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Abstract

In spatial statistics often the response variable at a given location and time is ob-

served together with some covariates which are known to influence the response. In

several applications the relationship between the response and covariates may be un-

known, and to prevent misspecification of the model, a nonparametric approach could

be appropriate. In this paper prediction and forecasting of the response variable, for

spatially nonstationary, spatio-temporal processes, within a nonparametric framework

is developed. The linear prediction of the response, which involves estimation of the

covariance structure, and also the more general optimal predictor are investigated. The

asymptotic sampling properties of the predictors are studied. It is shown that in order

to avoid the curse of dimensionality the covariance estimator should be defined in terms

of the dependence structure of the spatio-temporal process. Furthermore the rate of

convergence of the prediction estimators depend on the temporal dependence of the

covariates and the mixing rates of the spatio-temporal process.

The model defined and the estimation methodology has many possible applications.

We consider a specific application and illustrate our methodology by modelling house

prices in the Stockport area, United Kingdom, using the deprivation index and district

as the covariates.
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1 Introduction

In spatial statistics often the response variable Yt(w, x) is observed at time t, together with

the location w ∈ R
2 and some covariates x = (x1, . . . , xq) ∈ R

q which are known to influence

the response variable. A standard method for modelling the response is to use a multiple

regression model with spatio-temporal errors (cf. Cressie (1993), Guttorp, Meiring, and

Sampson (1994), Lesch, Strauss, and Rhoades (1995), Cressie and Huang (1999)). However,

there are several real situations where the influence of the covariates x may also depend on

the location w. To model the location dependent influence of the covariates, one often uses

the model

Yt(w, x) =

q∑

j=1

xjfj(w) + ξt(w), (1.1)

where {fj(·)} are nonrandom functions and {ξt(·)} is a stationary spatio-temporal process

(cf. Yakowitz and Szidaravosky (1985), Luo and Wahba (1998)). An alternative approach

advocated in Gelfand, Kim, Sirmans, and Banerjee (2003) is to treat the coefficients of x

as if they were random, stationary spatio-temporal processes and write

Yt(w, x) =

q∑

j=1

xjξ
(j)
t (w) + ξ

(0)
t (w) + Vt,w,x, (1.2)

where {Vt,w,x} are independent, identically distributed (iid) random variables and {ξ(j)t (·)}
are stationary spatio-temporal processes with separable covariances from a known family

of distributions (eg. the Matèrn family, see Matèrn (1986)). We observe that if we were to

treat the covariates x as a function of w, x(w),then Yt(w, x(w)) is a spatially nonstationary

process. Gelfand, Kim, Sirmans, and Banerjee (2003) use model (1.2) to model house

prices in Baton Rouge, LA, U.S.A, where w is the location and x are a range of house

characteristics such as size of living area etc.

In certain applications the nature of the relationship between the covariates and response

variable may be unknown, as well as the family of distributions the spatio-temporal process

belongs to. In such situations, to prevent misspecification of the model, a nonparametric

approach may be appropriate. The approach that we adopt is to redefine the location vector

u = (w, x) ∈ Ω ⊆ R
d, and suppose {Φt(u);u ∈ Ω, t ∈ Z} is a spatio-temporal process, where

for each t ∈ Z, {Φt(u);u ∈ Ω} is a nonstationary spatial process on the region Ω and

{Φt(·)}t := {Φt(·); t ∈ Z} is a stationary infinite dimensional process (which implies that

for every fixed u ∈ Ω, {Φt(u)}t is a stationary time series). The model we consider in this

paper is

Yt(u) = Φt(u) + Vt,u, (1.3)

where {Vt,u} are iid random variables. The model (1.3) includes as special cases both

the partially linear models (1.1) and (1.2). Furthermore it allows additional flexibility, for
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example, we do not require {Φt(·)} to have a known parametric form and there may be

situations where there is no realistic reason to distinguish between covariates and locations.

From now on, unless stated otherwise, we shall refer to u = (u(1), . . . , u(d)) ∈ Ω as the

covariate vector.

Here our object is to predict Φt(u0), given the observations {Yt−s(ui)}m−1
i=1 at the time

lag s ∈ Z, for any u0 ∈ Ω. In this paper we will consider a nonparametric approach

for prediction and forecasting for spatially nonstationary, spatio-temporal processes. In

particular we will consider the best linear predictor and also the more general optimal

predictor (under the mean squared criterion), ψ : R
d(m+1)−1 → R defined for all t ∈ Z by

ψ(y, u, u0) = E(Φt(u0)|{Yt−s(ui) = yi}m−1
i=1 ), (1.4)

where u = (u1, . . . , um−1) ∈ Ωm−1 and y = (y1, . . . , ym−1) ∈ R
m−1. We observe that since

{Φt(·)}t is a stationary process, ψ(·) does not depend on t. We mention that even though the

above predictor function is defined for only one lag s it is easy to generalise the methods and

results in this paper to estimate the prediction function ψ(y, u, u0) = E(Φt(u0)|{Yt−τi(ui) =

yi}m−1
i=1 ) for several time lags τ1, . . . , τm. We use only one lag to reduce notation.

The process {Yt(·)}t, will only be observed on a finite set of covariate values, which we

denote as the random variables {Ut,i} that take values in Ω. We will suppose that for i fixed

{Ut,i}t is a time series and we observe {(Yt(Ut,i), Ut,i); t = 1, . . . , T, i = 1, . . . , N}, where

Yt(Ut,i) = Φt(Ut,i) + Vt,i, t = 1, . . . T, i = 1, . . . , N, (1.5)

and {Vt,i} are iid random variables with E(Vt,i) = 0. Though we shall assume that the

error terms {Vt,i}t,i, {Ut,i}t,i and the process {Φt(·)}t are independent of each other. To

illustrate our methods, in Section 6 we model the selling price of houses, sold over a period

time in Stockport, UK, and use the district of the house and deprivation index as covariates

(though other factors such as age and size of properties could also be used as covariates,

when available). In this application the values of the covariate can be different at each time

and can be assumed to be random. Furthermore the deprivation index in any given district,

is evaluated every two years and can be viewed is a dependent time series.

The crucial point that allows us to use the observations {Yt(Ut,i)}, defined in (1.5), to

estimate ψ(·) is that at a given point ({yi, ui}m−1
i=1 , u0) and for any collection {i0, . . . , im−1} ⊂

{1, . . . , N} and for all t = s+ 1, . . . , T

ψ(y, u, u0) = E(Yt(Ut,i0)|{Yt−s(Ut−s,il) = yl, Ut−s,il = ul}m−1
l=1 , Ut,i0 = u0). (1.6)

This formulation motivates us to estimate ψ in a nonparametric way.

In Section 2 we will define the model and the mixing assumptions that will be used

in the paper. We work under the relatively weak assumption that for any fixed u and i,

{Φt(u)}t and {Ut,i} are mixing, which we use to show that the composite random process

{Φt(Ut,i)}t is also mixing.
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In Section 3 we consider nonparametric estimation in the context of multivariate time

series. These results motivate the prediction estimators and unify the theory in the subse-

quent sections. But we believe they are also of wider interest, and can be applied to other

problems.

In Section 4 we consider linear prediction. It is clear there exists a function a(·)′ =

(a1(·), . . . , am−1(·)), where a : R
md → R

m−1, such that

Yt(u0) =
m−1∑

j=1

aj(u, u0)Yt−s(uj) + σ(u, u0)εt,u, (1.7)

where u = (u1, . . . , um−1), εt,u is uncorrelated with {Yt−s(uj)}m−1
j=1 , E(εt,u) = 0 and var(εt,u) =

1. This yields the linear predictor

ψL({yt−s,i, ui}m−1
i=1 , u0) = a(u, u0)

′y

where y′ = (yt−s,1, . . . , yt−s,m−1). Now for Gaussian Yt(u), we have ψL(·) ≡ ψ(·), however if

Yt(u) is non-Gaussian, then ψL(·) is the best linear predictor. Since the coefficients a(u, u0)

can be obtained from the covariance function cs(ui, uj) = cov(Yt(ui), Yt−s(uj)), we estimate

the function a(·) using estimators of the covariance function cs(·). In particular we consider

nonparametric methods for estimating the covariance function, which we use to estimate

the function ψL(·). We mention that nonparametric estimators of spatial covariances for

locations which are fixed over time have been considered previously (cf. Sampson and

Guttorp (1992)). In contrast, we consider here estimators of the covariance function for

covariates whose values can change over time. In fact, we show that changing covariate

values lead to estimators of the covariance function which are consistent as T grows (even

for fixed N). Though the rate of convergence depends on several factors; the temporal

dependence of the covariates (which we discuss later) and the dependence structure of

the spatio-temporal process Φt(·). Addressing the latter point; without any additional

assumptions on the process the rate of convergence declines as the dimension d of covariates

grows. On the other hand under the much stronger assumption that Φt(·) is a spatially

isotropic process the rate of convergence is independent of dimension. Nevertheless, we

show that a compromise between the generality of nonstationary and the more restrictive

isotropy property is possible. That is, under additional dependence constraints (for example

the representations in (1.1) and (1.2)), it is possible to define an estimator of the covariance

function of a spatially nonstationary process, whose rate of convergence is independent of

dimension. It is worth mentioning that all the results in Section 4 include the case where

the number of predictors in ψL(·) can be m = N (even when we derive results for N → ∞).

An advantage of the best linear estimator is that its rate of convergence does not depend

on the number of covariates m used to define the function ψL. However when there is

departure from Gaussianity the linear predictor can be far from the optimal predictor. In

Section 5 we propose a direct nonparametric estimator of the prediction function ψ (defined

4



in (1.4)). In Section 5.2 we derive the asymptotic sampling properties of the estimator of

ψ.

It is worth noting that due to the spatio-temporal nature of the problem the estima-

tors considered in this paper yield different sampling properties to those often obtained in

nonparametric statistics. More precisely, the rate of convergence depends heavily on the

temporal dependence (characterised by the mixing rate) of the covariates {Ut,i}t and the

number of spatial points at a given time. If there is only weak temporal dependence in the

covariates then for any N , as T → ∞, the estimator is consistent in probability. Whereas,

if the covariates were the same at each time, the estimator is consistent only if N → ∞
and T → ∞. On the other hand if the temporal dependence of the covariates is very slow

then for any N as T → ∞ the estimator is consistent but the rate of convergence is slow.

However by also allowing N → ∞ at a sufficiently fast rate the usual rate of convergence

(as in the weak dependence case) is achieved.

In Section 6 we illustrate our methods by modelling the selling price of properties in

the Stockport area, U.K. We use as covariates the district number and the deprivation

index. The data we use are the selling prices of several types of accomodation; detached

houses, semi-detached houses, town houses and apartments. We show that that the proposed

nonparametric linear predictor, predicts well the house price at unobserved locations for

several types of houses. Moreover the linear dependence between house prices in areas of

large deprivations seems to be much larger than the linear dependence between house prices

in areas of low deprivation. Interestingly, this trend is observed over most housing types

(with the exception of apartments).

All proofs can be found in the Appendix.

2 The model and observations

In this section we describe the model, observations and state the assumptions and notations

we will use. We shall assume throughout that all the necessary densities exist.

We use the following assumptions in the paper.

Assumption 2.1. {Φt(·)}t is a stationary process, which implies that for each t ∈ Z, Φt(·) is

a nonstationary spatial process on the region Ω and for each u ∈ Ω, {Φt(u)}t is a stationary

time series.

Suppose we observe {(Yt,i(Ut,i), Ut,i); i = 1, . . . , N, t = 1, . . . , T}, where Yt,i(Ut,i) satisfies

(1.5) (to minimise notation we let Yt,i ≡ Yt(Ut,i)). We use the following assumptions.

Assumption 2.2.

(i) For fixed m ∈ N and arbitrary indices (i1, . . . , i2m) ∈ {1, . . . , N}2m, the vector time

series of covariates {(Ut,i1 , . . . , Ut,i2m)}t is stationary.

(ii) The observation errors {Vt,i}t,i are iid random variables.
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(iii) The covariates {Ut,i}t,i, the observation errors {Vt,i}t,i and the process {Φt(·)}t are

independent.

In order to obtain the sampling properties of the estimators defined in the sequel we

need to show that the random process {Φt(Ut,i)}i is 2-mixing. This requires the following

assumptions.

Suppose u = (u1, . . . , um) ∈ Ωm, and let Φ
(s)
t (u) = (Φt(u1),Φt−s(u2), . . . ,Φt−s(um)).

Define U
(s,i)
t = (Ut,i1 , {Ut−s,ij}m

j=2) for the distinct indices i = (i1, . . . , im) ∈ {1, . . . , N}m

and denote by P
(s,i)
t,τ the joint distribution of (U

(s,i)
t , U

(s,i)
τ ).

Assumption 2.3.

(i) The vector processes {Φ(s)
t (u)}t are 2-mixing, where for all u, v ∈ Ωm

sup
A∈σ(Φ

(s)
t (u)),σ(Φ

(s)
τ (v))

|P (A ∩B) − P (A)P (B)| ≤ C2m(u, v)|t− τ |−β

and additionally
∫
C2m(u, v)P

(s,i)
t,τ (du, dv) < C2m < ∞, where the constant C2m does

not depend on t, τ ∈ Z and the distinct indices i ∈ N
m.

(ii) Suppose for all distinct indices i, j ∈ N
m the vector time series {U (s,i)

t }t and {U (s,j)

t }t

are 2-mixing, that is

sup
A∈σ(U

(s,i)
t )

B∈σ(U
(s,j)
τ )

|P (A ∩B) − P (A)P (B)| ≤ C

{
|t− τ |−α; if i = j,

|t− τ |−γ ; if (i, j) distinct indices in N
2m,

where the constant C does not depend on t, τ , i and j.

Remark 2.1 (The location dependent AR process). An example of a process which has

dependence over time and satisfies the assumptions above, is the location dependent spatio-

temporal AR process considered in Subba Rao (2005), where Φt(u) satisfies the represen-

tation

Φt(u) =

p∑

j=1

aj(u)Φt−j(u) + σt(u)ξt(u) (2.1)

and {ξt(u);u ∈ Ω}t is a stationary spatial process which is independent over time. Sup-

pose for all u ∈ Ω, the absolute value of the roots of the characteristic polynomial λp −∑p
j=1 aj(u)λ

p−j , are less than δ, where δ < 1. It is straightforward to show that this model

satisfies Assumption 2.1. Furthermore, if the innovations {ξt(·)}t were a sequence of inde-

pendent stationary Gaussian spatial process, then we can show that Assumption 2.3(i) is

satisfied, where

sup
A∈σ(Φt,s(u)),σ(Φτ,s(v))

|P (A ∩B) − P (A)P (B)| ≤ C2mρ
−|t−τ |,

and δ < ρ < 1. The proof is in the Appendix. �
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Remark 2.2. For reasons that are explained in Section 3, an implication of a condition

in the later theorems, is that min(β, γ) > 2. Loosely speaking this means that the spatio-

temporal process is only weakly dependent over time, and if i 6= j, then there is very little

dependence between the covariates Ut,i and Uτ,j when the difference |t− τ | is large. On the

other hand, α can take any value. This includes several cases of interest;

(a) The process {U t}t, where U t = (Ut,1, . . . , Ut,n), is a stationary vector autoregressive,

process, in which case {U t}t is geometrically, strongly mixing (see Pham and Tran

(1985)). This implies it is two-mixing with the rate Cρ|t−τ |, where 0 < ρ < 1 (α and

γ are same).

(b) At the other extreme the covariates are fixed, or change extremely slowly over time.

That is for fixed i, Ut,i ≈ Ui (where ≈ denotes close to). Also suppose {Ui}i are

independent random variables. These conditions imply α = 0, and because of inde-

pendence between covariates, roughly speaking, γ = ∞.

�

Define the random vector Y
(s,i)
t = (Yt,i1 , {Yt−s,ij}m

j=2). We now show that the composite

random processes {(Φ(s)
t (U

(s,i)
t ), U

(s,i)
t )}t and {(Y (s,i)

t , U
(s,i)
t )}t are also 2-mixing.

Proposition 2.1. Suppose Assumption 2.3 holds, and let W
(s,i)
t = (Φ

(s)
t (U

(s,i)
t ), U

(s,i)
t )

or W
(s,i)
t = (Y

(s,i)
t , U

(s,i)
t ). Then for all distinct indices i, j ∈ N

m the vector time series

{W (s,i)
t }t and {W (s,j)

t }t are 2-mixing with

sup
A∈σ(W

(s,i)
t )

B∈σ(W
(s,j)
τ )

|P (A ∩B) − P (A)P (B)| ≤ C

{
|t− τ |−min(α,β); if i = j,

|t− τ |−min(γ,β); if (i, j) distinct indices in N
2m,

where the constant C does not depend on t, τ , i and j.

Remark 2.3 (2-mixing of the spatio-temporal process). An immediate consequence of

Proposition 2.1 is that for all j ∈ N the composite stochastic processes {Φt(Ut,j)}t and

{Yt,j}t are also 2-mixing with the rate

sup
A∈F0,B∈Ft

|P (A ∩B) − P (A)P (B)| ≤ Ct−min(α,β)

where F0 = σ(Φ0(U0,j)) or σ(Y0,j) and Ft = σ(Φt(Ut,j)) or σ(Yt,j). �

3 Nonparametric regression with multivariate time series

In this section we consider nonparametric estimation in the context of multivariate time

series. The results in this section unify the theory in the following sections, where we

consider estimators for specific prediction problems. Furthermore, we believe the generality

of the results, give them wider appeal, for example, in nonparametric estimation for panel
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time series with dependent panels. Nevertheless, though the methods developed here and

their asymptotic sampling results are used in later sections, this section can be omitted on

first reading.

Let us suppose we observe the multivariate time series {(Xt,i, Zt,i); i = 1, . . . , N}t, where

the (1 + η) dimensional random vector (Xt,i, Zt,i) satisfies

E[Xt,i|Zt,i = z] = ϕ(z) ∀z ∈ R
η, t ∈ Z, i ∈ N, (3.1)

and ϕ : R
η → R is an unknown function. The object in this section it to define an estimator

for ϕ(·) and study its sampling properties. Our approach is sufficiently general for us not

to impose a parametric structure on the multivariate time series, however we will assume

it satisfies the following dependence structure.

Assumption 3.1 (Temporal dependence). For all i, j ∈ N, the vector time series

{(Xt,i, Zt,i, Xt,j , Zt,j)}t is stationary and 2-mixing where

sup
A∈σ(Xt,i,Zt,i),B∈σ(Xτ,j ,Zτ,j)

|P (A ∩B) − P (A)P (B)| ≤ C

{
|t− τ |−r; if i = j,

|t− τ |−u; otherwise,

and the constant C does not depend on i, j, t or τ .

In Section 4 and 5 we given examples which satisfy model (3.1) and Assumption 3.1.

In the theorem below, we allow r to take any value but impose the restriction u > 2.

Roughly speaking this means that the two vector time series {(Xt,i, Zt,i)}t and {(Xt,j , Zt,j)}t

can be dependent, but (Xt,i, Zt,i) and (Xτ,j , Zτ,j) will become asymptotically independent

over time, as |t− τ | → ∞. On the other hand, since there are no restrictions on r, the time

series {(Xt,j , Zt,j)}t can be highly dependent over time, where, as we shall see below, the

dependence affects the rate of convergence of the estimator.

Let fi(x, z) denote the joint density of the random vector (Xt,i, Zt,i) for i ∈ N, which

due to stationarity does not depend on t (see Assumption 3.1). Moreover, let fi(z) denote

the marginal density of Zt,i. Using these densities we can rewrite (3.1) as

ϕ(z) = E[Xt,i|Zt,i = z] =

∫
x
fi(x, z)

fi(z)
dx =:

gi(z)

fi(z)
, ∀z ∈ R

η, t ∈ Z, i ∈ N.

Furthermore, using the last identity it is easily verified that

ϕ(z) =
1
n

∑n
i=1 gi(z)

1
n

∑n
i=1 fi(z)

, ∀z ∈ R
η, n ∈ N (3.2)

which motivates the following estimator of ϕ. We observe, if the random vectors (Xt,i, Zt,i)

for i ∈ N and t ∈ Z are identically distributed with joint density f(x, z), then we obtain

equation (3.2) with g(z) =
∫
xf(x, z)dx and marginal density f(z) of Zt,i.

We now use a nonparametric kernel approach to estimate ϕ(·) from the observations

{(Xt,i, Zt,i); t = 1, . . . , T ; i = 1, . . . , N}. Motivated by (3.2) we consider ϕ̂(z) as an estimator
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of ϕ(z) where

ϕ̂(z) =
1
N

∑N
i=1 ĝi(z)

1
N

∑N
i=1 f̂i(z)

, (3.3)

using for each i = 1, . . . , N

ĝi(z) :=
1

T

T∑

t=1

Xt,iKbi(Zt,i − z) and f̂i(z) :=
1

T

T∑

t=1

Kbi(Zt,i − z) (3.4)

as estimators of gi(z) and fi(z), respectively, with for z ∈ R
ν , Kb(z) := b−νK(z/b), b > 0 is

a bandwidth and K is multiplicative kernel, defined below (see Scott (1992)).

Having defined the estimator, in the rest of this section we study its sampling properties.

In order to do this we require the following definitions and assumptions (which will be used

throughout the paper).

Definition 3.1. For all w = (w1, . . . , wη) ∈ R
η, K is a multiplicative kernel of order r,

i.e. K(w) = Πη
i=1ℓ(wi) where ℓ is a univariate, bounded, even function such that

∫
du ℓ(u) = 1,

∫
du uiℓ(u) = 0

for all i = 1, . . . , r − 1 and there exists a constant SK such that

[

∫
du |u|rℓ(u)]η = SK .

In later sections we will customise the following assumptions to specific situations. It

is worth bearing in mind that they are relatively mild and, roughly speaking, require that

the densities and the conditional expectation of Xt,iXt,j are p -integrable.

Assumption 3.2. [Technical assumptions]

(i) For all i ∈ N and t ∈ Z we have E[|Xt,i|p] <∞ for some p > 2 and let

g
(p)
i (z) := E[Xr

t,i|Zt,i = z] · fi(z).

Then the functions (g
(p)
i )1/p and fi are bounded by a constant δi and we define q :=

1 − 2/p.

(ii) For each t, τ ∈ Z and i, j ∈ N let f
(t,τ)
i,j denotes the joint density of (Zt,i, Zτ,j) and let

g
(t,τ)
i,j (z1, z2) := E[Xt,iXτ,j |Zt,i = z1, Zτ,j = z2] · f (t,τ)

i,j (z1, z2).

(a) Define1 F
(t,τ)
i,j := f

(t,τ)
i,j − fi ⊗ fj. Then for some pF > 2 there exists a constant

CF such that supt,τ,i,j ‖F
(t,τ)
i,j ‖pF < CF and we define qF = 1 − 2/pF .

(b) Define G
(t,τ)
i,j := g

(t,τ)
i,j − gi ⊗ gj. Then for some pG > 2 there exists a constant

CG such that supt,τ,i,j ‖G
(t,τ)
i,j ‖pG < CG and we define qG = 1 − 2/pG.

1We use the notation f ⊗ g(x, y) = f(x)g(y) and ‖f‖p = (
R

|f(x)|pdx)1/p.
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(iii) The multiplicative kernel K has a finite κ-moment with κ ≥ max(p, 1−1/pF , 1−1/pG),

i.e. CK := ‖K‖κ <∞.

We note that due to stationarity F
(t,τ)
i,j = F

(0,t−τ)
i,j and G

(t,τ)
i,j = F

(0,t−τ)
i,j .

The definition below provides the suitable regularity space in order to prove the results

in this paper.

Definition 3.2. For s,△ > 0, the space G
η
s,△ is the class of functions g : R

η → R satis-

fying: g is everywhere (m − 1)-times partially differentiable for m − 1 < s 6 m; where for

some ρ > 0 and for all x, the inequality

sup
y:|y−x|<ρ

|g(y) − g(x) −Q(y − x)|
|y − x|s 6 κ(x),

holds true with Q = 0 when m = 1 and for m > 1, Q is an (m − 1)th-degree homogeneous

polynomial in y − x, whose coefficients are the partial derivatives of g of orders 1 to m− 1

evaluated at x; κ is uniformly bounded by △.

We now obtain the rate of convergence of ϕ̂(z), as T → ∞.

Theorem 3.1. Suppose Assumptions 3.1 and 3.2 are satisfied, where r and u are the mixing

coefficients associated with the vector time series {(Xt,i, Zt,i, Xt,j , Zt,j)}t given in Assump-

tion 3.1, and qG, qF , q ∈ (0, 1) and δi > 0, i = 1, . . . , N, are defined in Assumption 3.2. Let

̟ = min(qF , qG) and suppose u > 1/̟ + 1/q.

Let ϕ̂(z) be defined as in (3.3), where K is a multivariate kernel of order r > 0 (see

Definition 3.1). In addition for each i = 1, . . . , N assume that ϕ · fi, fi ∈ G
η
si,△i

for some

△i, si > 0 (see Definition 3.2), that fi is bounded away from zero and let ρi = min(r, si).

We have for all z ∈ R
η

(i) if r > 1/̟ + 1/q and bi = O(T
−1

2ρi+η ), i = 1, . . . , N, then

|ϕ̂(z) − ϕ(z)| = Op

( 1

N

N∑

i=1

(δ2i )
2ρi

2ρi+η · (△2
i )

η
2ρi+η · T

−2ρi
2ρi+η

)
; (3.5)

(ii) if 1/q < r ≤ 1/̟ + 1/q and bi = O((N · T )
−1

2ρi+κη ), i = 1, . . . , N , with κ := 1 +̟ +

q −̟qr then

|ϕ̂(z) − ϕ(z)| = Op

( 1

N

N∑

i=1

(δ2i )
2ρi

2ρi+κη · (△2
i )

κη
2ρi+κη · (N · T )

−2ρi
2ρi+κη

)
; (3.6)

(iii) if r ≤ 1/q and bi = O((N · T qr)
−1

2ρi+(1+q)η ), i = 1, . . . , N then

|ϕ̂(z) − ϕ(z)| = Op

( 1

N

N∑

i=1

(δ2i )
2ρi

2ρi+qη+η · (△2
i )

qη+η
2ρi+qη+η · (N · T qr)

−2ρi
2ρi+qη+η

)
. (3.7)
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Remark 3.1. (i) From the proposition above we see if the mixing rate of the observa-

tions, r were sufficiently large then we obtain the usual rate of convergence often found

in nonparametric estimation (we note that a necessary condition is that r > 2). In

other words, if for all i the rates are the same, with ρi = ρ, and r is sufficiently, then

|ϕ̂(z) − ϕ(z)| = Op(T
−2ρi
2ρ+η ).

(ii) There is a continuity between the rates under the three different conditions. In other

words as r → ̟−1 + q−1 from the left then T
− ρ

2ρi+κη → T
− ρ

2ρi+η and r → q−1 from

the left then T
− ρ

2ρi+η+qη
·rq → T

− ρ
2ρi+ηκ . Roughly speaking this means the conclusions

of (ii) → (i) and (iii) → (ii) as r → ̟−1 + q−1 and r → q−1 respectively.

(iii) In order to reduce the number of different cases we have imposed the restriction that

u > 1/̟ + 1/q (which basically means asymptotic independence of (Xt,i, Zt,i) and

(Xt,j , Zt,j)). If we were to relax this assumption and allow u ≤ 1/̟+ 1/q, this would

give rise to 6 more cases. The most notable is when u is also small and the conditions of

Theorem 3.1(iii) hold. This case there is so much dependence within the time series

{(Xt,i, Zt,i)}t and between the different time series {(Xt,i, Zt,i)}t and {(Xt,j , Zt,j)}t

that ϕ̂(z) converges extremely slowly to the true parameter (even if N → ∞, which

is the case we consider below).

�

We now show that it is possible for the estimator ϕ̂(·) to obtain the rate given in Theorem

3.1(i) even in the case that the observations are only slowly 2-mixing. This is achieved by

allowing the number of time series N → ∞.

Corollary 3.2. Suppose the assumptions of Theorem 3.1 are satisfied, and the bandwidth

parameters are such that bi = O(T−1/(2ρi+η)), i = 1, . . . , N,. Let ρ = min{ρi; i = 1, . . . , N}).
Furthermore, in the case Theorem 3.1(ii), where q−1 < r ≤ ̟−1 + q−1, let N = O(T

η(κ−1)
2ρ+η )

while, in the case Theorem 3.1 (iii) where r < q−1, let N = O(T
qη

2ρ+η
+1−rq

).

Then we have |ϕ̂(z) − ϕ(z)| = Op

(
1
N

∑N
i=1(δ

2
i )

2ρi
2ρi+η · (△2

i )
η

2ρi+η · T
−2ρi
2ρi+η

)
, for all z ∈ R

η.

Roughly speaking, if all the rates are the same with ρ = ρi, then from the above corollary

we have |ϕ̂(z)−ϕ(z)| = Op(T
−2ρ/(2ρ+η))), if N grows at a sufficient rate. Hence if we allow

the number of time series N to grow also, then we achieve the usual nonparametric rate

discussed in Remark 3.1(i).

Remark 3.2 (Mean square error). In Theorem 3.1 and Corollary 3.2 we obtain the proba-

bilitistic rate of convergence of the estimator ϕ̂ = ĝ/f̂ defined in (3.3). In order to obtain

a similar rate in terms of mean square error (MSE) we need stronger assumptions, see for

example Bosq (1998), Theorem 3.1. However we now show that by introducing a regularisa-

tion term in the estimator ϕ̂ under the same conditions given in Theorem 3.1 we can derive

a MSE which is uniform in z. In the appendix we derive the MSE for the numerator ĝ(·)
and the denominator f̂(·) (see Lemma A.2). The difficulty in the estimation of the MSE of
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ϕ̂ comes from the denominator f̂ , i.e., the expectation of f̂−1 does not, in general, exist. In

order to cirumvent this difficulty we can introduce an additional regularization parameter

h > 0 such that the denominator is bounded away from zero. For example, consider

ϕ̂(h)(z) = {h+ f̂(z)}−1ĝ(z) (3.8)

ϕ̂(h)(z) = f̂(z)−1ĝ(z)I{f̂(z) > h}. (3.9)

We mention that regularizers have been used in several problems. For example, in the

context of partially linear models an adaptation of (3.8) is used in Florens, Johannes, and

Van Bellegem (2005) whereas Robinson (1988) considered a version of (3.9). �

In the following section we apply these methods to prediction for spatio-temporal pro-

cesses.

4 Linear prediction

4.1 Covariance estimation

In this section we consider the linear prediction of Φt(u0) given Yt−s(u) := {Yt−s(ui)}m−1
i=1

with u = (u1, . . . , um−1) ∈ Ωm−1 satisfying model (1.3), which of course is optimal if

(Yt(u0), Yt−s(u)) were distributed according to a multivariate Gaussian.

We define for each s ∈ Z the covariance function cs : R
2d → R with

cs(u, v) := cov(Yt(u), Yt−s(v)).

The best linear predictor of Φt(u0) given Yt−s(u) = y with y ∈ R
m−1 is

ψL(y, u, u0) = r(u, u0)
′

R(u)−1y (4.1)

where r(u, u0)
′

= (cs(u0, u1), . . . , cs(u0, um−1)) and

R(u) =




c0(u1, u1) c0(u1, u2) . . . c0(u1, um−1)

c0(u1, u2) c0(u2, u2) . . . c0(u2, um−1)
...

...
. . . . . .

c0(um−1, u1) c0(um−1, u2) . . . c0(um−1, um−1)



.

Since the parameter r(·) and the matrix R(·) are functions of the covariance, the object

of this section is to develop methods for estimating cs(·), which in turn can be used to

estimate r(·) and R(·). The predictor ψL(·) can include all observations at a given time,

that is m = N (though it is natural to use only those which are near to the unobserved

point). For brevity we shall assume that the spatial mean is zero, it is straightforward to

extend the results to spatial processes with non-zero mean.

As will become clear below, the method we use to estimate cs(·) should depend on its

covariance structure. Since we are using nonparametric methods to estimate the covariance,
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the rate of convergence of the estimator will be affected by the dimension d of the covariates.

But this can be remedied if there is a known function H : R
2d → R

ν such that there exists

a function cH,s : R
ν → R (in general unknown) which satisfies

cH,s(H(u, v)) = cov(Φt(u),Φt−s(v)), ∀u, v ∈ Ω, t, s ∈ Z. (4.2)

By using this information we can reduce the dimension from 2d to ν, thereby avoiding the

curse of dimensionality. Let σ2 denote the variance of the observation error and define

vH(·) := cH,0(·) + σ2. Since the observation errors are independent of the process {Φt(·)}t

we have the following characterisation of the covariance function

cs(u, v) =

{
vH(H(u, u)) , when s = 0 and u = v;

cH,s(H(u, v)) , otherwise.
(4.3)

Example 4.1 (Dimension reduction through a suitable H(·)). (i) In the case that {Φt(·)}
is spatially nonstationary with no additional assumptions then H : R

2d → R
2d with

H(u, v) := (u, v).

(ii) Often it is reasonable to suppose that the process {Φt(·)} is both temporally and

spatially stationary. In which case H : R
2d → R

d with H(u, v) := (u− v).

(iii) In spatial statistics it is common to assume isotropy of the covariance function. In

this case H : R
2d → R with H(u, v) := ‖u− v‖, where ‖ · ‖ is the Euclidean norm.

(iv) Consider the model in (1.2), where {ξ(i)t (·)} are iid random functions with an isotropic

covariance. It is straightforward to show that

cov(Φt(w, x),Φt−s(w̃, x̃)) = (1 + x′x̃) · γs(‖w − w̃‖),

where γs(‖w − w̃‖) = cov(ξ0(w), ξs(w̃)). Let u = (w, x), v = (w̃, x̃), then in this case

H : R
2(p+1) → R

2 with

H(u, v) := ((1 + x′x̃), ‖w − w̃‖).

�

Based on the characterisation (4.3), we use the observations{(Yt,i, Ut,i), i = 1, . . . , N ; t =

1, . . . , T} to construct an estimator of the function cs(u, v) for s ∈ Z and u, v ∈ Ω.

Therefore define for t ∈ Z and i, j ∈ N the random variables X
(s)
t,i,j = Yt,i · Yt−s,j and

Z
(s)
t,i,j = H(Ut,i, Ut−s,j). Under Assumption 2.2, it is easily verified that for all z ∈ R

ν , t, s ∈
Z, i, j ∈ N with i 6= j

cH,s(z) = E(Yt,i · Yt−s,j |H(Ut,i, Ut−s,j) = z) = E(X
(s)
t,i,j |Z

(s)
t,i,j = z),
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and

vH(z) = E(Y 2
t,i|H(Ut,i, Ut,i) = z) = E(X

(0)
t,i,i|Z

(0)
t,i,i = z).

By using, for fixed i, j {(Ut,i, Ut−s,j)}t is a stationary vector process, it follows that

{(X(s)
t,i,j , Z

(s)
t,i,j)}t are identically distributed random vectors. Comparing this with the general

multivariate case considered in Section 3, we see that {(X(s)
t,i,j , Z

(s)
t,i,j)}t can be treated as a

particular example. This motivates us to let f
(s)
i,j (z) denote the marginal density of Z

(s)
t,i,j

and define g
(s)
i,j (z) := E(X

(s)
t,i,j |Z

(s)
t,i,j = z) · f (s)

i,j (z). Then, for all z ∈ R
ν , we have

cH,s(z) =

1
N/2

∑N/2
i=1 g

(s)
2i−1,2i(z)

1
N/2

∑N/2
i=1 f

(s)
2i−1,2i(z)

and vH(z) =
1
N

∑N
i=1 g

(0)
i,i (z)

1
N

∑N
i=1 f

(0)
i,i (z)

. (4.4)

For all i, j ∈ N and s ∈ Z we estimate the functions g
(s)
i,j (·) and f

(s)
i,j (·) using the kernel

estimators

ĝ
(s)
i,j (·) :=

1

T − s

T∑

t=1+s

X
(s)
t,i,jKb

(s)
i,j

(Z
(s)
t,i,j − ·) and f̂

(s)
i,j (·) :=

1

T − s

T∑

t=1+s

K
b
(s)
i,j

(Z
(s)
t,i,j − ·),

where K denotes a multiplicative kernel (see Definition 3.1) and b
(s)
i,j > 0 a given bandwidth.

Replacing in (4.4) the functions g
(s)
i,j (·) and f

(s)
i,j (·) by their estimators we obtain

ĉH,s(·) :=

∑N/2
i=1

∑T
t=1+sX

(s)
t,2i−1,2iKb

(s)
2i−1,2i

(Z
(s)
t,2i−1,2i − ·)

∑N/2
i=1

∑T
t=1+sKb

(s)
2i−1,2i

(Z
(s)
t,2i−1,2i − ·)

and v̂H(·) :=

∑N
i=1

∑T
t=1+sX

(s)
t,i,jKb

(s)
i,i

(Z
(s)
t,i,i − ·)

∑N
i=1

∑T
t=1+sKb

(s)
i,i

(Z
(s)
t,i,i − ·)

,

(4.5)

as estimators of cH,s(·) and vH(·), respectively.

It is worth mentioning that in practice the densities {fi,j(·)}i,j maybe the same, hence

we would use a universal bandwidth b. Moreover the bandwidth can be selected using

cross-validation methods (cf. Hart (1994)).

We are now equiped to define an estimator of the matrix R(u), that is

R̂(u) :=




v̂H(H(u1, u1)) . . . ĉH,0(H(u1, um−1))
...

. . .
...

ĉH,0(H(um−1, u1)) . . . v̂H,0(H(um−1, um−1))


 ,

while we use r̂(u, u0)
′

= (ĉH,s(H(u0, u1)), . . . , ĉH,s(H(u0, um−1))) as an estimator of r(u, u0).

Altogether we obtain the estimator ψ̂L of the linear predictor ψL, where

ψ̂L(y, u, u0) := r̂(u, u0)
′

R̂(u)−1y. (4.6)
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4.2 Sampling properties

In this section we will study the sampling properties of the estimators ĉH,s(·) and v̂H(·),
which are derived using the results given in Section 3.

Under Assumptions 2.1, 2.2 and 2.3 (with m = 2), we see that Assumption 3.1 holds

with Xt,i := X
(s)
t,2i−1,2i and Zt,i := X

(s)
t,2i−1,2i or Xt,i := X

(0)
t,i,i and Zt,i := X

(0)
t,i,i, and by

appealing to Proposition 2.1 we have

sup
A∈σ(Xt,i,Zt,i)

B∈σ(Xτ,j ,Zτ,j)

|P (A ∩B) − P (A)P (B)| ≤ C

{
|t− τ |−min(α,β); if i = j,

|t− τ |−min(γ,β); otherwise.

Therefore, if also Assumptions 3.2 is satisfied, the following theorem on the rate of conver-

gence of the covariance and variance estimators is a direct consequence of Theorem 3.1.

Theorem 4.1. Suppose Assumptions 2.1, 2.2 and 2.3 (with m = 2) holds, where α and γ

are the mixing coefficients of the covariates {Ut,i}t over time and space, respectively, β is the

mixing coefficient of the process {Φt(u)}t (u is arbitrary but fixed). Let the multivariate vec-

tor time series {X(s)
t,2i−1,2i, Z

(s)
t,2i−1,2i}t,i and {X(0)

t,i,i, Z
(0)
t,i,i}t,i satisfy the Assumption 3.2 with

common constants qG, qF , q ∈ (0, 1) and individual constants δi,s and δi > 0, respectively.

Let ̟ = min(qF , qG) and suppose min(γ, β) > 1/̟ + 1/q.

Let ĉH,s(z) and v̂H(z) be defined as in (4.5), where K is a multivariate kernel of order

r > 0 (Definition 3.1). In addition for each i, j ∈ N, i 6= j assume cH,s(z) · f (s)
i,j , f

(s)
i,j ∈

G
η
li,s,△i,s

with li,s,△i,s > 0 (see Definition 3.2), while vH(z) · f (0)
i,i , f

(0)
i,i ∈ G

η
li,△i

for some

li,△i > 0, and suppose that the functions f
(s)
i,j and f

(0)
i,i are bounded away from zero. Let

ρi,s = min(r, li,s) and ρi = min(r, li) for i ∈ N. Then for all z ∈ R
ν

(i) if α > 1/̟ + 1/q, b
(s)
2i−1,2i = O(T−1/(2ρi,s+ν)) and b

(0)
i,i = O(T−1/(2ρi+ν)), we have

|ĉH,s(z) − cH,s(z)| = Op

( 1

N/2

N/2∑

i=1

(δ2i,s)
2ρi,s

2ρi,s+ν · (△2
i,s)

ν
2ρi,s+ν · T

−2ρi,s
2ρi,s+ν

)
; (4.7)

|v̂H(z) − vH(z)| = Op

( 1

N

N∑

i=1

(δ2i )
2ρi

2ρi+ν · (△2
i )

ν
2ρi+ν · T

−2ρi
2ρi+ν

)
(4.8)

(ii) if 1/q < α ≤ 1/δ+1/q, b
(s)
2i−1,2i = O((N ·T )−1/(2ρi,s+κν)) and b

(0)
i,i = O((N ·T )−1/(2ρi+κν))

with κ := 1 +̟ + q −̟ · q · α we have

|ĉH,s(z) − cH,s(z)| = Op

( 1

N/2

N/2∑

i=1

(δ2i,s)
2ρi,s

2ρi,s+κν · (△2
i,s)

κν
2ρi,s+κν · (N · T )

−2ρi,s
2ρi,s+κν

)
; (4.9)

|v̂H(z) − vH(z)| = Op

( 1

N

N∑

i=1

(δ2i )
2ρi

2ρi+κν · (△2
i )

κν
2ρi+κν · (N · T )

−2ρi
2ρi+κν

)
(4.10)
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(iii) if α ≤ 1/q, b
(s)
2i−1,2i = O((N · Tαq)

−1
2ρi,s+qν+ν ) and b

(0)
i,i = O((N · Tαq)

−1
2ρi+qν+ν ) we obtain

|ĉH,s(z) − cH,s(z)| = Op

( 1

N/2

N/2∑

i=1

(δ2i,s)
2ρi,s

2ρi,s+qν+ν · (△2
i,s)

κν
2ρi,s+qν+ν · (N · Tαq)

−2ρi,s
2ρi,s+qν+ν

)
;

(4.11)

|v̂H(z) − vH(z)| = Op

( 1

N

N∑

i=1

(δ2i )
2ρi

2ρi+qν+ν · (△2
i )

(1+q)ν
2ρi+qν+ν · (N · Tαq)

−2ρi
2ρi+qν+ν

)
. (4.12)

In the theorem above we see that purpose of the summands is to accomodate the different

smoothness classes of f
(s)
i,j . If the densities were to belong to the same class, then the

summands are avoided. Moreover, since f
(s)
i,j is the density of H(Ut,i, Ut−s,j), the rate of

convergence depends both on the smoothness of the covariance function cs,H(·), as one

would expect, as well as the smoothness of the covariate densites.

Remark 4.1 (Local stationarity). We note that, since we are using ‘local’ smoothing to

estimate the covariance function, the assumption cH,s(z), vH(z) ∈ G
ν
l,△ (in Theorem 4.1) im-

poses a ‘local stationarity’ condition on the spatially nonstationary spatio-temporal process

Φt(·). For instance, consider two observations from the spatio-temporal process; Φt(u1) and

Φt(u2) whose covariates u1 and u2 are ‘close’. Since G
ν
l,△ characterises a class of ‘smooth’

functions, we have for all u ∈ Ω, that cs(u1, u) ≈ cs(u2, u), this implies that they have a

similar covariance structure, leading to a process which at least in the second order sense

can be described as ‘locally’ stationary. �

Remark 4.2 (MSE, uniform convergence, asymptotic normality). It is worth mentioning

that a small adaption of the estimator ĉH,s(·) or v̂H(·) yields an estimator whose mean

squared error can easily be evaluated. We refer to Remark 3.2 in Section 3 for the details.

It is possible to show that the estimators are uniformly convergent almost surely, over

an increasing sequence of compact sets, under much stronger conditions on the processes

{Φt(·)}t and {Ut,i}t. To summarise, if the 2-mixing rates in Assumption 2.3 were replaced

by strong mixing rates and the rate of convergence is strengthed to a geometric mixing rate,

f, cH,s ∈ G
η
2,△ and there exists an a such that E(exp(aYt,j)) < ∞, then ĉH,s(z) and v̂H(z)

converge uniformly in a compact set to cH,s(z) and vH(z), respectively. Under a similar set

of assumptions asymptotic normality of ĉH,s(z) and v̂H(z) can also be shown. For details

we refer to Bosq (1998), Theorems 3.3 and 3.4. �

In the previous theorem we have obtained a rate of convergence for the covariance

estimators ĉH,s and v̂H . An interesting aspect in the proof of this result, is that the rates

are independent of of z. This observation immediately yields the following result on the

rate of convergence of ψ̂L.

Corollary 4.2. Suppose the assumptions of Theorem 4.1 are satisfied. Let ψ̂L be defined

as in (4.6), with m ≤ N . Assume, that supi((δi,0, δi,s, δi) < ∞, supi(△i,0,△i,s,△i) < ∞
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and ρ := infi{ρi,0, ρi,s, ρi} > 0. Then for all y ∈ R
m−1, (u, u0) ∈ Ωm we have

(i) If α > 1/̟ + 1/q and b
(s)
i,j = O(T−1/(2ρ+ν)), then

|ψ̂L(y, u, u0) − ψL(y, u, u0)| = Op

(
T−2ρ/(2ρ+ν)

)
.

(ii) If 1/q < α ≤ 1/̟+1/q and b
(s)
i,j = O((N ·T )−1/(2ρ+κν)), with κ := 1+̟+ q−̟ · q ·α

then

|ψ̂L(y, u, u0) − ψL(y, u, u0)| = Op

(
(N · T )−2ρ/(2ρ+κν)

)
.

(iii) If α ≤ 1/q and b
(s)
i,j = O((N · Tαq)−1/(2ρ+(1+q)ν)), then

|ψ̂L(y, u, u0) − ψL(y, u, u0)| = Op

(
(N · Tαq)−2ρ/(2ρ+(1+q)ν)

)
.

It is worth drawing to attention that, the rate in (4.13) does not depend on m (since

ν is independent of m). Therefore it includes the case where ψL(·) is defined with m = N

predictors.

In spatial statistics the asymptotic results often use the assumptions that the number

of ‘locations’ N → ∞ (see, for example, Guan, Sherman, and Calvin (2004) and Mukherjee

and Lahiri (2004)). Similarly, we now consider the case that the number of covariates at

each time point N → ∞ as well as T → ∞. We shall show that in this case it is possible to

obtain the rate T
− ρ

2ρ+η for the estimator ψ̂(·) even in the case that the covariates are not

mixing much.

Corollary 4.3. Suppose the assumptions of Theorem 4.1 and Corollary 4.2 are satisfied.

In addition, if the assumptions Corollary 4.2(ii) are satisfied, with q−1 < α ≤ ̟−1 + q−1,

let N = O(T
ν(κ−1)
2ρ+ν ) while, if Corollary 4.2(iii) holds with α < q−1, let N = O(T

qν
2ρ+ν

+1−αq
).

Then
∣∣∣ψ̂L(y, u, u0) − ψL(y, u, u0)

∣∣∣ = Op(T
− ρ

2ρ+ν ), for all y ∈ R
m−1, (u, u0) ∈ R

md. (4.13)

Remark 4.3 (Different rates). From the theorem and corollary above we notice that the

rate of convergence depends on two factors:

(i) The dimension of the image of the function H : R
2d → R

ν , which is based on the

dependence structure of the spatial temporal process. For example, in the case of

nonstationary, with no additional assumptions, the rate is slowest, but if the process

were isotropic the estimator can be modified to yield an estimator which is independent

of dimension. What is more, even for nonstationary processes with some structure (see

Example 4.1(iv)) we can still obtain an estimator which is independent of dimension.

(ii) The dependence structure of the covariates. We see that for N kept fixed, as the

dependence of the covariates grow the rate of convergence of ψ̂L becomes slower. As

an illustration we consider the examples in Remark 2.2:
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(a) The covariates satisfy a vector AR process, hence the temporal dependence of the

covariates is weak and α is large. This means for N kept fixed (we can even have

N = 2), the usual rate of convergence in nonparametric estimation is incurred.

(b) Here there is little or no temporal mixing of the covariates. Thus for N kept fixed

the estimator ψ̂L is inconsistent. However because there is independence between the

covariates if N → ∞ and T → ∞ at a sufficient rate the usual nonparametric rate

can be obtained.

�

Remark 4.4 (Dimension reduction for unknown H(·)). There arises applications where we

know that there exists a function H : R
2d → R

ν , with ν < 2d such that cH,s(H(u, v)) =

cov(Φt(u)Φt−s(v)) but the actual function H(·) may be unknown. Examples include

(i) A generalisation of (1.2) where H : R
2d → R, defined by

H(w, x, w̃, x̃) = {
q∑

k=1

fk(x
(k)x̃(k))}‖w − w̃‖, with x = (x(1), . . . , x(d)), x̃ = (x̃(1), . . . , x̃(d)),

and the functions fk : R → R are unknown.

(ii) Anistropic processes are a generalisation of an isotropic process (c.f. Cressie and

Huang (1999)). Here H : R
2d → R, is defined by

H(u, v) =
√
v′Au = {

d∑

i=1

d∑

j=1

Aijv
(i)u(j)}1/2, with u = (u(1), . . . , u(d)), v = (v(1), . . . , v(d)),

and A is an unknown positive definite matrix.

In order to reduce the affect of dimension in the estimation of cs(·) it is of interest to obtain

estimators of the function H(·). There are several ways to approach this problem, however

the obvious is to use the representation

Yt,iYt−s,j = cH,s(H(Ut,i, Ut−s,j)) + ε
(i,j)
t , (4.14)

where ε
(i,j)
t = Yt,iYt−s,j − cH,s(H(Ut,i, Ut−s,j)) and E(ε

(i,j)
t |H(Ut,i, Ut−s,j))) = 0. We observe

that (4.14) resembles the classical setup where we observe a nonparametric function which

has been corrupted by additive noise. For this reason it is possible to draw on dimension

reduction methods, developed in nonparametric statistics, to estimate cH,s(·) (though the

noise stucture ε
(i,j)
t is more complicated than usual). For example, suppose, cH,s(H(u, v)) =

cov(Φt(u),Φt−s(v)) where H : R
2d → R with

H(u, v) =
d∑

k=1

fk(u
(k) − v(k)), with u = (u(1), . . . , u(d)), v = (v(1), . . . , v(d)),
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but fk(·) is unknown. We now consider an iterative scheme to estimate cH,s(·) and H(·),
when fk(·) is a linear functional; fk(x) = αkℓk(x), where αk is unknown, but the function

ℓk(·) is known. This can be done by using methods developed in Lu, Tjostheim, and Yao

(2005) and Fan, Yao, and Cai (2003), who consider the model

Zt = h0(a
′

Xt) + X
′

tg0(a
′

Xt) + εt, (4.15)

where {Xt}t is a predictor vector, E(εt|Xt) = 0, α is a vector of unknown parameters and

h0(·) and g0(·) are unknown functions. Comparing (4.15) with

Yt,iYt−s,j = cH,s(

d∑

k=1

αk · ℓk(U (k)
t,i − U

(k)
t−s,j)) + ε

(i,j)
t , (4.16)

we see that (4.16) can be written in terms of (4.15), with Zt = Yt,iYt−s,j , Xt = (ℓ1(U
(1)
t,i −

U
(1)
t−s,j), . . . , ℓd(U

(d)
t,i − U

(d)
t−s,j)), h0(·) = cH,s(·), g0(·) ≡ 0, and a

′

= (α1, . . . , αd). Given

this representation, we can estimate the parameter vector a and the function cH,s(·), using

the iterative local least squares scheme advocated in Fan, Yao, and Cai (2003) and Lu,

Tjostheim, and Yao (2005). A small difference is that for each time t we have multiple

observations {(Yt,iYt,j , Ut,i, Ut,j); 1 ≤ i ≤ j ≤ N}, however it is straightforward to modify

the estimation scheme to the current problem. The main advantage of using this scheme is,

if it can be shown that the conditions stated in Lu, Tjostheim, and Yao (2005) are satisfied

then the curse of dimensionality is avoided. That is, the estimator of the parameter vector

a is
√
T -convergent and the rate of convergence of the nonparametric estimator of cH,s(·)

does not depend on the dimension d.

A useful generalisation is to develop dimension reduction techniques where fk(·) is an

unknown non-linear functional (possibly by adapting the dimension reduction methods con-

sidered in Horowitz and Mammen (2004) and Fan, Härdle, and Mammen (1998)). This

problem will be considered in the future. �

5 Estimation of the optimal predictior

5.1 The estimator

If the observations depart from Gaussianity the linear predictor can be far from the optimal

predictor. In this section we propose a method to estimate directly the function ψ(y, u, u0) =

E(Φt(u0)|{Yt−s(ui)}m−1
i=1 = y) with y ∈ R

m−1 and u = (u1, . . . , um−1) ∈ Ωm−1.

Recall that Y
(0,i)
t−s = {Yt−s,ij}m−1

j=1 and U
(0,i)
t−s = {Ut−s,ij}m−1

j=1 for i = (i1, . . . , im−1) ∈
N

m−1. Under Assumption 2.2 it is straightforward to show that for all distinct indices

(i0, i) ∈ N
m

ψ(y, u, u0) = E(Yt,i0 |Y
(0,i)
t−s = y, U

(0,i)
t−s = u, Ut,i0 = u0), ∀ (u0, u) ∈ Ωm, y ∈ R

m−1.

Define for i = 1, . . . , N/m the η-dimensional random vector Z
(s)
t,i := (Y

(0,ii)
t−s , U

(0,ii)
t−s , Ut,im)

with ii = ((i − 1)m + 1, . . . , im − 1) and η = (d + 1)m − 1. By using that for all i ∈
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N, {(Ut,im, U
(0,ii)
t−s )}t is a stationary vector time series, it follows that {Yt,im, Z

(s)
t,i }t are

identically distributed random variables. As in the previous section we see that {Yt,im, Z
(s)
t,i }t

is an example of the multivariate time series considered in Section 3. Therefore to estimate

ψ(·), first let f
(s)
i (·) denote the marginal density of Z

(s)
t,i and define g

(s)
i (z) := E[Yt,im|Z(s)

t,i =

z] · f (s)
i (z), then we have for all z ∈ R

η

ψ(z) =

1
N/m

∑N/m
i=1 g

(s)
i (z)

1
N/m

∑N/m
i=1 f

(s)
i (z)

. (5.1)

For all i ∈ N and s ∈ Z we estimate the functions g
(s)
i (·) and f

(s)
i (·) with

ĝ
(s)
i (·) :=

1

T − s

T∑

t=1+s

Yt,imKb
(s)
i

(Z
(s)
t,i − ·) and f̂

(s)
i (·) :=

1

T − s

T∑

t=1+s

K
b
(s)
i

(Z
(s)
t,i − ·),

where K denotes a multiplicative kernel (see Definition 3.1) and b
(s)
i > 0 a given bandwidth.

Replacing in (5.1) the functions g
(s)
i (·) and f

(s)
i (·) by their estimators we obtain

ψ̂(·) :=

∑N/m
i=1

∑T
t=1+s Yt,imKb

(s)
i

(Z
(s)
t,i − ·)

∑N/m
i=1

∑T
t=1+sKb

(s)
i

(Z
(s)
t,i − ·)

, (5.2)

as estimator of the optimal predictor ψ.

Remark 5.1. We observe that ψ(·) is a function on (d+1)m−1 variables, hence the quality

of the estimator depends on the dimension. It is possible, as in Section 4, to incorporate

isotropy into the model, however meaningful methods for reducing the dimension of ψ,

unlike the covariance estimator, are not so obvious, which we now demonstrate.

Recall the linear predictor ψL(y, u, u0) = a′(u, u0)y with a(u, u0) := R(u, u0)
−1r(u, u0)

defined in (4.1). We observe that without any additional assumptions on the structure of

the process {Φt(·)}t, a(·) is a function of d ·m variables. Now suppose the covariances are

isotropic, and let us define the function H : R
dm ⊇ Ωm → R

m(m−1)/2 with H(u, u0) :=

(‖u0 − u1‖, . . . , ‖um−1 − um−2‖) for all u = (u1, . . . , um−1) ∈ Ωm−1. Then there exists a

function aH : R
m(m−1)/2 → R

m−1 such that aH(H(u, u0)) = a(u, u0) for all (u, u0) ∈ Ωm.

Therefore isotropy implies that there exists a function ψL,H : R
(m+2)(m−1)/2 → R such that

ψL,H(y,H(z)) = a
′

H(z)y = ψL(y, z), ∀ y ∈ R
m−1, z ∈ R

(d+1)m−1.

Now consider the optimal predictor ψ : R
(d+1)m−1. Motivated by above we see that one

way to introduce the notion of isotropy into the optimal predictor is to define a function

ψH : R
(m+2)(m−1)/2 → R such that ψ(y, u, u0) = ψH(y,H(u, u0)) (where H(·) is defined as

above). Thus we can estimate ψH(·), using similar techniques to those discussed in Sections

4 and 5. Comparing the two dimensions (((d + 1)m − 1) and (m + 2)(m − 1)/2), we see

the benefit of estimating ψH(·) rather than ψ(·) arises when d is large and m is small.
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However when m is also large, there is no advantage in estimating ψH(·) over ψ(·). This

example illustrates that the benefits of using a known dependence structure to estimate

ψ(·) are not as apparent as covariance estimation. Though it is of interest to investigate

whether the dimension of ψ(·) can be reduced in a realistic way, in order to avoid the curse

of dimensionality.

Nevertheless it is clear that if Yt(·) departs significantly from stationarity estimating

the optimal predictor rather than the best linear predict is preferable, even if the estimator

converges to the parameter of interest at a slower rate. �

5.2 Consistency and rates of convergence

In this section we study the asymptotic sampling properties of the estimators ψ̂(·), derived

using the results in Section 3.

Under Assumptions 2.1, 2.2 and 2.3 (with n = 2), Assumption 3.1 holds withXt,i = Yt,im

and Zt,i = Z
(s)
t,i and by appealing to Proposition 2.1 we have

sup
A∈σ(Xt,i,Zt,i)

B∈σ(Xτ,j ,Zτ,j)

|P (A ∩B) − P (A)P (B)| ≤ C

{
|t− τ |−min(α,β); if i = j,

|t− τ |−min(γ,β); otherwise.

Therefore, as in the previous section under the additional technical assumptions the theorem

below follows immediately from Theorem 3.1.

Theorem 5.1. Suppose Assumptions 2.1, 2.2 and 2.3 holds, where α and γ are the mixing

coefficients of the covariates {Ut,i}t over time and space, respectively, β is the mixing co-

efficient of the process {Φt(u)}t (u is arbitrary but fixed). Let the multivariate vector time

series {Yt,im, Z
(s)
t,i }t,i satisfies Assumption 3.2 with constants qG, qF , q ∈ (0, 1) and δi > 0.

Let ̟ = min(qF , qG) and suppose min(γ, β) > 1/̟ + 1/q.

Let ψ̂(z) be defined as in (5.2), where K is a multivariate kernel of order r > 0 (Defini-

tion 3.1). In addition for each i ∈ N assume ψ · f (s)
i and f

(s)
i belong to G

η
li,△i

for li,△i > 0

(Definition 3.2), and that the function f
(s)
i is bounded away from zero. Let ρi = min(r, li)

for i ∈ N. Then for all z ∈ R
η (with η = (d+ 1)m− 1)

(i) if α > 1/̟ + 1/q and b
(s)
i = O(T−1/(2ρi+ν)), i = 1, . . . , N/m, we have

|ψ̂(z) − ψ(z)| = Op

( 1

N/m

N/m∑

i=1

(δ2i )
2ρi

2ρi+η · (△2
i )

η
2ρi+η · T

−2ρi
2ρi+η

)
(5.3)

(ii) if 1/q < α ≤ 1/̟ + 1/q and b
(s)
i = O((N · T )−1/(2ρi+κη)), i = 1, . . . , N/m, with

κ := 1 +̟ + q −̟ · q · α we have

|ψ̂(z) − ψ(z)| = Op

( 1

N/m

N/m∑

i=1

(δ2i )
2ρi

2ρi+κη · (△2
i )

κη
2ρi+κη · (N · T )

−2ρi
2ρi+κη

)
(5.4)
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(iii) if α ≤ 1/q and b
(s)
i = O((N · Tαq)−1/(2ρi+(1+q)η)), i = 1, . . . , N/m we obtain

|ψ̂(z) − ψ)| = Op

( 1

N/m

N/m∑

i=1

(δ2i )
2ρi

2ρi+qη+η · (△2
i )

(1+q)η
2ρi+qη+η · (N · Tαq)

−2ρi
2ρi+qη+η

)

(5.5)

Remark 5.2. It is worth noting that Remarks 3.2, 4.2 and 4.3(ii), as well as Corollary 4.2

(with ν = η) are also true for the optimal predictor ψ̂(z). �

6 An Example

In this section we illustrate the methods proposed in Section 4 on real data. The data we

consider are the prices of houses sold (in pounds, Stirling), in Stockport, Greater Manch-

ester, United Kingdom, during the period January 2002 to December 2005. The Stockport

region is about 100 square miles, and is divided into 79 districts. We identify the 79 districts

by their postcode (districts SK1 2 - SK23 9, which we label as 1.2 − 23.9, and note that

districts which are geographically close have similar postcodes). We focus on modelling

the log selling price of detached, semi-detached and town houses and individual apart-

ments, denoted as D,S, T and A. The data was obtained from the National Land register,

http://www.landreg.gov.uk/propertyprice/interactive/, where for each district the

average selling prices of D,S, T and A evaluated over each quarter of the year (3 months) is

given. We consider each quarter as one time unit. Since we are considering the data from

2002-2005, for any one district and property type, there are a maximum of 16 observations

over time. However, for most districts, there are far fewer than 16 observations, since houses

are not necessarily sold every quarter.

Despite the Stockport region being relatively small, there is quite a large economic dis-

parity in deprivation over the region, and this is measured by the deprivation index. Usually

this effects the property prices. The deprivation index, for each district, is evaluated every

two years, and can be obtained from the Office of National Statistics,

http://www.neighbourhood.statistics.gov.uk/dissemination/. Nationally, the de-

privation level ranges from 0 to 32000, where 0 indicates the highest level of deprivation

and 32000 the lowest. In Stockport the deprivation level ranges from 3737 (in district one)

to 31205 (in district nine). The deprivation index in any given district is evaluated using

a mixture of health and economic indicators, such as the unemployment rate, the state of

health and the average income, in that area. All the data used in the analysis is available

on the authors’ websites.

In our analysis, the response variable is the log average selling price of property I at

time t (where I ∈ {D,S, T,A}) denoted as Y
(I)
t (w, x), and we use the district, w and the

log deprivation value u as the covariates, and let u = (w, x). We assume Y
(I)
t (w, x) satisfies
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(1.3). Our object here is to predict Y
(I)
t (w0, x0) given the house prices at (m− 1) different

covariate values at time t, {Y (I)
t (wi, xi)}m−1

i=1 . From (4.1) the best linear predictor is

ψ̃t({yi, (wi, xi)}, (w0, x0)) = E[Yt(w0, x0)] +

m−1∑

j=1

aj({(wi, xi)}){(yj − E[Yt(wj , xj)])},(6.1)

where {aj({wi, xi})}j is a function of the unknown covariances and variances

c(I)(0, (w, x), (v, y)) = cov(Y
(I)
t (w, x), Y

(I)
t (v, y)) and v(I)(w, x) = var(Y

(I)
t (w, x)) (see Sec-

tion 4). By estimating the covariances nonparametrically we obtain an estimator of the

linear predictor. We model the covariances using, for I ∈ {D,S, T,A}, the two covariance

models

Model 1 cov(Y
(I)
t (w, x), Y

(I)
t (v, y)) = c

(I)
1 (0, x, y, w, v)

Model 2 cov(Y
(I)
t (w, x), Y

(I)
t (v, y)) = c

(I)
2 (0, x, y, |w − v|),

(clearly Model 1 includes as a special case Model 2). We see that Model 1, assumes that the

house prices are ‘spatially’ nonstationary, whereas Model 2 assumes that the house prices

are spatially isotropic (the dependence between two locations depends only their distance).

We will estimate the two covariances and use them to obtain the predictions.

Define the residuals ξt(w, x) = Y
(I)
t (w, x)−E(Y

(I)
t (w, x)). Using the data from January

2002 - September 2005 we estimate the mean f (I)(w, x) := E[Y
(I)
t (w, x)] nonparametrically,

which we denote as f̂ (I)(w, x). We use ξ̂
(I)
t (w, x) = Y

(I)
t (w, x)− f̂ (I)(w, x) as an estimator of

the residuals ξ
(I)
t (w, x). Using the estimated residuals {ξ̂(I)

t (w, x)} from the period January

2002 - September 2005 and the methods described in Section 4, we estimate the covariances

c
(I)
1 (·) and c

(I)
2 (·), by smoothing over districts and the log deprivation indices.

For each house type I we randomly select 6 different locations {(w(I)
i , x

(I)
i ); i = 1, . . . , 6}

(hence m = 7) and use the corresponding house prices {Yt(w
(I)
i , x

(I)
i ); i = 1, . . . , 6} to

predict the selling price at other 11 − 19 (depending on the availability of data) randomly

chosen locations {(w(I)
0,j , x

(I)
0,j ) : j = 1, . . . , nI}. Depending on which covariance c

(I)
1 (·) or

c
(I)
2 (·) is used to define the predictor ψ̃(·) in (6.1) we denote the predictor for each location

as {Ŷ1,t(w
(I)
0,j , x

(I)
0,j ) : j = 1, . . . , nI} or {Ŷ2,t(w

(I)
0,j , x

(I)
0,j ) : j = 1, . . . , nI}, respectively. We

calculate the mean squared error for k ∈ {1, 2} and I ∈ {D,S, T,A} as

σ2
k,I =

1

nI

nI∑

j=1

(Ŷk,t(w
(I)
0,j , x

(I)
0,j ) − Yt(w

(I)
0,j , x

(I)
0,j ))

2,

which we compare with the mean squared error obtained using the average value f̂ (I) as

the predictor at the point (w
(I)
0,j , x

(I)
0,j ):

s2I =
1

nI

nI∑

j=1

(f̂ (I)(w
(I)
0,j , x

x
0,j(I)) − Yt(w

(I)
0,j , x

(I)
0,j ))

2.

The results are summarised in Table 1. To see how the deprivation index may influence
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Detached Semi-detacted Town House Apartment

Model 1: σ2
1,I 0.1177 0.3239 0.03055 0.12269

Model 2: σ2
2,I 0.1085 0.3329 0.03043 0.11247

Model Mean: s2I 0.1709 0.1222 0.12696 0.18503

Table 1: Mean squared errors of house selling price

the dependence between house prices, we integrate over the district values in the covariance

function, and estimate the function c
(I)
3 (x, y), where

c
(I)
3 (x, y) = E

{
ξI
t (W,X)ξI

t (V, Y )|X = x, Y = y
}

= E

{
cov(Y

(I)
t (W,X), Y

(I)
t (V, Y ))|X = x, Y = y

}
,

which is function of the deprivation indices only. We plot these functional covariance esti-

mates in Figure 1.
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Figure 1: The top left is c
(D)
3 (·, ·), top right is c

(S)
3 (·, ·), the bottom left is c

(T )
3 (·, ·) and the

bottom right is c
(A)
3 (·, ·).

From Table 1 we see that in general predicting the house price using house prices at

other locations is better than using the mean estimator for that location. The exception

is the predictor of the Semi-detached houses prices, where the mean estimator performed

better. The covariance deprivation plots in Figure 1 appears to add weight to this. We

see that for house types D,S and T there is greater linear dependence between houses in
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areas with high deprivation (low deprivation index) than similar houses in low deprivation

areas (large deprivation index). Indicating that for areas where there is less deprivation and

more prosperity, the relationship between the houses may actually be nonlinear (meaning

that {Φt(·)} is non-Gaussian). The dependence also declines as the difference between

the deprivation indices increases. Overall there appears to be higher dependence for both

Detached and Town houses compared to Semi-detached houses. This may explain why the

linear predictor for Semi-detached houses does not perform so well. The covariance trend

seems to be different for the apartment covariance plot. This could be attributed to the

fact that ownership of apartments is new in the UK, and in areas of high deprivation most

apartments are rented.

Furthermore, the reduced Model 2 seems to adequately predict the house prices and

nothing is gained by using the more general Model 1 in the prediction. In fact the mean

squared error is slightly worse for the more general model, which is probably due to the

curse of dimensionality in the estimation.

7 Concluding remarks

In this paper we have considered a class of spatio-temporal processes and studied spatial

and temporal prediction using these models. We have proposed a nonparametric method

to estimate the prediction function and we have shown that the convergence rates of the

estimators depend on the temporal dependence of the observed covariates. We have shown

that the estimators defined here belong to a quite general nonparametric setup in multi-

variate time series. And we have defined the estimator and sampling properties within this

framework.

We believe that other estimation methods other than the Nadaraya-Watson type estima-

tor can be used, for example, by using local polynomials, the methods of sieves or recursive

estimation methods. Such methods may yield estimators which are faster to implement.

An advantage in defining the model (1.3) and (1.5) is that it includes many types of

models, and prevents misspecification, which may occur using a parametric model.

The novel approach considered in this paper, motivates several possible avenues of future

research, which we now briefly outline.

It is of interest to investigate the relevance of the model (1.3) in the prediction of financial

assets given the price of other assets, where Yt(u) is the observed price of an asset described

by the covariates u. However as the discussion below suggests this may require relaxing

some of the assumptions on the model, and thus a different estimation approach. Suppose

our object is to estimate ψ(y, u, v) := E(Φt(v)|Yt−1(u) = y) from a given set of observations.

It is often the case in asset price modelling (see Ekeland, Heckman, and Nesheim (2002) for

a labour market example) that the only available observations are {Yt(Ut,i), t = 1, . . . , T, i =

1, . . . , N} (see (1.5)) where the covariates Ut,i are endogenous, i.e., the covariate Ut,i and the

observation error Vt,i are correlated or more generally E(Vt,i|Ut,i) 6= 0. In such a situation
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we have ψ(y, uB, uA) 6= E(Yt(Ut,j)|Yt−1(Ut−1,i) = y, Ut−1,i = uB, Ut,j = uA), in other words

(1.6) does not hold true. Therefore ψ̂T,N is an inappropiate estimator of the prediction

function ψ. In this case a nonparametric instrumental variables approach (cf. Florens,

Johannes, and Van Bellegem (2005)) may be required to obtain a suitable estimator.

We note that the assumption of temporal stationarity of the infinite dimension process

{Φt(·)}t can be relaxed, to include locally stationary processes, where asymptotic results

similar to those discussed in Dahlhaus and Subba Rao (2006) can be derived. From a

practical point of view, this relaxation would include the case that the mean of φt(u) has a

slowly changing time dependent mean, which may be of interest.
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A Appendix: Proofs

In this section we prove the results stated in the sections above.

A.1 Proof of Proposition 2.1

We prove Proposition 2.1 for the case W
s,i
t = (Φ

(s)
t (U

(s,i)
t ), U

(s,i)
t ). The case where W

(s,i)
t =

(Y
(s,i)
t , U

(s,i)
t ) follows immediately, since the errors Vt,i are iid and independent of Ut,i and

Φt(·). Let P
s,i
W denote the distribution of W

s,i
t , P

W
s,i
t ,W

s,j
τ

denote the joint distribution

of W
s,i
t and W

s,j
τ . In addition, we define the distribution of U

s,i
t as P

U
s,j

t

and the joint

distribution of U
s,i
t and U

s,j
τ as P

U
s,i
t ,U

s,j
τ

. Suppose u and v are fixed and let PΦt,s(u) denote

the distribution of Φt,s(u) and PΦt,s(u),Φτ,s(v) denote the joint distribution of Φt,s(u) and

Φτ,s(v). Conditioning on U
s,i
t and U

s,j
τ we have

P
W

s,i
t ,W

s,j
τ

− PW s,i ⊗ PW s,i = HΦt,s(u),Φτ,s(v)

(
P

U
s,i
t ,U

s,j
τ

)
+H

U
s,i
t ,U

s,j
τ

(
PΦt,s(u) ⊗ PΦτ,s(v)

)
, (A.1)

where

HΦt,s(u),Φτ,s(v) = PΦt,s(u),Φτ,s(v) − PΦt,s(u) ⊗ PΦτ,s(v)

and H
U

s,i
t ,U

s,j
τ

= P
U

s,i
t ,U

s,j
τ

− P
U

s,i
t

⊗ P
U

s,j
τ
.

By using (A.1) we have

sup
A∈σ(W

s,i
t )

B∈σ(W
s,j
τ )

|P(A ∩B) − P(A)P(B)| ≤ I + II (A.2)
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where

I = sup
A∈σ(W

s,i
t )

B∈σ(W
s,j
τ )

∣∣
∫
IA(x, u)IB(y, v)HΦt,s(u),Φτ,s(v)(dx, dy)PU

s,i
t ,U

s,j
τ

(du, dv)
∣∣

II = sup
A∈σ(W

s,i
t )

B∈σ(W
s,j
τ )

∣∣
∫
IA(x, u)IB(y, v)PΦt,s(u)(dx)PΦt,s(v)(dy)HU

s,i
t ,U

s,j
τ

(du, dv)
∣∣.

Under the assumption that {Φt,s(u)} and {Φt,s(v)} are 2-mixing (see Assumption 2.3 (i)),

we appeal to Hall and Heyde (1980), Theorem A.5, to obtain

I ≤ 4|t− τ |−β ·
∣∣∣∣
∫
C2m(u, v)P

U
s,i
t ,U

s,j
τ

(du, dv)

∣∣∣∣ ≤ 4C2m|t− τ |−β. (A.3)

Using similar arguments and Assumption 2.3(ii) it can be shown that

II ≤ C

{
|t− τ |−α; if i = j,

|t− τ |−γ ; if (i, j) distinct indices in N
2n,

Substituting this and (A.3) into (A.2) we obtain the result.

A.2 Proofs: Nonparametric regression with multivariate time series

Lemma A.1. Suppose the Assumptions 3.1 and 3.2 are satisfied, where r and u are the

mixing coefficients of the vector time series {(Xt,i, Zt,i, Xt,j , Zt,j)}t, and where qG, qF , q ∈
(0, 1) and δi > 0, i = 1, . . . , N are defined in Assumption 3.2.

(i) If 1 ≤ t, τ ≤ T and 1 ≤ i < j ≤ N , then

|cov
{
Xt,iKbi(Zt,i − z), Xτ,jKbj (Zτ,j − z)

}
| ≤

C · min
(
(bibj)

− η
2
(1−qG); δiδj · (bibj)−

η
2
(q+1)|t− τ |−qu

)
; (A.4)

|cov
{
Kbi(Zt,i − z),Kbj (Zτ,j − z)

}
| ≤

C · min
(
(bibj)

− η
2
(1−qF ); δiδj · (bibj)−

η
2
(q+1)|t− τ |−qu

)
, (A.5)

where the constant C does not depend on i, j, t or τ .

(ii) If 1 ≤ t, τ ≤ T and 1 ≤ i ≤ N , then

|cov {Xt,iKbi(Zt,i − z), Xτ,iKbi(Zτ,i − z)} | ≤

C · min
(
b
−η(1−qG)
i ; δ2i · b−η(q+1)

i |t− τ |−qr

)
; (A.6)

|cov {Kbi(Zt,i − z),Kbi(Zτ,i − z)} | ≤

C · min
(
b
−η(1−qF )
i ; δ2i · b−η(q+1)

i |t− τ |−qr

)
, (A.7)

where the constant C does not depend on i, t or τ .
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Proof. We only give the details for the proof of (A.4) and (A.6). The proofs of the other

results are very similar and we omit the details.

Proof of (A.4) and (A.6). Writing the covariance as an integral, and using the notation

in Assumption 3.2 we have

cov
{
Xt,iKbi(Zt,i − z), Xτ,jKbj (Zτ,j − z)

}
=

∫
Kbi(u− z)Kbj (v − z)G

(i,j)
t,τ (u, v)dudv.

Now by using Hölder’s inequality with p−1
G + p̄−1

G = 1 it is clear that

|cov
{
Xt,iKbi(Zt,i − z), Xτ,jKbj (Zτ,j − z)

}
| ≤ (bi · bj)−η/pGC2

K · CG,

because under Assumption 3.2 we have ‖K‖p̄G < CK and ‖G(i,j)
t,τ ‖pG < CG. This gives us

the common bound in (A.4) and (A.6). On the other hand, under Assumption 3.2 (i) we

have E[|Xt,iKbi(Zt,i − z)|p] <∞ for some p = 2/(1 − q) > 2. Therefore, using the 2-mixing

property of {(Xt,i, Zt,i, Xt,j , Zt,j)}t given in Assumption 3.1 together with Hall and Heyde

(1980), Theorem A.6, for i 6= j, we obtain

|cov
{
Xt,iKbi(Zt,i − z), Xτ,jKbj (Zτ,j − z)

}
|

≤ 2q(2C)q · {E[|X1,iKbi(Z1,i − z)|p] · E[|X1,jKbj (Z1,j − z)|p]}1/p · |t− τ |−qu, (A.8)

while for i = j

|cov {Xt,iKbi(Zt,i − z), Xτ,iKbi(Zτ,i − z)} |
≤ 2q(2C)q · {E[|X1,iKbi(Z1,i − z)|p]}2/p · |t− τ |−qr. (A.9)

Since under the Assumption 3.2 the p-th moment of the multivariate kernel K is bounded

by CK and the function g
(p)
i (·) = E[|X1,i|p|Z1,i = ·]fi(·) by δp

i , we have

E[|X1,iKbi(Z1,i − z)|p]1/p ≤ CK · δi · b
− η

2
(q+1)

i . (A.10)

Therefore, (A.8) together with (A.10) gives the second bound in (A.4), where (A.9) and

(A.10) leads to the second bound in (A.6), which proves the result. �

Lemma A.2. Suppose Assumptions 3.1 and 3.2 are satisfied, where r and u are the mixing

coefficients associated with the vector time series {(Xt,i, Zt,i, Xt,j , Zt,j)}t given in Assump-

tion 3.1, and qG, qF , q ∈ (0, 1) and δi > 0, i = 1, . . . , N are defined in Assumption 3.2. Let

̟ = min(qF , qG) and suppose u > 1/̟ + 1/q.

Consider the nonparametric estimators (3.4) constructed using a multivariate kernel of

order r > 0 (Definition 3.1). In addition assume for each i = 1, . . . , N , that the functions

fi and gi belong to G
η
si,△i

for si,△i > 0 (Definition 3.2) and let ρi = min(r, si).
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(i) If r > 1/̟ + 1/q, then let bi = O(T
−1

2ρi+η ), i = 1, . . . , N and we have

E|ĝ(z) − g(z)|2 = O
( 1

N

N∑

i=1

(δ2i )
2ρi

2ρi+η · (△2
i )

η
2ρi+η · T

−2ρi
2ρi+η

)
, (A.11)

E|f̂(z) − f(z)|2 = O
( 1

N

N∑

i=1

(δ2i )
2ρi

2ρi+η · (△2
i )

η
2ρi+η · T

−2ρi
2ρi+η

)
; (A.12)

(ii) If 1/q < r ≤ 1/̟ + 1/q, then assume κ := 1 +̟ + q −̟qr and bi = O((N · T )
−1

2ρi+κη ),

i = 1, . . . , N and we obtain

E|ĝ(z) − g(z)|2 = O
( 1

N

N∑

i=1

(δ2i )
2ρi

2ρi+κη · (△2
i )

κη
2ρi+κη · (N · T )

−2ρi
2ρi+κη

)
, (A.13)

E|f̂(z) − f(z)|2 = O
( 1

N

N∑

i=1

(δ2i )
2ρi

2ρi+κη · (△2
i )

κη
2ρi+κη · (N · T )

−2ρi
2ρi+κη

)
; (A.14)

(iii) If r ≤ 1/q, then given bi = O((N · T qr)
−1

2ρi+(1+q)η ), i = 1, . . . , N we have

E|ĝ(z) − g(z)|2 = O
( 1

N

N∑

i=1

(δ2i )
2ρi

2ρi+qη+η · (△2
i )

qη+η
2ρi+qη+η · (N · T qr)

−2ρi
2ρi+qη+η

)
, (A.15)

E|f̂(z) − f(z)|2 = O
( 1

N

N∑

i=1

(δ2i )
2ρi

2ρi+qη+η · (△2
i )

qη+η
2ρi+qη+η · (N · T rq)

−2ρi
2ρi+qη+η

)
. (A.16)

Proof. We mention that parts of the following proof are motivated by techniques used in

Bosq (1998), where nonparametric smoothing was considered for univariate time series. We

only give the details for the proofs of the MSE of the estimator ĝ in the three different cases

(i) -(iii). The proofs of the other results are very similar and we omit the details. Consider

the standard variance bias decomposition

E|ĝ(z) − g(z)|2 = var(ĝ(z)) + |Eĝ(z) − g(z)|2. (A.17)

Under the stated assumptions we will derive the following four bounds. The bias is bounded

by

|Eĝ(z) − g(z)|2 ≤ C · 1

N

N∑

i=1

△2
i · b2ρi

i . (A.18)

For the variance, if r > 1/qG + 1/q, then

var(ĝ(z)) ≤ T−1 · C · 1

N

N∑

i=1

δ2i · b−η
i ; (A.19)
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if 1/q < r ≤ 1/qG + 1/q

var(ĝ(z)) ≤ (N · T )−1 · C · 1

N

N∑

i=1

δ2i · b−η(1+qg+q−qgqr)
i + T−1 · C · 1

N

N∑

i=1

δ2i · b−η
i ;

(A.20)

while if r ≤ 1/q

var(ĝ(z)) ≤ (N · T qr)−1 · C · 1

N

N∑

i=1

δ2i · b−η(q+1)
i + T−1 · C · 1

N

N∑

i=1

δ2i · b−η
i ; (A.21)

where the constant C does not depend on N or T . Furthermore, the stated bandwidths bi,

i = 1, . . . , N ensure the balance between the variance and the bias terms and lead to the

bounds given in (A.11), (A.13) and (A.15).

Proof of (A.18). Using iterative conditional expectation we can write

Eĝ(z) =
1

NT

N∑

i=1

T∑

t=1

E

(
E[Xt,i|Zt,i]Kbi(Zt,i − z)

)
=

1

N

N∑

i=1

∫
du gi(u)Kbi(u− z)

where gi(·) = E[Xt,i|Zt,i = ·]fi(·) for all t, i. Since g = 1
N

∑N
i=1 gi with gi ∈ G

η
si,△i

and

K is a multivariate kernel of order r with
∫
du|u|rK(u) ≤ SK , using a Taylor expansion

up to the power ρi = min(r, si) leads to Eĝ(z) = g(z) + 1
N

∑N
i=1 b

ρi
i Ri with reminder

|Ri| ≤ △iSK <∞. Thus applying Jensens inequality we obtain (A.18).

In order to proof (A.19)-(A.21), we consider the expansion

var(ĝ(z)) = A1 +A2 +A3 +A4 (A.22)

with

A1 =
1

N2T 2

T∑

t=1

N∑

i=1

var {Xt,iKbi(Zt,i − z)} ,

A2 =
2

N2T 2

T∑

t=1

∑

j>i

cov {Xt,iKbi(Zt,i − z), Xt,jKbi(Zt,j − z)} ,

A3 =
4

N2T 2

∑

t>τ

∑

j>i

cov
{
Xt,jKbi(Zt,i − z), Xτ,jKbj (Zτ,j − z)

}
,

A4 =
2

N2T 2

∑

t>τ

N∑

i=1

cov {Xt,iKbi(Zt,i − z), Xτ,iKbi(Zτ,i − z)} .

We will show that |A1|, |A2|, |A3| ≤ T−1 · C · 1
N

∑N
i=1 δ

2
i · b−η

i . Furthermore, if 0 ≤ r ≤
1/qG + 1/q then these terms are dominated by |A4|. Whereas for r > 1/qG + 1/q all the

terms are of the same order. Therefore, the bounds derived for |A4| will lead to the estimates

in (A.19)-(A.21).
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First let us consider A1. Due to the stationarity of the process, we have the bound

N · T ·A1 ≤ 1

N

N∑

i=1

E[X2
1,iK

2
bi

(Z1,i − z)] =
1

N

N∑

i=1

∫
du g

(2)
i (u)K2

bi
(u− z)

≤ 1

N

N∑

i=1

∫
du {g(p)

i (u)}2/pK2
bi

(u− z),

where g
(p)
i (·) := E[|X1,i|p|Z1,i = ·]fi(·) is well defined because E(|X1,i|p) < ∞. Since under

the stated assumptions ‖K‖2 < CK and the function (g
(p)
i )1/p is bounded by δi this leads

to A1 ≤ (N · T )−1 · C2
K · 1

N

∑N
i=1 δ

2
i · b−η

i .

It is straightforward to show that T · |A2| is bounded by
2

N2

∑
j>i cov

{
X1,iKbi(Z1,i − z), X1,jKbj (Z1,j − z)

}
. Furthermore by using the Cauchy-Schwarz

inequality we have

T · |A2| ≤
2

N2

∑

j>i

var(X1,iKbi(Z1,i − z))1/2var(X1,jKbj (Z1,j − z))1/2

≤ C2
K

2

N2

∑

j>i

δiδj · (bibj)−η/2,

where the last line of the above follows by applying the same arguments as those used for

for A1. Therefore usings Jensen’s inequality we obtain |A2| ≤ T−1 · C2
K · 1

N

∑N
i=1 δ

2
i · b−η

i .

The term T · |A3| is bound by the sum

T · |A3| ≤
8

N2

∑

j>i

T∑

t=1

|cov
{
Xt,iKbi(Zt,i − z), X1,jKbj (Z1,j − z)

}
|.

To bound the above we partition the inner sum into two parts which we estimate separately

using the bounds in (A.4) of Lemma A.1, thus giving us

T · |A3| ≤ C2
KCu

8

N2

∑

j>i

{u
(i,j)
T∑

t=1

(bibj)
− η

2
(1−qG) +

T∑

t=u
(i,j)
T +1

δiδj(bibj)
− η

2
(q+1)t−qu

}

≤ C2
KCu

8

N2

∑

j>i

{u(i,j)
T (bibj)

− η
2
(1−qG) + (u

(i,j)
T )−qu+1δiδj(bibj)

− η
2
(q+1)}.

Thereby using u
(i,j)
T ≈ (bibj)

− η
2
qG · δiδj we obtain

T · |A3| ≤ C2
KCu

8

N2

∑

j>i

{δiδj · (bibj)−η/2 + (bibj)
− η

2
(1+qG+q−qGqu) · (δiδj)−qu+2}.

Since under the assumptions of the Lemma u > 1/qG+1/q, the second summand is bounded

by the first, this together with Jensen’s inequality leads to |A3| ≤ T−1 ·16C2
KCu · 1

N

∑N
i=1 δ

2
i ·

b−η
i .
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The termN ·T ·|A4| is bounded by 4
NT

∑N
i=1

∑T
t=1 |cov {Xt,iKbi(Zt,i − z), X1,iKbi(Z1,i − z)} |.

We now derive bounds for N · T · |A4| for different mixing rates. If r ≤ 1/q then we

estimate the sum using the second bound in (A.6) of Lemma A.1, i.e., N · T · |A4| ≤
T−qr+1 · 4C2

KCr · 1
N

∑N
i=1 δ

2
i · b−η(q+1)

i , which is (A.19). On the other hand if r > 1/q we

partition the inner sum into two parts (similar to A3) and estimate them separately using

now the two bounds in (A.6), which leads with u
(i,i)
T ≈ b−ηqG

i · δ2i to

N · T · |A4| ≤ C2
KCr

4

N

N∑

i=1

{δ2i · b−η
i + δ

2(−qr+2)
i · b−η(1+qG+q−qGqr)

i }.

Therefore, if r > 1/q + 1/qG, then the second term of the above is negligible wrt. to the

first and we obtain |A4| ≤ (N · T )−1 · 8C2
KCr · 1

N

∑N
i=1 δ

2
i · b−η

i which proves (A.21). While

if 1/q < r ≤ 1/q + 1/qG, we partition the inner sum using u
(i,i)
T ≈ b−ηqG

i and obtain

N · T · |A4| ≤ C2
KCr ·

4

N

n∑

i=1

{b−η
i + δ2i · b−η(1+qG+q−qGqr)

i }.

The second term of the above is now the leading one and we have |A4| ≤ (N ·T )−1 ·8C2
KCr ·

1
N

∑n
i=1 δ

2
i · b−η(1+qG+q−qGqr)

i , which gives (A.20). �

Corollary A.3. Suppose the assumptions of Lemma A.2 are satisfied. Let the bandwidth

parameters are such that bi = O(T−1/(2ρi+η)), i = 1, . . . , N, and define ρ = min{ρi; i =

1, . . . , N}). In addition, in the case Lemma A.2(ii), where q−1 < r ≤ ̟−1 + q−1, as-

sume N = O(T
η(κ−1)
2ρ+η ); while, in the case Lemma A.2(iii) where r < q−1, assume N =

O(T
qη

2ρ+η
+1−rq

). Then

E|ĝ(z) − g(z)|2 = O
( 1

N

N∑

i=1

(δ2i )
2ρi

2ρi+η · (△2
i )

η
2ρi+η · T

−2ρi
2ρi+η

)
, (A.23)

E|f̂(z) − f(z)|2 = O
( 1

N

N∑

i=1

(δ2i )
2ρi

2ρi+η · (△2
i )

η
2ρi+η · T

−2ρi
2ρi+η

)
. (A.24)

Proof. The proof follows in the same spirit as the proof of Lemma A.2. Consider the

bounds (A.18)-(A.21) of the bias and the variance term of the estimator ĝ, where their sum

estimates the MSE using its standard decomposition. The bounds are still valid under the

assumptions of Corollary A.3. Moreover the conditions on the bandwidth b and the addi-

tional assumption on the number of locations N ensures the balance between the variance

and the bias term and leads to the result. The proofs of the other results are very similar

and we omit the details. �
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A.3 Proofs for Sections 4 and 5

Proof of Theorem 3.1. Consider the decomposition

ψ̂(z) − ψ(z) =
ĝ(z)

f̂(z)
− f̂(z)

f̂(z)
ψ(z)

=
ĝ(z) − f̂(z)ψ(z)

f(z)
+
f(z) − f̂(z)

f̂(z)
· ĝ(z) − f̂(z)ψ(z)

f(z)
.

We first show that the second term in the decomposition is negligiable in comparision to the

first term. Using this we can apply Lemma A.2, to obtain the result. Now Lemma A.2 gives

E|f(z) − f̂(z)|2 = o(1) which implies that |f̂(z)−1| is bounded in probability and therefore

the second term is of order op({ĝ(z) − f̂(z)φ(z)}/f(z)). �

Proof of Corollary 3.2. By using Corollary A.3 and the same proof of Theorem 3.1

we obtain the result. �

Proof of Theorem 4.1. By using Corollary A.3 and the same proof of Theorem 3.1 we

obtain the result. �

Proof of Corollary 4.2. By using Corollary A.3 and the same proof of Theorem 3.1

we obtain the result. �

Proof of Corollary 4.3. By using Corollary A.3 and the same proof of Theorem 3.1

we obtain the result. �

Proof of Theorem 5.1. By using Corollary A.3 and the same proof of Theorem 3.1 we

obtain the result. �

A.4 Mixing properies of the location dependent spatio-temporal AR pro-

cess

We now show that the location dependent spatio-temporal model defined in (2.1) satisfies

the mixing conditions stated in Assumption 2.3(i). Let un = (u1, . . . , un) ∈ Ωn and define

φ
t
(un) = (Φt(u1), . . . ,Φt(un)) and ξ

t
(un) = (ξt(u1), . . . , ξt(un)). We will show that the

vector process {φ
t
(un)}t is α-mixing (with a geometric rate that is same for all un ∈ Ω),

which is stronger than the required 2-mixing assumption.

Suppose the process {Φt(u)}t satisfies (2.1). We shall assume that for all u the absolute

values of the roots of the characteristic polynomial associated with the AR process in (2.1)

are less than δ, where 0 < δ < 1, and supu∈Ω σ(u) < σ for some σ < ∞. We observe that

Φt(u) has the unique causal solution

Φt(u) =
∞∑

j=0

cj(u)ξt(u), (A.25)
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where there exists a C <∞ and δ < ρ < 1 such that supu |cj(u)| < Cρj . In order to obtain

the mixing rate we define the sigma-algebras F∞
t (un) = σ(φ

t
(un), φ

t+1
(un), . . .),

F0
−∞(un) = σ(. . . , φ

−1
(un), φ

0
(un)) = σ(. . . , ξ

−1
(un), ξ

0
(un))

and F t+p−1
t (un) = σ(φ

t
(un), . . . , φ

t+p
(un)). It is clear that for the location dependent AR

process we do not need to use the entire upper tail F∞
t to obtain the mixing coefficient, in

other words

βt(un) = sup
A∈F0

−∞
(un)

B∈F∞
t (un)

|P (A ∩B) − P (A)P (B)| = sup
A∈F0

−∞
(un)

B∈Ft+p−1
t (un)

|P (A ∩B) − P (A)P (B)|.(A.26)

Let Σ(un) = var(ξ
t
(un)), and define the vector η̃

t
(un) = η̃t(1, un), . . . , η̃t(n, un)) = Σ(un)−1/2ξt(un)

(if the inverse does not exist we use the generalised inverse). We define the vector η
t
(un) =

(ηt(1, un), . . . , ηt(n, un)) = var(η̃
t
(un))−1/2η̃

t
(un), and it is clear that the transformed inno-

vations η
t
(un) ∼ MVN(0, Inp) (where Inp is a np × np identity matrix, but the diagonal

can contain zeros if Σ(un) is singular). Then we have F0
−∞(un) = ⊗n

i=1F0
−∞(ηi), where

F0
−∞(ηi) = σ(. . . , η−1(i, un), η0(i, un)). We now make a similar decomposition of the sigma-

algebra F t+p−1
t (un).

We define the stochastic process {Yt(ηi, uj)}t, which for 1 ≤ i, j ≤ n has the represen-

tation

Yt(ηi, uj) =

p∑

r=1

ar(uj)Yt−r(ηi, uj) + σ(uj)ηt(i, un) =
∞∑

k=0

ck(uj)ηt−k(i, un), (A.27)

we note the last term of the above was obtained by using (A.25). Since

Φt(uj) =

n∑

i=1

ρi,j

σi
Yt(ηi, uj),

where σ2
i = var(η̃t−k(i, un)) Φt(uj) can linearly be transformed into Yt(ηi, uj) and we have

F t+p−1
t (un) = ⊗n

i=1F t+p−1
t (ηi, un),

where F t+p−1
t (ηi, un) = σ(Yt(ηi, u1), . . . , Yt(ηi, un), . . . , Yt+p−1(ηi, u1), . . . , Yt+p−1(ηi, un)).

Finally we decompose F t+p−1
t (ηi, un) into independent sigma algebras.

Let ∆(ηi) be a (np× np)-dimensional matrix, where

∆(ηi) = var {(Yt(ηi, u1), . . . , Yt(ηi, un), . . . , Yt+p−1(ηi, u1), . . . , Yt+p−1(ηi, un))}

and define Λ = ∆(ηi)
−1/2. We now decompose the Gaussian random vector W i

t into inde-

pendent random variables. For s = 1, . . . , np and t ∈ Z let

Zt,s(ηi) =
1√∑n−1

r=0

∑p−1
j=0 Λ2

pr+j,s

n−1∑

r=0

p−1∑

j=0

Λpr+j,sYt+j(ηi, ur). (A.28)
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Again by Gaussianity it is clear that {Zt,s(ηi)}mp
s=1 are independent random variables. By

substituting (A.27) into (A.28) we have that Zi
t,s has the MA(∞) solution

Zt,s(ηi) =
1√∑n−1

r=0

∑p−1
j=0 Λ2

pr+j,s

∞∑

k=0

n−1∑

r=0

p−1∑

j=0

Λpr+j,sck(uj)ηt+r−k,i =

∞∑

k=0

αk(ηi, un)ηt+n−k,i.

From the above it is clear that {Zt,s(ηi)}t is an MA(∞) process. Furthermore, by using that

supk ck(uj) < Cρk we have for all i and k that αk(ηi, un) < Cnpρk. Using this we appeal to

the strong mixing result for MA(∞) processes in Pham and Tran (1985), Theorem 2.1 and

obtain

βt(un) ≤ sup
A∈⊗n

i=1
F0
−∞

(ηi)

B∈⊗n
i=1⊗

np
s=1σ(Zt,s(ηi))

|P (A ∩B) − P (A)P (B)|

≤
n∑

i=1

np∑

s=1

sup
A∈F0

−∞
(ηi)

B∈σ(Zt,s(ηi))

|P (A ∩B) − P (A)P (B)| ≤ Cρt

Therefore for every n the vector process {φ
t
(un)}t is α-mixing with a rate independent of

un.
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