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Abstract

We propose NonStGM, a general nonparametric graphical modeling framework
for studying dynamic associations among the components of a nonstationary mul-
tivariate time series. It builds on the framework of Gaussian Graphical Models
(GGM) and stationary time series Graphical models (StGM), and complements ex-
isting works on parametric graphical models based on change point vector autore-
gressions (VAR). Analogous to StGM, the proposed framework captures conditional
noncorrelations (both intertemporal and contemporaneous) in the form of an undi-
rected graph. In addition, to describe the more nuanced nonstationary relationships
among the components of the time series, we introduce the new notion of condi-
tional nonstationarity/stationarity and incorporate it within the graph architecture.
This allows one to distinguish between direct and indirect nonstationary relation-
ships among system components, and can be used to search for small subnetworks
that serve as the “source” of nonstationarity in a large system. Together, the two
concepts of conditional noncorrelation and nonstationarity/stationarity provide a
parsimonious description of the dependence structure of the time series.

In GGM, the graphical model structure is encoded in the sparsity pattern of the
inverse covariance matrix. Analogously, we explicitly connect conditional noncor-
relation and stationarity between and within components of the multivariate time
series to zero and Toeplitz embeddings of an infinite-dimensional inverse covariance
operator. In order to learn the graph, we move to the Fourier domain. We show
that in the Fourier domain, conditional stationarity and noncorrelation relationships
in the inverse covariance operator are encoded with a specific sparsity structure of
its integral kernel operator. Within the local stationary framework we show that
these sparsity patterns can be recovered from finite-length time series by node-wise
regression of discrete Fourier Transforms (DFT) across different Fourier frequencies.
We illustrate the features of our general framework under the special case of time-
varying Vector Autoregressive models. We demonstrate the feasibility of learning
NonStGM structure from data using simulation studies.

Keywords and phrases: Graphical models, locally stationary time series, nonstation-
arity, partial covariance and spectral analysis.
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1 Introduction

Graphical modeling of multivariate time series has received considerable attention in the
past decade as a tool to study dynamic relationships among the components of a large
system observed over time. Key applications include, among others, analysis of brain
networks in neuroscience Lurie et al. (2020) and understanding linkages among firms for
measuring systemic risk buildup in financial markets Diebold and Yılmaz (2014).

The vast majority of graphical models for time series focuses on the stationary setting
(see Brillinger (1996); Dahlhaus et al. (1997); Dahlhaus (2000b); Dahlhaus and Eich-
ler (2003a); Eichler (2007); Böhm and von Sachs (2009); Jung et al. (2015); Basu and
Michailidis (2015); Davis et al. (2016); Zhang and Wu (2017); Qiu et al. (2016); Sun et al.
(2018); Fiecas et al. (2019); Chau and von Sachs (2020), to name but a few). While the
assumption of stationarity may be realistic in many situations, it is well known that non-
stationarity arises in many applications. In neuroscience, for example, task based fMRI
data sets are known to exhibit considerable nonstationarity in the network connections,
a phenomenon known as dynamic functional connectivity, see Preti et al. (2017). A naive
application of graphical modeling methods designed for stationary processes can lead to
spurious network edges if the actual time series is nonstationary.

The limited body of work on graphical models for nonstationary time series has so far
focused on a restricted class of nonstationary models, where the data generating process
can be well approximated by a finite order change point vector autoregressive (VAR)
model. Within this framework, Wang et al. (2019) and Safikhani and Shojaie (2020)
have proposed methods for constructing a “dynamically changing” network at each of the
estimated change points. However, these methods are designed for time series which are
piece-wise stationary and follow a finite order stationary VAR over each segment. For
many data sets, these conditions can be too restrictive, for example they do not allow
for smoothly changing parameters. Analogous to stationary time series where spectral
methods allow for a nonparametric approach, it would be useful to define meaningful
networks for nonstationary time series.

The objective of this paper is to move away from semi-parametric models and propose
a general framework for the graphical modeling of multivariate (say, p-dimensional) non-
stationary time series. Our motivation comes from Gaussian graphical models (GGM),
where the edges of a conditional dependence graph can distinguish between the direct
and indirect nature of dependence in multivariate Gaussian random vectors. We argue
that a general graphical model framework for nonstationary time series should have the
capability to distinguish between two types of nonstationarity; the source of nonstation-
arity and one that inherits their nonstationarity by way of its connection with the source.
This way of dimension reduction will be useful for modeling large systems where the non-
stationarity arises only from a small subset of the process and then permeates through
the entire system. Moreover, the identification of sources and propagation channels of
nonstationarity may also be of scientific interest.

Analogous to GGM, in our framework, the presence/absence of edges in the network
encodes conditional correlation/non-correlation relationships amongst the p components
(nodes) of the time series. An additional attribute distinguishes between the types of
nonstationarity. A graphical model is built using conditional relations. In this spirit,
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we introduce the concept of conditional stationarity and nonstationarity. To the best
of our knowledge this is a new notion. A solid edge between two nodes in the network
implies that their linear relationship, conditional on all the other nodes, does not change
over time. In contrast, a dashed edge implies that their conditional relationship changes
over time. We formalize these notions in Section 2. Nodes in our network also have
self-loops to indicate whether the time series is nonstationary on its own, or if it inherits
nonstationarity from some other component in the system. The self loops are denoted by
a circle (solid or dashed) round the node.

The time-varying Autoregressive model is often used to model nonstationarity. To
illustrate the above ideas, in the following example we connect the parameters of a time-
varying Autoregressive model (tvVAR), which is a mixture of constant and time dependent
parameters, to the concepts introduced above.

Toy Example Consider the trajectories of a 4-dimensional time series given in Figure 1.
The time series plots of all the components exhibit negative autocorrelation at the start of
the time series that slowly changes to positive autocorrelation towards the end. Thus the
nonstationarity of each individual time series, at least from a visual inspection, is apparent.
The data is generated from a time-varying vector autoregressive (tvVAR(1)) model (see
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(a) Trajectories of a 4-dimensional time series gener-
ated by a tvVAR(1) model. The multivariate process
is jointly nonstationary. However, components 1 and
3 are the source of nonstationarity, while the other
two components inherit the nonstationarity by means
of their conditional dependence structure.

(b) The joint governing architecture
is described in the graph. Dashed
edges and self-loops represent con-
ditional nonstationarity, while solid
edges and self-loops represent condi-
tional invariance and stationarity, no-
tions of which we formalize in our new
graphical modeling framework.

Figure 1: Time series and conditional dependence graph of a time-varying VAR model.

Section 2 for details), where components 1 and 3 are the sources of nonstationarity, i.e.
they are affected by their own past through a (smoothly) time-varying parameter. In
addition, component 3 affects component 1. Component 2 and 4 affect each other in a
time-invariant way. Component 2 is also affected by 1 and component 1 and 4 are affected
through 2. As a result, components 2 and 4 inherit the nonstationarity from the sources
1 and 3. As far as we are aware, there currently does not exist tools that adequately
describe the nuanced differences in their dependencies and nonstationarity. Our aim in
this paper is to capture these relationships in the form of the schematic diagram in Figure
1b. We note that the tvVAR model is a special case of our general framework, which does
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not make any explicit assumptions on the data generating process.
It is interesting to contrast the networks constructed using the “dynamically changing”

approach developed in Wang et al. (2019) and Safikhani and Shojaie (2020) for change
point VAR models with our approach. Both networks convey different information about
the nonstationary time series. The “dynamically changing” network can be considered as
local in the sense that it identifies regions of stationarity and constructs a directed graph
over each of the stationary periods. While the graph in our approach is undirected and
yields global information about relationships between the nodes.

In order to connect the proposed framework to the current literature, we conclude
this section by briefly reviewing the existing graphical modeling frameworks for Gaussian
random vectors (GGM) and multivariate stationary time series (StGM). In Section 2 we
lay the foundations for our nonstationary graphical models (NonStGM) approach. In
particular, we formally define the notions of conditional noncorrelation and stationarity
of nodes, edges, and subgraphs in terms of zero and Toeplitz embeddings of an infinite
dimensional inverse covariance operator. We show that this framework offers a natural
generalizations to existing notions of conditional noncorrelation in GGM and StGM. It
should be emphasized that we do not assume that the underlying time series is Gaussian.
All the relationships that we describe are in terms of the partial covariance and therefore
apply to any multivariate time series whose covariance exists. In Section 3, we switch to
Fourier domain and show that the conditional noncorrelation and nonstationarity rela-
tionships are explicitly encoded in the sparsity pattern of the integral kernel of the inverse
covariance operator. This connection opens the door to learning the graph structure from
finite length time series data with the discrete Fourier transforms (DFT). In Section 4
we focus on locally stationary time series. We show that by conducting nodewise regres-
sion of discrete Fourier transforms (DFT) of the multivariate time series across different
Fourier frequencies it is possible to learn the network. Section 5 describes how the pro-
posed general framework looks in the special case of tvVAR models, where the notions of
conditional noncorrelation and nonstationarity are transparent in the transition matrix.
Some numerical results are presented in Section 6 to illustrate the methodology. All the
proofs for the results in this paper can be found in the Appendix.

Background. We outline some relevant works in graphical models and tests for sta-
tionarity that underpin the technical development of NonStGM.

Graphical Models. A graphical model describes the relationships among the components
of a p-dimensional system in the form of a graph with a set of vertices V = {1, 2, . . . , p},
and an edge set E ⊆ V × V containing pairs of system components which exhibit strong
association even after conditioning on the other components.

The focus of GGM is on the conditional independence relationships in a p-dimensional
(centered) Gaussian random vector X = (X(1), X(2), . . . , X(p))>. The non-zero partial
correlations ρ(a,b), defined as Corr

(
X(a), X(b)|X−{a,b}

)
and also encoded in the sparsity

structure of the precision matrix Θ = [Var(X)]−1, are used to define the edge set E.
The task of graphical model selection, i.e. learning the edge set E from finite sample, is
accomplished by estimating Θ with a penalized likelihood estimator as in graphical Lasso
(Friedman et al. (2008)), or by nodewise regression (Meinshausen and Bühlmann (2006))
where each component of the random vector is regressed on the other (p−1) components.
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Switching to the time series setting, consider {X t = (X
(1)
t , . . . , X

(a)
t , . . . , X

(p)
t )>}t∈Z,

a p-dimensional time series with autocovariance function Cov(X t, Xτ ) = C(t, τ). Note
that in future we usually use {X t} to denote the sequence {X t}t∈Z. A direct adaptation
of the GGM framework that estimates the contemporaneous precision matrix C−1(0, 0)
(see Zhang and Wu (2017); Qiu et al. (2016)) does not provide conditional relationships
between the entire time series. Brillinger (1996) and Dahlhaus (2000b) laid the foundation
of graphical models in stationary time series, where the conditional relationships between
the entire time series {X(a)

t } and {X(b)
t } is captured. They show that the inverse of the

multivariate spectral density function Σ(ω) := (1/2π)
∑∞

`=−∞C(`) exp[−i`ω] ω ∈ [0, π]
explicitly encodes the conditional uncorrelated relationships. To be precise, [Σ−1(ω)]a,b =

0 for all ω ∈ [0, π] if and only if {X(a)
t } and {X(b)

t } are conditionally uncorrelated, given
all the other time series. The graphical model selection problem reduces to finding all
pairs (a, b) where [Σ−1(ω)]a,b 6= 0 for some ω ∈ [0, π]. For Gaussian time series the
graph is a conditional independence graph while for non-Gaussian time series the graph
encodes partial correlation information. For brevity, we refer to this approach as StGM
(stationary time series graphical models). Estimation of Σ−1(ω) is typically done using
the Discrete Fourier transform of the time series (see Eichler (2008)). More recently,
for relatively “large” p, penalized methods such as GLASSO (Jung et al., 2015) and
CLIME (Fiecas et al., 2019) have been used to estimate Σ−1(ω). This framework crucially
relies on stationarity, in particular, the Toeplitz property of the autocovariance function
Ct,τ = C(t− τ), and is not immediately generalizable to the nonstationary case.
Testing for stationarity. There is a rich literature on testing for nonstationarity of a time
series. Most methods are based on testing for invariance of the spectral density function
or autocovariance function over time (see Priestley and Subba Rao (1969), Paparoditis
(2009), Nason (2013) to name but a few). An alternative approach is based on the fact
that the Discrete Fourier Transform at certain frequencies is close to uncorrelated for sta-
tionary time series. Epharty et al. (2001), Dwivedi and Subba Rao (2011), Jentsch and
Subba Rao (2015), Aue and van Delft (2020) use this property to test for nonzero cor-
relation between DFTs of different frequencies to detect for departures from stationarity.
The above mentioned tests focus on the “marginal” notion of nonstationarity instead of
the conditional notion defined in this paper. Tests for marginal nonstationarity are not
equipped to delineate between direct and indirect nature of conditionally nonstationary
relationships among the components of a multivariate time series. However, in this paper,
we show that analogous to marginal tests, it is possible to utilize the Fourier domain to
detect for different types of conditional (non)stationarity.

2 Graphical models and conditional stationarity

For a p-dimensional nonstationary time series {X t}, all the pairwise covariance informa-
tion are contained in the infinite set of p× p autocovariance matrices Ct,τ = Cov[X t, Xτ ],
for t, τ ∈ Z. We aggregate this information into an operator C, and show that its inverse
operator D captures meaningful conditional (partial) covariance relationships (Section
2.2). Leveraging this connection, we first define a graphical model, and conditional sta-
tionarity of its nodes, edges and subgraphs, in terms of the operator D (Section 2.3).
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Then we show that these notions can be viewed as natural generalizations of the GGM
and StGM frameworks (Sections 2.4 and 2.5). We start by introducing some notation
that will be used to formally define these structures (this can be skipped on first reading).
Let A = (Aa,b : 1 ≤ a ≤ d1, 1 ≤ b ≤ d2) denote a d1 × d2-dimensional matrix, then we
define ‖A‖2

2 =
∑

a,b |Aa,b|2, ‖A‖1 =
∑

a,b |Aa,b| and ‖A‖∞ = supa,b |Aa,b|.

2.1 Definitions and notation

We use `2 and `2,p to denote the sequence space {u = (. . . , u−1, u0, u1, . . .)
′;uj ∈ C and

∑
j |uj|2 <

∞} and the (column) sequence space {w = vec[u(1), . . . , u(p)];u(s) ∈ `2 for all 1 ≤ s ≤ p}
respectively (vec denotes the vectorisation of a matrix). On the spaces `2 and `2,p we de-
fine the two inner products 〈u, v〉 =

∑
j∈Z ujv

∗
j (where ∗ denotes the complex conjugate),

for u, v ∈ `2 and 〈x, y〉 =
∑p

s=1〈u(s), v(s)〉 for x = (u(1), . . . , u(p))′, y = (v(1), . . . , v(p)) ∈ `2,p,
such that `2 and `2,p are two Hilbert spaces. For x ∈ `2,p let ‖x‖2 = 〈x, x〉. For s1, s2 ∈ Z,
we use As1,s2 to denote the (s1, s2) entry in the matrix A, which can be infinite dimensional
and involve negative indices.

We consider the p-dimensional real-valued time series {X t}t∈Z, X t = (X
(1)
t , . . . , X

(p)
t )′,

where the univariate random variables X
(a)
t , a = 1, . . . , p, are defined on the probability

space (Ω,F , P ). We assume for all t that E[X t] = 0 this condition is not necessary in
Sections 2 and 3, but it simplifies the exposition. Let L2(Ω,F , P ) denote all univariate
random variables X where Var[X] < ∞, and for any X, Y ∈ L2(Ω,F , P ) we define the
inner product 〈X, Y 〉 = Cov[X, Y ]. For every t, τ ∈ Z, we define the p × p covariance
Ct,τ = Cov[X t, Xτ ] and assume supt∈Z ‖Ct,t‖∞ <∞. Under this assumption, for all t ∈ Z
and 1 ≤ c ≤ p X

(c)
t ∈ L2(Ω,F , P ). Let H = sp(X

(c)
t ; t ∈ Z, 1 ≤ c ≤ p) ⊂ L2(Ω,F , P ) be

the closure of the space spanned by (X
(c)
t ; t ∈ Z, 1 ≤ c ≤ p). Since L2(Ω,F , P ) defines a

Hilbert space, H is also a Hilbert space. Therefore, by the projection theorem, for any
closed subspaceM of H, there is a unique projection of Y ∈ H ontoM which minimises
E(Y − X)2 over all X ∈M (see Theorem 2.3.1, Brockwell and Davis (2006)). We will
use PM(Y ) to denote this projection. In this paper, we will primarily use the following
subspaces

H−X(a)
t = sp[X(c)

s ; s ∈ Z, 1 ≤ c ≤ p, (s, c) 6= (t, a)],

H− (X
(a)
t , X(b)

τ ) = sp[X(c)
s ; s ∈ Z, 1 ≤ c ≤ p, (s, c) /∈ {(t, a), (τ, b)}],

H− (X(c); c ∈ S) = sp[X(c)
s ; s ∈ Z, c ∈ S ′],

where S ′ denotes the complement of S.
Using the covariance Ct,τ we define the infinite dimensional matrix operator C as

C = (Ca,b; a, b ∈ {1, . . . , p}) where Ca,b denotes an infinite dimensional submatrix with
entries [Ca,b]t,τ = [Ct,τ ]a,b for all t, τ ∈ Z. For any u ∈ `2, we define the (column) sequence
Ca,bu = {[Ca,bu]t; t ∈ Z} where [Ca,bu]t =

∑
τ∈Z[Ca,b]t,τuτ . For any v = vec[u(1), . . . , u(p)] ∈
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`2,p we define the (column) sequence Cv as

Cv =


C1,1 C1,2 . . . C1,p

C2,1 C2,2 . . . C2,p
...

...
. . .

...
Cp,1 Cp,2 . . . Cp,p




u(1)

u(2)

...
u(p)

 =


∑p

s=1 C1,su
(s)∑p

s=1 C2,su
(s)

...∑p
s=1Cp,su

(s)

 . (1)

An infinite dimensional matrix operator, B, is said to be zero, if all its entries are zero.
An infinite dimensional matrix operator A is said to be Toeplitz if its entries satisfy
At,τ = at−τ for all t, τ ∈ Z and for some sequence {ar; r ∈ Z}.

2.2 Covariance and inverse covariance operators

Within the nonstationary framework we require the following assumptions on C to show
that C is a mapping from `2,p to `2,p (and later that C−1 is a mapping from `2,p to `2,p).
For stationary time series analogous assumptions are often made on the spectral density
function (see Remark 2.1).

Assumption 2.1 Define λsup = supv∈`2,p,‖v‖2=1〈v, Cv〉, λinf = infv∈`2,p,‖v‖2=1〈v, Cv〉. Then

0 < λinf ≤ λsup <∞. (2)

Assumption 2.1 implies that supt supa
∑

τ∈Z
∑p

b=1[Ct,τ ]
2
a,b < ∞ and also the coefficients

of the inverse are square summable. It can be shown that if supt∈Z
∑

τ∈Z ‖Ct,τ‖∞ < ∞,
then supv∈`2,p,‖v‖2=1〈v, Cv〉 < ∞. This is analogous to a short memory condition for
stationary time series. It is worth keeping in mind that cointegrated time series do not
satisfy this condition. The theory developed in Sections 2 and 3 only require Assumption
2.1. However, to estimate the network stronger conditions on Dt,τ are required and these
are stated in Section 4.

Under the above assumption C : `2,p → `2,p, and since Ct,τ = C′τ,t, 〈v, Cu〉 = 〈Cv, u〉,
thus C is a self-adjoint, bounded operator with ‖C‖ = λsup, where ‖ · ‖ denotes the
operator norm: ‖A‖ = supu∈`2,p,‖u‖2=1 ‖Au‖2.

Remark 2.1 In the case of stationary time series sufficient conditions for Assumption
2.1 to hold is that the eigenvalues of the spectral density matrix Σ(ω) are uniformly
bounded away from zero and away from ∞ overall ω ∈ [0, π] (see, for example, Brockwell
and Davis (2006), Proposition 4.5.3).

The core theme of GGM is to learn conditional (partial) covariances between two
variables after conditioning on a set of other variables. These conditional relationships
can be derived from the inverse covariance matrix. Now we will define a suitable inverse
covariance operator D = C−1 and show how its entries capture the conditional relation-
ships. We will define these conditional relations in terms of projections with respect to
the `2-norm, this is equivalent to the least squares regression coefficients at the population
level.
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We consider the projection of X
(a)
t onto H−X(a)

t , given by

PH−X(a)
t

(X
(a)
t ) =

∑
τ∈Z

p∑
b=1

β(τ,b))(t,a)X
(b)
τ , (3)

with β(t,a))(t,a) = 0 (note the coefficients {β(τ,b))(t,a)} are unique since C is non-singular).

Let σ2
a,t = E[X

(a)
t −PH−X(a)

t
(X

(a)
t )]2, it can be shown that σ2

a,t ≥ λmin (see Appendix A.1).

Analogous to finite dimensional covariance matrices, to obtain the entries of the inverse
we use the coefficients of the projections of X

(a)
t onto H−X(a)

t . For all 1 ≤ t, τ ≤ p, we
define the p× p-dimensional matrices Dt,τ as follows

[Dt,τ ]a,b =

{
1
σ2
a,t

a = b and t = τ

− 1
σ2
a,t
β(τ,b))(t,a) otherwise .

(4)

Using Dt,τ we define the infinite dimensional matrix

Da,b = {[Da,b]t,τ = [Dt,τ ]a,b; t, τ ∈ Z} . (5)

Analogous to the definition of C, we define D = (Da,b; a, b ∈ {1, . . . , p}).
Our next lemma shows that the operator D is indeed the inverse of the covariance

operator C. We also state some upper bounds on its entries which will be useful in our
technical analysis.

Lemma 2.1 Suppose Assumption 2.1 holds. Let D be defined as in (4). Then C−1 = D
and ‖D‖ = λ−1

inf . Further, for all a, b ∈ {1, . . . , p}, ‖Da,b‖ ≤ λ−1
inf , ‖D−1

a,a‖ ≤ λsup and

supt
∑

τ∈Z ‖Dt,τ‖2
2 ≤ pλ−2

inf .

PROOF In Appendix A.1. �

2.3 Nonstationary graphical models (NonStGM)

The operators C and D provide us with the objects needed to formally define the edges
in our network, and connect them to the notions of conditional uncorrelatedness and
conditional stationarity.

At this point, we note an important distinction between edge construction in GGM
and StGM, an issue that is crucial for generalizing graphical models to the nonstationarity
case. In GGM, conditional uncorrelatedness between two random variables is defined after
conditioning on all the other random variables in the system. On the other hand, in StGM,
the conditional uncorrelatedness between two time series is defined after conditioning on
all the other time series. This leads to two, potentially, different generalizations in the
nonstationary setup. A direct generalization of the GGM framework would use the partial
covariances Cov(X

(a)
t , X

(b)
τ |S ′1), where S ′1 = {X(c)

s : (s, c) /∈ {(t, a), (τ, b)}}. While a
generalization of the StGM framework, would suggest using time series partial covariances
Cov(X

(a)
t , X

(b)
τ |S ′2), where S ′2 = {X(c)

s : s ∈ Z, c /∈ {a, b}}.
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To address this issue, we start by using the inverse covariance operator D to define
edges that encode conditional uncorrelatedness and (non)stationarity. We show that, as
expected, these notions are a direct generalization of the GGM framework. Then we
present a surprising result (Theorem 2.2), that the encoding of the partial covariances in
terms of the operator D remains unchanged even if we adopt the StGM notion of partial
covariance, i.e. the conditionally uncorrelated and conditionally (non)stationary nodes,
edges, subgraphs are preserved under the two frameworks.

We now define the network corresponding to the multivariate time series. Each edge in
our network (V,E) will have an indicator to denote conditional invariance and conditional
time-varying, a new notion we now introduce. The edge set E will contain all pairs (a, b)

where {X(a)
t } and {X(b)

t } are conditionally correlated. The edge set E will also contain
self-loops, that convey important information about the network. We start by formally
defining the notions of conditional noncorrelation and (non)stationarity. This is stated in
terms of the submatrices {Da,b} of D.

Definition 2.1 (Nonstationary network) Conditional covariance and (non)stationarity
of the components of a p-dimensional nonstationary time series are represented using a
graph G = (V,E), where V = {1, 2, . . . , p} is the set of nodes, and E ⊆ V × V is a set of
undirected edges ((a, b) ≡ (b, a)), and includes self-loops of the form (a, a).

• Conditional Noncorrelation The two time series {X(a)
t } and {X(b)

t } are condi-
tionally uncorrelated if Da,b = 0. As in GGM and StGM, this is represented by the
absence of an edge between nodes a and b in the network, i.e. (a, b) /∈ E.

• Conditionally Stationary Node The time series {X(a)
t } is conditionally station-

ary if Da,a is Toeplitz operator. We denote this using a solid self-loop (a, a) around
the node a.

• Conditionally Time-invariant Edge If a 6= b and Da,b is a Toeplitz operator,
then (a, b) is a time invariant edge. We represent a conditionally time-invariant
edge (a, b) in our network with a solid edge.

• Conditionally Stationary Subgraph A subnetwork of nodes S ⊂ {1, . . . , p} is
a called a conditionally stationary subgraph if for all a, b ∈ S, Da,b are Toeplitz
operators i.e. DS,S is a block Toeplitz operator.

As a special case of the above, we call a conditionally stationary subgraph of order
two (consisting of the nodes {a, b}) a conditionally stationary pair if Da,a, Da,b and
Db,b are Toeplitz.

• Conditionally Nonstationary Node/Time-varying Edge: (i) If Da,a is not

Toeplitz then {X(a)
t } is conditionally nonstationary. (ii) For a 6= b, if Da,b is not

Toeplitz then (a, b) has a conditionally time-varying edge.

We represent conditional nonstationary nodes using a dashed self-loop and a condi-
tionally time-varying edge with a dashed edge.
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In Section 5 we show how the parameters of a general tvVAR model are related to the
operator D, and can be used to identify the network structure in NonStGM. As a concrete
example, below we describe the network corresponding to the tvVAR(1) considered in the
introduction.

Example 2.1 Consider the following tvVAR(1) model for a 4-dimensional time series
X

(1)
t

X
(2)
t

X
(3)
t

X
(4)
t

 =


α(t) 0 α3 0
β1 β2 0 β4

0 0 γ(t) 0
0 ν2 0 ν4




X
(1)
t−1

X
(2)
t−1

X
(3)
t−1

X
(4)
t−1

+ εt = A(t)X t−1 + εt,

where {εt} are independent random variables (i.i.d) with εt ∼ N(0, I4), and α(t), γ(t) are
smoothly varying functions of t. The four time series are marginally nonstationary, in
the sense that for each 1 ≤ a ≤ 4, the time series {X(a)

t } is second order nonstationary.
The inverse operator and network corresponding to {X t} is given below and is deduced

from the transition matrix A(t) (the explicit connection between D and {A(t)} is given
in Section 5). Note that red and blue denote Toeplitz and non-Toeplitz matrix operators
respectively.

D =


D1,1 D1,2 D1,3 D1,4

D2,1 D2,2 0 D2,4

D3,1 0 D3,3 0
D4,1 D4,2 0 D4,4


Connecting the transition matrix to the network The connections between the nodes is be-
cause node 1 is connected to node 3 (if α3α(t) 6= 0 for some t), node 4 (if β1β2 6= 0) and
node 2 (if β1β4 6= 0). By a similar argument, nodes 2 and 4 are connected (if β1β4 6= 0
or ν2ν4 6= 0).

The nonstationarity of the multivariate time series is due to the time-varying pa-
rameters α(t) and γ(t). Specifically, the parameter α(t) is the reason that node 1 is
nonstationary, and by a similar argument the time-varying parameter γ(t) is the reason
node 3 is nonstationary. Since the coefficients on the second and fourth columns are not
time-varying, nodes 2 and 4 have “inherited” their nonstationarity from nodes 1 and 3.
Thus nodes 1 and 3 are conditionally stationary whereas nodes 2 and 4 are conditionally
stationary. The connections between nodes 1 to 2 and 1 to 4 are time-invariant because
β1β2 and β1β4 are time-invariant respectively.

Remark 2.2 (Connection to GGM) Let X(a) = (X
(a)
t ; t ∈ Z). It is clear that the

density of the infinite dimensional vector (X(a); 1 ≤ a ≤ p) is not well defined. How-
ever, we can informally view the joint density (at least in the Gaussian case) as “being
proportional to”

exp

−1

2

p∑
a=1

〈X(a), Da,aX
(a)〉 − 1

2

∑
(a,b)∈E,a 6=b

〈X(a), Da,bX
(b)〉


10



This is analogous to the representation of multivariate Gaussian vector in terms of its
inverse covariance. Using the above representation we conjecture that the above notions
of conditional correlation/stationarity/nonstationarity can be generalized to time series
which is not necessarily continuous valued, for example binary valued time series.

2.4 NonStGM as a generalization of GGM

We start by defining partial covariances in the spirit of the definition used in GGM but for
infinite dimensional random variables. This is defined by removing two random variables
from the spanning set of H

ρ
(a,b)
t,τ = Cov

[
X

(a)
t − PH−(X

(a)
t ,X

(b)
τ )

(X
(a)
t ), X(b)

τ − PH−(X
(a)
t ,X

(b)
τ )

(X(b)
τ )
]
. (6)

Note that for the case t = τ and a = b the above reduces to

ρ
(a,a)
t,t = Var

[
X

(a)
t − PH−X(a)

t
(X

(a)
t )
]

= σ2
a,t. (7)

In the discussion below we refer to the infinite dimensional conditional covariance matrices
ρ(a,b) = (ρ

(a,b)
t,τ ; t, τ ∈ Z) and ρ(a,a) = (ρ

(a,a)
t,τ ; t, τ ∈ Z). In GGM the partial covariances are

encoded in the precision matrix. In a similar spirit, we show that ρ
(a,b)
t,τ is encoded in the

inverse covariance operator D.

Lemma 2.2 Suppose Assumption 2.1 holds. Let Da,b be defined as in (5). Then the
entries of Da,b satisfy the identities

Corr
[
X

(a)
t − PH−(X

(a)
t ,X

(b)
τ )

(X
(a)
t ), X(b)

τ − PH−(X
(a)
t ,X

(b)
τ )

(X(b)
τ )
]

= − [Da,b]t,τ√
[Da,a]t,t[Db,b]τ,τ

(8)

and

Var

[(
X

(a)
t − PH−(X

(a)
t ,X

(b)
τ )

(X
(a)
t )

X
(b)
τ − PH−(X

(a)
t ,X

(b)
τ )

(X
(b)
τ )

)]
=

(
[Da,a]t,t [Da,b]t,τ
[Db,a]τ,t [Db,b]τ,τ

)−1

. (9)

PROOF See Appendix A.2. �

An immediate consequence of Lemma 2.2 is that the notions of conditional noncorre-
lation and conditional stationarity can be equivalently defined in terms of the properties
of the partial covariances ρ(a,b). In particular, conditional noncorrelation between the two
series a and b translates to zero ρ(a,b), while conditional stationarity of the pair (a, b)
translates to Toeplitz structures on ρ(a,a), ρ(b,b) and ρ(a,b). It is worth noting that the
Toeplitz structure of ρ(a,a) (the partial covariance of a) captured in our framework is an
important property, viz., the conditional (non)stationarity of a node. A similar role on
the diagonal entries of the precision or spectral precision matrices (Θa,a or [Σ−1(ω)]a,a) is
absent in both the classical GGM and StGM frameworks.

11



Proposition 2.1 (NonStGM in terms of ρ
(a,b)
t,τ ) Suppose Assumption 2.1 holds. Let

ρ
(a,b)
t,τ be defined as in (6). Then

• Conditional Noncorrelation ρ
(a,b)
t,τ = 0 for all t and τ (i.e. ρ(a,b) = 0) iff Da,b = 0

• Conditionally Stationary Node Da,a is Toeplitz iff for all t and τ

ρ
(a,a)
t,τ = ρ

(a,a)
0,t−τ ,

i.e. ρ(a,a) is Toeplitz.

• Conditionally Stationary Pair Da,a, Db,b and Da,b are Toeplitz iff for all t and
τ

Var

[(
X

(a)
t − PH−(X

(a)
t ,X

(b)
τ )

(X
(a)
t )

X
(b)
τ − PH−(X

(a)
t ,X

(b)
τ )

(X
(b)
τ )

)]
=

(
ρ

(a,a)
0,t−τ ρ

(a,b)
0,t−τ

ρ
(a,b)
0,t−τ ρ

(b,b)
0,t−τ

)
.

i.e. ρ(a,a), ρ(b,b) and ρ(a,b) are Toeplitz.

PROOF See Appendix A.2. �

2.5 NonStGM as a generalization of StGM

Now we define the time series partial covariance analogous to that used in StGM. We recall
that the classical time series definition of partial covariance in a multivariate time series
evaluates the covariance between two random variables X

(a)
t and X

(b)
τ , after conditioning

on all random variables in the (p − 2) component series V \{a, b}. In other words, we
exclude the entire time series a and b from the conditioning set.

Formally, for any S ⊆ V , we define the residual of X
(a)
t after projecting on sp(X

(c)
s ; s ∈

Z, c /∈ S) = H− (X(c); c ∈ S) as

X
(a)|9S
t := X

(a)
t − PH−(X(c);c∈S)(X

(a)
t ) for t ∈ Z.

In the definitions below we focus on the two sets S = {a, b} and S = {a}. We mention that
the set S = {a} is not considered in StGMM but plays an important role in NonStGM.
Using the above, we define the edge partial covariance(

ρ
(a,a)|9{a,b}
t,τ ρ

(a,b)|9{a,b}
t,τ

ρ
(b,a)|9{a,b}
t,τ ρ

(b,b)|9{a,b}
t,τ

)
:= Cov

[(
X

(a)|9{a,b}
t

X
(b)|9{a,b}
t

)
,

(
X

(a)|9{a,b}
τ

X
(b)|9{a,b}
τ

)]
(10)

and node partial covariance

ρ
(a,a)|9{a}
t,τ = Cov[X

(a)|9{a}
t , X(a)|9{a}

τ ]. (11)

We will show that the partial covariance in (10) and (11) are closely related to the

partial covariance in (6). In Lemma 2.2 we have shown that the partial correlations ρ
(a,b)
t,τ

12



define the entries of the operator D. We now connect the time series definition of a partial
covariance to the operator D = (Da,b; a, b ∈ {1, . . . , p}). Before we present the equivalent
definitions of our nonstationary networks in terms of the time series partial covariances
ρ

(a,b)|9S
t,τ , we show that ρ

(a,b)|9S
t,τ can be expressed in terms of the inverse covariance operator

D.

Theorem 2.1 Suppose Assumption 2.1 holds. Let ρ
(a,a)|9{a,b}
t,τ ,ρ

(a,b)|9{a,b}
t,τ and ρ

(a,a)|9{a}
t,τ be

defined as in (10) and (11) respectively. Then

(i) ρ
(a,a)|9{a}
t,τ = [D−1

a,a]t,τ

(ii) If a 6= b, then

Var
[
X

(c)|9{a,b}
t ; t ∈ Z, c ∈ {a, b}

]
=

(
Da,a Da,b

Db,a Db,b

)−1

(12)

with

ρ
(a,a)|9{a,b}
t,τ = [−(Da,a −Da,bD

−1
b,bDb,a)

−1Da,bD
−1
b,b ]t,τ

ρ
(a,b)|9{a,b}
t,τ = [(Da,a −Da,bD

−1
b,bDb,a)

−1]t,τ

ρ
(b,b)|9{a,b}
t,τ = [(Db,b −Db,aD

−1
a,aDa,b)

−1]t,τ .

PROOF See Appendix A.3. �

A careful examination of the expressions for the GGM covariance ρ
(a,b)
t,τ given in Lemma

2.2 with the StGM covariance given in ρ
(a,b)|−{a,b}
t,τ shows they are very different quanti-

ties. Therefore, it is suprising that despite these stark differences they preserve the same
structures. More precisely, in Proposition 2.1 we showed that Definition 2.1 had a clear
interpretation in terms of ρ

(a,b)
t,τ . We show below that the network definition given in Def-

inition 2.1 can be interpreted in terms of the conditional dependence (or residuals) of the
time series. The fact that two very different conditional covariance definitions lead to the
same conditional graph is due to the property that infinite dimensional Toeplitz operators
remain Toeplitz even after inversion and multiplication with other Toeplitz operators.

Theorem 2.2 [NonStGM in terms of ρ(a,b)|9{a,b}] Suppose Assumption 2.1 holds. Let

ρ
(a,a)|9{a,b}
t,τ , ρ

(a,b)|9{a,b}
t,τ and ρ

(a,a)|9{a}
t,τ be defined as in (10) and (11) respectively. Then

(i) Conditional noncorrelation Da,b = 0 iff ρ
(a,a)|9{a}
t,τ = 0 for all t and τ .

(ii) Conditionally stationary node Da,a is a Toeplitz operator iff for all t and τ ,

ρ
(a,a)|9{a}
t,τ = ρ

(a,a)|9{a}
0,t−τ .

(iii) Conditionally stationary pair Da,a, Db,b and Da,b are Toeplitz iff for all t and

τ , ρ
(a,a)|9{a,b}
t,τ = ρ

(a,a)|9{a,b}
0,t−τ , ρ

(b,b)|9{a,b}
t,τ = ρ

(b,b)|9{a,b}
0,t−τ and ρ

(a,b)|9{a,b}
t,τ = ρ

(a,a)|9{a,b}
0,t−τ .
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PROOF See Appendix A.3. �

We show in the following result that the time series partial covariances can be used to
define conditional stationarity of a subgraph containing three or more nodes.

Corollary 2.1 (Conditionally stationary subgraph) Let S = {α1, . . . , αr} be a sub-
set of {1, . . . , p} and S ′ denote the complement of S. Suppose for all a, b ∈ S, Da,b are

Toeplitz (including the case a = b). Then {X(a)
t ; t ∈ Z, a ∈ S} is a conditionally stationary

subgraph where

Var
[
X

(a)
t − PH−(Xc;c∈S′)(X

(a)
t ); t ∈ Z, a ∈ S

]
= P

with

P−1 =


Dα1,α1 Dα1,α2 . . . Dα1,αr

Dα2,α1 Dα2,α2 . . . Dα2,αr
...

...
. . .

...
Dαr,α1 Dαr,α2 . . . Dαr,αr

 .

PROOF See Appendix A.3. �

3 Sparse characterisations within the Fourier domain

For general nonstationary processes it is infeasible to estimate the operator D and learn
its network within the time domain. The problem is akin to StGM, where it is diffi-
cult to learn the graph structure in the time domain by studying all the autocovariance
matrices. Estimation is typically carried out in the Fourier domain by detecting condi-
tional independence from the zeros of Σ−1(ω). Following the same route, we will switch
to the Fourier domain and construct a quantity that can be used to “detect zeros and
non-zeros”. In addition, within the Fourier domain we will define meaningful notions
of weights/strengths of conditionally stationary nodes and pairs that are analogous to
well-known partial spectral coherence measures used in StGM.

Notation We first summarize some of the notation we will use in this section. We define
the function space of square integrable functions L2[0, 2π) as all complex functions where

g ∈ L2[0, 2π) if
∫ 2π

0
|g(ω)|2dω <∞. We define the function space of all square summable

vector complex functions L2[0, 2π)p, where g(ω)′ = (g1(ω), . . . , gp(ω)) ∈ L2[0, 2π)p if for
all 1 ≤ j ≤ p gj ∈ L2[0, 2π). For all g, h ∈ L2[0, 2π)p we define the inner-product

〈g, h〉 =
∑p

j=1〈gj, hj〉, where 〈gj, hj〉 =
∫ 2π

0
gj(ω)hj(ω)∗dω. Note that L2[0, 2π)p is a

Hilbert space. We use δω,λ to denote the Dirac delta function and set i =
√
−1.

3.1 Transformation to the Fourier domain

In this section we summarize results which are pivotal to the development in the subse-
quent sections. This section can be skipped on first reading.
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To connect the time and Fourier domain we define a transformation between the
sequence and function space. We define the functions F : L2[0, 2π) → `2 and F ∗ : `2 →
L2[0, 2π)

[F (g)]j =
1

2π

∫ 2π

0

g(λ) exp(ijλ)dλ and F ∗(v)(ω) =
∑
j∈Z

vj exp(−ijω). (13)

It is well known that F and F ∗ are isomorphisms between `2 and L2[0, 2π) (see, for
example, Brockwell and Davis (2006), Section 2.9). For d > 1 the transformations
F (g) = (F (g1), . . . , F (gd)) and F ∗v = (F ∗v(1), . . . , F ∗v(d)) where v = (v(1), . . . , v(d)) are

isomorphisms between `2,d and L2[0, 2π)d. Often we use that d = p. These two isomor-
phims will provide a link between the infinite dimensional matrix operators D defined in
the time domain to an equivalent operator in the Fourier domain.

Let A = (Aa,b; a, b ∈ {1, . . . , d}), if A : `2,d → `2,d is a bounded operator, then
standard results show that F ∗AF : L2[0, 2π)d → L2[0, 2π)d is a bounded operator (see
Conway (1990), Chapter II). F ∗AF is an integral operator, such that for all g ∈ L2[0, 2π)d

F ∗AF (g)[ω] =
1

2π

∫ 2π

0

A(ω, λ)g(λ)dλ, (14)

and A is the d× d-dimensional matrix integral kernel where

A(ω, λ) =

(∑
t∈Z

∑
τ∈Z

[Aa,b]t,τ exp(itω − iτλ); a, b ∈ {1, . . . , d}

)
.

To understand how A and A(ω, λ) are related we focus on the case d = 1 and note that
the (t, τ) entry of the infinite dimensional matrix A is

At,τ =
1

(2π)2

∫ 2π

0

∫ 2π

0

A(ω, λ) exp(−itω + iτλ)dωdλ for all t, τ ∈ Z.

Remark 3.1 (Connection with covariances and stationary time series) We note
if C were a covariance operator of a univariate time series {Xt} with integral kernel G
then

Cov[Xt, Xτ ] = Ct,τ =
1

(2π)2

∫ 2π

0

∫ 2π

0

G(ω, λ) exp(−itω + iτλ)dωdλ, (15)

where G(ω, λ) is the Loève dual frequency spectrum. The Loève dual frequency spectrum is
used to describe nonstationary features in a time series and has been extensively studied in
Gladyšev (1963), Lund et al. (1995), Lii and Rosenblatt (2002), Jensen and Colgin (2007),
Hindberg and Olhede (2010), Olhede (2011), Olhede and Ombao (2013), Gorrostieta et al.
(2019), Aston et al. (2019).

If {Xt} were a second order stationary time series, then (15) reduces to Bochner’s
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Theorem

Cov[Xt, Xτ ] = C0,t−τ =
1

(2π)

∫ 2π

0

f(ω) exp(−i(t− τ)ω)dω.

The relationship between the spectral density function f(ω) and the Loève dual frequency
spectrum G(ω, λ) is made apparent in Lemma 3.1 below.

A(ω, λ) is a formal representation and typically it will not be a well defined function
over [0, 2π)2, as it is likely to have singularities. Despite this, it has a very specific sparsity
structure when the operator A is Toeplitz. For the identification of nodes and edges in
the nonstationary networks it is the location of zeros in A(ω, λ) that we will exploit. This
will become apparent in the following lemma due to Toeplitz (1911) (we state the result
for the case d = 1).

Lemma 3.1 Suppose A is an infinite dimensional bounded matrix operator A : `2 → `2.
The matrix operator A is Toeplitz iff the integral kernel associated with F ∗AF has the
form

A(ω, λ) = δω,λA(ω)

where A(ω) ∈ L2[0, 2π) and δω,λ is the Dirac delta function.

PROOF See Appendix B.1 for details. �

The crucial observation in the above lemma is that A(ω, λ) = 0 for λ 6= ω iff A is a
Toeplitz matrix. Below we generalize the above to the case that A (and its inverse) is a
block Toeplitz matrix operator.

Lemma 3.2 Suppose that A is an infinite dimensional, symmetric, block matrix oper-
ator A : `2,d → `2,d where 0 < inf‖v‖2=1〈v, Av〉 ≤ sup‖v‖2=1〈v,Av〉 < ∞ with A =
(Aa,b; a, b ∈ {1, . . . , d}) and Aa,b is Toeplitz. Then the integral kernel associated with
F ∗AF is A(ω, λ) = A(ω)δω,λ where A(ω) is a d × d matrix with entries [A(ω)]a,b =∑

r∈Z[Aa,b]0,r exp(irω). Further the integral kernel associated with F ∗A−1F is A(ω)−1δω,λ.

PROOF In Appendix B.1. �

From now on we say that the kernel A(ω, λ) is diagonal if it can be represented as
δω,λA(ω).

We use the operators F : L2[0, 2π)p → `2,p and F ∗ : `2,p → L2[0, 2π)p to recast
the covariance and inverse covariance operators of a multivariate time series within the
Fourier domain. We recall that C is the covariance operator of the time series {X t} and by
using (14) F ∗CF is an integral operator with matrix kernel C(ω, λ) = (Ca,b(ω, λ); a, b ∈
{1, . . . , p}) where Ca,b(ω, λ) =

∑
t∈Z
∑

τ∈Z[Ca,b]t,τ exp(itω − iτλ).
In the case that {X t} is second order stationary, then Ca,b(ω, λ) = [Σ(ω)]a,bδω,λ where

Σ(·) is the spectral density matrix of {X t}. However, if {X t} is second order nonsta-
tionary, then by Lemma 3.1 at least one of the kernels Ca,b(ω, λ) will be non-diagonal.
The dichotomy that the mass of C(ω, λ) lies on the diagonal ω = λ if and only if the
underlying process is multivariate second order stationary is used in (Epharty et al., 2001;
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Dwivedi and Subba Rao, 2011; Jentsch and Subba Rao, 2015) to test for second order
stationarity.

3.2 The nonstationary inverse covariance in the Fourier domain

The covariance operator C and corresponding integral kernel C(ω, λ) does not distinguish
between direct and indirect nonstationary relationships. We have shown in Section 2 that
conditional relationships are encoded in the inverse covariance D. Therefore in this section
we study the properties of the integral kernel corresponding to F ∗DF . Under Assumption
2.1, D = C−1 is a bounded operator, thus F ∗DF is a bounded operator defined by the
matrix kernel K(ω, λ) = (Ka,b(ω, λ); a, b ∈ {1, . . . , p}) where

Ka,b(ω, λ) =
∑
t∈Z

∑
τ∈Z

[Da,b]t,τ exp(itω − iτλ) =
∑
t∈Z

Γ
(a,b)
t (λ) exp(it(ω − λ)) (16)

and

Γ
(a,b)
t (λ) =

∑
r∈Z

[Da,b]t,t+r exp(irλ). (17)

Note that under Assumption 2.1 ‖D‖ < ∞, this implies for all a, b ∈ {1, . . . , p} that the

sequence {[Da,b]t,t+r}r ∈ `2, thus Γ
(a,b)
t (·) ∈ L2[0, 2π]. As far as we are aware, neither

Ka,b(ω, λ) nor Γ
(a,b)
t (λ) haven been studied previously. But Γ

(a,b)
t (λ) can be viewed as the

inverse covariance version of the time-varying spectrum that is commonly used to analyze
nonstationary covariances (see Priestley (1965), Martin and Flandrin (1985), Dahlhaus

(1997), Birr et al. (2018)). We observe that Da,b is Toeplitz if and only if Γ
(a,b)
t (λ) does

not depend on t.
In the following theorem we show that K(ω, λ) defines a very clear sparsity pattern

depending on the conditional properties of {X t}. This will allow us to discriminate
between different types of edges in a network. In particular, zero matrices Da,b map to
zero kernels and Toeplitz matrices Da,b map to diagonal kernels.

Theorem 3.1 Suppose Assumption 2.1 holds. Then

(i) Conditionally noncorrelated {X(a)
t , X

(b)
t }t are conditionally noncorrelated iff

Ka,b(ω, λ) ≡ 0 for all ω, λ ∈ [0, 2π].

(ii) Conditionally stationary node {X(a)
t }t is conditionally stationary iff the integral

kernel Ka,a(ω, λ) is diagonal.

(iii) Conditionally time-invariant edge The edge (a, b) is conditionally time-invariant
iff the integral kernel Ka,b(ω, λ) is diagonal.

PROOF In Appendix B.2. �

These equivalences show that conditional noncorrelatedness and stationarity relationships
in the graphical model, as defined by the D operator, are encoded in the object K(., .).
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Figure 2: Illustration of the mapping of matrix D to the integral kernel corresponding to
F ∗DF . The diagonal red box indicates the mass of F ∗Da.bF lies only on the diagonal (it
corresponds to a Toeplitz matrix). The blue filled box indicates that the mass of F ∗Da.bF
lies both on the diagonal and elsewhere (it corresponds to a non-Toeplitz matrix).

This provides the foundation for an alternate route to learning the graph structure in the
frequency domain.

Example 3.1 We return to tvAR(1) model described in Example 2.1. In Figure 2 we
give a schematic illustration of the matrix D in the frequency domain

3.3 Partial spectrum for conditionally stationary time series

So far we have considered the construction of an undirected, unweighted network which
encodes the conditional uncorrelation and nonstationarity properties of time series com-
ponents. In practice, we would be interested in assigning weights to network edges that
represent the strength or magnitude of these conditional relationships. This will also
be useful for learning the graph structure from finite samples. In GGM, partial correla-
tion values are used to define edge weights, In StGM the partial spectral coherence (the
frequency domain analogue of partial correlation) is used to define suitable edge weights.

We now define the notion of partial spectral coherence for conditionally stationary
time series. We start by interpreting Γ

(a,a)
t (ω) and Γ

(a,b)
t (ω), defined in (17), in the case

that the node or edge is conditionally stationary. In the following proposition we relate
these quantities to the partial covariance ρ

(a,b)
t,τ . Analogous to the definition of ρ

(t,τ)
a,b we

define the partial correlation

φ
(a,b)
t,τ = Corr[X

(a)
t − PH−(X

(a)
t ,X

(b)
τ )

(X
(a)
t ), X(b)

τ − PH−(X
(a)
t ,X

(b)
τ )

(X(b)
τ )]. (18)

Using the above we obtain an expression for Γ
(a,a)
t (ω) and Γ

(a,b)
t (ω) in the case that an

edge or a node is conditionally stationary.

Theorem 3.2 Suppose Assumption 2.1 holds. Let ρ
(a,b)
t,τ and φ

(a,b)
t,τ be defined as in (6)

and (18).
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(i) If the node a is conditionally stationary, then Γ
(a,a)
t (ω) = Γ(a,a)(ω) for all t, where

Γ(a.a)(ω) =
∞∑

r=−∞

[Da,a](0,r) exp(irω) =
1

ρ
(a,a)
0,0

1−
∑

r∈Z\{0}

φ
(a,a)
0,r exp(irω)


(ii) If (a, b) is a conditionally stationary pair, then expressions for Γ(a,a)(ω) and Γ(b,b)(ω)

are given in (i) and Γ
(a,b)
t (ω) = Γ(a,b)(ω) for all t, where

Γ(a,b)(ω) =
∞∑

r=−∞

[Da,b](0,r) exp(irω) = − 1

(ρ
(a,a)
0,0 ρ

(b,b)
0,0 )1/2

∑
r∈Z

φ
(a,b)
0,r exp(irω).

PROOF In Appendix B.2. �

For StGM, the partial spectral coherence is typically defined in terms of the Fourier
transform of the partial time series covariances (see Priestley (1981), Section 9.3, and
Dahlhaus (2000b)). We now show that an analogous result holds in the case of conditional
stationarity.

Theorem 3.3 Suppose Assumption 2.1 holds.

(i) If the node a is conditionally stationary, then∑
r∈Z

ρ
(a,a)|9{a}
0,r exp(irω) = Γ(a,a)(ω)−1.

(ii) If (a, b) is a conditionally stationary pair, then

∑
r∈Z

(
ρ

(a,a)|9{a,b}
0,r ρ

(a,b)|9{a,b}
0,r

ρ
(b,a)|9{a,b}
0,r ρ

(b,b)|9{a,b}
0,r

)
exp(irω) =

(
Γ(a,a)(ω) Γ(a,b)(ω)
Γ(a,b)(ω)∗ Γ(b,b)(ω)

)−1

.

PROOF In Appendix B.2. �
The above allows us to define the notion of spectral partial coherence in the case that

underlying time series is nonstationary. We recall that the spectral partial coherence
between {X(a)

t }t and {X(b)
t }t for stationary time series is the standardized spectral con-

ditional covariance (see Dahlhaus (2000b)). Analogously, by using Theorem 3.3(ii) the
spectral partial coherence between the conditionally stationary pair (a, b) is

Ra,b(ω) = − Γ(a,b)(ω)√
Γ(a,a)(ω)Γ(b,b)(ω)

. (19)

In Appendix F we show how this expression is related to the spectral partial coherence
for stationary time series.
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3.4 Connection to node-wise regression

In Lemma 2.1 we connected the coefficients of D to the coefficients in a linear regression.
The regressors are in the spanning set of H −X(a)

t . In contrast, in node-wise regression
each node is regressed on all of the other nodes (the coefficients in this regression can also
be connected to the precision matrix). We now derive an analogous result for multivariate

time series. In particular, we regress the time series at node a ({X(a)
t }t) onto all the other

time series (excluding node a i.e. the spanning set of H−(X(a))) and connect these to the
matrix D. These results can be used to encode conditions for a conditionally stationary
edge in terms of the regression coefficients. Furthermore, they allow us to deduce the time
series at node a conditioned on all the other nodes (if the time series is Gaussian).

The best linear predictor of X
(a)
t given the “other” time series {X(b)

s ; s ∈ Z, b 6= a} is

PH−(X(a))(X
(a)
t ) =

∑
b 6=a

∑
τ∈Z

α(τ,b))(t,a)X
(b)
τ . (20)

We group the coefficients according to time series and define the infinite dimensional
matrix Bb)a with entries

[Bb)a]t,τ = α(τ,b))(t,a) for all t, τ ∈ Z. (21)

In the lemma below we connect the coefficients in the infinite dimensional matrix Bb)a to
Da,b

Proposition 3.1 Suppose Assumption 2.1 holds. Let (Da,b; 1 ≤ a, b ≤ p) be defined as
in (5). Then for all b 6= a we have

Da,b = −Da,aBb)a. (22)

PROOF See Appendix B.3. �

In the following theorem we rewrite the conditions for conditional noncorrelation and
conditional time-invariant edge in terms of node-regression coefficients.

Theorem 3.4 Suppose Assumption 2.1 holds. Let Bb→a be defined as in (21). Then

(i) Bb)a = 0 iff Da,b = 0.

(ii) If Da,a and Bb)a are Toeplitz, then Da,b = −Da,aBb)a is Toeplitz.

PROOF See Appendix B.3. �

Below we show that the integral kernel associated with Bb)a has a clear sparsity structure.

Corollary 3.1 Suppose Assumption 2.1 holds. Let Bb)a be defined as in (22). Let
Kb)a(ω, λ) denote the integral kernel associated with Bb)a. Then

(i) Bb)a is a bounded operator.

20



(ii) Conditionally noncorrelated {X(a)
t , X

(b)
t }t are conditionally noncorrelated iff

Ka)b(ω, λ) ≡ 0.

(iii) Conditionally stationary pair {X(a)
t , X

(b)
t }t are conditionally jointly stationary

iff the kernels Ka,a(ω, λ), Kb,b(ω, λ) and Kb)a(ω, λ) are diagonal.

PROOF In Appendix B.3. �

We use the results above to deduce the conditional distribution of X(a) under the
assumption that the time series {X t} is jointly Gaussian. The conditional distribution of
X(a) given H− (X(a)) is Gaussian where

X(a)|H − (X(a)) ∼ N

(
p∑

b=1,b 6=a

Bb)aX
(b), D−1

aa

)

with E[X(a)|H − (X(a))] =
∑p

b=1,b 6=aBb)aX
(b) and Var[X(a)|H − (X(a))] = D−1

aa . Some
interesting simplications can be made if the nodes and corresponding edges are condi-
tionally stationary and time-invariant. If X(a) has a conditionally stationary node, then
by Theorem 2.2(ii) the conditional variance will be stationary (Toeplitz). If, in addition,
the conditionally stationary node a is connected to the set of nodes Sa and all the edge
connections are conditionally time-invariant then by Theorem 3.4 the coefficients in the
conditional expectation are shift invariant where

E[X
(a)
t |H − (X(a))] =

∑
b∈Sa

∑
j∈Z

α
(b)a)
j X

(b)
t−j.

Therefore, if the node a is conditionally stationary and all its connecting edges are condi-
tionally time-invariant then the conditional distribution X(a)|(H− (X(a))) is stationary.

4 Learning the network from finite length time series

The network structure of {X t}t is succinctly described in terms of K(ω, λ). However,
for the purpose of estimation, there are three problems. The first is that K(ω, λ) is a
singular kernel making direct estimation impossible. The second is that for conditional
nonstationary time series the structure of [K(ω, λ)]a,b is not well defined. Finally, in
practice we only observe a finite length sample {X t}nt=1. Thus our object of interest
changes from K(ω, λ) to its finite dimensional counterpart (which we define below). For
the purpose of network identification, we show that the finite dimensional version of
K(ω, λ) inherits the sparse properties of K(ω, λ). Moreover, in a useful twist, whereas
K(ω, λ) is a singular kernel its finite dimensional counterpart is a well defined matrix,
making estimation possible.

4.1 Finite dimensional approximation

To obtain the finite dimensional version of K(ω, λ), we recall that the Discrete Fourier
transform (DFT) can be viewed as the analogous version of the Fourier operator F (defined
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in (13)) in finite dimensions. Let Fn denote the (np×np)-dimension DFT transformation
matrix. It comprises of p2 identical (n × n)-dimension DFT matrices, which we denote
as Fn. Define the concatenated np-dimension vector X′n = ((X(1))′, . . . , (X(p))′), where

X(a) = (X
(a)
1 , . . . , X

(a)
n )′ for a ∈ {1, . . . , p}. Then F ∗nXn is a np-dimension vector where

(F ∗nXn)′ = ((F∗nX(1))′, . . . , (F∗nX(p))′) with

J
(a)
k = [F∗nX(a)]k =

1√
n

n∑
t=1

X
(a)
t exp(itωk) k = 1, . . . , n and ωk =

2πk

n
. (23)

Let Var[Xn] = Cn, then Var[F ∗nXn] = F ∗nCnFn. Our focus will be on the (np × np)-
dimensional inverse matrix

Kn = [Var[F ∗nXn]]−1 = [F ∗nCnFn]−1 = [Fn]−1C−1
n [F ∗n ]−1 = F ∗nD̃nFn,

where D̃n = C−1
n and the above follows from the identity F−1

n = F ∗n . Let Kn =
([Kn]a,b; a, b ∈ {1, . . . , p}) where [Kn]a,b denotes the (n×n)-dimensional sub-matrix of Kn

and [Kn(ωk1 , ωk2)]a,b denotes the (k1, k2)th entry in the submatrix matrix [Kn]a,b. For fu-
ture reference we define the (p×p)-dimensional matrix Kn(ωk1 , ωk2) = ([Kn(ωk1 , ωk2)]a,b; 1 ≤
a, b ≤ p). We show below that [Kn(ωk1 , ωk2)]a,b can be viewed as the finite dimensional
version of Ka,b(ω, λ).

The covariance matrix Cn = Var[Xn] is a submatrix of the infinite dimensional C.

Unfortunately its inverse D̃n = C−1
n is not a submatrix of D. As our aim is to show that

the properties of the inverse covariance map to those in finite dimensions we will show
that under suitable conditions D̃n can be approximated by a finite dimensional submatrix
of D. To do this we represent D̃n as p× p submatrices each of dimension n× n

D̃n =
(
D̃a,b;n; a, b ∈ {1, . . . , p}

)
. (24)

Analogously, we define p× p submatrices of D each of dimension n× n

Dn = (Da,b;n; a, b ∈ {1, . . . , p}) (25)

where Da,b;n = {[Da,b]t,τ ; t, τ ∈ {1, . . . , n}}. Below we show that under suitable conditions,

D̃n = C−1
n can be approximated well by Dn. This result requires the following conditions

on the rate of decay of the inverse covariances Dt,τ which is stronger than the conditions
in Assumption 2.1.

Assumption 4.1 The inverse covariance Dt,τ defined in (4) satisfy the condition
supt

∑
j 6=0 |j|K‖Dt,t+j‖∞ <∞ (for some K ≥ 3/2).

The conditions in Assumption 4.1 are analogous to those used in the analysis of sta-
tionary time series, where certain conditions on the rate of decay of the autocovariances
coefficients are often used. Krampe and Subba Rao (2022) obtain an equivalence between
the rate of decay on Dt,τ and Ct,τ . In particular, Krampe and Subba Rao (2022) The-
orem 2.1, show that under Assumption 2.1 and if for some K > 7/2 and all |r| 6= 0
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we have that supt ‖Ct,t+r‖ < K|r|−K (where ‖ · ‖ denotes the spectral norm), then
supt ‖Dt,t+r‖ < K((1 + log |r|)/|r|)K−1. Thus Assumption 4.1 holds.

In the lemma below we obtain a bound between the rows of D̃n and Dn.

Theorem 4.1 Suppose Assumptions 2.1 and 4.1 hold. Let D̃n and Dn be defined as in
(24) and (25). Then for all 1 ≤ t ≤ n we have

sup
1≤a≤p

∥∥∥[D̃n](a−1)n+t,· − [Dn](a−1)n+t,·

∥∥∥
1

= O

(
(np)1/2

min(|n+ 1− t|, |t|)K

)
,

where A(a−1)n+t,· denotes the ((a− 1)n+ t)th row of the matrix A, or, equivalently the tth
row along the ath block of A.

PROOF See Appendix C.1. �

The theorem above shows that the further t lies from the two end boundaries of the se-
quence {1, 2, . . . , n} the better the approximation between [D̃n](a−1)n+t,· and [Dn](a−1)n+t,·.

For example when t = n/2 (recall that p is fixed) ‖[D̃n](a−1)n+t,· − [Dn](a−1)n+t,·‖1 =

O(1/nK−1/2). Using Theorem 4.1 we replace F ∗nD̃nFn with F ∗nDnFn to obtain the follow-
ing approximation.

Proposition 4.1 Suppose Assumptions 2.1 and 4.1 hold. Let Γ
(a,b)
t (ω) be defined as in

(17). Then

[Kn(ωk1 , ωk2)]a,b =
1

n

n∑
t=1

Γ
(a,b)
t (ωk2) exp(−it(ωk1 − ωk2)) +O

(
1

n

)

=

[
1

n

n∑
t=1

Γ
(b,a)
t (ωk1) exp(−it(ωk2 − ωk1))

]∗
+O

(
1

n

)
(26)

Further, if {X(a)
t }t and {X(b)

t }t are conditionally stationary, then

[Kn(ωk1 , ωk2)]a,b =

{
Γ(a,b)(ωk) +O(n−1) k1 = k2(= k)

O(n−1) k1 6= k2
(27)

where Γ(a,b)(ω) =
∑∞

r=−∞[Da,b](0,r) exp(irω).

PROOF See Appendix C.1. �

4.2 Locally stationary time series

We showed in Proposition 4.1 that in the case the node or edge (a, b) is conditional sta-
tionary or conditionally time-variant [Kn(ωk1 , ωk2)]a,b has a well defined structure; the
diagonal dominates the off-diagonal terms (which are of order O(n−1)). However, in
the case of conditional nonstationary node/time-varying edge the precise structure of
[Kn(ωk1 , ωk2)]a,b is not apparent, this makes detection of conditional nonstationarity dif-
ficult. In this section we impose some structure on the form of the nonstationarity. We
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will work under the canopy of local stationarity. It formalizes the notion that the “non-
stationarity” in a time series evolves “slowly” through time. It is arguably one of the
most popular methods for describing nonstationary behaviour and describes a wide class
of nonstationarity; various applications are discussed in Priestley (1965), Dahlhaus and
Giraitis (1998), Zhou and Wu (2009), Cardinali and Nason (2010), Kley et al. (2019),
Dahlhaus et al. (2019), Sundararajan and Pourahmadi (2018), Ding and Zhou (2020),
Ombao and Pinto (2021), to name but a few. We show below that for locally stationary
time series [Kn(ωk1 , ωk2)]a,b has a distinct structure that can be detected.

The locally stationary process were formally proposed in Dahlhaus (1997). In the
locally stationary framework the asymptotics hinge on the rescaling device n, which is
linked to the sample size. It measures how close the nonstationary time series is to an
auxillary (latent) process {X t(u)}t which for a fixed u is stationary over t. More precisely,
a time series {X t,n}t is said to be locally stationary if there exists a stationary time series
{X t(u)}t where

‖X t,n −X t(u)‖2 = Op

(
1

n
+

∣∣∣∣ tn − u
∣∣∣∣) . (28)

Thus for every t, X t,n = (X
(1)
t,n , . . . , X

(p)
t,n )′ can be closely approximated by an auxillary

variable X t(u) (where u = t/n); see (Dahlhaus and Subba Rao, 2006; Subba Rao, 2006;
Dahlhaus, 2012; Dahlhaus et al., 2019). However, as the difference between t/n and u
grows, the similarity between Xt,n and the auxillary stationary process Xt(u) decreases.
This asymptotic device allows one to obtain well defined limits for nonstationary time se-
ries which otherwise would not be possible within classical real time asymptotics. Though
the formulation in (28) is a useful start for analysing nonstationary time series, analogous
to Dahlhaus and Polonik (2006), we require additional local stationarity conditions on
the moment structure. Dahlhaus (2000a) and Dahlhaus and Polonik (2006) state the
conditions in terms of bounds between Cov[X t,n, Xτ,n] and Cov[X0(u), X t−τ (u)]. Below
we state similar conditions in terms of the inverse covariances Dt,τ and its stationary
approximation counterpart.

Assumption 4.2 There exists a sequence {`(j)}j such that
∑

j∈Z j`(j)
−1 <∞ and ma-

trix function Dt−τ : R → Rp×p where

Dt,τ = Dt−τ

(
t+ τ

2n

)
+O

(
1

n`(t− τ)

)
t, τ ∈ Z. (29)

Further, the matrix function Dj(·) is such that (i) supu
∑

j∈Z ‖jDj(u)‖1 <∞,

(ii) supu |
d[Dj(u)]a,b

du
| ≤ `(j)−1, (iii) for all u, v ∈ R ‖Dj(u)−Dj(v)‖1 ≤ |u− v|`(j)−1 and

(iv) supu |
d[Dj(u)]a,b

du
| ≤ `(j)−1.

Standard within the locally stationary paradigm Dt,τ should be indexed by n (but to
simplify notation we have dropped the n).

Theorem 3.3 in Krampe and Subba Rao (2022) shows that Assumption 4.2 is fulfilled by
a large class of locally stationary time series under certain smoothness conditions on their
covariance.
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The above assumptions require that the entry wise derivative of matrix functions
Dt−τ (·) exists. This technical condition can be relaxed to include matrix functions Dj(·)
of bounded variation (which would allow for change point models as a special case) similar
to Dahlhaus and Polonik (2006).

The above assumptions allow for two important types of behaviour (i) conditionally
stationary nodes and time-invariant edges where [Dj(u)]a,b = [Dj](a,b) and (ii) conditional

nonstationarity where the partial covariance between X
(a)
t and X

(b)
t+j (for fixed lag j)

evolves “nearly” smoothly over t.

4.3 Properties of Kn(ωk1, ωk2) under local stationarity

Typically, the second order analysis of locally stationary time series is conducted through
its time varying spectral density matrix. This is the spectral density matrix corresponding
to the locally stationary approximation {X t(u)}t, which we denote as Σ(u;ω). The time-
varying spectral density matrix corresponding to {X t,n}t is {Σ(t/n;ω)}t. In contrast, in
this section our focus will be on the inverse Γ(u;ω) = Σ(u;ω)−1, where by Lemma 3.2,
Γ(u;ω) is the Fourier transform of Dj(u) over the lags j i.e.

Γ(u;ω) =
∑
j∈Z

Dj(u) exp(ijω). (30)

We note that Γ(u;ω) = (Γ(a,b)(u;ω); 1 ≤ a, b ≤ p). We use Assumption 4.2 to relate

Γ(a,b)(u;ω) to Γ
(a,b)
t (ω) (defined in (17)). In particular, Γ(a,b)(t/n;ω) is an approximation

of Γ
(a,b)
t (ω) and ∣∣∣Γ(a,b)

t (ω)− Γ(a,b)(u;ω)
∣∣∣ ≤ C

(∣∣∣∣ tn − u
∣∣∣∣+

1

n

)
. (31)

Thus the time-varying spectral precision matrix corresponding to {X t,n}t is {Γ(t/n;ω)}t.
Our aim is to relate Γ(u;ω) to Kn(ωk1 , ωk2). First we notice that Γ(u;ω) is “local”

in the sense that it is a time local approximation to the precision spectral density at
time point t = bunc. On the other hand, Kn(ωk1 , ωk2) is “global” in the sense that it is
based on the entire observed time series. However, we show below that Kn(ωk1 , ωk2) is
connected to Γ(u;ω), as it measures how Γ(u;ω) evolves over time. These insights allow
us to deduce the network structure from Kn(ωk1 , ωk2).

In the following lemma we show that the entries of the matrix Kn(ωk1 , ωk2) can be
approximated by the Fourier coefficients of Γ(a,b)(·;ω), where

K(a,b)
r (ω) =

∫ 1

0

exp(−2πiru)Γ(a,b)(u;ω)du. (32)

The Fourier coefficients K
(a,b)
r (ω) fully determine the function Γ(a,b)(u;ω). In particular (i)

if all the Fourier coefficients are zero then Γ(a,b)(u;ω) = 0 (ii) if all the Fourier coefficients
are zero except r = 0, then Γ(a,b)(u;ω) does not depend on u. Using this, it is clear the

coefficients K
(a,b)
r (ω) hold information on the network. We summarize these properties in
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the following proposition.

Proposition 4.2 Suppose Assumptions 2.1, 4.1 and 4.2 hold. Let K
(a,b)
r (·) be defined as

in (32). Then

(i) {X(a)
t,n }nt=1 and {X(b)

t,n}nt=1 is a (asymptotically) conditionally noncorrelated edge iff

K
(a,b)
r (ω) ≡ 0 for all r ∈ Z and ω ∈ [0, 2π].

(ii) {X(a)
t,n }nt=1 is a (asymptotically) conditionally stationary node iff K

(a,a)
r (ω) ≡ 0 for

all r 6= 0 and ω ∈ [0, 2π].

(iii) The edge (a, b) is conditionally time-invariant iff asymptotically K
(a,b)
r (ω) ≡ 0 for

all r 6= 0 and ω ∈ [0, 2π].

PROOF in Appendix C.2. �

Note that the above result is asymptotic in rescaled time (n→∞). We make this pre-
cise in the following proposition where we show that [Kn(ωk1 , ωk2)]a,b closely approximates

the Fourier coefficients K
(a,b)
k1−k2(ωk2).

Proposition 4.3 Suppose Assumptions 2.1, 4.1 and 4.2 hold. Let K
(a,b)
r (·) be defined as

in (32). Then

[Kn(ωk1 , ωk2)]a,b =
1

n

n∑
t=1

exp

(
−i2π(k1 − k2)t

n

)
Γ(a,b)

(
t

n
;ωk2

)
+O

(
1

n

)
. (33)

Further,

[Kn(ωk1 , ωk2)]a,b =


K

(a,b)
k1−k2(ωk2) +O

(
1
n

)
if |k1 − k2| ≤ n/2

K
(a,b)
k1−k2−n(ωk2) +O

(
1
n

)
if n/2 < (k1 − k2) < n

K
(a,b)
k1−k2+n(ωk2) +O

(
1
n

)
if − n < (k1 − k2) < −n/2

(34)

where the O(n−1) bound is uniform over all 1 ≤ r ≤ n (and n is in rescaled time).

Since [Kn(ωk1 , ωk2)]a,b = [Kn(ωk2 , ωk1)]
∗
b,a, then (34) can be replaced with K

(b,a)
k2−k1(ωk1)

∗,

K
(b,a)
k2−k1+n(ωk1)

∗ and K
(b,a)
k2−k1−n(ωk1)

∗ respectively.

PROOF in Appendix C.2. �

Note we split [Kn(ωk1 , ωk2)]a,b into three separate cases due to the circular wrapping of
the DFT, which is most pronounced when ωk1 lies at the boundaries of the interval [0, 2π].

In Dwivedi and Subba Rao (2011) and Jentsch and Subba Rao (2015) we showed that

the Fourier transform of the time-varying spectral density matrix Gr(ω) =
∫ 1

0
e−2πiruΣ(u;ω)du

decayed to zero as |r| → ∞ and was smooth over ω. In the following lemma we show that
a similar result holds for the Fourier transform of the inverse spectral density matrix.
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Proposition 4.4 (Properties of K
(a,b)
r (ω)) Suppose Assumption 4.2 holds. Then for

all 1 ≤ a, b ≤ p we have

sup
ω
|K(a,b)

r (ω)| → 0 as r →∞ (35)

and supω |K
(a,b)
r (ω)| ∼ |r|−1. Furthermore, for all ω1, ω2 ∈ [0, π] and r ∈ Z

∣∣K(a,b)
r (ω1)−K(a,b)

r (ω2)
∣∣ ≤ { C|ω1 − ω2| r = 0

C|r|−1|ω1 − ω2| r 6= 0
(36)

where C is a finite constant that does not depend on r or ω.

PROOF in Appendix C.2. �

The above results describe two important features in Ka,b:

1. For a given subdiagonal r, [K]
(r)
a,b changes smoothly along the subdiagonal, where

K
(r)
a,b denotes the rth subdiagonal (−(n − 1) ≤ r ≤ (n − 1)). Analogous to locally

smoothing the periodogram, to estimate the entries of [K]a,b from the DFTs we
use the smoothness property and frequencies in a local neighbourhood to obtain
multiple “near replicates”.

2. For a given row k, [K(ωk, ωk+r)]a,b is large when rmod(n) is close to zero and decays
the further it is from zero.

These observations motivate the regression method that we describe below for learning
the nonstationary network structure.

4.4 Node-wise regression of the DFTs

In this section, we propose a method for estimating the entries of F ∗nDnFn. The problem
of learning the network structure from finite sample time series is akin to the graphical
model selection problem in GGM, addressed by Dempster (1972) for the low-dimensional
and Meinshausen and Bühlmann (2006) for the high-dimensional setting. In particular,
the neighborhood selection approach of Meinshausen and Bühlmann (2006) regresses one
component of a multivariate random vector on the other components with Lasso (Tibshi-
rani, 1996), and uses non-zero regression coefficients to select its neighborhood, i.e. the
nodes which are conditionally noncorrelated with the given component.

Assuming the multivariate time series is locally stationary and satisfies Assumption
4.2, we show that the nonstationary network learning problem can be formulated in terms
of a regression of DFTs at a specific Fourier frequency on neighboring DFTs. Let J

(a)
k

denote the DFT of the time series {X(a)
t }t at Fourier frequency ωk, as defined in (23).

We denote the p-dimensional vector of DFTs at ωk by Jk, and use J
−(a)
k to denote the

(p− 1)-dimensional vector consisting of all the coordinates of Jk except J
(a)
k .
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We define the space Gn = sp(J
(b)
k ; 1 ≤ k ≤ n, 1 ≤ b ≤ p) (note that the coefficients in

this space can be complex). Then

PGn−J(a)
k

(J
(a)
k ) =

p∑
b=1

n∑
s=1

B(b,s))(a,k)J
(b)
s , (37)

where we set B(a,k))(a,k) = 0. Let

∆
(a)
k = Var

(
J

(a)
k − PGn−J(a)

k
(J

(a)
k )
)
. (38)

The above allows us to rewrite the entries of [Kn(ωk1 , ωk2)]a,b in terms of regression coef-
ficients. In particular,

[Kn(ωk1 , ωk2)]a,b =


1

∆
(a)
k1

k1 = k2 and a = b

− 1

∆
(a)
k1

B(b,k2))(a,k1) otherwise
. (39)

Comparing the above with Proposition 4.3 for (a, k1) 6= (b, k2) we have

B(b,k2))(a,k1) = B
(b)a)
k2−k1,n(ωk1) +O(n−1) and ∆

(a)
k = [K

(a,a)
0 (ωk)]

−1 +O(n−1),

where

B(b)a)
r,n (ωk) =


−K(a,a)

0 (ωk)
−1K

(b,a)
r (ωk)

∗ if |r| ≤ n/2, r 6= 0

−K(a,a)
0 (ωk)

−1K
(b,a)
r−n (ωk)

∗ if n/2 < r < n

−K(a,a)
0 (ωk)

−1K
(b,a)
r+n (ωk)

∗ if − n < r < −n/2
. (40)

Thus by using Proposition 4.4 we have∣∣B(b,k1+r))(a,k1) −B(b,k2+r))(a,k2)

∣∣ ≤ A|ωk1 − ωk2|+O(n−1), (41)

where A is a finite constant. The benefit of these results is in the estimation of the
coefficients B(b,k+r))(a,k). We recall (37) can be expressed as

PGn−J(a)
k

(J
(a)
k ) =

p∑
b=1

n−k∑
r=−k+1

B(b,k+r))(a,k)J
(b)
k+r,

where the above is due to the periodic nature of J
(a)
k , which allows us to extend the defini-

tion to frequencies outside [0, 2π]. By using the near Lipschitz condition in (41) if k1 and

k2 are “close” then the coefficients of the projections PGn−J(a)
k1

(J
(a)
k1

) and PGn−J(a)
k2

(J
(a)
k2

) will

be similar. This observation will allow us to estimate B(b,k+r))(a,k) using the DFTs whose
frequencies all lie in the M -neighbourhood of k (analogous to smoothing the periodogram
of stationary time series). We note that with these quasi replicates the estimation would
involve (2M + 1) (where M << n) response variables and pn − 1 regressors. Even with
the aid of sparse estimation methods this is a large number of regressors. However,
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Proposition 4.4 allows us to reduce the number of regressors in the regression. Since
|B(b,k+r))(a,k)| ∼ |r|−1 we can truncate the projection to a small number (2ν + 1) of re-
gressors about Jk to obtain the approximation

PGn−J(a)
k

(J
(a)
k ) ≈

p∑
b=1

ν∑
r=−ν

B(b,k+r))(a,k)J
(b)
k+r.

Thus smoothness together with near sparsity of the coefficients make estimation of the
entries in the high-dimensional precision matrix F ∗nDnFn feasible.

For a given choice of M and ν, and every value of a, k, we define the (2M + 1)-

dimensional complex response vector Y(a)
k = (J

(a)
k−M , J

(a)
k−M+1, . . . , J

(a)
k , J

(a)
k+1, . . . , J

(a)
k+M)′,

and the (2M + 1)× ((2ν + 1)p− 1) dimensional complex design matrix

X (a)
k =


J ′k−M−ν . . . J ′k−M−1 (J

−(a)
k−M)′ J ′k−M+1 . . . J ′k−M+ν

...
...

...
...

...
...

...

J ′k−ν . . . J ′k−1 (J
−(a)
k )′ J ′k+1 . . . J ′k+ν

...
...

...
...

...
...

...

J ′k+M−ν . . . J ′k+M−1 (J
−(a)
k+M)′ J ′k+M+1 . . . J ′k+M+ν

 .

Then the estimator

B̂(.,.))(a,k) =
(
B̂(1,k−ν))(a,k), . . . , B̂(p,k−v))(a,k), . . . , B̂(1,k))(a,k), . . . , B̂(k−1,k))(a,k),

B̂(k+1,k))(a,k), B̂(p,k))(a,k), . . . , B̂(1,k+v))(a,k), . . . , B̂(p,k+ν))(a,k)

)′
of {B(b,k+r))(a,k); 1 ≤ b ≤ p,−ν ≤ r ≤ ν} is obtained by solving the complex lasso
optimization problem

min
β∈C(2ν+1)p−1

[
1

2M + 1

∥∥∥Y(a)
k −X

(a)
k β

∥∥∥2

2
+ λ ‖β‖1

]
,

where ‖β‖1 :=
∑

j |βj|, the sum of moduli of all the (complex) coordinates, and λ is a
(real positive) tuning parameter controlling the degree of regularization. It is well-known
(Maleki et al., 2013) that the above optimization problem can be equivalently expressed as
a group lasso optimization over real variables, and can be solved using existing software.
We use this property to compute the estimators in our numerical experiments.

From Proposition 4.2 we observe that the problem of graphical model selection reduces
to learning the locations of large entries of Kn(ωk1 , ωk2) for different Fourier frequencies
ωk1 , ωk2 . Furthermore, from equation (39) and (40) it is possible to learn the sparsity struc-
ture of Kn(ωk1 , ωk2) from the regression coefficients B(b,k1))(a,k2) (up to order O(n−1)). In
particular, there is an edge (a, b) ⊆ E, i.e. the components a and b are conditionally
correlated, if B(b,k1))(a,k2) is non-zero for some k1, k2 (within the locally stationary frame-
work). Similarly, an edge between a and b is conditionally time-varying if B(b,k1))(a,k2) is
non-zero for some k1 6= k2. In the above we have ignored the O(n−1) terms.
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In view of these connections, we define two quantities involving the estimated re-
gression coefficients whose sparsity patterns encode information on the graph structure.
In particular, we aggregate the estimated regression coefficients across different Fourier
frequencies into two p× p weight matrices

Ŵself =

((∑
k

|B̂(b,k))(a,k)|2
))

1≤a,b≤p

(42)

Ŵother =

((∑
k1 6=k2

|B̂(b,k1))(a,k2)|2
))

1≤a,b≤p

(43)

for graphical model selection in NonStGM. Two components a and b are deemed condition-
ally noncorrelated if both the (a, b)th and the (b, a)th off-diagonal elements of Ŵself+Ŵother

are small. In contrast, a node a is deemed conditionally stationary if the (a, a)th element of
Ŵother is small. Similarly, an edge between a and b is deemed conditionally time-invariant
if both the (a, b)th and the (b, a)th elements of Ŵother is small. Note that our node-wise
regression approach does not ensure that the estimated weight matrices Ŵ are symmet-
ric. However, following (Meinshausen and Bühlmann, 2006), one can formulate suitable
“and” (or “or”) rule to construct an undirected graph, where an edge (a, b) is present if
the (a, b)th and (b, a)th entries are both large (or at least one of them is large).

5 Time-varying Vector Autoregressive Models

In this section we link the structure of the coefficients of the time-varying Vector Autore-
gressive (tvVAR) process with the notion of conditional noncorrelation and conditional
stationarity. This gives a rigourous understanding of certain features in a tvVAR model.

The time-varying VAR (tvVAR) model is often used to model nonstationarity (see
Subba Rao (1970), Dahlhaus (2000a), Dahlhaus and Polonik (2006), Zhang and Wu
(2021), Safikhani and Shojaie (2020)). A time series is said to have a time-varying
VAR(∞) representation if it can be expressed as

X t =
∞∑
j=1

Aj(t)X t−j + εt t ∈ Z (44)

where {εt}t are i.i.d random vectors with Var[εt] = Σ and E[εt] = 0. For simplicity, we
have centered the time series as the focus is on the second order structure of the time series.
We assume that (44) has a well defined time-varying moving average representation as its
solution (we show below that this allows the inverse covariance to be expressed in terms
of {Aj(t)}). We show below that the inverse covariance matrix operator corresponding
to (44) has a simple form that can easily be deduced from the VAR parameters.

5.1 The tvVAR model and the nonstationary network

In this section we obtain an expression for D in terms of the tvVAR parameters.
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Let Ct,τ = Cov[X t, Xτ ] and C denote the corresponding covariance operator as defined
in (1). Let H denote the Cholesky decomposition of Σ−1 such that Σ−1 = H′H (where H′

denotes the transpose of H). To obtain D we use the Gram-Schmidt orthogonalisation.
We define the following matrices;

Ã`(t) =


Ip ` = 0

−A`(t) ` > 0
0 ` < 0

.

Using {Ã`(t)} we define the infinite dimensional, block, lower triangular matrix L where

the (t, τ)th block of L is defined as Lt,τ = HÃt−τ (t) for all t, τ ∈ Z. Define X =
(. . . , X−1, X0, X1, . . .), then LX is defined as

(LX)t = H
∞∑
`=0

Ã`(t)X t−` = H

(
X t −

∞∑
`=1

A`(t)X t−`

)
= Hεt t ∈ Z.

By definition of (44) it can be seen that {(LX)t}t are uncorrelated random vectors with
Var[(LX)t] = Ip. From this, it is clear that L′L is the inverse of a rearranged version of
C. We use this to deduce the inverse D = C−1. We define Dt,τ as

Dt,τ =
∞∑

`=−∞

Ã`(t+ `)′Σ−1Ã(τ−t)+`(t+ `). (45)

The inverse of C is D = (Da,b; 1 ≤ a, b ≤ p), where Da,b is defined by substituting (45)
into (5).

We now focus on the case Σ = Ip and derive conditions for conditional noncorrelation
and stationarity. In this case, the suboperators Da,b have the entries

[Da,b]t,t+r =

{ ∑∞
`=1〈[A`(t+ `)]·,a[A`+r(t+ `)]·,b〉 − 〈[Ip]·,a, [Ar(t+ `)]·,b〉, r ≥ 0∑∞

`=1〈[A`(t+ `)]·,b, [A`−r(t+ `)]·,a〉 − 〈[Ip]·,b, [A−r(t+ `)]·,a〉, r < 0
,(46)

where A·,a denotes the ath column of the matrix A and 〈·, ·〉 the standard dot product
on Rp. Using the above expression for Da,b, the parameters of the tvVAR model can be
connected to conditional noncorrelation and conditional stationarity:

(i) Conditional noncorrelation If for all ` ∈ R the non-zero entries in the columns

[Ã`(t)]·,a and [Ã`(t)]·,b do not coincide, then {X(a)
t } and {X(b)

t } are conditionally
noncorrelated.

(ii) Conditionally stationary node If for all ` ∈ Z, the columns [Ã`(t)]·,a do not
depend on t then the node a is conditionally stationary and the submatrix Da,a

simplifies to

[Da,a]t,t+r =
∞∑
`=1

〈[A`(0)]·,a[A`+|r|(0)]·,a〉 − 〈[Ip]·,a, [A|r|(0)]·,a〉 for all r, t ∈ Z.

31



(iii) Conditionally time-invariant edge If for all ` and r the dot products 〈[A`(t)]·,b, [A`−r(t)]·,a〉
do not depend on t and [Ar(t)]a,b and [Ar(t)]b,a does not depend on t then Da,b is
Toeplitz where

[Da,b]t,t+r =

{ ∑∞
`=1〈[A`(0)]·,a[A`+r(0)]·,b〉 − 〈[Ip]·,a, [Ar(0)]·,b〉, r ≥ 0∑∞

`=1〈[A`(0)]·,b, [A`−r(0)]·,a〉 − 〈[Ip]·,b, [A−r(0)]·,a〉, r < 0

for all t ∈ Z.

There can arise situations where some [Ã`(t)]·,a and [Ã`(t)]·,b depend on t, but the corre-
sponding node or edge is conditionally stationary or time-invariant. This happens when
there is a cancellation in the entries of A`(t). However, these cases are quite exceptional.

In Appendix D we state conditions on the tvVAR process such that Assumptions 2.1,
4.1 and 4.2 are satisfied.

Remark 5.1 (The time-varying AR approximation of locally stationary time series)
In Krampe and Subba Rao (2022), Theorem 3.3 it is shown that if a multivariate non-
stationary time series satisfies certain second order locally stationary conditions, then the
time series has a tvAR(∞) representation with nearly smooth VAR parameters i.e.

Xt −
∞∑
j=1

Φj(t/n)Xt−j ≈ H(t/n)εt,

where H(·) is a lower triangular matrix, H(·) and Φj(·) are Lipschitz continuous and {εt}t
are uncorrelated random variables with Var[εt] = Ip. Using {Φj(·)}j and H(·) it would
be possible to determine the approximate network of a nonstationary time series based on
the conditions (i,ii,iii) stated above.

6 Numerical Experiments

We demonstrate the applicability of node-wise regression in selecting NonStGM on two
systems of multivariate time series, a small (p = 4) dimensional tvVAR(1) process de-
scribed in Example 2.1, and a large (p = 10) dimensional tvVAR(1) process.

6.1 Small System

We simulate the p = 4 dimensional tvVAR(1) system described in Example 2.1, where
all the time-invariant parameters set to 0.4 and with n = 5000 observations. The two
time-varying parameters α(t) and γ(t) change from −0.8 to 0.8 as t varies from 1 to n
according to the function f(t) = −0.8+1.6×e−5+10(t−1)/(n−1)/(1+e−5+10(t−1)/(n−1)). Using
the results from Section 5.1, nodes 1, 3 are conditionally nonstationay and the edge (1, 3) is
conditionally time-varying. On the other hand, the nodes 2, 4 are conditionally stationary
and the edge (2, 4), (1, 2) and (1,4) are conditionally time-invariant. As Figure 1a shows,
these nuanced relationships are not prominent from the four time series trajectories.
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Figure 3: NonStGM selection with node-wise regression for a p = 4 dimensional system.
[Left]: True graph structure. [Middle]: Heat map of Ŵself showing conditional noncor-

relation between components (1, 2), (1, 3), (1, 4) and (2, 4). [Right]: Heat map of Ŵother

showing conditional nonstationarity of nodes 1 and 3, and the conditionally time-varying
edge (1, 3). Results are aggregated over 20 replicates.

We perform node-wise regression of DFTs with M = d
√
ne and ν = 1. The tuning

parameters in the individual group lasso regressions were selected using cross-validation.
The estimated regression coefficients B̂ were used to construct the weight matrices Ŵself

and Ŵother. The heat maps of these weight matrices, aggregated over 20 replicates, are
displayed in Figure 3.

The true graph structure (left) has two conditionally nonstationary nodes 1, 3, and two
stationary nodes 2, 4. A heat map of Ŵself (middle) clearly shows the edges (1, 3), (1, 2),
(2, 4) and (1, 4) capturing conditional noncorrelation in the true graph structure. The
heat map of Ŵother (right) shows the conditionally nonstationary nodes 1 and 3 on the
diagonal. The conditionally time-varying edge (1, 3) is also clearly visible on this heat
map.

6.2 Large System

We now consider a larger system of p = 10. The data generating process is tvVAR(1)

Xt = A(t)Xt−1+εt. Here εt
i.i.d.∼ N(0, I10). Non-zero time-invariant entries of the transition

matrix A(t) are constant functions as follows: Aj,j(t) = 0.5 for all j 6= 5, A9,1(t) =
A10,1(t) = A3,5(t) = A4,5(t) = A6,5(t) = A7,5(t) = 0.3. The only time-varying entry is
A5,5(t) = α(t) , where α(t) decays exponentially from 0.7 to −0.7 as t varies from 1 to n
according to the function f(t) = 0.7− 1.4× e−5+10(t−1)/(n−1)/(1 + e−5+10(t−1)/(n−1)). As we
can see from the structure of A(t) (and the true graph structure in the left panel of Figure
4), this network has two connected components and two isolated nodes (2 and 8). These
two nodes are independent of the other nodes, and are treated as the “control”. The
component consisting of (1, 9, 10) is stationary (due to time invariant AR parameters).
On the other hand, the component (3, 4, 5, 6, 7) is nonstationary. However, the source of
nonstationarity is node 5 which permeates through to nodes 3, 4, 6 and 7. Thus the four
nodes 3, 4, 6 and 7 are conditionally stationary (due to time-invariant parameters).

We simulate n = 15000 observations from this system, and perform node-wise regres-
sion of DFTs with M = d

√
ne and ν = 1. The tuning parameters in the individual group
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Figure 4: NonStGM selection with node-wise regression for a p = 10 dimensional sys-
tem. [Left]: True graph structure. [Middle]: Heat map of Ŵself showing conditional

noncorrelation captured by the edges. [Right]: Heat map of Ŵother showing conditional
nonstationarity of node 5. Results are aggregated over 20 replicates.

lasso regressions were selected using cross-validation. The estimated regression coefficients
B̂ were used to construct the weight matrices Ŵself and Ŵother. The heat maps of these
weight matrices, aggregated over 20 replicates, are displayed in Figure 4.

We observe that the edges for both components (1, 9, 10) and (3, 4, 5, 6, 7) are visible
in the heat map of Ŵself (middle). As expected the isolated nodes do not show up. The

heat map of Ŵother (right) correctly identifies node 5 as conditionally nonstationary.

Conclusion

We introduced a general graphical modeling framework for describing conditional rela-
tionships among the components of a multivariate nonstationary time series using an
undirected network. In this network, absence of an edge corresponds to conditional non-
correlation relationships, as is common in GGM and StGM. An additional node or edge
attribute (dashed or solid) further describes a newly introduced notion of conditional non-
stationarity, which can be used to provide a parsimonious description of nonstationarity
inherent in the overall system. We showed that this framework is a natural generaliza-
tion of the existing GGM and StGM network. Under the locally stationary framework,
we proposed methods to learn the nonstationary graph structure from finite-length time
series in the Fourier domain. Numerical experiments on simulated data demonstrate the
feasibility of our proposed method.

For stationary time series, there is well-established asymptotic theory for spectral
density matrix estimators (see, e.g. (Woodroofe and Van Ness, 1967; Brillinger, 2001;
Wu and Zaffaroni, 2018; Rosuel et al., 2021)). To estimate the inverse of moderate to
high-dimensional spectral density matrices, penalized estimation methods for detecting
non-zero off-diagonal entries (Fiecas et al., 2019) have shown promise. These methods are
based on learning the conditional correlation structure of the DFTs at different nodes at
the same frequency. Using the results in Section 4.4 we conjecture that the nonstationary
network can be estimated by learning the non-zero coefficients of node-wise DFT regres-
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sion across different frequencies. In future work, we hope to develop a complete statistical
theory for graphical model estimation and inference.
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A Proofs for Section 2

A.1 Proofs of results in Section 2.2

We first show that σ2
a,t ≥ λinf . This ensures that σ2

a,t > 0 and the operator D is well
defined (see (4)). We recall that

PH−X(a)
t

(X
(a)
t ) =

∑
τ∈Z

p∑
b=1

β(τ,b))(t,a)X
(b)
τ

where β(t,a))(t,a) = 0. For all (τ, b) except (t, a) let v(τ,b))(t,a) = −β(τ,b))(t,a) and let
v(t,a))(t,a) = 1. For every b ∈ {1, . . . , p} define v(b) = (v(τ,b))(t,a); τ ∈ Z) and v =
vec[v(1), . . . , v(p)]. It is easily seen that

σ2
a,t = E

[
X

(a)
t − PH−X(a)

t
(X

(a)
t )
]2

= 〈v, Cv〉. (47)

Since ‖v‖2 ≥ 1, by Assumption 2.1 we have

σ2
a,t = 〈v, Cv〉 ≥ λinf . (48)

We use this result and the notation above to prove Lemma 2.1.

PROOF of Lemma 2.1 For 1 ≤ b ≤ p we define the column vectorsX(b) = (. . . , X
(b)
−1, X

(b)
0 , X

(b)
1 , . . .)′

and X = vec[X(1), . . . , X(p)]. Using the notation introduced at the start of this section
we have

X
(a)
t − PH−X(a)

t
(X

(a)
t ) = X

(a)
t −

∑
τ∈Z

p∑
b=1

β(τ,b))(t,a)X
(b)
τ = 〈v,X〉.

Since PH−X(a)
t

(X
(a)
t ) minimises the mean squared error E[X

(a)
t −Z]2 over all Z ∈ H−X(a)

t

and E[X
(a)
t − PH−X(a)

t
(X

(a)
t )]2 = σ2

a,t , this gives rise to the normal equations

Cov[〈v,X〉, X(c)
s ] =

{
0 (c, s) 6= (a, t)
σ2
a,t (c, s) = (a, t)

.

Comparing the above with D, we observe that this proves DC = I and CD = I, thus
D = C−1. To prove that ‖D‖ = λ−1

inf , we note that under Assumption 2.1, 0 < λinf =
inf‖v‖2=1,v∈`2,p〈v, Cv〉 ≤ sup‖v‖2=1,v∈`2,p〈v, Cv〉 = λsup < ∞. Since C is a self-adjoint

operator, ‖C‖ = λsup and ‖D‖ = λ−1
inf .

To prove that ‖Da,b‖ ≤ λ−1
inf we first focus on the case a = b. Since Da,a are submatrices

on the diagonal of D and 0 < λ−1
sup = inf‖v‖2=1,v∈`2,p〈v,Dv〉 ≤ sup‖v‖2=1,v∈`2,p〈v,Dv〉 =

λ−1
inf <∞, then it immediately follows that
λ−1

sup ≤ inf‖v‖2=1,v∈`2〈v,Da,av〉 ≤ sup‖v‖2=1,v∈`2〈v,Da,av〉 = λ−1
inf . Therefore, since Da,a is

self-adjoint (symmetric) we have ‖Da,a‖ ≤ λ−1
inf . By a similar argument ‖D−1

a,a‖ ≤ λsup.
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To prove the result for a 6= b we focus on the sub-matrix

D{a,b} =

(
Da,a D∗a,b
Da,b Db,b

)
.

Using the same argument to prove that ‖Da,a‖ ≤ λ−1
inf it can be shown that ‖D{a,b}‖ ≤ λ−1

inf .
Thus for all v′ = (u(1), u(2))′ ∈ `2

2 we have ‖D{a,b}v‖ ≤ λ−1
inf‖v‖2. We use this bound below.

We recall that an operator (matrix) B is bounded if there exists a finite constant K where
for all u ∈ `2 we have ‖Bu‖ ≤ K‖u‖, it follows that ‖B‖ ≤ K. Returning to Da,b, we will
show that ‖Da,bu

(1)‖ ≤ λ−1
inf‖u(1)‖2. For all u(1) ∈ `2 we have

‖Da,bu
(1)‖2 ≤

√
‖Da,au(1)‖2

2 + ‖Da,bu(1)‖2
2 = ‖D{a,b}v‖2 ≤ ‖D{a,b}‖‖v‖2 = ‖D{a,b}‖‖u(1)‖2

where v′ = (u(1), 0). Thus ‖Da,b‖ ≤ λ−1
inf , as required.

Finally, to prove that supt
∑

τ∈Z ‖Dt,τ‖2
2 ≤ pλ−2

inf , we first prove that for every t0 ∈ Z,
we have

∑p
a=1

∑
τ∈Z[Dτ,t0 ]

2
a,1 ≤ λ−2

inf . Define the sequence v = vec[u(1), u(2), . . . , u(p)] ∈ `2,p

where we set [u(1)]t0 = 1 and [u(1)]s = 0 for s 6= t0 and u(a) = 0 (zero sequence) for all
a 6= 1. Then by definition of v (which mainly consists of zeros except for one non-zero
entry) we have

Dv =

 D1,1u
(1)

...
Dp,1u

(1)

 =

 ([D1,1]τ,t0 ; τ ∈ Z)
...

([Dp,1]τ,t0 ; τ ∈ Z)

 .

Thus for every t0 ∈ Z we have ‖Dv‖2
2 =

∑p
a=1

∑
τ∈Z[Da,1]2τ,t0 =

∑p
a=1

∑
τ∈Z[Dτ,t0 ]

2
a,1 ≤

‖D‖2‖v‖2
2 ≤ λ−2

inf . By the same argument for any b ∈ {1, . . . , p} and t ∈ Z we have∑p
a=1

∑
τ∈Z[Dτ,t]

2
a,b ≤ ‖D‖2 ≤ λ−2

inf , this gives
∑

τ∈Z ‖Dτ,t‖2
2 ≤ pλ−2

inf . This proves the
claim. �

Many of the results in this section use the block operator inversion identity (see Tretter
(2008), page 35, and Berkolaiko and Kuchment (2020), Section 2.3)). For completeness
we give the identity below. As we are working with covariance matrix operators we focus
on symmetric/self-adjoint matrices. Suppose

G =

(
A B
B∗ C

)
,

and G−1 exists, then

G−1 =

(
P−1 −P−1BC−1

−C−1B∗P−1 (C −B∗A−1B)−1

)
(49)

where P = A−BC−1B∗. We mention that P is the Schur complement of C of the matrix
G.
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A.2 Proof of results in Section 2.4

There are different methods for proving the results in Section 2.4. One method is to use
the properties of projections the other is to use decompositions of the infinite dimensional
matrix C. In this section we take the matrix decomposition route, as similar matrix
decompositions form the core of the proofs in Section 2.5.

As the results in Section 2.4 concern the partial covariance between X
(a)
t and X

(b)
τ given

all the other random variables, we will consider a permuted version of C and its inverse,
where we bring the covariance structure of (X

(a)
t , X

(b)
τ ) to the top left hand corner of the

matrix. To avoid introducing new notation we label these permuted matrix operators as
C and D. The variance of (X

(a)
t , X

(b)
τ ) is

Var

[
X

(a)
t

X
(b)
τ

]
= C̃1,1 =

(
[Ca,a]t,t [Ca,b]t,τ
[Ca,b]t,τ [Cb,b]τ,τ

)
.

This embeds in the top left hand side of the operator C, where

C =

(
C̃1,1 C̃1,2

C̃2,1 C̃2,2

)
(50)

with C̃1,2 = {[Cc,e]u,v; (c, u) ∈ {(a, t), (b, τ)}, (e, v) /∈ {(a, t), (b, τ)}}, C̃2,1 = C̃∗1,2 and

C̃2,2 = {[Cc,e]u,v; (c, u), (e, v) /∈ {(a, t), (b, τ)}} (we have used the tilde notation in C̃i,j to
distinguish it from Ca,b). It is well known that the Schur complement encodes the partial

covariance. Applying this to (X
(a)
t , X

(b)
τ ), the Schur complement of C̃1,1 in C is

Var

[(
X

(a)
t − PH−(X

(a)
t ,X

(b)
τ )

(X
(a)
t )

X
(b)
τ − PH−(X

(a)
t ,X

(b)
τ )

(X
(b)
τ )

)]
= C̃1,1 − C̃1,2C̃

−1
2,2 C̃2,1 = P. (51)

The above matrix (which we label as P ) forms an important part of all the proofs
in this section. As the entries in the variance matrix on the left hand side of (51)
is quite long we replace it with some shorter notation for the conditional variances
and covariances. Comparing (51) with (6) we observe that the off-diagonal is ρ

(a,b)
t,τ =

Cov[X
(a)
t − PH−(X

(a)
t ,X

(b)
τ )

(X
(a)
t ), X

(b)
τ − PH−(X

(a)
t ,X

(b)
τ )

(X
(b)
τ )]. However, the diagonal of P

has not been defined in Section 2.4. As this is the partial variance of X
(a)
t after condi-

tioning on everything but X
(a)
t and X

(b)
τ we use the notation

ρ
(a,a)|9{(a,t),(b,τ)}
t,t = Var[X

(a)
t − PH−(X

(a)
t ,X

(b)
τ )

(X
(a)
t )]. (52)

To avoid confusion, we mention that this is different to the time series partial covariance
defined in Section 2.5, where ρ

(a,a)|9{a,b}
t,t is the partial variance of X

(a)
t after conditioning
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on all the other time series but time series X(a) and X(b). Using the new notation we have

Var

(
X

(a)
t − PH−(X

(a)
t ,X

(b)
τ )

(X
(a)
t )

X
(b)
τ − PH−(X

(a)
t ,X

(b)
τ )

(X
(b)
τ )

)
=

(
ρ

(a,a)|9{(a,t),(b,τ)}
t,t ρ

(a,b)
t,τ

ρ
(b,a)
τ,t ρ

(b,b)|9{(a,t),(b,τ)}
τ,τ

)
= C̃1,1 − C̃1,2C̃

−1
2,2 C̃2,1 = P, (53)

where ρ
(a,b)
t,τ and ρ

(a,a)|9{(a,t),(b,τ)}
t,t are defined in (6) and (52) respectively.

Next we relate P to the inverse C−1. Using the block operator inversion (see (49)) we
have

D =

(
P−1 −P−1C̃1,2C̃

−1
2,2

−C̃−1
2,2 C̃2,1P

−1 (C̃2,2 − C̃2,1C̃
−1
1,1 C̃1,2)−1

)
(54)

where P is defined in (51). Comparing P−1 with the upper left block of D, we connect

the conditional variance of (X
(a)
t , X

(b)
τ ) to the entries of D. In particular(

ρ
(a,a)|9{(a,t),(b,τ)}
t,t ρ

(a,b)
t,τ

ρ
(b,a)
τ,t ρ

(b,b)|9{(a,t),(b,τ)}
τ,τ

)
=

(
[Da,a]t,t [Da,b]t,τ
[Da,b]t,τ [Db,b]τ,τ

)−1

. (55)

The identity (55) forms an important component in the proofs below.
Before we state the next lemma, we require the following notation for the partial

correlation between X
(a)
t and X

(b)
τ

φ
(a,b)
t,τ = Corr

[
X

(a)
t − PH−(X

(a)
t ,X

(b)
τ )

(X
(a)
t ), X

(b)
t − PH−(X

(a)
t ,X

(b)
τ )

(X(b)
τ )
]
. (56)

Lemma A.1 Let β(τ,b))(t,a), σ
2
t,a, ρ

(a,a)|9{(a,t),(b,τ)}
t,t and φ

(a,b)
t,τ be defined as in (3), (52) and

(56). Suppose Assumption 2.1 holds. Then

ρ
(a,a)|9{(a,t),(b,τ)}
t,t

ρ
(b,b)|9{(a,t),(b,τ)}
τ,τ

=
σ2
t,a

σ2
τ,b

(57)

and

β(τ,b))(t,a) = φ
(a,b)
t,τ ×

σa,t
σb,τ

. (58)

PROOF. The proof of (57) is based on comparing [Da,a]t,t/[Db,b]τ,τ and the ratio of the
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diagonal entries of the conditional variance in (55)(
ρ

(a,a)|9{(a,t),(b,τ)}
t,t ρ

(a,b)
t,τ

ρ
(b,a)
τ,t ρ

(b,b)|9{(a,t),(b,τ)}
τ,τ

)

=
1

[Da,a]t,t[Db,b]τ,τ − [Da,b]2t,τ

(
[Db,b]τ,τ −[Da,b]t,τ
− [Da,b]t,τ [Da,a]t,t

)
. (59)

We recall from (4) that

[Da,a]t,t =
1

σ2
a,t

and [Db,b]τ,τ =
1

σ2
b,τ

⇒
σ2
a,t

σ2
b,τ

=
[Db,b]τ,τ
[Da,a]t,t

. (60)

Furthermore, by comparing the entries in (59) we have

ρ
(a,a)|9{(a,t),(b,τ)}
t,t =

1

[Da,a]t,t[Db,b]τ,τ − [Da,b]2t,τ
[Db,b]τ,τ

and ρ(b,b)|9{(a,t),(b,τ)}
τ,τ =

1

[Da,a]t,t[Db,b]τ,τ − [Da,b]2t,τ
[Da,a]t,t.

Thus evaluating ratio of the above gives

ρ
(a,a)|9{(a,t),(b,τ)}
t,t

ρ
(b,b)|9{(a,t),(b,τ)}
τ,τ

=
[Db,b]τ,τ
[Da,a]t,t

. (61)

Comparing (60) and (61) gives (57).

To prove (58) we decompose the projection of PH−X(a)
t

(X
(a)
t ) in terms of its projections

onto the two space H− (X
(a)
t , X

(b)
τ ) and sp(X

(b)
τ −PH−(X

(a)
t ,X

(b)
τ )

(X
(b)
τ )). These two spaces

are orthogonal and lead to a simple expression for the coefficient β(τ,b))(t,a);

PH−X(a)
t

(X
(a)
t ) =

∑
τ∈Z

p∑
b=1

β(τ,b))(t,a)X
(b)
τ

= PH−(X
(a)
t ,X

(b)
τ )

(X
(a)
t ) + β(τ,b))(t,a)

[
X(b)
τ − PH−(X

(a)
t ,X

(b)
τ )

(X(b)
τ )
]
. (62)

Using the orthogonality of the two projections we have

β(τ,b))(t,a) =
Cov

[
X

(a)
t , X

(b)
τ − PH−(X

(a)
t ,X

(b)
τ )

(X
(b)
τ )
]

Var(X
(b)
τ − PH−(X

(a)
t ,X

(b)
τ )

(X
(b)
τ ))

=
ρ

(a,b)
t,τ

ρ
(a,a)|9{(a,t),(b,τ)}
t,t

.
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Replacing the covariance ρ
(a,b)
t,τ in β(τ,b))(t,a) with its correlation φ

(a,b)
t,τ gives

β(τ,b))(t,a) = φ
(a,b)
t,τ

√√√√ρ
(a,a)|9{(a,t),(b,τ)}
t,t

ρ
(b,b)|9{(a,t),(b,τ)}
τ,τ

. (63)

This links the partial correlation to the projection coefficients. Finally, we substitute the
identity (57) into (63) to give

β(τ,b))(t,a) = φ
(a,b)
t,τ ×

σa,t
σb,τ

.

This proves (58). �

We use the above to prove Lemma 2.2.
PROOF of Lemma 2.2 By using (58) we connect φ

(a,b)
t,τ to the precision matrix. Since

β(τ,b))(t,a) = φ
(a,b)
t,τ ×

σa,t
στ,b

and by definition of Da,b in (5) we have

ρ
(a,b)
t,τ = − [Da,b]t,τ√

[Da,a]t,t[Db,b]τ,τ
.

This proves (8). The proof of (9) immediately follows from (55). �

PROOF of Proposition 2.1 The proof hinges on the identity in (55) for the separate

cases a = b and a 6= b. For the case a 6= b and using (55) it is clear that ρ
(a,b)
t,τ = 0 iff

[Da,b]t,τ = 0. Thus Da,b = 0 iff for all t and τ , ρ
(a,b)
t,τ = 0, this proves (i).

To prove (ii), we use (55) with a = b and compare the entries of(
ρ

(a,a)|9{(a,t),(a,τ)}
t,t ρ

(a,a)
t,τ

ρ
(a,a)
τ,t ρ

(a,a)|9{(a,t),(a,τ)}
τ,τ

)

=
1

[Da,a]t,t[Da,a]τ,τ − [Da,a]2t,τ

(
[Da,a]τ,τ −[Da,a]t,τ
− [Da,a]t,τ [Da,a]t,t

)
. (64)

We first show that if Da,a is a symmetric, Toeplitz matrix, then ρ
(a,a)
t,τ is shift invariant

(depends only on t − τ). If Da,a is a symmetric, Toeplitz matrix, using that ρ
(a,a)
t,t =

1/[Da,a]t,t = 1/[Da,a]0,0 it is clear that ρ
(a,a)
t,t does not depend on t. We now study ρ

(a,a)
t,τ

when t 6= τ . To show that ρ
(a,a)
t,τ only depends on |t−τ | we use that [Da,a]t,τ = [Da,a]0,τ−t =

[Da,a]0,t−τ (due to Da,a being Toeplitz). Comparing the off-diagonal entries on the left

and right hand side of (64) it follows that for all t and τ ρ
(a,a)
t,τ = ρ

(a,a)
0,t−τ = ρ

(a,a)
0,τ−t.

Next we show the converse, that is if for all t and τ ; ρ
(a,a)
t,τ = ρ

(a,a)
0,t−τ = ρ

(a,a)
0,τ−t then Da,a

is a symmetric, Toeplitz matrix. First the diagonal, since [Da,a]t,t = 1/ρ
(a,a)
t,t = 1/ρ

(a,a)
0,0 it

is clear that the diagonal Da,a does not depend on t. Next we show that if for all t and
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τ ; ρ
(a,a)
t,τ = ρ

(a,a)
0,t−τ = ρ

(a,a)
0,τ−t, then

(a) [Da,a]t,τ only depends on |t− τ |.

(b) The conditional variance ρ
(a,a)|9{(a,t),(a,τ)}
t,t only depends on |t− τ |. Note that this is

not in the statement of the theorem, but is a useful by product of the proof.

Comparing the entries of the matrices in (64) we have

ρ
(a,a)|9{(a,t),(a,τ)}
t,t =

[Da,a]τ,τ
[Da,a]t,t[Da,a]τ,τ − [Da,a]2t,τ

, (65)

ρ
(a,a)
t,τ =

−[Da,a]t,τ
[Da,a]t,t[Da,a]τ,τ − [Da,a]2t,τ

, (66)

and 0 < [Da,a]t,t[Da,a]τ,τ − [Da,a]
2
t,τ (since this is the determinant). (67)

We first show that [Da,a]t,τ only depends on |t− τ |. To reduce notation, we set the entries

on the diagonal of Da,a to θ = [Da,a]t,t and let θt−τ = ρ
(a,a)
t,τ . Substituting this into (66)

gives

θt−τ (θ
2 − [Da,a]

2
t,τ ) = −[Da,a]t,τ .

The above is quadratic equation in [Da,a]t,τ . Thus we can express [Da,a]t,τ in terms of θ
and θt−τ ;

[Da,a]t,τ =
−1 +

√
1 + 4θ2

t−τθ
2

2θt−τ
.

Note that −1 +
√

1 + 4θ2
t−τθ

2 is part of the solution and not −1 −
√

1 + 4θ2
t−τθ

2 due to
the positivity condition in (67). This proves that Da,a is a symmetric, Toeplitz matrix.
This proves (a) and (ii) in the lemma. To prove (b), we use (65) and observe that the

right hand side depends only on |t − τ |, thus proving that ρ
(a,a)|9{(a,t),(a,τ)}
t,t only depends

on |t− τ |.
To prove (iii) we use (55) with a 6= b. From (55) it immediately follows that if Da,a,

Db,b and Da,b are Toeplitz, then ρ
(a,b)
t,τ only depends on the lag (t− τ).

Conversely, to prove that Da,b is Toeplitz given that for all t and τ ; ρ
(a,a)
t,τ = ρ

(a,a)
0,t−τ =

ρ
(a,a)
0,τ−t. ρ

(b,b)
t,τ = ρ

(b,b)
0,t−τ = ρ

(b,b)
0,τ−t, ρ

(a,b)
t,τ = ρ

(a,b)
0,t−τ , we use the same strategy used to prove (ii).

This yields the solution

[Da,b]t,τ =
−1 +

√
1 + 4(ρ

(a,b)
0,t−τ )

2σ−2
a σ−2

b

2ρ
(a,b)
0,t−τ

,

which proves that Da,b is Toeplitz. Thus proving the result. �
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A.3 Proof of results in Section 2.5

To prove the results in Section 2.5 we follow a similar strategy to the proofs of Section
2.4, but permute the submatrices {Ca,b} in C rather than the individual entries in C. The
proofs in this section are less technical than those in Section 2.4.

Define the two non-intersecting sets S = {α1, . . . , αr} and its complement S ′ =
{β1, . . . , βs} where S ∪S ′ = {1, 2, . . . , p}. We now obtain an expression for the covariance

of {X(c)
t ; c ∈ S} after removing their linear dependence on {X(c)

s ; s ∈ Z, c ∈ S ′}. To do
so, we define the submatrix CS,S = (Ca1,b1 ; a1, b1 ∈ S) where we note that

Var[X
(a)
t ; t ∈ Z, a ∈ S] = CS,S .

A block permuted version of C with CS,S in the top left hand corner is

C =

(
CS,S CS,S′
C∗S,S′ CS′,S′

)
,

where CS,S′ = (Ca1,b2 ; a1 ∈ S and b2 ∈ S ′), CS′,S′ = (Ca2,b2 ; a2 ∈ S ′ and b2 ∈ S ′). By using

standard results, the conditional variance of (X
(a)
t ; t ∈ Z, a ∈ S) given {X(b); b ∈ S ′} is

the Schur complement of CS′,S′ of C:

Var
[
X

(a)
t − PH−(X(c);c∈S′)(X

(a)
t ); t ∈ Z, a ∈ S

]
= CS,S − CS,S′C−1

S′,S′CS′,S = P. (68)

Using the above, entrywise for all a, b ∈ S and t, τ ∈ Z, we have

Cov
[
X

(a)
t − PH−(X(c);c∈S′)(X

(a)
t ), X(b)

τ − PH−(X(c);c∈S′)(X
(b)
τ )
]

= [Pa,b]t,τ .

We now relate the conditional variance P (defined in (68)) to the matrix D. Using
the block operator inversion identity in (49) we have

D =

(
P−1 −P−1CS,S′C

−1
S′,S′

−C−1
S′,S′CS′,SP

−1 (CS′,S′ − CS′,SC−1
S,SCS,S′)

−1

)
, (69)

where P is defined in (68).
We use (69) to prove the results in Section 2.5.

PROOF of Theorem 2.1 To prove the result we use (68), where we set S = {a} and
S = {a, b}.

To prove (i) we let S = {a}. By using (68) we have

Var
[
X

(a)
t − PH−X(a)(X

(a)
t ); t ∈ Z

]
= D−1

a,a. (70)

Thus entrywise by definition we have ρ
(a,a)|9{a}
t,τ = [D−1

a,a]t,τ , this proves (i).
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To prove (ii) we let S = {a, b}. By using (68) and (49) we have

Var
[
X

(a)|9{a,b}
t ; t ∈ Z, c ∈ {a, b}

]
=

(
Da,a Da,b

Db,a Db,b

)−1

=

(
(Da,a −Da,bD

−1
b,bDb,a)

−1 −(Da,a −Da,bD
−1
b,bDb,a)

−1Da,bD
−1
b,b

−D−1
b,bDb,a(Da,a −Da,bD

−1
b,bDb,a)

−1 (Db,b −Db,aD
−1
a,aDa,b)

−1

)
,

where the above follows from (49). Comparing entries in the above matrix gives

ρ
(a,a)|9{a,b}
t,τ = [−(Da,a −Da,bD

−1
b,bDb,a)

−1Da,bD
−1
b,b ]t,τ

ρ
(a,b)|9{a,b}
t,τ = [(Da,a −Da,bD

−1
b,bDb,a)

−1]t,τ

and ρ
(b,b)|9{a,b}
t,τ = [(Db,b −Db,aD

−1
a,aDa,b)

−1]t,τ .

This proves (ii). �

PROOF of Theorem 2.2 Before we prove the result, we note the following invariance
properties of (infinite dimension) Toeplitz operators. If A and B are bounded Toeplitz
operators then (a) AB is Toeplitz (b) if A is Toeplitz and has a bounded inverse, then A−1

is Toeplitz; these results are a consequence of Toeplitz Theorem, Toeplitz (1911). It is
important to mention that these results only hold if the Toeplitz operators are bi-infinite
in the sense the entries of A are At,τ = At−τ for all t, τ ∈ Z. The same results do not
hold if the Toeplitz operators are semi-infinite where A is defined as At,τ = At−τ for all
t, τ ∈ Z+.

We recall from the proof of Theorem 2.1 that

Var
[
X

(a)|9{a}
t ; t ∈ Z, c ∈ {a}

]
= D−1

a,a (71)

and

Var
[
X

(a)|9{a,b}
t ; t ∈ Z, c ∈ {a, b}

]
=

(
(Da,a −Da,bD

−1
b,bDb,a)

−1 −(Da,a −Da,bD
−1
b,bDb,a)

−1Da,bD
−1
b,b

−D−1
b,bDb,a(Da,a −Da,bD

−1
b,bDb,a)

−1 (Db,b −Db,aD
−1
a,aDa,b)

−1

)
(72)

we use this to prove the result.
We first prove (i). If {X(a)|9{a,b}

t , X
(b)|9{a,b}
t }t is conditionally noncorrelated then Da,b =

Db,a = 0. From (72) we have

Var
[
X

(a)|9{a,b}
t ; t ∈ Z, c ∈ {a, b}

]
=

(
D−1
a,a 0
0 D−1

b,b

)
.

Thus ρ
(a,b)|9{a,b}
t,τ = Cov[X

(a)|9{a,b}
t , X

(b)|9{a,b}
τ ] = 0 for all t and τ . Conversely, if

ρ
(a,b)|9{a,b}
t,τ = Cov[X

(a)|9{a,b}
t , X

(b)|9{a,b}
τ ] = 0 for all t and τ , then using (72) we haveDa,b = 0.

This proves (i).
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To prove (ii) we use (71). If Da,a is Toeplitz, then D−1
a,a is Toeplitz and ρ

(a,a)|9{a}
t,τ =

[D−1
a,a]t,τ = ρ

(a,a)|9{a}
0,t−τ for t and τ (thus ρ

(a,a)|9{a}
t,τ is shift invariant). Conversely, if for

all t and τ , there exists a sequence {ρ(a,a)|9{a}
r }r where ρ

(a,a)|9{a}
t−τ = ρ

(a,a)|9{a}
t,τ , then since

ρ
(a,a)|9{a}
t,τ = [D−1

a,a]t,τ this implies D−1
a,a is Toeplitz. Thus Da,a is Toeplitz. This proves (ii).

To prove (iii) we use (72). If Da,a, Da,b and Db,b are Toeplitz, then by the inverse prop-
erties of Toeplitz operators (described at the start of the proof) (Da,a −Da,bDb,bDba)

−1,
−(Da,a −Da,bDb,bDba)

−1Da,bD
−1
b,b and (Db,b −Db,aDa,aDa,b)

−1 are Toeplitz. Thus the con-

ditional covariances {ρ(a,a)|9{a,b}
t,τ }, {ρ(a,b)|9{a,b}

t,τ } and {ρ(a,b)|9{a,b}
t,τ } are shift invariant. Con-

versely, suppose

Var
[
X

(c)|9{a,b}
t ; t ∈ Z, c ∈ {a, b}

]
=

(
Ea,a Ea,b
E∗a,b Eb,b

)
where Ea,a, Ea,b and Eb,b are Toeplitz. Then by using the relation(

Ea,a Ea,b
E∗a,b Eb,b

)−1

=

(
Da,a Da,b

D∗a,b Db,b

)
,

and (49), we have that Da,a, Da,b and Db,b are Toeplitz. This proves (iii). �

PROOF of Corollary 2.1 The result follows immediately from (68) where

Var
[
X

(a)
t − PH−(X(c);c∈S′)(X

(a)
t ); t ∈ Z, a ∈ S

]

=


Dα1,α1 Dα1,α2 . . . Dα1,αr

Dα2,α1 Dα2,α2 . . . Dα2,αr
...

...
. . .

...
Dαr,α1 Dαr,α2 . . . Dαr,αr


−1

.

Thus proving the result. �

B Proofs for Section 3

B.1 Proof of results in Section 3.1

We start by reviewing some of the relationships between the bounded matrix operator A :
`2 → `2 (where A = (At,τ ; t, τ ∈ Z)) and the corresponding integral kernel of F ∗AF , which
is
∑

t∈Z
∑

τ∈ZAt,τe
itω−iτλ. We mention that if the entries of A were the covariance of a

time series and
∑

t,τ∈ZA
2
t,τ <∞, then A(ω, λ) =

∑
t∈Z
∑

τ∈ZAt,τe
itω−iτλ (the Loeve dual-

frequency spectrum) is a well defined function in L2[0, 2π)2 (see, for example, Gorrostieta
et al. (2019) and Aston et al. (2019)).

The jth row of A can be extracted from A using A′uj, where uj ∈ `2 with uj =
(. . . , 0, 1, 0, 0, . . .) with 1 at the jth entry. It is clear that A′uj = (Aj,·)

′ (the jth row
of A) and {A′uj}j∈Z reproduces all the rows of A. We now find the parallel to A′uj for
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F ∗AF . Since F is an isomorphism from `2 to L2[0, 2π) the equivalent of uj in L2[0, 2π) is
F ∗uj = exp(−ijω) (inverting back gives [F exp(−ij·)]t = [uj]t, the tth entry in the vector
uj). Therefore, if E = F ∗AF has integral kernel A(ω, λ), then

[EF ∗uj](λ) =

∫ π

0

A(ω, λ) exp(−ijω)dω = Aj(λ),

where Aj(λ) =
∑

τ∈ZAj,τ exp(−iτλ) ∈ L2[0, 2π) and forms the building blocks of A(ω, λ)
(since A(ω, λ) =

∑
t∈ZAt(λ) exp(itω)). (FEF ∗)uj yields the jth row of the infinite di-

mensional matrix (FEF ∗) and the (j, s)th entry of A = (FEF ∗) is

[(FEF ∗)uj]s =
1

(2π)2

∫ 2π

0

∫ 2π

0

A(ω, λ) exp(−ijω) exp(isλ)dωdλ. (73)

The above gives the relationship between A(ω, λ) and A.
The proof of Lemma 3.1 follows from Toeplitz (1911) (see Böttcher and Grudsky

(2000), Theorem 1.1). However, for completeness and to explicitly connect the result to
A(ω, λ) we give a proof below (it is based on the discussion above).

PROOF of Lemma 3.1 We prove that the infinite dimensional Toeplitz matrix A leads
to a diagonal kernel of the form δω,λA(ω). Suppose that A is a bounded operator that is
a Toeplitz matrix with entries {aj}j. Then the integral kernel is

A(ω, λ) =
∑
t∈Z

∑
τ∈Z

at−τ exp(itω − iτλ)

=
∑
τ∈Z

exp(−iτ(λ− ω))
∑
r∈Z

ar exp(irω) = δω,λA(ω)

where A(ω) =
∑

r∈Z ar exp(irω). Since ‖A‖ <∞, defining the infinite sequence v = {vj}
where vj = 0 for all j 6= 0 and v0 = 1 we have

∑
j∈Z a

2
j = ‖Av‖2 ≤ ‖A‖‖v‖2 ≤ ‖A‖, thus

A(·) ∈ L2[0, 2π).
We now use (73) to prove the converse. Substituting A(ω, λ) = δω,λA(ω) into (73)

gives

[(FEF ∗)uj]s =
1

(2π)2

∫ 2π

0

∫ 2π

0

A(ω)δω,λ exp(−ijω) exp(isλ)dωdλ = aj−s

where ar = (2π)−1
∫ 2π

0
A(ω) exp(−irω)dω. Thus the jth column of FEF ∗ is {as−j}s∈Z,

which proves that the matrix defined by FEF ∗ is Toeplitz. �

PROOF of Lemma 3.2 Since A is block Toeplitz it follows from Lemma 3.1 that
A(ω, λ) = A(ω)δω,λ.

To derive an expression for the inverse, we first consider the case that d = 1. By
definition AA−1 = I (where I denotes the infinite dimension identity matrix), thus F ∗F =
(F ∗AF )(F ∗A−1F ). By Lemma 3.1, the kernel operator of F ∗AF is A(ω)δω,λ and the kernel
operator of F ∗A−1F (since A−1 is Toeplitz) is B(ω)δω,λ. Since for all g ∈ L2[0, 2π) we
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have

g(ω) = [F ∗F (g)](ω) =
1

(2π)2

∫ 2π

0

B(ω)δω,u

∫ 2π

0

A(u)δu,λg(λ)dλdu

=
1

(2π)

∫ 2π

0

B(ω)A(u)g(u)δω,udu = B(ω)A(ω)g(ω),

then B(ω) = A(ω)−1. This proves the result for all d = 1.
The proof for d > 1 uses the following invariance properties. If A and B are bounded

Toeplitz matrix operators with kernels A(ω)δω,λ and B(ω)δω,λ respectively, then A + B
and AB are Toeplitz with kernels [A(ω)+B(ω)]δω,λ and A(ω)B(ω)δω,λ respectively. Using
these properties together with the block operator inversion identity (in (49)) we will show,
below, that the Lemma 3.2 holds for d ≥ 2. We focus on d = 2 (the proof for d > 2 follows
by induction). Let

G =

(
A B
B∗ C

)
where G is a bounded operator and A,B and C are Toeplitz operators on `2, with integral
kernels A(ω)δω,λ, B(ω)δω,λ and C(ω)δω,λ. Then by (49)

FG−1F ∗ =

(
FP−1F ∗ −FP−1BC−1F ∗

−FC−1B∗P−1F ∗ F (C −B∗A−1B)−1F ∗

)
,

where P = A − BC−1B∗. By the Toeplitz invariance properties described above, the
integral kernel of FPF ∗ is P (ω)δω,λ where

P (ω) = [A(ω)− |B(ω)|2C(ω)].

Thus by the proof for d = 1, the integral kernel of FP−1F ∗ (the top left hand side of
FG−1F ∗) is P (ω)−1δω,λ. A similar result holds for the other entries in FG−1F ∗. Therefore,
the integral kernel of FG−1F ∗ is(

P (ω)−1 P (ω)−1B(ω)C(ω)−1

C(ω)−1B(ω)∗P (ω)−1 (C(ω)− |B(ω)|2A(ω)−1)−1

)
δω,λ

=

(
A(ω) B(ω)
B(ω)∗ C(ω)

)−1

δω,λ.

This proves the result for d = 2. By induction the result can be proved for d > 2. �

B.2 Proof of results in Sections 3.2 and 3.3

PROOF of Theorem 3.1 Under Assumption 2.1 and by using Lemma 2.1 for all 1 ≤
a, b ≤ p, Da,b are bounded operators. Thus the proof is a straightforward application of
Lemma 3.1. We summarize the main points below.

To prove (i) we note that Da,b = 0 is a special case of Toeplitz matrix, thus F ∗Da,bF =
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0 · δω,λ = 0. Conversely, if F ∗Da,bF = 0, then Da,b = 0.
The proof of (ii) and (iii) immediately follow from Definition 2.1 and Lemma 3.1. �

We now prove the results in Section 3.3. We first consider the Fourier transform of
the rows of Da,b and Da,b in the case a node or edge is conditionally stationary.

PROOF of Theorem 3.2 We first prove (i). If the node a is conditionally stationary
then Da,a is Toeplitz and its entries are determined by the row {[Da,a]0,r}r. By using

Lemma 3.1 we have Γ
(a,a)
t (ω) = Γ(a,a)(ω) =

∑∞
r=−∞[Da,a]0,r exp(irω). To understand the

meaning of this quantity, we note that from Proposition 2.1 for all t 6= τ

φ
(a,a)
0,t−τ =

ρ
(a,a)
0,t−τ√

ρ
(a,a)|9{(a,0),(a,t−τ)}
0,0 ρ

(a,a)|9{(a,0),(a,t−τ)}
0,0

= − [Da,a]t,τ√
[Da,a]t,t[Da,a]τ,τ

,

where ρ
(a,a)
0,t−τ and ρ

(a,a)|9{(a,0),(a,t−τ)}
0,0 is defined in (6) and (52) respectively. Thus, we have

[Da,a]t,τ =
√

[Da,a]t,t[Da,a]τ,τφ
(a,a)
0,t−τ . Further, we know that [Da,a]t,t = 1/σ2

a = 1/ρ
(a,a)
0,0 .

Together this gives

Γ(a,a)(ω) =
1

ρ
(a,a)
0,0

1−
∑

r∈Z\{0}

φ
(a,a)
0,r exp(irω)

 .
This proves (i).

The proof of (ii) is identical to (i), thus we omit the details. �

PROOF of Theorem 3.3 We first prove (i). By using Lemma 2.1, the integral kernel
of F ∗D−1

a,aF is δω,λ[Γ
(a,a)(ω)]−1. We recall that D−1

a,a contains the time series partial co-

variances and by conditional stationarity and Theorem 2.1 we have [D−1
a,a]t,τ = ρ

(a,a)|9{a}
0,t−τ .

Using this it is easily seen that the partial spectrum for the nodal time series partial
covariance is

Γ(a,a)(ω)−1 =
∑
r∈Z

Cov[X
(a,a)|9{a}
0 , X(a,a)|9{a}

r ] exp(irω) =
∑
r∈Z

ρ(a,a)|9{a}
r exp(irω).

To prove (ii) we use that (a, b) is a conditionally stationary edge and define the suboperator
block Toeplitz matrix D{a,b} : `2,2 → `2,2, where D{a,b} = (De,f ; e, f ∈ {a, b}). The integral
kernel of F ∗D{a,b}F is Γ{a,b}(ω)δω,λ where

Γ{a,b}(ω) =

(
Γ(a,a)(ω) Γ(a,b)(ω)
Γ(a,b)(ω)∗ Γ(b,b)(ω)

)
. (74)

The time series partial covariances are contained within the inverse [D{a,b}]
−1 (which is

block Toeplitz) (see Theorem 2.1). By using Lemma 3.2 the kernel of F ∗[D{a,b}]
−1F is
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Γ{a,b}(ω)−1δω,λ. Using this together with equation (72) we have

Γ{a,b}(ω)−1 =
∑
r∈Z

(
ρ

(a,a)|9{a,b}
0,r ρ

(a,b)|9{a,b}
0,r

ρ
(b,a)|9{a,b}
0,r ρ

(b,b)|9{a,b}
0,r

)
exp(irω)

=
1

det[Γ{a,b}(ω)]

(
Γ(b,b)(ω) −Γ(a,b)(ω)
−Γ(a,b)(ω)∗ Γ(a,a)(ω)

)
.

This proves the result. �

B.3 Proof of the results in Section 3.4

PROOF of Proposition 3.1 To connect the regression coefficients to entries in D we
use the identity in (69) where we set S = {a} and S ′ = {1, . . . , p}\{a}. This gives

D =

(
Da,a −Da,aH

′
aG
−1
a

−G−1
a HaDa,a (Ga −H∗aC−1

a,aHa)
−1

)
(75)

where Ha = Ca,S′ and Ga = CS′,S′ . We recall that D = (De,f , e, f ∈ {1, . . . , p}). There-
fore, comparing the blocks on the left and right hand side of (75) gives the block vector

(Da,b; b 6= a) = −Da,aH
∗
aG
−1
a . (76)

Furthermore, by comparision, it is clear that the prediction coefficients Bb)a satisfy

H∗aG
−1
a = (Bb)a; b 6= a) . (77)

Comparing (76) and (77) for b 6= a we have −Da,aBb)a = Da,b. Using that Da,a has an
inverse yields the identity

Bb)a = −D−1
a,aDa,b.

This gives the result. �

PROOF of Theorem 3.4 To prove (i) and (ii) we use Lemma 3.1 where

Bb)a = −D−1
a,aDa,b.

To prove (i) we note that under Assumption 2.1, the null space of D−1
a,a is 0. Therefore,

Da,b = 0 iff Bb)a = 0. This proves (i).
To prove (ii) we note by the invariance properties of infinite Toeplitz matrix operators

if Da,b and Bb)a are Toeplitz, then Da,b = −Da,bBb)a is Toeplitz. Conversely, if Da,b and
Db,a are Toeplitz, then Bb)a = −D−1

a,aDa,b is Toeplitz. This proves (ii). �

PROOF of Corollary 3.1 To prove (i) we use that (a) under Assumption 2.1 that
‖D−1

a,b‖ ≤ λsup and (b) from Lemma 2.1, Da,b is a bounded operator. Thus, since Bb)a =

D−1
a,bDa,b, we have ‖Bb)a‖ ≤ ‖D−1

a,b‖‖Da,b‖ <∞, thus proving (i).
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The proofs of (ii) and (iii) are similar to the proof of Theorem 3.1, thus we omit the
details. �

C Proof of Section 4

C.1 Proof of results in Section 4.1

We break the proof of Theorem 4.1 into a few steps. To bound the difference between
the rows of D̃n = C−1

n and Dn (the submatrix of D), we use that the entries of D̃n

and Dn are the entries of coefficients in a regression. This allows us to use the Baxter
inequality methods developed in Meyer et al. (2017) to bound the difference between
projections on finite dimensional spaces and infinite dimensional spaces. The infinite and
finite dimensional spaces we will use are H = sp(X

(c)
t ; t ∈ Z, 1 ≤ c ≤ p) and Hn =

sp(X
(b)
τ ; 1 ≤ τ ≤ n, 1 ≤ b ≤ p).

We recall from (3) that

PH−X(a)
t

(X
(a)
t ) =

∑
τ∈Z

p∑
b=1

β(τ,b))(t,a)X
(b)
τ (78)

with β(t,a))(t,a) = 0. Similarly, projecting X
(a)
t onto the finite dimensional space Hn is

PHn−X(a)
t

(X
(a)
t ) =

n∑
τ=1

p∑
b=1

θ(τ,b))(t,a),nX
(b)
τ , (79)

with θ(t,a))(t,a),n = 0. Let

σ2
a,t = E[X

(a)
t − PH−X(a)

t
(X

(a)
t )]2

and σ̃2
a,t,n = E[X

(a)
t − PHn−X(a)

t
(X

(a)
t )]2. (80)

Define the (np− 1)-dimensional vectors

B(a,t)
n = {β(τ,b))(t,a); 1 ≤ τ ≤ n and 1 ≤ b ≤ p, not (τ, b) = (t, a)}

and Θ(a,t)
n = {θ(τ,b))(t,a),n; 1 ≤ τ ≤ n and 1 ≤ b ≤ p, not (τ, b) = (t, a)}. (81)

To minimise notation we will drop the n, and let θ(τ,b))(t,a) = θ(τ,b))(t,a),n and σ̃2
a,t = σ̃2

a,t,n.
But we should keep in mind that both θ and σ depend on n. Since the coefficients of a
precision matrix are closely related to the coefficients in a regression it is clear that the
tth “row” of the matrix D̃n = C−1

n at node a (which is the ((a− 1)n+ t)th row of D̃n) is
the rearranged vector

Θ̃
(a,t)

n =
1

σ̃2
a,t

[1,−Θ(a,t)
n ]. (82)

54



The tth row of matrix Dn at node a is the similarly rearranged vector

B̃
(a,t)

n =
1

σ2
a,t

[1,−B(a,t)
n ].

Thus the difference between Θ̃
(a,t)

n and B̃
(a,t)

n is

Θ̃
(a,t)

n − B̃
(a,t)

n

=

[
1

σ̃2
a,t

− 1

σ2
a,t

](
1,−Θ(a,t)

n

)
+

1

σ2
a,t

[
0,
(
B(a,t)
n −Θ(a,t)

n

)]
.

Since both Θ̃
(a,t)

n and B̃
(a,t)

n are the (same) rearranged rows of [D̃n](a−1)n+t,· and [Dn](a−1)n+t,·,

The `1-difference between the ((a− 1)n+ t)th row of Dn and D̃n is∥∥∥[Dn](a−1)n+t,· − [D̃n](a−1)n+t,·

∥∥∥
1

=
∥∥∥Θ̃

(a,t)

n − B̃
(a,t)

n

∥∥∥
1

≤
|σ2
a,t − σ̃2

a,t|
σ̃2
a,tσ

2
a,t

(
1 + ‖Θ(a,t)

n ‖1

)
+

1

σ2
a,t

∥∥∥B(a,t)
n −Θ(a,t)

n

∥∥∥
1
. (83)

In the two lemmas below we obtain a bound for the differences |σ2
a,t − σ̃2

a,t| and ‖B(a,t)
n −

Θ(a,t)
n ‖1. These two bounds will prove Theorem 4.1.

Lemma C.1 Suppose Assumptions 2.1 and 4.1 hold. Let B(a,t)
n and Θ(a,t)

n be defined as
in (81). Then ∥∥∥B(a,t)

n −Θ(a,t)
n

∥∥∥
2
≤ λ−1

infλsup

p∑
b=1

∑
τ /∈{1,...,n}

|β(τ,b))(t,a)|.

PROOF The proof is based on the innovative technique developed in Meyer et al. (2017)
(who used the method to obtain Baxter bounds for stationary spatial processes). We
start by deriving the normal equations corresponding to (78) and (79) for 1 ≤ s ≤ n and
c = 1, . . . , p (excluding (c, s) = (a, t)). For equation (78) this gives the normal equations

Cov(X
(a)
t , X(c)

s ) =

p∑
b=1

n∑
τ=1

β(τ,b))(t,a) Cov(X(b)
τ , X(c)

s ) +

p∑
b=1

∑
τ /∈{1,...,n}

β(τ,b))(t,a) Cov(X(b)
τ , X(c)

s ) (84)

and for (79) this gives

Cov(X
(a)
t , X(c)

s ) =

p∑
b=1

n∑
τ=1

θ(τ,b))(t,a) Cov(X(b)
τ , X(c)

s ). (85)
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Taking the difference between (84) and (85) we have

p∑
b=1

n∑
τ=1

[
β(τ,b))(t,a) − θ(τ,b))(t,a)

]
Cov(X(b)

τ , X(c
s ) = −

p∑
b=1

∑
τ /∈{1,...,n}

β(τ,b))(t,a) Cov(X(b)
τ , X(c)

s ).

As the above holds for all 1 ≤ s ≤ n and 1 ≤ c ≤ p (excluding X
(a)
t ) we can write the

above as a vector equation

p∑
b=1

∑
τ∈{1,...,n}

[
β(τ,b))(t,a) − θ(τ,b))(t,a)

]
Cov(X(b)

τ , Y n)

= −
p∑
b=1

∑
τ /∈{1,...,n}

β(τ,b))(t,a) Cov(X(b)
τ , Y n), (86)

where Y n = (X
(c)
s ; 1 ≤ s ≤ n, 1 ≤ c ≤ p, (c, s) 6= (a, t)}). We observe that the LHS of the

above can be expressed as

p∑
b=1

∑
τ∈{1,...,n}

[
β(τ,b))(t,a) − θ(τ,b))(t,a)

]
Cov(X(b)

τ , Y n)

= Cov

 p∑
b=1

∑
τ∈{1,...,n}

[
β(τ,b))(t,a) − θ(τ,b))(t,a)

]
X(b)
τ , Y n


= Cov

([
B(a,t)
n −Θ(a,t)

n

]′
Y n, Y n

)
, (87)

where the last line of the above is due to

p∑
b=1

∑
τ∈{1,...,n}

[
β(τ,b))(t,a) − θ(τ,b))(t,a)

]
X(b)
τ =

[
B(a,t)
n −Θ(a,t)

n

]′
Y n.

Substituting (87) into the LHS of (86) gives the vector equation

(Var[Y n]) [B(a,t)
n −Θ(a,t)

n ] = −
p∑
b=1

∑
τ /∈{1,...,n}

β(τ,b))(t,a) Cov(X(b)
τ , Y n).

Therefore[
B(a,t)
n −Θ(a,t)

n

]
= −Var[Y n]−1

p∑
b=1

∑
τ /∈{1,...,n}

β(τ,b))(t,a) Cov(X(b)
τ , Y n).
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Now taking the `2-norm of the above we have∥∥∥B(a,t)
n −Θ(a,t)

n

∥∥∥
2
≤

∥∥Var[Y n]−1
∥∥ p∑
b=1

∑
τ /∈{1,...,n}

|β(τ,b))(t,a)|
∥∥Cov(X(b)

τ , Y n)
∥∥

2

≤
∥∥Var[Y n]−1

∥∥ p∑
b=1

∑
τ /∈{1,...,n}

|β(τ,b))(t,a)|
∥∥Cov(X(b)

τ , Y n)
∥∥

2

≤
∥∥Var[Y n]−1

∥∥(sup
τ,b

[

p∑
c=1

∞∑
s=−∞

Cov(X(b)
τ , X(c)

s )2]1/2

)
p∑
b=1

∑
τ /∈{1,...,n}

|β(τ,b))(t,a)|,

where ‖ · ‖ denotes the (spectral) matrix norm. By using Assumption 2.1 we have
λmin(Var[Y n]) ≥ λinf , thus ‖Var[Y n]−1‖ ≤ λ−1

inf . Again by Assumption 2.1 we have

supτ,b[
∑p

c=1

∑∞
s=−∞Cov(X

(b)
τ , X

(c)
s )2]1/2 ≤ λsup. Substituting these two bounds into the

above, gives ∥∥∥B(a,t)
n −Θ(a,t)

n

∥∥∥
2
≤ λ−1

infλsup

p∑
b=1

∑
τ /∈{1,...,n}

|β(τ,b))(t,a)|.

This proves the result. �

The above gives a bound for the `2-norm. To obtain a bound on the `1-norm we use the
Cauchy-Schwarz inequality to give∥∥∥B(a,t)

n −Θ(a,t)
n

∥∥∥
1
≤ (np)1/2λ−1

infλsup

p∑
b=1

∑
τ /∈{1,...,n}

|β(τ,b))(t,a)|. (88)

Next we bound the difference between σ̃2
a,t and σ2

a,t.

Lemma C.2 Suppose Assumptions 2.1 and 4.1 hold. Let σ2
a,t and σ̃2

a,t,n be defined as in
(80). Then

0 ≤ σ̃2
a,t,n − σ2

a,t ≤
[
λ−1

infλ
2
sup + λsup

] p∑
b=1

∑
τ /∈{1,...,n}

|β(τ,b))(t,a)|.

PROOF First we note that since [Hn − Xa
t ] ⊆ [H − X

(a)
t ], then σ̃2

a,t,n ≥ σ2
a,t and 0 ≤

σ̃2
a,t,n − σ2

a,t. To prove the result, we recall if PG(Y ) is the projection of Y onto G, then

Var[Y − PG(Y )] = Var[Y ]− Cov[Y, PG(Y )].

Using the above, with Gn = Hn −X(a)
t and G = H−X(a)

t and taking differences gives

σ̃2
a,t,n − σ2

a,t = Var[X
(a)
t − PHn−X(a)

t
(X

(a)
t )]− Var[X

(a)
t − PH−X(a)

t
(X

(a)
t )]

= Cov
[
X

(a)
t , PH−X(a)

t
(X

(a)
t )− PHn−Xa

t
(X

(a)
t )
]
.
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Substituting the expressions for PH−X(a)
t

(X
(a)
t ) and PHn−X(a)

t
(X

(a)
t ) in (78) and (79) into

the above gives

σ̃2
a,t,n − σ2

a,t = Cov

[
X

(a)
t ,

p∑
b=1

n∑
τ=1

(
β(τ,b))(t,a) − θ(τ,b))(t,a)

)
X(b)
τ

]
+

Cov

X(a)
t ,

p∑
b=1

∑
τ /∈{1,...,n}

β(τ,b))(t,a)X
(b)
τ


=

p∑
b=1

n∑
τ=1

(
β(τ,b))(t,a) − θ(τ,b))(t,a)

)
Cov[X(b)

τ , X
(a)
t ] +

p∑
b=1

∑
τ /∈{1,...,n}

β(τ,b))(t,a) Cov[X(b)
τ , X

(a)
t ].

Applying the Cauchy-Schwarz inequality to the above gives

σ̃2
a,t,n − σ2

a,t ≤

[
p∑
b=1

n∑
τ=1

(
β(τ,b))(t,a) − θ(τ,b))(t,a)

)2

]1/2 [ p∑
b=1

n∑
τ=1

Cov[X(b)
τ , X

(a)
t ]2

]1/2

+

 p∑
b=1

∑
τ /∈{1,...,n}

β2
(τ,b))(t,a)

1/2  p∑
b=1

∑
τ /∈{1,...,n}

Cov[X(b)
τ , X

(a)
t ]2

1/2

.

Applying the bound in Lemma C.1 to the first term on the RHS and using that the sum
of the covariances squared are bounded by λsup we have

σ̃2
a,t,n − σ2

a,t ≤ λ−1
infλ

2
sup

p∑
b=1

∑
τ /∈{1,...,n}

|β(τ,b))(t,a)|+ λsup

 p∑
b=1

∑
τ /∈{1,...,n}

β2
(τ,b))(t,a)

1/2

≤
[
λ−1

infλ
2
sup + λsup

] p∑
b=1

∑
τ /∈{1,...,n}

|β(τ,b))(t,a)|,

where the above follows from the fact that the `2-norm of a vector is bounded from above
by the `1-norm. This gives the required result. �

We use Lemmas C.1, C.2 and equation (88) to prove Theorem 4.1.

PROOF of Theorem 4.1 We first obtain a bound for the sum of the regression coeffi-
cients

p∑
b=1

∑
τ /∈{1,...,n}

|β(τ,b))(t,a)| =

p∑
b=1

[
∞∑

τ=n+1

+
0∑

τ=−∞

]
|β(τ,b))(t,a)|.
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Under Assumption 4.1 we have

p∑
b=1

∑
τ /∈{1,...,n}

|β(τ,b))(t,a)| ≤ λ−1
inf

p∑
b=1

[
∞∑

τ=n+1

+
0∑

τ=−∞

]
1

`(τ − t)

= λ−1
inf

p∑
b=1

∞∑
τ=n+1

1

`(τ − t)
+

p∑
b=1

0∑
τ=−∞

1

`(τ − t)

= λ−1
inf

p∑
b=1

∞∑
j=n+1−t

1

`(j)
+

p∑
b=1

−t∑
τ=−∞

1

`(j)
.

Under Assumption 4.1 we have for r > 0 λ−1
inf

∑∞
j=r `(j) ≤ λ−1

inf r
−K∑∞

j=r j
K`(j)−1 ≤

C`r
−K , where C` = λ−1

inf

∑
j∈Z `(j)

−1. And by a similar argument for r < 0, λ−1
inf

∑r
j=−∞ `(j) ≤

C`|r|−K . Applying these two bounds to the above we have

p∑
b=1

∑
τ /∈{1,...,n}

|β(τ,b))(t,a)| ≤ 2pC` min(|n+ 1− t|, |t|)−K (89)

We use this inequality to prove the result.
We return to (83) which gives the bound∥∥∥[D̃n](a−1)n+t,· − [Dn](a−1)n+t,·

∥∥∥
1
≤
|σ2
a,t − σ̃2

a,t|
σ̃2
a,tσ

2
a,t

(
1 + ‖Θ(a,t)

n ‖1

)
+

1

σ2
a,t

∥∥∥B(a,t)
n −Θ(a,t)

n

∥∥∥
1
.

Substituting the bounds in (88) and Lemma C.2 into the above gives∥∥∥[D̃n](a−1)n+t,· − [Dn](a−1)n+t,·

∥∥∥
1

≤ 1

σ̃2
a,tσ

2
a,t

[
λ−1

infλ
2
sup + λsup

] (
1 + ‖Θ(a,t)

n ‖1

) p∑
b=1

∑
τ /∈{1,...,n}

|β(τ,b))(t,a)|

+
1

σ2
a,t

(np)1/2λ−1
infλsup

p∑
b=1

∑
τ /∈{1,...,n}

|β(τ,b))(t,a)|

≤
(

1

σ̃2
a,tσ

2
a,t

[
λ−1

infλ
2
sup + λsup

] (
1 + ‖Θ(a,t)

n ‖1

)
+

1

σ2
a,t

(np)1/2λ−1
infλsup

) p∑
b=1

∑
τ /∈{1,...,n}

|β(τ,b))(t,a)|.

We now bound ‖Θ(a,t)
n ‖1, σ̃−2

a,t and σ−2
a,t in terms of the eigenvalues of C. By using (82) we

have Θ̃
(a,t)

n = 1
σ̃2
a,t

[1,−Θ(a,t)
n ], this gives the inequality

‖Θ(a,t)
n ‖1 ≤ σ̃2

a,t‖Θ̃
(a,t)

n ‖1.

Since Θ̃
(a,t)

n are the (rearranged) rows of D̃n = C−1
n and the smallest eigenvalue of Cn is
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bounded from below by λinf we have that

‖Θ(a,t)
n ‖1 ≤ σ̃2

a,tλ
−1
inf .

Since σ̃2
a,t ≤ Var[X

(a)
t ] = [Ct,t]a,a, and [Ct,t]a,a ≤

∑
τ ‖[Ct,τ ]a,·‖2

2 ≤ λsup then σ̃2
a,t ≤ λsup,

thus ‖Θ(a,t)
n ‖1 ≤ λ−1

infλsup.
By using (48) (from the start of Appendix A.1) we have σ−2

a,t ≤ λ−1
inf . Furthermore, by

using the same arguments used to show that σ−2
a,t ≤ λ−1

inf we can also show σ̃−2
a,t ≤ λ−1

inf .
Altogether, these bounds with (89) give∥∥∥[D̃n](a−1)n+t,· − [Dn](a−1)n+t,·

∥∥∥
1

≤
(

1

λ2
inf

[
λ−1

infλ
2
sup + λsup

] (
1 + λ−1

infλsup

)
+

1

λinf

(np)1/2λ−1
infλsup

)
2pC` min(|n+ 1− t|, |t|)−K

= O
(
(np)1/2 min(|n+ 1− t|, |t|)−K

)
,

where the constants above only depend on λinf , λsup, p and C` = λ−1
inf

∑
j∈Z `(j)

−1. Thus
proving the result. �

PROOF of Proposition 4.1 By definition we have

[Kn(ωk1 , ωk2)]a,b = [F ∗nD̃a,b;nFn]k1,k2 =
1

n

n∑
τ,t=1

[D̃a,b;n]t,τ exp(−itωk1 + iτωk2)

Replacing D̃a,b;n with Da,b;n and using Theorem 4.1 gives

|([F ∗n(D̃n −Dn)Fn]k1,k2)a,b| ≤
1

n

n∑
t=1

n∑
τ=1

∣∣∣[D̃a,b;n −Da,b;n]t,τ

∣∣∣
≤ 1

n

n∑
t=1

(np)1/2

min(|t− n+ 1|, |t|)K
= O

(
(np)1/2

nK

)
,

where the above holds for K > 1. This gives

[Kn(ωk1 , ωk2)]a,b = [F ∗nDa,b;nFn]k1,k2 +O

(
(np)1/2

nK

)
=

1

n

n∑
t=1

n∑
τ=1

[Da,b]t,τ exp(−itωk1 + iτωk2) +O

(
(np)1/2

nK

)
. (90)

Now we obtain an expression for the leading term in the RHS of the above in terms of
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Γ
(a,b)
t (ω);

1

n

n∑
t=1

n∑
τ=1

[Da,b]t,τ exp(−itωk1 + iτωk2)

=
1

n

n∑
t=1

n∑
τ=1

[Da,b]t,τ exp(−it(ωk1 − ωk2)) exp(i(τ − t)ωk2) let r = τ − t

=
1

n

n∑
t=1

exp(−it(ωk1 − ωk2))
n−t∑
r=1−t

[Da,b]t,t+r exp(irωk2)

=
1

n

n∑
t=1

exp(−it(ωk1 − ωk2))
∞∑

r=−∞

[Da,b]t,t+r exp(irωk2) +O

(
1

n

n∑
t=1

[
1−t∑

r=−∞

+
∞∑

r=n−t+1

]
1

`(r)

)

=
1

n

n∑
t=1

exp(−it(ωk1 − ωk2))
∞∑

r=−∞

[Da,b]t,t+r exp(irωk2) +O

(
1

n

∑
r∈Z

|r|
`(r)

)

=
1

n

n∑
t=1

exp(−i(k1 − k2)ωt)Γ
(a,b)
t (ωk2) +O

(
n−1
)
.

By a similar argument we can show that

1

n

n∑
t=1

n∑
τ=1

[Da,b]t,τ exp(−itωk1 + iτωk2)

=
1

n

n∑
τ=1

exp(i(k2 − k1)ωτ )Γ
(b,a)
τ (ωk1)

∗ +O
(
n−1
)

=

[
1

n

n∑
τ=1

exp(−i(k2 − k1)ωτ )Γ
(b,a)
τ (ωk1)

]∗
+O

(
n−1
)

Therefore, since O((np)1/2/nK) = O(1/n) when K ≥ 3/2 and p is fixed, substituting the
above into (90) we have

[Kn(ωk1 , ωk2)]a,b =
1

n

n∑
t=1

exp(−i(k1 − k2)ωt)Γ
(a,b)
t (ωk2) +O

(
1

n

)
and

[Kn(ωk1 , ωk2)]a,b =

[
1

n

n∑
t=1

exp(−i(k2 − k1)ωt)Γ
(b,a)
t (ωk1)

]∗
+O

(
1

n

)
this proves (26).

To prove (27) (under conditional stationarity) we use that Γ
(a,b)
t (ω) = Γ(a,b)(ω) for all
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t. Substituting this into (26) gives

[Kn(ωk1 , ωk2)]a,b = Γ(a,b)(ωk2)
1

n

n∑
t=1

exp(−i(k1 − k2)ωt) +O

(
1

n

)
,

Now by using that

1

n

n∑
t=1

exp (−itωk1−k2,n) =

{
0 k1 − k2 /∈ nZ
1 k1 − k2 ∈ nZ

immediately proves (27). �

C.2 Proofs for Section 4.3

PROOF of Proposition 4.2 The proof follows from the definition of K
(a,b)
r (ω)

K(a,b)
r (ω) =

∫ 1

0

e−2πiruΓ(a,b)(u;ω)du.

PROOF of Proposition 4.3 To prove the result we use (26) in Proposition 4.1 to give

[Kn(ωk1 , ωk2)]a,b =
1

n

n∑
t=1

Γ
(a,b)
t (ωk1) exp(−it(ωk1 − ωk2)) +O

(
1

n

)

We replace Γ
(a,b)
t (ωk2) with Γ(a,b)(t/n, ωk2). Using the locally stationary approximation

bound in (31) we have

[Kn(ωk1 , ωk2)]a,b =
1

n

n∑
t=1

exp(−i(k1 − k2)ωt)Γ
(a,b)

(
t

n
, ωk2

)
+O

(
1

n

)
. (91)

This proves (33).
In order to prove (34) we study the smoothness of Γ(a,b)(u, ω) over u and its corre-

sponding Fourier coefficients (keeping ω fixed). We first observe that under Assumption
4.2 we have that

∂Γ(a,b)(u, ω)

∂u
=
∑
j∈Z

d[Dj(u)]a,b
du

exp(ijω).

This leads to the bound

sup
u,ω

∣∣∣∣∂Γ(a,b)(u, ω)

∂u

∣∣∣∣ = sup
u

∑
j∈Z

∣∣∣∣d[Dj(u)]a,b
du

∣∣∣∣ ≤∑
j∈Z

`(j)−1 <∞. (92)

We use this bound below. To simplify notation, we drop the (a, b) and ω in Γ(a,b)(u, ω)
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(as they do not play a role in the bound). In order to understand the rate of decay of the
Fourier coefficients of Γ(·) we note that Γ is a piecewise continuous 1-periodic function
(where Γ(u) = Γ(u+ n) for all n ∈ Z). Define the Fourier coefficient

Kr =

∫ 1

0

Γ(u) exp(−ir2πu)du.

By using (92) the derivative of Γ(·) is bounded on the interior (0, 1) (it is unlikely to exist
at 0 and 1 since typically Γ(0) 6= Γ(1)). Thus by integration by parts we have the bound

|Kr| ≤ C|r|−1 for r 6= 0. (93)

We now obtain the limit for

1

n

n∑
k=1

Γ(k/n) exp(−irωk) |r| ≤ n/2.

In particular, we show that

sup
|r|≤n/2

∣∣∣∣∣ 1n
n∑
k=1

Γ(k/n) exp

(
−ir2πk

n

)
−
∫ 1

0

Γ(u) exp(−i2πur)du

∣∣∣∣∣ = O

(
1

n

)
.

Using the mean value theorem a crude bound for the above is O((|r|+ 1)/n). To obtain a
uniform O(1/n) bound over |r| ≤ n/2 requires a more subtle techique which we describe
below.

Taking difference between the sum and integral gives

n∑
k=1

∫ k/n

(k−1)/n

[Γ(k/n) exp (−irωk)− Γ(u) (−ir2πu)] du

=
n∑
k=1

∫ k/n

(k−1)/n

[Γ(k/n)− Γ(u)] exp (−irωk) du+

n∑
k=1

∫ k/n

(k−1)/n

Γ(u) [exp (−irωk)− exp (−ir2πu)] du

= I1 + I2.

It is clear by the Lipschitz continuity of Γ and | exp(i2πu)| ≤ 1 that I1 = O(1/n) uniformly
over all r. To obtain a similar bound for the second term we exploit the symmetries of
the cos and sin functions that make up exp(−irωk).

We separate I2 into its sin and cosine transforms

I2 = I2,C − iI2,S
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where

I2,C =
n−1∑
k=1

∫ k/n

(k−1)/n

Γ(u)

[
cos

(
r

2πk

n

)
− cos (r2πu)

]
du

I2,S =
n−1∑
k=1

∫ k/n

(k−1)/n

Γ(u)

[
sin

(
r

2πk

n

)
− sin (r2πu)

]
du.

We focus on the cosine transform

I2,C =
n−1∑
k=1

∫ k/n

(k−1)/n

Γ(u)

[
cos

(
r

2πk

n

)
− cos (r2πu)

]
du

=
n∑
k=1

∫ 1/n

0

Γ

(
u+

k

n

)[
cos

(
2πr

k

n

)
− cos

(
2πr

[
u+

k

n

])]
du.

Applying the mean value theorem to the above term would give the bound O(|r|/n).
Instead we turn the above integral into the differences of cosines and Γ. We show that
the resulting product of differences cancel the unwanted |r| term. We split the sum∑n

k=1 fk into a double sum
∑r−1

j=0

∑n/(2r)
k=1 fjn/(2r)+k +

∑r−1
j=0

∑n/(2r)
k=1 fjn/(2r)+n/(2r)+k. This

gives the double sum

I2,C =
r−1∑
j=0

n/(2r)∑
k=1

∫ 1/n

0

Γ

(
u+

k + jn/r

n

)
×{

cos

(
2πr

k + jn/r

n

)
− cos

[
2πr

(
u+

k + jn/r

n

)]}
du

+
r−1∑
j=0

n/(2r)∑
k=1

∫ 1/n

0

Γ

(
u+

k + jn/r + n/(2r)

n

)
×[

cos

(
2πr

[
k + jn/r + n/(2r)

n

])
− cos

(
2πr

[
u+

k + jn/r + n/(2r)

n

])]
du

Now we use that

cos

(
2πr

k + jn/r + n/(2r)

n

)
− cos

(
2πr[u+

k + jn/r + n/(2r)

n
]

)
= −

[
cos

(
2πr

k + jn/r

n

)
− cos

(
2πr[u+

k + jn/r

n
]

)]
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and substitute this into the above to give

I2,C =
r−1∑
j=0

n/(2r)∑
k=1

∫ 1/n

0

[
Γ

(
u+

k + jn/r

n

)
− Γ

(
u+

k + jn/r

n
+
n/(2r)

n

)]
×[

cos

(
2πr

k

n

)
− cos

(
2πr

[
u+

k

n

])]
du.

Observe that I2,C is expressed as a double difference. We bound both these differences
using the Lipschitz continuity of Γ(·) and cos(r·); |Γ(u)− Γ(v)| ≤ sup |Γ′(u)| · |u− v| and
| cos(ru)− cos(rv)| ≤ r|u− v|. This yields the bound

I2,C ≤ sup
u
|Γ′(u)|

r−1∑
j=0

n/(2r)∑
k=1

1

r
× r

n
× 1

n
= sup

u
|Γ′(u)|n−1

which is a uniform bound for all |r| ≤ n/2. The same bound holds for the sin transform
I2,S. Altogether, the bounds for I1, I2,C and I2,S give

sup
ω

sup
|r|≤n/2

∣∣∣∣∣ 1n
n∑
k=1

Γ(a,b)(k/n, ω) exp

(
ir

2πk

n

)
−K(a,b)

r (ω)

∣∣∣∣∣ = O(n−1). (94)

Thus for |k1 − k2| ≤ n/2 we have

[Kn(ωk1 , ωk2)]a,b = K
(a,b)
k1−k2(ωk2) +O(n−1).

For n/2 < k1 − k2 < n we return to (91)

[Kn(ωk1 , ωk2)]a,b =
1

n

n∑
t=1

exp(i(k1 − k2)ωt)Γ
(a,b)

(
t

n
, ωk2

)
+O(n−1)

=
1

n

n∑
t=1

exp(i(k1 − k2 − n)ωt)Γ
(a,b)

(
t

n
, ωk2

)
+O(n−1)

= K
(a,b)
k1−k2−n(ωk2) +O(n−1)

where we use that |k1−k2−n| < n/2 and (94). By a similar argument for −n < k1−k2 <
n/2 we have

[Kn(ωk1 , ωk2)]a,b = K
(a,b)
k1−k2+n(ωk2) +O(n−1),

this proves (34). �

PROOF of Proposition 4.4 To prove (35) we use that under Assumption 4.2 Γ(a,b)(·;ω) ∈
L2[0, 1]. Thus

∑
r |K

(a,b)
r (ω)|2 <∞, this immediately gives (35). The bound supω |K

(a,b)
r (ω)| ≤

C|r|−1 follows immediately from (93).
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To prove (36) we use the mean value theorem

|K(a,b)
r (ω1)−K(a,b)

r (ω2)| ≤ sup
ω
|dK(a,b)

r (ω)/dω| · |ω1 − ω2|.

To bound supω |dK
(a,b)
r (ω)/dω| we use that∣∣∣∣ ddωK(a,b)

r (ω)

∣∣∣∣ ≤∑
j∈Z

(1 + |j|)
∣∣∣∣∫ 1

0

e−2πiru[Dj(u)]a,bdu

∣∣∣∣ . (95)

To bound the integral in the above we use integration by parts, this together with As-
sumption 4.2 gives∣∣∣∣∫ 1

0

e−2πiruD
(a,b)
j (u)du

∣∣∣∣ ≤ { C`(j)−1 r = 0
C|r|−1`(j)−1 r 6= 0

.

Substituting this into (96) gives∣∣∣∣ ddωK(a,b)
r (ω)

∣∣∣∣ =

{
C
∑

j∈Z(1 + |j|)`(j)−1 r = 0

C|r|−1
∑

j∈Z(1 + |j|)`(j)−1 r 6= 0
, (96)

this immediately leads to the required result. �

D Assumptions 2.1, 4.1 and 4.2 and the tvVAR pro-

cess

We show that under certain conditions the tvVAR process satisfies Assumptions 2.1, 4.1
and 4.2. Then in Appendix D.2 we consider the inverse time-varying spectral density of
a tvVAR(1) model.

D.1 Assumptions and the tvVAR

tvVAR and Assumption 2.1

We first show that Assumption 2.1 holds for the model X t = A(t)X t−1 + εt where
supt ‖A(t)‖ < 1 − δ. We will show that both the largest eigenvalues of C and D are
finite (which proves Assumption 2.1). We prove the result by showing the absolute sum
of each row of Ca,b and Da,b is bounded for each 1 ≤ a, b ≤ p.

We first obtain a bound for the largest eigenvalue of C in terms of the covariances.
Since supt ‖A(t)‖ < 1−δ, X t almost surely has the causal solution X t =

∑∞
`=0[
∏`

j=0 A(t−
j)]εt−` Using this expansion and supt ‖A(t)‖ < 1−δ it is easily shown that |Cov[X

(a)
t , X

(b)
τ ]| ≤

K(1− δ)|t−τ | for some finite constant K. Thus by using Gerschgorin Circle Theorem we
have

λsup(C) ≤ Kp
∑
r∈Z

(1− δ)|r|.
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Next we show that λsup(D) < ∞. Under supt ‖A(t)‖ < 1 − δ, the rows of A(t) are such
that

sup
t,a
‖[A(t)]a·‖1 ≤ p1/2 sup

t,a
‖[A(t)]a·‖2 ≤ p1/2(1− δ).

Therefore, by using the above, the representation of Da,b in (46) together with Gerschgorin
Circle Theorem we have λsup(D) <∞. Thus Assumptions 2.1 is satisfied.

We mention that supt ‖A(t)‖ < 1 − δ is a sufficient condition. It can be relaxed to
allow for a contraction on the spectral radius of A(t) and smoothness conditions on A(t)
(see Künsch (1995)). The above result can be extended to finite order tvVAR(d) models,
by rewriting the p-dimensional tvVAR(d) model as a pd-dimension tvVAR(1) model and
placing similar conditions on the corresponding tvVAR(1) matrix.

tvVAR and Assumption 4.1

Suppose that {X t} has a tvVAR(∞) representation where supt ‖Aj(t)‖2 ≤ `(j)−1 and
{`(j)} is a monotonically increasing sequence as |j| → ∞. If

∑
j∈Z |j|K+1`(j)−1 <∞ (for

some K ≥ 1), then we show below that Assumption 4.1 is satisfied.
To show this we require the following lemma.

Lemma D.1 Suppose `(j)−1 is monotonically decreasing as |j| → ∞ with
∑

j∈Z |j|K`(j)−1 <
∞ (for K ≥ 2). Then for all r ∈ Z

∞∑
s=−∞

1

`(s)`(s+ r)
≤ 1˜̀(r) where ˜̀(j) =

[
3

1

`(b|j|/2c)
∑
s∈Z

1

`(s)

]−1

and
∑

j∈Z |j|K ˜̀(j)−1 <∞.

PROOF. Without loss of generality we prove the result for r ≥ 0. We partition the sum∑∞
s=−∞ into three terms

∞∑
s=−∞

1

`(s)`(s+ r)
=

∞∑
s=0

1

`(s)`(s+ r)
+

−r∑
s=−∞

1

`(s)`(s+ r)
+

−1∑
s=−r+1

1

`(s)`(s+ r)

= II1 + II2 + II3.

Using that 1/`(j) is monotonically decreasing as j →∞ is is easily seen that

II1 ≤
1

`(r)

∞∑
s=0

1

`(s)
and II2 ≤

1

`(r)

0∑
s=−∞

1

`(s)
. (97)

To bound II3 we use that for −r/2 ≤ s ≤ −1 that `(s) ≤ `(br/2c) and for −r + 1 ≤ s ≤
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−r/2 then `(s+ r) ≤ `(br/2c). Altogether this gives the bound

II3 ≤

 −1∑
s=−r/2

+

−r/2∑
s=−r+1

 1

`(s)

1

`(s+ r)
≤ 1

`(br/2c)
∑
s∈Z

1

`(s)
.

The above bound together with (97) (noting that `(r) > `(br/2c)) gives

∞∑
s=−∞

1

`(s)`(s+ r)
≤ 3

1

`(b(r/2c)
∑
s∈Z

1

`(s)
. (98)

For all j define

˜̀(j) =

[
3

1

`(b|j|/2c)
∑
s∈Z

1

`(s)

]−1

.

Then from (98) we have the bound

∞∑
s=−∞

1

`(s)`(s+ r)
≤ 1˜̀(r) .

Since by assumption
∑

j∈Z |j|K`(|j|)−1 < ∞, it is immediately clear from the definition

of ˜̀(j) that
∑

j∈Z |j|K ˜̀(j)−1 <∞. This proves the result. �

Lemma D.2 Suppose X t has a tvVAR(∞) representation that satisfies (44) and Dt,τ

be defined as in (45). If the time-varying AR matrices satisfy supt ‖Aj(t)‖2 ≤ `(j)−1

where `(j)−1 is monotonically decreasing as |j| → ∞ and
∑

j∈Z |j|K`(j)−1 < ∞, then

supt ‖Dt,t+j‖1 ≤ ˜̀(j)−1 where supt
∑

j 6=0 |j|K ˜̀(j)−1 <∞.

PROOF By using (45) we have

‖Dt,t+j‖1 ≤ sup
t

∞∑
s=−∞

∥∥∥Ãs(t+ s)′Ãj+s(t+ s)
∥∥∥

1

≤
∞∑

s=−∞

∥∥∥Ãs(t+ s)
∥∥∥

2

∥∥∥Ãj+s(t+ s)
∥∥∥

2
≤

∞∑
s=−∞

1

`(s)`(s+ j)
.

Finally, from the above and by using Lemma D.1 we have

‖Dt,t+j‖1 ≤ ˜̀(j)−1,

this proves the result. �
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tvVAR and Assumption 4.2

We now show that under certain conditions on {Aj(t)} the tvVAR process satisfies As-
sumption 4.2. Define the matrices Aj : [0, 1] → Rp×p, which are Lipschitz in the sense
that

‖Aj(u)−Aj(v)‖1 ≤
1

`(j)
|u− v| (99)

where `(|j|)−1 is monotonically decreasing as |j| → ∞ with
∑

j∈Z j
2`(j)−1 <∞ and

sup
u
‖Aj(u)‖1 ≤ `(j)−1. (100)

Following Dahlhaus (2000a) we define the locally stationary tvVAR model as

X t,n =
∞∑
j=1

Aj

(
t

n

)
X t−j,n + εt, (101)

where {εt}t are i.i.d random variables with Var[εt] = Σ (0 < λmin(Σ) ≤ λmax(Σ) < ∞).
To define the suitable Dj(u) (as given in Assumption 4.2), we first define the auxillary,
stationary process corresponding to X t,n;

X t(u) =
∞∑
j=1

Aj(u)X t−j(u) + εt. (102)

The inverse covariance of {X t(u)}t is D(u) = (Da,b(u); 1 ≤ a, b ≤ p) with [Da,b(u)]t,τ =
[Dt−τ (u)]a,b and

Dt−τ (u) =
∞∑

`=−∞

Ã` (u)′Σ−1Ã`+(τ−t)(u). (103)

The spectral density matrix corresponding to {X t(u)}t is

Σ(u;ω) = [Ip −
∞∑
j=1

Aj(u) exp(−ijω)]−1Σ([Ip −
∞∑
j=1

Aj(u) exp(−ijω)]−1)∗. (104)

Thus the time-varying spectral precision matrix associated with {Xt,n}t is Γ(t/n;ω) =
Σ(t/n;ω)−1 (see Section 4.3). In the following lemma we show that the time series {X t,n}t
satisfies Assumption 4.2.

Lemma D.3 Suppose that the time series {X t,n}t has the representation in (101), where
the tvVAR matrices satisfy conditions (99) and (100). Let Dt,τ and Dt−τ (u) be defined
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as in (45) and (103). Then∥∥∥∥Dt,τ −Dt−τ

(
t+ τ

2n

)∥∥∥∥
1

≤ |t− τ |+ 1

n˜̀(t− τ)
and ‖Dt−τ (u)−Dt−τ (v)‖1 ≤

|u− v|
n˜̀(t− τ)

(105)

and supu
∑

j∈Z j
2‖Dj(u)‖1 <∞, where ˜̀(|j|) is monotonically increasing as |j| → ∞ and∑

j∈Z j
2 · ˜̀(|j|)−1 <∞.

Further, if supu ‖dAj(u)/du‖1 ≤ 1/`(j) then

sup
u

∥∥∥∥dDt−τ (u)

du

∥∥∥∥
1

=
1˜̀(t− τ)

. (106)

PROOF We first prove (105). We recall that

Dt,τ =
∞∑

`=−∞

Ã` (t+ s)′Σ−1Ã(τ−t)+`(t+ s),

and

‖Aj(u)−Aj(v)‖1 ≤
1

`(j)
|u− v| and sup

u
‖Aj(u)‖1 ≤ `(j)−1. (107)

To simplify the notation (the proof does not change), we set H = Ip. Using the above
and evaluating the difference gives

Dt,τ −Dt−τ (u) =
∞∑

s=−∞

(
Ãs((t+ s)/n)′Ãs+(τ−t)((t+ s)/n)− Ãs(u)′Ãs+(τ−t)(u)

)
= I1 + I2,

where

I1 =
∞∑

s=−∞

(
Ãs((t+ s)/n)′Ãs+(τ−t)((t+ s)/n)− Ãs((t+ s)/n)′Ãs+(τ−t)(u)

)
I2 =

∞∑
s=−∞

(
Ãs((t+ s)/n)′Ãs+(τ−t)(u)− Ãs(u)′Ãs+(τ−t)(u)

)
.
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The two bounds are very similar, we focus on obtaining a bound for I1. By the Cauchy-
Schwarz inequality and that ‖ · ‖2 ≤ ‖ · ‖1 we have

‖I1‖1 ≤
∞∑

s=−∞

∥∥∥Ãs((t+ s)/n)′
[
Ãs+(τ−t)((t+ s)/n)− Ãs+(τ−t)(u)

]∥∥∥
1

≤
∞∑

s=−∞

∥∥∥Ãs(t/n)
∥∥∥

2

∥∥∥Ãs+(τ−t)((t+ s)/n)− Ãs+(τ−t)(u)
∥∥∥

2

≤
∞∑

s=−∞

∥∥∥Ãs(t/n)
∥∥∥

1

∥∥∥Ãs+(τ−t)((t+ s)/n)− Ãs+(τ−t)(u)
∥∥∥

1

Substituting the bounds for Aj(u) given in (107) into the above we have

‖I1‖1 ≤
∞∑

s=−∞

1

`(s)

1

`(s+ τ − t)

∣∣∣∣t+ s

n
− u
∣∣∣∣ .

By the same argument we have

‖I2‖1 ≤
∞∑

s=−∞

1

`(s)

1

`(s+ τ − t)

∣∣∣∣t+ s

n
− u
∣∣∣∣ .

Thus

‖Dt,τ −Dt−τ (u)‖1 ≤ 2
∞∑

s=−∞

1

`(s)

1

`(s+ τ − t)
· |t+ s

n
− u|.

Setting u = (t+ τ)/(2n) gives∥∥∥∥Dt,τ −Dt−τ

(
t+ τ

2n

)∥∥∥∥
1

≤
∞∑

s=−∞

1

`(s)

1

`(s+ τ − t)

(
|τ − t|

2n
+
|s|
n

)

=
|t− τ |

2n

∞∑
s=−∞

1

`(s)

1

`(s+ τ − t)
+

1

n

∞∑
s=−∞

|s|
`(s)

1

`(s+ τ − t)

Now by using Lemma D.1 we have we have the bound∥∥∥∥Dt,τ −Dt−τ

(
t+ τ

2n

)∥∥∥∥
1

≤ |t− τ |
2n˜̀(t− τ)

+
1

n˜̀(t− τ)
. (108)

Since by assumption
∑

j∈Z(j2 + 1)/`(|j|) <∞, it is immediately clear from the definition

of ˜̀(j) that
∑

j∈Z(j2 + 1)˜̀(j)−1 < ∞. Under the stated assumptions in (107) and using
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Lemma D.1 we can show

‖Dt−τ (u)−Dt−τ (v)‖1 ≤
|u− v|
n˜̀(t− τ)

(109)

and supu
∑

j∈Z j
2‖Dj(u)‖1 <∞. (108) and (109) together prove (105).

We now prove (106). The elementwise derivative of Dj(u) is

d

du
Dj(u) =

∞∑
s=−∞

d

du
Ãs (u)′ Ã(τ−t)+s(u) +

∞∑
s=−∞

Ãs (u)′
d

du
Ã(τ−t)+s(u).

Using the conditions in (107), supu ‖dAj(u)/du‖1 ≤ 1/`(j) and Lemma D.1 we can show
that ∥∥∥∥ dduDj(u)

∥∥∥∥
1

≤ 2
∑
s∈Z

1

`(s)`(s+ j)
,

this gives (106). �

D.2 Example: Locally stationary time-varying VAR(1)

We consider the locally stationary time-varying VAR(1) model

X t,n = A

(
t

n

)
X t−1,n + εt t ∈ Z,

where {εt} are i.i.d. with Var[εt] = Ip. We assume that the matrix A(u) satisfies (99)
and (100). Using (104) the time-varying spectral precision matrix corresponding to {X t,n}
is Γ(u;ω) = [Ip − A(u) exp(−iω)]∗[Ip − A(u) exp(−iω)]. We partition Γ(u;ω) into the
conditional stationary and nonstationary matrices.

Define the set S ⊆ {1, . . . , p} where for all a ∈ S the columns [A(t)]·,a do not depend

on t. Then {X(a)
t ; a ∈ S} is a conditionally stationary subgraph and DS = {Da,b; a, b ∈ S}

is a block Toeplitz matrix (see Corollary 2.1). By Lemma 3.1 the integral kernel associated
with DS is ΓS,S(ω)δω,λ. We obtain an expression for ΓS,S(ω) below.

We denote the set S as S = {a1, . . . , a|S|}, where |S| denotes the cardinality of S.
Define the p × |S| matrix AS where AS = ([AS ]·,r = [A(0)]·,ar ; ar ∈ S, 1 ≤ r ≤ |S|),
let Ip,|S| denote the p × |S| “indicator” matrix which is comprised of zeros except at the
entries {(r, ar); ar ∈ S} where [Ip,|S|]r,ar = 1. Then

ΓS,S(ω) =
[
Ip,|S| −AS exp(−iω)

]∗ [
Ip,|S| −AS exp(−iω)

]
. (110)

Using ΓS,S(ω) we can deduce the the partial spectral coherence for conditionally stationary
nodes and pairs (see Lemma 3.3).

We now obtain the nonstationary submatrices in Γ(u;ω). Let S ′ = {b1, . . . , b|S′|}
denote the complement of S. Analogous to AS and Ip,|S|, we define the p×|S ′| dimensional
matrices AS′(u) = ([AS′(u)]·,r = [A(u)]·,br ; br ∈ S ′, 1 ≤ r ≤ |Sr|) and Ip×|S′| which
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is comprised of zeros except at the entries {(r, br); br ∈ S ′} where [Ip,|S′|]r,br = 1. A
rearranged version of Γ(u;ω) (which for simplicity we call Γ(u;ω)) is

Γ(u;ω) =

(
ΓS,S(ω) ΓS,S′(u;ω)

ΓS,S′(u;ω)∗ ΓS′,S′(u;ω)

)
,

where

ΓS,S(ω) =
[
Ip,|S| −AS exp(−iω)

]∗ [
Ip,|S| −AS exp(−iω)

]
,

ΓS,S′(u;ω) =
[
Ip,|S| −AS exp(−iω)

]∗ [
Ip,|S′| −AS′(u) exp(−iω)

]
and ΓS′,S′(u;ω) =

[
Ip,|S′| −AS′(u) exp(−iω)

]∗ [
Ip,|S′| −AS′(u) exp(−iω)

]
.

Using the above we can deduce K
(a,b)
r (ω) and thus approximations to the entries of

Kn(ωk1 , ωk2). The system for Example 2.1 is described in detail in Appendix E.

E Examples

In the following two sections we study the running time-varying AR(1) example (in-
troduced in Example 2.1). In Appendix E.3 we compare the nonstationary graph of a
piecewise stationary time series with its piecewise stationary gaphs.

E.1 The tvVAR model and corresponding local spectral preci-
sion matrix

For all 1 ≤ t ≤ n the model is defined as
X

(1)
t

X
(2)
t

X
(3)
t

X
(4)
t

 =


α1(t/n) 0 α3 0
β1 β2 0 β4

0 0 γ3(t/n) 0
0 ν2 0 ν4




X
(1)
t−1

X
(2)
t−1

X
(3)
t−1

X
(4)
t−1

+


ε

(1)
t

ε
(2)
t

ε
(3)
t

ε
(4)
t


and {εt}t are iid random vectors with Var[εt] and α1(·), γ3(·) ∈ L2[0, 1] and are Lipschitz
continuous. By using the results in Section 5 we obtain the network on the right.
We now obtain the time-varying conditional spectral density Γ(u;ω). Let

[I2,4 −AS exp(−iω)] =


0 0

1− β2e
−iω −β4e

−iω

0 0
−ν2e

−iω 1− ν4e
−iω



and [I1,3 −AS′(u) exp(−iω)] =


1− α1(u)e−iω −α3e

−iω

−β1e
−iω 0

0 1− γ3(u)e−iω

0 0

 .
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Then

Γ(u;ω) =

(
Γ(2,4),(2,4)(ω) Γ(2,4),(1,3)(u;ω)

Γ(2,4),(1,3)(u;ω)∗ Γ(1,3),(1,3)(u;ω)

)
where

Γ(2,4),(2,4)(ω) = [I2,4 −AS exp(−iω)]∗ [I2,4 −AS exp(−iω)]

=

(
|1− β2e

−iω|2 + ν2
2 −β4e

iω(1− β2e
−iω)− ν2e

−iω(1− ν4e
iω)

−β4e
−iω(1− β2e

iω)− ν2e
iω(1− ν4e

−iω) |1− ν4e
−iω|2 + β2

4

)
Γ(2,4),(1,3)(u;ω) = [I2,4 −AS exp(−iω)]∗ [I1,3 −BS′(u) exp(−iω)]

=

(
−β1e

iω[1− β2e
−iω] 0

β1β4 0

)
Γ(1,3),(1,3)(u;ω) = [I1,3 −AS′(u) exp(−iω)]∗ [I1,3 −AS′(u) exp(−iω)]

=

(
|1− α1(u)e−iω|2 + β2

1 −α3e
iω[1− α1(u)e−iω]

−α3e
−iω[1− α1(u)eiω] |1− γ3(u)e−iω|2 + α2

3

)
.

E.2 The partial spectral coherence

Based on the results in Section 3.3, we use Γ(2,4),(2,4)(ω) to define the partial spectral
coherence for the conditionally stationary nodes and edges (2 and 4). We observe that
Γ(2,4),(2,4)(ω) resembles the spectral density matrix of a stationary vector moving average
model of order one (or equivalently the inverse of a vector autoregressive of order one).
Using Γ(2,4),(2,4)(ω), the partial spectra for the conditionally stationary nodes 2 and 4 are

Γ(2,2)(ω)−1 =
1

|1− β2e−iω|2 + ν2
2

and Γ(4,4)(ω)−1 =
1

|1− ν4e−iω|2 + β2
4

.

Furthermore, by using (19), the partial spectral coherence for the conditionally stationary
edge (2, 4) is

R2,4(ω) = −−β4e
iω(1− β2e

−iω)− ν2e
−iω(1− ν4e

iω)√
Γ(2,2)(ω)Γ(4,4)(ω)

E.3 A comparision of networks in a piecewise stationary VAR(1)
model

Below we consider both the directed and undirected graphs for a piece-wise stationary
VAR(1) model where p = 4. We suppose that X t is piece-wise stationary in the sense
that

X t =

{
A1X t−1 + εt 1 ≤ t ≤ n/2
A2X t−1 + εt n/2 + 1 ≤ t ≤ n
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where Var[εt] = I3 and {εt}t are random vectors,

A1 =


α1 0 0 0
β1 β2 0 β4

0 0 γ3 0
0 ν2 0 ν4

 and A2 =


α̃1 0 α3 0
β1 β2 0 β4

0 0 γ̃3 0
0 ν2 0 ν4

 .

note that α1 6= α̃1 and γ3 6= γ̃3. For 1 ≤ t ≤ n the above model can be written as the
nonstationary model

X
(1)
t

X
(2)
t

X
(3)
t

X
(4)
t

 =


α(t) 0 α3(t) 0
β1 β2 0 β4

0 0 γ(t) 0
0 ν2 0 ν4




X
(1)
t−1

X
(2)
t−1

X
(3)
t−1

X
(4)
t−1

+ εt = A(t)X t−1 + εt

Below we will give the directed and undirected graphs for each component (this is in
the stationary and can be deduced from standard results and definitions in the literature;
see the definition of moralized k-complex, Figures 2 and 3 in Andersson et al. (2001), and
section 3.3 in Dahlhaus and Eichler (2003b)), then we give the combined nonstationary
graph.

For t ∈ {1, . . . , n/2} the graph is
based on

A1 =


α1 0 0 0
β1 β2 0 β4

0 0 γ3 0
0 ν2 0 ν4


Observe that the undirected graph adds an additional
edge (1,4), and converts the arrows in the directed
graphs to lines. This is the process of moralizing a
k-complex (k = 1) in the original directed graph (An-
dersson et al., 2001).

For t ∈ {n/2 + 1, . . . , n} the graph
is based on

A2 =


α̃1 0 α3 0
β1 β2 0 β4

0 0 γ̃3 0
0 ν2 0 ν4


On the other hand the nonstationary undirected graph is
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For t ∈ {1, . . . , n/2} the graph is based on

A(t) =


α(t) 0 α3(t) 0
β1 β2 0 β4

0 0 γ(t) 0
0 ν2 0 ν4


The two stationary graphs are what we mean by local information. Comparing the

two stationary undirected graphs with the nonstationary directed graphs we observe that
the nonstationary directed graph is summarising all the information in the two stationary
undirected graphs. This is what we mean by global information, it tells us that something
is changing in nodes (1) and (3) (which correspond to columns (1) and (3) in the transition
matrix).

F Connection to graphical models for stationary time

series

We now apply the results above to stationary multivariate time series. This gives an
alternative derivation for the partial spectral coherency of stationary time series (see
Brillinger (1996) and Dahlhaus (2000b)) which is usually based on the Wiener filter.

Suppose that {X t}t is a p-dimension second order stationary time series, with spectral
density matrix Σ(ω) =

∑
r∈Z Cr exp(−irω). By Lemmas 3.1 and 2.1 C(ω, λ) and K(ω, λ)

are diagonal kernels where C(ω, λ) = Σ(ω)δω,λ and K(ω, λ) = Γ(ω)δω,λ where Γ(ω) =
Σ(ω)−1. Let Γ(a,b)(ω) denote the (a, b)th entry of Γ(ω). Our aim is to interprete the
entries of Γ(ω) in terms of the partial correlation and partial spectral coherence. We keep
in mind that since {X t}t is second order stationary time series all the nodes and edges of
its corresponding network are conditionally stationary.

We first interprete Γ(a,b)(ω). Under stationarity for all t and τ and (a, b) we have

Corr
[
X

(a)
t − PH−(X

(a)
t ,X

(b)
τ )

(X
(a)
t ), X(b)

τ − PH−(X
(a)
t ,X

(b)
τ )

(X(b)
τ )
]

= φ
(a,b)
t−τ .

Let σ2
a = Var[X

(a)
0 − PH−(X

(a)
0 )

(X
(a)
0 )]. By using Lemma 2.2 for all (t, a) 6= (τ, b)

[Da,b]t,τ =

{
1
σ2
a

t = τ and a = b

− 1
σaσb

φ
(a,b)
t−τ otherwise

By using the above, we have

Γ(a,b)(ω) =

{
− 1
σaσb

∑
r∈Z φ

(a,b)
r exp(irω) a 6= b

1
σ2
a

(
1−

∑
r 6=0 φ

(a,a)
r exp(irω)

)
a = b

.
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Thus the entries of Γ(ω) are the Fourier transforms of the partial correlations. Let

X
(a)|9{a}
t = X

(a)
t − PH−(X(a))(X

(a)
t ) for t ∈ Z.

By stationarity we have

ρ
(a,a)|9{a}
t−τ = Cov[X

(a)|9{a}
t , X(a)|9{a}

τ ].

By using Lemma 3.3 we have

[Γ(a,a)(ω)]−1 =
∑
r∈Z

ρ(a,a)|9{a}
r exp(irω).

We now use the methods laid out in this paper to derive the partial spectral coherence.
For a 6= b we define

X
(a)|9{a,b}
t = X

(a)
t − PH−(X(a),X(b))(X

(a)
t ) and X(b)|9{a,b}

τ = X(b)
τ − PH−(X(a),X(b))(X

(b)
τ ).

Since the time series is stationary we define the time series partial covariance as(
ρ

(a,a)|9{a,b}
t−τ ρ

(a,b)|9{a,b}
t−τ

ρ
(b,a)|9{a,b}
t−τ ρ

(b,b)|9{a,b}
t−τ

)
= Cov

[(
X

(a)|9{a,b}
t

X
(b)|9{a,b}
t

)
,

(
X

(a)|9{a,b}
τ

X
(b)|9{a,b}
τ

)]

Thus by using Lemma 3.3 we have

∑
r∈Z

(
ρ

(a,a)|9{a,b}
r ρ

(a,b)|9{a,b}
r

ρ
(b,a)|9{a,b}
r ρ

(b,b)|9{a,b}
r

)
exp(irω)

=
1

Γ(a,b)(ω)Γ(b,b)(ω)− |Γ(a,b)(ω)|2

(
Γ(b,b)(ω) −Γ(a,b)(ω)
−Γ(a,b)(ω)∗ Γ(a,a)(ω)

)
.

Therefore for c ∈ {a, b} we have

∑
r∈Z

ρ(c,c)|9{a,b}
r exp(irω) =

Γ(c,c)(ω)

Γ(a,a)(ω)Γ(b,b)(ω)− |Γ(a,b)(ω)|2
= H(c,c)(ω)

and ∑
r∈Z

ρ(a,b)|9{a,b}
r exp(irω) = − Γ(a,b)(ω)

Γ(a,a)(ω)Γ(b,b)(ω)− |Γ(a,b)(ω)|2
= H(a,b)(ω).

Thus the partial spectral coherence between edge (a, b) is

Rab(ω) =
H(a,b)(ω)√

H(a,a)(ω)H(b,b)(ω)
= − Γ(a,b)(ω)√

Γ(a,a)(ω)Γ(b,b)(ω)
. (111)

This coincides with with the partial spectral coherence given in Dahlhaus (2000b),
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equation (2.2) who shows that the partial spectral coherence is

Rab(ω) =
ga,b(ω)√

ga,a(ω)gb,b(ω)
(112)

where

gc,d(ω) = Σc,d(ω)− Σc,−(a,b)(ω)Σ−(a,b)(ω)−1Σd,−(a,b)(ω)∗ c, d ∈ {a, b}

and Σa,−(a,b) denotes the spectral cross correlation between {X(a)
t }t and {X(c)

t ; c /∈ {a, b}},
Σb,−(a,b) denotes the spectral cross correlation between {X(b)

t }t and {X(c)
t ; c 6= {a, b}} and

Σ−(a,b) denotes the spectral cross correlation of {X(c)
t ; c /∈ {a, b}}t i.e.

Σ(ω) =

 Σa,a(ω) Σa,b(ω) Σa,−(a,b)(ω)
Σb,a(ω) Σb,b(ω) Σb,−(a,b)(ω)

Σa,−(a,b)(ω)∗ Σb,−(a,b)(ω)∗ Σ−(a,b)(ω)

 .

Dahlhaus (2000b), Theorem 2.4 shows that (111) and (112) are equivalent. For complete-
ness we give the proof using the block matrix inversion identity. The Schur complement
of the (p− 2)× (p− 2) matrix Σ−(a,b)(ω) in Σ(ω) is

P (a,b)(ω)

=

(
Σaa(ω)− Σa,−(a,b)(ω)Σ−(a,b)(ω)−1Σ−a,(a,b)(ω)∗ Σba(ω)− Σa,−(a,b)(ω)Σ−(a,b)(ω)−1Σ−b,(a,b)(ω)∗

Σab(ω)− Σb,−(a,b)(ω)Σ−(a,b)(ω)−1Σa,−(a,b)(ω)∗ Σbb(ω)− Σb,−(a,b)(ω)Σ−(a,b)(ω)−1Σ−b,(a,b)(ω)∗

)
.

Using the block inverse identity we recall that P (a,b)(ω)−1 is the top left hand matrix in
Σ(ω)−1 = Γ(ω). Thus

P (a,b)(ω)−1 =

(
Γ(a,a)(ω) Γ(a,b)(ω)
Γ(b,a)(ω) Γ(b,b)(ω)

)
.

Therefore from the above we have(
Σaa(ω)− Σa,−(a,b)(ω)Σ−(a,b)(ω)−1Σ−a,(a,b)(ω)∗ Σba(ω)− Σa,−(a,b)(ω)Σ−(a,b)(ω)−1Σ−b,(a,b)(ω)∗

Σab(ω)− Σb,−(a,b)(ω)Σ−(a,b)(ω)−1Σa,−(a,b)(ω)∗ Σbb(ω)− Σb,−(a,b)(ω)Σ−(a,b)(ω)−1Σ−b,(a,b)(ω)∗

)
=

1

Γ(a,b)(ω)Γ(b,b)(ω)− |Γ(a,b)(ω)|2

(
Γ(b,b)(ω) −Γ(a,b)(ω)
−Γ(b,a)(ω) Γ(a,a)(ω)

)
.

Comparing the entries in the above it is immediately clear that

ga,b(ω)√
ga,a(ω)gb,b(ω)

= − Γ(a,b)(ω)√
Γ(a,a)(ω)Γ(b,b)(ω)

.

Thus proving that (111) and (112) are equivalent expression for multivariate stationary
time series.
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