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Abstract

In this paper general quadratic forms of nonstationary, α-mixing time series are consid-

ered. Under relatively weak mixing and moment assumptions, asymptotically normality of

these forms are derived. The results are applied to the weighted covariance of the Discrete

Fourier Transforms of a time series, an important example of a quadratic form.
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1 Introduction

The study of the asymptotic theory of statistics often involves quadratic forms which have the

general form

QT =
1

T

T∑
t,τ=1

Gt,τh(Xt, Xτ ), (1)

where {Xt} is a stochastic process, h(·) is a function and {Gt,τ} are weights, which vary according

to the application.

In view of its importance in statistics, several authors have studied QT for the particular case

h(Xt, Xτ ) = XtXτ . For example, Mikosch (1990), Götze and Tikhomirov (1999) and the refer-

ences therein, analyze QT under the assumption that {Xt} are iid random variables. Kokoszka
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and Taqqu (1997) and Bhansali, Giraitis, and Kokoszka (2007) relax the independence assump-

tion and establish asymptotic normality of QT under the assumption that {Xt} is a realisation

from stationary, linear time series. Rosenblatt (1984) takes {Xt} in a different direction and

allows for nonlinear time series, by assuming that {Xt} are α-mixing. In particular, under the

assumption {Xt} is a strictly stationary α-mixing time series and has absolutely summable eight

order cumulants, he shows asymptotic normality of QT . Gao and Anh (2000) relax the moment

assumptions by placing strong geometric mixing assumptions on {Xt} and Lin (2009) considers

the case {Xt} is the sum of stationary α-mixing random variables. It should be mentioned, that

there are other methods for measuring dependence. For example, Wu and Shao (2007) show

asymptotic normality when {Xt} can be written as a function of the innovations and satisfies

the assumption of physical dependence. The study of the general quadratic form given in (1)

has received less attention. One reason for this is that techniques used in the articles mentioned

above cannot be directly applied to (1). A notable exception is Hsing and Wu (2004) who proves

several limit theorems for (1) under relatively weak conditions on the underlying process.

The underlying assumption in all the above mentioned results is that the stochastic process {Xt}
is strictly stationary and ergodic. However, quadratic forms of nonstationary processes also arise

in several situations. For example, to test for second order stationarity, the test statistics defined

in Dwivedi and Subba Rao (2010) and Jentsch and Subba Rao (2015) are quadratic forms of

nonstationary time series under the alternative hypothesis (of nonstationarity). In such a setting

it is important to obtain the sampling properties of quadratic forms of nonstationary time series.

In a recent paper Zhou (2014) studied generalized quadratic forms of the type

WT =
T∑
k=1

T∑
j=1

wT (tk, tj)h(Xk, Xj) tj = j/T, tk = k/T, (2)

where h(x, y) has a semi-multiplicative structure, in the sense that there exists some function

L(x) such that h(x, y) = h̃(x, y)L(x)L(y) where h̃(x, y) is absolutely integrable on R2 (noting

that the property that distinguishes h from h̃ is that h(x, y) need not satisfy such a condition). He

assumes that {Xt,T} satisfies a piecewise local stationarity assumption (each segment changes

slowly over time). However, no closed form expression for the mean and variance of WT is

derived. Therefore despite the results being theoretical very interesting, it is unclear what WT

is estimating (for general functions wT (·) and h(·)).

Our intention in this paper is to analysis quadratic forms which have the form (1), we do not

place any locally stationary type assumptions on the process {Xt,T}, thus allowing for other types

of nonstationarity such as periodically and quasi-periodically stationary process (see Gladysev

(1963), Goodman (1965), Yaglom (1987) Lii and Rosenblatt (2002)), stochastic time-varying pro-

cesses (introduced in Giraitis, Kapetanios, and Yates (2014)) and parametric stationary process

(defined in Azrak and Mélard (2006)). The motivation of this paper is to obtain results that can
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easily be applied to many realistic problems (the results in this paper have been used in Dwivedi

and Subba Rao (2010), Jentsch and Subba Rao (2015) and Subba Rao (2016)).

In Section 2 we show asymptotic normality of the general quadratic form under some moment

assumptions and α-mixing of the stochastic process (which includes both nonstationary and non-

linear processes). To understand how quadratic forms of stationary and nonstationary processes

may differ, in Section 3, we consider the sampling properties of quadratic forms of locally sta-

tionary processes, which are a subclass of nonstationary time series (see Priestley (1965) and

Subba Rao (1970) who introduced the model and Dahlhaus (1997) who paved the way for the

asymptotic treatment of such models; see also Dahlhaus and Subba Rao (2006), Subba Rao

(2006) Zhou and Wu (2009), Vogt (2012) and Dahlhaus (2012)). In Section 4 we prove the cen-

tral limit theorem by using a classical Bernstein blocking argument. Technical proofs are found

in the appendix.

2 The generalized quadratic form

Let us suppose that {Xt,T}Tt=1 is a time series which is not necessarily stationary (in order to

allow for triangular arrays and various forms of nonstationarity we have subscripted the process

with T ). We will assume that for all t, E(Xt,T ) = 0 and 0 < inft,T var(Xt,T ) ≤ supt,T var(Xt,T ) <

∞. This condition excludes degenerate cases by ensuring that {Xt,T} does not converge to a

deterministic sequence but always has a bounded variance. We consider the generalized quadratic

form

QT =
1

T

T∑
t,τ=1

Gt,τ,Th(Xt,T , Xτ,T ), (3)

where h : R2 → R is any arbitrary function. We assume that supT |Gt,τ,T | ≤ |t− τ |−(2+η)I|t−τ |>0,

for some η > 0. This assumption ensures thatQT is almost surely finite even when h(Xt,T , Xτ,T ) =

(Xt,T +Xτ,T ).

We now state some the conditions required to prove asymptotic normality of QT .

Assumption 2.1 (i) {Xt,T} is an α-mixing time series such that

sup
T

sup
1≤k≤T

sup
A∈σ(Xτ,T ;τ≥t+k)
B∈σ(Xτ,T ;τ≤k)

|P (A ∩B)− P (A)P (B)| ≤ α(t),

where α(t) are the mixing coefficients which satisfy α(t) ≤ K|t|−s for some s > 0.

(ii) Let QT be defined as in (3). The coefficients satisfy supT |Gt,τ,T | ≤ C|t − τ |−(2+η) (η > 0)

and c1
T
≤ var(QT ) ≤ c2

T
(for some 0 < c1 ≤ c2 <∞).
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(iii) s > 3 and for some r > 2s/(s− 3) > 0, supt,τ,T E|h(Xt,T , Xτ,T )|r <∞.

Several time series, both stationary and nonstationary, satisfy the α-mixing conditions given

in Assumption 2.1(i), see, for example, Doukhan (1994), Cline and Pu (1999), Bradley (2007),

Fryzlewicz and Subba Rao (2010) and Vogt (2012).

We use the above assumptions to derive the limiting distribution of QT .

Theorem 2.1 Suppose Assumption 2.1 is satisfied. Let QT be defined in (3) and var(QT ) = VT .

Then

V
−1/2
T [QT − E(QT )]

D→ N (0, 1) as T →∞.

PROOF. See Section 4. �

The above results are for quadratic forms of univariate time series. As multivariate time series

arise in several applications we now give an analogous result for multivariate time series. Noting

that the proof is identical to the univariate case. Let {X t,T} be a d-dimensional vector time

series and define QT

QT =
1

T

T∑
t,τ=1

X ′t,TGt,τ,TXτ,T , (4)

where Gt,τ,T is a d× d matrix.

Corollary 2.1 Let us suppose that {X t,T} is a d-dimensional vector time series, which is α-

mixing

sup
T

sup
1≤k≤T

sup
A∈σ(Xτ,T ;τ≥t+k)
B∈σ(Xτ,T ;τ≤k)

|P (A ∩B)− P (A)P (B)| ≤ α(t),

where α(t) are the mixing coefficients and are such that α(t) ≤ K|t|−s where s > 3. Suppose

there exists some r > 2s
s−3 , such that supT sup1≤t≤T E‖X t,T‖2r <∞. Let QT be defined as in (4),

where the matrices satisfy supT |Gt,τ,T | ≤ K|t− τ |−(2+η) (η > 0) (| · | is the `1 norm of a matrix).

We assume there exists 0 < c1 ≤ c2 < ∞ such that c1/T ≤ var(QT ) ≤ c2/T . Then we have

V
−1/2
T [QT − E(QT )]

D→ N (0, 1), where VT = var[QT ].

PROOF. The proof is exactly the same as the proof of Theorem 2.1, hence we omit the details.

�

The above results require the fairly strong condition of the rate of decay of the coefficients
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supT |Gt,τ,T | < C|t− τ |−(2+η)I|t−τ |>0. We now relax this assumption but assume h(Xt,T , Xτ,T ) =

Xt,TXτ,T . Let

QT,M =
1

T

T∑
t,τ=1

Gt,τ,MXt,TXτ,T , (5)

where Gt,τ,M is a weight function that satisfies |Gt,τ,M | = 0 for some M = T δ where 0 ≤ δ < 1

(note that we can let M = CT δ, but this makes the notation more cumbersome).

To show asymptotic normality we require the following assumptions.

Assumption 2.2 (i) Let QT,M be defined as in (5). Suppose M is a function of T . The coef-

ficients satisfy supt,τ,T |Gt,τ,T | <∞, if |t− τ | < M then Gt,τ,T = 0 and c1M
T
≤ var(QT,M) ≤

c2M
T

(for some 0 < c1 ≤ c2 <∞).

(ii) For 2 ≤ j ≤ 8

sup
1≤t≤T

∑
1≤t2,...,tj≤T

∣∣cum
(
Xt,T , Xt2,T , . . . , Xtj ,T

)∣∣ <∞.
Note that sufficient conditions for Assumption 2.2(ii) can be derived in terms of mixing and

moment conditions (see Lemma A.3). Furthermore, Rosenblatt (1984) uses similar conditions to

show asymptotic normality of the spectral density estimator based on stationary time series.

Theorem 2.2 Suppose Assumptions 2.1(i) (with s > 2) and 2.2 are satisfied. Let QT,M be

defined in (5) with M = T δ (where 0 ≤ δ < T ) and var(QT ) = VT,M . Then

V
−1/2
T,M [QT,M − E(QT,M)]

D→ N (0, 1) as T →∞.

PROOF. The proof is very similar to the proof of Theorem 2.2 and can be found in Appendix

B. �

The above results are for any general nonstationary time series. In the following section, we

apply the above results to so called locally stationary processes (a special class of nonstationary

time series) and to compare these results to those for stationary processes.
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3 Sampling properties of Quadratic forms of locally sta-

tionary time series

Our main motivation for considering quadratic forms of nonstationary time series is to obtain

the asymptotic sampling properties of the weighted discrete Fourier transform in the case of local

stationarity. These typically have the form

ÂT (r) =
1

T

T∑
k=1

φ(ωk)JT (ωk)JT (ωk+r), (6)

where JT (ωk) = 1√
2πT

∑T
t=1Xt,T exp(itωk), ωk = 2πk

T
and φ : [0, 2π] → R is a periodic function

with φ(ω) =
∑

s∈ZGs exp(isω). We assume that the Fourier coefficients |Gs| ≤ K|s|−(2+η)I|s|>0,

which implies that supω |φ′′(ω)| <∞.

We now show that ÂT (r) can be represented as (3). From the definition of JT (ωk) it is easily

seen that

ÂT (r) =
1

T

T∑
t,τ=1

Xt,TXτ,T exp(−iωrτ)

(
1

2πT

T∑
k=1

φ(ωk) exp(iωk(t− τ))

)
. (7)

Let Gt−τ,T = 1
2πT

∑T
k=1 φ(ωk) exp(iωk(t− τ)) and Gt−τ =

∫ 2π

0
φ(ω) exp(−i(t− τ)ω)dω. Under the

assumption supω |H ′′(ω)| <∞, then |Gt−τ,T −Gt−τ | = O(T−2). Thus we have

ÂT (r) = AT (r) +DT,1 where AT (r) = T−1
T∑

t,τ=1

Gt−τXt,TXτ,T exp(−iωrτ), (8)

and E|DT,1| = O(T−1), thus ÂT (r) = AT (r)+Op(T
−1). Both ÂT (r) and AT (r) take the form (3),

with Gt,τ,T = 1
2πT

∑T
k=1 φ(ωk) exp(iωk(t− τ)− iωrτ) and Gt,τ,T = Gt−τ exp(−iωrτ) respectively.

Suppose we drop the suffix T and assume Xt,T = Xt is a stationary time series with
∑

r |r| ·
|cov(X0, Xr)| <∞. Theorems 2.1 and 2.2, Subba Rao (2016) states that

E[ÂT (r)] =

{
O(T−1) r 6= 0∫ 2π

0
φ(ω)f(ω)dω +O(T−1) r = 0

, (9)

cov[
√
TÂT (r1),

√
TÂT (r2)] = O(T−1) (for 0 ≤ r1 < r2 < T/2) and

Tvar[ÂT (r)] =
1

2π

∫ 2π

0

f(ω)f(ω + ωr)|
(
|φ(ω)|2 + φ(ω)φ(−ω − ωr)

)
dω +

1

(2π)2

∫ 2π

0

∫ 2π

0

φ(ω1)φ(ω2)f4(ω1,−ω1 − ωr, ω2)dω1dω2 + o(1), (10)
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where f and f4 denote the spectral density the fourth order spectral density of {Xt}, respectively.

In time series analysis ÂT (0) (the weighted average of the periodogram) is a commonly used

statistic. However, ÂT (r) for r > 0 is also of interest and below we give a few examples where it

is of interest.

Example 3.1 (i) For 1 ≤ r ≤ T/2, the expectation of ÂT (r) for stationary and nonstationary

processes is very different (compare (9) with (19) below). Dwivedi and Subba Rao (2010)

and Jentsch and Subba Rao (2015) use this dichtomy to test for second order stationarity

of a time series.

(ii) As mentioned above, in the case that the time series is stationary, several statistics of

interest can be written in the form ÂT (0). However as can be seen from (10) the variance

of ÂT (0) is unwieldy and difficult to directly estimate. One method for estimating this

variance using {ÂT (r)} is proposed in Subba Rao (2016); from (9) we see that for r << T

that the variance of ÂT (0) is close to the variance of ÂT (r). Based on this observation, we

use {ÂT (r); 1 ≤ r ≤ M} as the ‘orthogonal sample’ to ÂT (0) to estimate the variance of

ÂT (0).

As mentioned in Example 3.1 ÂT (r) exhibits very different behaviours under stationarity and

local stationarity. In the remainder of this section we study the behavious of ÂT (r) under local

stationarity. To do so, we define precisely what is meant by local stationarity.

Definition 3.1 (Locally stationary time series) A time series {Xt,T}Tt=1 is called locally sta-

tionary if there exists a series of “sister” processes {Xt(u)}, where for fixed u ∈ [0, 1], {Xt(u); t ∈
Z} is strictly stationary and for 1 ≤ t ≤ T and u ∈ [0, 1]

∣∣Xt,T −Xt(u)
∣∣ ≤ (∣∣∣∣ tT − u

∣∣∣∣+
1

T

)
Vt, (11)

where {Vt} is a positive time series that does not depend on T or u and supt E|Vt| <∞.

This definition is commonly used, cf. Dahlhaus and Subba Rao (2006), Subba Rao (2006), Vogt

(2012) and Dahlhaus (2012). Statistical inference is done using rescaled time, where {Xt,T}Tt=1

is the T th row on a triangular array and as T →∞ we move down the triangular array.

3.1 Properties of the Fourier transforms

In order to study ÂT (r) we derive some expressions for the cumulants of the DFT. This ex-

tends the results on cumulants of DFTs derived in Brillinger (1981) to locally stationary time

series. In the case the time series is stationary, Brillinger (1981) makes the assumption that

the nth order cumulants of the time series satisfies
∑

t1,...,tn−1∈Z(1 + |tj|)|κn(t1, . . . , tn−1)| < ∞
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where κn(t1, . . . , tn−1) = cum(X0, Xt1 , . . . , Xtn−1). If this condition holds, then Brillinger (1981)

Theorem 4.3.2 states that

cum [JT (ωj1), . . . , JT (ωjn)]

=

{
O( 1

Tn/2
) if

∑n
s=1 js 6= TZ(

2π
T

)n/2−1
fn(ωj1 , . . . , ωjn−1) +O( 1

Tn/2
) otherwise

(12)

where ωjk = 2πjk
T

, fn(ω1, . . . , ωn−1) = 1
(2π)n−1

∑∞
t1,...,tn−1=−∞ κn(t1, . . . , tn−1) exp(i

∑n−1
j=1 tjωj) de-

notes the nth order spectral density of the stationary process {Xt}. In the case that {Xt} is

nonstationary the above result does not hold true, however we show that for locally stationary

processes some succinct expressions can still be obtained.

We recall from Definition 3.1 if u ∈ [0, 1] is fixed then {Xt(u)}t is a stationary process. There-

fore its corresponding spectral density and higher order spectral densities can be defined. We

define the covariance and nth order cumulant of the process as c(u, r) = cov[Xt(u), Xt+r(u)]

and κn(u; t2 − t1, . . . , tn − t1) = cum
[
Xt1(u), . . . , Xtn(u)

]
(noting that due to stationarity these

terms do not depend on t or t1). Using this notation we define the spectral density f(u;ω) =
1
2π

∑∞
r=−∞ c(u; r) exp(irω) and the nth order spectral spectral density

f(u;ω1, . . . , ωn−1) =
1

(2π)n−1

∞∑
t1,...,tn−1=−∞

κn(u; t1, . . . , tn−1) exp(i
n−1∑
j=1

tjωj), (13)

where ω1, . . . , ωn−1 ∈ [0, 2π].

Despite the process being locally stationary in order to obtain an analytic expression for the

mean and variance of ÂT (r) we require the following smoothness conditions on the cumulants.

Assumption 3.1 (Lipschitz conditions on the cumulants) Let {Xt,T} be a locally station-

ary process and {Xt(u)} be its stationary approximation (as defined in (11)).

Further, assume there exists processes Et,T and Et(u, v) such that

(i) Xt,T = Xt

(
t

T

)
+ Et,T Xt(u) = Xt(v) + (u− v)Et(u, v).

For all u1, . . . , un, v ∈ [0, 1] the nth order joint cumulants of {Xt,T}, {Xt(ui)}, {Et,T} and

{Et(ui, v)} satisfy

(ii)
∣∣cum

[
Xt1,T , Xt2,T , . . . , Xtn−1,T , Etn,T

]∣∣ ≤ T−1νn(t2 − t1, . . . , tn − t2)

(iii) sup
u1,...,un,v∈[0,1]

∣∣cum
[
Xt1(u1), . . . , Xtn−1(un−1), Etn(un, v)

]∣∣ ≤ νn(t2 − t1, . . . , tn − t2)
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(iv) sup
u
|cum [Xt1(u), . . . , Xtn(u)]| ≤ νn(t2 − t1, . . . , tn − t1)

(v) sup
u

∣∣∣∣∂cum [Xt1(u), . . . , Xtn(u)]

∂u

∣∣∣∣ ≤ νn(t2 − t1, . . . , tn − t1)

for some positive sequence {νn(t1, . . . , tn−1); t1, . . . , tn−1 ∈ Z} which is independent of T and

satisfies
∑

t1,...,tn−1∈Z(1 + |tj|)νn(t1, . . . , tn−1) <∞ (for all 1 ≤ j ≤ (n− 1)).

Remark 3.1 The above assumptions are technical, however if the nth moment of a process

exists, then it can be shown that several locally stationary time series satisfy these assumptions

(see for example, Dahlhaus and Polonik (2006) for the time varying MA(∞) model and Dahlhaus

and Subba Rao (2006) for the time-varying ARCH process).

These conditions are also satisfied if the following mixing conditions hold. Define the sigma-

algebras Fk−∞,T = σ(Xs,T , {Xs(ui), Es(ui, uj); 1 ≤ i < j ≤ n}, Es,T ; s ≤ k) and

F∞t+k,T = σ(Xs,T , {Xs(ui), Es(ui, uj); 1 ≤ i < j ≤ n}, Es,T ; s ≥ (t+ k)). Suppose that

sup
T

sup
1≤k≤T

sup
A∈Fk−∞,T
B∈F∞t+k,T

|P (A ∩B)− P (A)P (B)| ≤ α(t),

where for t 6= 0 α(t) ≤ C|t|−s. Let t1 ≤ t2 ≤ . . . < tn and Vts ∈ {Xts,T , {Xts(ui), Ets(ui, uj); 1 ≤
i < j ≤ n}, Ets,T}. Let ‖X‖r = E[|Xr|]1/2. If there exists an r > n/(s + 1 − 2n) such that

supt,T ‖Xt,T‖r <∞, supu ‖Xt(u)‖r <∞, sup1≤t≤T ‖Et,T‖r ≤ CT−1 and supu,v∈[0,1] ‖Et(u, v)‖r <
∞. Then by using Statulevicius and Jakimavicius (1988), Theorem 3, part (2), we have

|cum [Vt1 , Vt2 , . . . , Vtn ]| ≤ C‖Vt1‖r
n∏
i=2

‖Vti‖r
k∏
i=2

α(ti − ti−1)
1−k/r
k−1

which immediately implies that Assumption 3.1(i-iv) is satisfied.

Lemma 3.1 Let {Xt,T} be a locally stationary process which satisfies Assumption 3.1 and fn(·)
be defined as in (13).

(i) If Assumption 3.1(i,ii,iii) holds. Then∣∣∣∣cum [Xt1,T , . . . , Xtn,T ]− κn
(
t1
T
, t2 − t1, . . . , tn − t1

)∣∣∣∣ ≤
(
n

T
+

n∑
j=2

|tj − t1|
T

)
νn(t2 − t1, . . . , tn − t1)(14)

(ii) If Assumption 3.1(iv) holds. Then supu∈[0,1],ω1,...,ωn−1∈[0,2π] |fn(u;ω1, . . . , ωn−1)| <∞.
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(iii) If Assumption 3.1(v) holds. Then

sup
u∈[0,1],ω1,...,ωn−1∈[0,2π]

∣∣∣∣∂fn(u;ω1, . . . , ωn−1)

∂u

∣∣∣∣ <∞. (15)

PROOF. In Appendix A.1. �

Define the frequency dependent Fourier coefficients of the local nth order spectral density as

Fn(r;ω1, . . . , ωn−1) =

∫ 1

0

fn(u;ω1, . . . , ωn−1) exp(i2πru)du. (16)

We use the following lemma to derive an expression for the cumulants of the DFT.

Lemma 3.2 Suppose Assumption 3.1 holds and Fn(·) be defined as in (16). Then

sup
ω1,...,ωn−1∈[0,2π]

|Fn(r;ω1, . . . , ωn−1)| ≤ C sup
u∈[0,1],ω1,...,ωn−1∈[0,2π]

∣∣∣∣∂fn(u;ω1, . . . , ωn−1)

∂u

∣∣∣∣ 1

|r|
(17)

were C is a finite constant that does not depend on r.

PROOF. In Appendix A.1. �

Remark 3.2 (Fn(r; ·)) If {Xt} is a stationary time series (we have dropped the T suffix), then

Fn(0, ω1, . . . , ωn−1) = fn(ω1, . . . , ωn−1) (fn(·) is the nth order spectral density function) for r 6= 0

Fn(r; ·) = 0.

Using the following lemma, we derive a generalisation of Brillinger (1981), Theorem 4.3.2.

Lemma 3.3 Suppose Assumption 3.1 holds and Fn(·) be defined as in (16). Then

cum [JT (ωj1), . . . , JT (ωjn)] =
(2π)(n/2)−1

T (n/2)−1 Fn

[
n∑
k=1

jk;ωj2 , . . . , ωjn

]
+O

(
T−n/2

)
. (18)

PROOF. In Appendix A.1. �

Comparing the above result to the cumulants of DFTs of stationary time series in (12) leads

to some interesting conclusions. In the case that {Xt,T} is second order stationary we have

cov[JT (ωk1), JT (ωk2)] = o(1), whereas if {Xt,T} were locally stationary there is an ‘ordering’ in

correlation between the DFTs. More precisely,
∣∣cov(JT (ωk1), JT (ωk2))

∣∣ ≤ C|k1 − k2|−1, where

C is a finite constant. Hence the correlation between the DFTs decay the further apart the

frequencies, with the rate of decay resembling that of a long memory time series. If {Xt,T} were

nonstationary but not locally stationary this is not necessarily true; for example in the case of
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periodically stationary time series of order P , there is “significant correlation” between the DFTs

when the lags are separated by multiples of T/P . It is possible that these differing behaviours in

the correlations of the DFT, could be used as a means of discriminating local stationarity from

general nonstationary behaviour.

3.2 Sampling properties of ÂT (r) and WT

In this section consider the sampling properties ÂT (r) andWT (defined in (6) and (2) respectively)

under the assumption of local stationarity (see Definition 3.1).

We first consider ÂT (r) and later show that WT shares similar properties to ÂT (0). We will show

that Lemma 3.3 can easily be applied to obtain the first and second moment of QT . However, to

use Theorem 2.1 to prove asymptotic normality we need to use the quadratic form representation

of QT given in (7).

Theorem 3.1 {Xt,T} is a zero mean locally stationary time series which satisfies Assumption

3.1 for n = 2 and 4. Let Fn(·) be defined as in (16) and ÂT (r) be defined as in (6) where φ(ω)

has a bounded second derivative. Then

E[ÂT (r)] =
1

2π

∫ 2π

0

φ(ω)F2(−r, ω)dω +O
(
T−1

)
(19)

and cov[
√
TÂT (r1),

√
TÂT (r2)] = Vr1,r2 +O(T−1 log T ) where

Vr1,r2

=
∑
s∈Z

1

2π

∫ 2π

0

[
|φ(ω)|2 F2(s, ω)F2(−s− r1 + r2,−ω − ωr1)

+φ(ω)φ(−ω)F2(s+ r2, ω)F2(−s− r1,−ω − ωr1)
]
dω

+
1

2π

∫ 2π

0

∫ 2π

0

φ(ω1)φ(ω2)F4(−r1 + r2, ω1,−ω1 − ωr1 ,−ω2)dω1dω2. (20)

If, in addition, {Xt,T} satisfies Assumption 2.1(i,iii) (where there exists an r > 2s/(s− 3) such

that supt,T ‖Xt,T‖2r <∞). Then

V −1/2r,r

(
ÂT (r)− 1

2π

∫ 2π

0

φ(ω)F2(−r, ω)dω

)
D→ N (0, 1). (21)

PROOF. In Appendix A.1. �

We now compare Lemma 3.1 with the mean and variance of ÂT (r) when the process is stationary
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(see (9) and (10)). We observe in contrast to the case that {Xt} is second order stationary, if

r 6= 0 then limT→∞ E[ÂT (r)] is not necessarily non-zero. Comparing the variance (10) with (20)

we observe that an important difference is that asymptotically there are significant correlations

between {ÂT (r); 0 ≤ r ≤ T/2− 1}, which is not the case when the process is stationary.

Let us return to the generalized quadratic form defined in (2). Zhou (2014), Corollary 1 proves

asymptotic normality of WT , but no expression for the mean and variance is given. We bridge this

gap, and use Theorem 3.1 to obtain an expression for the mean and variance of the generalized

quadratic form defined in (2). In particular we focus on

WT = T−1
T∑
τ=1

T∑
t=1

Gt−τh(Xt,T , Xτ,T ) (22)

where {Xt,T} is a locally stationary time series that satisfies (11), |Gt−τ | ≤ K|t−τ |−(2+η) (η > 0).

We do not assume that h(·) satisfies any integrability condition, however, we do assume that

there exists a function L(·) such that h(X, Y ) = h̃(X, Y )L(X)L(Y ) and h̃ has the representation

h̃(X, Y ) =

∫
R2

Γ(x, y) exp(ixY − iyY )dxdy with

∫
R2

(1 + |x|+ |y|)|Γ(x, y)|dxdy <∞. (23)

Thus h(·) is not necessarily integrable, but h̃(·) is. Basic algebra gives

WT =

∫
R2

Γ(x, y)WT (x, y) +DT,2 (24)

with E|DT,2| = O((log T )T−1) and

WT (x, y) =
2π

T

T∑
k=1

φ(ωk)JT (x;ωk)JT (y;ωk),

where φ(ω) = 1
2π

∑
s∈ZGs exp(−isω) (noting that Gs =

∫ 2π

0
φ(ω) exp(isω)dω and supω |H ′(ω)| <

∞) and

JT (x;ωk) =
1√
2πT

T∑
t=1

L(Xt,T ) exp(ixXt,T + itωk).

Our objective is to apply Theorem 3.1 to (24) to obtain an expression for the mean and variance

of WT . To do so we require the following assumption on the function L(·) and process {Xt,T}
and {Xt(u)}

|L(Xt,T )− L(Xt(u))| ≤ Vt|Xt,T −Xt(u)| |L(Xt(u))− L(Xt(v))| ≤ Vt|Xt(u)−Xt(v)| (25)

12



where the process {Vt} is independent T, u and v and supt E|Vt| <∞. Observe that this condition

is satisfied if L(·) is a Lipschitz continuous function. Let

Yx,t,T = L(Xt,T ) exp(ixXt,T ) and Yx,t(u) = L(Xt(u)) exp(ixXt(u)). (26)

If {Xt,T} is locally stationary process as defined in Definition 3.1 and L(·) satisfies (25). Then

|Yx,t,T − Yx,t(u)| ≤ |{L(Xt,T )− L(Xt(u))} exp(ixXt,T )|+

|{exp(ixXt,T )− exp(ixXt(u))}L(Xt(u))| ≤
(∣∣∣∣ tT − u

∣∣∣∣+
1

T

)
(1 + |x|)V2,t

where Yx,t(u) = L(Xt(u)) exp(ixXt(u)) and E|V2,t| <∞.

In order to obtain an expression for the mean and variance of WT we define the moments and

cumulants of the stationary process. Let µx(u) = E[Yx,0(u)], cx,y(u; r) = cov[Yx,0(u), Yy,r(u)]

and for n = 3, 4 κn,x1,...,xn(u; t1, . . . , tn−1) = cum[Yx1,0(u), Yx2,t1(u), . . . , Yxn,tn−1(u)]. We now state

some cumulant assumptions on Yx,t,T and Yx,t(u) that are analogous to Assumption 3.1.

Assumption 3.2 Let {Xt,T} be a locally stationary process and {Xt(u)} be its stationary ap-

proximation (as defined in (11)). Let Yx,t,T and Yx,t(u) be defined as in (26).

For x ∈ R assume there exists processes Ex,t,T and Ex,t(u, v) such that

Yx,t,T = Yx,t,T

(
t

T

)
+ Ex,t,T Yx,t(u) = Yx,t(v) + (u− v)Ex,t(u, v).

The nth order joint cumulants of {Yx,t,T}, {Yx,t(u)}, {Ex,t,T} and {Ex,t(u, v)} satisfy

(ii)
∣∣cum

[
Yx1,t1,T , Xx2,t2,T , . . . , Xxn−1,tn−1,T , Exn,tn,T

]∣∣ ≤ T−1(1 + |xn|)νn(t2 − t1, . . . , tn − t2)

(iii) sup
u1,...,un,v∈[0,1]

∣∣cum
[
Yx1,t1(u1), . . . , Yxn−1,tn−1(un−1), Exn,tn(un, v)

]∣∣ ≤ (1 + |xn|)νn(t2 − t1, . . . , tn − t2)

(iv) sup
u
|cum [Yx1,t1(u), . . . , Yxn,tn(u)]| ≤ νn(t2 − t1, . . . , tn − t1)

(v) sup
u

∣∣∣∣∂cum [Yx1,t1(u), . . . , Yxn,tn(u)]

∂u

∣∣∣∣ ≤
[

1 +
n∑
i=1

|xi|

]
νn(t2 − t1, . . . , tn − t1)

for some positive sequence {νn(t1, . . . , tn−1); t1, . . . , tn−1 ∈ Z} which is independent of T and

satisfies
∑

t1,...,tn−1∈Z(1 + |tj|)νn(t1, . . . , tn−1) <∞ (for all 1 ≤ j ≤ (n− 1)).

13



It is worth noting that Remark 3.1 also applies to the above set of assumptions.

We define the joint spectral densities as

f2,x,y(u;ω) =
1

2π

∑
k∈Z

cx,y(u; k)eikω (27)

fn,x1,x2,...,xn(u, ω1, ω2, . . . , ωn−1) =
1

(2π)n−1

∑
t1,...,tn−1∈Z

κn,x1,...,xn(u; t1, . . . , tn−1)e
i
∑n−1
j=1 tjωj

and the analogous version of Fn (defined in (28)) as

F1,x(k) =

∫ 1

0

µx(u) exp(i2πku)du

Fn,x1,...,xn(k;ω1, . . . , ωn−1) =

∫ 1

0

fn,x1,x2,...,xn(u, ω1, ω2, . . . , ωn−1) exp(i2πku)du. (28)

Theorem 3.2 Suppose {Xt,T} is a locally stationary process which satisfies (11). Let WT be

defined as in (22) where h(x, y) = h̃(x, y)L(x)L(y), and h̃ and L satisfy (23) and Assumption

3.2 for n = 2, 3 and 4. Then

E[WT ] =

∫
R2

Γ(x, y)E(x, y)dxdy +O(T−1 log T ) (29)

var[
√
TWT ] =

∫
R4

Γ(x1, y1)Γ(x2, y2)v(x1, y1, x2, y2)dx1dy1dx2dy2 +O(T−1 log T ) (30)

where

E(x, y) =

∫ 2π

0

φ(ω)F2,x,y(ω)dω + φ(0)
∞∑
k=0

F1,x(k)F1,y(−k)

and

v(x1, y1, x2, y2)

=
∑
s∈Z

∫ 2π

0

{
|φ(ω)|2F2,x1,x2(s, ω)F2,y1,y2(−s,−ω) + φ(ω)φ(−ω)F2,x1,y2(s, ω)F2,y1,x2(−s,−ω)

}
dω

+

∫ 2π

0

∫ 2π

0

φ(ω1)φ(ω2)F4,x1,y1,x2,y2(0, ω1,−ω1,−ω2)dω1dω2

+
∞∑
s=0

∫ 2π

0

φ(0)φ(ω) {F1,x1(s)F3,y1,x2,y2(s; 0,−ω) + F1,y1(−s)F3,x1,x2,y2(−s; 0,−ω)} dω

∞∑
s=0

∫ 2π

0

φ(ω)φ(0) {F1,x2(−s)F3,x1,y1,y2(s;ω, 0) + F1,y2(s)F3,x1,y1,x2(−s;ω, 0)} dω.
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PROOF. See the Appendix. �

Comparing Theorem 3.1 with Lemma 3.2 we observe that the mean and variance of ÂT (0) and

WT are similar. There are two main differences (a) the mean and variance of Lemma 3.1 are

in terms of the spectrums of {Xt(u)} whereas from Theorem 3.2 we observe that the equivalent

quantities are in terms of the spectrums of {L(Xt(u)) exp(ixXt(u))} (b) because the mean of

L(Xt(u)) exp(ixXt(u)) may not be zero, Thereom 3.2 includes additional terms.

If {Xt} is a stationary time series, then for k 6= 0 Fn,x1,...,xn−1(k;ω1, . . . , ωn−1) = 0, which leads

to substantial simplifications for the mean and variance of WT .

4 Proof of Theorem 2.1

In order to prove Theorem we will use a Bernstein blocking argument, which is achieved through

a series of approximations. The first is to truncate the support of the weight function Gt,τ,T . Let

Ĝt,τ,M̂ = Gt,τ,T I|t−τ |≤M̂ (hence Ĝt,τ,M̂ = 0 if |t− τ | > M̂). Then we have

QT = Q̂T,M̂ +D3

where

Q̂T,M̂ =
1

T

T∑
t,τ=1

Ĝt,τ,M̂h(Xt,T , Xτ,T ) and D3 =
1

T

∑
|t−τ |>M̂

Gt,τ,Th(Xt,T , Xτ,T ).

Using that |Gt,τ,T | ≤ C|t− τ |−(2+η)I|t−τ |>0 and supt,T E|g(Xt,T , Xτ,T )|2 <∞ it is straightforward

to show

‖D3‖2 = O(M̂−(1+η)).

From now onwards we set M̂ = T 1/2. Using this we obtain the approximation

QT = Q̂T,1 +Op(T
−1/2−η), (31)

where Q̂T,1 = Q̂T,T 1/2 . To facilitate the classical Bernstein blocking argument we define

Yt,T = Ĝt,t,T 1/2h(Xt,T , Xt,T ) +
t−1∑
τ=1

[Ĝt,τ,T 1/2h(Xt,T , Xτ,T ) + Ĝτ,t,T 1/2h(Xτ,T , Xt,T )]. (32)
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Thus it is clear that Q̂T,1 =
∑T

t=1 Yt,T and

QT =
1

T

T∑
t=1

Yt,T +Op(T
−1/2−η). (33)

Define the block sums

Uj,T =

jrT+pT∑
t=jrT+1

[Yt,T − E(Yt,T )] and Vj,T =

(j+1)rT∑
t=jrT+pT+1

[Yt,T − E(Yt,T )], (34)

where rT = (pT + qT ). By setting pT >> qT , Uj,T and Vj,T are “big” and “small” blocks

respectively. Using this notation we have

Q̂T,M − E[Q̂T,M ] =
1

T

kT∑
j=1

(Uj,T + Vj,T ) and QT − E[QT ] =
1

T

kT∑
j=1

(Uj,T + Vj,T ) +D3, (35)

where kT = T/(pT + qT ).

To prove the result we let pT and qT but such that qT − T 1/2 → ∞, qT/(pT + qT ) → 0,
T

(qT−T 1/2)s−1 → 0 (where s denotes the mixing rate of {Xt,T} defined in Assumption 2.1(i)) and

pT/T → 0 as T →∞. In the next few lemmas we use the notation

Γ(r) =
∞∑
j=1

j−r. (36)

Lemma 4.1 Suppose Assumption 2.1 holds. Let QT and {Uj,T} be defined as in (3) and (34)

respectively. Then

√
T (QT − E[QT ]) =

1√
T

kT∑
j=1

Uj,T +D4, (37)

where ‖D4‖2 = O
(
T−η + ( qT

pT+qT
)1/2
)

PROOF. It is clear from (35) that D4 =
√
TD3 + 1√

T

∑kT
j=1 Vj,T . We know from (31) that

√
T‖D3‖2 = O(T−η) therefore we need to bound

∥∥∥ 1√
T

∑kT
j=1 Vj,T

∥∥∥
2
. Since E[Vj,T ] = 0 the above

is simply the variance∥∥∥∥∥ 1√
T

kT∑
j=1

Vj,T

∥∥∥∥∥
2

2

=
1

T

kT∑
j=1

var[Vj,T ] +
2

T

kT∑
j1=1

kT∑
j2=j1+1

cov (Vj1,T , Vj2,T ) .
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By using Lemma A.7 we can bound the above∥∥∥∥∥ 1√
T

kT∑
j=1

Vj,T

∥∥∥∥∥
2

2

≤ CT−1 sup
1≤j≤kT

‖Vj,T‖22+δ kT

[
1 +

kT∑
j=1

α
(
jpT − T 1/2

)1−2/(2+δ)]
.

Using Lemma A.5 we have

sup
1≤j≤kT

‖Vj,T‖2+δ ≤ Cq
1/2
T sup

t,τ,T
‖g(Xt,T , Xτ,T )‖r

[
Γ(1 + η) + Γ

(
s

2 + δ
− s

r

)]
.

To reduce notation let supt,τ,T ‖g(Xt,T , Xτ,T )‖2r = |g|r, this gives

∥∥∥∥∥ 1√
T

kT∑
j=1

Vj,T

∥∥∥∥∥
2

2

≤ CkT qT
T
|g|r

[
Γ(1 + η) + Γ

(
s

2 + δ
− s

r

)]2(
1 +

kT∑
j=1

1

[j(pT − T 1/2)]s(1−2/(2+δ))

)

≤ CkT qT
T
|g|r

[
Γ(1 + η) + Γ

(
s

2 + δ
− s

r

)]2
Γ

(
s

[
1− 2

2 + δ

])
In order that Γ

(
s
[
1− 2

2+δ

])
and Γ

(
s

2+δ
− s

r

)
are finite for some δ, we require that

1

2 + δ
− 1

r
>

1

s
and 1− 2

2 + δ
>

1

s
.

This is equivalent to

1

s
+

1

r
<

1

2 + δ
<

1

2

(
s− 1

s

)
.

Note that for s > 1, 1
2
( s−1

s
) < 1

2
. Therefore as the above inequality need only hold for some δ > 0

we simply require that s and r satisfies

1

s
+

1

r
<

1

2

(
s− 1

s

)
.

The above inequality holds if s > 3 and there exists an r > 2s/(s−3) such that supt,τ,T ‖g(Xt,T , Xτ,T )‖r <
∞, which is the condition stated in Assumption 2.1(iii). Altogether this implies that∥∥∥∥∥ 1√

T

kT∑
j=1

Vj,T

∥∥∥∥∥
2

= O

(
k
1/2
T q

1/2
T

T 1/2

)
= O

((
qT

pT + qT

)1/2
)

Thus we obtain (37). �

Lemma 4.2 Suppose Assumption 2.1 holds. Let QT and {Uj,T} be defined as in (3) and (34)
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respectively. Then

var
[√

TQT

]
=

1

T

kT∑
j=1

var[Uj,T ] +O

(
T−2η +

qT
pT + qT

+
1

qT − T 1/2

)
.

PROOF. By using Lemma 4.1 we have

var
[√

TQT

]
= var

(
1√
T

kT∑
j=1

Uj,T

)
+O

(
T−2η +

qT
pT + qT

)
.

In the remainder of the proof we show that

var

(
1√
T

kT∑
j=1

Uj,T

)
=

1

T

kT∑
j=1

var[Uj,T ] +O

(
1

qT − T 1/2

)
.

Taking differences

I = var

(
1√
T

kT∑
j=1

Uj,T

)
− 1

T

kT∑
j=1

var[Uj,T ] =
1

T

kT∑
j1 6=j2

cov (Uj1,T , Uj2,T ) .

The remainder of the proof is very similar to the proof of Lemma 4.1, following the same steps

we have

I ≤ CkTpT
T
|g|r

[
Γ(1 + η) + Γ

(
s

2 + δ
− s

r

)]2 kT∑
j=1

1

[j(qT − T 1/2)]s(1−2/(2+δ))

≤ CpT
pT + qT

|gr|
[
Γ(1 + η) + Γ

(
s

2 + δ
− s

r

)]2
Γ

(
s

[
1− 2

2 + δ

])
[(qT − T 1/2)]−s(1−2/(2+δ)).

Under Assumption 2.1(ii) (see the arguments in Lemma 4.1) there exists an r > 3 and δ > 0

such that Γ
(
s
[
1− 2

2+δ

])
< ∞ and Γ

(
s

2+δ
− s

r

)
< ∞. Since δ is such that s

[
1− 2

2+δ

]
> 1 this

implies that [(qT − T 1/2)]−s(1−2/(2+δ)) < [(qT − T 1/2)]−1. Altogether this gives the bound

I ≤ C
pT

pT + qT
[(qT − T 1/2)]−1 ≤ C

qT − T 1/2
,

thus we obtain the desired bound. �

Let

σ2
T = var(

√
TQT ) and σ2

U,T =
1

T

kT∑
j=1

var[Uj,T ]. (38)
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Then assuming that qT/(pT + qT ) → 0 and qT − T 1/2 → ∞ as T → ∞, Lemmas 4.1 and 4.2

imply√
T

σ2
T

(QT − E(QT )) =

√
1

Tσ2
T

kT∑
j=1

Uj,T + op(1) =

√
T

σ2
U,T

SkT + op(1), where SkT =
1

T

kT∑
j=1

Uj,T .(39)

Thus the limiting distribution of
√

T
σ2
T

(QT − E(QT )) is determined by
√

T
σ2
U,T
SkT . To show nor-

mality of
√
TSkT we define an “unobserved” sum S̃kT where

S̃kT =
1

T

kT∑
j=1

Ũj,T , (40)

and Ũj,T and Uj,T have identical distributions, but {Ũj,T} are independent random variables. In

the following lemma we show that asymptotically the distributions of SkT and S̃kT are equivalent.

This result requires the following theorem, which gives a bound on the difference of characteristic

functions of sums of mixing random variables and their independent counterpart.

Lemma 4.3 Suppose Assumption 2.1 is satisfied. Let Uj,T and Ũj,T be defined in (34) and (40)

respectively. If qT > T 1/2, then∣∣∣∣E( exp(ix

kT∑
j=1

Uj,T )

)
−

kT∏
j=1

E
(

exp(ixŨj,T )

)∣∣∣∣ ≤ CkTα(qT − T 1/2), for all x ∈ R (41)

where C is a finite constant.

Further, if T
(qT−T 1/2)s−1 → 0, as qT → ∞ and T → ∞ where s denotes the mixing rate of

{Xt,T} defined in Assumption 2.1(i), then the distribution function of
√
TSkT converges to the

distribution function of
√
T ŜkT .

PROOF. Let Aj = exp(ixUj,T ). By taking differences we have

E

(
exp(ix

kT∑
j=1

Uj,T )

)
−

kT∏
j=1

E
(

exp(ixŨj,T )
)

= cov

(
A1,

kT∏
j=2

Aj

)
+

kT−1∑
s=2

(
s−1∏
i=1

E[Ai]

)
cov

(
As,

kT∏
i=s+1

Ai

)
.

Therefore∣∣∣∣∣E
(

exp(ix

kT∑
j=1

Uj,T )

)
−

kT∏
j=1

E
(

exp(ixŨj,T )
)∣∣∣∣∣ ≤

kT−1∑
s=1

∣∣∣∣∣cov

(
As,

kT∏
i=s+1

Ai

)∣∣∣∣∣ . (42)
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To bound the covariance we use (57), which gives |cov
(
As,
∏kT

i=s+1Ai

)
| ≤ Cα(qT − T 1/2). Sub-

stituting this into (42) gives∣∣∣∣∣E
(

exp(ix

kT∑
j=1

Uj,T )

)
−

kT∏
j=1

E
(

exp(ixŨj,T )
)∣∣∣∣∣ ≤ CkTα(qT − T 1/2). (43)

Thus giving (41).

Therefore by (43), if

kTα(qT − T 1/2) ≤ C
T

(qT − T 1/2)s−1
→ 0,

then ∣∣∣Φ√T ŜkT (x)− Φ√TSkT
(x)
∣∣∣→ 0, for all x ∈ R

where ΦY (x) = exp[ixY ] is the characteristic function of Y . Since Φ√T ŜkT
(x) → Φ√T ŜkT

(x), by

the inversion theorem |F√TSkT (x)−F√T ŜkT (x)| → 0, where F√TSkT
(x) and F√T ŜkT

(x) denote the

distribution functions of
√
TSkT and

√
T ŜkT respectively. �

Finally, we show asymptotic normality of
√
T S̃kT .

Lemma 4.4 Suppose Assumption 2.1 holds. Let σ2
U,T and S̃kT be defined as in (38) and (40)

respectively. Then √
T

σ2
U,T

S̃kT
D→ N (0, 1),

with pT/T → 0 as T →∞.

PROOF. The proof involves verification of the classical Lindeberg condition (see, for example,

(Davidson, 1994), Theorem 23.6), that is for every ε > 0

LC =

kT∑
j=1

E
[
T−1U2

j,T I(T−1/2|Uj,T | > ε)
]
→ 0

as T →∞. By the Hölder’s and Chebyshev’s inequality we have

E
(
T−1U2

j,T I(T−1/2|Uj,T | > ε
)
≤ T−1‖U2

j,T‖1+δ[P (|Uj,T | > T 1/2ε)]
δ

1+δ ≤ 1

ε̂T 1+ δ
1+δ

‖U2
j,T‖1+δ‖Uj,T‖

2( δ
1+δ

)

2 .

where ε̂ = ε2δ/(1+δ). By using Lemma A.5 and under Assumption 2.1(iii), there exists a δ > 0 such
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that sup1≤j≤kT ‖U
2
j,T‖1+δ ≤ CpT (which immediately implies ‖Uj,T‖

2( δ
1+δ

)

2 ≤ p
δ

1+δ

T ). Substituting

this into the above implies

sup
1≤j≤kT

E
(
T−1U2

j,T I(T−1/2|Uj,T | > ε̂
)
≤ Cε̂−1

(pT
T

)1+ δ
1+δ

.

Finally substituting this into LC gives

⇒ LC ≤ CkT
p
1+ δ

1+δ

T

ε̂T 1+ δ
1+δ

= C
T

pT + qT

p
1+ δ

1+δ

T

ε̂T 1+ δ
1+δ

=
C

ε̂

(
pT

pT + qT

)(pT
T

) δ
1+δ

.

Since pT/T → 0 as T →∞, the Lindeberg condition is satisfied and we obtain the result. �

PROOF of Theorem 2.1 If qT and pT are chosen such that qT/(pT+qT )→ 0 and qT−T 1/2 →∞
as T →∞, then by using (39) we have√

T

σ2
T

(QT − E(QT )) =

√
T

σ2
U,T

SkT + op(1).

From Lemma 4.3, if T/(qT − T 1/2)s−1 → 0 as qT →∞ and T →∞ (where s denotes the mixing

rate) then √
T

σ2
T

(QT − E(QT ))
D→

√
T

σ2
U,T

S̃kT ,

where An
D→ Bn (means the distribution of An converges to the distribution of Bn as T → ∞)

S̃kT is defined in (40). Finally by Lemma 4.4 we have√
T

σ2
T

(QT − E(QT ))
D→ N (0, 1) ,

as pT/T → 0 as T →∞.

Therefore for the result to hold we require that there exists a pT and qT such that qT/(pT +qT )→
0, qT − T 1/2 → ∞, T/(qT − T 1/2)s−1 → 0 and pT/T → 0 as T → ∞. Since s > 3, these hold if

pT and qT are chosen such that pT = T 1/2+δ1 and qT = T 1/2+δ2 where 0 < δ2 < δ1 < 1/2. Thus

proving the result. �

Note the proof of Theorem 2.2 is similar and given in Appendix B
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A Appendix

A.1 Proof of results in Section 3

PROOF Lemma 3.1 Taking differences gives

cum [Xt1,T , . . . , Xtn,T ]− cum

[
Xt1

(
t1
T

)
, . . . , Xtn

(
tn
T

)]
= cum

[
Xt1,T −Xt1

(
t1
T

)
, Xt2,T , . . . , Xtn,T

]
+

n∑
j=2

cum

[
Xt1

(
t1
T

)
, . . . , Xtj ,T −Xtj

(
tj
T

)
, . . . , Xtn,T

]
.

Thus under Assumption 3.1(i,ii) we have∣∣∣∣cum [Xt1,T , . . . , Xtn,T ]− cum

[
Xt1

(
t1
T

)
, . . . , Xtn

(
tn
T

)]∣∣∣∣ ≤ KnT−1νn(t2 − t1, . . . , tn − t1).

By using the same method and Assumption 3.1(i,iii) we have∣∣∣∣cum

[
Xt1

(
t1
T

)
, . . . , Xtn

(
tn
T

)]
− κn

(
t1
T
, t2 − t1, . . . , tn − t1

)∣∣∣∣
≤

n∑
j=2

|tj − t1|
T

νn(t2 − t1, . . . , tn − t1).

Altogether this gives (i). The proof of (ii) follows immediately from Assumption 3.1(iv).

To prove (iii) we apply dominated convergence and take derivative into summand

∂fn(u;ω1, . . . , ωn−1)

∂u
=

∑
t1,...,tn−1∈Z

∂κn(u, t1, . . . , tn−1)

∂u
exp

(
i

n−1∑
j=1

tjωj

)
.
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Finally taking the absolute value of ∂fn
∂u

and using Assumption 3.1(v) we obtain

sup
u

∣∣∣∣∂fn(u;ω1, . . . , ωn−1)

∂u

∣∣∣∣ ≤ ∑
t1,...,tn−1∈Z

sup
u

∣∣∣∣∂κn(u, t1, . . . , tn−1)

∂u

∣∣∣∣ <∞,
thus proving (15). �

PROOF of Lemma 3.2 We integrating the integral
∫ 1

0
fn(u;ω1, . . . , ωn−1) exp(i2πru)du by

parts and using (15), the result immediately follows. �

PROOF of Lemma 3.3 Expanding the cumulant term we have

cum [JT (ωj1), . . . , JT (ωjn)] =
1

(2πT )n/2

T∑
t1,...,tn=1

cum(Xt1,T , . . . , Xtn,T ) exp(it1ωj1 + . . .+ itnωjn).

We replace cum(Xt1,T , . . . , Xtn,T ) with κn( t1
T
, t2 − t1, . . . , tn − t1) and use Lemma 3.1 to obtain

cum [JT (ωj1), . . . , JT (ωjn)]

=
1

(2πT )n/2

T∑
t1,...,tn=1

κn

(
t1
T
, t2 − t1, . . . , tn − t1

)
exp(it1ωj1 + . . .+ itnωjn) +O

(
T−n/2

)
.

Replacing the above summand with fn( t
T

;ωj1 , . . . , ωjn) (where fn(·) is defined in (13)) we have

cum [JT (ωj1), . . . , JT (ωjn)]

=
(2π)(n/2)−1

T n/2

T∑
t=1

fn

(
t

T
, ωj2 , . . . , ωjn

)
exp(it(ωj1 + ωj2 + . . .+ ωjs)) +O(T−n/2) (44)

and replacing the sum with the integral gives

cum [JT (ωj1), . . . , JT (ωjn)] =

(
2π

T

)n/2−1 ∫ 1

0

fn(u;ωj2 , . . . , ωjn) exp

[
iu

(
n∑
s=1

js

)]
du+O(T−n/2).

Finally, substituting (17) into the above gives (18). �

It is interesting to note that Paparoditis (2009), Lemma 6.2, derives a similar result to (44) for

time-varing MA(∞) processes.

PROOF of Theorem 3.1 By using Lemma 3.3 we have

E(ÂT (r)) =
1

T

T∑
k=1

φ(ωk)cov[JT (ωk), JT (ωk+r)] =
1

T

T∑
k=1

φ(ωk)F2(−r, ωk) +O(T−1).
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Since φ(·) has a bounded first derivative, we replace summand with integrals to obtain

E[ÂT (r)] =
1

2π

∫ 1

0

∫ 2π

0

φ(ω)f(u, ω) exp(−i2πru)dωdu+O
(
T−1

)
and thus obtain (19). To prove (20) we use the cumulant expansion of cov(Y1Y2, Y3Y4) together

with Lemma 3.3 to obtain cov[
√
TÂT (r1),

√
TÂT (r2)] = ṼT,r1,r2 +O(T−1) where

ṼT,r1,r2 =
1

T

T∑
k1,k2=1

φ(ωk1)φ(ωk2)

[
F2(k1 − k2, ωk1)F2(−k1 + k2 − r1 + r2,−ωk1+r1) +

F2(k1 + k2 + r2, ωk1)F2(−(k1 + k2 + r1),−ωk1+r1) +
(2π)

T
F4(−r1 + r2, ωk1 ,−ωk1+r1 ,−ωk2)

]
.

In the first summand we change variables with s = k1 − k2 and in the second summand we let

s = k2 + k1 this gives

ṼT,r1,r2 =
1

T

∑
k1

∑
s

φ(ωk1)φ(ωk1−s)F2(s, ωk1)F2(−s− r1 + r2,−ωk1+r1)

+
1

T

∑
k1

∑
s

φ(ωk1)φ(ωs−k1)F2(s+ r2, ωk1)F2(−(s+ r1),−ωk1+r1)

+
(2π)

T 2

∑
k1

∑
k2

φ(ωk1)φ(ωk2)F4(−r1 + r2, ωk1 ,−ωk1+r1 ,−ωk2).

We replace φ(ωk1−s) with φ(ωk1) (leading to an error of O(T−1 log T )) and φ(ωs−k1) with φ(ω−k1)

(leading to an error of O(T−1 log T )). For the first two summands, we replace the sum over

k1 with an integral and in the last summand we replace the sum over k1 and k2 with a double

integral. Finally, we extend the sum over
∑

s to
∑

s∈Z which gives (20).

To prove asymptotic normality we use ÂT (r) = AT (r) + Op(T
−1) where AT (r) is defined in

(8). Thus asymptotic normality of
√
T [ÂT (r) − E[ÂT (r)] follows from asymptotic normality of√

T [AT (r) − E[AT (r)]. From (20) we observe that Assumption 3.1 for n = 2 and 4 implies

that Assumption 2.1(ii) is satisfied. We have assumed that the mixing Assumptions2.1(i,iii)

are satisfied. Thus all the conditions in Theorem 2.1 are satisfied which implies that AT (r) is

asymptotic normality and thus (21) holds. �

We now prove Theorem 3.2. The proof requires the following two lemmas, which are analogous

to Lemma 3.1-3.3 (thus we state them without proof).

Lemma A.1 Let µx(·), fn,x1,...,xn(·) and Fn,x1,...,xn(·) be defined as in (27) and (28) respectively.
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(i) If Assumption 3.2(i,ii,iii) is satisfied. Then∣∣∣∣E[Yx,t,T ]− µx
(
t

T

)∣∣∣∣ ≤ C
(1 + |x|)

T

for n ≥ 2 ∣∣∣∣cum [Yx1,t1,T , . . . , Yxn,tn,T ]− κn,x1,...,xn
(
t1
T
, t2 − t1, . . . , tn − t1

)∣∣∣∣
≤ C

(
n

T
+

n∑
j=2

|tj − t1|
T

)
νn(t2 − t1, . . . , tn − t1).

(iv) If Assumption 3.2(iv) is satisfied then supu∈[0,1],ω1,...,ωn−1∈[0,2π] |fn,x1,...,xn(u;ω1, . . . , ωn−1)| <
C (1 +

∑n
i=1 |xi|).

(iii) If Assumption 3.2(v) is satisfied then

sup
u∈[0,1],ω1,...,ωn−1∈[0,2π]

∣∣∣∣∂fn,x1,...,xn(u;ω1, . . . , ωn−1)

∂u

∣∣∣∣ < C

(
1 +

n∑
i=1

|xi|

)
.

and

sup
ω1,...,ωn−1∈[0,2π]

|Fn,x1,...,xn(r;ω1, . . . , ωn−1)| ≤ C sup
u∈[0,1],ω1,...,ωn−1∈[0,2π]

∣∣∣∣∂fn(u;ω1, . . . , ωn−1)

∂u

∣∣∣∣ 1

|r|

Lemma A.2 Suppose Assumption 3.2 holds and let Fn,x1,...,xn(·) be defined as in (28). Then

1√
2π

E[Jn(x;ωk)] = F1,x(k) +O

(
1 + |x|
T

)

cum [JT (x1, ωj1), . . . , JT (xn, ωjn)] =
(2π)(n/2)−1

T (n/2)−1 Fn,x1,...,xn

[
n∑
k=1

jk;ωj2 , . . . , ωjn

]
+O

([
1 +

n∑
i=1

|xi|

]
1

T n/2

)
.(45)

Using the above lemmas we prove the result.

PROOF of Theorem 3.2 To prove (29) we use (24) to give

E[WT ] =

∫
R2

Γ(x, y)E [WT (x, y)] dxdy +O

(
log T

T

)
.
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Focusing on WT (x, y) we have

E[WT (x, y)] =
2π

T

T∑
k=1

φ(ωk)E[JT (x;ωk)JT (y;ωk)]

=
2π

T

T∑
k=1

φ(ωk)
{

cov[JT (x;ωk), JT (y;ωk)] + E[JT (x;ωk)]E[JT (y;ωk)]
}
.

By using Lemma A.2 and replacing sum with integral it is straightforward to show that E[WT (x, y)] =

ET (x, y) +O([1 + |x|+ |y|]T−1) where

ET (x, y) =

∫ 2π

0

φ(ω)F2,x,y(ω)dω +
T∑
k=1

φ(ωk)F1,x(k)F1,y(−k).

Replacing φ(ωk) with φ(0)∣∣∣∣∣
T∑
k=1

φ(ωk)F1,x(k)F1,y(−k)− φ(0)
T∑
k=1

F1,x(k)F1,y(−k)

∣∣∣∣∣ ≤ C (1 + |x|+ |y|)
T

.

Thus

E[WT (x, y)] =

∫ 2π

0

φ(ω)F2,x,y(ω)dω + φ(0)
T∑
k=1

F1,x(k)F1,y(−k) +O

(
[1 + |x|+ |y|]

T

)
.

Finally by using (23) we have (29).

To prove (30) we use (24) to give

var[
√
TWT ] =

∫
R4

Γ(x1, y1)Γ(x2, y2)cov
[√

TWT (x1, y1),
√
TWT (x2, y2)

]
dxdy +O

(
log T

T

)
. (46)

We note that

cov
[√

TWT (x1, y1),
√
TWT (x2, y2)

]
=

1

T

T∑
k1,k2=1

φ(ωk1)φ(ωk2)cov
[
JT (x1, ωk1)JT (y1, ωk1), JT (x2, ωk2)JT (y2, ωk2)

]
.

Applying indecomposable partitions to cov[JT (x1, ωk1)JT (y1, ωk1), JT (x2, ωk2)JT (y2, ωk2)] and us-

ing Lemma A.2 we have

T cov[WT (x1, y1),WT (x2, y2)] = ṽT (x1, y1, x2, y2) +O

(
(1 + |x1|+ |y1|)(1 + |x2|+ |y2|)

T

)
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where

1

(2π)2
ṽT (x1, y1, x2, y2) =

1

T

T∑
k1,k2=1

φ(ωk1)φ(ωk2)

[
F2,x1,x2(k1 − k2, ωk1)F2,y1,y2(−k1 + k2,−ωk1) +

F2,x1,y2(k1 + k2, ωk1)F2,y1,x2(−(k1 + k2),−ωk1)
]

+
(2π)

T 2

T∑
k1,k2=1

φ(ωk1)φ(ωk2)F4,x1,y1,x2,y2(0, ωk1 ,−ωk1 ,−ωk2)

+
1

T

T∑
k1,k2=1

φ(ωk1)φ(ωk2)

{
F1,x1(k1)F3,y1,x2,y2(k1;−ωk1 ,−ωk2) + F1,y1(−k1)F3,x1,x2,y2(−k1;−ωk1 ,−ωk2)

F1,x2(−k2)F3,x1,y1,y2(k2;ωk1 ,−ωk2) + F1,y2(k2)F3,x1,y1,x2(−k2;ωk1 ,−ωk2)
}
.

Substituting this into (46) and using (23) gives (30). �

A.2 Cumulants and moment bounds

In this section we state some bounds on the sums of moments and cumulants. These results will

be used to prove Theorem 2.1.

The following lemma and corollary link mixing conditions to summability of cumulants. These

results can be used provide sufficient conditions for Assumption 2.2(ii) to hold. Note that a

similar result was discussed in Remark 3.1, which gave sufficient conditions for Assumption

3.1(i-iv) to hold.

We first state a bound for the sum of cumulants based on the mixing rate. This result is motivated

by Neumann (1996), Remark 3.1.

Lemma A.3 Let us suppose that {Xt,T} is an α-mixing time series which satisfies Assumption

2.1(i).

(i) If t1 ≤ t2 ≤ . . . ≤ tk, then |cum(Xt1,T , . . . , Xtk,T )| ≤ Ck supt,T ‖|Xt,T‖kr
∏k

i=2 α(ti−ti−1)
1−k/r
k−1 .

(ii) If s and r are such that s(r − k) > r(k − 1) then

sup
t1

∞∑
t2,...,tk=1

|cum(Xt1,T , . . . , Xtk,T )| ≤ Ck sup
t,T
‖Xt,T‖kr

[
Γ

(
1− k/r
k − 1

)]k−1
<∞.
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(iii) If s and r are such that (s− 1)(r − k) > r(k − 1) then for all 2 ≤ j ≤ k

sup
t1

∞∑
t2,...,tk=1

(1 + |tj|)|cum(Xt1,T , . . . , Xtk,T )| ≤ Ck sup
t,T
‖Xt,T‖kr

[
Γ

(
1− k/r
k − 1

− 1

)]k−1
<∞.

Ck is a finite constant which depends only on k.

PROOF. To prove the lemma we apply a result from Statulevicius and Jakimavicius (1988),

Theorem 3, part (2), which states that if t1 ≤ t2 ≤ . . . ≤ tk, then for all 2 ≤ i ≤ k we have∣∣cum(Xt1,T , Xt2,T , . . . , Xtk,T )
∣∣ ≤ 3(k − 1)!2k−1α(ti − ti−1)1−

k
r

∏k
i=1 ‖Xti,T‖r.

To prove (i) we use a method similar to the proof of Neumann (1996), Remark 3.1. By taking

the (k − 1)th root of the above for all 2 ≤ i ≤ k we have

∣∣cum(Xt1,T , Xt2,T , . . . , Xtk,T )
∣∣ 1
k−1 ≤ C

1/(k−1)
k α(ti − ti−1)

1−k/r
k−1 sup

t,T
‖Xt,T‖

k
k−1
r ,

where Ck = 3(k − 1)!2k−1. Since the above bound holds for all i, multiplying the above over i

gives

∣∣cum(Xt1,T , Xt2,T , . . . , Xtk,T )
∣∣ ≤ Ck sup

t,T
‖Xt,T‖kr

k∏
i=2

α(ti − ti−1)
1−k/r
k−1 , (47)

thus proving (i).

To prove (ii), we rewrite
∑∞

t2,...,tk=1 as the sum of orderings, that is
∑∞

t2,...,tk=1 = k!
∑∞

1=t2≤...≤tk .

Since the number of orderings is finite, we use (i) to obtain

∞∑
t2,...,tk=1

∣∣cum(Xt1,T , Xt2,T , . . . , Xtk,T )
∣∣ ≤ Ck sup

t,T
‖Xt,T‖kr

{∑
r

α(r)
(1−k/r)
(k−1)

}k−1
<∞,

which gives (ii). To prove (iii) we use a similar argument to obtain

∞∑
t2,...,tk=1

(1 + |tj|)
∣∣cum(Xt1,T , Xt2,T , . . . , Xtk,T )

∣∣ ≤ k!
∑

1≤t2<...<tk<∞

(1 + |tj|)
∣∣cum(Xt1,T , Xt2,T , . . . , Xtk,T )

∣∣
substituting (47) into the above gives the result. �

Using the lemma above, we link α-mixing with the so called Brillinger-type mixing conditions.

Corollary A.1 Suppose {Xt,T} is an α-mixing time series which satisfies Assumption 2.1(i),

with α(t) ≤ K|t|−s.
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(i) If there exists an r > 4s/(s − 3) such that supt,T E|Xt,T |r < ∞, then |cov(Xt,T , Xτ,T )| ≤
C|t− τ |−

(s+3)
2 and

supt1
∑∞

t2,t3,t4=−∞ |cum(Xt1,T , Xt2,T , Xt3,T , Xt4,T )| <∞.

(ii) If there exists an r > 4s/(s − 6) such that supt,T E|Xt,T |r < ∞, then |cov(Xt,T , Xτ,T )| ≤
C|t− τ |−

(s+6)
2 and for all 2 ≤ j ≤ 4,

supt1
∑∞

t2,t3,t4=−∞(1 + |tj|)|cum(Xt1,T , Xt2,T , Xt3,T , Xt4,T )| <∞.

We now state a series of results which are used in Section 4. We will make heavy use of Ibrag-

imov’s inequality (see Ibragimov (1962) and Davidson (1994), Theorem 14.2 for a review). We

summarize it here. Suppose that {Xt,T} are alpha-mixing random variables which satisfy As-

sumption 2.1(i). If there exists an r > q ≥ 1 such that ‖Xt,T‖r <∞ and j > 0. Then

‖E[Xt,T |Ft−j]− E[Xt,T ]‖q ≤ 2[21/q + 1]α(j)1/q−1/r‖Xt,T‖r, (48)

where Ft−j = σ(Xt−j,T , Xt−j−1,T , . . .). The same proof of (48) can also be used to show a simpler

result

‖E[Zt,T |σ(Zt−j)]− E[Zt,T ]‖q ≤ 2[21/q + 1])α[σ(Zt,T ), σ(Zt−j,T )]1/q−1/r‖Zt,T‖r, for r > q, (49)

where α[F ,G] = supA∈F ,B∈G |P (A ∩B)− P (A)P (B)|. Using this result, for any τ > t

|cov(Zt,T , Zτ,T )| = |E (Zt,T {E[Zτ,T |Zt,T ]− E[Zτ,T ]})|
≤ ‖Zt,T‖2 ‖E[Zτ,T |Zt,T ]− E[Zτ,T ]‖2
≤ 2[21/2 + 1]‖Zt,T‖2‖Zτ,T‖rα[σ(Zt,T ), σ(Zt−j,T )]1/2−1/r (for some r > 2). (50)

Let h(Xt,T , Xτ,T ) be defined as in (3) and the weights {Ht,τ,T} be some aribtrary weights (which

we specify later). Define the sum

Zt,T = Ht,t,Th(Xt,T , Xt,T ) +
t−1∑
τ=1

[Ht,τ,Th(Xt,T , Xτ,T ) +Gτ,t,Th(Xτ,T , Xt,T )]. (51)

In the following lemma we obtain some bounds for Zt,T .

Lemma A.4 Suppose {Xt,T} is an α-mixing time series which satisfies Assumption 2.1(i), with

α(t) ≤ K|t|−s. Let Zt,T be defined as in (51), where Ht,τ,T is such that supT |Ht,τ,T | ≤ C|t −
τ |−(2+η)I|t−τ |>0 for some η > 0. Suppose Assumption 2.1(i) holds and there exists some r > q ≥ 1
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such that supt,τ,T ‖h(Xt,T , Xτ,T )‖r <∞, then

‖E(Zt,T |Ft−j)− E[Zt,T ]‖q ≤ C

(
|j|−(1+η) + |j|−s(

1
q
− 1
r
)

)
(52)

where Fj = σ(Xt,T ; t ≤ j).

PROOF. We write E(Zt,T |Ft−j)− E[Zt,T ] = A1 + A2 where

A1 =
t−1∑
τ=1

Ht,τ,T [E[h(Xt,T , Xτ,T )|Ft−j]− E[h(Xt,T , Xτ,T )]

A2 =
t∑

τ=1

Hτ,t,T [E[h(Xτ,T , Xt,T )|Ft−j]− E[h(Xτ,T , Xt,T )].

We now bound the above. As the derivation for the bounds on A1 and A2 are identical, we focus

on A1.

The bound is based on an interplay between the coefficients Ht,τ,T which decay as |t−τ | → ∞ and

the mixing rate of the time series {Xt,T}. We define the sigma algebra F tt−j/2 = σ(Xk,T ; t−j/2 ≤
k ≤ t) and add and subtract E[h(Xt,T , Xτ,T )|F tt−j/2] to A1

A1 =
t−1∑
τ=1

Ht,τ,T {E[h(Xt,T , Xτ,T )|Ft−j]− E[h(Xt,T , Xτ,T )]}

=
t−1∑
τ=1

Ht,τ,TE
{
h(Xt,T , Xτ,T )− E[h(Xt,T , Xτ,T )|F tt−j/2]

∣∣Ft−j}
+

t−1∑
τ=1

Ht,τ,TE
{
E[h(Xt,T , Xτ,T )|F tt−j/2]− E[h(Xt,T , Xτ,T )]

∣∣Ft−j} .
Thus by applying Minkowski’s inequality to A1 we have ‖A1‖q ≤ A11 + A12, where

A11 =
t−1∑
τ=1

|Ht,τ,T |
∥∥E{h(Xt,T , Xτ,T )− E[h(Xt,T , Xτ,T )|F tt−j/2]

∣∣Ft−j}∥∥q
A12 =

t−1∑
τ=1

|Ht,τ,T |
∥∥E{E[h(Xt,T , Xτ,T )|F tt−j/2]− E[h(Xt,T , Xτ,T )]

∣∣Ft−j}∥∥q .
The bound for A11 is based on the observation that for t − j/2 < τ , h(Xt, Xτ ) ∈ F tt−j/2, thus

E[h(Xt,T , Xτ,T )|F tt−j/2] = h(Xt,T , Xτ,T ) and

E
{
h(Xt,T , Xτ,T )− E[h(Xt,T , Xτ,T )|F tt−j/2]

∣∣Ft−j} = 0.
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Therefore when we partition A11 into
∑t

τ=t−j/2 and
∑t−j/2−1

τ=1 the first summand is zero and A11

reduces to

A11 =

t−j/2∑
τ=1

|Ht,τ,T |
∥∥h(Xt,T , Xτ,T )− E(h(Xt,T , Xτ,T )|F tt−j/2)

∥∥
q
.

To bound this term we use that supT |Ht,τ,T | ≤ C|t− τ |−(2+η)I|t−τ |>0 to give

A11 ≤ 2‖h(Xt,T , Xτ,T )‖q
t−j/2∑
τ=1

|Ht,τ,T | ≤ C|j|−(1+η).

To bound A12 we rewrite the conditional expectation as

A12 =
t−1∑
τ=1

|Ht,τ,T |
∥∥E{E[h(Xt,T , Xτ,T )|F tt−j/2]

∣∣Ft−j}− E[h(Xt,T , Xτ,T )]
∥∥
q
.

We observe that E[h(Xt,T , Xτ,T )|F tt−j/2] ∈ σ(Xt,T , . . . , Xt−j/2,T ), thus it is α-mixing random vari-

able with the same mixing rate as {Xt}. Applying (48) we have∥∥E{E[h(Xt,T , Xτ,T )|F tt−j/2]
∣∣Ft−j}− E[h(Xt,T , Xτ,T )]

∥∥
q

≤ C
∥∥E[h(Xt,T , Xτ,T )|F tt−j/2]

∥∥
r
α(j/2)1/q−1/r ≤ C ‖h(Xt,T , Xτ,T )‖r |j|

−s(1/q−1/r)

to give

A12 ≤ C sup
τ,T
‖h(Xt,T , Xτ,T )‖r |j|

−s(1/q−1/r)
t−1∑
τ=1

|Ht,τ,T |.

Thus altogether we have

A1 ≤ C

(
sup
t,τ,T
‖h(Xt,T , Xτ,T )‖q|j|−(1+η) + sup

t,τ,T
‖h(Xt,T , Xτ,T )‖r|j|−s(

1
q
− 1
r
)

)
.

A similar bound also applies to A2, thus

‖E(Zt,T |Ft−j)− E(Zt,T )‖q ≤ C

(
sup
t,τ,T
‖h(Xt,T , Xτ,T )‖q|j|−(1+η) + sup

t,τ,T
‖h(Xt,T , Xτ,T )‖r|j|−s(

1
q
− 1
r
)

)
.

Thus proving (52). �
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We define the following sum

B
(u)
T,NT

=

NT+u∑
t=u+1

Zt,T , (53)

where {Zt,T} is defined in (51).

Lemma A.5 Suppose {Xt,T} is an α-mixing time series which satisfies Assumption 2.1(i),

with α(t) ≤ K|t|−s. Let Zt,T and B
(u)
T,NT

be defined as in (51) and (53) respectively, where

supT |Ht,τ,T | ≤ C|t − τ |−(2+η)I|t−τ |>0 for some η > 0. If for some r > qs/(s − 2) we have

supt,τ,T ‖h(Xt,T , Xτ,T )‖r <∞. Then

sup
u

∥∥B(u)
T,NT
− E[B

(u)
T,NT

]
∥∥
q
≤ CN

1/2
T

[
Γ(1 + η) + Γ

(
s

q
− s

r

)]
, (54)

where C is a finite constant that is independent of NT and T .

PROOF. Let

Nt,T (j) = E(Zt,T |Ft−j)− E(Zt,T |Ft−j−1).

By Lemma A.4 we have

‖Nt,T (j)‖q ≤ C

(
sup
t,τ,T
‖h(Xt,T , Xτ,T )‖q|j|−(1+η) + sup

t,τ,T
‖h(Xt,T , Xτ,T )‖r|j|−s(

1
q
− 1
r
)

)
.

This allows us to use the representation Zt,T − E(Zt,T ) =
∑∞

j=0Nt,T (j) to prove the result.

Substituting the above into ‖B(u)
T,NT
‖q and using the Burkholder inequality gives

∥∥∥B(u)
T,NT
− E[B

(u)
T,NT

]
∥∥∥
q

=
∥∥NT+u∑

t=u

∞∑
j=0

Nt,T (j)
∥∥
q
≤

∞∑
j=0

∥∥NT+u∑
t=u

Nt,T (j)
∥∥
q
≤

∞∑
j=0

(NT+u∑
t=u

‖Nt,T (j)‖2q
)1/2

≤ CN
1/2
T sup

t,τ,T
‖h(Xt,T , Xτ,T )‖r

∞∑
j=1

(
|j|−(1+η) + |j|−s(

1
q
− 1
r
)

)

as required. �

Lemma A.6 Suppose {Xt,T} satisfies Assumption 2.2(ii). Let Zt,T and B
(u)
T,NT

be defined as in

(51) and (53) respectively, where |Ht,τ,T | = 0 if |t− τ | > M . Then

sup
u

∥∥B(u)
T,NT
− E[B

(u)
T,NT

]
∥∥
4
≤ CM1/2N

1/2
T (55)

where C is a finite constant that is independent of NT and T .
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PROOF. Expanding∥∥B(u)
T,NT
− E[B

(u)
T,NT

]
∥∥4
4

= 3var[B
(u)
T,NT

]2 + cum4[B
(u)
T,NT

].

Using indecomposable partitions and Assumption 2.2(i) it is straightforward to show that var[B
(u)
T,NT

] =

O(NTM) and cum4[B
(u)
T,NT

] = O(N2
TM

2). Thus we obtain the desired result. �

Lemma A.7 Suppose {Xt,T} is an α-mixing time series which satisfies Assumption 2.1(i). Let

Zt,T and B
(u)
T,NT

be defined as in (51) and (53) respectively, where Ht,τ,T = 0 for |t− τ | > M . If

M < NT , then∣∣∣cov
(
B

(u)
T,NT

, B
(u+jNT )
T,NT

)∣∣∣ ≤ Cα (jNT −M)1−2/(2+δ)
∥∥∥B(u)

T,NT

∥∥∥
2

∥∥∥B(u+jNT )
T,NT

∥∥∥
2+δ

, (56)

for some δ > 0, and∣∣∣∣∣cov

[
exp

(
ixB

(u)
T,NT

)
, exp

(
ix

m∏
j=1

B
(u+jNT )
T,NT

)]∣∣∣∣∣ ≤ Cα (jNT −M) . (57)

PROOF. To prove (56) we use Ibragimov’s inequality stated in (50) to bound the covariance∣∣∣cov
(
B

(u)
T,NT

, B
(u+jNT )
T,N(T )

)∣∣∣ ≤ Cα[σ(B
(u)
T,NT

), σ(B
(u+jNT )
T,N(T ) )]1−

2
2+δ

∥∥∥B(u)
T,N(T )

∥∥∥
2

∥∥∥B(u+jNT )
T,N(T )

∥∥∥
2+δ

.

By definition ofB
(u)
T,NT

andB
(u+jNT )
T,N(T ) we have σ(B

(u)
T,NT

) ⊆ σ(Yk,T ; k ≤ u) ⊆ Fu−∞ and σ(B
(u+jNT )
T,NT

) ⊆
σ(Yk,T ; k ≥ u + jNT ) ⊆ F∞u+jNT−M . We observe from the definition of {Yt,T} that σ(Yk,T ; k ≥
u+ jNT ) ⊆ σ(Xk,T ; k ≥ u+ jNT −M) and σ(Yk,T ; k ≤ u) ⊆ σ(Xk,T ; k ≤ u). Thus∣∣∣cov

(
B

(u)
T,NT

, B
(u+jNT )
T,N(T )

)∣∣∣
≤ Cα[σ(Xk,T ; k ≤ u), σ(Xk,T ; k ≥ u+ jNT −M)]1−

2
2+δ

∥∥∥B(u)
T,N(T )

∥∥∥
2

∥∥∥B(u+jNT )
T,N(T )

∥∥∥
2+δ

≤ Cα (jNT −M)1−2/(2+δ)
∥∥∥B(u)

T,N(T )

∥∥∥
2

∥∥∥B(u+jNT )
T,N(T )

∥∥∥
2+δ

for some δ > 0.

The proof of (57) is identical and we omit the details. �
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B Proof of Theorem 2.2

The proof is very similar to the proof of Theorem 2.1, however, there is no need to truncate the

weight function Gt,τ,M , as by definition |Gt,τ,M | = 0 for |t− τ | > M . Let

Yt,T = Gt,t,Mh(Xt,T , Xt,T ) +
t−1∑
τ=1

[Gt,τ,Mh(Xt,T , Xτ,T ) +Gτ,t,Mh(Xτ,T , Xt,T )].

We observe QT,M = 1
T

∑T
t=1 Yt,T . Define the partial block sums

Uj,T =

jrT+pT∑
t=jrT+1

[Yt,T − E(Yt,T )] and Vj,T =

(j+1)rT∑
t=jrT+pT+1

[Yt,T − E(Yt,T )], (58)

so

QT,M − E[QT,M ] =
1

T

kT∑
j=1

(Uj,T + Vj,T ) , (59)

where kT = T/(pT + qT ).

The following four lemmas are analogous to Lemmas 4.1-4.4.

Lemma B.1 Suppose Assumptions 2.1(i) (where s > 1) and 2.2 hold. Let QT,M and {Uj,T} be

defined as in (5) and (58) respectively. Then√
T

M
(QT,M − E[QT,M ]) =

1√
TM

kT∑
j=1

Uj,T + F1, (60)

where ‖F1‖2 = O
(

( qT
pT+qT

)1/2
)

PROOF. It is clear from (59) that F1 = 1√
TM

∑kT
j=1 Vj,T . Since E[Vj,T ] = 0 the above is simply

the variance ∥∥∥∥∥ 1√
MT

kT∑
j=1

Vj,T

∥∥∥∥∥
2

2

=
1

MT

kT∑
j1,j2=1

cov (Vj1,T , Vj2,T ) .
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By using Lemmas A.6 and A.7 we can bound the above with∥∥∥∥∥ 1√
MT

kT∑
j=1

Vj,T

∥∥∥∥∥
2

2

≤ CkT
MT
‖Vj,T‖24

(
1 +

kT∑
j=1

α(jpT −M)1/2

)

≤ CkT qTM

TM
Γ
(s

2

)
=

(
qT

pT + qT

)
.

�

Lemma B.2 Suppose Assumptions 2.1(i) (where s > 1) and 2.2 hold. Let QT,M and {Uj,T} be

defined as in (5) and (58) respectively. Then

var

[√
T

M
QT

]
=

1

TM

kT∑
j=1

var[Uj,T ] +O

(
qT

pT + qT
+

1

(qT −M)s/2

)
.

PROOF. By using Lemma B.1 we have

var

[√
T

M
QT

]
= var

(
1√
TM

kT∑
j=1

Uj,T

)
+O

(
qT

pT + qT

)
.

Therefore similar to the proof of Lemma B.2 we need only to take differences

I = var

(
1√
TM

kT∑
j=1

Uj,T

)
− 1

TM

kT∑
j=1

var[Uj,T ] =
1

TM

kT∑
j1 6=j2

cov (Uj1,T , Uj2,T ) .

Following the same steps as in the proof of Lemma B.1

I ≤ CkT
TM
‖Vj,T‖24

(
kT∑
j=1

α(jqT −M)1/2

)

≤ CkTMpT
TM(qT −M)s/2

Γ(s1/2) ≤ C
pT

pT + qT
[(qT −M)]−s/2 ≤ C

(qT −M)s/2
,

thus we obtain the desired bound. �

Let

σ2
T = var

(√
T

M
QT

)
= and σ2

U,T =
1

TM

kT∑
j=1

var[Uj,T ]. (61)
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Then assuming that qT/(pT + qT )→ 0 and qT −M →∞ as T →∞, Lemmas 4.1 and 4.2 imply√
T

Mσ2
T

(QT,M − E(QT,M)) =

√
T

Mσ2
U,T

SkT + op(1), where SkT =
1

T

kT∑
j=1

Uj,T . (62)

To show normality of
√
TSkT we define an “unobserved” sum S̃kT where

S̃kT =
1

T

kT∑
j=1

Ũj,T , (63)

and Ũj,T and Uj,T have identical distributions, but {Ũj,T} are independent random variables.

Lemma B.3 Suppose Assumptions 2.1(i) (where s > 1) and 2.2 are satisfied. Let Uj,T and Ũj,T

be as defined in (58) and (63) respectively. If T
(qT−M)s−1 → 0, as qT → ∞ and T → ∞ where s

denotes the mixing rate of {Xt,T} defined in Assumption 2.1(i), then the distribution function of√
TSkT converges to the distribution function of

√
T ŜkT .

PROOF. The proof is identical to the proof of Lemma B.3. �

Lemma B.4 Suppose Assumptions 2.1(i) (where s > 1) and 2.2 holds. Let S̃kT and σ̂2
u,T be

defined as in (61) and (63) respectively. Then√
T

Mσ2
U,T

S̃kT
D→ N (0, 1),

with pT/T → 0 as T →∞.

PROOF. The proof is identical to the proof of Lemma 4.4. �

PROOF of Theorem 2.2 By using Lemmas B.1-B.4, if qT and pT are such that

qT/(pT + qT )→ 0, (qT −M)→∞, T/(qT −M)s−1 → 0, and pT/T → 0, (64)

as T →∞. Then √
T

Mσ2
T

(QT − E(QT ))
D→ N (0, 1)

Set M = T δ, pT = T δ1 and qT = T δ2 , then condition (64) are satisfied when δ < δ2 < δ1 < 1,

δ2 > 1/(s− 1). Thus proving the result. �
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