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Abstract

The classical multiple regression model plays a very important role in statistical analysis.

The typical assumption is that changes in the response variable, due to a small change in a given

regressor, is constant over time. In other words, the rate of change is not influenced by any

unforeseen external variables and remains the same over the entire time period of observation.

This strong assumption may, sometimes, be unrealistic, for example, in areas like social sciences,

environmental sciences etc. In view of this, we propose stochastic coefficient regression (SCR)

models with stationary, correlated random errors and consider their statistical inference. We

assume that the coefficients are stationary processes, where each admits a linear process repre-

sentation. We propose a frequency domain method of estimation, the advantage of this method

is that no assumptions on the distribution of the coefficients are necessary. These models are

fitted to two real data sets and their predictive performance are also examined.

Keywords and phrases Gaussian maximum likelihood, frequency domain, locally stationary

time series, multiple linear regression, nonstationarity, stochastic coefficients.

1 Introduction

The classical multiple linear regression model is ubiquitous in many fields of research. However,

in situations where the response variable {Yt} is observed over time, it is not always possible to

assume that the influence the regressors {xt,j} exert on the response Yt is constant over time. A

classical example, given in Burnett and Guthrie (1970), is when predicting air quality as a function

of pollution emission. The influence the emissions have on air quality on any given day may depend

on various factors such as the meterological conditions on the current and previous days. Modelling

the variable influence in a deterministic way can be too complex and a simpler method could be

1



to treat the regression coefficients as stochastic. In order to allow for the influence of the previous

regression coefficient on the current coefficient, it is often reasonable to assume that the underlying

unobservable regression coefficients are stationary processes and each coefficient admits a linear

process representation. In other words, a plausible model for modelling the varying influence of

regressors on the response variable is

Yt =
n∑

j=1

(aj + αt,j)xt,j + εt =
n∑

j=1

ajxt,j + Xt, (1)

where {xt,j} are the deterministic regressors, {aj} are the mean regressor coefficients, E(Xt) = 0

and satisfies Xt =
∑n

j=1 αt,jxt,j + εt, {εt} and {αt,j} are jointly stationary linear time series with

E(αt,j) = 0, E(εt) = 0, E(α2
t,j) < ∞ and E(ε2

t ) < ∞. We observe that this model includes the

classical multiple regression model as a special case, with E(αt,j) = 0 and var(αt,j) = 0. The

above model is often refered to as a stochastic coefficient regression (SCR) model. Such models

have a long history in statistics (see Hildreth and Houck (1968) and Swamy (1970, 1971), Burnett

and Guthrie (1970), Rosenberg (1972, 1973), Duncan and Horn (1972), Fama (1977), Bruesch and

Pagan (1980), Swamy and Tinsley (1980), Synder (1985), Pfeffermann (1984), Newbold and Bos

(1985), Stoffer and Wall (1991) and Franke and Gründer (1995). For a review of this model the

reader is refered to Newbold and Bos (1985). In recent years several other statistical models have

been proposed to model temporal changes, examples of such models include varying coefficient

models and locally stationary processes. In this article, our aim is to revisit the SCR model,

comparing the SCR model with these alternative models, we show that there is a close relationship

between them (see Section 2). Having demonstrated that SCR models can model a wide range of

time-varying behaviours, in the rest of the article we consider methods of testing for randomness

of the regression coefficients and develop parameter estimation methods which do not require any

assumptions on the distribution of the stochastic coefficients.

In the aforementioned literature, it is usually assumed that {αt,j} satisfies a linear process with

structure specified by a finite number of parameters estimated by Gaussian maximum likelihood

(GML). In the case {Yt} is Gaussian, the estimators are asymptotically normal and the variance of

these estimators can be obtained from the inverse of the Fisher Information matrix. Even in the

situation {Yt} is non-Gaussian, the Gaussian likelihood is usually used as the objective function

to be maximised, in this case the objective function is often called the quasi-Gaussian likelhood

(quasi-GML). The quasi-GML estimator is a consistent estimate of the parameters (see Ljung and

Caines (1979), Caines (1988), Chapter 8.6 and Shumway and Stoffer (2006)), but when {Yt} is

non-Gaussian, obtaining an expression for the standard errors of the quasi-GML estimators seems
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to be extremely difficult. Therefore implicitly it is usually assumed that {Yt} is Gaussian, and

most statistical inference is based on the assumption of Gaussianity. In several situations the

assumption of Gaussianity may not be plausible, and there is a need for estimators which are free

of distributional assumptions. In this paper we address this issue.

In Section 3, two methods to estimate the mean regression parameters and the finite number of

parameters which are characterising the impulse response sequences of the linear processes are con-

sidered. The suggested methods are based on taking the Fourier transform of the observations, this

is because spectral methods usually don’t require distributional assumptions, are computationally

fast, and can be analysed asymptotically (see Whittle (1962), Walker (1964), Dzhapharidze (1971),

Hannan (1971, 1973), Dunsmuir (1979), Taniguchi (1983), Giraitis and Robinson (2001), Dahlhaus

(2000) and Shumway and Stoffer (2006)). Both of the proposed methods offer an alternative per-

spective of the SCR model and are free of any distributional assumptions. In Section 5.2 and 5.3

we consider the asymptotic properties of the proposed estimators. A theoretical comparison of our

estimators with the GML estimator, in most cases, is not possible, because it is usually not possible

to obtain the asymptotic variance of the GML estimator. However, if we consider a subclass of

SRC models, where the regressors are smooth, then the asymptotic variance of the GML estimator

can be derived. Thus in Section 5.4 we compare our estimator with the GML estimator, for the

subclass SCR models with smooth regressors, and show that both estimators have asymptotically

equivalent distributions.

In Section 6 we consider two real data sets. The two time series are taken from the field of

economics and evironmental sciences. In the first case, the SCR model is used to examine the

relationship between monthly inflation and nominal T-bills interest rates, where monthly inflation

is the response and the T-bills rate is the regressor. We confirm the findings off Newbold and Bos

(1985), who observe that the regression coefficient is stochastic. In the second case, we consider the

influence man made emissions (the regressors) have on particulate matter (the reponse variable)

in Shenandoah National Park, U.S.A. Typically, it is assumed that man-made emissions linearly

influence the amount of particulate matter and a multiple linear regression model is fitted to the

data. We show that there is clear evidence to suggest that the regression coefficients are random,

hence the dependence between man-made emissions and particulate matter is more complicated

than previously thought.

The proofs can be found in the technical report.
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2 The stochastic coefficient regression model

2.1 The model

Throughout this paper we will assume that the response variable {Yt} satisfies (1), where the

regressors {xt,j} are observed and the following assumptions are satisfied.

Assumption 2.1 (i) The stationary time series {αt,j} and {εt} satisfy the following MA(∞)

representations

αt,j =
∞∑

i=0

ψi,jηt−i,j , for j = 1, . . . , n, εt =
∞∑

i=0

ψi,n+1ηt−i,n+1, (2)

where for all 1 ≤ j ≤ n+1,
∑∞

i=0 |ψi,j | < ∞,
∑∞

i=0 |ψi,j |2 = 1, E(ηt,j) = 0, E(η2
t,j) = σ2

j,0 < ∞,

for each j, {ηt,j} are independent, identically distributed (iid) random variables, they are also

independent over j.

The parameters {ψi,j} are unknown but have a parametric form, that is there is a known func-

tion ψi,j(·), such that for some vector θ0 = (ϑ0,Σ0), ψi,j(ϑ0) = ψi,j and Σ0 = diag(σ2
1,0, . . . , σ

2
n+1,0) =

var(η
t
), where η

t
= (ηt,1, . . . , ηt,n+1).

(ii) We define the compact parameter spaces Ω ⊂ R
n, Θ1 ⊂ R

q and Θ2 ⊂ diag(Rn+1), we have
∑∞

i=0 |ψi,j(ϑ)|2 = 1. We shall assume that a0 = (a1, . . . , an), ϑ0 and Σ0 (which are defined

in (i), above) lie in the interior of Ω, Θ1 and Θ2 respectively.

Define the transfer function Aj(ϑ, ω) = (2π)−1/2
∑∞

k=0 ψk,j(ϑ) exp(ikω), and the spectral

density fj(ϑ, ω) = |Aj(ϑ, ω)|2. Using this notation the spectral density of the time series

{αt,j} is σ2
j,0fj(ϑ0, ω). Let cj(θ, t−τ) = σ2

j

∫
fj(ϑ, ω) exp(i(t−τ)ω)dω (hence cov(αt,j , ατ,j) =

cj(θ0, t − τ)).

It should be noted that it is straightforward to generalise (2), such that the vector time series

{αt = (αt,1, . . . , αt,n)}t has a vector MA(∞) representation. However, using this generalisation

makes the notation quite cumbersome. For this reason, we have considered the simpler case (2).

Example 2.1 If {αt,j} and εt are autoregressive processes, then Assumption 2.1 is satisfied. That

is {αt,j} and εt satisfy

αt,j =

pj∑

k=1

φk,jαt−k,j + ηt,j j = 1, . . . , n and εt =

pn+1∑

k=1

φk,n+1εt−k + ηt,n+1,
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where ηt,j are iid random variables with E(ηt,j) = 0 and var(ηt,j) = σ2
j and the roots of the

characteristics polynomial 1 − ∑pj

k=1 φk,jz
k lie outside unit circle. In this case, the true param-

eters are ϑ0 = (φ1,1, . . . , φpn+1,n+1) and Σ0 = diag(
σ2
1

(
R

g1(ω)dω)
, . . . ,

σ2
n+1

(
R

gn+1(ω)dω)
), where gj(ω) =

1
2π |1 − ∑pj

k=1 φk,j exp(ikω)|−2.

2.2 A comparision of the SCR model with other statistical models

In this section we show that the SCR model is closely related to several popular statistical models.

Of course, the SCR model includes the multiple linear regression model as a special case, with

var(αt,j) = 0 and E(αt,j) = 0.

2.2.1 Varying coefficient models

In several applications, linear regression models with time-dependent parameters are fitted to the

data. Examples include the varying-coefficient models considered by Martinussen and Scheike

(2000), where {Yt} satisfies

Yt =
n∑

j=1

αj(
t

T
)xt,j + εt, t = 1, . . . , T (3)

and {αj(·)} are smooth, unknown functions and {εt}t are iid random variables with E(εt) = 0 and

var(εt) < ∞. Comparing this model with the SCR model, we observe that the difference between

the two models lies in the modelling of the time-dependent coefficients of the regressors. In (3)

the coefficient of the regressor is assumed to be deterministic, whereas the SCR model treats the

coefficient as a stationary stochastic process. In some sense, one can suppose that the correlation

in {αt,j} determines the ‘smoothness’ of {αt,j}. The higher the correlation of {αt,j}, the smoother

the coefficients are likely to be. Thus the SCR model could be used as an alternative to varying

coefficient models for modelling ‘rougher’ changes.

2.2.2 Locally stationary time series

In this section we show that a subclass of SCR models and the class of locally stationary linear

processes defined in Dahlhaus (1996) are closely related. We restrict the regressors to be smooth

xt,j , and we will suppose that there exist smooth functions {xj(·)} such that the regressors satisfy

xt,j = xj(
t
N ) for some value N (setting 1

T

∑

t x2
t,j = 1) and {Yt,N} satisfies

Yt,N =
n∑

j=1

ajxj(
t

N
) + Xt,N , where Xt,N =

n∑

j=1

αt,jxj(
t

N
) + εt t = 1, . . . , T. (4)
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A nonstationary process can be considered locally stationary process, if in any neighbourhood of

t, the process can be approximated by a stationary process. We now show that {Xt,N} (defined in

(4)) can be considered as a locally stationary process.

Proposition 2.1 Suppose Assumption 2.1(i,ii) is satisfied, and the regressors are bounded (supj,v |xj(v)| <

∞), let Xt,N be defined as in (4) and define the unobserved stationary process Xt(v) =
∑n

j=1 αt,jxj(v)+

εt. Then we have

|Xt,N − Xt(v)| = Op(|
t

N
− v|).

PROOF. Using the continuity of the regressors the proof is straightforward, hence we omit the

details. ¤

The above result shows that in the neighbourhood of t, {Xt,N} can locally be approximated by

a stationary process. Therefore the SCR model with slowly varying regressors can be considered

as a ‘locally stationary’ process.

We now show the converse, that is the class of locally stationary linear processes defined in

Dahlhaus (1996), can be approximated to any order by an SCR model with slowly varying regres-

sors. Dahlhaus (1996) defines locally stationary process as the stochastic process {Xt,N} which

satisfies the representation

Xt,N =

∫

At,N (ω) exp(itω)dZ(ω) (5)

where {Z(ω)} is a complex valued orthogonal process on [0, 2π] with Z(λ+π) = Z(λ), E(Z(λ)) = 0,

and E{dZ(λ)dZ(µ)} = η(λ + ν)dλdµ, η(λ) =
∑∞

j=−∞ δ(λ + 2πj) is the periodic extension of the

Dirac delta function. Furthermore, there exists a Lipschitz continuous function A(·), such that

supω,t |A( t
N , ω) − At,N (ω)| ≤ KN−1, where K is a finite constant which does not depend on N .

In the following lemma we show that there always exists a SCR model which can approximate

a locally stationary process to any degree.

Proposition 2.2 Let us suppose that {X̃t,N} is a locally stationary process, which satisfies (5) and

supu

∫
|A(u, λ)|2dλ < ∞. Then for any basis {xj(·)} of L2[0, 1], and for every δ there exists an

nδ ∈ Z, such that X̃t,N can be represented as

X̃t,N =

nδ∑

j=1

αt,jxj(
t

N
) + Op(δ + N−1), (6)

where {αt} = {(α1, . . . , αt,nδ
)}t is a second order stationary vector process.
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PROOF. In the technical report. ¤

One application of the above result is that if the covariance structure of a time series is believed

to change smoothly over time, then a SCR model can be fitted to the observations.

In the sections below we will propose a method of estimating the parameters in the SCR model

and use the SCR model with slowly varying parameters as a means of comparing the proposed

method with existing methods.

3 The estimators

We now consider two methods to estimate the mean regression parameters a0 = (a1,0, . . . , an,0)

and the parameters θ0 in the time series model (defined in Assumption 2.1).

3.1 Motivating the objective function

To motivate the objective function consider the ‘localised’ finite Fourier transform of {Yt}t centered

at t, that is JY,t(ω) = 1√
2πm

∑m
k=1 Yt−m/2+k exp(ikω) (where m is even). We can partition JY,t(ω)

into the sum of deterministic and stochastic terms, JY,t(ω) =
∑n

j=1 aj,0J
(j)
t,m(ω) + JX,t(ω), where

J
(j)
t,m(ω) = 1√

2πm

∑m
k=1 xt−m/2+k,j exp(ikω), JX,t(ω) = 1√

2πm

∑m
k=1 Xt−m/2+k exp(ikω) and (Yt, Xt)

are defined in (1). Let us consider the Fourier transform JY,t(ω) at the fundamental frequencies

ωk = 2πk
m and define the m(T −m)-dimensional vectors JY,T = (JY,m/2(ω1), . . . , JY,T−m/2(ωm)) and

Jx,T (a0) = (
∑n

j=1 aj,0J
(j)
m/2,m(ω1), . . . ,

∑n
j=1 aj,0J

(j)
T−m/2,m(ωm)). In order to derive the objective

function, we observe that JY,T is a linear transformation of the observations Y , thus there exists

a m(T − m) × T -dimensional complex matrix, A, such that JY,T = AY . Regardless of whether

{Yt} is Gaussian or not, we treat JY,T as if it were a multivariate complex normal and define the

quantity which is proportional to the quasi-likelihood of JY,T as

ℓT (θ0) = ((JY,T − Jx,T (a0))
H)∆T (θ0)

−1((JY,T − Jx,T (a0)) + log(det∆T (θ0)),

where ∆T (θ0) = E((JY,T − Jx,T (a0)(JY,T − Jx,T (a0))
H) = AE(XT X ′

T )AH (XT = (X1, . . . , XT )′

and H denotes the transpose and complex conjugate (see Picinbono (1996), equation (17)). Evalu-

ating ℓT (θ0) involves inverting the singular matrix ∆T (θ0). Hence it is an unsuitable criterion for

estimating the parameters a0 and θ0. Instead let us consider a related criterion, where we ignore

the off-diagonal covariances in ∆T (θ0) and replace it with a diagonal matrix which shares the same

diagonal as ∆T (θ0). Straightforward calculations show that when the ∆T (θ0) in ℓT (θ0) is replaced
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by its diagonal, what remains is proportional to

ℓ̃T (θ0) =
1

Tmm

T−m/2
∑

t=m/2

m∑

k=1

( |JY,t(ωk) −
∑n

j=1 aj,0J
(j)
t,m(ωk)|2

Ft,m(θ0, ωk)
+ logFt,m(θ0, ωk)

)

, (7)

where Tm = (T − m),

Ft,m(θ0, ω) =
1

2π

m−1∑

r=−(m−1)

exp(irω)

n+1∑

j=1

cj(θ0, r)
1

m

m−|r|
∑

k=1

xt−m/2+k,jxt−m/2+k+r,j

=
n∑

j=1

σ2
j,0

∫ π

−π
I

(j)
t,m(λ)fj(ϑ0, ω − λ)dλ + σ2

n+1,0

∫ π

−π
I(n+1)
m (λ)fn+1(ϑ0, ω − λ)dλ,(8)

letting xt,n+1 = 1 for all t, I
(j)
t,m(ω) = |J (j)

t,m(ω)|2 and I
(n+1)
m (ω) = 1

2πm |∑m
k=1 exp(ikω)|2. It is worth

noting that if {Yt} were a second order stationary time series then its DFT is almost uncorrelated

and ∆T (θ0) would be close to a diagonal matrix (this property was used as the basis of a test for

second order stationarity in ? (?)).

3.2 Estimator 1

We use (7) to motivate the objective function of the estimator. Replacing the summand 1
m

∑m
k=1

in (7) with an integral yields the objective function

L(m)
T (a, θ) =

1

Tm

T−m/2
∑

t=m/2

∫ π

−π

{ It,m(a, ω)

Ft,m(θ, ω)
+ logFt,m(θ, ω)

}

dω, (9)

where m is even and

It,m(a, ω) =
1

2πm

∣
∣
∣
∣
∣
∣

m∑

k=1

(Yt−m/2+k −
n∑

j=1

ajxt−m/2+k,j) exp(ikω)

∣
∣
∣
∣
∣
∣

2

. (10)

We recall that θ = (ϑ,Σ), hence L(m)
T (a, θ) = L(m)

T (a, ϑ,Σ). Let a ∈ Ω ⊂ R
n and θ ∈ Θ1 ⊗ Θ2 ⊂

R
n+q+1. We use âT and θ̂T = (ϑ̂T , Σ̂T ) as an estimator of a0 and θ0 = (ϑ0,Σ0) where

(âT , ϑ̂T , Σ̂T ) = arg inf
a∈Ω,ϑ∈Θ1,Σ∈Θ2

L(m)
T (a, ϑ,Σ). (11)

We choose m, such that Tm/T → 1 as T → ∞ (thus m can be fixed, or grow at a rate slower than

T ).

3.3 Estimator 2

In the case that the number of regressors is relatively large, the minimisation of L(m)
T is computa-

tionally slow and has a tendency of converging to local minimums rather than the global minimum.
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We now suggest a second estimator, which is based on Estimator 1, but estimates the parameters

a, θ = (Σ, ϑ) in two steps. Empirical studies suggest that it is less sensitive to initial values than

Estimator 1. In the first step of the scheme we estimate Σ0 and in the second step obtain an

estimator of a0 and ϑ0, thereby reducing the total number parameters to be estimated at each

step. An additional advantage of estimating the variance of the coefficients in the first stage is that

we can use it to determine whether a coefficient of a regressor is fixed or random.

The two-step parameter estimation scheme

(i) Step 1 In the first step we ignore the correlation of the stochastic coefficients {αt,j} and errors

{εt} and estimate the mean regressors {at,j} and variance of the innovations ΣT = {σ2
j,0} using

weighted least squares with (āT , Σ̃T ) = arg mina∈Ω,Σ∈Θ2 LT (a,Σ), where

LT (a,Σ) =
1

T

T∑

t=1

(
(Yt −

∑n
j=1 ajxt,j)

2

σt(Σ)
+ log σt(Σ)

)

. (12)

and σt(Σ) =
∑n

j=1 σ2
j x

2
t,j + σ2

n+1.

(ii) Step 2 We now use Σ̃T to estimate ãT and ϑ0. We substitute Σ̃T into L(m)
T , keep Σ̃T fixed

and minimise L(m)
T with respect to (a, ϑ). We use (ãT , ϑ̃T ) as an estimator of (a0, ϑ0) where

(ãT , ϑ̃T ) = arg min
a∈Ω,ϑ∈Θ1

L(m)
T (a, ϑ, Σ̃T ). (13)

We choose m, such that Tm/T → 1 as T → ∞.

4 Testing for randomness of the coefficients in the SCR model

Before fitting a SCR model to the data, it is of interest to check whether there is any evidence to

suggest the coefficients are random. Bruesch and Pagan (1980) have proposed a test, based on the

score statistic, to test the possibility that the parameters of a regression model are fixed against the

alternative that they are random. Their test statistic is constructed under the assumption that the

errors in the regression model are Gaussian and are identically distributed. Further, Newbold and

Bos (1985), Chapter 3, argue that the test proposed in Bruesch and Pagan (1980) can be viewed

as the sample correlation between the squared residuals and the regressors (under the assumption

of Gaussianity). In this section, we suggest a distribution free version of the test given in Newbold

and Bos (1985), to test the hypothesis that the parameters are fixed against the alternative that

they are random. Further, we propose a test to test the hypothesis the parameters are random

(iid) against the alternative that they are stochastic (and correlated).
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To simplify notation we will consider simple regression models with just one regressor, the dis-

cussion below can be generalised to the multiple regression case. Let us consider the null hypothesis

H0 : Yt = a0 + a1xt + ǫt where {ǫt} are iid random variables with E(εt) = 0 and var(εt) = σ2
ǫ < ∞

against the alternative HA : Yt = a0 + a1xt + ǫt, where ǫt = αtxt + εt and {αt} and {εt} are iid

random variables with E(αt) = 0, E(εt) = 0, var(αt) = σ2
α < ∞ and var(εt) = σ2

ε < ∞. If the

alternative were true, then var(ǫt) = x2
t σ

2
α +σ2

ε , hence plotting var(ǫt) against xt should give a clear

positive slope. The following test is based on this observation. Suppose we observe {(Yt, xt)} and

use OLS to fit the model a0 + a1xt to Yt, let ǫ̂t denote the residuals. We use as the test statistic

the sample correlation between {x2
t } and {ǫ̂2t }

S1 =
1

T

T∑

t=1

x2
t ǫ̂

2
t −

( 1

T

T∑

t=1

x2
t

)( 1

T

T∑

t=1

ǫ̂2t
)
. (14)

To understand how S1 behaves under the null and alternative, we rewrite S1 as

S1 =
1

T

T∑

t=1

(
ǫ̂2t − E(ǫ2t )

)(
x2

t −
1

T

T∑

s=1

x2
s

)

︸ ︷︷ ︸

op(1)

+R1, where R1 =
1

T

T∑

t=1

x2
t

(

E(ǫ2t ) −
1

T

T∑

s=1

E(ǫ2s)

)

.

We observe that in the case that the null is true, then E(ǫ2t ) is constant for all t and S1 = op(1).

On the other hand when the alternative is true we have S1 → E(R1), noting that in this case

R1 =
1

T

T∑

t=1

x2
t σ

2
α

(

x2
t −

1

T

T∑

t=1

x2
s

)

. (15)

In the proposition below we derive the distribution of the test statistic S1, under the null and the

alternative.

Proposition 4.1 Let S1 be defined in (14), and suppose the null is true and E(|ǫt|4+δ) < ∞ (for

some δ > 0) then we have
√

TΓ
−1/2
1,T S1

D→ N
(
0, 1

)
, where Γ1,T =

var(ǫ2t )
T

∑T
t=1(x

2
t − 1

T

∑T
s=1 x2

s)
2.

Suppose the alternative is true and {εt} and {ǫt} are iid random variables, E(|εt|4+δ) < ∞ and

E(|αt|4+δ) < ∞ (for some δ > 0) then we have

√
TΓ

−1/2
2,T

(
S1 − R1

) D→ N
(
0, 1

)
,

where R1 is defined as in (15) and Γ2,T = 1
T

∑T
t=1 var((αtxt + ǫt)

2)
(
x2

t − 1
T

∑T
s=1 x2

s

)2
.

PROOF. In the Technical report. ¤

We mention that in the case that the parameters in the regression model are fixed, but the

variance of the errors vary over time (independent of xt) the test statistic, S1, may mistakenly lead

10



to the conclusion that the alternative were true (because in this case R1 will be non-zero). However,

if the variance varies slowly over time, it is possible to modify the test statistic S1 to allow for a

time-dependent variance, we omit the details.

We now adapt the test above to determine whether the parameters in the regressor model are

random against the alternative there is correlation. More precisely, consider the null hypothesis

that the coefficients are random H0 : Yt = a0 + a1xt + ǫt, where ǫt = αtxt + εt and {αt} are iid

random variables and {εt} is a stationary time series with cov(ε0, εk) = c(k) against the alternative

that the coefficients are stochastic and correlated HA : Yt = a0 + a1xt + ǫt, where ǫt = αtxt + εt

and {αt} and {εt} are stationary random variables with cov(ε0, εk) = c(k) and cov(ǫ0, ǫk) = ρ(k).

We observe that if the null were true E(ǫtǫt−1) = c(1), whereas if the alternative were true then

E(ǫtǫt−1) = xtxt−1ρ(1) + c(1), hence plotting ǫtǫt−1 against xtxt−1 should give a clear line with a

slope. Therefore the empirical correlation between {ǫ̂tǫ̂t−1} and {xtxt−1} can be used as the test

statistic, and we define

S2 =
1

T

T∑

t=2

xtxt−1ǫ̂tǫ̂t−1 −
( 1

T

T∑

t=2

xtxt−1

)( 1

T

T∑

t=2

ǫ̂tǫ̂t−1

)
. (16)

Rewriting S2 we have

S2 =
1

T

T∑

t=2

(
ǫ̂tǫ̂t−1 − E(ǫtǫt−1)

)(
xtxt−1 −

1

T

T∑

s=2

xsxs−1

)

︸ ︷︷ ︸

op(1)

+R2, (17)

where R2 = 1
T

∑T
t=2 xtxt−1

(

E(ǫtǫt−1) − 1
T

∑T
s=2 E(ǫsǫs−1)

)

. It is straightforward to see that if

the null were true S2 = op(1), but if the alternative were true then E(S2)
P→ R2, noting that

R2 = 1
T

∑T
t=2 xtxt−1

(

xtxt−1cov(αt, αt−1) − 1
T

∑T
s=2 xsxs−1cov(αs, αs−1)

)

. Below we derive the

distribution of S2 under the null and alternative.

Proposition 4.2 Let S2 be defined in (16), and suppose the null is true, that is Yt = a0 +a1xt +ǫt,

where ǫt = αtxt + εt, and {αt} are iid random variables E(|αt|8) < ∞ and {εt} is a stationary time

series which satisfies εt =
∑∞

j=0 ψjηt−j and
∑

j |ψj | < ∞ and E(|ηj |8) < ∞. Then we have
√

T∆
−1/2
1,T S2

D→ N
(
0, 1

)
, where ∆1,T = 1

T 2

∑n
t1,t2=1 cov(εt1εt1−1, εt2εt2−1)vt1vt2 and vt =

(
x2

t −
1
T

∑T
s=2 x2

s

)2
.

On the other hand suppose the alternative were true, that is Yt = a0 + a1xt + ǫt, where ǫt =

αtxt + εt, and {αt} and {εt} are stationary time series which satisfies εt =
∑∞

j=0 ψjηt−j, αt =
∑∞

j=0 ψj,1ηt−j,1,
∑

j |ψj | < ∞,
∑

j |ψj,1| < ∞, E(|ηj |8) < ∞ and E(|ηj,1|8) < ∞. Then we have
√

T∆
−1/2
2,T (S2 − R2)

D→ N
(
0, 1

)
, where ∆2,T = var(S2).

11



PROOF. Similar to Proposition 4.1. ¤

It is worth noting, it is not necessary to limit the test statistic for testing for correlation at lag

one (as was done in S2). It is straightforward to generalise S2 to test for correlations at larger lags.

5 Asymptotic properties of the estimators

5.1 Some assumptions

We now consider the asymptotic sampling properties of estimators 1 and 2. We need the following

assumptions on the stochastic coefficients and the regressors, which we use to show consistency and

the sampling distribution.

Let | · | denote the Euclidean norm of a vector or matrix respectively.

Assumption 5.1 (On the stochastic coefficients) (i) The parameter spaces Θ1 and Θ2 are

such that, there exists a δ > 0, where infΣ∈Θ2 σ2
n+1 ≥ δ and infϑ∈Θ1

∫ π
−π

( ∑m−1
r=−(m−1)(

m−|r|
m ) exp(irλ)

)
·

f0(ϑ, ω − λ)dλ ≥ δ.

(ii) The parameter spaces Ω, Θ1 and Θ2 are compact.

(iii) The coefficients ψi,j of the MA(∞) representation given in Assumption 2.1, satisfy supϑ∈Θ1

∑∞
i=0 |i|·

|∇k
ϑψi,j(ϑ)| < ∞ (for all 0 ≤ k ≤ 3 and 1 ≤ j ≤ n + 1).

(iv) The innovation sequences {ηt,j} satisfy sup1≤j≤n+1 E(η8
t,j) < ∞.

Assumption 5.2 (On the regressors) (i) supt,j |xt,j | < ∞ and 1
T

∑T
t=1

XtX
′

t

var(Yt)
is non-singular

for all T (X ′
t = (xt,1, . . . , xt,n)).

(ii) Suppose that θ0 is the true parameter. There does not exist another θ∗ ∈ Θ1 ⊗ Θ2 such that

for all 0 ≤ r ≤ m − 1 and infinite number of t we have

n∑

j=1

(
cj(θ0, r) − cj(θ

∗, r)
)

m−|r|
∑

k=0

xt−m/2+k,jxt−m/2+k+r,j = 0.

Let JT,m(ϑ, ω)′ =
∑T−m/2

t=m/2 Ft,m(ϑ, ω)−1(J
(1)
t,m(ω), . . . , J

(n)
t,m(ω)). For all T and ϑ ∈ Θ1,

∫
JT,m(ϑ, ω)JT,m(ϑ, ω)′dω is nonsingular and the smallest eigenvalue is bounded away from

zero.

(iii) For all T , E(∇2
θL

(m)
T (a0, θ0)) and E(∇2

aL(m)
T (a0, θ0)) are nonsingular matrices and the small-

est eigenvalue is bounded away from zero.

12



Assumption 5.1(i) ensures that Ft,m is bounded away from zero and thus E|L(m)
T (a, θ)| < ∞, simi-

larly Assumption 5.1(iii) implies that supj

∑∞
r=−∞ |r ·∇kcj(θ, r)| < ∞, therefore E|∇k

θL
(m)
T (a, θ)| <

∞. Assumption 5.2(i,ii) ensures that the estimators converge to the true parameters.

5.2 Sampling properties of Estimator 1: α̂T and θ̂T

We first show consistency of (âT , θ̂T ).

Proposition 5.1 Suppose Assumptions 2.1, 5.1(i,ii) and 5.2 are satisfied and the estimators âT ,

θ̂T are defined as in (11). Then we have âT
P→ a0 and θ̂T

P→ θ0, as Tm → ∞ and T → ∞.

PROOF. In the Technical report. ¤

We now obtain the rate of convergence and asymptotic normality of the estimator, this requires

a bound for the variance of L(m)
T (a, θ) and its derivatives. To do this we rewrite L(m)

T (a, θ) and its

derivatives as a quadratic form. Substituting JX,T (ω) = JY,T (ω) − ∑n
j=1 ajJ

(j)
t,m(ω) into L(m)

T (a, θ)

gives

L(m)
T (a, θ) =

1

Tm

{

VT (F−1
θ ) + 2

n∑

j=1

(aj,0 − aj)D
(j)
T (F−1

θ ) +

n∑

j1,j2=1

(aj1,0 − aj1)(aj2,0 − aj2)H
(j1,j2)
T (F−1

θ ) +

T−m/2
∑

t=m/2

∫

logFt,m(θ, ω)dω

}

,

where for a general function {Gt(ω)}t we define

VT (G) =

T−m/2
∑

t=m/2

∫

Gt(ω)|JX,t(ω)|2dω =
1

2πm

m∑

k=1

T−m+k∑

s=k

m−k∑

r=−k

XsXs+rgs+m/2−k(r), (18)

H
(j1,j2)
T (G) =

T−m/2
∑

t=m/2

∫

Gt(ω)J
(j1)
t,m (ω)J

(j2)
t,m (−ω)dω =

1

2πm

m∑

k=1

T−m+k∑

s=k

m−k∑

r=−k

xs,j1xs+r,j2gs+m/2−k(r),

D
(j)
T (G) =

T−m/2
∑

t=m/2

∫

Gt(ω)ℜ{JX,t(ω)J
(j)
t,m(−ω)}dω =

1

2πm

m∑

k=1

T−m+k∑

s=k

m−k∑

r=−k

Xsxs+r,j g̃s+m/2−k(r),

gs(r) =
∫

Gs(ω) exp(irω)dω and g̃s(r) =
∫

Gs(ω) cos(rω)dω. A similar expansion also holds for the

derivatives of L(m)
T (which can be used to numerically minimise L(m)

T ). Let ∇ = ( ∂
∂a1

, . . . , ∂
∂θq

) and

13



∇L(m)
T = (∇aL(m)

T ,∇θL(m)
T ), where

∇θL(m)
T (a, θ) =

1

Tm

{
(
VT (∇θF−1) + 2

n∑

j=1

(aj,0 − aj)D
(j)
T (∇θF−1)

)

+
n∑

j1,j2=1

(aj1,0 − aj1)(aj2,0 − aj2)H
(j1,j2)
T (∇θF−1) +

T−m/2
∑

t=m/2

∫ ∇θFt,m(θ, ω)

Ft,m(θ, ω)
dω

}

∇aj
L(m)

T (a, θ) =
−2

Tm

{
D

(j)
T (F−1) +

n∑

j1=1

(aj1,0 − aj1)H
(j,j1)
T (F−1)

}
(19)

and the second derivatives are

∇aj
∇θL(m)

T (a, θ) =
−2

Tm

{
D

(j)
T (∇θF−1) +

n∑

j1=1

(aj1,0 − aj1)H
(j,j1)
T (∇θF−1)

}

∇aj1
∇aj2

L(m)
T (a, θ) =

2

Tm
H

(j1,j2)
T (∇θF−1) (20)

∇2
θL

(m)
T (a, θ) =

1

Tm

[

VT (∇2
θF−1) + 2

n∑

j=1

(aj,0 − aj)D
(j)
T (∇2

θF−1) +

n∑

j1,j2=1

(aj1,0 − aj1)(aj2,0 − aj2)H
(j1,j2)
T (∇2

θF−1)

+
1

Tm

T−m/2
∑

t=m/2

{ ∫ [∇2
θFt,m(θ, ω)

Ft,m(θ, ω)
− ∇θFt,m(θ, ω)∇θFt,m(θ, ω)′

Ft,m(θ, ω)2

]

dω

}]

.

Since the Fourier coefficients in the quadratic forms of L(m)
T and its derivatives are absolutely

summable (under the stated asumptions), it can be shown that the covariance of the stochastic

sequence {Zt.m}, where Zt,m = 1
2πm

∑m
k=1

∑m−k
r=−k XtXt+rgt+m/2−k(r)}s is absolutely summable.

This implies that the variance of L(m)
T and its derivatives do not depend on m (so long as m = o(T )).

We make this precise in the lemma below.

Lemma 5.1 Suppose Assumptions 2.1, 5.1(i-iii) (and supj E(η4
t,j) < ∞) and 5.2(i) are satisfied.

Let VT (G) and D
(j)
T (G) be defined as in (18), where sups

∑

r |gs(r)| < ∞ and sups

∑

r |g̃s(r)| < ∞.

Then we have E(D
(j)
T (G)) = 0,

E(VT (G)) =

T−m/2
∑

t=m/2

∫

Gt(ω)Ft,m(θ0, ω)dω, (21)

var(VT (G)) ≤ T (n + 1) sup
s

∑

r

|gs(r)|






2(

∑

r

ρ2(r))
2 +

∑

k1,k2,k3

ρ4(k1, k2, k3)






(22)

and

var(D
(j)
T (G)) ≤ T (n + 1) sup

s
(
∑

r

|g̃s(r)|)(
∑

r

ρ2(r)), (23)

14



where

ρ2(k) = κ2
2 sup

j

∑

i

|ψi,j | · |ψi+k,j |, ρ4(k1, k2, k3) = κ4 sup
j

∑

i

|ψi,j | · |ψi+k1,j | · |ψi+k2,j | · |ψi+k3,j |,(24)

κ2 = supj var(η0,j) and κ4 = supj cum(η0,j , η0,j , η0,j , η0,j).

PROOF. See the Technical report. ¤

Applying the mean value theorem pointwise to ∇L(m)
T (a0, θ0) and using the uniform convergence

supa,θ |∇2L(m)
T (a, θ) − E(∇2L(m)

T (a, θ))| P→ 0 we have




âT − a0

θ̂T − θ0



 = E
(
∇2L(m)

T (a0, θ0

)
)−1




∇aL(m)

T (a0, θ0)

∇θL(m)
T (a0, θ0)



 + op(
1√
T

). (25)

Thus by using the above, if Assumption 5.2(iii) holds and m = o(T ) then we have

(âT − a0, θ̂T − θ0) = Op(
1√
T

).

In the following theorem we use the above expansion to show asymptotic normality of (âT , θ̂T ). This

requires us to evaluate E(∇2L(m)
T (a0, θ0)) and var(∇L(m)

T (a0, θ0)). The elements of E(∇2L(m)
T (a0, θ0))

are given by E(∇θ∇aL(m)
T (a0, θ0) = 0,

E(∇2
aL(m)

T (a0, θ0))⌋j1,j2 =
1

Tm

T−m/2
∑

t=m/2

∫

Ft,m(θ0, ω)−1J
(j1)
t,m (ω)J

(j2)
t,m (−ω)dω, (26)

E(∇2
θL

(m)
T (a0, θ0)) =

1

Tm

T−m/2
∑

t=m/2

∫ ∇Ft,m(θ0, ω)∇Ft,m(θ0, ω)′

(Ft,m(θ0, ω))2
dω,

and var(∇L(m)
T (a0, θ0)). In order to compare the limiting distributions of estimator 1 and 2, we

rewrite var(∇L(m)
T (a0, θ0)) in terms of a block matrix

WT = Tvar(∇L(m)
T (a0, θ0)) (27)

=




W1,T T cov(∇βL(m)

T (a0, θ0),∇ΣL(m)
T (a0, θ0))

T cov(∇βL(m)
T (a0, θ0),∇ΣL(m)

T (a0, θ0)) Tvar(∇ΣL(m)
T (a0, θ0))





with β = (a, ϑ) and

W1,T = var





√
T∇aL(m)

T (a0, ϑ0, σ0)
√

T∇ϑL(m)
T (a0, ϑ0, σ0)



 . (28)

Theorem 5.1 Suppose Assumptions 2.1, 5.1 and 5.2 hold, then we have

√
TB

−1/2
T




âT − a0

θ̂T − θ0




D→ N

(

0, I

)

, (29)
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as Tm/T → 1 and T → ∞, where BT = V −1
T WT (V −1

T , WT is defined in (27) and

VT =




E(∇2

aL(m)
T (a0, θ0)) 0

0 E(∇2
θL

(m)
T (a0, θ0))



 .

PROOF. In the technical report. ¤

We observe that VT is a block diagonal matrix, this is because straightforward calculations show

E(∇a∇θL(m)
T (a0, θ0)) = 0.

Remark 5.1 Examining WT we observe that the only parameters in WT which we need to esti-

mate (in addition to (a0, θ0)) are the cumulants cum(ηt,j , ηt,j , ηt,j) and cum(ηt,j , ηt,j , ηt,j , ηt,j). We

estimate the cumulants using the estimated moments.To estimate the moments, we group the ob-

servations {Yt} in (n + 1) blocks, each of length M = T/(n + 1), and evaluate the empirical third

moment within each block. If the size of each block M = T/(n+1) is large, we obtain the following

approximate equations

1

M

M∑

s=1

Y 3
Mr+s ≈

1

M

n+1∑

j=1

E(η3
t,j)

M∑

s=1

x3
Mr+s,j

∞∑

i=0

ψi,j(ϑ0)
3.

Obviously this equation is true for r = 1, . . . , (n+1). Therefore, we have (n+1) linear simultaneous

equations in the unknown {E(η3
t,j)}, which, if we replace ϑ0 with ϑ̂T , we can solve for. Thus we

have an estimator of E(η3
t,j). Using a similar method, the empirical fourth moment, can be used to

obtain an estimator of the fourth order cumulants.

5.3 Sampling properties of Estimator 2: Σ̃T , ãT , ϑ̃T

We now obtain the sampling properties of Estimator 2. We first consider the properties of the

variance estimator Σ̃T .

Proposition 5.2 Suppose Assumptions 2.1, 5.1 and 5.2 are satisfied, let LT (a,Σ) and Σ̃T be

defined as in (12). Then we have

var(∇ΣLT (a0,Σ0))
−1/2∇ΣLT (a0,Σ0)

D→ N
(
0, I

)
(30)

C
−1/2
T (Σ̃T − Σ0)

D→ N
(
0, I

)
,

as T → ∞, where CT = E
(
∇2

ΣLT (a0,Σ0)
)−1

var(∇ΣLT (a0,Σ0))E
(
∇2

ΣLT (a0,Σ0)
)−1

.

We now consider the properties of (ãT , ϑ̃T ), which are obtained in Step 2 of Estimator 2.
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Theorem 5.2 Suppose Assumptions 2.1, 5.1 and 5.2 hold, then we have

√
T (Ṽ

(m)
T )1/2(W̃

(m)
T )−1/2(Ṽ

(m)
T )1/2




ãT − a0

ϑ̃T − ϑ0




D→ N

(
0, I

)
, (31)

for m = o(T ) as T → ∞, CT = Ṽ −1
T W̃T Ṽ −1

T , where

W̃T = WT,1 +




0 Ξ1

Ξ′
1 Ξ2



 , Ṽ
(m)
T =




E(∇2

aL(m)
T (a0, ϑ0,Σ0)) 0

0 E(∇2
ϑL

(m)
T (a0, ϑ0,Σ0))





with WT,1 defined as in (28) and

Ξ1 = cov

(√
T∇aL(m)

T (a0, ϑ0,Σ0),
√

T∇ΣLT (a0,Σ0)

)

Q′
T

Ξ2 = 2cov

(√
T∇ϑL(m)

T (a, ϑ0,Σ0),
√

T∇ΣLT (a0,Σ0)

)

Q′
T + QT var

(√
T∇ΣLT (a0,Σ0)

)
Q′

T ,

QT is a q × (n + 1)-dimensional matrix defined by

QT =

(
1

Tm

∫ T−m/2
∑

t=m/2

(
∇ϑFt,m(ϑ0,Σ0, ω)−1

)
⊗ H(t,m)(ω)dω

)

E
(
∇2

ΣLT (a0,Σ0)
)−1

h
(t,m)
j (ω) =

∫ π

−π
I

(j)
t,m(λ)fj(ϑ0, ω − λ)dλ, (32)

H(t,m)(ω) = (h
(t,m)
1 (ω), . . . , h

(t,m)
n+1 (ω)) and noting that ⊗ denotes the tensor product.

Remark 5.2 It is unclear which of the two estimators have the smallest variance. However, com-

paring the variances of the two estimators in (29) and (31), we observe that they are similar. In

particular ṼT is a submatrix of VT . The terms Ξ1 and Ξ2 in W̃T , are due to the estimation of Σ0

in the first stage of the scheme.

5.4 The Gaussian likelihood and asymptotic efficiency of Estimator 1

In this section we compare the asymptotic properties of the frequency domain estimator (âT , θ̂T )

with the Gaussian maximum likelihood estimator (GMLE). We recall the GMLE is constructed as

if the stochastic coefficients {αt,j} and errors {εt} were Gaussian. However, unlike the frequency

domain estimators, in general there does not exist an explicit expression for the asymptotic variance

of the Gaussian maximum likelihood. Instead we will consider a subclass of SCR models, where

the regressors vary slowly over time and do the comparison over this subclass. We will show that

for this subclass an asymptotic expression for the asymptotic distributional variance of the GMLE
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can be derived. We will assume that the regressors are such that there exists a ‘smooth’ function,

xj(·), such that xt,j = xj(
t
N ) and Yt := Yt,N satisfies

Yt,N =
n∑

j=1

(aj,0 + αt,j)xj(
t

N
) + εt t = 1, . . . , T. (33)

In the following lemma we obtain the asymptotic distribution of the GMLE under the asymptotic

framework that both T and N → ∞.

Lemma 5.2 Let us suppose that {Yt,N} satisfies (33), where the {αt,j} and {εt} are Gaussian and

satisfy Assumption 2.1. Let

F(v,θ0, ω) =
n∑

j=1

xj(v)2σ2
j,0fj(ϑ0, ω) + σ2

n+1,0fn+1(ϑ0, ω). (34)

We assume that there does not exist another θ ∈ Θ1⊗Θ2 such that F(v,θ0, ω) = F(v,θ0, ω) for all

v ∈ [0, T/N ] and the matrix N
T

∫ T/N
0 x(v)x(v)′dv, (with x(v)′ = (x1(v), . . . , xn(v))) has eigenvalues

which are bounded from above and away from zero. Suppose (amle, θmle) is the Gaussian maximum

likelihood estimator of the parameters (a0, θ0). Then we have

√
T




amle − a0

θmle − θ0




D→ N

(

0,




∆−1

1 0

0 ∆−1
2





)

with N → ∞ as T → ∞, where

(∆1)j1,j2 =
N

T

∫ T/N

0
xj1(v)xj2(v)F(v,θ0, 0)−1dv,

∆2 = 2
N

T

∫ T/N

0

∫ 2π

0

∇θF(v,θ0, ω)(∇θF(v,θ0,−ω))′

|F(v,θ0, ω)|2 dωdv,

a(v, k) =

∫
1

F(v,θ0, ω)
exp(ikω)dω b(v, k) =

∫

∇θF(v,θ0, ω)−1 exp(ikω)dω

a(v) = {a(v, k)} and b̄(v) = {b(v,−k)}.

In practice, for any given set of regressors {xt,j}, N will not be known, but a lower bound for

N can be obtained from {xt,j}. To ensure the magnitude of the regressors do not influence N , we

will assume that the regressors satisfy 1
T

∑T
t=1 x2

t,j = 1 (for all j). To measure the smoothness of

the regressors define

N̂ =
1

supt,j |xt,j − xt−1,j |
. (35)

Clearly if N̂ is large, this indicates that the regressors are smooth.

We now compare the asymptotic variance of the GMLE and Estimator 1.
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Proposition 5.3 Suppose Assumptions 2.1, 5.1 and 5.2 hold and

sup
j

∫
∣
∣
d2fj(ϑ0, ω)

dω2

∣
∣2dω < ∞ and sup

j

∫
∣
∣
d2∇ϑfj(ϑ0, ω)

dω2

∣
∣2dω < ∞. (36)

Let V
(m)
T , W

(m)
T , ∆T,N,1, ∆T,N,2 and N̂ be defined as in (26), (27), Lemma 5.2 and (35), respec-

tively. Then we have

∣
∣
∣
∣
W

(m)
T −








∆1 0

0 ∆2



 +




0 Γ1,2

Γ′
1,2 Γ2









∣
∣
∣
∣

≤ K

{
1

N̂
+

1

m
+

1

Tm
+

m

N̂

}

(37)

∣
∣
∣
∣
V

(m)
T −




∆1 0

0 ∆2





∣
∣
∣
∣

≤ K
m

N̂
(38)

where K is a finite constant,

Γ2 =
N

T

∫ T/N

0

∫ 2π

0

∫ 2π

0

∇θF(v,θ0, ω1)∇θF(v,θ0, ω1)
′

F(v,θ0, ω1)2F(v,θ0, ω2)2
F4(v,ϑ0, ω1, ω2,−ω1)dω1dω2dv,

Γ1,2 =
N

T

∫ T/N

0
x(v)

∫ 2π

0

∫ 2π

0

∇θF(v,θ0, ω2)
′

F(v,θ0, ω1)F(v,θ0, ω2)2
F3(v,ϑ0, ω1, ω2) exp(irω2)dω1dω2dv,

(39)

x(v)′ = (x1(v), . . . , xn(v)), with F(v,θ, ω) defined as in (34),

F3(v,ϑ, ω1, ω2) =
n+1∑

j=1

κj,3xj(v)3Aj(ϑ, ω1)Aj(ϑ, ω2)Aj(ϑ,−ω1 − ω2)

F4(v,ϑ, ω1, ω2, ω3) =
n+1∑

j=1

κj,4xj(v)4Aj(ϑ, ω1)Aj(ϑ, ω2)Aj(ϑ, ω3)Aj(ϑ,−ω1 − ω2 − ω3),

κj,3 = cum(η0,j , η0,j , η0,j) and κj,4 = cum(η0,j , η0,j , η0,j , η0,j).

Remark 5.3 (Selecting m) Let us consider the case that {αt,j} and {εt} are Gaussian, in this

case Γ1,2 = 0 and Γ2 = 0. Comparing the asymptotic variances of the GMLE and (âT , θ̂T ) we

see that if we let N̂ → ∞, m → ∞ and m/N̂ → 0 (noting that we have replaced N̂ with N) as

T → ∞, then the GMLE ((amle, θmle)) and (âT , θ̂T ) both have the same asymptotic distribution.

Hence within this framework, the relative efficiency of the frequency domain estimator compared

with the GMLE is one.

Furthermore, in the case that {αt,j} and {εt} are Gaussian, (37) suggests a method for selecting

m. Since in this case the GMLE is efficient, by using (37) we have

∣
∣(V

(m)
T )−1W

(m)
T (V

(m)
T )−1 − diag(∆−1

1 , ∆−1
2 )

∣
∣ = Op

(
1

N̂
+

1

m
+

1

Tm
+

m

N̂

)

.

Hence the above difference is minimised when m = N̂1/2.
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5.4.1 An expression for W
(m)
T

An expression for V
(m)
T in terms of Ft,m is given in (26) we now obtain a similar expression for

W
(m)
T . The expression for W

(m)
T is quite cumbersome, to make it more interpretable we state it in

terms of operators. Let ℓ2 denote the space of all square summable (vector) sequences. We define

the general operator Γ
(k1,k2),(j)
x1,...,xT

(·) which acts on the d1 and d2-dimensional column vector sequences

g = {g(k)} ∈ ℓ2 and h = {h(k)} ∈ ℓ2 (to reduce notation we do not specify the dimensions of the

vectors in ℓ2)

Γ
(k1,k2),(j)
x1,...,xT

(g, h)(s, u) =

m−k1∑

r1=−k1

m−k2∑

r2=−k2

g(r1)h(r2)
′K(j)

xs,xs+r1 ,xu,xu+r2
(s − u, r1, r2), (40)

where xs = (xs,1, . . . , xs,n, 1) are the regressors observed at time s and the kernel K(j) is defined as

either

K(0)
xs1 ,xs2 ,xs3 ,xs4

(k, r1, r2) =
n+1∑

j=1

xs1,jxs2,jxs3,jxs4,jcov(α0,jαr1,j , αk,jαk+r2,j)

K(j1)
xs1 ,xs2 ,xs3 ,xs4

(k, r1, r2) =
n+1∑

j=1

xs1,jxs2,jxs3,jxs4,j1cov(α0,jαr1,j , αk,j) 1 ≤ j1 ≤ n

or K(j1,j2)
xs1 ,xs2 ,xs3 ,xs4

(k, r1, r2) =

n+1∑

j=1

xs1,jxs2,j1xs3,jxs4,j2cov(α0,j , αk,j) 1 ≤ j1, j2 ≤ n (41)

where for notational convenience we set αt,n+1 := εt and xt,n+1 := 1. We will show that var(∇L(m)
T (a0, θ0)

can be written in terms of Γ
(k1,k2),(j)
x1,...,xT

. Suppose Gs(·) and Hu(·) are square integrable vector functions,

then it can be shown

var





∫ 2π
0 Hu(ω)Xu

∑m−k2
r2=−k2

xu+r1,j1 exp(ir2ω)dω
∫ 2π
0 Gs(ω)Xs

∑m−k1
r1=−k1

Xs+r1 exp(ir1ω)dω





=




Γ

(k2,k2),(j1,j1)
x1,...,xT

(hu, h̄u)(u, u) Γ
(k1,k2),(j1)
x1,...,xT

(ḡ
s
, hu)(s, u)

Γ
(k1,k2),(j1)
x1,...,xT

(g
s
, h̄u)(s, u) Γ

(k1,k1),(0)
x1,...,xT

(g
s
, ḡ

s
)(s, s)



 (42)

where g
s

= {g
s
(r) =

∫
Gs(ω) exp(irω)dω}r, hs = {hs(r) =

∫
Hs(ω) exp(rω)dω}r, ḡ

s
= {g

s
(−r)}r

and h̄s = {hs(−r)}r.

Using the above notation we can write

W
(m)
T = Tvar(∇L(m)

T (a0, θ0)) =
1

m2Tm

m∑

k1,k2=1

T−m+k1∑

s=k1

T−m+k2∑

u=k2

(43)




Γ

(k1,k2),(j,j)
x1,...,xT

(as+m/2−k1
, au+m/2−k2

)(s, u) Γ
(k1,k2),(j)
x1,...,xT

(bs+m/2−k1
, au+m/2−k2

)(s, u)

Γ
(k1,k2),(j)
x1,...,xT

(b̄s+m/2−k1
, au+m/2−k2

)(s, u) Γ
(k1,k2),(0)
x1,...,xT

(bs+m/2−k1
, b̄u+m/2−k2

)(s, u)



 ,
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where Γ
(k1,k2),(j,j)
x1,...,xT

= {Γ(k1,k2),(j1,j2)
x1,...,xT

}j1,j2=1,...,n and Γ
(k1,k2),(j)
x1,...,xT

= {Γ(k1,k2),(j)
x1,...,xT

}j=1,...,n, bs = {bs(k)},
as = {as(k)} with

as(k) =

∫

Fs,m(θ0, ω)−1 exp(ikω)dω, bs(k) =

∫

∇θFs,m(θ0, ω)−1 exp(ikω)dω, (44)

(noting that Fs,m(θ0, ω)−1 is a symmetric function hence as = ās). We will use (91) when we

compare Estimator 1 with the Gaussian maximum likelihood estimator.

6 Real data analysis

We now consider two real data examples.

Example 1: Application to financial time series: Modelling of T-bills and Inflation

rates in the US

There are many possible applications of stochastic coefficient regression models in econometrics.

One such application is modelling the influence of the nominal interest rate of three month (short

term) Treasurey bills (T-bills) on monthly inflation. Fama (1977) argues that the relationship be-

tween the T-bills and inflation rate determines whether the market for short term Treasurey bills

is efficient or not. In this section we will consider three month T-bills and monthly inflation data

observed monthly between January 1959 to December 2008, the data can be obtained from the US

Federal reserve,

http://www.federalreserve.gov/releases/h15/data.htm#fn26 and

http://inflationdata.com/inflation/Inflation Rate/HistoricalInflation.aspx respectively.

A plot of the time series of both sets of observations is given in Figure 1. The estimated corre-

lation coefficient between the three month T-bills and monthly inflation is 0.72. Let Yt and xt

denote monthly inflation and T-bills interest rate at time t respectively. Fama (1977) and Newbold

and Bos (1985) consider the nominal interest rate of three month T-bills and inflation rate data

observed every three months between 1953-1980. Fama (1977) fitted the linear regression model

Yt = a1xt + εt ({εt} are iid) to the data, and showed that there wasn’t a significant departure of a1

from one, he used this to argue that the T-bills market was efficient. However, Newbold and Bos

(1985) argue that the relationship between T-bills and inflation is more complex and suggest that

the SCR may be a more appropriate model, where the coefficient of xt is stochastic and follows an

AR(1) model. In other words

Yt = a0 + (a1 + αt,1)xt + εt, αt,1 = ϑ1αt−1,1 + ηt (45)
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Figure 1: The top plot is 3-month T-bill nominal interest rate taken monthly and lower plot is the

monthly inflation rate
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where {εt} and {ηt} are iid random variables with E(εt) = 0, E(ηt) = 0, var(εt) = σ2
ε < ∞ and

var(ηt) = σ2
η < ∞. Using the GMLE they obtain the parameter estimates a0 = −0.97, a1 = 1.09,

ϑ1 = 0.89, σ2
ε = 1.41 and σ2

η = 0.013. We now fit the same model to the T-bills data observed

monthly from January 1959 to December 2008 (600 observations), and use the two-step Estimator

2 to estimate the parameters a0, a1, ϑ1, σ2
α = var(αt,1) and σ2

ε = var(εt) using Estimator 2. The

variances σ2
α and σ2

ε are estimated in the first step of Estimator 2, the estimates with their standard

errors are given Table 1. Note that comparing the estimates with their standard errors we observe

that both parameters σ2
ε and σ2

α appear significant. In the second stage of the scheme we estimate

a0, a1 and ϑ1 (we note that because the intercept a0 appears to be insignificant we also do the

estimation excluding the intercept), these estimates are also summarised in Table 1. The estimates

for different m are quite close. The model found to be most suitable for the above data when

m = 200 is

Yt = (0.73 + αt,1)xt + εt, αt,1 = 0.960αt−1,1 + ηt,

where σ2
ε = 1.0832 and σ2

α = 0.2852 (hence σ2
η = 0.0792). We observe that the AR(1) parameter

estimate of the stochastic coefficient {αt,1} is 0.96. This value is close to one, suggesting that the

stochastic coefficients {αt,1} could come from a unit root process.

To assess the validity of this model, we obtain one step ahead best linear predictors of Yt given

{Ys}t−1
s=1 and the current T-bills rate xt, every month in the year 2008. In order to do the prediction

we re-estimate the parameters α1, θ, σ2
ε and σ2

α using the observations from 1959-2007. We use the

two-step Estimator 2 with m = 200 to obtain

Yt = (0.77 + αt,1)xt + εt, αt,1 = 0.965αt−1,1 + ηt, (46)

with σ2
ε = 0.792 and σ2

α = 0.302 (hence σ2
η = 0.182). We also fit the linear regression model

Yt = a1xt + εt to the data and use OLS to obtain the model Yt = 0.088+0.75xt + εt. The predictor

using the usual multiple linear regression model and and one-step ahead predictor using the SCR

model are given in Figure 2. To do the one-step ahead prediction we use the Kalman filter (using

the R package ss1.R, see Shumway and Stoffer (2006), Chapter 6 for the details). The mean

squared prediction errors over the 12 months using the multiple regression and the SCR model

are 8.99 and 0.89 respectively. We observe from the plots in Figure 2 that the multiple regression

model always underestimates the true value and the mean square error is substantially larger than

the SCR model.

23



2008.0 2008.2 2008.4 2008.6 2008.8 2009.0

0
1

2
3

4
5

year

in
fla

tio
n

Figure 2: We compare the true inflation rates with their predictions. The continuous thick line −
is the true inflation rate. The broad dashed line −− is SCR one step ahead predictor given in (46).

The fine dashed line · · · is the linear regression predictor Ŷt = 0.088 + 0.750xt.
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a0 a1 ϑ1 σα σε

OLS 0.088 0.750

(s.e.) (0.18) (0.029)

Stage 1 0.088 0.74 0.285 1.083

(s.e.) (0.011) (0.059)

m = 10 (with intercept) 0.618 0.625 0.981

(s.e.) (0.325) (0.069) (0.042)

m = 10 (without intercept) 0.741 (0.971)

(s.e.) (0.0325) (0.05)

m = 50 (with intercept) 0.309 0.687 0.969

(s.e.) (0.35) (0.069) (0.026)

m = 50 (without intercept) 0.743 0.957

(s.e.) (0.032) (0.038)

m = 200 (with intercept) 0.223 0.7327 0.96088

(s.e.) (0.44) (0.022) (0.024)

m = 200(without intercept) 0.765 0.951

(s.e.) (0.029) (0.030)

m = 400 (with intercept) 0.367 0.725 0.963

(s.e.) (0.48) (0.070) (0.023)

m = 400(without intercept) 0.773 0.957

(s.e.) (0.029) (0.026)

Table 1: We fit the model Yt = a0 +(a1 +αt,1)xt + εt, where αt,1 = ϑ1αt−1,1 + ηt, with and without

the intercept a0. The estimates using least squares and the frequency domain estimator for different

m are given. The values in the brackets are the corresponding standard errors.
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Example 2: Application to environmental time series: Modelling of visibility and

air pollution

It is known that air visibility quality depends on the amount of particulate matter (particulate

matter negatively effects visibility). Furthermore, air pollution is known to influence the amount

of particulate matter (see Hand et al. (2008)). To model the influence of air pollution on par-

ticulate matter Hand et al. (2008) (see equation (6)) fit a linear regression model. However,

Burnett and Guthrie (1970) argue that the influence of air pollution on air visibility may vary

each day, depending on meteorological conditions, and suggest that a SCR model may be more

appropriate than a multiple linear regression model. In this section we investigate this possi-

bility. We consider the influence of man made emissions on Particulate Matter (PM2.5-10) in

Shenandoah National Park, Virginia, USA. The data we consider is Ammonium Nitrate Extinction

(ammNO3f), Ammonium Sulfate (ammSO4f), Carbon Elemental Total (ECF) and Particulate Mat-

ter (PM2.5-10) (ammNO3f, ammSO4f and ECF are measured in ug/m3) which has been collected

every three days between 2000-2005 (600 observations). We obtain the data from the VIEWS web-

site http://vista.cira.colostate.edu/views/Web/Data/DataWizard.aspx. We mention that

the influence of man made emissions on air visibility is of particular importance to the US national

parks service (NPS), who collected and compiled this data. An explanation of the data and how

air pollution influences visibility (light scattering) can be found in Hand et al. (2008).

The plots of both the air pollution and PM2.5-10 data is given in Figure 3 and 4 respectively.

There is a clear seasonal component in all the data sets as seen from their plots. Therefore to prevent

spurious correlation between the PM2.5-10 and air pollution we detrended and deseasonalised

the PM2.5-10 and emissions data. To identify the dominating harmomics we used the maximum

periodogram methods suggested in Quinn and Fernandez (1991) and Kavalieris and Hannan (1994).

To the detrended and deseasonalise PM2.5-10 and air pollution data we fitted the following model

Yt = (a1 + αt,1)xt,1 + (a2 + αt,2)xt,2 + (a3 + αt,3)xt,3 + εt,

where {xt,1}, {xt,2}, {xt,3} and {Yt} are the detrended and deseasonalised ammNO3f, ammSO4f,

ECF and Particulate Matter (PM2.5-10), and {αt,j} and εt satisfy

αt,j = ϑjαt−1,j + ηt,j , for and j = 1, 2, 3, εt = ϑ4εt−1 + ηt,4,

{ηt,i} iid random variables. Let σ2
ε = var(εt), σ2

α,1 = var(αt,1), σ2
α,2 = var(αt,2) and σ2

α,3 = var(αt,3).

We used Estimator 2 to estimate the parameters a1, a2, a3, αt,1, αt,2, αt,3, αt,4, σ2
ε , σ2

α,1, σ2
α,2 and

σ2
α,3. At the start off the minimisations of the objective functions LT and L(m)

T , as initial values we
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Figure 3: The top plot is 3-day Ammonium Nitrate Extinction (Fine), middle plot is 3-day Am-

monium Sulfate (Fine) and lower plot is three day Carbon Elemental Total (Fine)
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gave the least squares estimates of a0 for the mean regression coefficients and 0.1 for all the other

unknown parameters. In the first stage of the scheme we estimated a1, a2, a3 and σ2
ε , σ

2
α,1, σ

2
α,2 and

σ2
α,3. We also fitted parsimonious models where some of the coefficients were kept fixed rather

stochastic. The results are summarised in Table 2 (step 1). We observe that the estimate of σα,1

is extremely small and insignificant. We observe that the minimum value of the objective function

LT is about the same when the coefficient of ammNO3f {xt,1} is fixed and random (it is 2.012).

This suggests that the coefficient of ammNO3f {xt,1} is deterministic. This may indicate that the

relative contribution of NO3f ({xt,1}) to the response is constant throughout the period of time

and is not influenced by any other extraneous factors. We re-did the minimisation systematically

removing σα,2 and σα,3, but the minimum value of LT , changed quite substantially (compare the

minimum of the objective functions 2.012 with 4.09, 3.99 and 4.15). Hence the most appropriate

model appears to be

Yt = a1xt,1 + (a2 + αt,2)xt,2 + (a3 + αt,3)xt,3 + εt,

where {αt,1} and {αt,2} are stochastic coefficients. It is of interest to investigate whether the

coefficients of ammSO4f and ECF are purely random or correlated, and we investigate this in the

second stage of the frequency domain scheme, where we modelled {αt,2} and {αt,3} both as iid

random variables and as the AR(1) model αt,j = ϑjαt−1,j + ηt,j , for j = 2, 3. The estimates for

various different models and different values of m are given in Table 2. If we compare the minimum
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of the objective function where {αt,2} and {αt,3} are modelled as both iid and satisfying an AR(1)

model, we see that there is very little difference between them. Moreover the standard errors for

the estimates of ϑ2 and ϑ3, are large. Altogether, this suggests that ϑ2 and ϑ3 are not significant

and {αt,2} and {αt,3} are uncorrelated over time. Hence it seems plausible that the coefficients of

ammSO4f and ECF are random, but independent. To check the possibility that the errors {εt}
are correlated, we fitted an AR(1) model to the errors. However we observe from Table 2, that

the AR(1) parameter does not appear to be significant. Moreover, comparing the minimum of the

objective function L(m)
600 (for different values of m) fitting iid {εt} and an AR(1) to {εt} gives almost

the same value. This suggests that the errors are independent. In summary, our analysis suggests

that the influence of ammNO3f on PM2.5-10 is fixed over time, whereas the influence of ammSO4f

and ECF varies purely randomly over time. Using the estimator obtained when m = 200 this

suggests the model

Yt = 0.255xt,1 + (4.58 + αt,2)xt,2 + (1.79 + αt,3)xt,3 + εt,

where {αt,2} and {αt,3} are iid random variables, with σα,2 = 1.157, σα,3 = 0.84, σε = 1.296. Based

on our analysis it would appear that the coefficients of pollutants are random, but there is no linear

dependence between the current coefficient and the previous coefficient. On possible explanation for

the lack of dependence is that the data is taken every three days and not daily. This could mean

that the meterological conditions from three days ago has little influence on today’s particulate

matter. On the other hand if we were to analyse the daily pollutants and daily PM2.5-10 the

conclusions could have been different. But this daily data is not available. It is likely that since

the data is aggregated (smoothed) over a three day period any possible dependence in the data was

removed.
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A Appendix

A.1 Proofs for Section 2.2.2 and 4

We first prove Proposition 2.2.
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a1 a2 a3 ϑ2 ϑ3 ϑ4

q

var(αt,1)
q

var(αt,2)
q

var(αt,3)
p

var(εt) minL

OLS 0.29 4.57 1.76

(0.078) (0.088) (0.0908)

Stage 1 0.38 4.53 1.58 7.10−7 1.25 0.84 1.29 2.102

(s.e.) (0.048) (0.079) (0.076) (0.07) (0.097) (0.098) (0.046)

Stage 1 0.56 3.28 -3.09 0.75 3.315 4.496 4.09

(s.e.) (0.170) (0.181) (0.29) (0.042) (0.159) (0.049)

Stage 1 0.387 4.53 1.58 1.157 0.84 1.296 2.102

(s.e.) (0.048) (0.080) (0.076) (0.009) ( 0.009) (0.002)

Stage 1 0.287 3.52 -3.11 3.00 3.83 3.99

(s.e.) (0.139) (0.171) (0.27) (0.164) (0.07)

Stage 1 0.521 5.09 -2.93 4.42 4.15

(s.e.) (0.131) (0.145) (0.65) (0.011)

m=10 0.393 4.47 1.630 0.883 -0.144 2.066

(s.e.) (0.048) (0.079) (0.076) (0.095) (0.351)

m=10 0.39 4.47 1.63 -0.13 2.066

(s.e.) (0.05) (0.077) (0.071) (0.34)

m=10 0.388 4.467 1.661 0.94 2.084

(s.e.) (0.039) (0.061) (0.058) (0.029)

m=50 0.327 4.55 1.75 0.617 -0.235 2.199

(s.e.) (0.056) (0.070) (0.071) (0.30) (0.659)

m=50 0.324 4.54 1.746 -0.32 2.22

(s.e.) (0.055) (0.073) (0.070) (0.54)

m=50 0.308 4.55 1.764 0.244 2.21

(s.e.) (0.049) (0.062) (0.062) (0.127)

m=200 0.261 4.595 1.770 0.538 0.9722 2.111

(s.e.) (0.06) (0.067) (0.070) (0.322) (0.042)

m=200 0.261 4.60 1.77 -0.087 2.124

(s.e.) (0.06) (0.068) (0.068) (1.2)

m=200 0.255 4.58 1.797 0.458 2.1339

(s.e.) (0.051) (0.058) (0.058) (0.145)

m=400 0.2531 4.597 1.793 0.979 0.932 2.116

(s.e.) (0.061) (0.068) (0.070) (0.032) (0.143)

m=400 0.25 4.59 1.79 0.92 2.128

(s.e.) (0.06) (0.068) (0.068) (0.167)

m=400 0.250 4.580 1.807 0.478 2.139

(s.e.) (0.051) (0.0583) (0.059) (0.148)

Table 2: In stage 1 we fitted the model Yt = (a1 + αt,1)xt,1 + (a2 + αt,2)xt,2 + (a3 + αt,3)xt,3 + εt,

and various subsets (here we did not model any dependence in the stochastic coefficients). In the

second stage (for m = 10, 50, 200 and 400) we fitted AR(1) models to {αt,2}, {αt,3} and {εt}, that

is αt,2 = ϑ2αt−1,2 + ηt,2, αt,3 = ϑ3αt−1,3 + ηt,3 and εt = ϑ4εt−1 + ηt,4. The value of the frequency

domain likelihood at the minimal value is also given in the column minL. The standard errors of

the estimates are given below each estimate in brackets.

PROOF of Proposition 2.2 We first observe that because X̃t,N is locally stationary there

exists a function A(·), such that

X̃t,N =

∫

A(
t

N
, ω) exp(itω)dZ(ω) + Op(N

−1). (47)

Now since A(·) ∈ L2([0, 1] ⊗ [−π, π]), for any δ there exists a nδ such that

∣
∣A(v, ω) −

nδ∑

j=1

Aj(ω)xj(u)
∣
∣ ≤ Kδ,
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where Aj(ω) =
∫

A(v, ω)xj(v)dv, and K is a finite constant independent of δ. Substituting this

into (48) gives

X̃t,N =

nδ∑

j=1

{∫

Aj(ω) exp(itω)dZ(ω)

}

xj(
t

N
) + Op(δ + N−1). (48)

Let αt,j =
∫

Aj(ω) exp(itω)dZ(ω), since Z(ω) is a orthogonal increment process with E|dZ(ω)|2 =

dω it is clear that {αt = (αt,1, . . . , αt,n)} is a second order stationary vector time series. Thus for

every δ there exists a stochastic coefficient regression expansion, thus we have the desired result.

¤

We now prove Proposition 4.1.

PROOF of Proposition 4.1 We first prove the result under the null. We write the residuals

as ε̂t = εt+q(â−a, xt), where q(â−a, xt) = (â0−a0)+(â1−a1)xt and â0, â1 are the OLS estimators

of (a0, a1). Therefore S1 = S̃1 + I1, where

S̃1 =
1

T

T∑

t=1

x2
t ǫ

2
t −

( 1

T

T∑

t=1

x2
t

)( 1

T

T∑

t=1

ǫ2t
)

and

I1 =
1

T

T∑

t=1

x2
t

(
q(â − a, xt)εt + q(â − a, xt)

2
)

+
( 1

T

T∑

t=1

x2
t

) 1

T

T∑

t=1

(
q(â − a, xt)εt + q(â − a, xt)

2
)
.

Under the stated conditions it is straightforward to show that I1 = Op(T
−1), therefore S1 =

S̃1 + Op(T
−1). By using the central limit theorem for independent random variables it can be seen

that
√

TΓ
−1/2
1,T S̃1

D→ N
(
0, 1

)
, thus

√
TΓ

−1/2
1,T S1

D→ N
(
0, 1

)
which gives us the result under the null.

A similar method can be used to prove the result under the alternative. ¤

A.2 Proofs for Sections 5.2

PROOF of Lemma 5.1. The proof of (21) is straightforward, hence we omit the details. To prove

(22) we first note that |cov(Xt, Xs)| ≤ (n + 1) supt,j |xt,j |2ρ2(t− s) and |cum(Xt1 , Xt2 , Xt3 , Xt4)| ≤
(n + 1) supt,j |xt,j |4ρ4(t2 − t1, t3 − t1, t4 − t1). Expanding var(VT (G)) gives

var(VT (G)) =
1

(2πm)2

m∑

k1,k2=1

T−m/2+k1∑

s=k1

T−m/2+k2∑

u=k2

m−k1∑

r1=−k1

m−k2∑

r2=−k2

cov(XsXs+r1 , Xu, Xu+r2)gs(r1)gu(r2).(49)

From the definition of ρ2(·) and ρ4(·) it is clear that

|cov(XsXs+r1 , Xu, Xu+r2)|

≤ ρ2(s − u)ρ2(s + r1 − u − r2) + ρ2(s + r1 − u)ρ2(s − u − r2) + ρ4(r1, u − s − r1, u − s + r1 − r2).

31



Substituting the above into (49) gives us (23). Using the same methods we have (23). ¤

We use the following lemma to prove consistency of the estimator and obtain the rate of con-

vergence.

Lemma A.1 Suppose Assumptions 2.1, 5.1(i-v) and 5.2(i) are satisfied. Then for all a ∈ Ω and

θ ∈ Θ we have

var
(

L(m)
T (a, θ)

)

= O(
1

Tm
), var

(

∇L(m)
T (a, θ)

)

= O(
1

Tm
), var

(

∇2L(m)
T (a, θ)

)

= O(
1

Tm
). (50)

PROOF. To prove (50), we use Lemma 5.1, which means we have to verify the condition
∑

r |
∫
∇k

θF−1
t,m(θ, ω) exp(irω)dω| < ∞, for k = 0, 1, 2. This follows from (112) (in Lemma A.8),

hence we obtain the result. ¤

To show convergence in probability of the estimator we need to show equicontinuity in proba-

bility of the sequence of random functions {L(m)
T }T . We recall that a sequence of random functions

{HT (θ)} is equicontinuous in probability if for every ǫ > 0 and η > 0 there exists a δ > 0 such

that limT→∞ sup P (sup‖θ1−θ2‖1≤δ |HT (θ1) − HT (θ2)| > η) < ε. In our case HT (θ1) := L(m)
T and

pointwise it converges to its expectation

E(L(m)
T (a, θ)) (51)

=
1

Tm

T−m/2
∑

t=m/2

∫ {Ft,m(θ0, ω)

Ft,m(θ, ω)
+

n∑

j1,j2=1

(aj1,0 − aj1)(aj2,0 − aj2)
J

(j1)
t,m (ω)J

(j2)
t,m (−ω)

Ft,m(θ, ω)
+ logFt,m(θ, ω)

}

dω,

Lemma A.2 Suppose Assumptions 2.1, 5.1(i-v) and 5.2(i) are satisfied, then

(i) L(m)
T (a, θ) is equicontinuous is probability and |L(m)

T (a, θ) − E(L(m)
T (a, θ))| P→ 0

(ii) ∇2L(m)
T (a, θ) is equicontinuous in probability and |∇2L(m)

T (a, θ) − E(∇2L(m)
T (a, θ))| P→ 0,

as T → ∞.

PROOF. We first prove (i). By the mean value theorem

|L(m)
T (a1, θ

(1)) − L(m)
T (a2, θ

(2))| ≤ sup
a∈Ω,θ∈Θ1⊗Θ2

|∇L(m)
T (a, θ)| · |(a1 − a2, θ

(1) − θ(2))|, (52)

where ∇L(m)
T (a, θ) = (∇aL(m)

T (a, θ),∇θL(m)
T (a, θ)). From above it is clear if we can show ∇L(m)

T (a, θ)

is bounded in probability, then equicontinuity of L(m)
T (a, θ) immediately follows. Therefore we now
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bound supa∈Ωθ∈Θ1⊗Θ2
|∇L(m)

T (a, θ)|, with a random variable which is bounded in probability. In-

specting (19) and under Assumption 5.1(i) we note that

sup
a,θ

|∇aj
L(m)

T (a, θ)| ≤ K

Tm

{
sup
t,j

|xt,j | · m · ST +
n∑

j2=1

sup
θ

|H(j,j2)
T (F−1

θ )|
}

(53)

sup
a,θ

|∇θL(m)
T (a, θ)| ≤ K

Tm

{

sup
θ

VT (∇θF−1
θ ) + sup

t,j
|xt,j | · m · ST

+
∑

j1,j2

sup
θ,a

H
(j1,j2)
T (∇θF−1

θ ) +

T−m/2
∑

t=m/2

sup
θ

∫ |∇θFt,m(θ, ω)|
Ft,m(θ, ω)

dω

}

, (54)

noting that to obtain the above we bound the D
(j)
T (F−1

θ ) in ∇aj
L(m) (see (19)) with |D(j)

T (F−1
θ )| ≤

supt,ω |Ft,m(θ0, ω)−1| supt,j |xt,j |·ST , where ST =
∑T

s=1 |Xs|. With the exception of T−1
m supθ VT (∇θF−1

θ )

and T−1
m ST , all the terms on the right hand side of supβ,θ |∇θL(m)

T (a, θ)| and supa,θ |∇aj
L(m)

T (a, θ)|,
above, are deterministic and, under Assumptions 5.1(i,ii,iii) (with k = 1) and 5.2(i), are bounded.

It is straightforward to show that supT E(T−1
m ST ) < ∞ and var(T−1

m ST ) = O(T−1), therefore

T−1
m ST is bounded in probability. By using Lemma 5.1 we have that T−1

m E(supθ VT (∇θF−1
θ )) < ∞

and var
[

1
Tm

VT (∇θF−1
θ )

]
= O( 1

Tm
), hence 1

Tm
VT (∇θF−1

θ ) is bounded in probability. Altogether

this gives that supa,θ |∇θL(m)
T (a, θ)| and supa,θ |∇aj

L(m)
T (a, θ)| are both bounded in probability.

Finally, since ∇L(m)
T is bounded in probability, equicontinuity of L(m)

T (·) immediately follows from

(52).

The proof of (ii) is identical to the proof of (i), the main difference is that it is based on the

boundedness of the third derivative of fj1,j2 , rather than the first derivative of fj1,j2 . We omit the

details. ¤

We use equicontinuity now to prove consistency of (âT , θ̂T ).

PROOF of Proposition 5.1. The proof is split into two stages, we first show that for a

large enough T , (a0, θ0) is the unique minimum of the limiting deterministic function function

E(L(m)
T (a, θ)) (defined in (51)) and second we show that L(m)

T (a, θ) converges uniformly in proba-

bility, together they prove the result. Let us consider the difference

E(L(m)
T (a, θ)) − E(L(m)

T (a0, θ0)) = I + II

where

I =
1

Tm

T−m/2
∑

t=m/2

∫ {Ft,m(θ0, ω)

Ft,m(θ, ω)
− log

Ft,m(θ0, ω)

Ft,m(θ, ω)

}

dω − 1

II =
1

Tm

T−m/2
∑

t=m/2

n∑

j1,j2=1

(aj1,0 − aj1)(aj2,0 − aj2)

∫

J
(j1)
t,m (ω)J

(j2)
t,m (−ω)dω.
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We now show that I and II are positive. We first show that I is positive. Let xt,ω =
Ft,m(θ0,ω)
Ft,m(θ,ω) ,

since xt,ω is positive, it is obvious that xt,ω − log xt,ω − 1 is a positive function. Moreover xt,ω −
log xt,ω − 1 has a unique minimum when xt,ω = 1. Since I = 1

Tm

∑T−m/2
t=m/2

∫
(xt,ω − log xt,ω −

1)dω, I is positive and has minimum when Ft,m(θ0, ω) = Ft,m(θ0, ω). To show that II is pos-

itive, we recall from the definition of JT,m(ω)′ given in Assumption 5.2(ii), that II = (a −
a0)

′ ∫ JT,m(θ, ω)JT,m(θ, ω)′dω(a − a0), where (a − a0) = (a1 − a1,0, . . . , an − an,0)
′, which is

clearly positive. Altogether this gives E(L(m)
T (a, θ)) − E(L(m)

T (a0, θ0)) = I + II ≥ 0, and for

all values of T , E(L(m)
T (a, θ)) has a minimum at a = a0 and θ = θ0. To show that (a0, θ0) is the

unique minimum of E(L(m)
T (·)), suppose by contradiction, there exists another (a∗, θ∗) such that

E(L(m)
T (a∗, θ∗)) = E(L(m)

T (a0, θ0)). Then by using the arguments above, for all values of t and ω

we must have Ft,m(θ∗, ω) = Ft,m(θ0, ω) and (a∗ − a0)
′ ∫ JT,m(θ, ω)JT,m(θ, ω)′dω(a∗ − a0) = 0.

However this contradicts Assumption 5.2(ii), therefore we can conclude that for a large T , (a0, θ0)

is the unique minimum of E(L(m)
T (·)).

We now show that θ̂T
P→ θ0 and âT

P→ a0. To prove this we need to show uniform conver-

gence of L(m)
T (a, θ). Uniform convergence follows from the probabilistic version of the Arzela-Ascoli

lemma which means we have to verify (a) pointwise convergence of L(m)
T (a, θ) (b) equicontinuity in

probability of L(m)
T (a, θ) and (c) compactness of the parameter space. It is clear from Lemma A.1

that for every θ ∈ Θ1 ⊗ Θ2 and a ∈ Ω we have |L(m)
T (a, θ) − E(L(m)

T (a, θ))| P→ 0 as T → ∞ ((a)

holds), by Lemma A.2 we have that equicontinuity of L(m)
T (a, θ) ((b) holds) and under Assumption

5.1(iii) Θ and Ω are compact sets ((c) holds). Therefore supa,θ |L(m)
T (a, θ) − E(L(m)

T (a, θ))| P→
0. Finally, since L(m)

T (a0, θ0) ≥ L(m)
T (âT , θ̂T )

P→ E(L(m)
T (âT , θ̂T )) ≥ E(L(m)

T (a0, θ0)), we have

that |L(m)
T (âT , θ̂T ) − E(L(m)

T (a0, θ0))| ≤ max{|L(m)
T (âT , θ̂T ) − E(L(m)

T (âT , θ̂T ))|, |L(m)
T (a0, θ0) −

E(L(m)
T (a0, θ0))|} ≤ supa,θ |L(m)

T (a, θ) − E(L(m)
T (a, θ))| P→ 0. Because (a0, θ0) is the unique mini-

mum of E(L(m)
T (·)), it follows that âT

P→ a0 and θ̂T
P→ a0. ¤

By approximating ∇L(m)
T (a0, θ0) with the sum of martingale differences, we will use the mar-

tingale central limit theorem to prove Theorem 5.1. Using (19) we have

∇θL(m)
T (a0, θ0) = − 1

Tm

{

VT (∇F−1
θ0

) − E[VT (∇F−1
θ0

)]
}

= − 1

Tm

[

Z(m)
T + U

(m)
T

]

,

and ∇aL(m)
T (a0, θ0)⌋j =

1

Tm
D

(j)
T (F−1

θ0
) =

1

Tm
{B(m,j)

T + C
(m,j)
T }
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where

Z(m)
T =

1

2πm

m∑

k=1

n+1∑

j1,j2=1

T−m+k∑

s=k

m−k∑

r=−k

xs,j1xs+r,j2bs+m/2−k,m(r) (55)

×
s−1,s+r−1

∑

i1,i2=0

ψi1,j1ψi2,j2

(
ηs−i1,j1ηs+r−i2,j2 − E(ηs−i1,j1ηs+r−i2,j2)

)

U
(m)
T =

1

2πm

m∑

k=1

n+1∑

j1,j2=1

T−m+k∑

s=k

m−k∑

r=−k

xs,j1xs+r,j2bs+m/2−k,m(r) (56)

×
∑

i1≥s or i2≥s+r

ψi1,j1ψi2,j2

(
ηs−i1,j1ηs+r−i2,j2 − E(ηs−i1,j1ηs+r−i2,j2)

)

(57)

B(m,j)
T =

1

2πm

n∑

j2=1

m∑

k=1

T−m+k∑

s=k

m−k∑

r=−k

as+m/2−k,m(r)xs,j2xs+r,j

s1∑

i=1

ψi,j2ηs1−i,j2

C
(m,j)
T =

1

2πm

n∑

j2=1

m∑

k=1

T−m+k∑

s=k

m−k∑

r=−k

as+m/2−k,m(r)xs1,j2xs2,j

∞∑

i=s+1

ψi,j2ηs−i,j2 , (58)

with {bs(k)}, {as(k)} defined in (92) and setting xt,n+1 = 1.

In the following results we show that
√

T∇θL(m)
T (a0, θ0) = −1√

T
Z

(m)
T +op(1) and

√
T∇aL(m)

T (a0, θ0)⌋j =

1√
T

B
(m,j)
T + op(1).

Proposition A.1 Suppose Assumptions 2.1, 5.1 and 5.2(i) are satisfied and U
(m)
T and W

(m)
T satisfy

(55). Then we have

[E(|U (m)
T |2)]1/2 ≤ K (59)

where K is independent of T and Z(m)
T =

∑T
d=1 Z

(m)
d , {Z(m)

d }d are martingale difference vectors

with

Z
(m)
d =

n+1∑

j1,j2=1

(

{ηd,j1ηd,j2 − E[ηd,j1ηd,j2 ]}A
(j1,j2)
d,d + 2ηd,j1

∑

d1<d

ηd1,j2A
(j1,j2)
d,d1

)

(60)

ψ−i,ji
= 0 for i ≥ 1, and

A
(j1,j2)
d,d1

=
1

2πm

m∑

k=1

T−m+k∑

s=k

m−k∑

r=−k

xs,j1xs+r,j2ψs+d,j1ψs+r+d1,j2bs+m/2−k,m(r). (61)

For all d, d2, j1 and j2 we have

sup
d

d∑

d2=1

|A(j1,j2)
d,d2

|2 < ∞ and sup
d

|A(j1,j2)
d,d | < ∞. (62)
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PROOF. We first prove (59). To make the notation in the proof less cumbersome, we prove the

result for Xt = xt,1αt,1, where αt,1 satisfies Assumption 2.1. The proof for the general case is

the same. We observe U
(m)
T contains all the terms in ∇θL(m) which have {ηt}t≤0. We partition

U
(m)
T = RT,1 + RT,2, where

RT,1 =
2

2πm

m∑

k=1

T−m+k∑

s=k

m−k∑

r=−k

xs,1xs+r,1bs+m/2−k,m(r)
∑

i1≥s

s+r−1∑

i2=0

ψi1,1ψi2,1

(
ηs−i1,1ηs+r−i2,1 − E(ηs−i1,1ηs+r−i2,1)

)
,

RT,2 =
1

2πm

m∑

k=1

T−m+k∑

s=k

m−k∑

r=−k

xs,1xs+r,1bs+m/2−k,m(r)
∑

i1≥s

∑

i2≥s+r

ψi1,1ψi2,1

(
ηs−i1,1ηs+r−i2,1 − E(ηs−i1,1ηs+r−i2,1)

)
.

We bound each term. Studying RT,1 we see that due to the ranges in the summands, ηs−i1,1 and

ηs+r−i2,1 are independent, therefore the second moment of (E|RT,1|2)1/2 is bounded by

(E|RT,1|2)1/2

≤ 2

m
E(η2

0,1)
1/2 sup

t
|xt,1|2

m∑

k=1

sup
s

m−k∑

r=−k

|bs,m(r)|
T−m+k∑

s=k

∑

i1≥s

|ψi1,1|






E

(
s+r∑

i2=1

ψi2,1ηs−i2,1

)2






1/2

≤ 2E(η2
0,1) sup

t
|xt,1|2 sup

s

∑

r

|bs,m(r)|
{

∞∑

s=1

|sψs,1|
}{

∞∑

i=0

|ψi,1|2
}1/2

< ∞,

where to obtain the last inequality in the above we use that
∑T−m+k

s=k

∑

i1≥s |ψi1,1| ≤
∑∞

i=1 |i ·ψi,1|.
To bound (E|RT,2|2)1/2, it is straightforward to show

(E|RT,2|2)1/2 ≤ sup
t

|xt,1|2 max(E|η4
0|1/2, E|η2

0|)
{

sup
s

∑

r

|bs,m(r)|
∞∑

s=0

|sψs,1|
}2

< ∞

Using the above bounds we have (E|U (m)
T |2)1/2 < ∞ thus giving (59). To prove (60), we change

indices and let d1 = s − i1 and d2 = s + r − i2, substituting this into Z(m)
T gives

Z(m)
T =

1

2πm

m∑

k=1

n∑

j1,j2=1

T−m+k∑

s=k

m−k∑

r=−k

bs+m/2−k,m(r)
s∑

d=0

s+r∑

d1=0

ψs+d,j1ψs+r+d1,j2

(
ηd,j1ηd1,j2 − E(ηd,j1ηd1,j2)

)
.

Using the above and partitioning into the cases d1 < d and d1 = d we obtain the martingale

difference decomposition in (60).

Finally from the definition of A
(j1,j2)
d,d2

we have

d∑

d2=1

|A(j1,j2)
d,d2

|2 ≤ 1

m2

m∑

k1,k2=1

d∑

d2=1

T−m+k1∑

s=k1

T−m+k2∑

u=k2

m−k1∑

r1=−k1

m−k2∑

r2=−k2

∣
∣xs,j1xs+r1,j2xu,j1xu+r2,j2

∣
∣

|bs+m/2−k1,m(r1)| · |bs+m/2−k2,m(r2)|ψs+d,j1ψs+r+d,j2ψu+d,j1ψu+r2+d,j2

≤ sup
t,j

|xt,j |4(sup
s

∑

r

|bs,m(r)|)2 sup
j

(
∑

i

|ψi,j |2) sup
j

(
∑

i

|ψi,j |)2,
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thus giving supd

∑d
d2=1 |A

(j1,j2)
d,d2

|2 < ∞ (the first part of (62)) we use a similar method to show

supd |A(j1,j2)
d,d | < ∞. ¤

We state an analogous result for ∇aL(m)
T (a0, θ0)⌋j = 1

Tm
{B(m,j)

T + C
(m,j)
T }.

Proposition A.2 Suppose Assumptions 2.1, 5.1 and 5.2 are satisfied and B(m,j)
T and C

(m,j)
T satisfy

(58). Then we have

(E|C(m,j)
T |2)1/2 ≤ K (63)

and B(m,j)
T =

∑T
d=1 B

(m,j)
d , where {B(m,j)

d } are martingale difference with B
(m,j)
d =

∑n+1
j1=1 ηd,j1D

(j,j1)
d

and

D
(j,j1)
d =

1

2πm

m∑

k=1

T−m+k∑

s=k

m−k∑

r=−k

xs,jxs+r,j1as+m/2−k,m(r)ψs+d,j1 . (64)

Furthermore D
(j,j1)
d is bounded by

sup
j,j2

|D(j,j1)
d | ≤ 1

2π
sup
t,j

|xt,j |2 sup
s

∑

r

|as,m(r)| sup
j

∞∑

s=1

|ψs,j |. (65)

PROOF. It is straightforward, hence we omit the details. ¤

In order to use the martingale central limit theorem we show that the martingales differences

{W (m)
d } and {B(m,j)

d } have a finite fourth moment.

Lemma A.3 Suppose Assumptions 2.1, 5.1 and 5.2(i) are satisfied. Let Z
(m)
d be defined as in

(60) and B
(m,j)
d be defined as in (64). Then, for some finite K, we have supd E(|Z(m)

d |4) ≤ K and

supd E(|B(m,j)
d |4) ≤ K.

PROOF. In order to bound E(|Z(m)
d |4) we note that Z

(m)
d = X

(m)
d + Y

(m)
d , where

X
(m)
d = 2

∑n+1
j1,j2=1 ηd,j1

∑

d1<d ηd1,j2A
(j1,j2)
d,d1

and Y
(m)
d =

∑n+1
j1,j2=1 {ηd,j1ηd,j2 − E[ηd,j1ηd,j2 ]}A

(j1,j2)
d,d .

Now the fourth moment of the inner summand in X
(m)
d is

E
{
ηd,j1

∑

d2<d

ηd2,j2A
(j1,j2)
d,d2

}4 ≤ E(η4
d,j1)

∑

d2<d,d3<d

E[η2
d2,j2η

2
d3,j2 ](A

(j1,j2)
d,d2

)2(A
(j1,j2)
d,d3

)2

≤ max
j

(E[η4
d,j ]

2, E[η2
d,j ]

4)
( ∑

d1<d

(A
(j1,j2)
d,d1

)2
)2

.

Hence E(|X(m)
d |4) ≤ 2(n+1) maxj [(E(η4

d,j))
2, (E(η2

d,j))
4]

( ∑

d1<d(A
(j1,j2)
d,d1

)2
)2

. Since n < ∞ by using

(62), we have E(|X(m)
d |4) < ∞. Using the same arguments we can show that E(|Y (m)

d |4) < ∞, this

gives E(|Z(m)
d |4) ≤ K. Finally we note that since B

(m,j)
d =

∑n
j2=0 ηd,j2D

(j,j2)
d , by using (65) we have

E(|B(m,j)
d |4) < ∞, as desired. ¤
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We use the following lemma to prove asymptotic normality of the estimator. In the lemma

below we show that the likelihood of the derivative can be written in terms of a martingale term

and a term which is of lower order.

From the above we have Z(m)
T = Op(T

−1/2), B(m,j)
T = Op(T

−1/2), and by using (55),

√
T∇θL(m)

T (a0, θ0) = T−1/2Z(m)
T + Op(T

−1/2) (66)
√

T∇aj
L(m)

T (a0, θ0) = T−1/2B(m,j)
T + Op(T

−1/2),

as T → ∞. We use this to prove Theorem 5.1.

Proposition A.3 Suppose Assumptions 2.1, 5.1 and 5.2 hold, then we have

√

Tm∇L(m)
T (a0, θ0)

D→ N (0, W
(m)
T ), as T → ∞, (67)

where W
(m)
T is defined in (27).

PROOF. Using (66), Propositions A.1 and A.2 we have

√
T∇L(m)

T (a0, θ0) = T−1/2
T∑

d=1

Sd + Op(T
−1/2),

where S ′
d = (B

(m,1)
d , . . . , B

(m,n)
d , Z

(m)
d ) are martingale differences defined in Propositions A.1 and

A.2. Clearly T−1/2
∑T

d=1 Sd is the dominating term in
√

T∇L(m)
T (a0, θ0), hence we prove the result

by showing asymptotic normality of T−1/2
∑T

d=1 Sd using the martingale central limit theorem and

the Cramer-Wold device. Let c = (c1, . . . , c2n+q) be any non-zero vector and define the random

variable

Qd =
n∑

j=1

cjB
(m,j)
d +

2n+q+1
∑

j=n+1

cj(Z
(m)
d )j−n.

To apply the martingale central limit theorem we need to verify that the variance of T−1/2
∑T

d=1 Qd

is finite and that Lindeberg’s condition is satisfied (see (Hall & Heyde, 1980), Theorem 3.2). Using

Lemma A.3 we have that 1
T var(

∑T
d=1 Qd) = O(1). To verify Lindeberg’s condition, we require

that for all δ > 0, LT = 1
T

∑T
d=1 E(Q2

dI(T−1/2|Qd| > δ)|Fd−1)
P→ 0 as T → ∞, where I(·) is the

identity function and Fd−1 = σ(Qd−1, Qd−2, . . . , Q1). By using Hölder’s and Markov’s inequality

and Lemma A.3 we obtain the following bound LT ≤ 1
T 2δ

∑T
d=1 E(Q4

d|Fd−1) = Op(
1
T ) → 0, as

T → ∞. Finally we need to show that

1

T

T∑

d=1

E(Q2
d|Fd−1) =

1

T

T∑

d=1

[
E(Q2

d|Fd−1) − E(Q2
d)

]
+

1

T

T∑

d=1

E(Q2
d)

P→ c′W (m)
T c (68)
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where c′ = (c1, . . . , cn+q). From the definition of Q2
d in terms of Z

(m)
d and {B(m,j)

d } which are trun-

cated versions of ∇L(m)
T (a0, θ0), it is straightforward to show that | 1

Tm

∑T
d=1 E(Q2

d)− c′W (m)
T c| → 0

as T → ∞. Therefore it remains to show

PT =
1

Tm

T∑

d=1

(
E(Q2

d|Fd−1) − E(Q2
d)

) P→ 0,

which will give us (68). To do this we note that E(PT ) = 0 and

var(PT ) =
1

T 2
m

T∑

d=1

var(E(Q2
d|Fd−1)) +

2

T 2
m

T∑

d1>d2

cov(E(Q2
d1
|Fd1−1), E(Q2

d2
|Fd2−1)). (69)

Now by using the Cauchy Schwartz inequality and conditional expectation arguments for Fd2 ⊂ Fd1

we have

cov(E(Q2
d1
|Fd1−1), E(Q2

d2
|Fd2−1))

≤
[
E

(
E(Q2

d2
|Fd2−1) − E(Q2

d2
)
)2]1/2[

E
(
E(Q2

d1
|Fd2−1) − E(Q2

d1
)
)2]1/2

. (70)

We now show that
[
E

(
E(Q2

d1
|Fd2−1) − E(Q2

d1
)
)2] → 0 as d1 − d2 → ∞. Define the sigma-

algebra Gd = σ(ηd,1, ηd,n+1, ηd−1,1, . . .). it is straightaforward to show that Fd ⊂ Gd. Therefore

E
[
E(Q2

d1
|Fd2−1)

2
]
≤ E

[
E(Q2

d1
|Gd2−1)

2
]

which gives

E

[

E(Q2
d1
|Fd2−1) − E(Q2

d1
)

]2

≤ E
[
E(Q2

d1
|Gd2−1)

2
]
−

[
E(Q2

d1
)
]2

.

From the definition of Qd1 (in terms of {ηt}t≥1) and using Propositions A.1 and A.2, we have that

E
[
E(Q2

d1
|Gd2−1)

2
]
−

[
E(Q2

d1
)
]2 → 0 as d2 → ∞, and

sup
d1

d1∑

d2=1

(
E

[
E(Q2

d1
|Gd2−1)

2
]
−

[
E(Q2

d1
)
]2)1/2

< ∞.

Substituting the above into (70) and (69) we have var(PT ) = O(T−1), hence we have shown (68),

and the conditions of the martingale central limit theorem are satisfied. Thus we obtain (67). ¤

PROOF of Theorem 5.1. To prove (29) we note that by Lemma A.2(ii), ∇2L(m)
T is point-

wise convergent and equicontinuous on probability. Together with the compactness of the pa-

rameter spaces Ω and Θ1 ⊗ Θ2 this implies that supa,θ |∇2L(m)
T (a, θ) − E(∇2L(m)

T (a, θ))| P→ 0,

therefore |∇2L(m)
T (āT , θ̄T ) − E(∇2L(m)

T (a0, θ0))| P→ 0. Given that E(∇a∇θL(m)
T (a0, θ0)) = 0, and

E(∇2
θL

(m)
T (a0, θ0)) and E(∇2

aL(m)
T (a0, θ0)) are non-singular, then |∇2L(m)

T (āT , θ̄T )−1−E(∇2L(m)
T (a0, θ0))

−1| P→
0. Using this and the mean value theorem element wise to ∇L(m)

T (a0, θ0) gives



âT − a0

θ̂T − θ0





k

= ∇2L(m)
T (a0, θ0)

−1




∇aL(m)

T (a0, θ0)

∇θL(m)
T (a0, θ0)



 + op(
1√
T

). (71)

The above together with (67) proves (29). ¤
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A.3 Proofs in Section 5.3

We now consider the sampling properties of the two-stage scheme. We observe that the derivatives

of L(1)
T (a,Σ) evaluated at the true parameter are

∇ΣLT (a0,Σ0) =
1

T

T∑

t=1

(σt(Σ0) − X2
t )Xt

σt(Σ0)2
and E

(
∇2

ΣLT (a0,Σ0)
)

=
1

T

T∑

t=1

XtX
′
t

σt(Σ0)3

where Xt = (x2
t,1, . . . , x

2
t,n)′.

Lemma A.4 Suppose Assumptions 2.1, 5.1 and 5.2 are satisfied then Let L(1)
T (a,Σ) and Σ̃T be

defined as in (12). Then we have

(
(ãT − a0), (Σ̃T − Σ0)

)
= Op(T

−1/2), (72)

√
T∇L(1)

T (a0,Σ0) =
1√
T

Z
(1)
T +

1√
T

U
(1)
T , (73)

where supT E|U (1)
T | < ∞, Z(1)

T =
∑T

d=1 Z
(1)
d and {Z(1)

d } are martingale differences with

Z
(1)
d =

n∑

j1,j2=0

(
[ηd,j1ηd,j2 − E(ηd,j1ηd,j2)]B

(j1,j2)
d,d + 2ηd,j1

∑

d2<d

ηd2,j2B
(j1,j2)
d,d2

)
(74)

B
(j1,j2)
d,d2

=
T∑

s=1

ψs−d,j1ψs−d2,j2

xs,j1xs,j2

σt(Σ0)
Xs. (75)

PROOF. By using analogous results to Lemmas A.1 and A.2 and the same technique of as the

proof of Proposition 5.1 it can be shown that
(
(ãT −a0), (Σ̃T −Σ0)

) P→ 0. Further this gives (72).

Using Propositions A.1 and A.2 we can show that
√

T∇LT (a0,Σ0) and (73) is dominated by a

term which is the sum of martingale differences, which is given in (73). ¤

PROOF of Proposition 5.2 By using the same arguments in Propositions A.3 and Theorem

5.1 we have (30).

We now consider the properties of L(m)
T (a0, ϑ0, Σ̃T ). To do this we compare L(m)

T (a0, ϑ0, Σ̃T )

with L(m)
T (a0, ϑ0,Σ0)

Lemma A.5 Suppose Assumptions 2.1, 5.1 and 5.2 are satisfied, E(Zt(ω)) = 0 and for any deter-

ministic sequence {ak}, with supk |ak| < ∞ we have supω var
(

1
n

∑n
t=1 atZt(ω)

)
= O(T−1), then for

any k ≥ 1 we have

1√
T

∫ T∑

t=1

atZt(ω)
{
∇ϑFt,m(ϑ0, Σ̃T , ω) −∇ϑFt,m(ϑ0,Σ0, ω)

}
dω

P→ 0 (76)
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1√
n

∫ n∑

t=1

atZt(ω)

(
1

Ft,m(ϑ0, Σ̃T , ω)k
− 1

Ft,m(ϑ0,Σ0, ω)k

)

dω
P→ 0 k > 0. (77)

PROOF. To prove the result we first recall that from the definition of Ft,m(ϑ,Σ, ω), that

T∑

t=1

atZt(ω)Ft,m(ϑ,Σ, ω) =
n+1∑

j=1

σj

T∑

t=1

atZt(ω)

∫ π

−π
I

(j)
t,m(λ)fj(ϑ, ω − λ)dλ. (78)

Now by using the above, (72) and differentiating Ft,m with respect to ϑ we immediately obtain

(76). We now prove (77). We observe that

1√
T

T∑

t=1

atZt(ω)

(
1

Ft,m(ϑ0, Σ̃T , ω)k
− 1

Ft,m(ϑ0,Σ0, ω)k

)

= A + B + C,

where

A =
1√
T

T∑

t=1

atZt(ω)

[
Ft,m(ϑ, Σ̃T , ω)k −Ft,m(ϑ,Σ0, ω)k

]

Ft,m(ϑ,Σ0, ω)2k

B =
1√
T

T∑

t=1

atZt(ω)

[
Ft,m(ϑ, Σ̃T , ω)k −Ft,m(ϑ,Σ0, ω)k

]2

Ft,m(ϑ,Σ0, ω)3k

C =
1√
T

T∑

t=1

atZt(ω)

[
Ft,m(ϑ, Σ̃T , ω)k −Ft,m(ϑ,Σ0, ω)k

]3

Ft,m(ϑ,Σ0, ω)3kFt,m(ϑ, Σ̃T , ω)3k
.

Now by using (78) and (72), and the stated assumptions E( 1
T

∑T
t=1 atZt(ω)) = 0 and supω var

(
1
T

∑T
t=1 atZt(ω)

)
=

O(T−1) and that Ft,m(ϑ,Σ0, ω) ≥ δ (due to Assumption 5.1(i)), we have A = Op(T
−1/2) and

B = Op(T
−1). Finally, to obtain a bound for C we note that

|C| ≤ 1

δ6k
√

n

n∑

t=1

|at| · |Zt(ω)| ·
∣
∣
[
Ft,m(ϑ, Σ̃T , ω)k −Ft,m(ϑ,Σ0, ω)k

]3∣∣,

now by using the same methods as above it can be shown that C = Op(T
−1). Thus we obtain (77).

¤

We use the result above to prove the results below.

Lemma A.6 Suppose the assumptions in Theorem 5.2 are satisfied. Then we have

sup
θ̃

∣
∣

1

Tm

∫ T−m/2
∑

t=m/2

(

log[Ft,m(ϑ, Σ̃T , ω)] − log[Ft,m(ϑ,Σ0, ω)]

)

dω
∣
∣ P→ 0 (79)

sup
θ̃,a

∣
∣

1

Tm

∫ T−m/2
∑

t=m/2

It,m(a, ω)
(∇k1Ft,m(ϑ,Σ0, ω)

Ft,m(ϑ,Σ0, ω)k2
− ∇k1Ft,m(ϑ,Σ0, ω)

Ft,m(ϑ, Σ̃T , ω)k2

)∣
∣ P→ 0 (80)
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1√
Tm

∫ T−m/2
∑

t=m/2

ℜ[J
(X)
t,m (ω)J

(j)
t,m(−ω)]

( 1

Ft,m(ϑ, Σ̃T , ω)
− 1

Ft,m(ϑ,Σ0, ω)

)
dω

P→ 0 (81)

1√
Tm

∫ T−m/2
∑

t=m/2

(
It,m(a0, ω) −Ft,m(ϑ0, Σ̃T , ω)

)( 1

Ft,m(ϑ, Σ̃T , ω)2
− 1

Ft,m(ϑ,Σ0, ω)2
)
∇

θ̃
Ft,m(ϑ0, Σ̃T , ω)dω

P→ 0(82)

and

1√
Tm

∫ T−m/2
∑

t=m/2

(
It,m(a0, ω) −Ft,m(ϑ0, Σ̃T , ω)

)

Ft,m(ϑ,Σ0, ω))

{
∇

θ̃
Ft,m(ϑ, Σ̃T , ω) −∇

θ̃
Ft,m(ϑ,Σ0, ω)

}
dω

P→ 0(83)

PROOF. To prove (79) we use the mean value theorem and that Ft,m ≥ δ > 0 to obtain

∣
∣ log(Ft,m(ϑ, Σ̃T , ω)) − log(Ft,m(ϑ,Σ0, ω))

∣
∣ ≤ 1

δ

∣
∣Ft,m(ϑ,Σ0, ω) −Ft,m(ϑ, Σ̃T , ω)

∣
∣.

Now by substituting the above into the sum in (79) and using (72) we obtain (79). Using a similar

argument to the proof given in Lemma A.5 together with (72) we obtain (80). Now noting that

Eℜ[J
(X)
t,m (ω)J

(j)
t,m(−ω)] = 0, E

(
It,m(a0, ω)−Ft,m(ϑ0, Σ̃T , ω)

)
= 0 and using Lemma 5.1 we can apply

(77) to obtain (81) and (82). Finally by using (76) we have (83). ¤

We now obtain approximations of L(m)
T (a0, ϑ, Σ̃T ) and its derivatives. In the following lemma

we show that ∇aL(m)
T (a0, ϑ0, Σ̃T ) is uneffected by whether the estimated Σ̃T or true Σ0 is used.

On the other hand, estimating Σ̃T , changes of the asymptotic variance of ∇ϑL(m)
T (a0, ϑ0, Σ̃T ).

Lemma A.7 Suppose the assumptions Theorem 5.2 are satisfied and let QT (a0, ϑ,Σ0) be defined

as in (32). Then we have

sup
a,ϑ

∣
∣L(m)

T (a, ϑ, Σ̃T ) − L(m)
T (a, ϑ,Σ0)

∣
∣ P→ 0, (84)

sup
a,ϑ

∣
∣∇2L(m)

T (a, ϑ, Σ̃T ) −∇2L(m)
T (a, ϑ,Σ0)

∣
∣ P→ 0, (85)

√
T∇aL(m)

T (a0, ϑ0, Σ̃T ) =
√

T∇aL(m)
T (a0, ϑ0,Σ0) + op(1) (86)

√
T∇ϑL(m)

T (a0, ϑ0, Σ̃T ) =
√

T∇ϑL(m)
T (a0, ϑ0,Σ0) +

√
TQT∇ΣLT (a0,Σ0) + op(1) (87)

where QT is defined in (32).
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PROOF. By using (79) and (80) we immediately obtain (84) and (85). By using (81) we immediately

obtain (86). To prove (87) we observe that by expanding ∇ϑL(m)
T (a0, ϑ0,Σ) and using (82) and

(81) we have

√
T∇ϑL(m)

T (a0, ϑ0, Σ̃T ) =
√

T∇ϑL(m)
T (a0, ϑ0,Σ0) +

√
TKT (a0, ϑ0,Σ0) + op(1)

where

√
TKT (a0, ϑ0,Σ0) =

1√
T

∫ T−m/2
∑

t=m/2

Ft,m(ϑ, θ2,T , ω) −Ft,m(ϑ0,Σ0, ω)

Ft,m(ϑ0,Σ0, ω)2
∇ϑFt,m(θ1,0,Σ0, ω)

=
1√
T

n+1∑

j=1

(σ̂j − σj,0)

∫ T−m/2
∑

t=m/2

h
(t,m)
j (ω)

Ft,m(ϑ0,Σ0, ω)2
∇ϑFt,m(ϑ,Σ0, ω)

=
√

TQT∇ΣL(1)
T (a0,Σ0) + op(1),

where QT is defined in (32). Thus we obtain the desired result. ¤

Theorem A.1 Suppose the assumptions Theorem 5.2 are satisfied, and let W̃
(m)
T be defined as in

Theorem 5.2. Then we have

√
T∇L(m)

T (a0, ϑ0, Σ̃T )
D→ N

(
0, W̃

(m)
T

)

PROOF. To prove the result we substitute (66) into Lemma A.7 to obtain

√
T∇aL(m)

T (a0, ϑ0, Σ̃T ) = T−1/2
T∑

d=1

B
(m,j)
d + op(1)

√
T∇

θ̃
L(m)

T (a0, ϑ0, Σ̃T ) = T−1/2
T∑

d=1

Z
(m)
d + T−1/2

T∑

d=1

QT Z
(1)
d + op(1),

where B
(m,j)
d and Z

(1)
d are defined as in (64) and (75), and Z

(m)
d is defined as in (60), except it does

not include the derivatives with respect to Σ. Now from the definitions we observe that {B(m,j)
d }

and {Z(m)
d + QT Z

(1)
d } are martingale differences, hence by using the same method of proof given

in Proposition A.3, we have the result. ¤

PROOF of Theorem 5.2 The proof follows by making a Taylor series expansion of L(m)
T (a, ϑ, Σ̃T )

with respect to a and ϑ and using Theorem A.1. ¤

A.4 The covariance operator, approximations and the proof of Section 5.4

A.4.1 An expression for W
(m)
T

An expression for V
(m)
T in terms of Ft,m is given in (26) we now obtain a similar expression for

W
(m)
T . The expression for W

(m)
T is quite cumbersome, to make it more interpretable we state it in

43



terms of operators. Let ℓ2 denote the space of all square summable (vector) sequences. We define

the general operator Γ
(k1,k2),(j)
x1,...,xT

(·) which acts on the d1 and d2-dimensional column vector sequences

g = {g(k)} ∈ ℓ2 and h = {h(k)} ∈ ℓ2 (to reduce notation we do not specify the dimensions of the

vectors in ℓ2)

Γ
(k1,k2),(j)
x1,...,xT

(g, h)(s, u) =

m−k1∑

r1=−k1

m−k2∑

r2=−k2

g(r1)h(r2)
′K(j)

xs,xs+r1 ,xu,xu+r2
(s − u, r1, r2), (88)

where xs = (xs,1, . . . , xs,n, 1) are the regressors observed at time s and the kernel K(j) is defined as

either

K(0)
xs1 ,xs2 ,xs3 ,xs4

(k, r1, r2) =
n+1∑

j=1

xs1,jxs2,jxs3,jxs4,jcov(α0,jαr1,j , αk,jαk+r2,j)

K(j1)
xs1 ,xs2 ,xs3 ,xs4

(k, r1, r2) =
n+1∑

j=1

xs1,jxs2,jxs3,jxs4,j1cov(α0,jαr1,j , αk,j) 1 ≤ j1 ≤ n

or K(j1,j2)
xs1 ,xs2 ,xs3 ,xs4

(k, r1, r2) =

n+1∑

j=1

xs1,jxs2,j1xs3,jxs4,j2cov(α0,j , αk,j) 1 ≤ j1, j2 ≤ n (89)

where for notational convenience we set αt,n+1 := εt and xt,n+1 := 1. We will show that var(∇L(m)
T (a0, θ0)

can be written in terms of Γ
(k1,k2),(j)
x1,...,xT

. Suppose Gs(·) and Hu(·) are square integrable vector functions,

then it can be shown

var





∫ 2π
0 Hu(ω)Xu

∑m−k2
r2=−k2

xu+r1,j1 exp(ir2ω)dω
∫ 2π
0 Gs(ω)Xs

∑m−k1
r1=−k1

Xs+r1 exp(ir1ω)dω





=




Γ

(k2,k2),(j1,j1)
x1,...,xT

(hu, h̄u)(u, u) Γ
(k1,k2),(j1)
x1,...,xT

(ḡ
s
, hu)(s, u)

Γ
(k1,k2),(j1)
x1,...,xT

(g
s
, h̄u)(s, u) Γ

(k1,k1),(0)
x1,...,xT

(g
s
, ḡ

s
)(s, s)



 (90)

where g
s

= {g
s
(r) =

∫
Gs(ω) exp(irω)dω}r, hs = {hs(r) =

∫
Hs(ω) exp(rω)dω}r, ḡ

s
= {g

s
(−r)}r

and h̄s = {hs(−r)}r.

Using the above notation we can write

W
(m)
T = Tvar(∇L(m)

T (a0, θ0)) =
1

m2Tm

m∑

k1,k2=1

T−m+k1∑

s=k1

T−m+k2∑

u=k2

(91)




Γ

(k1,k2),(j,j)
x1,...,xT

(as+m/2−k1
, au+m/2−k2

)(s, u) Γ
(k1,k2),(j)
x1,...,xT

(bs+m/2−k1
, au+m/2−k2

)(s, u)

Γ
(k1,k2),(j)
x1,...,xT

(b̄s+m/2−k1
, au+m/2−k2

)(s, u) Γ
(k1,k2),(0)
x1,...,xT

(bs+m/2−k1
, b̄u+m/2−k2

)(s, u)



 ,

where Γ
(k1,k2),(j,j)
x1,...,xT

= {Γ(k1,k2),(j1,j2)
x1,...,xT

}j1,j2=1,...,n and Γ
(k1,k2),(j)
x1,...,xT

= {Γ(k1,k2),(j)
x1,...,xT

}j=1,...,n, bs = {bs(k)},
as = {as(k)} with

as(k) =

∫

Fs,m(θ0, ω)−1 exp(ikω)dω, bs(k) =

∫

∇θFs,m(θ0, ω)−1 exp(ikω)dω, (92)
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(noting that Fs,m(θ0, ω)−1 is a symmetric function hence as = ās). We will use (91) when we

compare Estimator 1 with the Gaussian maximum likelihood estimator.

A.4.2 General approximations

The results in this section are used to prove Proposition 5.3. These results may also be of indepen-

dent interest.

In this section we will consider functions which admit the representation G(ω) =
∑∞

j=−∞ g(k) exp(ikω),

where {g(k)} is a square summable sequence, hence G(·) ∈ L2[0, 2π], where L2[0, 2π] denotes all

functions defined on [0, 2π]. Many of the results below, require that the sequence {g(k)} is abso-

lutely summable. Sufficient conditions for this can be obtained in terms of G(·). More precisely,

since (ik)rg(k) =
∫ 2π
0

drG(ω)
dωr exp(ikω)dω, if drG(ω)

dωr ∈ L2[0, 2π], then
∑

k |kr−1| · |g(k)| < ∞. Hence

if the derivative of G(·) is square integrable, then this implies absolute summability of {g(k)}. Let

‖G‖2 =
∫
|G(x)|2dx, where G : [0, 2π] → ∞.

We begin by considering some of the properties of the operators Γ
(k1,k2),(j)
x1,...,xT

, defined in (88), and

Γ
(j)
xs,xu(g, h)(k) =

∞∑

r1=−∞

∞∑

r2=−∞
g(r1)h(r2)K(j)

xs,xs,xu,xu(k, r1, r2), (93)

where g = {g(r)} and h = {h(r)} are d1 and d2-dimensional column vector sequences which are in

ℓ2 and K(j) is defined in (89).

We recall that var(∇L(m)
T (a0, θ0)) can be written in terms of Γ

(k1,k2),(j)
x1,...,xT

(see (91)). The operator

Γxs,xu has a similar interpretation. Define the (unobserved) time series Xt(s) =
∑n

j=1 αt,jxs,j + εt

and JX(s, ω) = 1√
2πm

∑m
k=1 Xs−m/2+k(s) exp(ikω), using this, it can be shown that

cov

( ∫ 2π

0
Gs(ω)

∞∑

r1=−∞
Xs(s)Xs+r1(s) exp(ir1ω)dω,

∫ 2π

0
Hu(ω)

∞∑

r2=−∞
Xu(u)Xu+r2(u) exp(ir2ω)dω

)

= Γ
(0)
xs,xu(gs, h̄u)(s − u) (94)

where gs = {gs(r) =
∫
Gs(ω) exp(irω)dω}, h̄s = {hs(r) =

∫
Hs(ω) exp(rω)dω}. Similar interpreta-

tions are true for Γ
(j1,j2)
xs,xu (gs, hu)(s − u) and Γ

(j)
xs,xu(gs, hu)(s − u).

The proof of Proposition 5.3 requires the proposition below, where we show that if the kernels

K(j) satisfy a type of Lipschitz condition, then we can approximate Γ
(k1,k2)
x1,...,xT

with Γxs,xu . We start

by obtain upper bounds for the kernels K(j). Recalling the definition of ρ2(·) and ρ4(·) in (24),

let ρ3(k1, k2) = κ3 supj1,j2,j3

∑

i ·|ai,j1 | · |ai+k1,j2 | · |ai+k2,j3 |. Using these bounds it is clear that for
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j ∈ {0, j, (j1, j2)} we have sup |K(j)
xs1 ,xs2 ,xs3 ,xs4

(k, r1, r2)| ≤ K̃(j)(k, r1, r2), where

K(0)(k, r1, r2) = (n + 1) sup
s,j

|xs,j |4
(

ρ2(k)ρ2(k + r1 − r2) + ρ2(k − r2)ρ2(k + r2) + ρ4(r1, k, k − r2)

)

K̃(j)(k, r1, r2) = (n + 1) sup
s,j

|xs,j |4ρ3(k, r) and K̃(j1,j2)(k, r1, r2) = (n + 1) sup
s,j

|xs,j |4ρ2(k).

For all j ∈ {0, j, (j1, j2)}, these kernels can be used as the Lipschitz bounds

∣
∣K(j)

xs1 ,xs2 ,xs3 ,xs4
(k, r1, r2) −K(j)

xs5 ,xs6 ,xs7 ,xs8
(k, r1, r2)

∣
∣ ≤ 1

N̂

{
4∑

i=1

|si − si+4|
}
K̃(j)(k, r1, r2). (95)

In the proofs below we require the following bounds, which are finite under Assumption 5.1

K(j)
1 =







∑

k,r1
|K̃(0)(k, r1, r2)| j = 0

∑

k,r1
|K̃(j)(k, r1, r2)| j = j

∑

k |K̃(j1,j2)(k, r1, r2)| j = (j1, j2)

K(j)
2 =







∑

k,r1
|kK̃(0)(k, r1, r2)| j = 0

∑

k,r1
|kK̃(j)(k, r1, r2)| j = j

∑

k |kK̃(j1,j2)(k, r1, r2)| j = (j1, j2)

(96)

Proposition A.4 Let Γ
(k1,k2),(j)
x1,...,xT

and Γ
(j)
xs,xu be defined as in (88) and (93). Let Hs(ω) =

∑∞
k=−∞ hs(k) exp(ikω)

and Gs(ω) =
∑∞

k=−∞ gs(k) exp(ikω). Then we have

∣
∣
∣
∣

1

m2Tm

m∑

k1,k2=1

T−m+k1∑

s=k1

T−m+k2∑

u=k2

(

Γ
(k1,k2),(j)
x1,...,xT

(gs+k1 , hu+k2)(s, u) − Γ
(j)
xs,xu(gs+k1 , hu+k2)(s − u)

)∣
∣
∣
∣

≤ C

{
1

N̂
+

1

m

}{

sup
s

‖d2Hs(ω)

dω2
‖2 sup

u
‖d2Gu(ω)

dω2
‖2

}

K(j)
1 ,

where j ∈ {0, j, (j1, j2)} and C < ∞.

PROOF. The main differences between Γ
(k1,k2),(j)
x1,...,xT

and Γ
(j)
xs,xu are the kernels used and the limits of

the summands. Systematically replacing the kernels K(j)
xs,xs+r1 ,xu,xu+r2

(k, r1, r2) with K(j)
xs,xs,xu,xu(k, r1, r2)

and the summands
∑m−k1

r1=−k1

∑m−k2
r2=−k2

with
∑∞

r1=−∞
∑∞

r2=−∞, and using (95) gives

∣
∣

1

m2Tm

m∑

k1,k2=1

T−m+k1∑

s=k1

T−m+k2∑

u=k2

(
Γ

(k1,k2),(j)
x1,...,xT

(gs−k1 , hu−k2)(s, u) − Γ
(j)
xs,xu(gs−k1 , hu−k2)(s − u)

)∣
∣ ≤ I + II + III

(97)

where

I =
1

m2TmN̂

m∑

k1,k2=1

T−m+k1∑

s=k1

T−m+k2∑

u=k2

∞∑

r1,r2=−∞
(|r1| + |r2|)|gs−k1(r1)| · |hu−k2(r2)| · K̃(j)(s − u, r1, r2)

II =
1

m2Tm

m∑

k1,k2=1

T−m∑

d1=0

T−m∑

d2=0

∞∑

r1=−∞

∑

r2<−k2,r2>m−k2

|gd1(r1)| · |hd2(r2)| · K̃(j)(d1 + k1 − d2 − k2, r1, r2)

III =
1

m2Tm

m∑

k1,k2=1

T−m∑

d1=0

T−m∑

d2=0

∑

r1<−k1,r1>m−k1

∞∑

r2=−∞
|gd1(r1)| · |hd2(r2)| · K̃(j)(d1 + k1 − d2 − k2, r1, r2)
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We will derive bounds for I, II and III in the case j = 0, similar bounds can be obtained for the

j = j and j = (j1, j2). We first bound I. By using the Cauchy-Schwartz inequality we have

∞∑

r1,r2=−∞
|r1| · |gs−k1(r1)| · |hu−k2(r2)| · K̃(0)(s − u, r1, r2)

≤
(

∞∑

r1=−∞
|r1 · gs−k1(r1)|2

)1/2(
∞∑

r1=−∞
|K̃(0)(s − u, r1, r2)|2

)1/2 ≤ sup
s

‖dGs(ω)

dω
‖2

(
∞∑

r1=−∞
|K̃(0)(s − u, r1, r2)|2

)1/2
.

The same bound can be obtained for
∑∞

r1,r2=−∞ |r1| · |gs−k1(r2)| · |hu−k2(r2)| · K̃(0)(s − u, r1, r2),

substituting both these bounds into I and noting that
∑∞

u=−∞
( ∑∞

r2=−∞ |K̃(0)(s−u, r1, r2)|2
)1/2 ≤

∑∞
u=−∞

∑∞
r2=−∞ |K̃(0)(s − u, r1, r2)| = K(j)

1 , we have

I ≤ 1

m2TmN̂

m∑

k1,k2=1

T−m+k1∑

s=k1

sup
s

‖dGs(ω)

dω
‖2 sup

u
‖dHs(ω)

dω
‖2

T−m+k2∑

u=k2

(
∞∑

r1=−∞
+

∞∑

r1=−∞

)
K̃(0)(s − u, r1, r2)

≤ K

N̂
sup

s
‖dGs(ω)

dω
‖2 sup

u
‖dHs(ω)

dω
‖2K(0)

1 ,

where K is a finite constant. We now bound II. By using (96) we have

II ≤ 1

mTm
sup
s,r

|gs(r)|K(0)
1

T−m∑

d2=0

m∑

k2=1

∑

r2<−k2,r2>m−k2

|hd2(r2)|. (98)

Studying the inner sum of the above we observe that

m∑

k2=1

∑

r2<−k2,r2>m−k2

|hd2(r2)| ≤
∞∑

r2=−∞
|r2hd2(r2)| ≤ sup

s
‖d2Hs(ω)

dω2
‖2.

Substituting the above and sups,r |gs(r)| ≤ sups ‖dGs(ω)
dω ‖2 into (98) gives

II ≤ 1

m
K(0)

1

{

sup
s

‖dHs(ω)

dω
‖2 sup

u
‖dGu(ω)

dω
‖2

}

.

Using a similar argument we obtain the same bound for II. Altogether these bounds for I, II and

III give (97). To prove the result for j ∈ {j, (j1, j2)} is similar and we omit the details. ¤

Proposition A.5 Suppose the assumptions in Proposition A.4 hold, sups,ω |dHs(ω)
dω | < ∞ and for

all s and u we have

sup
ω

|Hs(ω) − Hu(ω)| ≤ K
|s − u|

N̂
sup

ω
|Gs(ω) − Gu(ω)| ≤ K

|s − u|
N̂

, (99)

where K < ∞. Then we have

∣
∣
∣
∣

1

m2Tm

m∑

k1,k2=1

T−m+k1∑

s=k1

( T−m+k2∑

u=k2

Γ
(j)
xs,xu(gs−k1 , hu−k2)(s − u) −

∞∑

u=−∞
Γ

(j)
xs,xs(gs−k1 , hs−k2)(s − u)

)∣
∣
∣
∣

≤ K

{
1

N̂
+

1

m

}
{
(2 sup

s,ω
|Hs(ω)| sup

s,ω
|dHs(ω)

dω
|)1/2 + sup

s
‖Hs(ω)

dω
‖2

}
sup

u
‖dGu(ω)

dω
‖2K(j)

2 (100)
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and

∣
∣
∣
∣

1

m2Tm

m∑

k1,k2=1

T−m+k1∑

s=k1

∞∑

u=−∞
Γ

(j)
xs,xs(gs−k1 , hs−k2)(s − u) − 1

T

T∑

s=1

∞∑

u=−∞
Γ

(j)
xs,xs(gs, hs)(s − u)

∣
∣
∣
∣

≤ K

{
m

N̂

}
{

sup
s,ω

|dHs(ω)

dω
|1/2 sup

u
‖dGu(ω)

dω
‖2K(j)

2 . (101)

PROOF. We first prove (100), where the summand
∑T−m+k2

u=k2
changes to

∑∞
u=−∞ and Γxs,xu

changes to Γxs,xs . We first observe

∣
∣
∣
∣

1

m2Tm

m∑

k1,k2=1

T−m+k1∑

s=k1

{ T−m+k2∑

u=k2

Γ
(j)
xs,xu(gs−k1 , hu−k2)(s − u) −

∞∑

u=−∞
Γ

(j)
xs,xs(gs−k1 , hs−k2)(s − u)

}∣
∣
∣
∣

≤ I + II, (102)

where

I =
1

m2Tm

m∑

k1,k2=1

T−m+k1∑

s=k1

T−m+k2∑

u=k2

∣
∣Γ

(j)
xs,xu(gs−k1 , hu−k2)(s − u) − Γ

(j)
xs,xs(gs−k1 , hs−k2)(s − u)

∣
∣

II =
1

m2Tm

m∑

k1,k2=1

T−m+k1∑

s=k1

∑

u<k2,u>T−m+k2

∣
∣Γ

(j)
xs,xs(gs−k1 , hs−k2)(s − u)

∣
∣.

We now bound I. To bound inside the summation of I we use (95) and the definition of Γ
(j)
xs,xs to

obtain

∣
∣Γ

(j)
xs,xu(gs−k1 , hu−k2)

(s − u) − Γ
(j)
xs,xs(gs−k1 , hs−k2)(s − u)

∣
∣

≤
∞∑

r1=−∞
|gs+k1(r1)|

∞∑

r2=−∞

{
∣
∣hu−k2(r2) − hs−k2(r2)

∣
∣ +

|s − u|
N̂

|hu−k2(r2)|
}

K̃(j)(s − u, r1, r2).(103)

We start by examining
∑∞

r2=−∞
∣
∣hu−k2(r2) − hs−k2(r2)

∣
∣K̃(s − u, r1, r2), which is the first term in

(103). By using the Cauchy-Schwartz inequality we have and that
{ ∑∞

r2=−∞ K̃(j)(s−u, r1, r2)
2
}1/2 ≤

∑∞
r2=−∞ K̃(j)(s − u, r1, r2) gives

∞∑

r2=−∞

∣
∣hu−k2(r2) − hs−k2(r2)

∣
∣K̃(j)(s − u, r1, r2) ≤ {

∞∑

r2=−∞

∣
∣hu−k2(r2) − hs−k2(r2)|2

}1/2
∞∑

r2=−∞
K̃(j)(s − u, r1, r2)

Recalling that hs(r) =
∫

Hs(ω) exp(irω)dω we have by Parseval’s theorem and (99) that

∞∑

r=−∞

∣
∣hu+k2(r) − hs+k2(r)

∣
∣2 =

∫ 2π

0
|Hs+k2(ω) − Hu+k2(ω)|2dω ≤ H

|u − s|
N̂

,

where H = (2 sups,ω |Hs(ω)| sups,ω |dHs(ω)
dω |)1/2. Substituting the above into (103) gives

∣
∣Γ

(j)
xs,xu(gs−k1 , hu−k2)

(s − u) − Γ
(j)
xs,xs(gs−k1 , hs−k2)(s − u)

∣
∣

≤ |s − u|
N̂

∞∑

r1=−∞
|gs−k1(r1)|

(

H +

∞∑

r2=−∞
|hu−k2(r2)|

)

K̃(j)(s − u, r1, r2).
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Substituting the above into I, and noting that
∑∞

r2=−∞ |hu−k2(r2)| ≤ supu ‖dHu(ω)
dω ‖ and

∑∞
r1=−∞ |gs−k1(r2)| ≤

sups ‖dGs(ω)
dω ‖ we have

I ≤ 1

m2N̂Tm

m∑

k1,k2=1

T−m+k1∑

s=k1

∞∑

r1=−∞
|gs−k1(r1)|

(

H +
∞∑

r2=−∞
|hu−k2(r2)|

) T−m+k2∑

u=k2

|s − u|K̃(j)(s − u, r1, r2)

≤ N̂−1 sup
s

∥
∥
dGs(ω)

dω

∥
∥

2

(

H + sup
s

∥
∥
dHs(ω)

dω

∥
∥

2

) ∞∑

u=−∞
|s − u|K̃(j)(s − u, r1, r2)

≤ N̂−1 sup
s

∥
∥
dGs(ω)

dω

∥
∥

2

(

H + sup
s

∥
∥
dHs(ω)

dω

∥
∥

2

)

K(j)
2 .

Now we bound II. Using similar methods to those used in the proof of Proposition A.4 we have

II ≤ 1

m2Tm

m∑

k1,k2=1

T−m+k1∑

s=k1

∞∑

u=−∞
|u|

∞∑

r1,r2=−∞
|gs+k1(r1)||hs+k2(r2)|K̃(s − u, r1, r2)

≤ 1

m
sup

s
‖dHs(ω)

dω
‖2 sup

s
‖Gs(ω)‖2K(j)

2 .

Substituting the bounds for I and II into (102) and noting that ‖Gs(ω)‖2 ≤ ‖dGs(ω)
dω ‖2 gives (100).

The proof of (101) uses the same methods used to bound I, hence we omit the details. ¤

A.4.3 Proofs in Section 5.4

We first outline the proof of Lemma 5.2.

PROOF of Lemma 5.2 The result can be shown by using the same arguments as those used

in Dahlhaus (2000), where it is shown that a version of the Whittle likelihood containing the pre-

periodogram and the localised spectrum is asymptotically equivalent to the Gaussian likelihood.

As the proof is identical to the proof given in Dahlhaus (2000), we omit the details. ¤

In the following proposition we obtain a series of approximations to (91) which we use to

approximate var(
√

T∇L(m)
T (α0, θ0)). The proof of Proposition 5.3 follows immediately from the

proposition below and

N

T

∫ T/N

0

∞∑

k=−∞
Γ

(j1,j2)
x(v),x(v)(a(v), a(v))(k)dv =

N

T

∫ T/N

0
xj1(v)xj2(v)F(v,θ0, 0)−1dv,

N

T

∫ T/N

0

∞∑

k=−∞
Γ

(0)
x(v),x(v)(b(v), b̄(v))(k)dv =

N

T

∫ T/N

0

∫ 2π

0

∇θF(v,θ0, ω)(∇θF(v,θ0,−ω))′

|F(v,θ0, ω)|2 dωdv.

Proposition A.6 Suppose Assumptions 2.1, 5.1 and 5.2 hold, N̂ is defined as in (35), the opera-

tors Γ
(k1,k2),(j)
x1,...,xT

and Γ
(j)
xs,xu are defined as in (88) and (93) respectively and

sup
j

∫
∣
∣
d2fj(ϑ0, ω)

dω2

∣
∣2dω < ∞ and sup

j

∫
∣
∣
d2∇θfj(ϑ0, ω)

dω2

∣
∣2dω < ∞. (104)
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Then we have

∣
∣
∣
∣

1

m2Tm

m∑

k1,k2=1

T−m+k1∑

s=k1

{ T−m+k2∑

u=k2

Γ
(k1,k2),(j)
x1,...,xT

(d
(1)
s−m/2+k1

, d
(2)
u−m/2+k2

)(s, u) −

∞∑

u=−∞
Γ

(j)
xs,xs(d

(1)
s−m/2+k1

, d
(2)
s−m/2+k2

)(s − u)

}∣
∣
∣
∣
≤ K

{
1

N̂
+

1

m
+

1

Tm

}

(105)

∣
∣
∣
∣

1

m2Tm

m∑

k1,k2=1

T−m+k1∑

s=k1

∞∑

u=−∞
Γ

(j)
xs,xs(d

(1)
s−m/2+k1

, d
(2)
s−m/2+k2

)(s − u) −

1

T

T∑

s=1

∞∑

u=−∞
Γ

(j)
xs,xs(d

(1)
s , d(2)

s )(s − u)

∣
∣
∣
∣
≤ K

(m

N̂
+

m

T

)
(106)

∣
∣
∣
∣

1

T

T∑

s=1

∞∑

u=−∞
Γ

(j)
xs,xs(d

(1)
s , d(2)

s )(s − u) − N

T

∫ T/N

0

∞∑

u=−∞
Γ

(j)
x(v),x(v)(d(v)(1), d(v)(2))(u)dv

∣
∣
∣
∣
≤ K

(m

N̂
+

1

N̂
+

1

m

)
(107)

∣
∣
∣
∣

1

Tm

T−m/2
∑

s=m/2

∇Fs,m(θ0, ω)∇Fs,m(θ0, ω)′

(Fs,m(θ0, ω))2
− N

T

∫ T/N

0

∇F(u, θ0, ω)∇F(u, θ0, ω)′

(F(u, θ0, ω))2
du

∣
∣
∣
∣
≤ K

m

N̂
(108)

where j ∈ {0, j, (j1, j2)}, d
(i)
s (k) ∈ {as(k), bs(k)} (see (92) for their definition), d(i)(u, k) ∈ {a(u, k), b(u, k)}

(see (34) for their definition) and K is a finite constant.

PROOF. The proof follows from Propositions A.4 and A.5 We need to verify the conditions in these

propositions which we do below. ¤

Under Assumptions 5.1 and 5.2 we have supt,m,ω |Fs,m(θ0, ω)| < ∞, supt,m,ω |Fs,m(θ0, ω)−1| <

∞ and supt,m,ω |∇θFs,m(θ0, ω)−1| < ∞, therefore Fs,m(θ0, ·), Fs,m(θ0, ·)−1 and ∇θFs,m(θ0, ·)−1

belong to L2[0, 2π]. We recall that Proposition A.6 is based on the sequences {as(k)}k and {bs(k)}k

(defined in (92)), the above means

Fs,m(θ0, ω)−1 =
∞∑

k=−∞
as(k) exp(ikω) and ∇θFs,m(θ0, ω)−1 =

∞∑

k=−∞
bs(k) exp(ikω). (109)

We use the following lemma to prove Lemma A.1.

Lemma A.8 Suppose that Assumptions 2.1, 5.1 and 5.2 hold. Then we have

sup
t,m,θ,ω

∣
∣
∣
∣

d∇k
θFt,m(θ, ω)

dω

∣
∣
∣
∣
< ∞, (110)

sup
t,m,θ,ω

∣
∣
∣
∣

d∇k
θFt,m(θ, ω)−1

dω

∣
∣
∣
∣
< ∞, (111)
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and

sup
t,m,θ

∞∑

r=−∞

∣
∣
∣
∣

∫

∇k
θFt,m(θ, ω)−1 exp(irω)dω

∣
∣
∣
∣
< ∞. (112)

PROOF. In order to prove the result we will use that Assumption 5.1(iii) implies

sup
j

∞∑

r=0

|rk∇θcj(θ, r)| < ∞. (113)

To prove (110), we observe ∇θFt,m(θ, ω) =
∑n+1

j=1

∑m−1
r=−(m−1) exp(irω)∇θcj(θ, r) 1

m

∑m−|r|
k=1 xt−m/2+kxt−m/2+k+r,

now differentiating this wrt ω gives

d∇k
θFt,m(θ, ω)

dω
=

n+1∑

j=1

m−1∑

r=−(m−1)

ir exp(irω)∇k
θcj(θ, r)

1

m

m−|r|
∑

k=1

xt−m/2+kxt−m/2+k+r.

Hence using (113) gives (110). We now prove (111) for k = 0. Under Assumption 5.1(i), infθ,ω Ft,m(θ, ω) >

δ > 0 (for some δ). Therefore, this together with (110) gives

sup
t,m,θ,ω

∣
∣
dFt,m(θ, ω)−1

dω

∣
∣ = sup

t,m,θ,ω

∣
∣

1

Ft,m(θ, ω)2
dFt,m(θ, ω)

dω

)∣
∣ < ∞,

hence (111) holds for k = 0. The proof of (111) for k > 0, is similar and we omit the details. To

prove (112), we note that (111) implies
d∇k

θ
Ft,m(θ,·)−1

dω ∈ L2[0, 2π], hence the Fourier coefficients of

∇k
θFt,m(θ, ω)−1 are absolutely summable, thus giving (112). ¤

In order for us to apply Propositions A.4 and A.5 to Γ
(k1,k2),(j)
x1,...,xT

(bs+m/2−k1
, bu+m/2−k2

)(s, u) we

require boundedness of
d2Fs,m(θ0,ω)−1

dω2 and
d2∇θFs,m(θ0,ω)−1

dω2 , which is shown in the following lemma.

Lemma A.9 Suppose Assumptions 2.1, 5.1 and 5.2 and (104) hold. Then we have

sup
t,m,ω

∣
∣
∣
∣

d2Ft,m(θ0, ω)−1

dω2

∣
∣
∣
∣
< ∞ sup

t,m,ω

∣
∣
∣
∣

d2∇θFt,m(θ0, ω)−1

dω2

∣
∣
∣
∣
< ∞

PROOF. We first note that (104) implies

sup
j1,j2

∑

r

(r2|cj1,j2(θ0, r)|)2 < ∞ and sup
j1,j2

∑

r

|r2∇θcj1,j2(θ0, r)|2 < ∞,

which implies

sup
t,m,ω

|d
2Ft,m(θ0, ω)

dω2
| < ∞ and sup

t,m,ω
|d

2∇θFt,m(θ0, ω)

dω2
| < ∞. (114)

By expanding
d2Ft,m(θ0,ω)−1

dω2 and
d2∇θFt,m(θ0,ω)−1

dω2 and using (110) and (114) we obtain the result.

¤
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Lemma A.10 Suppose Assumptions 5.1(i,iii) and 5.2(i) holds. Let Ft,m and N̂ be defined as in

(8) and (35). Then we have

∣
∣
∣
∣

1

Ft,m(θ0, ω)
− 1

Fs,m(θ0, ω)

∣
∣
∣
∣
≤ K

N̂
|s − t|, (115)

∣
∣
∣
∣
∇Ft,m(θ0, ω)−1 −∇Fs,m(θ0, ω)−1

∣
∣
∣
∣
≤ K

N̂
|s − t| (116)

PROOF. To prove (115), we use (8), Assumptions 5.1(iii) and 5.2(i) to obtain

∣
∣
∣
∣
Ft,m(θ0, ω) −Fs,m(θ0, ω)

∣
∣
∣
∣
=

∣
∣
∣
∣

n+1∑

j=1

∫ π

−π

{
I

(j)
t,m(λ) − I(j)

s,m(λ)
}
fj(θ0, ω − λ)dλ

∣
∣
∣
∣
≤ K

|t − s|
N̂

, (117)

for some finite constant K. Now, under Assumption 5.1(i), Ft,m(θ0, ω) is uniformly bounded away

from zero over all ω, t and m. Therefore by using (117) we obtain (115). We use a similar method

to prove (116). ¤

Proof of Proposition A.6(i,ii) To prove Proposition A.6(i) we apply Propositions A.4 and

A.5, equation (100), where depending on the block matrix in W
(m)
T we are considering, we let Gs(ω)

and Hs(ω) take either one of the functions

Fs,m(θ0, ω)−1 =
∞∑

k=−∞
as(k) exp(ikω), ∇θFs,m(θ0, ω)−1 =

∞∑

k=−∞
bs(k) exp(ikω).

To verify the conditions in Propositions A.4 and A.5, for Fs,m(θ0, ω)−1 and ∇θFs,m(θ0, ω)−1,

we note that Lemma A.9 implies ‖Fs,m(θ0, ·)−1‖2 ∈ L2[0, π] and ‖∇θFs,m(θ0, ·)−1‖2 ∈ L2[0, π]

(verfying the conditions in Propositions A.4) and Lemma A.10 verifies the condition in Proposition

A.5. Altogether this gives Proposition A.6(i).

To prove Proposition A.6(ii) we apply Proposition A.5, (101). The proof uses identical argu-

ments to those given above, hence we omit the details. ¤

We use the following lemma to prove Proposition A.6(iii,iv).

Lemma A.11 Suppose Assumptions 5.1(i,iii) and 5.2(i) holds. Let Ft,m, N̂ and F(u, ·) be defined

as in (8), (35) and (34). Then we have

∣
∣Ft,m(θ0, ω) −F(

t

N
, θ0, ω)

∣
∣ ≤ K

(m

N̂
+

1

m

)
, (118)

∣
∣
∣
∣

1

Ft,m(θ0, ω)
− 1

F( t
N , θ0, ω)

∣
∣
∣
∣
≤ K

(m

N̂
+

1

m

)
,

∣
∣∇Ft,m(θ0, ω)−1 −∇Ft,m(θ0, ω)−1

∣
∣ ≤ K

(m

N̂
+

1

m

)
.(119)
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PROOF. We first prove (118). We note that by using Assumption 5.1(iii) (with k = 0) we have
∑∞

r=−∞ |r∇k
θcj1,j2(θ0, r)| < ∞. Therefore by using this, the definitions of Ft,m and F(u, ·) given in

(8) and (34) and a similar method of proof to Lemma A.10 we have (118). To prove (119) we use

that under Assumption 5.1(i), Ft,m(θ0, ω) is uniformly bounded away from zero over all ω, t and

m and similar proof to the proof of (118), we omit the details. ¤

Proof of Proposition A.6(iii,iv) We first prove (iii). We will use similar methods to those

used in (103). We will prove it for d
(1)
s (k) := as(k), d

(2)
s (k) := as(k), d(1)(u, k) := a(u, k) and

d(2)(u, k)(2) (the proof for the other cases are identical). The difference between the two operators

is

Γ
(j)
xs,xs(as, as)(k) − Γ

(j)
x( s

N
),x( s

N
)(a(

s

N
), a(

s

N
))(k)

≤
∞∑

r1=−∞

(

|as(r1)| + |a(
s

N
, r1)|

) ∞∑

r2=−∞

∣
∣as(r2) − a(

s

N
, r2)

∣
∣K̃(j)(k, r1, r2)

≤
∞∑

r1=−∞

(
|as(r1)| + |a(

s

N
, r2)|

){
∞∑

r2=−∞

∣
∣as(r2) − a(

s

N
, r2)|2

}1/2{
∞∑

r2=−∞
K̃(j)(s − u, r1, r2)

2
}1/2

.

Therefore by using the same arguments given in the proof of Proposition A.4, and using (119) we

have
∞∑

r=−∞

∣
∣as(r) − ã(

s

N
, r)

∣
∣2 =

∫ 2π

0

∣
∣

1

Fs,m(θ0, ω)
− 1

F( s
N , θ0, ω)

∣
∣2dω ≤ K

(m

N̂
+

1

m

)2
.

Substituting the above into the difference below gives

∣
∣
1

T

T∑

s=1

∞∑

u=−∞

(

Γ
(j)
xs,xs(as, as)(s − u) − Γ

(j)
x( s

N
),x( s

N
)(a(u), a(u))(k)

)
∣
∣

≤ K
∣
∣
m

N̂
+

1

m

∣
∣
(
sup

s
‖dFt,m(θ0, ω)

dω
‖2 + ‖dF(u, θ0, ω)

dω
‖2

)
K̃(j)

1 ,

finally replacing
∑T

s=1 with and integral yields (iii). It is straightfoward to prove (iv) by using

(116), we omit the details. ¤
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