there exists functions
d : R

2 → R and e : R → R such that for all u1, u2, t1 and t2 we have cov(Yt1(u1), Yt2(u2)) =
d(u1, u2)e(t1 − t2). It is easy to show that the location dependent AR process {Xt(u)} is only
space-time separable if aj(·) and σ(·) are constant over [0, 1]2, for all 1 ≤ j ≤ p. In this case
{Xt(u)} is a spatially stationary process.

2.2 Kriging for nonstationary processes

In this section we consider kriging for spatially nonstationary models which satisfy (1). More
precisely, we consider prediction of the spatio-temporal process Xt(u0) at any arbitrary unob-
served location u0 given the observations {X1(us), . . . , XT (us) : s = 1, . . . ,m}. The predictor
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depends on the parameters {aj(u0)}. However, the parameters {aj(u0)} are unknown, and
cannot be estimated using standard methods. Therefore in Section 2.3 we consider methods
for estimating {aj(·)}. To simplify notation we assume Gaussianity of the innovations. If
the innovations are not Gaussian the discussion below applies to the best linear predictor.

Let X = [{Xj(us) : s = 1, . . . ,m}T
j=1]. To evaluate E

[

Xt(u0)
∣

∣X
]

, for p+1 ≤ t ≤ T , we use
(2) and note that X t(u0) = A(u0)X t−1(u0)+ξ

t
(u0), where X t(u0)

′ = (Xt(u0), . . . , Xt−p+1(u0)),
ξ

t
(u0)

′ = (ξt(u0), . . . , 0) are p-dimensional random vectors and A(·) is defined in (3), to obtain

E
[

Xt(u0)
∣

∣X
]

=

t−p−1
∑

k=0

ζk(u0)E
[

ξt−k(u0)
∣

∣X
]

+ [A(u0)
t−p

E{Xp(u0)|X}]1.

For p + 1 ≤ t − k ≤ T we have E
[

ξt−k(u0)
∣

∣X
]

= E
[

ξt−k(u0)
∣

∣{ξt−k(us) : s = 1, . . . ,m}
]

,
substituting this into the above gives

E
[

Xt(u0)
∣

∣X
]

=

t−p−1
∑

k=0

ζk(u0)E
[

ξt−k(u0)
∣

∣{ξt−k(us) : s = 1, . . . ,m}
]

+ [A(u0)
t−p

E{Xp(u0)|X}]1.

Under Assumption 2.1(ii), we have the bound ‖A(u0)
k‖spec ≤ Kρk, where 1 − δ ≤ ρ < 1,

which means

E
[

Xt(u0)
∣

∣X
]

=

t−p−1
∑

k=0

ζk(u0)E
[

ξt−k(u0)
∣

∣{ξt−k(us) : s = 1, . . . ,m}
]

+ Op(ρ
t−p). (5)

We now show that the first term on the right hand side of (5) can be evaluated recursively.
Let us suppose the random process {Xt(u0|m)} satisfies

Xt(u0|m) =

p
∑

j=1

aj(u0)Xt−j(u0|m) + σ(u0)E
[

ξt(u0)
∣

∣ξt(u1), . . . , ξt(um)
]

, (6)

and set Xt(u0|m) = 0 for t ≤ p. Define the p-dimensional vectors

X t(u0|m)′ = (Xt(u0|m), . . . , Xt−p+1(u0|m))

ξ
t
(u0|m)′ = (σ(u0)E

[

ξt(u0)
∣

∣ξt(u1), . . . , ξt(um)
]

, 0, . . . , 0).

We observe that (6) can be written as X t(u0|m) = A(u0)X t−1(u0|m) + ξ
t
(u0|m). Now, this

together with the initial condition Xp(u0|m)′ = (0, . . . , 0), imply that Xt(u0|m) has the

solution
∑t−p−1

k=0 ζk(u0)E
[

ξt−k(u0)
∣

∣{ξt−k(us) : s = 1, . . . ,m}
]

. Comparing Xt(u0|m) with (5),
we see that for large t, Xt(u0|m) and E

[

Xt(u0)
∣

∣X
]

are asymptotically equivalent. Therefore
one can use Xt(u0|m) as an estimator of E

[

Xt(u0)
∣

∣X
]

.
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In order to evaluate Xt(u0|m) we need to know E
[

ξt(u0)
∣

∣ξt(u1), . . . , ξt(um)
]

, {aj(·)} and
σ(·). If the joint distribution of {ξt(us) : s = 0, . . . ,m} were known, then we can evaluate
the conditional expectation E

[

ξt(u0)
∣

∣{ξt(us)}m
s=1

]

. Furthermore, if {ξt(u); u ∈ [0, 1]2} were a
spatial Gaussian process, then it is straightforward to show that

E
[

ξt(u0)
∣

∣{ξt(us)}m
s=1

]

=
m
∑

s=1

γj(u)ξt(us), (7)

where u = (u0, . . . , um), γ(u) = (γ1(u), . . . , γm(u))′ = R(u)−1r(u), with R(u)ij = cov(ξt(ui), ξt(uj)) =
cξ(ui − uj) and r(u)i = cov(ξt(u0), ξt(ui)) = cξ(ui − u0). This means by using estimates of
the innovations {ξt(us)}t at the observed locations, we can estimate the covariance func-
tion cξ(·). For example, if {ξt(·)} were Gaussian and the spatial covariance belonged to the
Matérn family, then likelihood methods could be used to estimate the parameters of the
Matérn covariance (cf. Cressie (1993) and the references therein).

Nevertheless, it is still not possible to evaluate Xt(u0|m), since the parameters {aj(u0)}
are unknown. In the following section we use a least squares approach for estimating the
parameters {aj(·)} from the observations {X1(us), . . . , XT (us) : s = 1, . . . ,m}, and study
their asymptotic properties.

2.3 Estimation

Ordinary least squares is often used to estimate the parameters of a stationary autoregressive
process. However, if {Xt(u0)}t is unobserved such methods cannot be used to estimate
{aj(u0)}. Nevertheless, since the autoregressive parameters are continuous over space (see
Assumption 2.1(iii)) nonparametric methods can be developed, to estimate the parameters at
unobserved locations. In nonparametric regression, often the local likelihood is used to obtain
an estimator of a nonparametric function (cf. Tibshirani and Hastie (1987)). Motivated by
these methods, to estimate the autoregressive parameters at u0, we use a localised least
squares approach. More precisely, we consider the localised least squares criterion

L1,T (u0, α) =
1

mT ′

T
∑

t=p+1

m
∑

s=1

Wb(u0 − us)
{

Xt(us) −
p
∑

j=1

αjXt−j(us)
}2

, (8)

where T ′ = T − p − 1 and K : R
2 → R is a kernel function with

∫

K(x)dx = 1, W (u) =
K(x)K(y) and Wb(·) = 1

b
W ( ·

b
). Let a(u0)

′ = (a1(u0), . . . , ap(u0)). We use â1,T (u0) as an
estimator of a(u0), where

â1,T (u0) = arg min
α

L1,T (u0, α). (9)

We call â1,T (u0) = (â1,1(u0), . . . , â1,p(u0)) the local least squares estimator.
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The local least squares criterion (8) motivates a generalisation, which is similar to the
local polynomials methods often used in nonparametric regression. In the context of non-
parametric regression, Fan (1993) showed that by replacing the constant term in the local
least squares criterion with a linear polynomial, thereby estimating both the parameter and
its derivative, a reduction in bias can be achieved. Under Assumption 2.1(iii) we can make
a Taylor expansion of us about u0 (aj(us) = aj(u0) + (u0 − us)ȧj(u0) + O(‖us − u0‖2

∞)), to
yield the least squares criterion

L2,T (u0,A) =
1

mT ′

T
∑

t=p+1

m
∑

s=1

Wb(u0 − us)

{

Xt(us) −
p
∑

j=1

[αj + (u0 − us)βj]Xt−j(us)

}2

, (10)

where β ′
j = (β1j, β2j) and A is a 3×p-dimensional vector. Let A(u0)

′ =
(

a(u0), ȧ1(u0), . . . , ȧp(u0)
)

and use Â2,T (u0) as an estimator of A(u0), where

Â2,T (u0) = arg min
A

L2,T (u0,A) (11)

and Â2,T (u0) = (â2,T (u0), β̂2,1(u0), . . . β̂2,p(u0)). In particular â2,T (u0) is an estimator of

a(u0). We call Â2,T (u0) the local linear least squares estimator. It is clear that Â2,T (u0) can

easily be evaluated using Â2,T (u0) = R̂T (u)−1r̂T (u), where u = (u0, . . . , us),

R̂T (u) =
1

mT ′

m
∑

s=1

Wb(u0 − us)u(s)u(s)′ ⊗
T
∑

t=p+1

{

X t−1(us)X t−1(us)
′
}

(12)

r̂T (u) =
1

mT ′

m
∑

s=1

Wb(u0 − us)u(s) ⊗
′
∑

t=p+1

X t−1(us),

X t−1(us)
′ = (Xt−1(us), . . . , Xt−p(u)), ⊗ denotes the Kronecker product and u(s) = (1, (us −

u0))
′.
Studying (12), we see if the observed locations are clustered together, the matrix R̂T (u)

can be close to singular. This problem can be overcome by using a commonly used technique
in linear regression, where a small diagonal matrix is added to the Hessian matrix to make
the estimator more stable. Adding a diagonal matrix to the Hessian, ensures invertibility
and means that the smallest eigenvalues of the ‘regularised’ Hessian is bounded below by the
smallest eigenvalue of the diagonal matrix. We use the same trick here, and add a ‘small’
diagonal matrix to R̂T (u). This makes calculating the estimator simplier and guarantees
that the resulting estimator is consistent. We define the estimator Â3,T (u0)

Â3,T (u0) = [R̂T (u) + ηγI]−1 r̂T (u), (13)

where η = 1
m

∑m
s=1 Wb(u0−us)‖u0−us‖2

∞, I is the identity matrix and ν > 0. Let Â3,T (u0) =

(â3,T (u0), β̂3,1(u0), . . . , β̂3,p(u0)), then we use â3,T (u0) as an estimator of a(u0).
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To estimate the variance σ(·)2, we assume cξ(0) = 1 and use σ̂(u0)
2 as an estimator of

σ(u0)
2, where

σ(u0)
2 = min

α

1

mT ′

T
∑

t=p+1

m
∑

s=1

Wb(u0 − us)
{

Xt(us) −
p
∑

j=1

αjXt−j(us)
}2

.

3 Sampling properties of the estimators

In this section we consider the sampling properties of the estimators â1,T (·), â2,T (·) and
â3,T (·), defined in the section above. We consider the two situations where (i) m is kept fixed
and T → ∞ and (ii) both m → ∞ and T → ∞.

We show in the theorem below, in the case that m is kept fixed, that â1,T (u0) is biased,
even when T → ∞. The bias can be quantified by defining the following process {Xt,u0

(u)}t

which satisfies the representation

Xt,u0
(u) =

p
∑

j=1

aj(u0)Xt−j,u0
(u) + σ(u0)ξt(u), (14)

and has the unique solution

Xt,u0
(u) =

∞
∑

k=0

ζk(u0)ξt−k(u), (15)

where {ζk(u0)}k is defined in (2). We note that for fixed u0, the parameters {aj(u0)} are
constant over space, hence {Xt,u0

(u) : u ∈ [0, 1]2} is a spatially stationary process, unlike
{Xt(u)}. Now in the special case that Xt(u) ≡ Xt,u0

(u) for all u ∈ [0, 1]2, even when m is
fixed, the estimator â1,T (u0) is asymptotically unbiased. However, in the general case where
Xt(u) 6= Xt,u0

(u), we show in the theorem below that the bias of the estimator is due to the
difference {Xt−j(u) − Xt−j,u0

(u)}.

Theorem 3.1 Suppose Xt(u) satisfies model (1) and Assumption 2.1. Let Xt,u0
(u), â1,T (u0)

and {ζk(u)} be defined as in (14), (9) and (2) respectively. Define

B(u0) =
−2cξ(0)

m
{

m
∑

s=1

Wb(u0 − us) · (us − u0)}
p
∑

j=1

ȧj(u0){Γ(u0)}·,j

∆1(u0) =
1

m

m
∑

s=1

Wb(u0 − us)E{X0(us)X0(us)
′}, Σ(u0) =

σ(u0)
2

m2
‖Σξ‖2

2Γ(u0),

Γ(u0) is a p × p matrix with {Γ(u0)}a,b =
∑∞

k=0 ζk(u0)ζk+|a−b|(u0), Σξ = var{ξ
t
} and ξ′

t
=

(Wb(u0 − u1)ξt(u1), . . . ,Wb(u0 − um)ξt(um)). Then we have
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(i)

{â1,T (u0) − a(u0)} = ∆1(u0)
−1B(u0) + Op{

1

m

m
∑

s=1

Wb(u0 − us)‖us − u0‖2
∞

}

, (16)

(ii)

√
T
{

[â1,T (u0) − a(u0)] + ∆1(u0)
−1B1,T (u0, a(u0))

} D→ N
{

0, ∆1(u0)
−1Σ(u0)∆1(u0)

−1
}

,(17)

where

B1,T{u0, a(u0)} =
−2

mT ′

T
∑

t=p+1

m
∑

s=1

Wb(u0 − us) ×

{ p
∑

j=0

aj(u0)[Xt−j(us)X t−1(us) − Xt−j,u0
(us)X t−1,u0

(us)]

}

,(18)

X t(us)
′ = (Xt(us), . . . , Xt−p+1(us)), X t,u0

(us)
′ = (Xt,u0

(us), . . . , Xt−p+1,u0
(us)) and

a0(u0) = −1.

Studying the theorem above we see that the bias, B1,T{u0, a(u0)}, depends, primarily, on
the differences {Xt−j(us)−Xt−j,u0

(us)} and the asymptotic bias depends on the magnitude
of the derivatives ȧj(u0). Since {Xt−j(us) − Xt−j,u0

(us)} and ȧj(u0) can both be considered
as measures of spatial nonstationarity, the bias of â1,T (u0) really depends on how close the
location dependent process {Xt(u)} is to spatially stationary.

We now consider the sampling properties of the local linear least squares estimator.

Theorem 3.2 Suppose Xt(u) satisfies model (1) and Assumption 2.1 and in addition let
Θ ⊂ [0, 1]2 be a region which includes {us : s = 0, . . . ,m}, where for some δ̃ > 0 and for all
u ∈ Θ, the absolute values of the roots of the characteristic polynomial xp −∑p

j=1{aj(u0) +

(u − u0)ȧj(u0)}xp−j are less than 1 − δ̃. Let â2,T (u0) and â3,T (u0) be defined as in (11) and
(13) respectively. Then we have

{â2,T (u0) − a(u0)} = Op

{

∆2(u0)
−1

(

1

m

m
∑

s=1

Wb(u0 − us)‖us − u0‖∞
)2
}

(19)

and

{â3,T (u0) − a(u0)} = Op

{

(

1

m

m
∑

s=1

Wb(u0 − us)‖us − u0‖∞
)2−ν

}

. (20)
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where

∆2(u) =
1

m

m
∑

s=1

Wb(u0 − us)U(s) ⊗ E{X0(us)X0(us)
′}.

Initially it would appear that the estimator â3,T (u0) has a slower rate of convergence than
â2,T (u0). However, on closer inspection, we notice that the rate in â2,T (u0) includes ∆2(u0)

−1,
in other words if ∆2(u0) were close to singular, this can influence the rate of convergence of
â2,T (u0). On the other hand ν can be arbitrarily small and â3,T (u0) is uneffected by ∆2(u0)

−1.

It is worth noting that, asymptotic normality of â2,T (u0) and â3,T (u0) can also be shown,
and the proof is similar to the proof of Theorem 3.1

In the results above, we have shown that in the case where T → ∞ but m is kept fixed, the
estimator can have a significant bias. Often in spatial statistics, ‘infill’ asymptotics are used
(where the number of locations grow) to prove consistency of an estimator (c.f. Mukherjee
and Lahiri (2004)). To show that â1,T (·) is a consistent estimator of a(·) we will also use an
infilling argument. In the theorem below we consider the case where m → ∞ (the number of
sites grow) as T → ∞. In this situation we will show that â1,T (u0) is a consistent estimator
of a(u0). Similar results hold true for â2,T (u0) and â3,T (u0).

Theorem 3.3 Suppose Xt(u) satisfies model (1) and Assumption 2.1 and let â1,T (u0) be de-
fined as in (9). Suppose u1, . . . , um are independent, identically distributed random variables,
whose density, fU , exists. Further fU is Hölder continuous and bounded away from zero on
[0, 1]2. Then for all u0 ∈ [0, 1]2 we have

∣

∣â1,T (u0) − a(u0)
∣

∣

2
= Op

(

b2 +
1

b2m
+

1

mTb2
+

1

T

)

,

Furthermore for b = O(m−1/4) and T = O(m1/2) we have
∣

∣â1,T (u0) − a(u0)
∣

∣

2
= Op(m

−1/2).

We see from Theorem 3.3 that the estimator is consistent, with â1,T (u0)
P→ a(u0), as b → 0,

m2b → ∞ and T → ∞.

4 Testing for spatial stationarity

In this section we develop a test for spatial stationarity in the region Ω ⊂ [0, 1]2. More
precisely, our object is to test if {Xt(us)}t satisfies the representation

Xt(us) =

p
∑

j=1

ajXt−j(us) + σξt(us) for s = 0, . . . ,m, (21)

10



where {ξt(u)} is a spatially stationary process which is independent over time and var{ξt(u)} =
1.

Let us suppose we observe {Xt(us) : s = 0, . . . ,m, t = 1, . . . , T}. If the estimates of
the parameters of the AR models at different locations are significantly different from each
other, then this would indicate deviation from spatial stationarity. In view of this, we will
compare the estimates of the AR(p) parameters at different locations.

The test is based on the test for homogeneity for time series proposed by Basawa et al.
(1984). Using Lütkepohl (1993), Section 4.2.2, to define the likelihood, let

ST (âH0
, Σ) = min

α,Σ

[

T

2
log |Σ| + 1

2

T
∑

t=p+1

{

Xt(u) −
p
∑

j=1

αjXt−j(u)

}′

Σ−1

{

Xt(u) −
p
∑

j=1

αjXt−j(u)

}]

(22)

and

ST (âH1
) = min

α0,...,αm,Σ

[

T

2
log |Σ| + 1

2

T
∑

t=p+1

{

Xt(u) −
p
∑

j=1

diag{α0,j , . . . , αm,j}Xt−j(u)

}′

Σ−1 ×

×
{

Xt(u) −
p
∑

j=1

diag{α0,j , . . . , αm,j}Xt−j(u)

}

]

, (23)

where Xt(u) = (Xt(u0), . . . , Xt(um))′, Σ is a (p + 1) × (p + 1) dimensional matrix where
Σij = Σji and u = (u0, . . . , um). We use as the test statistic

Z(u) = 2 {ST (âH0
) − ST (âH1

)} . (24)

Before deriving the asymptotic distribution of Z(u) under the null and alternative hypothesis,
we first define some notation. Let η and δ(u) be (m + 1)p-dimensional and mp-dimensional
vectors respectively, where

η′ = (a1(u0), . . . , a1(um), . . . , ap(u0), . . . , ap(um)) (25)

δ(u)′ = ([a1(u1) − a1(u0)], . . . , [a1(um) − a1(u0)], . . . , [ap(u1) − ap(u0)], . . . , [ap(um) − ap(u0)]) .

We note that under the alternative hypothesis, the Fisher information of Xt(u) given the
past (evaluated using (23)) is

J(η) =







E(Υt−1Σ̃
−1
ξ (u)Υt−1) . . . E(Υt−1Σ̃

−1
ξ (u)Υt−p)

...
. . .

...

E(Υt−pΣ̃
−1
ξ (u)Υt−1) . . . E(Υt−pΣ̃

−1
ξ (u)Υt−p)






, (26)

where Σ̃ξ(u) = var((ξt(u0), . . . , ξt(um))) and

Υt = diag(Xt(u0), . . . , Xt(um)).

11



Theorem 4.1 Supppose the process {Xt(u)} satisfies model (1) and Assumption 2.1. Let
Z(u), δ(u), J(η) and D be defined as in (24), (25) and (26). Then

(i) under the null hypothesis, as T → ∞, the limiting distribution of Z(u) is χ2(mp).

(ii) under the alterivative hypothesis the limiting distribution of Z(u) is a non-central
χ2(mp, δ2), where for large T

δ2 =
T

σ2
δ(u)′

{

D′J(η)D
}−1

δ(u) (27)

and D is a (m + 1)p × mp matrix where Dij =
∂δ(u)′j

∂ηi
.

PROOF. To prove the result we use Basawa et al. (1984), Theorem 2.1, see Subba Rao
(2007) for the details. ¤

Studying the non-centrality parameter δ2 (defined in (27)) we see that it depends on
the differences {a(ui) − a(uj)} (i, j = 0, . . . ,m). In other words, the magnitude of the non-
centrality parameter is determined by how close {Xt(u)} is to spatially stationary in the
region Ω.

5 Simulations

To assess the performance of the estimation procedures proposed, we simulate two test
processes. That is for r = 1, 2 we suppose that {X (r)

t (u)} satisfies the representation

X
(r)
t (u) = a(r)(u)X

(r)
t−j(u) + ξt(u) t = 1, . . . , T, (28)

where a(r) : [0, 10]2 → [−1, 1], with

a(1)(x, y) = 0.99 · sin(0.08x) · cos(0.2y)

a(2)(x, y) =

{

0.19 · cos(0.5y) for 0 ≤ x ≤ 5
0.19 · (5 − x) · cos(0.5y) for 5 < x ≤ 10

and the innovations {ξt(u)} is a spatial Gaussian process with mean zero which are indepen-
dent over time and the covariance of the spatial is defined by the Matérn covariance

c(x, y) =
φ

2ν−1Γ(ν)
(α‖x − y‖)νKν(α‖x − y‖),

where K is the modified Bessel function of the second kind, φ = exp(1), α = exp(2) and

ν = 2.5 × exp(0.9)
1+exp(0.9)

.
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average mean sq. error
local least squares local linear least squares

parameter a(1) AISE1,1 = 0.01007 AISE2,1 = 0.0008
parameter a(2) AISE1,2 = 0.0721 AISE2,2 = 0.0517

Table 1: Average integrated squared error of the local least squares and local linear estimators
of a(1)(·) and a(2)(·) respectively.

Using the uniform distribution, we randomly sample 50 points on the square [0, 10]2 (note
that using [0, 10]2 rather than [0, 1]2 makes no difference to the estimation), we label these
points {ui}50

i=1. The selected points are plotted in Figure 1. The location dependent AR
process is simulated for both parameters a(1)(·) and a(2)(·) at the locations {ui}50

i=1, each
realisation is of length 200. We simulate each process 100 times, and for each simulation the
local least squares and local linear estimates is evaluated. We denote the local least squares
and local linear estimators at location u, for the kth realisation and parameter a(r)(·), r = 1, 2,

as â
(r)
k,1(u) and â

(r)
k,2(u) respectively. We mention that for these examples there is very little

difference between the local linear and regularised local linear estimators defined in (11) and
(13) respectively (because the matrix RT (u) is non-singular). Therefore we only report the
results from the local linear estimator (in practice one uses a regularisation when one believe
RT (u) is close to singular). The average integrated squared error for both parameters and
estimators over the uniform grid is evaluated using

AISE`,r =
1

100

100
∑

k=1

1

100

10
∑

i=1

10
∑

j=1

[â
(r)
k,`(i, j) − a(r)(i, j)]2

and is given in Table 1.
We randomly sample 5 additional points on [0, 10]2 we use these points as locations where

there are no observations, and denote these points w1, . . . , w5. These points are plotted in
Figure 1, where the point wn is indicated by ‘n′ (for n = 1, . . . , 5) in the plot. Using
the prediction method described in Section 2.2, and the local least square and local linear
estimators, we predict the observations at the locations {wn}5

n=1 given the observations at the
locations {ui; i = 1, . . . , 50}. We estimate the parameters of the Matérn using the empirical
residuals of the observed locations and the Gaussian likelihood.

To illustrate how different two observations, which are geographically close, can be, a
sample realisation of X

(r)
t (w1) together with its nearest observed neighbour X

(r)
t (u1) and the

difference X
(r)
t (w1) − X

(r)
t (u1) is given in Figure 2.

We now study the performance of the estimators of a(1)(·) and a(2)(·), which are given in
Table 1, noting that function a(1)(·) is smoother than a(2)(·). From Table 1 we see that the
local linear estimator of a(1)(·) is far better than the local least squares estimator. However
the difference between the methods is less notable in the estimation of a(2)(·). We recall, the
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unobserved locations
w1 w2 w3 w4 w5

var(X
(1)
t (wn)) 3.236 2.988 2.757 2.742 2.716

prediction with â
(1)
1 0.802 2.990 2.137 2.491 2.714

prediction with â
(1)
2 0.798 2.990 2.126 2.486 2.714

prediction with loess 2.990 3.121 2.606 2.922 3.003

var(X
(2)
t (wn)) 2.703 2.784 2.999 2.860 2.779

prediction with â
(2)
1 0.790 2.759 2.411 2.585 2.768

prediction with â
(2)
2 0.778 2.758 2.506 2.609 2.768

prediction with loess 2.512 2.898 2.879 3.059 3.063

Table 2: Prediction when the location dependent parameter is a(1)(·) and a(2)(·).

local linear estimator is constructed under the assumption that the first derivative of a(·)
exists everywhere, but the partial derivative of a(2)(·) with respect to x does not exist at
x = 5. This is the reason why we don’t see a significant difference between the two estimators
in this case.

Now we consider the average squared error of the predictions given in Table 2. The
predictions are compared with the loess function predictions which can be found in the
statistical software R. We first observe that the prediction using the local linear estimator is
better than the prediction using the local least squares estimator. And both estimators have
average squared errors which are less than the variance of the observations and are consis-
tently better than the loess estimator. The improvement in our method over the loess

method appears to depend on the proximity of the unobserved location with relation to the
observed locations. We see that when the unobserved location is close to the observed loca-
tions (see location w1) our estimator performs significantly better than the loess estimator.
The difference between the estimation performance is not so apparent when the unobserved
locations are far from the observed locations.
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A Appendix

The purpose of this appendix is to give a rough outline for the proofs in the sections above.
The full details can be found in the accompanying technical report (Subba Rao, 2007).

A.1 The location dependent AR process and spatial local station-
arity

In this section we consider some of the probabilistic properties of the location dependent
AR process. In particular, we will show that the spatially nonstationary process Xt(u) can
be approximated by the spatially stationary process Xt,u0

(u). The results in this section are
used to prove the results in Section 3. The proofs of the results in this section can be found
in Subba Rao (2007). The results may also be of independent interest.

In the theorem below we will show that the spatially stationary process Xt,u0
(u) locally

approximates the spatially nonstationary process Xt(u) in some neighbourhood of u0.

Theorem A.1 Suppose Xt(u) satisfies model (1) and Assumption 2.1. Let Xt,u0
(u) be de-

fined as in (14). Then we have

|Xt(u) − Xt,u0
(u)| ≤ ‖u − u0‖∞Vt(u), (29)

where for some 1 − δ ≤ ρ < 1,

Vt(u) = C

∞
∑

k=0

(k + 1)2ρk|ξt−k(u)|, (30)

C is a finite constant independent of u, and Vt(u) is a stationary process in both space and
time with a finite variance.

The theorem above gives an approximation for Xt(u) in terms of the spatially stationary
process Xt,u0

(u), we now refine this approximation. To do this we define the ‘derivative’
spatial process , which we show in Subba Rao (2007), is the derivative of the spatially
stationary process Xt,u0

(u) with respect to u0. Let us suppose the 2-dimensional vector

process {Ẋt,u0
(u) = (

∂Xt,u0
(u)

∂x0

,
∂Xt,u0

(u)

∂y0

)′}t satisfies the representation

Ẋt,u0
(u) =

p
∑

j=1

{

ȧj(u0)Xt−j,u0
(u) + aj(u0)Ẋt−j,u0

(u)} + σ̇(u0)ξt(u). (31)

We use this process in the results below. We use this result to derive the bias of the estimator
â1,T .
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Theorem A.2 Suppose Xt(u) satisfies model (1) and Assumption 2.1. Let Xt,u0
(u), Ẋt,u0

(u)
and Vt(u) be defined as in (14), (31) and (30) respectively. Then we have

|Xt(u) − Xt,u0
(u) − (u − u0)Ẋt,u0

(u)| ≤ ‖u − u0‖2
∞Vt(u). (32)

We observe that (32) is a representation of a spatially nonstationary process in terms of
spatially stationary processes. And if u is close to u0, then Xt(u) ≈ Xt,u0

(u)+(u−u0)Ẋt,u0
(u).

In order to study the properties of â2,T (u0) we define the process {X̃t,u0
(u)}t. Let u0 be

a fixed location and suppose the process {X̃t,u0
(u)}t satisfies the representation

X̃t,u0
(u) =

p
∑

j=1

{aj(u0) + (u − u0)ȧj(u0)}X̃t−j,u0
(u) + {σ(u0) + (u − u0)σ̇(u0)}ξt(u).

(33)

We show in the theorem below that Xt(u) can also be approximated by X̃t,u0
(u). This

theorem is an important component in the proof of Theorem 3.2.

Theorem A.3 Suppose Xt(u) satisfies model (1) and Assumption 2.1. Let X̃t,u0
(u) be de-

fined as in (33). Let Θ be a region which includes {us; s = 0, . . . ,m}, where for some
δ̃ > 0 and for all u ∈ Θ the roots of the characteristic polynomial xp +

∑p
j=1{aj(u0) + (u −

u0)ȧj(u0)}xp−j are less than 1 − δ̃. Then for some 1 − δ̃ < ρ̃ < 1, we have

|Xt(u) − X̃t,u0
(u)| ≤ ‖u − u0‖2

∞Ṽt(u), (34)

where

Ṽt(u) = C

∞
∑

k=0

(k + 1)2ρ̃k|ξt−k(u)|, (35)

C is a finite constant independent of u, and Ṽt(u) is a spatially stationary process with finite
variance.

A.2 Proof of Theorem 3.1

We use the following definitions. Suppose f : R
p+1 → R, let ∇f(u, x1, . . . , xp) = ( ∂f

∂x1

, . . . , ∂f
∂xp

)′

and let ∇2f(u, x1, . . . , xp) be a p × p matrix, where (∇2f)ij = ∂2f
∂xi∂xj

.

Since ∇L1,T{u0, â1,T (u0)} = 0, by expanding ∇L1,T (u0, â1,T (u0)) about a(u0), we have

∇L1,T{u0, a(u0)} = −∇2L1,T{u0, a(u0)}{â1,T (u0) − a(u0)}. (36)
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To obtain the sampling properties of â1,T (u0) we consider ∇L1,T{u0, a(u0)}. In order to
obtain the bias and show asymptotic normality of â1,T (u0) we replace Xt(us) with Xt,u0

(us)
(where Xt,u0

(us) is defined as in (14)) and obtain

∇L1,T{u0, a(u0)} = ∇L̃1,T{u0, a(u0)} + B1,T{u0, a(u0)}, (37)

where B1,T{u0, a(u0)} is defined in (18) and

∇L̃1,T{u0, a(u0)} =
−2

mT

′
∑

t=p+1

m
∑

s=1

wsσ(u0)ξt(us)X t−1,u0
(us) (38)

with ws = Wb(u0 − us).
We use ∇L̃1,T{u0, a(u0)} to show asymptotic normality of the estimator and B1,T{u0, a(u0)}

to obtain an expression for the bias of the estimator.

In order to evaluate the limit of the bias B1,T{u0, a(u0)}, we use Theorem A.2 to obtain

Xt−i(u)Xt−j(u) − Xt−i(u0, u)Xt−j(u0, u)

= (u − u0)

{

Ẋt−i,u0
(u)Xt−j,u0

(u) + Xt−i,u0
(u)Ẋt−j,u0

(u)

}

+ R
ij
t (u0, u) (39)

where |Rij
t (u0, u)| ≤ 4‖u − u0‖2

∞Vt−i(u)Vt−j(u).

Lemma A.1 Suppose the assumptions in Theorem 3.1 hold, then

B1,T{u0, a(u0)} P→ B(u0) + O{ 1

m

m
∑

s=1

Wb(u0 − us)‖us − u0‖2
∞

}

, (40)

as T → ∞.

PROOF. By substituting (39) into B1,T{u0, a(u0)} and using the ergodic theorem it is
straightforward to show (40). ¤

In the lemma below we show asymptotic normality of the stochastic term ∇L̃1,T{u0, a(u0)}.

Lemma A.2 Suppose Xt(u) satisfies Assumption 2.1. Let ∇L̃1,T{u0, a(u0)} and Σ1(u0) be
defined as in (38) and (16) respectively. We have that

var
[
√

T ′∇L̃1,T{u0, a(u0)}
]

→ 4Σ1(u0) (41)

∇L̃1,T{u0, a(u0)} P→ 0, (42)

√
T ′∇L̃1,T{u0, a(u0)} D→ N{0, 4Σ1(u0)}, (43)

as T → ∞.
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PROOF. We prove (41) and (42) by using the ergodic theorem and (43) by verifying Linde-
berg’s condition and the conditions given in (Hall & Heyde, 1980), Theorem 3.2. ¤

We now prove Theorem 3.1. Substituting (37) into (36) we have

{âT (u0) − a(u0)} = −[∇2L1,T{u0, a(u0)}]−1
[

∇L̃1,T{u0, a(u0)} + B1,T{u0, a(u0)}
]

. (44)

By using (40) and (42) we have

∇L̃1,T{u0, a(u0)} + B1,T (u0, a(u0))
P→ B(u0) + O

{ 1

m

m
∑

s=1

ws‖us − u0‖2
∞

}

, (45)

Furthermore, by using that ∇2L1,T{u0, α} P→ 2∆1(u0), and Slutsky’s theorem we have (16),
as T → ∞. Finally, (17) follows from (44) and the asymptotic normality of ∇L̃1,T{u0, a(u0)},
given in (43).

A.3 Proof of Theorem 3.2

We now study the estimators â2,T (u0) and â3,T (u0), and evaluate their asymptotic bias.

Define r̂T,u0
(u) and R̂T,u0

(u) in the same way as r̂T (u) and R̂T (u) but with X̃t,u0
(us)

(defined in (33)) and X̃ t−1,u0
= (X̃t−1,u0

(us), . . . , X̃t−p,u0
(us)) replacing Xt(us) and X t−1(us)

respectively. We now state the following result, which follows immediately from the ergod-
icity of the process, and will be used later in the proof,

r̂T,u0
(u) − R̂T,u0

(u)A(u)

=
1

m(T − p − 1)

m
∑

s=1

′
∑

t=p+1

ws{σ(u0) + (us − u0)σ̇(u0)}ξt(us)

(

1
us − u0

)

⊗ X t−1,u0
(us)

P→ 0, as T → ∞. (46)

Furthermore, it is straightforward to show

R̂T (u)−1r̂T (u) − R̂T,u0
(u)−1r̂T,u0

(u) = R̂T (u)−1
{

[R̂T (u) − R̂T,u0
(u)]A(u0) + [r̂T (u) − r̂T,u0

(u)]
}

+R̂T (u)−1
{

R̂T (u) − R̂T,u0
(u)
}{

R̂T,u0
(u)−1r̂T,u0

(u) −A(u0)
}

.

Now let us consider the estimator Â2,T . By using the above it is straightforward to show
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that

Â2,T −A(u0) = ∆2(u)−1B2,T (u0) +
{

R̂T (u)−1 − ∆2(u)−1
}

B2,T (u0),

+R̂T (u)−1
{

R̂T (u) − R̂T,u0
(u)
}

R̂T,u0
(u)−1

{

r̂T,u0
(u) − R̂T,u0

(u)A(u0)
}

+R̂T,u0
(u)−1

{

r̂T,u0
(u) − R̂T,u0

(u)A(u)
}

= I1 + I2 + I3 + I4, (47)

where A(u0) =
(

a(u0)
′, ȧ1(u0), . . . , ȧp(u0)

)

and

B2,T (u0) =
{

r̂T (u) − r̂T,u0
(u)
}

+
{

R̂T (u) − R̂T,u0
(u)
}

A(u0).

We now show that I2, I3, I4
P→ 0 and that I1 = O( 1

m

∑m
s=1 ws‖us − u0‖2

∞), which leads to the

desired result. By using (46) and R̂T (u)
P→ ∆2(u) as T → ∞, it follows that I2

P→ 0, I3
P→ 0

and I4
P→ 0 as T → ∞.

To bound I1 we use that

|Xt−j(u)Xt−i(u) − X̃t−j(u0, u)X̃t−i(u0, u)|
≤ ‖u − u0‖2

∞{Ṽt−j(u)|Xt−i(u)| + Ṽt−i(u)|X̃t−j(u0, u)|}, (48)

which follows immediately from Theorem A.3. Substituting the above bound into B2,T (u0),
and appealing to the ergodic theorm gives

‖B2,T (u0)‖1 ≤ 1

mT ′

′
∑

t=p+1

m
∑

s=1

ws‖us − u0‖2
∞

( p
∑

j=0

{aj(u0) + (us − u0)ȧj(u0)} ×

×{
p
∑

i=1

{Ṽt−j(us)|Xt−i(us)| + Ṽt−i(us)|X̃t−j,u0
(us)|}

)

P→ 1

m

m
∑

s=1

ws‖us − u0‖2
∞

p
∑

j=0

{aj(u0) + (us − u0)}ȧj(u0) ×

E

( p
∑

i=1

Ṽt−j(us)|Xt−i(us)| + Ṽt−i(us)|X̃t−j,u0
(us)|

)

≤ K
1

m

m
∑

s=1

ws‖us − u0‖2
∞

as T → ∞ and K is a finite constant. By substituting the above into I1, recalling that

I2, I3, I4
P→ 0 and using (47), we obtain (19).

By using the same arguments as those above and that the smallest eigenvalue of (R̂T (u)+
ηγI) is bounded from below by ηγ, we obtain (20).
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A.4 Proof of Theorem 3.3

To reduce notation we prove the result for location dependent AR(1) processes, the proof
for the general location dependent AR(p) process is the same. We recall that the estimator
â1,T (u0) can be written as

â1,T (u0) =

∑T
t=2

∑m
s=1 Wb(u0 − Us)Xt(Us)Xt−1(Us)

∑T−1
t=1

∑m
s=1 Wb(u0 − Us)Xt(Us)2

:=
ĉ1(u0)

ĉ0(u0)
,

where we have replaced us by Us to emphasis that the locations are random variables. Let
fU denote the density of Us. It is straightforward to show that â1,T (·) can be written as

â1,T (u0) − a(u0) =
{ĉ1(u0) − c1(u0)fU(u0)}

ĉ0(u0)
+

a(u0) {ĉ0(u0) − c0(u0)fU(u0)}
ĉ0(u0)

. (49)

We start by evaluating the mean squared error of the numerator of the above, that is
E {ĉ0(u0) − c0(u0)fU(u0)}2 and E {ĉ1(u0) − c1(u0)fU(u0)}2. To obtain a bound for the mean
squared errors we use the classical variance/bias decomposition. To obtain the bias we note
that under Assumption 2.1(iii) it is straightforward to show that

ct1−t2(u) = ct1−t2(u0) + (u − u0)ċt1−t2(u0) + O(‖u − u0‖2
∞),

where cov(Xt1(u), Xt2(u)) = ct1−t2(u1). Using the expansion above, the Hölder continuity
of fU and iterated expectation arguments it is straightforward to show that E[ĉ1(u0)] =
c1(u0)f(u0)+O(b) and E[ĉ0(u0)] = c0(u0)f(u0)+O(b). Appealing to the results in Subba Rao
(2007) we have var{ĉ1(u0)}, var{ĉ0(u0)} = O( 1

b2Tm
+ 1

b2m
+ 1

T
). Altogether this gives

E {ĉ0(u0) − c0(u0)fU(u0)}2 = O

(

b2 +
1

b2Tm
+

1

b2m
+

1

T

)

and similarly E {ĉ1(u0) − c1(u0)fU(u0)}2 = O

(

b2 +
1

b2Tm
+

1

b2m
+

1

T

)

. (50)

Studying c0(·)fU(·) we observe that since infu σ(u) > 0, c0(u0) is bounded away from zero
and by assumption fU(u0) is bounded away from zero, therefore c0(·)fU(·) is bounded away

from zero. Since (50) implies ĉ0(u0)
P→ c0(·)fU(·) and c0(·)fU(·) is bounded away from zero,

by Slutsky’s lemma we have ĉ0(u0)
−1 P→ c0(·)−1fU(·)−1. Therefore by applying the delta

method, the bounds in (50) determine the bounds for |â1(u0) − a1(u0)| and we have

|â1,T (u0) − a(u0)|2 = O

(

b2 +
1

b2Tm
+

1

b2m
+

1

T

)

.

It follows from the above that â1,T (u0) is a consistent estimator of a(u0) if b → 0 and
b2m → ∞ as m → ∞ and T → ∞. And the optimal rate of convergence is obtained when
b = O(m−1/4). ¤
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