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Abstract

We consider parameter estimation for a class of ARCH(∞) models, which do not necessarily

have a parametric form. The estimation is based on a normalised least squares approach,

where the normalisation is the weighted sum of past observations. The number of parameters

estimated depends on the sample size and increases as the sample size grows. Using maximal

inequalities for martingales and mixingales we derive a uniform rate of convergence for the

parameter estimator. We show that the rate of convergence depends both on the number of

parameters estimated and the rate that the ARCH(∞) parameters tend to zero.

1 Introduction

Consider the process {Xt}t satisfying the ARCH(∞) representation

Xt = σtZt σ2
t = a0 +

∞
∑

k=1

ajX
2
t−k, (1)

where {Zt}t are independent, identically distributed random variables with E(Zt) = 0 and E(Z2
t ) =

1. Giraitis, Kokoskza, and Leipus (2000) have shown if
∑∞

j=1 aj < 1, then (1) has a unique

stationary causal solution that can be written as a Volterra series expansion, thus by using Stout

(1974), Theorem 3.5.8, {Xt} is an ergodic process. The ARCH(∞) process was considered in

Robinson (1991) and more recently in Giraitis et al. (2000), Giraitis and Robinson (2001) and

Koulikov (2003). A classical example of a process which satisfies (1) are the class of GARCH(p, q)

models. For a review of recent advances in ARCH modelling see, for example, Fan and Yao (2003)

and Giraitis, Leipus, and Surgailis (2005).

Suppose we observe {Xt : t = 0, 1, . . . , n}, our object is to estimate the parameters {aj}. In the

estimator we propose, we suppose the number of parameters to be estimated depends on n, and let
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the number grow as n→ ∞. The estimator is based on the following AR(∞) representation of (1)

X2
t = a0 +

∞
∑

k=1

ajX
2
t−k + (Z2

t − 1)σ2
t , (2)

where {(Z2
t − 1)σ2

t }t are martingale differences. To estimate the parameters, we first use a self-

weighting normalisation of (2). That is we divide (2) throughout by gt = g +
∑∞

j=1 ℓ(j)X
2
t−j and

use

X2
t

gt
=
a0

gt
+

∞
∑

j=1

aj

X2
t−j

gt
+

(Z2
t − 1)σ2

t

gt
(3)

to estimate the parameters, where g is a known constant and ℓ(j) → 0, as j → ∞. We observe

that by dividing by gt we are attempting to mimic the unknown conditional variance σ2
t . A similar

normalisation was used in Fryzlewicz et al. (2006) to estimate the parameters of time-varying

ARCH(p) processes, where p < ∞ and in Ling (2006) to estimate the parameters of an ARMA-

IGARCH model. We note that one could use the AR representation (2) and the Yule-Walker

method described in An, Chen, and Hannan (1982) to estimate the parameters, however such

an estimator would require the existence of eight moments of the marginal distribution of {Xt},
which for the ARCH process places a severe restriction on the parameters {aj}. In other words if

{Zt} were Gaussian we require that
∑∞

j=1 aj < 1/{E(Z8
t )}1/4, which means the parameters would

have be close to zero for the condition to be satisfied. It is worth mentioning that Bose and

Mukherjee (2003) used a two-stage least squares method to estimate the parameters of a ARCH(p)

processes, where p < ∞. Further, Robinson and Zaffaroni (2006) consider a particular class of

ARCH(∞) processes, whose parameters can be represented as aj = ψj(ζ), where ζ is a finite set

of unknown parameters which are estimated using the Quasi-Maximum likelihood, and {ψj(·)} are

known functions (for example a GARCH(p, q) process with known p, q satisfies these conditions).

Suppose we restrict the parameters to be estimated to apn
= (a0, . . . , apn)T , then the least

squares estimator of apn
using (3) is âpn

, where

âpn
= R̂−1

n,pn
r̂n,pn

(4)

and

r̂n,pn
=

1

n

n
∑

t=pn

X2
t

g +
∑t

k=1 ℓ(k)X
2
t−k

Xpn,t−1

R̂n,pn =
1

n

n
∑

t=pn

1

(g +
∑t

k=1 ℓ(k)X
2
t−k)

2
Xpn,t−1X

T
pn,t−1, (5)

with Xpn,t−1 = (1, X2
t−1, . . . , X

2
t−pn

)T and g is known. Suitable values of g have been suggested in

Fryzlewicz et al. (2006). For example, if the estimator is to be insensitive to the magnitude of a0 (as
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in the quasi-maximum likelihood estimator of the ARCH parameters) it is suggested in Fryzlewicz

et al. (2006) to let g be the unconditional variance of the process or an estimator of it.

To study the sampling properties of estimators which involve at some stage using the ARCH(∞)

estimator âpn
, it maybe necessary to obtain a uniform rate of convergence for âpn

. For example,

given âpn
and {Xt; t = 1, . . . , n} we can use Ẑt as an estimator of the residuals Zt where

Ẑt =
Xt

√

âpn,0 +
∑pn

j=1 âpn,jX2
t−j

, with âpn
= (âpn,0, . . . , âpn,pn)T .

We would require a uniform rate of convergence for the estimator âpn
to determine how close Ẑt is

to the true Zt.

The aim of this paper is to obtain a uniform, almost sure rate of convergence for the vector

âpn
− apn

. In Section 3 we partition the estimator âpn
into a term which is the sum of martingale

differences and an additional term which arises because only a finite number of the ARCH(∞)

parameters are estimated. We evaluate uniform bounds for each of these terms.

Because of the rather complicated nature of the summands in (5), in particular the random

weighting and that {Xt} is a nonlinear process, the methods developed in An et al. (1982) cannot

be directly applied to our situation. Instead, in the Appendix we show that the elements in the

sum (5) are L2-Near Epoch Dependent (L2-NED). We use this property to write the sums in (5)

as doubly infinite sums of martingale differences, which we use to obtain a maximal inequality for

R̂n,pn and r̂n,pn
. This is used to prove the results in the main section. The methods and results in

the Appendix may also be of independent interest.

2 Assumptions and notation

We denote tr(A), λmin(A) and λmax(A) as the trace, the smallest and largest eigenvalues of the

matrix A respectively. Let

Rm = E

(

Xm,0X
T
m,0

(g +
∑∞

k=1 ℓ(k)X
2
−k)

2

)

. (6)

We assume throughout, that ℓ(j) = Kj−(3+δ) for some δ > 0 and finite K. We note that we

require this as a minimum rate of convergence in order to obtain the required L2-NED rate of

convergence (see Theorem A.1 in the Appendix). Using a slower rate of ℓ(j) would mean we would

not obtain the desired L2-NED rate, whereas a faster rate for ℓ(j) would require a faster rate of

convergence for the parameters {aj} (see Assumption 2.1(ii) below).

Assumption 2.1 Suppose the process {Xt}t satisfies the ARCH(∞) representation in (1), and

have
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(i)
∑∞

j=1 aj < 1.

(ii) For some monotonically decreasing sequence {cj} with cj → 0 as j → ∞, we have
∑∞

j=1
aj

ℓ(j)cj
=

K
∑∞

j=1 j
3+δajc

−1
j <∞.

(iii) E(Z4
t ) <∞.

(iv) The process {Xt}t is strongly mixing with rate −a where a > 1.

(v) Let {Rm} be defined as in (6). Then the smallest eigenvalues matrices {Rm} is uniformly

bounded away from zero, that is for some c > 0, infm λmin(Rm) ≥ c.

Assumptions 2.1(i,iii) are standard in ARCH estimation. In fact Assumption 2.1(i) implies that

E(X2
t ) < ∞. It can be shown that Assumption 2.1(iv) is true for stationary ARCH processes and

certain GARCH processes. Assumption 2.1(ii), which is only required in Lemma 3.1, imposes a

condition on the rate of decay of the parameter {aj}. It basically means that
aj

ℓ(j) ≤ Kj−(1+η) (thus

aj ≤ Kj−(4+δ+η)), for some η > 0. We note that the Yule-Walker method described in An et al.

(1982) would require
∑∞

j=1 aj ≤ 1/{E(Z8
t )}1/4 and

∑∞
j=1 jaj < ∞. Comparing these assumptions

with those in Assumption 2.1(ii) we see that
∑∞

j=1 jaj <∞ is weaker than
∑∞

j=1 aj/(ℓ(j)cj) <∞,

since the former implies aj = O(j−2−η) and the latter implies aj = o(j−4−η), for some η > 0. How-

ever the Yule-Walker method would require the additional assumption
∑∞

j=1 aj ≤ 1/{E(Z8
t )}1/4,

which places a restriction on the magnitude of the coefficients, whereas Assumption 2.1(ii) is a

restriction on the rate they converge to zero. Furthermore, we show in Remark 3.1 if E(X4
t ) <∞,

then Assumption 2.1(ii) can be relaxed to
∑∞

j=1 jaj < ∞. In other words, by using the normali-

sation in the estimation we can obtain the same results as the Yule-Walker method with the same

parameter restrictions but weaker moment assumptions.

In order to derive the results below we need to define the the vector and matrix r̃n,pn
and R̃n,pn ,

respectively. Let

r̃n,pn
=

1

n

n
∑

t=pn

X2
t

(g +
∑∞

k=1 ℓ(k)X
2
t−k)

2
Xpn,t−1

and R̃n,pn =
1

n

n
∑

t=pn

1

(g +
∑∞

k=1 ℓ(k)X
2
t−k)

2
Xpn,t−1X

T
pn,t−1. (7)

We note that r̃n,pn
and R̃n,pn are similar to r̂n,pn

and R̂n,pn except that the normalisation goes to

the infinite past. Furthermore we will require the following definitions

Hn(i, j) =
1

n

n
∑

t=1

{

X2
t−iX

2
t−j

(g +
∑t

k=1 ℓ(k)X
2
t−k)

2
−

X2
t−iX

2
t−j

(g +
∑∞

k=1 ℓ(k)X
2
t−k)

2

}

(8)

ct(i, j) =
X2

t−iX
2
t−j

(g +
∑∞

k=1 ℓ(k)X
2
t−k)

2
(9)
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Let ‖ · ‖r denote the ℓr-norm of a vector of matrix (where ‖ · ‖∞ denotes the sup norm) and

assume throughout that K is a finite constant.

3 A uniform rate of convergence for the parameter estimators

In order to derive a bound for ‖âpn
− apn

‖1 (which immediately gives ‖âpn
− apn

‖∞) we partition

(âpn
− apn

) into a term with zero mean and an additional term due to our estimating only a subset

of the coefficients {aj}. By using the definition of âpn
given in (4) we have

âpn
− apn

= R̂−1
n,pn

(

r̂n,pn
− R̂n,pnapn

)

= R−1
pn

(

r̃n,pn
− R̃n,pnapn

)

+ Cpn (10)

where

Cpn = R̂−1
n,pn

(

{r̂n,pn
− r̃n,pn

} + {R̂n,pn − R̃n,pn}apn

)

+ (R̂−1
n,pn

−R−1
pn

)
(

r̂n,pn
− R̂n,pnapn

)

.

In the following section we find bounds for the terms on the right hand side of (10). More precisely,

we obtain bounds for r̂n,pn
− R̂n,pnapn

, R̂n,pn −Rpn and r̂n,pn
− r̃n,pn

.

3.1 A rate for (r̃n,pn
− R̃n,pnapn

)

Let us consider the first term in (10). It is straightforward to show that

r̃n,pn
− R̃n,pnapn

=
1

n

n
∑

t=pn

X2
t −∑pn

j=1 ajX
2
t−j

(g +
∑∞

k=1 ℓ(k)X
2
t−k)

2
Xpn,t−1

. (11)

It follows, if the process were an ARCH(p) process of finite order, where p < pn, then
∑pn

j=0 ajX
2
t−j =

(Z2
t − 1)σ2

t and (r̃n,pn
− R̃n,pnapn

) would be the sum of martingale differences. However for the

general ARCH(∞) model this is not the case. We can consider the parameters {aj : j > pn},
omitted in the estimation as the contribution to the bias of the estimator. Therefore a larger pn

would lead to a smaller bias. However a larger pn means that more parameters are being estimated

leading to a larger variance. We note that this is similar to the bias-variance trade off problem

which often arises in nonparametric statistics. We now make the discussion above precise. Since

X2
t −∑pn

j=1 ajX
2
t−j =

∑∞
j=pn+1 ajX

2
t−j + (Z2

t − 1)σ2
t , and substituting this into (11) we obtain

r̃n,pn
− R̃n,pnapn

= An,pn + Bn,pn (12)

where

An,pn =
1

n

∞
∑

t=pn

(Z2
t − 1)σ2

t

(g +
∑∞

k=1 ℓ(k)X
2
t−k)

2
Xpn,t−1 (13)

and Bn,pn =
1

n

n
∑

t=pn

∑∞
j=pn+1 ajX

2
t−j

(g +
∑∞

k=1 ℓ(k)X
2
t−k)

2
Xpn,t−1

. (14)

We first study the term Bn,pn .
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Lemma 3.1 Suppose Assumption 2.1(i,ii) holds and let Bn,pn be defined as in (14), then we have

‖Bn,pn‖∞ ≤ cpng
−1

(

1

n

n
∑

t=1

Yt

)

where Yt =
∞
∑

j=1

aj

ℓ(j)cj
X2

t−j . (15)

Furthermore, almost surely we have 1
n

∑n
t=1 Yt → E(X2

0 )
∑∞

j=1
aj

ℓ(j)cj
as n→ ∞.

PROOF. By using the normalisation we are able to reduce some of the high moment assumptions

that would normally arise for quadratic forms. We note that for 1 ≤ i ≤ pn, we obtain the bound

‖Xpn,t‖∞/(g +
∑∞

k=1 ℓ(k)X
2
t−k) ≤ 1

ℓ(pn) . Using this we have

‖Bn,pn‖∞ ≤ 1

ng

n
∑

t=pn

1

ℓ(pn)

∞
∑

j=pn

ajX
2
t−j =

1

ng

n
∑

t=pn

cpn

∞
∑

j=1

aj+pn

ℓ(pn)cpn

X2
t−j−pn

.

Under Assumption 2.1(ii) we have
∑∞

j=1
aj

ℓ(j)cj
<∞ and we note that monotonically ℓ(j)cj → 0 as

j → ∞, this gives

‖Bn,pn‖∞ ≤ cpn

ng

n
∑

t=pn

∞
∑

j=1

aj+pn

ℓ(j + pn)cj+pn

X2
t−j−pn

≤ cpn

ng

n
∑

t=pn

∞
∑

j=1

aj

ℓ(j)cj
X2

t−j .

thus we obtain (15). Since {Xt}t is an ergodic process (see Giraitis et al. (2000)) and
∑∞

j=1
aj

ℓ(j)cj
<

∞, by using Stout (1974), Theorem 3.4.5, we have {Yt}t is also an ergodic process. Finally since

E(X2
t ) <∞, we have 1

n

∑n
t=1 Yt → E(X2

0 )
∑∞

j=1
aj

ℓ(j)cj
. �

It is clear to see from Lemma 3.1, that ‖Bn,pn‖∞
a.s.→ 0 as n→ ∞.

Remark 3.1 If we are able to assume that the fourth moment of the ARCH process exists, we can

relax the rate of decay required on the ARCH coefficients {aj}. To be precise, let us suppose there

exists a decreasing sequence {dn}, where dn → 0 such that
∑∞

j=1
aj

dj
< ∞ and ndn → ∞. Since

{Xt}t is an ergodic sequence and
∑∞

j=1
aj

dj
<∞, then {

∑∞
j=1

aj

cj
X2

t−jX
2
t−i}t is an ergodic sequence.

Now because the fourth moment of Xt exists, by using similar a derivation to those used to prove

Lemma 3.1 we have

‖Bn,pn‖1 ≤ dpn

pn
∑

i=1

1

n

n
∑

t=1

∞
∑

j=1

aj

dj
X2

t−jX
2
t−i

a.s.→ dpn

pn
∑

i=1

∞
∑

j=1

aj

dj
E(X2

t−jX
2
t−i).

Therefore since dpn → 0 as pn → 0, the right hand side of the above converges to zero if dnn → 0

as n → ∞. We note that since we require
∑∞

j=1
aj

dj
< ∞ and dnn → 0, this means that aj should

converge at the rate aj ≤ K 1
(j(log j)1+κ)2

. We note under these conditions the rates in Theorem 3.1

change. In particular, the cpn in (29) is replaced with dpn.

It is worth noting that the Yule-Walker method proposed in An et al. (1982) is for ARMA

processes, thus the parameters in the AR representation decay exponentially and
∑∞

j=1 jaj < ∞.
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The condition
∑∞

j=1 jaj <∞ is almost equivalent to the condition given here where
∑∞

j=1
aj

dj
<∞

and dnn → 0 as n → ∞. Therefore under the same rate of convergence of the parameters, by

using the normalised least squares estimator we only require the existence of E(X4
t ), rather than

E(X8
t ) <∞ which is required in the Yule-Walker method.

Having obtained a bound for the bias, we now consider the remaining term An,pn in (38).

The analysis involves using some maximal inequalities. To exploit them, we first observe that

the summands R̂n,pn , R̃n,pn , r̂n,pn
and r̃n,pn

are defined in the interval [pn, n]. Typically maximal

inequalities are derived for sums which have a fixed lower sum bound. Hence we replace the lower

limit of the summand from pn to max(i, j), since max(i, j) < pn we have

1

n

n
∑

t=pn

X2
t−iX

2
t−j

(g +
∑t

k=1 ℓ(k)X
2
t−k)

2
≤ 1

n

n
∑

t=max(i,j)

X2
t−iX

2
t−j

(g +
∑t

k=1 ℓ(k)X
2
t−k)

2
. (16)

By definition of An,pn and using the above it is straightforward to see ‖An,pn‖∞ ≤ n−1 sup1≤r≤pn
Sr,n,

where

Sr,n =
n
∑

t=r

(Z2
t − 1)σ2

t

(g +
∑∞

k=1 ℓ(k)X
2
t−k)

2
X2

t−r. (17)

For η > 0, define

qη,n =
(log n(log logn)(1+η))1/2

ℓ(pn)n1/2
. (18)

We now bound ‖An,pn‖∞.

Lemma 3.2 Suppose Assumption 2.1(i,iii) holds. Let Sr,n and qη,n be defined as in (17) and (18).

Then for any η > 0 we have almost surely

‖An,pn‖∞ = O
(

p1/2
n qη,n + n−1pn

)

. (19)

PROOF. We recall that ‖An,pn‖∞ ≤ sup1≤r≤pn
Sr,n. By using Lemma A.2 we have a bound for

E(supr≤t≤n S2
r,t). Using this result and applying Lemma A.1 we obtain the result. �

By using (15) and (19) we almost surely obtain

∥

∥

∥
r̃n,pn

− R̃n,pnapn

∥

∥

∥

∞
= O

(

p1/2
n qη,n + cpn

)

. (20)

This gives a bound for the first part of (10). Below we study and bound the second term Cpn .
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3.2 A rate for Cpn

Recalling the definition of Cpn in (10), we now bound R̂n,pn − R̃n,pn , r̂n,pn
− r̃n,pn

and R̂n,pn .

Since the elements (R̂n,pn − R̃n,pn)i+1,j+1 = Hn(i, j) and (r̂n,pn
− r̃n,pn

)j = Hn(0, j) (where

Hn(i, j) is defined in (8)), in the following lemma we obtain a bound for Hn(i, j).

Lemma 3.3 Suppose Assumption 2.1(i,ii) holds. Let Hi,j(n) be defined as in (8). If 1 ≤ i, j ≤ pn,

then we have

|Hn(i, j)| ≤ K
p
5+3δ/2
n

n
Vδ and |Hn(0, j)| ≤ K

p2+δ
n

gn
WδVδ (21)

where K is a finite constant and

Vδ =

(

∞
∑

t=1

1

t1+δ/2
X2

t

)

Wδ =





∞
∑

j=1

1

j1+δ/2
X2

−j



 .

PROOF. We first observe that the elements in the sum of Hn(i, j) can be bounded by

∣

∣

X2
t−iX

2
t−j

(g +
∑t

k=1 ℓ(k)X
2
t−k)

2
−

X2
t−iX

2
t−j

(g +
∑∞

k=1 ℓ(k)X
2
t−k)

2

∣

∣ ≤
2X2

t−iX
2
t−j

(g +
∑t

k=1 ℓ(k)X
2
t−k)

2

∞
∑

k=t+1

ℓ(k)X2
t−k. (22)

Furthermore if 1 ≤ i, j ≤ pn, then the above can be further bounded by
∑∞

k=t+1 ℓ(k)X
2
t−k ≤

2
P

∞

k=t+1
ℓ(k)Xt−k

ℓ(pn)2
. Now by using this and that {ℓ(k)} is a monotonically decreasing sequence (ℓ(k) =

Kk−(3+δ)) we have

|Hn(i, j)| ≤ K

n

n
∑

t=pn

∞
∑

k=t+1

ℓ(k)

ℓ(pn)2
X2

t−k ≤ K

nℓ(pn)2

n−pn
∑

j=1

∞
∑

k=1

ℓ(pn + j + k)X2
−j−k

≤ Kp
2(3+δ)
n

n

n−pn
∑

j=1

1

(pn + j)2+δ/2

∞
∑

k=1

1

k(1+δ/2)
X2

−k ≤ Kp
2(3+δ)−(1+δ/2)
n

n

∞
∑

k=1

k−(1+δ/2)X2
−k

which gives the first inequality (21). To prove the second inequality in (21) we use similar arguments

to above. By using (22) we have

∣

∣

X2
t X

2
t−j

(g +
∑t

k=1 ℓ(k)X
2
t−k)

2
−

X2
t X

2
t−j

(g +
∑∞

k=1 ℓ(k)X
2
t−k)

2

∣

∣ ≤ 2X2
t

gℓ(pn)

∞
∑

k=t+1

ℓ(k)X2
t−k.

This leads to

|Hn(0, j)| ≤ Kg−1

nℓ(pn)

n
∑

t=pn

X2
t

∞
∑

k=t+1

ℓ(k)X2
t−k =

Kg−1

nℓ(pn)

n
∑

t=pn

X2
t

∞
∑

j=1

ℓ(t+ j)X2
−j

≤ Kg−1p3+δ
n

n

n
∑

t=pn

1

t2+δ/2
X2

t

∞
∑

j=1

1

j1+δ/2
X2

−j ≤
Kg−1p2+δ

n

n

(

∞
∑

t=1

1

t1+δ/2
X2

t

)





∞
∑

j=1

1

j1+δ/2
X2

−j



 .

8



and the desired result. �

We notice that the bound for Hn(i, j) does not depend on i or j when 1 ≤ i, j ≤ pn, this allows

us to obtain uniform bounds for R̂n,pn − R̃n,pn and r̂n,pn
− r̃n,pn

.

Finally, we require a uniform rate of convergence for the elements of R̂n,pn . We will also use

this result to bound (R̂−1
n,pn

−R−1
pn

). Let

Sn(i, j) =
n
∑

t=max(i,j)

ct(i, j) =
n
∑

t=max(i,j)

X2
t−iX

2
t−j

(g +
∑∞

k=1 ℓ(k)X
2
t−k)

2
(23)

Lemma 3.4 Suppose Assumption 2.1(i,iv) holds. Let cn(i, j) be defined as in (28). Then almost

surely for large enough n we have

‖R̃n,pn −Rpn‖∞ ≤ sup
1≤i,j≤pn

| 1
n

n
∑

k=max(i,j)

{cn(i, j) − E[cn(i, j)]} | = O (pnqη,n) . (24)

PROOF. We first note that by using Lemma A.5 we have







E



max
1≤t≤n

1

n

n
∑

k=max(i,j)

{cn(i, j) − E[cn(i, j)]}





2




1/2

≤ 2K

ℓ(max(i, j))2
n1/2. (25)

To obtain an almost sure rate of convergence for Sn(i, j) we use the result in Lemma A.1 together

with (25). As a consequence of this we immediately obtain the result. �

Combining Lemmas 3.3 and 3.4 we have ‖R̂n,pn −Rpn‖1 ≤ ‖R̃n,pn − R̂n,pn‖1 +‖R̃n,pn −Rpn‖1 ≤
p2

n(pnqη,n + n−1p5+3δ/2). The corollary below follows from Lemma 3.4.

Corollary 3.1 Suppose Assumption 2.1(i,iv,v) holds. Let R̂n,pn and pη,n be defined as in (7) and

(18) respectively. Then if p2
n(qη,n + n−1p5+3δ/2) → 0 we have almost surely

∥

∥

∥

(

R̂−1
n,pn

−R−1
pn

)∥

∥

∥

1
= O

(

p2
n(pnqη,n + n−1p5+3δ/2

n )
)

. (26)

PROOF. We mention that the techniques used in the proof are similar to those in An et al. (1982),

Theorem 4. We observe that we can write R̂−1
n,pn

− R−1
pn

= R̂−1
n,pn

(

R̂n,pn −Rpn

)

R−1
pn

. We will

now bound R̂−1
n,pn

. By using (24) and (21) we have λmax(|R̂n,pn − Rpn |) ≤ tr((R̂n,pn − Rpn)2) =

O(p2
n(pnqη,n + n−1p

5+3δ/2
n )). Furthermore, since R̂n,pn = Rpn + (R̂n,pn − Rpn), it is clear that

λmin(R̂n,pn) ≥ λmin(Rpn) − λmax(R̂n,pn −Rpn). Using this and under Assumption 2.1(vi) we have

that for a large enough n almost surely, the smallest eigenvalue of R̂n,pn is bounded away from zero.

Therefore

∥

∥

∥R̂−1
n,pn

(

R̂n,pn −Rpn

)

R−1
pn

∥

∥

∥

1
= O(p2

n(pnqη,n + n−1p5+3δ/2)), (27)
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and thus we obtain (26). �

Rewriting Cpn , using (20), Lemma 3.4 and Corollary 3.1, if p2
n(pnqη,n + n−1p5+3δ/2) → 0 as

n→ ∞, then

‖Cpn‖1 =
∥

∥R−1
pn

(

{r̂n,pn
− r̃n,pn

} + {R̂n,pn − R̃n,pn}apn

)

∥

∥

1
+
∥

∥(R̂−1
n,pn

−R−1
pn

)
(

r̂n,pn
− R̂n,pnapn

)

∥

∥

1
+

∥

∥(R−1
pn

− R̂−1
n,pn

){r̂n,pn
− r̃n,pn

}
∥

∥

1
+
∥

∥(R−1
pn

− R̂1
n,pn

){R̂n,pn − R̃n,pn}apn

∥

∥

1

≤ O

(

pn(
p2+δ

n

gn
+
p
5+3δ/2
n

n
)

)

+ o(p1/2
n qη,n + cpn). (28)

3.3 The main result: A uniform rate for (âpn
− apn

)

By using (20), Corollary 3.1 and Lemma 3.3 we have the necessary ingredients to bound (âpn
−apn

).

Theorem 3.1 Suppose Assumption 2.1 holds. Let qη,n be defined as in (18). If p2
n(pnqη,n +

n−1p
5+3δ/2
n ) → 0, then we have almost surely

‖âpn
− apn

‖1 = O
(

n−1p6+3δ/2
n + p3/2

n qη,n + pncpn

)

. (29)

PROOF. We use (10) to prove the result. We first observe that

∥

∥

∥
R−1

pn
(r̃n,pn

− R̃n,pnapn
)
∥

∥

∥

1
= O

(

pn(p1/2
n qη,n + cpn)

)

. (30)

By using (28) we observe if p2
n(pnqη,n + n−1p6+3δ/2) → 0 as n → ∞, then we have ‖Cpn‖1 =

O(p2+δ
n
gn + p

6+3δ/2
n

n ) + o(p
1/2
n qη,n + cpn). Substituting this and (30) into (10), we obtain the required

rate. �

Since ‖âpn
− apn

‖∞ ≤ ‖âpn
− apn

‖1, the rate for ‖âpn
− apn

‖1 immediately gives a bound for

‖âpn
− apn

‖∞, thus a uniform rate of convergence for the parameter estimators. Furthermore, it is

likely that ‖âpn
− apn

‖∞ = O( 1
pn
‖âpn

− apn
‖1) (though we have not proved this).

Remark 3.2 By using (29) we see that if p2
n(pnqη,n + n−1p

5+3δ/2
n ) → 0 and ncn → 0 as n → ∞,

then ‖âpn
− apn

‖1 → 0 almost surely. We observe that the rate of convergence is mainly influenced

by the choice of pn and the rate that aj → ∞ as j → ∞.

Example: The GARCH process

{Xt} is called a GARCH process if it satisfies the representation

Xt = σtZt σ2
t = α0 +

p
∑

i=1

αiX
2
t−i +

q
∑

j=1

βjσ
2
t−j .
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If
∑p

i=1 αi +
∑p

j=1 βj < 1, then the GARCH process belongs to the ARCH(∞) class, where the

parameters decay geometrically (that is for all j, aj < Kρj , for some 0 < ρ < 1). It can be shown

that under these conditions, E(X2
t ) <∞ and the process is strongly mixing with a geometric rate

(c.f. Bousamma (1998) and Basrak, Davis, and Mikosch (2002)). Therefore the GARCH process

satisfies Assumption 2.1, with cj = j4+δρj , where cj is defined in Assumption 2.1(iv).

Suppose we observe {Xt : t = 1, . . . , n}. Using the ARCH(∞) representation of the GARCH

process, let apn
denote the first pn parameters of the ARCH(∞) process. Let âpn

be the estimator

defined as in (4). Then by using Theorem 3.1 almost surely we have

‖âpn
− apn

‖1 = O
(

n−1p6+3δ/2
n + p3/2

n qη,n + p5+δ
n ρpn

)

.

Now suppose ζ > 0 and we let pn = (log n)1+ζ , then ρpn = n−γ(log n)1+ζ
and ‖âpn

− apn
‖1 =

O
(

(log n)3(1+ζ)/2qη,n

)

. Hence ‖âpn
− apn

‖1
a.s.→ 0 as n→ ∞
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A Appendix

In order to prove almost sure convergence of the martingales Sr,n and the sample moments Sn(i, j)

considered in (17) and (23) we will make repeated use of the lemma below, which is a straightforward

generalisation of Móricz (1976), Theorem 6, to a uniform rate over multiple sums. The lemma below

gives an almost sure rate of convergence for general sums of random variables. Let

Sn(r1, . . . , rm) =

n
∑

k=1

ξk(r1, . . . , rm), (31)

where {ξk(r1, . . . , rm)}t is an arbitrary random process indexed by (r1, . . . , rm).

Lemma A.1 Let Sn(r1, . . . , rm) be defined as in (31). Suppose there exists a monotonically in-

creasing sequence {G(n)}n, such that

sup
1≤r1,...,rm≤pn

E

(

sup
1≤t≤n

|St(r1, . . . , rm)|2
)

≤ G(n).

Assume further that there exists a K <∞ such that for all sequences {nj} which satisfy 2j ≤ nj <

2j+1, we have supj |G(nj)/G(nj−1)| < K. Then we have almost surely

sup
1≤r1,...,rm≤pn

|Sn(r1, . . . , rm)| = O
(

pm/2
n (G(n) log n(log logn)1+η)1/2

)

(32)
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for any η > 0.

PROOF. Let {φ(n)} be an arbitrary positive sequence. Before proving the result, we note that

P (sup1≤r1,...,rm≤pn
sup1≤t≤n |St(r1, . . . , rm)| > φ(n)) ≤∑1≤r1,...,rm≤pn

P (sup1≤t≤n |St(r1, . . . , rm)| >
φ(n)), therefore by using the Chebyshev inequality we have

P

(

sup
1≤r1,...,rm≤pn

sup
1≤t≤n

|St(r1, . . . , rm)| > φ(n)

)

≤ pm
n G(n)

φ(n)2
. (33)

We now specify the sequence {φ(n)} such that we can obtain a tight bound for the rate of conver-

gence. Let

φ̃(n) =
(

pm
n G(n) log n(log logn)1+η

)1/2

and Mn = sup1≤r1,...,rm≤pn
sup1≤t≤n |St(r1, . . . , rm)|. By using (33) we have

P
(

Mn > φ̃(n)
)

≤ 1

log n(log logn)1+η
.

Let {nj} be an arbitrary subsequence such that 2j ≤ nj < 2j+1. By appealling to the Borel-Cantelli

Lemma we can show for a large enough nj we almost surely have

|Mnj | ≤ φ̃(nj).

Suppose nj−1 < n ≤ nj , then by the definition {Mnj}, | sup1≤r1,...,rm≤pn
Sn(r1, . . . , rm)| ≤Mnj and

φ̃(nj−1) ≤ φ̃(n). Then we have almost surely

sup1≤r1,...,rm≤pn
|Sn(r1, . . . , rm)|

φ̃(n)
≤

Mnj

φ̃(nj−1)
≤ φ̃(nj)

φ̃(nj−1)
≤ K,

which proves (32). �

We use the lemma above and the following maximal inequality to obtain a rate of convergence

for Sr,n.

Lemma A.2 Suppose Assumption 2.1(i,iii) holds. Let Sr,n be defined as in (17). Then we have

[

E( sup
r≤t≤n

|Sr,t|
)2]1/2 ≤ n1/2

ℓ(pn)
(E|Z2

0 − 1|2)1/2

{

E| σ2
0

(g +
∑∞

k=1 ℓ(k)X
2
−k)

|2
}1/2

. (34)

PROOF. Recalling that Sr,t is the sum of martingale differences, X2
t−r/(g +

∑∞
k=1 ℓ(k)X

2
−k) ≤

ℓ(pn)−1 and by using Doob’s and Burkhölder’s inequalities, we have

E

(

max
r≤t≤n

S2
r,t

)

≤ 4E
(

|Sn,t|2
)

≤ 8(E|Z2
t − 1|2)1/2(E| σ2

0

(g +
∑∞

k=1 ℓ(k)X
2
−k)

2
X2

t−r|2)1/2n1/2
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thus giving us the required result. �

Unfortunately, since Sn(i, j) (defined in (23)) is not the sum of martingale differences we cannot

directly apply the maximal inequalities (a combination of Doob’s and Burkhölder’s inequality) to

obtain E(max1≤t≤n |St(i, j)|2). Instead we show that {ct(i, j)}t is L2-NED with respect to the

mixing process {Xt}t. The advantage of Near Epoch Dependence is that a process which is NED can

be expressed as an infinite sum of martingale differences (usually called a mixingale, c.f. (Davidson,

1994), Theorem 17.5). This allows us to apply the maximal inequalities to the infinite sum of

martingales. To show that {ct(i, j)}t is L2-NED we need to obtain a rate of decay for E|ct(i, j) −
E(ct(i, j)|F t

t−r)|2. To do this we first require an appropriate bound for ct(i, j). Let

gX,t = g +

∞
∑

k=1

ℓ(k)X2
t−k and gY,t = g +

∞
∑

k=1

ℓ(k)Y 2
t−k. (35)

Lemma A.3 Let {Xt} and {Yt} be sequences, {ℓ(k)}k be a decreasing sequence and Zt(X,Y) =

2
∑∞

k=1 ℓ(k)(X
2
t−k − Y 2

t−k). Then we have

E
∣

∣

X2
t−iX

2
t−j

(g +
∑∞

k=1 ℓ(k)X
2
t−k)

2
−

Y 2
t−iY

2
t−j

(g +
∑∞

k=1 ℓ(k)Y
2
t−k)

2

∣

∣ ≤ (1 + g−1)

ℓ(max(i, j))2
min{1, Zt(X,Y)}. (36)

PROOF. Recalling (35) we have
∣

∣

∣

∣

∣

X2
t−iX

2
t−j

g2
X,t

−
Y 2

t−iY
2
t−j

g2
Y,t

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

X2
t−i

gX,t

(

X2
t−j

gX,t
−
Y 2

t−j

gY,t

)

+
Y 2

t−j

gY,t

(

X2
t−i

gX,t
− Y 2

t−i

gY,t

)

∣

∣

∣

∣

∣

≤ (1 + g−1)

ℓ(max(i, j))2
|gX,t − gY,t|. (37)

We also observe that
∣

∣

∣

∣

∣

X2
t−iX

2
t−j

(g +
∑∞

k=1 ℓ(k)X
2
t−k)

2
−

Y 2
t−iY

2
t−j

(g +
∑∞

k=1 ℓ(k)Y
2
t−k)

2

∣

∣

∣

∣

∣

≤ 2

ℓ(max(i, j))2
. (38)

Combining (37) and (38) we obtain (36). �

It can easily be shown that E

(

X2
t−iX

2
t−j

g2
X,t

− Y 2
t−iY

2
t−j

g2
Y,t

)2

, can be bounded by a random variable

which involves the fourth moment of Xt. However, by using the lemma above, which shows that

the difference
X2

t−iX
2
t−j

g2
X,t

− Y 2
t−iY

2
t−j

g2
Y,t

will always be less than one, we are able to reduce the number of

moments required.

Lemma A.4 Suppose {Xt} and {Yt} are stationary random sequences with E(X2
t ) < ∞ and

E(Y 2
t ) <∞, and {ℓ(j)} a decreasing sequence then we have

E

(

X2
t−iX

2
t−j

(g +
∑∞

k=1 ℓ(k)X
2
t−k)

2
−

Y 2
t−iY

2
t−j

(g +
∑∞

k=1 ℓ(k)Y
2
t−k)

2

)2

≤
(

2

ℓ(max(i, j))2

)2

E

(

∞
∑

k=1

ℓ(k)|X2
t−k − Y 2

t−k|
)

.
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PROOF. We use the definition of Zt(Xt, Yt) in Lemma A.3 and recall the definition of gX,t given

in (35). Let P denote the probability measure on {Xt} and {Yt}. Partitioning the integral, using

Lemma A.3 and noting Zt(X,Y) = 2
∑∞

k=1 ℓ(k)(X
2
t−k − Y 2

t−k) we have

E

(

X2
t−iX

2
t−j

(g +
∑∞

k=1 ℓ(k)X
2
t−k)

2
−

Y 2
t−iY

2
t−j

(g +
∑∞

k=1 ℓ(k)Y
2
t−k)

2

)2

=

∫

|Zt(Xt,Yt)|≤1

(

X2
t−iX

2
t−j

g2
X,t

−
Y 2

t−iY
2
t−j

g2
Y,t

)2

dP +

∫

|Zt(Xt,Yt)|>1

(

X2
t−iX

2
t−j

g2
X,t

−
Y 2

t−iY
2
t−j

g2
Y,t

)2

dP

≤
(

2

ℓ(max(i, j))2

)2{∫

|Zt(X,Y)|≤1
Zt(X,Y)2dP +

∫

|Zt(X,Y)|>1
12dP

}

.

Since Zt(X,Y)2 ≤ Zt(X,Y) when Zt(X,Y)2 < 1 and by definition the second integral on the right

hand side of the above inequality is bounded above by 1 ≤ Zt(X,Y), then we have

E

(

X2
t−iX

2
t−j

(g +
∑∞

k=1 ℓ(k)X
2
t−k)

2
−

Y 2
t−iY

2
t−j

(g +
∑∞

k=1 ℓ(k)Y
2
t−k)

2

)2

≤
(

2

ℓ(max(i, j))2

)2

E

(

∞
∑

k=1

ℓ(k)|X2
t−k − Y 2

t−k|
)

.

Thus giving the required result. �

Below we use Lemmas A.3 and A.4 to show that {ct(i, j)}t is a L2-NED process with respect to

the mixing process {Xt}. To show L2-NED of {ct(i, j)}t with respect to {Xt}t, we need to obtain a

rate of decay for ct(i, j) when conditioned on the mixing process. More precisely we require a rate

for E[ct(i, j) − E(ct(i, j)|Xt, . . . , Xt−r)]
2, which we derive in the following lemma.

Theorem A.1 Suppose Assumption 2.1(i,iv) holds. Let F t
t−r = σ(Xt, . . . , Xt−r). and {ct(i, j)}t

be defined as in (28). Then we have

(

E|ct(i, j) − E(ct(i, j)|F t
t−r)|2

)1/2 ≤ 2
√

2

ℓ(max(i, j))2
(E|X2

0 |)1/2

(

∞
∑

k=r

ℓ(k)

)1/2

. (39)

Additionally if Assumption 2.1(ii,v) holds, then {ct(i, j)} is L2-NED with respect to the mixing

process {Xt} of rate −(1 + δ/2), with constant 2
√

2‖X2
0‖

1/2
1 /ℓ(max(i, j))2.

PROOF. Define

Ht
t−r =

E(X2
t−i|F t

t−r)E(X2
t−j |F t

t−r))

(g +
∑∞

k=r ℓ(k)E(X2
t−k|F t

t−r))
2
, (40)

then it is clear that Ht
t−r ∈ F t

t−r. We recall that E(ct(i, j)|F t
t−r) is the best estimator of ct(i, j)

in F t
t−r under the ℓ2-norm, hence any g which is F t

t−r-measurable E{ct(i, j) − E(ct(i, j)|F t
t−r)}2 ≤

E{ct(i, j) − g}2. We now exploit this idea, where we use the inequality in Lemma A.4, setting
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Xt ≡ Xt and and Yt ≡ E(X2
t−i|F t

t−r). Noting that for k ≤ r, Yt−k = E(X2
t−k|F t

t−r) = X2
t−k,

altogether this gives

(E|ct(i, j) − E(ct(i, j)|F t
t−r)|2)1/2 ≤

(

E
∣

∣

X2
t−iX

2
t−j

(g +
∑∞

k=1 ℓ(k)X
2
t−k)

2
−Ht

t−r

∣

∣

2)1/2

≤ 2

ℓ(max(i, j))2

{

E

[

∞
∑

k=r

ℓ(k)
{

X2
t−k + E(X2

t−k|F t
t−r)

}

]}1/2

≤ 2
√

2

ℓ(max(i, j))2
(E|X2

0 |)1/2

(

∞
∑

k=r

ℓ(k)

)1/2

thus giving us (39). Finally, using the above and ℓ(k) = K k−(3+δ) we observe that (
∑∞

k=r ℓ(k))
1/2 ≤

Kr−(1+δ/2), thus ct(i, j) is L2-NED of rate −(1 + δ/2) with respect to the process {Xt}. �

We will use the result above to show that {ct(i, j)} can be written as the infinite sum of

martingale difference, which requires the following corollary.

Corollary A.1 Suppose Assumption 2.1(i,iv) holds. Let ct(i, j) be defined as in (28) and Ft =

σ(Xt, Xt−1, . . .). Then we have
(

E
∣

∣E(ct(i, j) − E{ct(i, j)}|Ft−m)
∣

∣

2
)1/2

≤ K

ℓ(min(i, j))2
ρ(m) (41)

where ρ(m) =
(

m
2

)−min{(2+δ)/2,(1+a)/2}
.

PROOF. To prove this result we use the same arguments given in Gallant (1987) or Davidson

(1994), Chapter 17, hence we omit the details. �

A useful implication of Corollary A.1 is that {ct(i, j)} can be written as the sum of martingale

differences and satisfies the representation

ct(i, j) − E(ct(i, j)) =
∞
∑

m=0

Vt,m(i, j) (42)

where Vt,m(i, j) = E(ct(i, j)|Ft−m) − E(ct(i, j)|Ft−m−1) with Ft = σ(Xt, Xt−1, . . .). It is clear that

{Vt,m(i, j)}m is a sequence of martingale differences. By using this representation we can rewrite

St(i, j) as

St(i, j) − E(St(i, j)) = S̃t(i, j) =
t
∑

k=1

∞
∑

m=0

Vk,m(i, j). (43)

Lemma A.5 Suppose Assumption 2.1(i,iv) holds. Let S̃t(i, j) be defined as in (43). Then we have

(E| max
1≤t≤n

S̃t(i, j)|2)1/2 ≤ K̃

ℓ(max(i, j))2
n1/2 (44)

for some K̃ > 0.
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PROOF. By using (43) and interchanging the summands we have

(E| sup
1≤t≤n

S̃t(i, j)|2)1/2 ≤
∞
∑

m=0

(E| sup
1≤t≤n

t
∑

k=max(i,j)

Vk,m(i, j)|2)1/2.

We note for m fixed, {Vk,m(i, j)}k is a sequence of martingale differences. Therefore by using Doob’s

inequality we have

(E| sup
1≤t≤n

S̃t(i, j)|2)1/2 ≤
∞
∑

m=0





n
∑

k=max(i,j)

var{Vk,m(i, j)}





1/2

. (45)

We now bound var(Vk,m(i, j)). By using (41) we have

var{Vk,m(i, j)} ≤
(

(

E
∣

∣E(ck(i, j)
∣

∣Fk−m) − E(ck(i, j))|2
)1/2

+ (E
∣

∣E(ck(i, j)|Fk−m−1) − E(ck(i, j))
∣

∣

2
)1/2

)2

≤ 4K

ℓ(max(i, j))4

(m

2

)−min{(2+δ),(1+a)}
. (46)

Substituting (46) into (45) gives us the required result. �
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