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S

We consider the estimation of parameters of a multiple regression model with non-
stationary errors. We assume the nonstationary errors satisfy a time-dependent auto-
regressive process and describe a method for estimating the parameters of the regressors
and the time-dependent autoregressive parameters. The parameters are rescaled as in
nonparametric regression to obtain the asymptotic sampling properties of the estimators.
The method is illustrated with an example taken from global temperature anomalies.
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1. I

In many fields of research a time series {X
t
} is observed together with certain regressors

which are believed to have a linear effect on the time series. The time series is then fitted
with the multiple regression model

X
t
=a
1
f
t,1
+ . . .+a

q
f
t,q
+e
t

(t=1, . . . , N), (1)

where the regressors { f
t,i

: t=1, . . . , N, i=1, . . . , q} are observed. Often it is assumed that
the errors {e

t
} are independent and identically distributed, and ordinary least squares is

used to estimate the parameters {a
i
}. However, it is quite plausible that the errors are

dependent, in which case treating the errors as if they were independent and proceeding
with the estimation could result in a severe loss of efficiency in the estimator. In this
direction, several authors, see for example Durbin (1960) and Pierce (1971), have con-
sidered the case of dependent stationary errors, where the errors are assumed to satisfy a
linear model.
A cause for concern is if the time series {X

t
} were observed over a long period of time,

in which case it would seem quite likely that exogeneous factors could affect the stationarity
of the errors. For example, it is believed that gas emissions over the past century may
have caused ‘global warming’. Such an effect would almost certainly lead to a change in
the structure of the temperature time series. In this case it would seem quite reasonable
to change our working hypothesis and include the class of nonstationary models.
Nonstationary time-varying autoregressive models have previously been studied by Subba
Rao (1970), Ozaki & Tong (1975), Akaike & Kitagawa (1978), Priestley (1988) and
Dahlhaus & Giraitis (1998); for a review on applications see Akaike & Kitagawa (1998).
In this paper we model the errors by the regression model (1). We assume that the
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errors {e
t
} satisfy the time-varying autoregressive model

e
t
=b
t,1
e
t−1
+ . . .+b

t,p
e
t−p
+s
t
g
t
. (2)

We describe a procedure for estimating both sets of parameters

{b
t,i

: t=1, . . . , N, i=1, . . . , p}, {a
i
: i=1, . . . , q}.

The case of  errors will be considered in a future publication.
By using the rescaling device introduced by Dahlhaus (1997), we obtain the asymptotic

sampling properties of the estimators given here.
The methods developed here are illustrated with a real example. We consider monthly

global temperature anomalies from the northern and southern hemispheres observed
during the period January 1865–November 2002. We will show that there is a significant
upward linear trend in the global temperature and very interesting changes in the structure
of the errors, most significantly between the years 1940 and 1960.

2. T  

2·1. T he model

We observe the time series {X
t
} and the regressors { f

t,i
: t=1, . . . , N, i=1, . . . , q} which

satisfy the models (1) and (2). We assume the orders of the models p and q are known.
To facilitate the study of the properties of the estimators we use the rescaling device
introduced by Dahlhaus (1997), in which the parameters are rescaled as in nonparametric
regression. We assume that X

t
=X
t,N
, f
t,i
= f
i
(t/N), where

X
t,N
=a
1
f
1A tNB+ . . .+a

q
f
qA tNB+et,N (t=1, . . . , N) (3)

and the errors {e
t,N
} satisfy an autoregressive model of order p with time-dependent

parameters:

e
t,N
=b
1A tNB et−1,N+ . . .+b

pA tNB et−p,N+sA tNB gt , (4)

where {g
t
} are independent, identically distributed random variables with E(g0 )=0 and

E(g2
0
)=1. Let bT

u
= (b

1
(u), . . . , b

p
(u)) and aT= (a1 , . . . , aq ). We call the autoregressive

process of the type described in (4) a time-varying  ( p) process.
We obtain an asymptotically efficient estimator of b

t/N
and a through a two-stage

procedure in which we estimate the time-varying autoregressive parameters b
t/N
and use

these to estimate a. At both stages we minimise a local least squares criterion, using a
kernel function. The rescaling technique is used to develop an asymptotic analysis of the
parameters and it does not influence the actual estimation procedure.
From the models (3) and (4) we have

sA tNB gt=X
t,N
− ∑
q

i=1
a
i
f
iA tNB− ∑p

j=1
b
jA tNB et−j,N

=X
t,N
− ∑
q

i=1
a
i
f
iA tNB− ∑p

j=1
b
jA tNBqXt−j,N− ∑q

i=1
a
i
f
iAt− j

N Br
=− ∑

p

j=0
b
jA tNBXt−j,N+ ∑q

i=1
∑
p

j=0
a
i
b
jA tNB fiAt− j

N B , (5)
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where, for all uµ[0, 1], b0 (u)=−1. In § 2·2 we use (5) to define a least squares criterion
for estimating the time-varying autoregressive parameters and the regression parameters.
Let

g
i
(b, k, N)= ∑

p

j=0
b
j
f
iAk− j

N B, gA i (b, u)= ∑
p

j=0
b
j
f
i
(u),

g(b, k, N)T= (g
1
(b, k, N), . . . , g

q
(b, k, N)), gA (b, u)T= (g

1
(b, u), . . . , g

q
(b, u)),

f T
t,N
= ( f
1
(t/N), . . . , f

q
(t/N)), f T

u
= ( f
1
(u), . . . , f

q
(u)),

VB
1
=P 1
0

gA (bu , u)gA (bu , u)Ts(u)2du, VB
2
=P 1
0

gA (bu , u)gA (bu , u)Tdu. (6)

Let

V
1
={a= (a

1
, . . . , a

q
) : dad

2
∏C
1
}, V

2
={b= (b

1
, . . . , b

p
) : dbd

2
∏C
2
}, (7)

where C1 and C2 are finite constants and d .d2 is the Euclidean norm.

2·2. Estimation of the time-varying autoregressive parameters

Though our aim is to estimate {b
t
0
/N

: t
0
=1, . . . , N}, we make our estimator more

general. For each u0µ(0, 1] if |t0/N−u0 |<1/N, or equivalently for each u0µ(0, 1] ifqu0Nr=t0 , where qxr denotes the smallest integer greater than or equal to x, we will use
b@
t
0
/N
as an estimator of b

u
0

.
To construct the estimators we need to define a local least squares criterion. Let us

consider (5). By relabelling n
t
0
,N

(i, j )=a
i
b
j
(t
0
/N) we have

sA t0NB gt0= ∑pj=0 bjA t0NBXt0−j,N− ∑qi=1 ∑pj=0 nt0,N (i, j ) fiAt0− j

N B .
Note that, if we treat the parameters {n

t,N
(i, j )} as a new set of parameters, the above

model is linear in {b
j
(t/N)} and {n

t,N
(i, j )}. Then least squares can be used to estimate

the parameters {b
j
(t/N)} and {n

t,N
(i, j )}. However, because of the nonstationarity of the

errors we weight the least squares criterion using a kernel function, which leads to the
following local least squares criterion:

L
t
0
,N

(b, c)= ∑
N

k=p

1

bN
W At0/N−k/N

b Bq ∑p
j=0

b
j
X
k−j,N

− ∑
q

i=1
∑
p

j=0
c
ij

f
iAk− j

N Br2 , (8)

where b0=−1, bT= (b1 , . . . , bp ), cT= (c10 , . . . , cq0 , . . . , c1p , . . . , cqp ) and b is a bandwidth,
which depends on N. The kernel function W : [−1

2
, 1
2
]�R is assumed to satisfy

P D
−D

W (x)dx=1, P D
−D

W (x)xdx=0.

Let dwd2
2
=∆D
−D

W (x)2dx and w
2
=∆D
−D

W (x)x2dx. The kernel function naturally ‘allows’
us to derive the asymptotic properties: if we impose the restriction |t0/N−u0 |<1/N, and
let b� 0 and bN�2 as N�2, then the least squares criterion becomes increasingly
localised about u0 . We will make this notion of localisation precise in later sections.



648 S S R

Let nT
t,N
= (n
t,N

(1, 0), . . . , n
t,N

(q, 0), . . . , n
t,N

(1, p), . . . , n
t,N

(q, p)). We define the parameter
space

V
3
={c= (c

10
, . . . , c

q0
, . . . , c

1p
, . . . , c

qp
) : dcd∏C

1
(1+C

2
)}

and use, as estimators of b
t
0
/N
and n

t
0
,N
,

b@
t
0
,N

, c@
t
0
,N
=arg min

bµV
2
, cµV
3

L
t
0
,N

(b, c). (9)

We mention again that the minimisation is done by ignoring the fact that n
t
0
,N
is a function

of a
i
and b

j
(t0/N). As in Durbin’s two-stage procedure we consider the minimisation with

respect to b and c ignoring the dependence between b
t
0
/N
and n

t
0
,N
(Durbin, 1960). We

will show in later sections that the estimators thus obtained are still asymptotically efficient.

2·3. Estimation of the regression parameters

We now describe the second stage of our estimation procedure. Given the time-varying
autoregressive estimator b@

t,N
, for t=1, . . . , N, we estimate a in (3). We partition the time

series {X
t,N
} into blocks and estimate the parameters of the regressors a by choosing the

aµC1 which minimises the average squared error over all the blocks.
Let bA denote the bandwidth, where b̃� 0 and bAN�2 as N�2. We note that bA need

not be the same as the bandwidth b, defined in § 2·2; it must merely satisfy some rate
constraints, which will be given in § 3·2. However, a rule of thumb is that the bA should
depend on the smoothness properties of {b

j
( . )}
j
. We partition the same {X

t,N
} into blocks

of length bAN; we assume without loss of generality that bAN is an integer. It is clear there
are t1/bA s such blocks. Let l=bAN. Each block is disjoint and the rth block is of the
form (X

(r−D)l,N
, . . . , X

(r+D)l−1,N
), for r=1, . . . , (t1/bAs−1), where txs−1 is the largest

integer less than or equal to x. Let b@
rl,N
= (b@

1,N
(rbA ), . . . , b@

p,N
(rbA ))T. By substituting b@

rbAN,N
and a into (5) we can estimate s(rbA )2 by

1

bAN
∑

(r+D)l−1

k=(r−D)l
q ∑p
j=0
b@
j,N

(rbA )X
k−j,N

− ∑
q

i=1
∑
p

j=0
a
i
b@
j,N

(rbA ) f
iAk− j

N Br2 . (10)

Now using (10) we define the global least squares criterion

T
N
(a)=bA ∑

t1/bAs−1

r=1

1

bAN
∑

(r+D)l−1

k=(r−D)l
q ∑p
j=0
b@
j,N

(rbA )X
k−j,N

− ∑
q

i=1
∑
p

j=0
a
i
b@
j,N

(rbA ) f
iAk− j

N Br2 ,
(11)

where aT= (a1 , . . . , aq ).
We estimate a by

a@
N
=arg min

aµV
1

T
N
(a). (12)

It is clear we have ignored the observations both at the beginning and end of the sample,
but this will not affect the asymptotic sampling properties of the estimator.

Remark 1. Note that the definition of T
N
(a) uses the rectangular window, I(x)=1 if

xµ(0, 1] and I(x)=0 otherwise. Therefore T
N
is the same as

bA ∑
t1/bAs−1

r=1
∑
N

k=p

1

bAN
IAk−rbN

bN Bq ∑p
j=0
b@
j,N

(rbA )X
k−j,N

− ∑
q

i=1
∑
p

j=0
a
i
b@
j,N

(rbA ) f
iAk− j

N Br2 .
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Naturally other kernels can be used instead of the rectangular window. However, the
inclusion of a general kernel makes the calculations in the Appendix more cumbersome
with no additional benefit for the quality of the asymptotic properties of the estimators.

2·4. Estimation of the time-varying variance

To estimate s(u0 )2 we use the estimators of a and bu
0

obtained above. We estimate
s(t0/N)2 by

s@2
t
0
,N
= ∑
N

k=p

1

bN
W Au0−k/N

b Bq ∑p
j=0
b@
j,N

(u
0
)X
k−j,N

− ∑
q

i=1
∑
p

j=0
a@
i
b@
j,N

(u
0
) f
iAk− j

N Br2 ,
(13)

where |t0/N−u0 |<1/N.
If s(u)2 is constant for all uµ(0, 1], s(u)2=s2, we estimate s2 by

s@2=bA ∑
t1/bAs−1

r=1

1

bAN
∑

(r+D)bAN−1

k=(r−D)bAN
q ∑p
j=0
b@
j,N

(rbA )X
k−j,N

− ∑
q

i=1
∑
p

j=0
a@
i
b@
j,N

(rbA ) f
iAk− j

N Br2 .
3. T     

3·1. Assumptions

The proofs of consistency and asymptotic normality stated here are given in the
Appendix. We also give an expression for the optimal bandwidth b according to a
divergence criterion.
We make the following assumptions.

Assumption 1. The functions {b
j
( . ) : j= 1, . . . , p} and variance s( . )2 have con-

tinuous second derivatives and there exists a d>0 such that, for each uµ(0, 1],
1−Wp

j=1
b
j
(u)zjN0 when |z|∏1+d.

Assumption 2. The regressors { f
i
(u) : i=1, . . . , q} are of bounded variation.

Assumption 3. Let V1 and V2 be as defined in (7). We assume aµint (V1 ) and, for each
uµ[0, 1], b

u
µint (V2 ), where int (V) denotes the interior of V.

Assumption 4. We require that E(g4+c
0

)<2, for some c>0.

Assumption 5. For R
u
as defined in (15), R

u
is nonsingular for all uµ(0, 1].

Assumption 6. Let L
t
0
,N
, T
N
, b@
t
0
,N
, c@
t
0
,N
and a@

N
be as defined in (8), (11), (9) and (12).

Then for a large enough M we have for all N�M that VL
t
0
,N

(b@
t
0
,N

, c@
t
0
,N

)=0 and
V T
N
(a@
N
)=0.

Assumption 7. If VB2 is as defined in (6) then VB2 is nonsingular.

The above assumptions are fairly typical. Assumption 1 implies that the process {e
t,N
}
t

is in some sense ‘locally stationary’ and ensures that var (e
t,N
) is uniformly bounded in t

and N. Assumption 2 implies that the regressors are bounded over the interval (0, 1].
Assumptions 3 and 4 are standard. We use Assumption 6 to prove asymptotic normality
of estimators. This result can in fact be shown without using this assumption, but the
proof is longer and not very instructive.
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3·2. Sampling distribution of the estimators

All the results stated here use the idea of rescaled asymptotics. To illustrate the idea,
consider the local average of a time-varying autoregressive process {Y

t,N
}, about the time

point t0 . Since the time-varying coefficients are only ‘slowly changing’, in some neighbour-
hood of the time point t0 , the observations {Yt

0
+k,N

: k=−M, . . . , M, with M%N}
behave as if they came from a stationary process. Therefore, a local average or weighted
local average about the time point t0 could be considered as an estimator of E(Y

t
0
,N

).
However, the limit as M,N�2, with M%N, still makes no sense, since E(Y

t
0
,N

) may
vary with t0 and N. Thus we need a point of reference to define our limit. To this end, we
impose the constraint |t0/N−u0 |<1/N, so that t0/Nju0 , and consider limN�2E(Y

t
0
,N

).
A local average about the time point t0 should converge to this limit. Roughly speaking,
rescaled asymptotics involve the limit of a function F

t
0
,N
, either random or deterministic,

as N�2 under the restriction that |t0/N−u0 |<1/N.
We now consider the asymptotic properties of the estimator b@

t
0
,N
.

T 1. Suppose that b@
t
0
,N

is defined as in (9). T hen under Assumptions 1–4 and if
|u
0
−t
0
/N|<1/N we have that

b@
t
0
,N
� b
u
0

,

in probability, where b� 0 and bN�2 as N�2.

We now state a result concerning the asymptotic normality of b@
t
0
,N
. If the errors were

stationary the asymptotic variance of b@
t
0
,N
would involve the covariances between the

errors. Here the errors are nonstationary so the covariances are dependent on location.
This motivates us to use the rescaled limit discussed above, and in particular the rescaled
covariance given by Dahlhaus & Giraitis (1998). For each jµZ the rescaled covariance
at location uµ(0, 1] is

c(u, j ))P p
−p

1

|1−Wp
k=1
b
k
(u) exp (−ikv) |2

exp (ijv)dv. (14)

The rescaled covariance c(t/N, j ) approximates the true covariance cov (X
t,N

, X
t−j,N
),

where the degree of approximation depends on N and the rescaled covariance is the true
covariance of a stationary  ( p) process with the autoregressive parameters {b

j
(u)}p
j=1
.

We use the rescaled covariances to define the rescaled variance/covariance matrix. Let R
u

denote a ( p×p)-dimensional matrix where the (i, j )th element of R
u
is

(R
u
)
ij
=c(u, i− j ). (15)

T 2. Suppose that b@
t
0
,N

and R
u

are defined as in (9) and (15). T hen, under
Assumptions 1–6 and for |u

0
−t
0
/N|<1/N, we have

√(bN)(b@
t
0
,N
−b
u
0

)−√(bN)m
b
(u
0
)�N{0, s(u

0
)2dwd2

2
R−1
u
0

} (16)

in distribution as b�2 and bN�2, N�2, where

m
b
(u)=b2w

2
R−1
u

(2R∞
u
b∞
u
+R
u
b◊
u
), (17)

w
2
=∆D
−D

W (x)2dx. Moreover R∞
u
, R◊
u

and b∞
u
, b◊
u

denote the first and second derivatives of R
u

and b respectively; the derivatives are taken pointwise with respect to u over each element
of the matrix and vector.
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The asymptotic bias m
b
(u) and variance s(u

0
)2dwd2

2
R−1
u
0

are used to obtain the optimal
bandwidth in § 3·3.
Now suppose that x= (x1 , . . . , xp ) is a p-dimensional vector, and let dxd

2
=

max
1∏i∏p

( |x
i
| ).

C 1. Suppose that Assumptions 1–7 hold and b@
t
0
,N

is as defined in (9). T hen if
|u
0
−t
0
/N|<1/N we have the following:

(i ) if b4=O{(bN)−1}, then

db@
t
0
,N
−b
u
0

d
2
=O
pA 1

√(bN)
+b2B ;

(ii ) if b4% (bN)−1, then

√(bN)(b@
t
0
,N
−b
u
0

)�N{0, s(u
0
)2dwd2

2
R−1
u
0

},

in distribution, as N�2.

We mention that the asymptotic variance of √(bN)(b@
t
0
,N
−b
u
0

), which is
s(u
0
)2dwd2

2
R−1
u
0

, is asymptotically equivalent to the variance of the estimator bA
t
0
,N
, given

by

bA
t
0
,N
=arg min

bµV
2

∑
k

1

bN
W At0/N−k/N

b B (ek,N−b
1
e
k−1,N

− . . .−b
p
e
k−p,N

)2,

where {e
t
} satisfy the time-varying autoregressive process defined in (4); see Dahlhaus &

Giraitis (1998).
We now consider the distributional properties of the estimator a@

N
.

T 3. L et a@
N

be as defined in (12). T hen under Assumptions 1–4 we have

a@
N
� a,

in probability, where bA� 0, b� 0 and bA 2bN�2 as N�2.

T 4. L et a@
N
, VB
1

and VB
2

be as defined in (12) and (6) respectively. T hen under
Assumptions 1–7 we have

√N(a@
N
−a)�N(0, 4VB −1

2
VB
1
VB −1
2

), (18)

in distribution, where bA� 0, b� 0 and bA 3bN�2 as N�2.

Note that the asymptotic properties of a@
N
are the same as the asymptotic properties

of the estimators of the regression parameters under the assumption that {b
u
} are

known.
Since {g(b@

k,N
, k, N)} are observed we can estimate both VB1 and VB2 . By using the

estimators s@2
t,N
of the time-varying variance, defined in (13), we can use

VC
1
=

1

N
∑
N

k=p
g(b@
k,N

, k, N)g(b@
k,N

, k, N)Ts@2
k,N

, VC
2
=

1

N
∑
N

k=p
g(b@
k,N

, k, N)g(b@
k,N

, k, N)T

as estimators of VC1 and VC2 respectively. These estimators can be used to construct confidence
intervals for a.
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Remark 2. Note that, if s(u)2=s2 for all uµ(0, 1], then

√N(a@
N
−a)�N(0, 4s2VC −1

2
)

in distribution.

3·3. Optimal choice of bandwidth

It is desirable to use the bandwidth which gives the ‘best’ estimator of b
u
. By optimal

bandwidth we mean the bandwidth which minimises a deviation criterion, which is usually
the mean squared error.
From the results above we know that the bandwidth b appears both in the asymptotic
bias and the variance of b@

t
0
,N
. Therefore, a bandwidth will need to be selected which is a

compromise between the two terms and minimises a mean square criterion. It is worth
noting we are using the term bias some what loosely: we are referring to R−1

u
0

m
b
(u
0
), defined

in (17), which strictly speaking is not the true bias E(b@
t
0
,N
−b
u
0

).
In contrast, the bandwidth bA used in the second stage to estimate the parameters
of the regressors behaves differently. Given that bandwidth bA satisfies sufficient rate
constraints, then asymptotically a@

N
is unbiased. Therefore in this section we will con-

centrate on evaluating the optimal bandwidth b, used to estimate the parameters of the
time-varying autoregressive model.
For any p+q( p+1)-dimensional vector v= (v1 , . . . , vp+q(p+1) ) let vT

e
= (v
1
, . . . , v

p
). By

using (A2) for a large enough N we obtain

E{(b@
t
0
,N
−b
u
0

)T (b@
t
0
,N
−b
u
0

)}=E(JT
t
0
,N

J
t
0
,N

),

where

J
t
0
,N
={(V2L*

t
0
,N

)−1VL*
t
0
,N

(b
u
0

, n)}
e
;

L*
t,N
is defined in (A1). However, it is clear that it is difficult to evaluate E(JT

t,N
J
t,N

) because
of the random matrix (V2L*

t,N
)−1. In such situations it is usual to replace the denominator

with its limit, which is usually deterministic, and we do this here. It can be shown that
(V2L*

t
0
,N
)� V

u
0

in probability, where V
u
=diag (R

u
, f
u
f T
u
), and we replace (V2L*

t
0
,N
)−1 with

the inverse of V
u
0

. However, since V
u
0

is singular, we use the Moore–Penrose generalised
inverse V−

u
0

. Therefore we have that

(b@
t
0
,N
−b
u
0

)j{V−
u
0

VL*
t
0
,N

(b
u
0

, n
t
0
,N

)}
e

={diag (R−1
u
0

, ( f
u
0

f T
u
0

)− )VL*
t
0
,N

(b
u
0

, n
t
0
,N

)}
e
=R−1
u
0

{VL*
t
0
,N

(b
u
0

, n
t
0
,N

)}
e
.

Let JB
t
0
,N
=R−1
u
0

{VL*
t
0
,N

(b
u
0

, n
t
0
,N

)}
e
. Then by using (A4) we have

E(JB T
t
0
,N

JB
t
0
,N

)=dwd2
2
s(u
0
)2 tr (R−1

u
0

)+tr {m
b
(u
0
)m
b
(u
0
)T}+oA 1

bN
+b4B .

We use E(JB T
t
0
,N

JB
t
0
,N

) as the mean square criterion, instead of E(JT
t
0
,N

J
t
0
,N

), and use, as the
optimal bandwidth,

bopt=arg min
b P 10 [dwd2

2
s(u)2 tr (R−1

u
)+tr {m

b
(u)m
b
(u)T}]du.

Therefore, the optimal bandwidth depends on the smoothness properties of {b
j
( . )}
j
. In

practice R
u
will have to be estimated from the residuals and the derivatives {b∞

j
( . )}
j
by

taking first and second differences.
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3·4. Sampling properties of other estimation methods

We describe two alternative estimation methods and state their sampling properties. The
proofs in the later sections can be modified accordingly to prove the results stated here.
One approach is to treat the errors as if they were independent and identically distributed,
and to estimate the parameters of the regression model by least squares. These estimates
are then used to estimate the residuals, which are then used to fit the autoregressive model.
This method can be easily generalised to include nonstationary errors. In this case we
use aAN as an estimator of the regression parameters, where

aAN=arg min
aµV
1

1

N
∑
N

k=1
qXk,N− ∑q

j=1
a
j
f
jA kNBr2 .

We let

e@
k,N
=X
k,N
− ∑
q

j=1
aA j fjA kNB ,

where aAN= (aA1 , . . . , aAq ). As an estimator of bt
0
/N
we use

bA
t
0
,N
=arg min

bµV
2

∑
k

1

bN
W At0/N−k/N

b BAe@k,N− ∑p
j=1

b
j
e@
k−j,NB2 .

It can be shown that

√N(aA−a)�N(0, 4V−1
2

V
1
V−1
2

),

in distribution, where

V
1
=P 1
0

f
u
f T
u
du, V

2
=P 1
0

f
u
f T
u
c(u, 0)du

and bA
t
0
,N
has the same asymptotic distribution as b@

t
0
,N
, given in (9).

A drawback of the above procedure is that V2 contains c(u, 0), which roughly speaking
is the variance of the errors at rescaled time u. To remove this we can use a three-stage
scheme and estimate a once again using {bA

t
0
,N

: t
0
=1, . . . , N}. To do this we estimate the

innovations s(k/N)g
k
and use aA2,N as the actual estimator of a, where

aA2,N=arg min
aµV

bA ∑
t1/bAs−1

r=1

1

bAN
∑

(r+D)bAN−1

k=(r−D)bAN
q ∑p
j=0
bA
j,N

(rbA )X
k−j,N

− ∑
q

i=1
∑
p

j=0
a
i
bA
j,N

(rbA ) f
iAk−j

N Br2 .
Note the similarity between the definitions of aA2,N and a@N , given in (12). Asymptotically aA2,N
has the same distribution as a@

N
, given in (18).

4. D : G  

There has been intense speculation and research on global warming, and, if it exists, to
find variables which cause this phenomenon. There is clear evidence (Subba Rao &
Tsolaki, 2004) that the global temperatures are nonstationary and here our objective is
to analyse the monthly temperature anomalies observed during the period January 1856
to November 2002. Our approach confirms the general belief that global warming exists
and identifies various periods over which the structural changes may have occurred.
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The data were obtained from the Climate Research Unit of the University of East
Anglia, England (http://www.cru.uea.ac.uk). By anomalies we mean the difference of
the temperatures from some reference value. Figures 1(a) and (b) display the temperature
anomalies dataset from the two hemispheres. There is a clear seasonal component, which
we model using a sine function with period 12 months. Moreover, the plots also suggest

Fig. 1: Global temperature data. (a) northern hemisphere anomalies, (b) southern hemisphere anomalies,
(c) northern hemisphere time-varying autoregressive parameters, (d) southern hemisphere time-varying
autoregressive parameters, (e) northern hemisphere time-varying variance of the innovation, (f ) southern

hemisphere time-varying variance of the innovation.
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that there exists a slight linear upwards trend which suggests a global warming effect.
From the plot we also see a larger variance at the beginning and some regions of irregular
fluctuations, which suggest that the data could be nonstationary. We use the two-stage
method described above to fit models (3) and (4). More precisely we fit a model of the form

X
t
=a
0
+a
1
t+a
2
sin (12t×2p)+e

t
, (19)

where

e
t
=b
t
e
t−1
+s
t
g
t

(t=1, . . . , 1764),

with X
t
being the temperature anomalies. In the rescaled framework this is equivalent to

X
t,1764

=a
0
+aA1A t

1764B+a2 sinA12×1764× t

1764
×2pB+et,1764 ,

where

e
t,1764

=bA A t

1764B et−1,1764+sA t

1764B gt (t=1, . . . , 1764),

with X
t
=X
t,1764

, e
t
=e
t,1764

aA1=1764a1 and bt=b
A (t/1764); the regressors are f1 (u)=u

and f2 (u)=sin (12×1764×u×2p) for uµ(0, 1]. Since the rescaling device is only used
to derive the asymptotic sampling properties and does not affect the estimation method,
we use model (19).
We use a rectangular kernel to estimate the time-varying  (1) parameters with the
bandwidth b=0·1. In view of endpoint considerations our estimates for the time-varying
autoregressive parameters, for both hemispheres, only begin at time point t=88 and end
at time point t=1675, which corresponds approximately to the years 1860–1998. The
plots of the time-varying autoregressive parameters and variance have been smoothed
using the S-Plus command smooth.
We fit the model in (19) for the monthly northern temperature anomalies. We obtain

a@0=−0·29, a@1=0·00032 and a@2=0·028; the time-varying autoregressive estimates {b@
t
}
t

are plotted in Fig. 1(c) and the time-varying variance estimates are plotted in Fig. 1(e).
The sample variance-covariance matrix for the estimators of (a0 , a1 , a2 ) is

va@rAa@0a@1a@
2
B= 1

1586A5·95 0·0030 0·0030

0·0030 1·5×10−6 1·5×10−6

0·0030 1·5×10−6 1·5×10−6B .
Using the normal distribution and the sample variance of a@1 , 115861·5×10−6, we see that
the coefficient a@1 is significantly different from zero, indicating that there is evidence of
an increase in temperature. For the southern hemisphere data, we obtain a@0=−0·19,
a@1=0·00036 and a@2=0·012. The corresponding time-varying autoregressive estimates {b

@
t
}

are plotted in Fig. 1(d) and the time-varying variance estimates are plotted in Fig. 1(f ).
The sample variance-covariance matrix for the estimators of (a0 , a1 , a2 ) is given by

va@rAa@0a@1a@
2
B= 1

1586A14 0·0082 0·0082

0·0082 4·8×10−6 4·8×10−6

0·0082 4·8×10−6 4·8×10−6B .
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Again using the normal distribution we see that the coefficient a@1 is significantly different
from zero, so that it is clear that the temperature in both hemispheres is increasing by
approximately 0·004 degrees a year. The estimates of the time-varying autoregressive
parameters in the two hemispheres identify common structural changes: the time-varying
 (1) parameter, b@

t
, in both plots declines between 1900 and 1940, rises again between

1940 and 1960 and appears to level off after 1960. The analysis appears to confirm the
belief (Parker et al., 1994) that there was a significant change in global weather. To some
extent Wu et al. (2001) also support this view. They assume that the temperature anomalies
satisfy the model

X
k
=m
k
+Z
k
,

where {Z
k
} is a stationary process and m

k
are the means which are monotonically

increasing. They develop a method for testing for changepoints, which they apply to the
temperature anomaly data. They show that there are significant changes around the 1920’s,
and that from 1920 to 1945 there are a number of successive increasing changepoints.
Overall the autoregressive coefficient for the southern hemisphere seems to be larger

than for the northern hemisphere, and the variation of the autoregressive coefficient in
the southern hemisphere is larger. On the other hand, Figs 1(e) and (f ) show that the
variance seems to be greater in the northern hemisphere than in the southern hemisphere.
It is well known that climatic changes differ between the hemispheres, partly because
the southern hemisphere is covered by oceans, which can cause greater volatility in the
weather.
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Analysis of the sampling properties of the estimators

For many results in this section we will use some convergence results which are proved in a
technical report available from the author.
First we prove weak consistency of b@

t
0
,N
. If the process were stationary we would normally show

consistency of the estimator via convergence of the least squares criterion to its expectation.
However, as the errors are nonstationary, we will use the rescaled limit

LB
u
(b, c)= ∑

p

j
1
=0,j
2
=0

b
j
1

b
j
2Cc(u, j

1
− j
2
)+q ∑q

i=1
a
i
f
i
(u)r2D

−2q ∑p
j=0
∑
q

i=1
c
ij

f
i
(u)rA ∑p

j=0
b
jBq ∑q
i=1
a
i
f
i
(u)r+q ∑q

i=1
∑
p

j=0
c
ij

f
i
(u)r2 ,

where bT= (b1 , . . . , bp ) and cT= (c10 , . . . , cq0 , . . . , c1p , . . . , cqp ).

Proof of T heorem 1. By using a result from the author’s technical report we have

L
t
0
,N
(b@
t
0
,N

, c@
t
0
,N

)�LB
u
0

(b
u
0

, n
t
0
,N

) in probability. To show that b@
t
0
,N
�b
u
0

in probability, we must
show that the minimum of LB

u
0

is unique for b
u
0

. We see that LB
u
0

(b, c) attains its minimum, which
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is s(u0 )2, when

∑
p

j
1
=0

b
j
1

c(u
0
, j
1
− j )=0, c

ij
=a*
i
b
j

(i=1, . . . , q, j=1, . . . , p),

where {a*
i
} satisfies Wq

i=1
a*
i
f
i
(u
0
)=Wq

i=1
a
i
f
i
(u
0
). It is clear that Wp

j
1
=0

b
j
1

c(u
0
, j
1
− j )=0 are the

Yule–Walker equations, which are satisfied only when b
j
1

=b
j
(u
0
). Thus we have that b@

t
0
,N
�b
u
0in probability, as asserted. %

We now investigate the distributional properties of b@
t
0
,N
, which are determined by the local least

squares criterion L
t
0
,N
(b, c). Analysis of the random function L

t
0
,N

(b, c) is complicated. Instead we
define an alternative criterion which will yield the same asymptotic properties as L

t
0
,N

(b, c). Our
use of the alternative criterion was motivated by a similar device used by Durbin (1960). Let

L*
t
0
,N

(b, c*)= ∑
N

k=p

1

bN
W Au0−k/N

b BqXk,N+ ∑p
j=1

b
j
e
k−j,N

− ∑
q

i=1
∑
p

j=0
c*
ij

f
iAk− j

N Br2 . (A1)

We treat L*
t
0
,N

(b, c*) as if the time-varying  errors {e
k,N
} were observed. If

b@*
t
0
,N

, c@*
t
0
,N
=arg min

bµV
2
,cµV*
3

L*
t
0
,N

(b, c),

then it is straightforward to show that b@
t
0
,N
jb@*
t
0
,N
. The transformation from L

t
0
,N
to L*

t
0
,N

ensures that b@
t
0
,N
and c@*

t
0
,N
are asymptotically uncorrelated, which simplifies the subsequent

calculations.
In many likelihood methods it is common to establish asymptotic normality of the estimator
through the gradient of the likelihood function. However, in the nonstationary case, the gradient
of the localised least squares criterion will contain a bias which causes the estimators to be biased
also. Nevertheless, by identifying the bias and treating the bias separately we will be able to show
the asymptotic normality of the gradient of the localised least squares criterion. Under Assumption 6
we have

((b@
t
0
,N
−b
u
0

)T, (c@*
t
0
,N
−n
t
0
,N

)T )T=V2L*
t
0
,N

(b
u
0

, n
t
0
,N

)−1VL*
t
0
,N

(b
u
0

, n
t
0
,N

). (A2)

We decompose VL*
t
0
,N

(b
u
0

, n
t
0
,N

) into

VL*
t
0
,N

(b
u
0

, n
t
0
,N

)=S
t
0
,N
+B
t
0
,N

,

where

S
t
0
,N
=−2 ∑

N

k=p

1

bN
W At0/N−k/N

b BsA kNB gkYu−1,N ,
B
t
0
,N
=−2 ∑

N

k=p

1

bN
W At0/N−k/N

b BC ∑p
j=1
qbj (u0 )−bjA kNBr ek−j,NDYk−1,N , (A3)

and Y T
k−1,N

= (e
k−1,N

, . . . , e
k−p,N

, f T
k,N

, . . . , f T
k−p,N

). It can be shown that

E(B
t
0
,N

)T= (2m
b
(u
0
)T, 0T
q(p+1)

)+o(b2 ), E(S
t
0
,N

)=0
p+q(p+1)

,

var (B
t
0
,N

)=OA 1NB , var (St0,N )= dwd22bN
s(u
0
)2V
u
0

, cov (B
t
0
,N

, S
t
0
,N

)=OA 1NB , (A4)

where V
u
=diag (R

u
, f
u
f T
u
) and R

u
is the variance-covariance matrix defined in (15), m

b
(u0 ) is

defined in (17) and 0
r
is an r-dimensional zero vector. For any p+q( p+1)-dimensional vector

v= (v1 , . . . , vp+q(p+1) ) let vT
e
= (v
1
, . . . , v

p
). By using V2L*

t
0
,N
(b
u
0

, n
t
0
,N

)�V
u
0

in probability, (A4)
and standard methods it can be shown that

√(bN)(b@
t
0
,N
−b
u
0

)=1
2
√(bN)R−1

u
0

(S
t
0
,N

)
e
+√(bN)m

b
(u
0
)+o
p
(1). (A5)
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Proof of T heorem 2. We have from (A5) that √(bN)(b@
t
0
,N
−b
u
0

)−1
2
√(bN)m

b
(u
0
) and

R−1
u
0

(S
t
0
,N

) have the same asymptotic distribution. Since S
t
0
,N
is the sum of martingale differences,

by using the conditional Lindeberg condition (Hall & Heyde, 1980, Theorem 3.2) it is straight-
forward to show that √(bN)S

t
0
,N
�N(0, s(u

0
)2dwd2

2
V
u
0

) in distribution. Therefore we have
established the required result. %

Proof of Corollary 1. By using (A5), we have that

db@
t
0
,N
−b
u
0

d
2
=O
p
{R−1
u
0

(S
t
0
,N

)
e
+m
b
(u
0
)}=O

pA 1

√(bN)
+b2B , (A6)

since var {√(bN)S
t
0
,N

}=O(1) and m
b
(u0 )=O(b2 ). This proves part (i).

Theorem 2 easily proves part (ii). %

We use the following bound in our investigation of a@
N
. By using Corollary 1 we have

sup

1∏r∏t1/bAs
db@
rbAN,N
−b
rbA
d
2
=O
pA 1

bA√(bN)
+

b2

bA B . (A7)

To derive the asymptotic sampling distribution of a@
N
we need to consider the global least squares

criterion T
N
(a@
N
). To simply the analysis we replace the estimators of the time-varying autoregressive

parameters with the true parameters and use the corrected global least squares criterion

TB
N
(a)= ∑

t1/bAs

r=1
bA ∑
(r+1/2)bAN−1

k=(r−1/2)bAN

1

bAN q ∑p
j=0
b
j
(rbA )X

k−j,N
− ∑
q

i=1
∑
p

j=0
a
i
b
j
(rbA ) f
iAk− j

N Br2 . (A8)

In order to study the asymptotic properties of a@
N
through TB

N
(a) we will need to show that T

N
(a)

and TB
N
(a) are sufficiently close to each other. We shall assume in the analysis below that

bA√(bN)�2, since from (A7) this implies that sup
1∏r∏t1/bAs

db@
rbAN,N
−b
rbA
d
2
� 0, in probability.

Under the assumption that bA√(bN)�2 and by using the results in our technical report we can
show that

sup

aµV
dT
N
(a)−TB

N
(a)d=O

pA 1

bA√(bN)
+b2B , dV2TN (a)−V2TB

N
(a)d=O

pA 1

bA√(bN)
+b2B .

Furthermore, we can show that VTB
N
(a) at the true value a=a has the better rate

√NVT
N
(a)=√NVTB

N
(a)+O

pA 1

bA 3/2√(bN)
+

b2

bA 1/2B .
Therefore, if b3/2√(bN)�2 and b2=o(bA 1/2 ) then √NVT

N
(a)=√NVTB

N
(a)+o

p
(1). We use these

bounds in the results below.

Proof of T heorem 3. We first define the asymptotic limit function

TB (a)= ∑
q

i
1
,i
2
=1

{a
i
1

a
i
2

−a
i
1

a
i
2

−a
i
2

a
i
1

+a
i
1

a
i
2

} ∑
p

j
1
,j
2
=0

g( j
1
, j
2
, i
1
, i
2
),

where

g( j
1
, j
2
, i
1
, i
2
)=P 1

0
b
j
1

(u)b
j
2

(u) f
i
1

(u) f
i
2

(u)du.

Under the assumption bA 2bN�2, results from our technical report give that T
N
(a)�TB (a)

uniformly in a. Since TB (a) has a unique minimum the arguments used in the proof of Theorem 1
prove Theorem 3. %
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If b� 0, bA� 0 and bA 2N�2 as N�2 it can be shown that

√NTB
N
(a)=√NM

N
+o
p
(1), (A9)

where

M
N
=−2 ∑

t1/bAs−1

r=1
bA ∑
(r+1/2)bAN−1

k=(r−1/2)bAN

1

bAN
g(b
k/N

, k, N)g
k
.

Proof of T heorem 4. If bA 3bN�2 it can be shown that V2T
N
=VB2+o

p
(1). By using (A9) we

can show that

√N(a@
N
−a)={VB −1

2
+o
p
(1)}{√NM

N
+o
p
(1)}. (A10)

By using the Lindeberg condition we can show that √NM
N
�N(0, 4VB1 ) in distribution. Therefore,

by using (A10) and the above we have the result. %
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