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Abstract

It is well known that the discrete Fourier transforms (DFT) of a second order stationary
time series between two distinct Fourier frequencies are asymptotically uncorrelated. In con-
trast for a large class of second order nonstationary time series, including locally stationary
time series, this property does not hold. In this paper these starkly differing properties are
used to define a global test for stationarity based on the DFT of a vector time series. It is
shown that the test statistic under the null of stationarity asymptotically has a chi-squared
distribution, whereas under the alternative of local stationarity asymptotically it has a non-
central chi-squared distribution. Further, if the time series is Gaussian and stationary, the
test statistic is pivotal. However, in many econometric applications, the assumption of Gaus-
sianity can be too strong, but under weaker conditions the test statistic involves an unknown
variance that is extremely difficult to directly estimate from the data. To overcome this issue,
a scheme to estimate the unknown variance, based on the stationary bootstrap, is proposed.
The properties of the stationary bootstrap under both stationarity and nonstationarity are
derived. These results are used to show consistency of the bootstrap estimator under sta-
tionarity and to derive the power of the test under nonstationarity. The method is illustrated
with some simulations. The test is also used to test for stationarity of FTSE 100 and DAG
30 stock indexes from January 2011-December 2012.
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1 Introduction

In several disciplines, including finance, the geo sciences and the biological sciences, there has
been a dramatic increase in the availability of multivariate time series data. In order to model this
type of data, several multivariate time series models have been proposed, including the Vector
Autoregressive model and the vector GARCH model, to name but a few (see, for example,
Liitkepohl (2005) and Laurent, Rombouts, and Violante (2011)). The majority of these models
are constructed under the assumption that the underlying time series is stationary. For some
time series this assumption can be too strong, especially over relatively long periods of time.
However, relaxing this assumption, to allow for nonstationary time series models, can lead
to complex models with a large number of parameters, which may not be straightforward to
estimate. Therefore, before fitting a time series model, it is important to check whether or not
the multivariate time series is second order stationary.

Over the years, various tests for second order stationarity for univariate time series have
been proposed. These include, Priestley and Subba Rao (1969), Loretan and Phillips (1994),
von Sachs and Neumann (1999), Paparoditis (2009, 2010), Dahlhaus and Polonik (2009), Dwivedi
and Subba Rao (2011), Dette, Preuss, and Vetter (2011), Dahlhaus (2012), Example 10, Jentsch
(2012), Lei, Wang, and Wang (2012) and Nason (2013). However, as far as we are aware
there does not exist any tests for second order stationarity of multivariate time series (Jentsch
(2012) does propose a test for multivariate stationarity, but the test was designed to the detect
the alternative of a multivariate periodically stationary time series). One crude solution is to
individually test for stationarity for each of the univariate processes. However, there are a few
drawbacks with this approach. The first is that such a multiple testing scheme does not take into
account that each of the test statistics are independent (since the difficulty with multivariate
time series is the dependencies between the marginal univariate time series) leading to incorrect
type I errors. The second problem is that such a strategy can lead to misleading conclusions.
For example if each of the marginal time series are second order stationary, but the cross-
covariances are second order nonstationary, the above testing scheme would not be able detect
the alternative. Therefore there is a need to develop a test for stationarity of a multivariate
time series, which is the aim in this paper.

The majority of the univariate tests, are local, in the sense that they are based on comparing
the local spectral densities over various segments. This approach suffers from some possible
disadvantages. In particular, the spectral density may locally vary over time, but this does not

imply that the process is second order nonstationary, for example Hidden Markov models can



be stationary but the spectral density can vary according to the regime. For these reason, we
propose a global test for multivariate second order stationarity.

Our test is motivated by the tests for detecting periodic stationarity (see, for example, Good-
man (1965), Hurd and Gerr (1991) and Bloomfield, Hurd, and Lund (1994)) and the test for
second order stationarity proposed in Dwivedi and Subba Rao (2011), all these tests use funda-
mental properties of the discrete Fourier transform (DFT). More precisely, the above mentioned
periodic stationarity tests are based on the property that the discrete Fourier transform is corre-
lated if the difference in the frequencies is a multiple of 27 /P (where P denotes the periodicity),
whereas Dwivedi and Subba Rao (2011) use the idea that the DFT asymptotically uncorrelates
stationary time series, but not nonstationary time series. Motivated by Dwivedi and Subba Rao
(2011), in this paper, we exploit the uncorrelating property of the DFT to construct the test.
However, the test proposed here differs from Dwivedi and Subba Rao (2011) in several impor-
tant ways, these include (i) our test takes into account the multivariate nature of the time series
(ii) the proposed test is defined such that it can detect a wider range of alternatives and (iii)
most tests for stationarity assume Gaussianity or linearity of the underlying time series, which
in several econometric applications is unrealistic, whereas our test allows for testing of nonlinear
stationary time series.

In Section 2, we motivate the test statistic by comparing the covariance between the DF'T of
stationary and nonstationary time series, where we focus on the large class of nonstationary pro-
cesses called locally stationary time series (see Dahlhaus (1997), Dahlhaus and Polonik (2006)
and Dahlhaus (2012) for a review). Based on these observations, we define DFT covariances
which in turn are used to define a Portmanteau-type test statistic. Under the assumption of
Gaussianity, the test statistic is pivotal, however for non-Gaussian time series the test statistic
involves a variance which is unknown and extremely difficult to estimate. If we were to ignore
this variance (and thus implicitly assume Gaussianity) then the test can be unreliable. There-
fore in Section 2.4 we propose a bootstrap procedure, based on the stationary bootstrap (first
proposed in Politis and Romano (1994)), to estimate the variance. In Section 3, we derive the
asymptotic sampling properties of the DFT covariance. We show that under the null hypothesis,
the mean of the DFT covariance is asymptotically zero. In contrast, under the alternative of
local stationarity, we show that the DFT covariance estimates nonstationary characteristics in
the time series. These results are used to derive the sampling distribution of the test statistic.
Since the stationary bootstrap is used to estimate the unknown variance, in Section 4, we ana-

lyze the stationary bootstrap when the underlying time series is stationary and nonstationary.



Some of these results may be of independent interest. In Section 5 we show that under (fourth
order) stationarity the bootstrap variance estimator is a consistent estimator of the true vari-
ance. In addition, we analyze the bootstrap variance estimator under nonstationarity and show
how it influences the power of the test. The test statistic involves some tuning parameters and
in Section 6.1, we give some suggestions on how to select these tuning parameters. In Section
6.2, we analyze the performance of the test statistic under both the null and the alternative
and compare the test statistic when the variance is estimated using the bootstrap and when
Gaussianity is assumed. In the simulations we include both stationary GARCH and Markov
switching models and for nonstationary models we consider time-varying linear models and the
random walk. In Section 6.3, we apply our method to analyze the FTSE 100 and DAX 30
stock indexes. Typically, stationary GARCH-type models are used to model this type of data.
However, even over the relatively short period January 2011- December 2012, the results from
the test suggest that the log returns are nonstationary.

The proofs can be found in the Appendix.

2 The test statistic

2.1 DMotivation

Let us suppose {X, = (X¢1,...,Xtq4),t € Z} is a d-dimensional constant mean, multivariate

time series and we observe {X,} ;. We define the vector discrete Fourier transform (DFT) as

1

JT (wk) = \/27_(77.,

T .
d X ™ k=1,...,T,
t=1

where wy, = 277% are the Fourier frequencies. Suppose that {X,} is a second order stationary
multivariate time series, where the autocovariance matrices of {X,} satisfy

Z |h| - |Cov(XomXnn)| <ooforalmmn=1,...,d (2.1)

h=—o0

Then, it is well known for ki — ko # 0, that Cov(Jpm(wk, ), Jrn(wk,)) = O(4) (uniformly
in T, k1 and ko), in other words the DFT has transformed a stationary time series into a
sequence which is approximately uncorrelated. The behavior in the case that the vector time
series is second order nonstationary is very different. To obtain an asymptotic expression for the
covariance between the DFTs, we will use the rescaling device introduced by Dahlhaus (1997)

to study locally stationary time series, which is a class of nonstationary processes. {X,r} is



called a locally second order stationary time series, if its covariance structure changes slowly
over time such that there exists a smooth matrix function {k(u;r)} which can approximate the
time-varying covariance. More precisely, |cov(X; 7, X, 1) — k(#5;t — 7)] < T 'k(t — 7), where
{k(h)}p is a matrix sequence whose elements are absolutely summable. An example of a locally
stationary model which satisfies these conditions is the time-varying moving average model
defined in Dahlhaus (2012), equations (63)—(65) (with £(j) = log(|j])**¢|j|? for |j| # 0). It is
worth mentioning that Dahlhaus (2012) uses the slightly weaker condition £(5) = log(|j])**¢|j|.
In the Appendix (Lemma A.8), we show that

1
. 1
cov(Jp(wi, ), Jr(wky)) = / f(u; wg, ) exp(i2mu(ky — k2))du + O(T)’ (2.2)
0
uniformly in T, ki and ka, where f(u;w) = 5= Y22 k(u;r) exp(—irw) is the local spectral

density matrix (see Lemma A.8 for details). We recall if {X,}; is second order stationary then
the ‘spectral density’ function f(u;w) does not depend on u and the above expression reduces
to Cov(Jp(wky ), Jp(wky)) = O(%) for ki — ko # 0. It is interesting to observe that for locally
stationary time series its DFT sequence mimics the behavior of a time series, in the sense that
the correlation between the DFTs decay the further apart the frequencies.

Equation (2.2) highlights the starkly differing properties of the covariance of the DFTs
between stationary and nonstationary time series, and we will exploit this difference in order to

construct the test statistic.

2.2 The weighted DFT covariance

The discussion in the previous section suggests that to test for stationarity, we can transform the
time series into the frequency domain and test if the vector sequence {J(wy)} is asymptotically
uncorrelated. Testing for uncorrelatedness of a multivariate time series is a well established
technique in time series analysis (see, for example, Hosking (1980, 1981) and Escanciano and
Lobato (2009)). Most of these tests are based on constructing a test statistic which is a function
of sample autocovariance matrices of the time series. Motivated by these methods, we will define
the weighted (standardized) covariance DFT and use this to define the test statistic.

To summarize the previous section, if {X,} is a second order stationary time series which
satisfies (2.1), then E(Jp(wk)) = 0 (for k # 0,7/2,T) and var(Jp(wg)) — flwg) as T — oo,

where f : [0, 27] — C9*9 with

fw)={frn(lw);mn=1,...,d}



is the spectral density matrix of {X,}. If the spectral density f(w) is non-singular on [0, 27],

then its Cholesky decomposition is unique and well defined on [0, 27]. More precisely,

f(w) =B(w)B(w), (2.3)

where B(w) is a lower triangular matrix and m/ denotes the transpose and complex conjugate
of B(w). Let L(wg) := B (wy), thus f~1(wy) = ka),L(wk). Therefore, if {X,} is a second
order stationary time series, then the vector sequence, {L(wi)Jr(w1),...,L(wr)Jr(wr)}, is
asymptotically an uncorrelated sequence with a constant variance.

Of course, in reality the spectral density matrix f(w) is unknown and has to be estimated

from the data. Let ?T(w) be a nonparametric estimate of f(w), where

~

T
fr(w) = %% Z Mo(t — 1) exp(i(t — T)w) (X, — X) (X, — X)/ w € [0, 27], (2.4)
t,r=1

{\p(r) = A(br)} are the lag weights and X = %Zthl X,. Below we state the assumptions we

require on the lag window, which we use throughout this article.

Assumption 2.1 (The lag window and bandwidth) (K1) The lag window A : R — R,
where X(-) has a compact support [1,1], is symmetric about 0, A(0) = 1, the deriva-

tive X(u) exists in (0,1) and is bounded. Some consequences of the above conditions

are 32, [Xo(r)] = O(b71), 32, Ir| - [Xp(r)] = O(b™2) and [Ay(r) — 1] < sup,, [N (u)] - [rd].

(K2) T71? << b << TV

~

Let ?T(wk) B(w )A(wk) , where ﬁ(wk) is the (lower-triangular) Cholesky decomposition
of £r(wg) and L(wy) := B~'(wy,). Thus B(wy) and L(wy) are estimators of B(wy,) and L(wy,)
respectively.

Using the above spectral density matrix estimator, we now define the weighted DFT covari-

ance matrix at lags r and /¢

1

= /

wk V(W) (wWitr) L(wisr) exp(ilwy), 7 >0 and ¢ € Z. (2.5)

Mﬂ

k:l

We observe that due to the periodicity of the DFT, aT(T, ¢) is also periodic in r, where aT(r, 0) =
aT(r + T,¢) for all r € Z. To understand the motivation behind this definition, we recall
that frequency domain methods for stationary time series use similar statistics. For example,
allowing r = 0 we observe that in the univariate case (AJT(O,O) corresponds to the classical

Whittle likelihood (where E(wk) is replaced with the square-root inverse of a spectral density



function with a parametric form, see for example, Whittle (1953), Walker (1963) and Eichler
(2012)). Likewise, by removing E(wk) from the definition, we find that (A}T(O,E) corresponds to
the sample Yule-Walker autocovariance of {X,} at lag ¢. The fundamental difference between
the DFT covariance and frequency domain ratio statistics methods for stationary time series is
that the periodogram JT(wk)m/ has been replaced with JT(wk)m/, and it is this

that facilitates the detection of second order nonstationary behavior.

Example 2.1 We illustrate the above for the univariate case (d = 1). If the time series is
second order stationary, then E|Jr(w)|? — f(w), which means B|f(w)~Y2Jp(w)[> = 1. The

corresponding weighted DF'T covariance is

7(r,0)

exp(ilwy) r >0 and l € Z.

T .
72 7 (wk) 1 (W)

Tk: 1/2fT(Wk+ )1/2
We will show later in this section that under Gaussianity, the asymptotic variance of (A}T(r, ?)
does not depend on any nuisance parameters. One can also define the DFT covariance without

—1/2 However, the variance of the non-standardized DFT covariance

standardizing with f(w)
18 a function of the spectral density function and only detects changes in the autocovariance

function at lag €.

In later sections, we derive the asymptotic distribution properties of (A]T(r, ¢). In particular,

we show that under second order stationarity (and some additional technical conditions)

RK,, (1) W, 0 0 ... 0
SK,(1) 0 W, 0 ... 0

VT : BN Qs | oo 01 : (2.6)
RK,, (m) 0 0 ... W, 0
SK,,(m) 0 0 0 W,

as T — oo, where
~ —~ —~ —~ /
K (r) = (veeh(Cr(r,0))', veeh(Cr(r, 1)), .., veeh(Cr(r,n ~ 1))) . (2.7)

This result is used to define the test statistic in Section 2.3. However, in order to construct the
test statistic, we need to understand W,,. Therefore, for the remainder of this section, we will
discuss (2.6) and the form that W, takes for various stationary time series (the remainder of

this section can be skipped on first reading).



The DFT covariance of univariate stationary time series

We first consider the case that {X;} is a univariate, fourth order stationary (to be precisely
defined in Assumption 3.1) time series. To detect nonstationarity, we will consider the DFT

covariance over various lags of ¢ and define the vector
Ra(r) = (Cr(r,0),...,Cp(rn — 1)),

Since Kn(r) is a complex random vector we consider separately the real and imaginary parts
denoted by ?RRn(r) and %IA{n(r), respectively. In the simple case that {X;} is a univariate
stationary Gaussian time series, it can be shown that the asymptotic normality result in (2.6)

holds, where

1
W, = —diag(2,1,1,...,1) (2.8)
2 ———
n—1
and 0, denotes the d-dimensional zero vector. Therefore, for stationary Gaussian time series, the
distribution of K, (r) is asymptotically pivotal (does not depend on any unknown parameters).
However, if we were to relax the assumption of Gaussianity, then a similar result holds but W,

is more complex

W, = 1ouag(z, 1,1,...,1)+ W2,
2 N—

n

n—1
where the (¢1 + 1,3 + 1)th element of W) is WE?ZFMQH = 1x(18) with
1 27 27 f ()\ “A.—\ )
(hrd2) = = L A — il2)0)dAdA 2.9
S A A 1t BT 2

and fy is the tri-spectral density fq(A1, A2, \3) = ﬁ Zfit%tg:_oo Ka(ty,to, t3)exp(—i(t1\1 +
toda + t3A3)) and ka(ti,to,t3) = cum(Xo, Xt,, Xt,, Xt,) (for statistical properties of the tri-
spectral density see Brillinger (1981), Subba Rao and Gabr (1984) and Terdik (1999)). x(41:62)
can be rewritten in terms of fourth order cumulants by observing that if we define the pre-
whitened time series {Z;} (where {Z;} is a linear transformation of {X;} which is uncorrelated)

then

U2 =N " cum(Zo, Zn, Znger s Zey)- (2.10)
heZ

o

The expression for Wy, is unwieldy, but in certain situations (besides the Gaussian case)

it has a simple form. For example, in the case that the time series {X;} is non-Gaussian, but



linear with transfer function A()), and innovations with variance ¢ and fourth order cumulant

K4, respectively, then the above reduces to

2
() _ [ _FalAQAD) A o _
" /04\A()\1)2\A()\2)2 exp(itihy — ibpAz)dhadAs 04641706@70,

(2)

where ¢, is the Kronecker delta. Therefore, for (univariate) linear time series, we have Wy, =
2’%‘21[” and W, is still a diagonal matrix. This example illustrates that even in the univariate
case the complexity of the variance of the DFT covariance Kn(r) increases the more we relax the
assumptions on the distribution. Regardless of the distribution of {X;}, so long as it satisfies
(2.1) (and some mixing-type assumptions), then IA(n(r) is asymptotically normal and centered

about zero.

The DFT covariance of multivariate stationary time series

We now consider the distribution of GT(T, ?) in the multivariate case. We will show in Lemma
A.11 (in the appendix) that the covariance of aT(r, 0) is singular. To avoid the singularity we

will only consider the lower triangular vectorized version of GT(r, 0), i.e.
VeCh(aT(T, 5)) = (/6\171(7’, 5),6\271(7’, E), . ,/C\d71(7’, E),Eg,g(r, E), . ,/C\d72(7’, E), . 76d,d(r7 6))/,

where ¢, j,(r,£) is the (ji, j2)th element of Cr(r,0), and we use this to define the nd(d + 1)/2-
dimensional vector K, (r) (given in (2.7)). In the case that {X,} is a Gaussian stationary time
series then we obtain an analogous result to (2.8) where similar to the univariate case W,, is a

diagonal matrix with W,, = diag(W((Jl), W ), where

’ n—1

sTagar1)/2 t#0

1)
WE =
diag(A1, ..., Ageay1y2) £=0

(2.11)

with

1, je {1+Z;‘§:m+1nforme{1,2,...,d}}

, otherwise

A=

N[

However, in the non-Gaussian case W, is equal to the above diagonal matrix plus an additional
(not necessarily diagonal) matrix consisting of the fourth order spectral densities, ie. W, consists

of n? d(d + 1)/2 square blocks, where the (¢1 + 1, ¢, + 1) block is

1 2
(Wo)ersrer1 = Widg, 0 + W, | (2.12)



where Wél) and Wéf)@ are defined in (2.11) and in (2.15) below. In order to appreciate the
structure of Wg)ez, we first consider some examples. We start by defining the multivariate

version of (2.9)

K (51 G, 43, da)

1 2w 2w d ' '
= o /0 D Lisi (M) Ljasy (M) Ly (M2) Ljysy (\2) exp(ila A1 — il \o)

81,52,83,84=1

X fas1,52,53,54 (A1, = A1, —A2)dAid s, (2.13)
where
1 R ,
f4§81,82,83,54 ()‘1’ )‘2’ )‘3) = (271‘)3 Z K4;s1,82,53,54 (tla t27 t3) exp(l(_tl)\l - t2)\2 - t3)\3))

t1,t2,t3=—00

is the joint tri-spectral density of {X,} and

K4;s1,52,53,54 (tlv lo, t3) - Cum(XO,SUXt1,527Xt2,837Xt3,S4)' (2'14)

We note that a similar expression to (2.10) can be derived for ﬁ(el’ZQ)(jl,jg,jg,j4), with

5(61762) (j17 J2, J3; ]4) = Z Cum(ZjhO’ ij,fh Zj37h+51 ) Zj4,£2)'
hEZ

where {Z, = (Z14,...,Z4;)'} is the decorrelated (or prewhitened) version of {X,}.

Example 2.2 (Structure of W,,) Forn € N and (1,0, € {0,...,n—1}, we have (W), 410,41 =
Wg)éghgz + Wg?%, where:

(i) For d =2, we have Wél) = 1diag(2,1,2) and for { > 1 Wél) =113 and

r02)(1,1,1,1) s@2)(1,1,2,1) 2)(1,1,2,2)
1

Wg)b = r(062)(2,1,1,1) k82)(2,1,2,1) x042)(2,1,2,2)

K(£1,€2)(2,2, 1,1) 5(31752)(272’2’ 1) /{(51,62)(2,2,2,2)

(i) For d = 3, we have Wg) = %dz’ag(2,1,1,2,1,2) for £ > 1 Wél) = Is and Wéf)b 18
analogous to (i).

(iv) For general d and n =1, we have W,, = W(()l) + W where W(()l) 15 the diagonal matriz
defined in (2.11) and W) = W((fg (which is defined in (2.15).

We now define the general form of W2

(2 _ (2)
WZLZQ - Edvfl,ZQECh (215)

10



where E; with Egvec(A) = vech(A) is the (d(d + 1)/2 x d?) elimination matrix [cf. Liitkepohl
(2006), p.662] that transforms the vec-version of a (d x d) matrix A to its vech-version and the

entry (j1,ja) of the (d? x d?) matrix Vg)& is such that

Ve = (G = Do @+ 1. [ 5 ) o = ymod a1, | 2}, 2ao)
respectively, where [z] is the smallest integer greater than or equal to .

Example 2.3 (k%) (jy, jo, j3, j4) under linearity of {X,}) Suppose the additional assump-
tion of linearity of the process {X,} is satisfied, that is, {X,} satisfies a representation

o0
X,= > T, tez, (2.17)

v=—00
where Y2 Tyl < oo, g = Iy and {e;,t € Z} are zero mean, i.i.d. random vectors with
E(e,e;) = e positive definite and whose fourth moments exist. By plugging-in (2.17) in (2.14)

and then evaluating the integrals in (2.13), the quantity x\“1%)(j1, ja, j3, j4) becomes

K0 (1 o, G3, )
d

2T
= > H4,51,82,S3,S4{21W/ (LADT (M), (L(Al)l“(/\l))hszexp(iel/\l)d)\l}

0
51,82,83,84=1

2
X {2177/0 (LT (A2)) ;4 (LA)T (N2)) ., exp(—iég)\Q)d)\z} ,

where I'(w) = \/%? > T, e~ is the transfer function of {X,} and Kd,s1,82,53,51 = CUM(€0 55 €0 555 €0, 555 €0,54)-

The shape of n(£1’£2)(j1,jg,j3,j4) is mow discussed for two special cases of linearity.
(i) If T, = 0 for v # 0, we have X, = ¢, and /i(el’e2)(j1,j2,j3,j4) simplifies to
KR (1, o, 3, ) = Foagi asga,a06000,0,
where 2g1/2gt = (€1, €rd) and Ras, so.55,55 = CUM(EQ 5, , €0 555 0,55, €0,54)-

(it) The univariate time series { Xy} are independent for k =1,...,d (the components of X,

are independent), then we have
KR (1, o, G, da) = Ra,i00,006,01(1 = jo = ja = ja = j),

where Ky j = Cum4(§07]~)/0;L and £, = diag(c?,...,032).

11



2.3 The test statistic

We now use the results in the previous section to motivate the test statistic. We have shown
that {IA(n(r)}r (and also %Rn(r) and SK,,(r)) are asymptotically uncorrelated. Therefore, we
simply standardize {IA{n(r)} and define the test statistic
m
Tona =T Y (W5 2R ()} + W, 29K (1) 3) (2.18)
r=1

where Kn(r) and W,, are defined in (2.7) and (2.12) respectively. By using (2.6), it is clear that

D
Tm,n,d — X?nnd(d—i—l)’ (219)

where and(d+1) is a x2-distribution with mnd(d 4 1) degrees of freedom.

Therefore, using the above result, we reject the null of second order stationarity at the
a x 100% level if Ty, p.a > Xfmd(dﬂ)(l «), where and(d+1)(1 «) is the (1 — a))-quantile of
the y?-distribution with mnd(d + 1) degrees of freedom.

Example 2.4 (i) In the univariate case using n = 1, the test statistic reduces to
Z |CT r, O
14 3K0 0
where kK09 is defined in (2.9).

(ii) In most situations, it is probably enough to use n = 1. In this case the test statistic reduces

to

Tora =TS (IW 2 vech(RC (r,0)) 8 + W7 *vech(3C (7, 0)) )

r=1

(111) If we can assume that {X,} is Gaussian, then Ty, n 4 has the simple form

TmndG = TZ( N=120ech(RCr(r,0)) |2 + |(WE) "2 vech(SCor(r, 0))@
m n—1 R N
+217 " 3 (Jvech(RCx(r, 0)[3 + |vech(SCr(r, 0)3) (2.20)
r=1 ¢=1

where W(()l) is a diagonal matriz composed of ones and halves defined in (2.11).

The above test statistic was constructed as if the standardization matrix W,, were known.
However, only in the case of Gaussianity this matrix will be known, for non-Gaussian time series
we need to estimate it. In the following section, we propose a bootstrap method for estimating

W,.

12



2.4 A bootstrap estimator of the variance W,,

The proposed test does not make any model assumptions on the underlying time series. This
level of generality means that the test statistic involves unknown parameters which, in practice,
can be extremely difficult to directly estimate. The objective of this section is to construct a
consistent estimator of these unknown parameters. We propose an estimator of the asymptotic
variance matrix W,, using a block bootstrap procedure. There exists several well known block
bootstrap methods, (cf. Lahiri (2003) for a review), but the majority of these sampling schemes,
are nonstationary when conditioned on the original time series. An exception is the stationary
bootstrap, proposed in Politis and Romano (1994) (see also Parker, Paparoditis, and Politis
(2006)), which is designed such that the bootstrap distribution is stationary. As we are testing

for stationarity, we use the stationary bootstrap to estimate the variance.

The bootstrap testing scheme

~

Step 1. Given the d-variate observations X |, . .., X, evaluate vech(RCr(r, £)) and vech(SCr (r, £))
forr=1,...,mand £=0,...,n — 1.

Step 2. Define the blocks

BI,L — {X[7 o v )XI+L71}7

where Y ; = X g 7—X (hence there is wrapping on a torus if j > T') and X = * Zthl X,
We will suppose that the points on the time series {;} and the block length {L;} are iid
random variables, where P(I; = s) = T~! for 1 < s < T (discrete uniform distribution)

and P(L; = s) = p(1 — p)*~! for s > 1 (geometric distribution).

Step 3. We draw blocks {By, r,}; until the total length of the blocks (By, 1, ..., B, 1,) satisfies
YoiyLi > T and we discard the last Y ; | L; — T values to get a bootstrap sample
X7, .., X5

Step 4. Define the bootstrap spectral density estimator
L5

o 1 * * /
f7(wk) = T Z Ky(wi — wj) L7 (wj) L (w;) (2.21)
==L
where Kjy(wj) = >, Ap(r) exp(irw;), its lower-triangular Cholesky matrix B*(w), its in-

verse L* (w) = (B*(w))* and the bootstrap DFT covariances

77/
Ch(r, 0) ZL* wie) L (W) Lo (Wr) T (wher) exp(ilewy), (2.22)
k 1

13



where Ji(wi) = \/ﬁ S XFe ™k is the bootstrap DFT.

Step 5.
j=1,....,N. Forr=1,...,mand f1,05 =0,...,n—1, we compute the bootstrap covari-

ance estimators of the real parts that is

N
=, 1
(Wi} 1s1 = T NZ vech(RC(r, 1)) D vech(RCH(r, €)1 (2.23)
- /
N N
- NZ vech(RC (r, £1))) Z vech(RC (r, £2)))

and, similarly, we define its analogues {Wg(r}}gl+17g2+1 using the imaginary parts.

Step 6. Define the bootstrap covariance estimator {\/7\\7* (1) }er 41,0041 @8

., 1 =, .
W bt = 5 [(Wal)lostan +{WE 0 aran) |
{7\\7*(7") is the bootstrap estimator of the rth block of W, ,, defined in (3.6).

Step 7. Finally, define the bootstrap test statistic T,:’md as
1 =TY (\[W*(r)]—l/%ech(ﬂfeﬁn(r))\3 + |[W*(r)]_l/Qvech(%IA(n(r))]%) (2.24)
r=1

and reject Ho if 7% > annd(dﬂ)(l «), where and(d+1)(1 «) is the (1 — a)-quantile
of the y2-distribution with mnd(d + 1) degrees of freedom to obtain a test of asymptotic
level a € (0,1).

Remark 2.1 (Step 4*) A simple variant of the above bootstrap, is to use the spectral density

estimator /f\T(w) rather than bootstrap spectral density estimator /f\}(w) ie.

1= !

L (wg) L5 (wp, ) (wWtr) Li(wigr) exp(ilwy). (2.25)

Mﬂ

CTTE
k;:

Using the above bootstrap covariance greatly simplifies the speed of the bootstrap procedure and the
theoretical analysis of the bootstrap (in particular the assumptions required). However, empirical
evidence suggests that estimating the spectral density matriz at each bootstrap sample gives a
better finite sample approzimation of the variance (though we cannot theoretically prove that

using 6;;(7«, 0) gives a better variance approximation than Ci}(r, 0)).

14
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We observe that because the blocks are random and their length is determined by a geometric
distribution, their lengths vary. However, the mean length of a block is approximately 1/p (only
approximately since only block lengths less than length 7" are used in the scheme). As it has to
be assumed that p — 0 and Tp — o0 as T' — 00, the mean block length increases as the sample
size T' grows. However, we will show in Section 5 that a sufficient condition for consistency of
the stationary bootstrap estimator is that Tp* — oo as T — oo. This condition constrains the

mean length of the block and prevents it growing too fast.

3 Analysis of the DFT covariance under stationarity and non-

stationarity of the time series

3.1 The DFT covariance GT(T, ¢) under stationarity

Directly deriving the sampling properties of aT(r, ¢) is not possible as it involves the estimators
L(w). Instead, in the analysis below, we replace L(w) by its deterministic limit L(w), and
consider the quantity

T

TZ (wi) L (W) T (Whgr) L(whgr ) exp(iluy). (3.1)
k

Below, we show that Cr(r,¢) and Cp(r,¢) are asymptotically equivalent. This allows us to
analyze éT(r, ¢) without any loss in generality. We will require the following assumptions.
3.1.1 Assumptions

Let | - |, denote the £,-norm of a vector or matrix, i.e. [Al, = (3, ; |A;;[P)1/P for some matrix

A = (ay;) and let | X[, = (E]X[P)"/7.

Assumption 3.1 (The process {X,}) (P1) Let us suppose that {X,,t € Z} is a d-variate
constant mean, fourth order stationary (ie. the first, second, third and fourth order mo-

ments of the time series are invariant to shift), a-mixing time series which satisfies

sup sup IP(ANB) — P(A)P(B)| < Ct°, >0, (3.2)
k€Z Aco(Xyy o Xy qht1s-)
Beo (X, Xp_15--)

where C' is a constant and o > 0.
(P2) For some s > % > 0 with o such that (3.2) holds, we have sup,z || X,||s < oo.
(P3) The spectral density matriz f(w) is non-singular on [0, 27].

15



(P4) For some s > 2% > 0 with o such that (3.2) holds, we have sup,cz || X,||s < oo.

(P5) For a given lag order n, let W,, be the variance matriz defined in (2.12), then W, is

assumed to be non-singular.

Some comments on the assumptions are in order. The a-mixing assumption is satisfied by a
wide range of processes, including, under certain assumptions on the innovations, the vector AR
models (see Pham and Tran (1985)) and other Markov models which are irreducible (cf. Feigin
and Tweedie (1985), Mokkadem (1990), Meyn and Tweedie (1993), Bousamma (1998), Franke,
Stockis, and Tadjuidje-Kamgaing (2010)). We show in Corollary A.1 that Assumption (P2)
implies > ;2 |h] - [Cov(Xp j,, Xo,j,)| < oo for all ji,j2 = 1,...,d and absolute summability
of the fourth order cumulants. In addition, Assumption (P2) is required to show asymptotic
normality of Cr(r,¢) (using a Mixingale proof). Assumption (P4) is slightly stronger than (P2)
and it is used to show the asymptotic equivalence of \/T(A?T(r, /) and \/T(N?T(r, ¢). In the case
that the multivariate time series {X,} is geometric mixing, Assumption (P4) implies that for
some § > 0, (8 4+ d)-moments of {X,} should exist. Assumption (P5) is immediately satisfied in

the case that {X,} is a Gaussian time series, in this case W, is a diagonal matrix (see (2.12)).

Remark 3.1 (The fourth order stationarity assumption) Although the purpose of this
paper is to derive a test for second order stationarity, we derive the proposed test statistic under
the assumption of fourth order stationarity of {X,} (see Theorem 3.3). The main advantage of
this slightly stronger assumption is that it guarantees that the DFT covariances aT(rl,E) and
(A}T(rg, 0) are asymptotically uncorrelated at different lags r1 # ro. For details see the end of the

proof of Theorem 3.2, on the bounds of the fourth order cumulant term).
3.2 The sampling properties of aT(r, ¢) under the assumption of fourth order

stationarity

Using the above assumptions we have the following result.

Theorem 3.1 (Asymptotic equivalence of Cr(r,¢) and Cr(r, ) under the null) Suppose
Assumption 3.1 is satisfied and let Cp(r,€) and Crp(r,€) be defined as in (2.5) and (3.1), re-

spectively. Then we have

VT|Cr(r,€) — Cr(r,0)|, = O, (b\}:? +b+ b2ﬁ> .
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We now obtain the mean and variance of Cr(r,f) under the stated assumptions. Let
Cjy o (1, 0) = Cr(r, ?);, j, denote entry (ji,j2) of the unobserved (d x d) DFT covariance matrix

éT(T, @)

Theorem 3.2 (First and second order structure of {Cy(r,0)}) Suppose that supj, i, >_p |7l
|cov(Xo,j,, Xnj,)| < oo and supj, Zhl,hg,hg R - [eum(Xo 5, Xhy o Xhos J3: Xy ju)| < 00

(satisfied by Assumption 3.1(P1,P2)). Then, the following assertions are true
(i) For all fivxed r € N and ¢ € Z, we have E(Cr(r,0)) = O(7).

(ii) Let RZ and SZ be the real and the imaginary parts of a random variable Z, respectively.

Then, for fized ri,mo € N and £1,0s € Z and all j1,j2,73,74 € {1,...,d}, we have

TCov (Rej, 5y (11, 01), Rejs jy (12, £2)) = % {05133 0423400102 + 0313402530105 } Ory o
%n("l’f”(y’l,jmjg,j4)6n,m +0 (;) (3:3)
and
TCov (3¢jy,jo (r1,41), SCjy ju (12, £2)) = % {05130723400162 + 015aGjajsOts, 2} Ory iy

1 S 1
+§’€(81’Z2)(]17j27j3)]4)57‘1,r‘g + O <T> ) (34)

where 6;, = 1 if j = k and d;, = 0 otherwise.

Below we state the asymptotic normality result, which forms the basis of the test statistic.

Theorem 3.3 (Asymptotic distribution of vech(Cr(r,¢)) under the null)
Suppose Assumptions 3.1 and 2.1 hold. Let the nd(d+1)/2-dimensional vector K, (r) be defined
as in (2.7). Then, for fited m,n € N, we have

a(1)
n(l
VT : B N Oarry: Womn), (3.5)
(m)
(m)

where W, 5, is a (mnd(d + 1) x mnd(d + 1)) block diagonal matriz

=
~ RN

&2

~—

K,
K,

Won = diag(W,, ..., W,,), (3.6)
—— ——

2m times

and W, is defined in (2.15).
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The above theorem immediately gives the asymptotic distribution of the test statistic.

Theorem 3.4 (Limiting distribution of 7, , ¢ under the null) Let us suppose that Assump-

tions 3.1 and 2.1 are satisfied. Then we have

D
Tmnd = Ximnd(dJrl)’ (3.7)

where X?nnd(d-f-l) is a x2-distribution with mnd(d + 1) degrees of freedom.

3.3 Behaviour of éT(r, ?) for locally stationary time series

We now consider the behavior of the DFT covariance aT(r, ¢) when the underlying process is
second order nonstationary. There are several different alternatives one can consider, includ-
ing unit root processes, periodically stationary time series, time series with change points etc.
However, here we shall focus on time series whose correlation structure changes slowly over time
(early work on time-varying time series include Priestley (1965), Subba Rao (1970) and Hallin
(1984)). As in nonparametric regression and other work on nonparametric statistics we use the
rescaling device to develop the asymptotic theory. The same tool has been used, for example,
in nonparametric time series by Robinson (1989) and by Dahlhaus (1997) in his definition of
local stationarity. We use rescaling to define a locally stationary process as a time series whose
second order structure can be ‘locally’ approximated by the covariance function of a stationary
time series (see Dahlhaus (1997), Dahlhaus and Polonik (2006) and for a recent overview of the
current state-of-the-art Dahlhaus (2012)).

3.3.1 Assumptions

In order to prove the results in this paper for the case of local stationarity, we require the

following assumptions.

Assumption 3.2 (Locally stationary vector processes) Let us suppose that the locally sta-
tionary process {Xt,Tv t € Z} is a d-variate, constant mean time series that satisfies the following

assumptions:
(L1) {X;r,t €Z} is an a-mizing time series with the rate

sup sup |P(ANB) — P(A)P(B)| < Ct™“, t>0 (3.8)
kTEZ Aco(Xy 7 Xyqpq1,1)
Beo (X p:Xp_1,75-)

where C is a constant and o > 0.
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(L2) There exists a covariance function {K(u, h)}n and function ka(h) such that [cov(X,, 7, Xy, 7)—

k(ti —to, L)1 < Fka(ts — ta). We assume the function {k(u, h)}), satisfies the following
Bn (u, h

conditions: >, h*-|k(u, h)|1 < 0o and SUPyefo,1] 2 | ] < 00, where on the boundary
0 and 1 we consider the right and left derivative Tespectwe (this assumption can be relaxed
to k(u, h) being piecewise continuous, where within each piece the function has a bounded

derivative). The function ko(h) satisfies Y, |ka(h)] < oc.
(L8) For some s > % > 0 with o such that (3.8) holds, we have sup; r || X, p||ls < oc.

(L4) Let f(uwu) = > cov(Xy(u), X, (u)) exp(—irw). Then the integrated spectral density
matriz f(w fo u,w)du is non-singular on [0, 27].

‘8f uw) ’

Note that (L2) implies that sup,, < 0.

(L5) For some s > %= > 0 with a such that (3.8) holds, we have sup, r || X, rlls < oo.

As in the stationary case, it can be shown that several nonlinear time series satisfy Assumption
3.2 (L1) (cf. Fryzlewicz and Subba Rao (2011) and Vogt (2012) who derive sufficient conditions
for a-mixing of a general class of nonstationary time series). Assumption 3.2(L2) is used to show
that the covariance changes slowly over time (these assumptions are used in order to derive the
limit of the DF'T covariance under local stationarity). The stronger Assumption (L5) is required

to replace L(w) with its deterministic limit (see below for the limit).

3.3.2 Sampling properties of aT(r, ¢) under local stationarity

As in the stationary case, it is difficult to directly analyze GT(r, ¢). Therefore, we show that
it can be replaced by Cp(r, ) (defined in (3.1)), where in the locally stationary case L(w ) are
lower-triangular Cholesky matrices which satisfy L(w),L(w) =fHw) and f(w fo

Theorem 3.5 (Asymptotic equivalence of Cr(r,¢) and Cr(r,f) under local stationarity)
Suppose Assumption 3.2 is satisfied and let aT(r, ¢) and éT(r, 0) be defined as in (2.5) and (3.1),
respectively. Then we have

logT

VT

VTCr(r,t) = ﬁ(éT(r, 0) + Sq(r, £) + By (r, e)) +Op < +blog T + b2ﬁ> (3.9)

and
Cr(r,f) = E(Crp(r, 0)) + 0,(1),

where Br(r,£) = O(b) and St (r,f) are a deterministic bias and stochastic term, respectively,

which are defined in Appendiz A.2, equation (A.7).
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Remark 3.2 There are some subtle differences between Theorems 3.1 and 3.5. In particular,
the inclusion of the additional terms Bp(r,£) and St(r,€). We give a rough justification for this
difference in the univariate case. Taking differences, it can be shown that

1 T

Cr(r.t) = Cr(r) ~ > B(JIr(wi)Tr(wre) @k — o)

k=1

T T

= S B T )G — EG) + 5 Y B () T )G — o)
k=1 k=1

By (r,0) St (r,L)
where gy is a function of the spectral density (see Appendiz A.2 for details). In the case of
second order stationarity, since B(Jp(wi)Jr(wrir)) = O(T™Y) (for r #0), the above terms are
negligible, whereas in the case that the time series is nonstationary, B(Jr(wr)Jr(Weir)) is no

longer negligible. In the nonstationary univariate case, the Sp(r,f) and Bp(r,£) become

Sp(r, ) = 72% (t — 7) (X Xy — B(X, X;)
1 & o [ exp(ilt — T)wp)  exp(i(t — T)wpir) 1
LS iy (228 ) +ock
XTk:l e VI (wi)? f(Wipr) i \/f (wie) f (wrtr)? Holp)
1< E[fr(wr)] — f(wr)
Br(r,0) = h(wg,T) . A(wk, wr),
! N T TR
where
1
Alwg,wy) = (F(wi)® f(witr)) /2

1
((f (wie) f(wrtr)3) 172

and h(w;T) fo w;w) exp(2miur)du (see Lemma A.7 for details). A careful analysis will show
that S7(r,0) and Cp(r,€) are both quadratic forms of the same order, this allows us to show

asymptotic normality of aT(r, ¢) under local stationarity.
Lemma 3.1 Suppose Assumption 3.2 is satisfied. Then for all r € Z and £ € Z we have
E(Cr(r,£)) = A(r,0), and Co(r,0) 5 A(r,0)

as T — oo where

1 27 ., ) .
A(r,0) = 2/ / L(w)f(u;w)L(w) exp(i2mru) exp(ilw)dudw. (3.10)
T Jo 0
Since (AJT(r, ?) is an estimator of A(r,¢), we now discuss how to interpret this.
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Lemma 3.2 Let A(r,0) be defined as in (3.10). Then under Assumption 3.2(L2) and (L4}) we
have that

(i) L(w)f(u, w)L(w)/ satisfies the representation

Lwf(u,w)L@) = Y A(r,0)exp(—i2mru) exp(—itw).
rlEZ

and, consequently, f(u,w) = B(w) < > ez A(r,€) exp(—i2mru) exp(—iﬁw))B(w) .
(ii) A(r,0) is zero for all v # 0 and ¢ € Z iff {X+} is second order stationary.
(iii) For all £ # 0 and v # 0, |A(r,0)|1 < K|r|~¢|=2 (for some finite constant K ).
(i) A(r,0) = A(—r, 0.

We see from part (ii) of the the above lemma that for r # 0, the coefficients {A(r, ¢)} characterize
the nonstationarity. One consequence of Lemma 3.2 is that only for second order stationary time

series, we do find that

m n—1

DY (ISrevech(RA(r, £)[5 + Sy evech(SA(r, £))]3) =0 (3.11)
r=1 (=0

for any non-singular matrices {S,,} and all n,m € N. Therefore, under the alternative of local
stationarity, the purpose of the test statistic is to detect the coefficients A(r,¢). Lemma 3.2
highlights another crucial point, that is, under local stationarity the absolute value of |A(r,¢)|;
decays at the rate C|r|~!|¢|72|. Thus, the test will loose power if a large number of lags are

used.

Theorem 3.6 (Limiting distributions of vech(K,(r))) Let us assume that Assumption 3.2
holds and let K,,(r) be defined as in (2. 7). Then, for fized m,n € N, we have

RK,,(1) — RA,L(1) — RB,(1)
K, (1) — SA,(1) — SB,(1)
VT : 5 N iz 1) W),
RK,(m) — RA,(m) — RB,,(m)
K,(m) — SA,(m) — SB,(m)

&2

where W, , is an (mnd(d + 1) x mnd(d + 1)) variance matriz (which is not necessarily block
diagonal), A, (r) = (vech(A(r,0)), ..., vech(A(r,n—1))") are the vectorized Fourier coefficients
and By, (r) = (vech(B(r,0)),...,vech(B(r,n —1))) = O(b).
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4 Properties of the stationary bootstrap applied to stationary

and nonstationary time series

In this section, we consider the moments and cumulants of observations sampled using the sta-
tionarity bootstrap and its corresponding discrete Fourier transform. We use these results to
analyze the bootstrap procedure proposed in Section 2.4. In order to reduce unnecessary no-
tation, we state the results in this section for the univariate case only (all these results easily
generalize to the multivariate case). The results in this section may also be of independent inter-
est as they compare the differing characteristics of the stationary bootstrap when the underlying
process is stationary and nonstationary. For this reason, this section is self-contained, where
the main assumptions are mixing and moment conditions. The justification for the use of these
mixing and moment conditions can be found in the proof of Lemma 4.1, which can be found in
Appendix A.5.
We start by defining the ordinary and the cyclical sample covariances

T 7|
h— _
Z X Xpin — (X)? ZK&Kt+h (X)?

where Y; = X(;_1)mod 741 and X = % Zthl X;. We will also consider the higher order cumulants.

Therefore we define the sample moments

T—max |h;| n—1
~ 1
/utn(h17-~-7hn—1):f tzl Xtil:IlXHh“ A (ha, ... hoe ZYZHYH}L (4.1)

(we set 1 = 0) and the nth order cumulants corresponding to these moments

BG (b, hnr) = Y (7l = DD T AS (ries), (4.2)

Bem

™
//%n(hl,...,hn_l) = Z’W’—l |7r| 1H,u, WZEB
™

Bem
where 7 runs through all partitions of {0,h;,...,h,—1} and B are all blocks of the partition
m. In order to obtain an expression for the cumulant of the DFT, we require the following
lemma. We note that E*, cov®, cum* and P* denote the expectation, covariance, cumulant and

probability with respect to the stationary bootstrap measure defined in Step 2 of Section 2.4.

Lemma 4.1 Let {X;} be a time series with constant mean. We define the following expected

quantities

Ralht, oo hoer) = () = DU=DI T Elf g (mies), (4.3)

T Ber

22



where ™ runs through all partitions of {0,h1 ..., hn—1}, n(h1,..., hn—1) is defined in (4.1),

T
Fn(hi, .. hno1) = > (o] = D= T < > Elupg(micpi)] ) (4.4)

™ Ber t=1 S———————
—E(Xt+11Xt+i2-"Xi+iB)
Tiep+t = (i1 +1t,...,ip+t) and iy,...,ip is a subset of {0,h1,..., hp_1}.

(i) Suppose that 0 <ty <t3...<ty,, then
cum*(Xg, ..., X ) = (1 — p)max(tn0)-min(tOzC e, ).
To prove the assertions (ii-iv) below, we require the additional assumption that the time series
{X:} is a-mizing, where for a given q > 2n we have o > q and for some s > qa /(o — q/n) we

have sup, || X¢||s < oo. Note that this is a technical assumption that is used to give the following

moment bounds, the exact details for their use can be found in the proof.

(ii) Approximation of circulant cumulant RC by regular sample cumulant

A~ ~ hnf n
RS (A Bnet) = Ra(hns s Bt < _c' Tl‘ s.tujgnxt,THq, (4.5)

where C' is a finite constant which only depends on the order of the cumulant.

(iii) Approximation of sample reqular cumulant by © the cumulant of averages’:

[Fn(his oy hn1) = Fn(ha, oo hn1) llgm = o(T—/?) (4.6)
and
(Bt Pont) = Fon(s e 1) < 0225 0); min(hy, 0) (4.7)
(iv) In the case of nth order stationarity, it holds &y, = cum(Xo, X¢1hyy- -y Xtth, )

However, if the time series is nonstationary, then

(a) Fa(h) = 3 31—y cov(Xy, Xyin)

(b) 53(}@1’ hQ) T Zt 1 Cum(Xt7 Xt+h1 ) Xt+h2)
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(c) The situation is different for the fourth order cumulant and we have

1

Fa(h, ho, hs) = T > " cum(Xe, Xopny s Xehys Xetns)

t=1

T T
1 1
+f ; cov(X¢, Xitn, )coV(Xithyy Xiths) — (T tEZI cov (X, Xt+h1)> <

N[ =
B

#
Il
—

el
E

T T
1 1
+T ; cov(X¢, Xitny)cov(Xitny s Xiths) — <T ,;1 cov (X, Xt+h2)> (

I
N

T T
1 1
+T tzl COV(Xt, Xt+h3)COV(Xt+h1 s Xt+h2) — <T tzl COV(Xt, Xt+h3)> <T

MHH

i
I\

(d) A similar expansion holds for Fp(hi,...,hn—1) (n > 4), ie. Rn(-) can be written as

the average nth order cumulants plus additional lower order average cumulants terms.

In the above lemma we have shown that for stationary time series, the bootstrap cumulant is
an approximation of the corresponding cumulant of the time series, which is not surprising.
However, in the nonstationary case the bootstrap cumulant behaves differently. Under the
assumption that the mean of the nonstationary time series is constant, the bootstrap cumulant
of both second and third orders are the averages of the corresponding local cumulants. In other
words, the second and third order bootstrap cumulants of a nonstationary time series behave
like a stationary cumulant, ie. there is a decay in the cumulant the further apart the time lag.
However, the bootstrap cumulants of higher orders (fourth and above) is not the average of the
local cumulants, there are additional terms (see (4.8)). This means that the cumulants do not
have the same decay as regular cumulants have. For example, from equation (4.8) we see that
as the difference |h; — ha| — oo, the function k4(h1, ha, h3) does not converge to zero, whereas
cum(Xy¢, Xiyny s Xithy, Xethy) does (see Lemma A9, in the Appendix).

We use Lemma 4.1 to derive results analogous to Brillinger (1981), Theorem 4.3.2, where an
expression for the cumulant of DFTs in terms of the higher order spectral densities was derived.
However, to prove this result we first need to derive the limit of the Fourier transform of the

cumulant estimators. We define the sample higher order spectral density function as

hn(wkl, e ,wknil)
T

max(h;,0)—min(h;,0) > —thiwg, —...—thp_1wg,
= W Z (1—p) (hs,0) (h O)Kn(hb”'?hn_l)e 1Why W (4.9)
h17"'7hn71:_T
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COV(Xt+h2 ) Xt+h3

coV(Xiyny s Xithy
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where K, (-) are the sample cumulants defined in (4.3). In the following lemma, we show that

ﬁn() approximates the ‘pseudo’ higher order spectral density

fr(Wiys - Whyy ) (4.10)

T
= ( :)l - Z (1 _p)max(hi,0)—min(hi70)En(h1 . hy 1>6*ihlwk1*ihQ"JkQ*m*ihn—lwkn,l
2m)n— T ’

h17~~~7hn71:7T
where %, (+) is defined in (4.4)
We now show that under certain conditions /f;n() is an estimator of the higher spectral

density function.

Lemma 4.2 Suppose the time series {X;} (where E(X;) = p for allt) is a-mizing and sup, || X¢||s <

oo where a > q and s > qa /(o — q/n).

(i) Let hn(-) and f, () be defined in (4.9) and (4.10), respectively. Then we have

1 1
=0 + + ) (411
n <Tpn T1/2p0n—1) P (4.11)

(ii) If the time series is nth order stationary, then we have

o~

hn(wl, e ,wnfl) — fn,T(wl, . ,wnfl)

~ 1 1
P (Why s e ooy Whyy, ) — fr(Whyy - ooy Wy, :O< + —|—p> 4.12
n( 1 1) n( 1 1) o/n Tpn T1/2p(n—1) ( )
andsupy,, | fo(wi, ... wno1)| < oo, where fy, is the nth order spectral density function
defined as
1 ° , .
fn(wk17 . 7wkn_1) — W Z ,‘Qn(hl, ceey hn_l)e*lhwﬂcl*‘..71hn—1t.wcn_1

hlzuwhnfl:_oo

and kn(h1,...,hn—1) denotes the nth order joint cumulant of the stationary time series
{X:}.
(i1i) On the other hand, if the time series is nonstationary:

(a) Forn € {2,3}, we have

a(wiy) — for(wiy)

q/n Tp2 T1/2p ,

0(1 - +)
= R T 0.9 TP,
o/n Tp3  T1/2p2

1 o0
where for(w) = o Ro(h)exp(ihw)

=—00

h3 (wkl ; wkg) - f3,T (wkl ) wkz)

with Ro(h) defined as in Lemma 4.1(iva) and f3 1 is defined similarly. Since the aver-
age covariances and cumulants are absolutely summable, we have supr,, |for(w)| <

00 and SUPT ., o, | f3,7 (w1, w2)| < oo.
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(b) Forn =4, we have SUDy1 o ws | far(wi, we,ws)| = O(p™).

(¢c) Forn >4, we have supy, ., |far(Wi, .. wn 1) = O(p~(=3).
The following result is the bootstrap analogue of (Brillinger, 1981), Theorem 4.3.2.

Theorem 4.1 Let J}(w) denote the DFT of the stationary bootstrap observations. Under the

assumptions that | X¢ ||, < oo, we have

* * * 1
Jouns (3 ) Tl =0 (s ) (4.13)

By imposing the additional condition that {X;} is an a-mizing time series with a constant

mean, q/n > 2, the mizing rate o > q and || X||s < 0o for some s > qa/(a — q/n), we obtain

cum® (Jp(wg, ), - -+, J1(wk,))
1r n/2—1A 1 T i
(Tn)/z—lhn(% s, ) D exp(—itlen + o))+ B, (414)
t=1
1
where || Ry ) llon = Ogaan)-
(a) If {X:}s is nth order stationary then

HCHIII*(J%(wkl)a . J wkn Hq/n
(27_[.)77,/2—1 1 . 2

e flk ) 7 ;exm—zt(wkl o))+ RE),

@) (Tn/1271 + (Tl/%,)n—l) ) Zlnzl W, € Z

1 ; , (4.15)
O () 2oim Wiy £ 2

which is uniform over {wy} and HRTan/n = O(W).

(b) If {X:} is nonstationary (with constant mean) then for n € {2,3}, we replace f,, with for

and f3 T, respectively, and obtain the same as above.

Forn > 4, we have

1 1 n
o <T'n/271pn73 + (T1/2p)n71) ; 2le1 Wk €Z

| cum™ (J(wky ), - - -5 I (wr) || n n
1 q/ 0] <W) , Zl:l WE, §é 7

(4.16)

An immediately implication of the theorem above is that the bootstrap variance of the DFT

can be used as an estimator of spectral density function.
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5 Analysis of the test statistic

In Section 3.1, we derived the properties of the DFT covariance in the case of stationarity.
These results show that the distribution of the test statistic, in the unlikely event that W2
is known, is a chi-square (see Theorem 3.4). In the case that W@ is unknown as in Section
2.4 we proposed a method to estimate W) and thus the bootstrap statistic. In this section
we show that under fourth order stationarity of the time series, the bootstrap variance defined
in Step 6 of the algorithm is a consistent estimator of W(2). Thus, the bootstrap statistic
T:%m 4 asymptotically converges to a chi-squared distribution. We also investigate the power of
the test under the alternative of local stationarity. To derive the power, we use the results in
Section 3.3, where we show that for at least some values of r and ¢ (usually the low orders),
(A?T(r, ¢) has a non-centralized normal distribution. However, the test statistic also involves
W®), which is estimated as if the underlying time series is stationary (using the stationary
bootstrap procedure). Therefore, in this section, we derive an expression for the quantity that
W@ is estimating under the assumption of second order nonstationarity, and explain how this
influences the power of the test.

We use the following assumption in Lemma 5.1, where we show that the variance of the

bootstrap cumulants converge to zero as the sample size increases.

Assumption 5.1 Suppose that {X,} is a-mizing with o > 8 and the moments satisfy || X||s <

oo, where s > 8a/(av — 2).

Lemma 5.1 Suppose that the time series {X,} satisfies Assumption 5.1.

(i) If {X,} is fourth order stationary, then we have

(a) cum®(J7 (Wi, ), T4, (Why)) = fi1 o (Wi )L (k1 = —k2) + Ry

(b) cum* (T3, (i), Ty (@) T Wia ) S5, (Wia)) = 2 Faga Wiy s Wi ) (s =
—k1 — ky — k3) + Ro,

where | Ri]l4 = O(7) and |[Roll2 = O(7251)
(i1) If {X,} has a constant mean, then we have
(a) cum™ (J7 ; (W), IT j, (Why ) = f2,131 50 (wr ) (R1 = —k2) + R}
(b) cam™(J7; (Wky )y IT, (Who ) T (Why ), 75, (Why ) = @f4,T;j1,...,j4(U)k17wk27Wkg)I(k4 =

—k1 — ko — k3) + R3,
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where ||R||4 = O(%ﬁ) and || R3||2 = O(T%pzl).

In order to obtain the limit of the bootstrap variance estimator, we define

L(wp) L7 (wi) L7 (Whr) L(wpgr) exp(ibewy).

Mﬂ

CTT'K
k:

We observe that this is almost identical to the bootstrap DFT (A}}(r, /) and C}(r, ), except
that L*(-) and L(-) have been replaced with their limit L(-). We first obtain the variance of

(NT*T(T, ), which is simply a consequence of Lemma 5.1. Later, we show that it is equivalent to

the bootstrap variance of (Al'i_‘p(r, ¢) and Ck(r, ).

Theorem 5.1 (Consistency of the variance estimator based on é*T(r, 0)) Suppose that {X,}

is an a-mizing time series which satisfies Assumption 5.1 and let
~ ~ ~ ~ !/
K (r) = (vech(Ci}(r, 0)), vech(Ci(r, 1)), . .., vech(Ci(r,n — 1))') .
Suppose Tp* — oo, bT'p?> — 00, b — 0 and p — 0 as T — oo,

(i) In addition suppose that {X,} is a fourth order stationary time series. Let W, be defined
as in (2.12).

Then for fized m,n € N we have Tvar*(RK,(r)) = W,, + op(1) and Tvar*(SK,(r)) =
W, +0,(1).

(ii) On the other hand, suppose {X,} is a locally stationary time series which satisfies As-
sumption 3.2(L2). Let

01,0 . . . .
K82 () o, s, a)

= Z Z Lj s, ()\kl)L 252 ()\kl)L 353 (Akz)L 454(/\k2) eXp(wl/\lﬂ Z162/\1@)

k1,k2=1 s1,52,83,54=1

X fa,Tis1,59,53,51 (At s —Aky s — Ak JdA1d A2, (5.1)

!/

where L(w)L(w) = f(w) fo w;w)du and

f47T§51 182,83,54 ()‘kl ) 7)\]@1 ) 7>‘k2)

T
1 . .
hi,0 h;,0 ih h —ih
RCOE E, (1 — pymexhaO)=minthiOze, o caisa(h, ha, hg)e i Fihawiy —thswr,
hi,ha,h3==T

Using the above we define
W —wils +w? 5.2
( T,n)fl-i-l,fl-l-l 01 91l 01,090 ( . )
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where Wél) and Wé?)@ are defined as in (2.11) and (2.15) but with &) (41, ja, j3, 74)

replaced with Klgh&)(jhj%]’&jz}).
Then, for fixed m,n € N, we have Tvar*(%f{n(T)) = Wr, +0p(1) and Tvar*(%f{n(r)) =

Wi + 0p(1). Furthermore, |54 (j1, ja, js, ja)| = O(p~Y) and [Wrn|s = O(p~1).

The above theorem shows that if 6}(7“, ¢) were known, then the bootstrap variance estimator
is consistent under fourth order stationarity. Now we show that both the asymptotic bootstrap

variance of 6}(1", ¢) and C%(r, ¢) are equivalent to the variance of (NJ*T(T‘, 0).

Assumption 5.2 (Variance equivalence) (B1) Let f,7(w) = a(w)fE(w) + (1 — a(w))fr(w),
where o : [0,21] — [0,1] and L;, ;,(fr(w)) denote the (j1,j2)th element of the matriz
L(fr(w)). Let ViLj, j,(f(w)) denote the ith derivative with respect to the vector f(w). We
assume that for every € > 0 there exists a 0 < M, < oo such that

P<sup<E*rviLj1,j2 (@) )5 > ME) <e,

a,w

fori=0,1,2. In other words the sequence {sup,, E*IVLj, j,(Far(w))[®)Y8) 1 is bounded

in probability.

(B2) The time series {X,} is a-mizing with o > 16 and has a finite sth moment (sup, || X¢||s <
00) such that s > 16a/(a — 2)).

Remark 5.1 (On Assumption 5.2(B1)) (i) This is a technical assumption that is required
when showing equivalence of the bootstrap variance estimator using (Aji_kp(r, ?) to the bootstrap
variance using é;(rf) In the case we use Cki(r, () to construct the bootstrap variance

(defined in (2.25)) we do not require this assumption.

(ii) Let V? denote the second derivative with respect to the vector (fo.r(w1),far(w2)). As-
sumption 5.2(B1) implies that the sequence
SUDy, w0 B¥IV2L, gy (Fo,1(w1)) Lj, (Fo 7 (w2)) )Y/ is bounded in probability. We use this

result in the proof of Lemma A.16.

(i) In the case d = 1 L(w) = f~Y/?(w) and Assumption 5.2(B1) corresponds to the condition
that for i =0,1,2 the sequence {sup,,,, [E* (f;’T(w)_‘l(Q”l))]l/s}T is bounded in probabil-

1ty.

Using the above results, we now derive a bound for the difference between the covariances

Cii(r, £1) and Ci(r, £3).
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Lemma 5.2 Suppose that {X,} is a fourth order stationary time series or a constant mean
locally stationary time series which satisfies Assumption 3.2(L2)), Assumption 5.2(B2) holds

and Tp* — oo bTp? — 00, b— 0 and p — 0 as T — co. Then, we have
(i)
T (cov*(afeé;;(r, 01), RCE(r, 2)) — cov* (RCH(r, £1), RC(r, zg))) | = 0,(1).

and

T (cov*(sé*T(r, 01), SCi(r, £)) — cov*(SCH(r, 1), SCi(r, zg))) | = 0,(1)
(i) If in addition Assumption 5.2(B1) holds, then we have
T (cov*(a'eé*T(r, 01), RC(r, £)) — cov* (R (r, £1), RC(r, eg))) | = 0,(1)

and

~

T (cov*(%C*T(r, 01), SCH(r, £)) — cov* (SCH(r, 1), SCE(r, eg))) | = 0,(1).
Finally, by using the above, we obtain the following result.

Theorem 5.2 Suppose 5.2(B2) holds. Let the test statistic T . , be defined as in (2.24), where
the bootstrap variance is constructed using either éi}(r, l) or C*T(T, 0) (if (A]}(T, 0) is used to

construct the test statistic, then Assumption 5.2(B1) also holds).

(i) Suppose Assumption 3.1 holds. Then we have

*

L)
myn,d Xmnd(d+1)"

(ii) Suppose Assumption 3.2 and A(r,L) # 0 for some 0 <r <m and 0 < ¢ <n hold, then we

have

" Op(Tp).

m,n,d

The above theorem shows that under fourth order stationarity the asymptotic distribution of

. (where we use the bootstrap variance as an estimator of W,,) is asymptotically equivalent

to the test statistic as if W,, were known. We observe that the mean length of the bootstrap

block 1/p does not play a role in the asymptotic distribution under stationarity. This is in sharp

contrast to the locally stationarity case. If we did not use a bootstrap scheme to estimate W, 1/2

)

(ie. we were to use W, = W7(l1 , which is the variance in the case of Gaussianity), then under
local stationarity 7., ,.4 = Op(T"). However, by using the bootstrap scheme we incur a slight

loss in power since 7" = = O,(pT).
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6 Practical Issues

In this section, we consider the implementation issues related to the test statistic. We will be
considering both the test statistic 7,7 . ,, where we use the stationary bootstrap to estimate the
variance, and compare it to the test statistic 7y, 4, (defined in (2.20)) that is constructed as

if the observations are Gaussian.

6.1 Selection of the tuning parameters

We recall from the definition of the test statistic that there are four different tuning parameters
that need to be selected in order to construct the test statistic, to recap these are b the bandwidth
for spectral density matrix estimation, m the number of DFT covariances aT(r, ?¢) (where r =
1,...,m), n the number of DFT covariances Cp(r,¢) (where ¢ = 0,...,n — 1) and p which
determines the average block length (which is p~!) in the bootstrap scheme. For the simulations
below and the real data example, we use n = 1. This is because (a) in most situations it is likely
that the nonstationarity is ‘seen’ in éT(r, 0) and (b) we have shown that under the alternative
of local stationarity Cr(r, ?) K A(r,¢) and for ¢ # 0 A(r,¢) so using a large n can result in a
loss of power. However, we do recommend that a plot of Cr(r,¢) (or a standardized Cr(r,?))
is made against r and ¢ (similar to Figures 1-3) to see if there are any large coefficients which
may be statistically significant. We now discuss how to select b, m and p. These procedures will

be used in the simulations below.

Choice of the bandwidth b

To estimate the spectral density matrix we need to select the bandwidth b. We use the cross-
validation criterion, suggested in Beltrao and Bloomfield (1987) (see also Robinson (1991)).

Choice of the number of lags m

We select the m by adapting the data driven rule suggested by Escanciano and Lobato (2009)
(who propose a method for selecting the number of lags in a Portmanteau test for testing
uncorrelatedness of a time series). We summarize their procedure and then discuss how we use
it to select m in our test for stationarity. For univariate time series { X;}, Escanciano and Lobato

(2009) suggest selecting the number of lags in a Portmanteau test using the criterion

mp=min{m:1<m<D: L, >L,h=12,...,D},
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where Ly, = Qp — 7(m,T,q), Qm = T L 1|R( )/R(0)]2, D is a fixed upper bound and
m(m,T,q) is a penalty term that takes the form

mlog(T), maxi<p<p VT|R(k)/R(0)| < \/qlog(T)
w(m,T,q) = )

2m, maxi<z<p VT|R(k)/R(0)| > \/qlog(T)
where R(k) = TL ZT |kl(X — X)(Xj 45 — X). We now propose to adapt this rule to select
m. More precmely, depending on whether we use Tm n.d OF Tmn,a:c we define the sequences of

bootstrap covariances {7*(r),r € N} and non-bootstrap covariances {7(r),r € N}, where
| A/
OEFFs DY {87 ()veeh (RK., (1) + 8" (r)vech (SR (1), |

and 7(r) is defined similarly with S*(r) replaced by W(()l) as in (2.20). We select m by using
m=min{m:1<m<D:L, >L,h=1,2,...,D},

where L, =T . —7"(m,T,q) (or Tpynac —m(m,T,q) if Gaussianity is assumed) and

m,n,

i mlog(T), maxi<,<p VI (r)| < +/qlog(T)
™ (m,T,q) = )
2m, maxi<,<p VI|[7*(r)| > /qlog(T)

and w(m, T, q) is defined similarly but using ~(r) instead of *(r).

Choice of the average block size 1/p

For the bootstrap test, the tuning parameter 1/p is chosen by adapting the rule suggested
by Politis and White (2004) (and later corrected in Patton, Politis, and White (2009)) that
was originally proposed in order to estimate the finite sample distribution of the univariate
sample mean (using the stationary bootstrap). More precisely, to bootstrap the sample mean

for dependent univariate time series {X;}, they suggest to select the tuning parameter for the

1 a2\
=) T3 1
P (?2(0)> ’ o

where G = YL A(k/M)[K|R(K), §(0) = SpL_y Ak/M)R(K), R(k) = + 5"y -
Y)(Yj e — Y) and

stationary bootstrap as

1,[t| € [0,1/2]
At) =S 201 = [¢]), |¢] € [1/2,1]

0, otherwise
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is a trapezoidal shape symmetric flat-top taper. We have to adapt the rule (6.1) in two ways
for our purposes. First, the theory established in Section 5 requires Tp* — oo for the stationary
bootstrap to be consistent. Hence, we suggest to use the same (estimated) constant as in
(6.1), but we multiply it with T'/% instead of T/3 to meet these requirements. Second, as
(6.1) is tailor-made for univariate data, we propose to apply it separately to all components of
multivariate data and to define 1/p as the average value. We mention that proper selection of a
p (and in general the block length in any bootstrap procedure) is an extremely difficult problem
and requires further investigation (see, for example, Paparoditis and Politis (2004) and Parker

et al. (2006)).

6.2 Simulations

We now illustrate the performance of the test for stationarity of a multivariate time series through
simulations. We will compare the test statistics Trz,n,d and Ty, n.d:c, which are defined in (2.24)
and (2.20), respectively. In the following, we refer to Tmna @0d Tonac as the bootstrap and
the non-bootstrap test, respectively. Observe that the non-bootstrap test is asymptotically a
test of level a only in the case that the fourth order cumulants are zero (which includes the

Gaussian case). We reject the null of stationarity at the nominal level o € (0, 1) if
Tnd > X?rmd(d+1)(1 —a) and Tmndc > XErmd(dJrl)(l - a). (6.2)

6.2.1 Simulation setup

In the simulations below, we consider several stationary and nonstationary bivariate (d = 2)
time series models. For each model we have generated M = 400 replications of the bivariate
time series (X, = (X¢1,X32),t =1,...,T) with sample size T' = 500. As described above, the
bandwidth b for estimating the spectral density matrices is chosen by cross-validation. To select
m, we set ¢ = 2.4 (as recommended in Escanciano and Lobato (2009)) and D = 10. To compute
the quantities G and §(0) for the selection procedure of 1/p (see (6.1)), we set M = 1/b. Further,

we have used N = 400 bootstrap replications for each time series.

6.2.2 Models under the null

To investigate the behavior of the tests under the null of (second order) stationarity of the process

{X,}, we consider realizations from two vector autoregressive models (VAR), two GARCH-type
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models and one Markov switching model. Throughout this section, let

0.6 0.2 1 0.3
A= and X =
0 03 03 1
To cover linear time series, we consider data X, ..., X, from the bivariate VAR(1) models
Model S(I) & S(II) X, =AX, | +e¢,, (6.3)

where {e,,t € Z} is a bivariate i.i.d. white noise process. For Model S(I), we let ¢, ~ N(0,X).
For Model S(II), the first component of {e;, ¢ € Z} consists of i.i.d. uniformly distributed random
variables, e;1 ~ R(—/3,/3) and the second component {e; 2} of t-distributed random variables
with 5 degrees of freedom that are suitably multiplied such that E(e.e;) = X holds. Observe
that the excess kurtosis for these two innovation distributions are —6/5 and 6, respectively.

The two GARCH-type Models S(IIT) and S(IV) are based on two independent, but identically
distributed univariate GARCH(1,1) processes {Y;;,t € Z}, i = 1,2, each with

Model S(IIT) & S(IV)  Yi; = oy4eri, o7y =0.014 0.3V ; +0.507 . (6.4)

where {e;;,t € Z}, i = 1,2, are two independent i.i.d. standard normal white noise processes.
Now, Model S(IIT) and S(IV) correspond to the processes {X, = XY/%(Y;1,Yi2),t € Z} and
(X, = SV2{(|Via], [Yi2)) — E[(|Yia], [Yi2))]},t € Z}, respectively (the first is the GARCH
process, the second are the absolute values of the GARCH). Both these models are nonlinear
and their fourth order cumulant structure is complex. Finally, we consider a VAR(1) regime
switching model

Agt_l +§ta St = 07
Model S(V) X, = (6.5)

Qta St = 17

where {s;} is a (hidden) Markov process with two regimes such that P(s; € {0,1}) = 1 and
P(s; = s;-1) = 0.95 and {e;,t € Z} is a bivariate i.i.d. white noise process with e, ~ N (0, X)).

Realizations of stationary Models S(I)-S(V) are shown in Figure 1 together with the corre-
sponding DFT covariances T|Chy(r, 0)|2, T|v/2Ca:(r,0)2 and T|Cas(r,0)[%, # = 1,...,10. The

performance under the null of both tests 77, , and Tmn,d:c are reported in Table 1.

Discussion of the simulations under the null

For the stationary Models S(I)-S(V), the DFT covariances for lags r = 1,...,10 are shown in
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Figure 1. These plots illustrate their different behaviors under Gaussianity and non-Gaussianity.
In particular, for the Gaussian Model S(I), it can be seen that the DFT covariances seem to
fit to the theoretical x?-distribution. Contrary to that, for the corresponding non-Gaussian
Model S(II), they appear to have larger variances. Hence, in this case, it is necessary to use the
bootstrap to estimate the proper variance in order to standardize the DFT covariances before
constructing the test statistic. For the non-linear GARCH-type Models S(III) and S(IV), this
effect becomes even more apparent and here it is absolutely necessary to use the bootstrap to
correct for the larger variance (due to the fourth order cumulants). For the Markov switching
Model S(V), this effect is also present, but not that strong in comparison to the GARCH-type
models S(IIT) and S(IV).

In Table 1, the performance in terms of actual size of the bootstrap test 7, , ; and of the
non-bootstrap test 7T, n 4. are presented. For Model S(I), where the underlying time series

is Gaussian, the test 7y, 4. performs superior to 7,* which tends to be conservative and

myn,d>
underrejects the null. However, if we leave the Gaussian world, the corresponding non-Gaussian
Model S(II) shows a different picture. In this case, the non-bootstrap test 7y, . 4. clearly over-
rejects the null significantly, where the bootstrap test T:w, g still remains conservative, but holds
the prescribed level. For the GARCH-type Model S(III), both tests do not succeed in attaining
the nominal level (over rejecting the null). However, there are two important factors which ex-
plain this. On the one hand, the non-bootstrap test 7y, ,, 4. just does not take the fourth order
structure contained in the process dynamics into account, which leads to a test that significantly
overrejects the null, because in this case the DFT covariances are not properly standardized. On
the other hand, the bootstrap procedure used for constructing Tni‘hn, g Telies to a large extent on
the choice of the tuning parameter p, which controls the average block length of the stationary
bootstrap and, hence, for the dependence captured by the bootstrap samples. However, the
data-driven rule (defined in Section 6.1) for selecting 1/p is based on the correlation structure of
the data and the GARCH process is uncorrelated. This leads the rule to selecting a very small
1/p (typically it chooses a mean block length of 1 or 2). With such a small block length the
fourth order cumulant in the variance cannot be estimated properly, indeed it underestimates
it. For Model S(IV), we take the absolute values of GARCH processes, which induces serial
correlation in the data. Hence, a the data-drive rule selects a larger tuning parameter 1/p in
comparison to Model S(III). Therefore, a relatively accurate estimate of the (large) variance of

the DFT covariance obtained, leading to the bootstrap test ’TT;”, 4 attaining an accurate nominal
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level. However, as expected, the non-bootstrap test 7y, , 4. fails to attain the nominal level
(since the kurtosis of the GARCH model is large kurtosis, thus it is highly ‘non-Gaussian’).
Finally, the bootstrap test performs well for the VAR(1) switching Model S(V), whereas the

non-bootstrap test 7, » a.c tends to slightly overreject the null.

6.2.3 Models under the alternative

To illustrate the behavior of the tests under the alternative of (second order) nonstationarity,
we consider realizations from three models fulfilling different types of nonstationary behavior.
As we focus on locally stationary alternatives, where nonstationarity is caused by smoothly

changing dynamics, we consider first the time-varying VAR(1) model (tvVAR(1))
t
Model NS(I) X, =AX, |+ U(f)ﬁtv t=1,...,T, (6.6)

where o(u) = 2sin (2mu). Further, we include a second tvVAR(1) model, where the dynamics
are not present in the innovation variance, but in the coefficient matrix. More precisely, we

consider the tvVAR(1) model
Model NS(IT) X, — A(%)gt_l e, t=1,...T, (6.7)

where A(u) = sin (27u) A. Finally, we consider the unit root case (noting that several authors
have considered tests for stochastic trend, including Pelagatti and Sen (2013)), though this case
has not been treated in our asymptotic theory. In particular, we consider observations from a

bivariate random walk
Model NS(ITI) X, =X, ;+¢, t=1,...,7, Xo=0. (6.8)

In all Models NS(I)-NS(III) above, {¢;,t € Z} is a bivariate i.i.d. white noise process with
&~ N(Oa E)

In Figure 2 we show realizations of nonstationary Models NS(I)-NS(III) together with DFT
covariances T|Ci1(r, 0|2, T|v2Ca (r,0)|? and T|Caa(r,0)|2, 7 = 1,...,10 to illustrate how the
type of nonstationarity is encoded. The performance under nonstationarity of both tests 7,7 , ;

and 7Ty, na.c are reported in Table 2 for sample size T = 500.

Discussion of the simulations under the alternative

The DFT covariances for the nonstationary Models NS(I)-NS(III) as displayed in Figures 2
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illustrate how and why the proposed testing procedure is able to detect nonstationarity in the
data. For both locally stationary Models NS(I) and NS(II), it can be seen that the nonstation-
arity is encoded mainly in the DFT covariances at lag two, where the peak is significantly more
pronounced for Model NS(I) in comparison to Model NS(II). Contrary to that behavior, for the

random walk Model NS(IIT), the DFT covariances are large for all lags.

In Table 2 we report the results for the tests, where the power for the bootstrap test Tr;‘m’ 4 and
for the non-bootstrap test 7, » 4. are given. It can be seen that both tests have good power
properties for the tvVAR(1) Model NS(I), where the non-bootstrap test Ty, . 4.c is slightly su-
perior to the bootstrap test 7'7:;7”7 4 Here, it is interesting to note that the time-varying spectral
density for Model NS(I) is f(u,w) = 1(1 — cos(4rmu))fy (w), where fy (w) is the spectral density
matrix corresponding to the stationary time series Y, = AY, ; + 2¢,. Comparing this to the
coefficients Fourier A(r,0) (defined in (3.10)), we see that for this example A(2,0) # 0 whereas
A(r,0) # 0 for r # 2 (which can be seen in Figure 2). In contrast, neither the bootstrap nor
non-bootstrap test performs well for Model NS(II) (here the rejection rate is less than 40% even
in the Gaussian case when using the 10% level). However, from Figure 2 of the DFT covariance
we do see a clear peak at lag two, but this peak is substantially smaller than the corresponding
peak in Model NS(1). A plausible explanation for the poor performance of the test in this case
is that even when m = 2 the test we use a chi-square with d(d+1) x m = 2 x 3 x 2 = 12 degrees
of freedom which pushes the rejection region to the right, thus making it extremely difficult to
reject the null unless the sample size or A(r, /) are extremely large. Since a visual inspection
of the covariance shows clear signs of nonstationarity, this suggests that further work is needed
in selecting which DFT covariances should be used in the testing procedure (especially in the
multivariate setting where using a component wise scheme may be useful).

Finally, both tests have good power properties for the random walk Model NS(III). As
the theory suggests (see Theorem 5.2), for all three nonstationary models the non-bootstrap

procedure has better power than the bootstrap procedure.

6.3 Real data application

We now consider a real data example, in particular the log-returns over T' = 513 trading days
of the FTSE 100 and the DAX 30 stock price indexes between January 1st 2011-December
31st, 2012. A plot of both indexes is given in Figure 3. Typically, a stationary GARCH-type

model is fitted to the log returns of stock index data. Therefore, in this section we investigate
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whether it is reasonable to assume that this time series is stationary. We first make a plot of
the DFT covariances T\én(r, 0)|?, T\ﬁé’gl(r, 0)|? and T]égg(r, 0)|? (see Figure 3). We observe
that most of the covariances are above the 5% level (however we note that Cr(r,0) has not been
standardized). We then apply the bootstrap test 7;:;’”7 4 and the non-bootstrap test 7, . 4.c to
the raw log-returns. In this case, both tests reject the null of second-order stationarity at the
a = 1% level. However, we recall from the simulation study in Section 6.2 (Models S(III) and
S(IV)) that the tests tends to falsely reject the null for a GARCH model. Therefore, to make
sure that the small p-value is not a mistake in the testing procedure, we consider the absolute
values of log returns. A plot of the corresponding DFT covariances T|Cyy (r, 0)[2, T|v/2Ca1 (r, 0)[2
and T]égg(r, 0)|? is given in Figure 3. Applying the non-bootstrap test gives a p-value of less
than 0.1% and the bootstrap test gives a p-value of 3.9%. Therefore, an analysis of both the log-
returns and the absolute log-returns of the FTSE 100 and DAX 20 stock price indexes strongly
suggest that this time series is nonstationary and fitting a stationary model to this data may

not be appropriate.
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A Proofs

A.1 Preliminaries

In order to derive its properties, we use that ¢;, j,(r,¢) can be written as

L, o (wi) L7 (wi) L (wrtr) Lijy e (Wrgr) exp(ilwy,)

el
M=

Ej17j2 (7“, E) =

£
Il
—_

d
> Ly sy (Wi) T1sy (Wk) T1sy (Wrar) L o (Whr) exp(ileg ),

s1,52=1

Il
M| =
[M]=

i
I

where Lj s(wy) is entry (j,s) of L(wy) and L; ¢(wy,) denotes its jth row.
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Figure 1: Stationary case: Bivariate realizations (left panels) and DFT covariances (right panels)
T|C11(r, 0|2 (solid), T|v/2C51(r,0)2 (dashed) and T|Cha(r,0)[? (dotted) for stationary models
S(I)-S(V) (top to bottom). The dashed red line is the 0.95-quantile of the y? distribution with

two degrees of freedom and DF'T covariances are reported for sample size T' = 500.

39



S 4 02 0 2 48
|

4
|
150
|

Figure 2: Nonstationary case: Bivariate realizations (left panels) and DFT covariances (right
panels) T|Cy1(r, 0)|? (solid), T|v/2Cx (r,0)|? (dashed) and T|Casa(r,0)|? (dotted) for nonstation-
ary models S(I)-S(III) (top to bottom). The dashed red line is the 0.95-quantile of the x?
distribution with two degrees of freedom and DFT covariances are reported for sample size

T = 500.
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Model « mnd | Tmn,diG
SA) 1% | 0.00 | 0.00
5% | 0.50 3.00
10% | 1.25 6.00
SAn 1% | 0.00 | 21.25
5% | 0.25 32.25
10% | 1.00 40.25
SAID) 1% | 55.00 | 89.75
5% | 69.00 | 93.50
10% | 76.50 | 96.50
S(IV) 1% | 0.50 | 88.75
5% | 3.50 93.75
10% | 6.75 95.25
S(V) 1% | 0.00 | 1.75
5% | 2.50 7.50
10% | 5.00 13.00

Table 1: Stationary case: Actual size of 7" = and of Ty, 4. for d = 2, n = 1 for sample size

T = 500 and stationary Models S(I)-S(V).
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Model  « mond | Tmon.diG
NS(I) 1% | 87.00 | 100.00

5% | 94.50 | 100.00

10% | 96.75 | 100.00

NS(II) 1% | 2.75 | 10.75
5% | 9.75 24.25

10% | 16.50 | 35.25

NS(IID) 1% | 61.00 | 94.75
5% | 66.00 | 95.50

10% | 68.50 | 95.75

Table 2: Nonstationary case: Power of 7> . and of Ty, » 4. for d = 2, n = 1 for sample size

T = 500 and nonstationary Models NS(I)-NS(II).

FTSE 100 DAX 100

6 04 0@ 00 00 0M 006
Q6 04 00 00 00 0M 006

8 10
8 10

60

60
|

il

T T
2 a & 8 10 2 a & 8 10

Figure 3: Log-returns of the FTSE 100 (top left panel) and of the DAX 30 (top right panel)
stock price indexes over T' = 513 trading days from January 1st, 2011 to December 31,
2012. Corresponding DFT covariances T|C11(r,0)[2 (solid, FTSE), T|v/2Cs:(r,0)[? (dashes)
and T|Chy(r,0)|2 (dotted, DAX) based on log-returns (bottom left panel) and on absolute val-
ues of log-returns (bottom right panel). The dashed red line is the 0.95-quantile of the >

distribution with two degrees of freedom.
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We will assume throughout the appendix that the lag window satisfies Assumption 2.1 and

we will use the notation f(w) = vec(f(w)), z(w) = vec(f(w)), Jps = Jrs(wk), I, = flwr),
7, =T, 1., = (vec(E(wr)), vec(F(wrsr))),

Aj1,81,j2,82 (i(wl)vi(“&)) = Lj181 (i(wl))széu (i((")?)) (A-l)

and Aj, s, joss(f) ) = Lijis (ik)LjQSQ(ik+r)' Furthermore, let us suppose that G is a pos-
itive definite matrix, G = wvec(G) and define the lower-triangular matrix L(G) such that
L(Q)GL(Q)/ = I (hence L(Q) is the inverse of the Cholesky decomposition of G). Let L;s(G)

denote the (j, s)th element of the Cholesky matrix L(G). Let VL;s(G) = (65851@, ce aggid@ )

and V"L;s(G) denote the vector of all partial nth order derivatives wrt G. Furthermore, to

reduce notation let Ejs(w) = Ljs(?(w)) and Ljs(w) = Ljs(f(w)). In the stationary case, let

Kk(h) = cov(X,, X}) and in the locally stationary case let x(u;h) = cov(X(u), X}, (u)).

Before proving Theorems 3.1 and 3.5 we first state some preliminary results.

Lemma A.1 (i) Let G = (gx) be a positive definite (d x d) matriz. Then, for all 1 <
J.s < d and all v € Ny, there exists an ¢ > 0 and a set M = {M : |G — M|; <
e and M is positive definite} such that

sup |V"L;s(M)[1 < oo.
MeM.

(ii) Let G(w) be a (d x d) uniformly continuous spectral density matriz function such that
inf, Anin(G(w)) > 0. Then, for all 1 < j,s < d and all v € Ny, there exists an € > 0 and
a set Me = {M(:) : |G(w) — M(w)|1 < € and M(w) is positive definite for all w} such
that

sup sup |V'Lj(M(w))1 < oo.
w M(-)eM.

PROOF. (i) For a positive definite matrix M, let M = BB', where B denotes the lower-
triangular Cholesky decomposition of M and we set C = B~!. Further, let ¥ and ® be
defined by B = ¥(G) and C = ®(B), i.e. ¥ maps a positive definite matrix to its Cholesky
matrix and ® maps an invertible matrix to its inverse. Further suppose A\pin(G) =: 1 and
Amaz(G) =: 7 for some positive constants n < 77 and let € > 0 be sufficiently small such that
0<n—0=Xnin(M) < Apaa(M) =7+ 6 < oo for all M € M, and some § > 0. The latter is

possible because the eigenvalues are continuous functions in the matrix entries. Now, due to
Lig(M) = ey = @(B) = @ (¥ (M)
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and the chain rule, it suffices to show that (a) all entries of ¥ have partial derivatives of all
orders on the set of all positive definite matrices M = (my;) with 0 < n — 6 = Apin(M) <
Amaz (M) =7+ 6 < oo for some § > 0 and (b) all entries of ® have partial derivatives of all

orders on the set L¢ of all lower triangular matrices with diagonal elements lying in [, (] for
some suitable 0 < ¢ < { < oo depending on § above such that ¥(M,) C L. In particular, the
diagonal entries (the eigenvalues) of B are bounded from above and are also bounded away from
zero. As there are no explicit formulas for B = ¥(M) and C = ®(B), their entries have to be

calculated recursively by

p (maa = 32500 bugbyy), k> — 5 ST b, k>
br, = (mkk — Z?;ll bkjl_)kj)l/g, k=1 and cp= ﬁ, k=1,
0, k<l 0, k<l

where the recursion is done row by row (top first), starting from the left hand side of each row
to the right. To prove (a), we order the non-zero entries of B row-wise and get for the first entry
Uy (M) = by = /mi1, which is arbitrarily often partially differentiable as m1; > 0 is bounded
away from zero on M.. Now we proceed recursively by induction. Suppose that by = ¥ (M)
is arbitrarily often partially differentiable for the first p non-zero elements of B on M. The
(p + 1)th non-zero element is by, say. For s = t, we get

1/2 1/2

s—1 s—1
\I’ss(M) =bgs = | Mgs — Z bsstj = | Mss — Z q’sj(M)‘llsj (M) s
j=1 J=1
and for s > t, we have
1 t—1
V(M) = bst = Ty (M) Mgt — J; Ui (M)W, (M) |,

such that all partial derivatives of W4 (M) exist on M. as W4 (M) is composed of such functions
and due to mgs — Zj;% bsjlgsj and Wy (M) uniformly bounded away from zero on M. This
proves part (a). To prove part (b), we get immediately that @5 (B) = cxr = 1/bgy has all partial
derivatives on L. as by is bounded way from zero for all k. Now, we order the non-zero off-
diagonal elements of C row-wise and for the first such entry we get ®9;(B) = co1 = —ba1c11/b22
which is arbitrarily often partially differentiable again as bes is bounded way from zero. Now we
proceed again recursively by induction. Suppose that cx = ®p;(B) is arbitrarily often partially

differentiable for the first p non-zero off-diagonal elements of C. The (p+ 1)th non-zero element
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equals cg, say, and we have
1 s—1 1 s—1
Pst(B) = cor = —— > bgicj = — > by ®;u(B)
SS ]:l SS j:l

and all partial derivatives of ®4(B) exist on L, as ®4(B) is composed of such functions and
due to bgs > 0 uniformly bounded away from zero on L.. This proves part (b) and concludes
part (i) of this proof.

(ii) As in part (i), we get with an analogue notation (depending on w) the relation
Ly(M(w)) = cp(w) = @ (B(w)) = P (¥ (M(w)))

and again by the chain rule, it suffices to show that (a) all entries of ¥ have partial derivatives
of all orders on the set of all uniformly positive definite matrix functions M(-) with 0 <n—4§ =
inf, Apin(M(w)) < supy, Amaz(M(w)) = 74+ < oo for some § > 0 and (b) all entries of ®
have partial derivatives of all orders on the set L., of all lower triangular matrix functions with
diagonal elements lying in [, (] for some suitable 0 < ¢ < ¢ < oo depending on § such that
W (M) C L. The rest of the proof of part (ii) is analogue to the proof of (i) above. O

Lemma A.2 (Spectral density matrix estimator) Suppose that {X,} is a second order
stationary or locally stationary time series (which satisfies Assumption 3.2(L2)) where for h # 0
either the covariance of local covariance satisfies |k(h)|1 < C|h|~3%9) or |k(u; h)|; < C|h|~(3F9)

and SUpPy Y . o ps OO (X 51 Xthy oy Xttho gy s Xttha,ja)| < 00. Let fr be defined as in (2.4).
() var(fr(wy)) = O((T)™") and sup,, [E(fr(w)) — £(w)| = O(b+ (bT)7").

(b) If in addition, we have Y, |cum(Xy ji, Xiary jos - - - » Xigrs,jora )| <00 for s =1,...,7, then
1t holds
[Br(e) — BEr ()l = O(7es)

(c) If in addition, b*T — oo then we have

(i) sup,, [fr(w) — f(w)1 5 0,

(ii) Further, if f(w) is nonsingular on [0, 27|, then we have sup,, |Ljs(zT(w))—Ljs(i(w))| 5

0asT — oo foralll < j,s <d.

PROOF. To simplify the proof most parts will be proven for the univariate case - the proof of

the multivariate case is identical. By making a simple expansions it is straightforward to show
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that

T
fr(w) = % D Nt —=7)(Xs = p)(Xr — p) exp(i(t — 7)w) + Ry (w),
t,r=1
where
Riw) = 5o S0 Molt = )X = ) (X0 — ) + (e — X))

and under absolute summability of the second and fourth order cumulants we have E|sup,, Ry (w)|? =
O(W + %) (similar bounds can also be obtained for higher moments if the corresponding

cumulants are absolutely summable). We will show later on in the proof that this term is
dominated by the leading term. Therefore, to simplify notation, as the mean estimator is in-

significant, for the remainder of the proof we will assume that the mean is known and it is

E(X;) = 0. Consequently, the mean is not estimated and the spectral density estimator is

fr(w) = Z Mot — T) X X exp(i(t — 7)w).

27TTtT 1

To prove (a) we evaluate the variance of ]?T(w)

T T

var(fr(w)) = L DD Mt — ) Ne(tr — T2)eov( Xy, Xy, Xiy Xry) exp(i(ty — 11 — 12 + T2)w).

(2m)2T?

t1,m1=1t2,72=1
By using indecomposable partitions on the covariances in the sum to partition it into covariances
and cumulants of X; and under the absolute summable covariance and cumulant assumptions,
we have that Var(fT(w)) = O(z7).

Next we obtain a bound for the bias. We do so, under the assumption of local stationarity, in
particular the smooth assumptions in Assumptions 3.2(L2) (in the stationary case we do require

these assumptions). Taking expectations we have

T-1 T—|h|
~ 1
E(fr(w)) = 27rT Z Ap(h) exp(ihw) cov(Xe, Xiqin|)
—T+1 t=1
1 = el
= 3.7 Z Ap(h) exp(ihw) /{(T; t—7)+ Ri(w), (A.2)
th=—T+1 t=1
where
1 < ¢ 1
Sup | Ry (w —T Z p(t — T HCOV X, Xr) — H(T;t - 7')} = O(T) (by Assumption 3.2(L2)).
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Changing the inner sum in (A.2) with an integral gives

E(fr(w)) Z Xp(h) exp(ihw)r(h) + Ry (w) + Ra(w)
—T+1
where
1 — a t 1 ¢t ! 1
wpl ) < 5, 3 N ( ST (b + 'TZK(T;h) | sy ) ~ 0.
t=T—|h|+1 t=1
Finally, we take differences between E(fAT (w)) and f(w) which gives
1 L 1
E(frw)) — flw) = o Z ()\b(r) — 1)/@(7“) exp(irw) +% Z k(1) exp(irw) + R1(w) + Ro(w).
r=—1/b [r|>1/b
Ra(w) Ri(w)=0(0)
To bound R3(w), we use Assumption 2.1 to give
1 T 1/b
Bo) = 57 3 (0lr) = D) exalirs) = 50 32 () = )t expln)
b T 1/b
_ v N(h . _ = . .
= 5 T:Z:Tr N (rb)k(r) exp(irw) 5 E/b ()\b(r) 1)5(7“) exp(irw),

where 7b lies between 0 and 7b. Therefore, we have sup,, |R3(w)| = O(b). Altogether, this gives
the bias O(b+ z=) and we have proven (a).

To evaluate E|fT(w) - E(fT(w))|4, we use the expansion

~

Elfr(w) —E(fr@)[* = var(fr(w)) +cumy(fr(w)).
——
o((bT)~2)

The bound for cum4(fT (w)) uses an identical method to the variance calculation in part (a). By

using the cumulant summability assumption we have cum4(fT(w)) = O(ﬁ), this proves (b).

We now prove (ci). By the triangle inequality, we have

sup | fr(w) — £(@)] < sup |fr() ~ E(Fl)] +sup [E(Fr() ~ @)

-

O(b+(bT)~1) by (a)

Therefore, we need only that the first term of the above converges to zero. To prove sup,, |fT (w)—

E[fT(w)]\ A 0, we first show
E<sup ‘J?T(w) — E(fﬂw))f) =0 as T — oo
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and then we apply Chebyshev’s inequality. To bound Esup, ‘fT(w) — E(fT(w))‘g, we will use
Theorem 3B, page 85, Parzen (1999). There it is shown that if {X (w);w € [0, 7]} is a zero mean

stochastic process, then

- o)\ 7172
E(OSEEW|X(0J)|2)§;EX(O)|2+;E|X(7T)|2+/O [V&r(X(o,;))var(a);(i >>] dw. (A3)

To apply the above lemma, let X (w) = fr(w) — E[fr(w)] and the derivative of fr(w) is

T
D it = T) X XA (t — ) exp(i(t — T)w).

,7=1

dfr(w)| _ 1
dw 277Tt

By using the same arguments as those used in (a), we have Var(%u(jw)) = O(ﬁ). Therefore,

by using (A.3), we have

E( sup |fT(w)—E(fT(W))’2)

0<w<m

~ —~ & ~ A fr(w
< %Var] fT(O)\+%var\ Folm)] + /0 [var(Fr(w))var( fgo(J ))]1/2dw:o(b3/12T>.

Thus by using the above and Chebyshev’s inequality, for any ¢ > 0, we have

— E[frw)])? 1
T =0 <Tb3/25> -0

P (sup o) - Bl (@] > <) < 22l Ir)
w
as Th%/? — 0o, b — 0 and T' — oco. This proves (ci)
To prove (cii), we return to the multivariate case. We recall that a sequence { X7} converges
in probability to zero if and only if for every subsequence {7} } there exists a subsequence {T%, }
such that XTki — 0 with probabiluty one (see, for example, (Billingsley, 1995), Theorem 20.5).
Now, the uniform convergence in probability result in (ci) implies that for every sequence {7} }

there exists a subsequence {Tj,} such that sup, \sz (w) = f(w)] 5 0 with probability one.

Therefore, by applying the mean value theorem to Lj,, we have

Lis(Fy, (@) = Ljs(£(@)) = VLjs(Fy, @) (F7@) = £@)),

where kai (w) = an,, (w)?Tk,i (W) + (1 —ap, (w))f(w). Clearly kai (w) is a positive definite matrix
and for a large enough T}, we have that kai (w) is positive definite and sup,, | @Tk (w)—f(w))| <e
for all Ty, > T},. Thus, the conditions of Lemma A.1(ii) are satisfied and for large enough T}, we

have that

sup |Lyu(F, (@) = Lis(f@)| S sup [VLiu(Fy, @) [sup|Fp(w) = )] = 0.
| —

bounded in probability

48



As the above result is true for every sequence {7}, we have proven (cii). O

Above we have shown (the well known result) that spectral density estimator with unknown
mean is asymptotically equivalent to the spectral density estimator as if the mean were known.
Furthermore, we observe that in the definition of the DFT, we have not subtracted the mean,

this is because Jp(wy) = Jp(wy) for all k # O,T/Z,T7 where

Jp(wg ) exp(—itwy), (A4)

with p = E(X,). Therefore

T
N 1 ~ - = )
Cr(r0) = 7> Llwi)Lr(wi)Lr(@irr) Llwisr) expliteo)
k=1
1 e - - = ' 1
= 7 > L(wr) L (wi) L (Wiepr) D(wpgr) exp(ilwy) + Op(7)
k=1

uniformly over all frequencies. In other words, the DFT covariance is asymptotically the same
as the DFT covariance constructed as if the mean were known. Therefore, from now onwards,
in order to avoid unnecessary notation in the proofs, we will assume that the mean of the time

series is zero and the spectral density matrix is estimated using

"'=>

7(ws)
T/2 /

T
LT Z (1 = 7)explit — ) X, Xy = o S Kol — )y ()T (5], (A5)
=1 j=—T/2

where Kp(wj) = >, \p(r) exp(irw;).

A.2 Proof of Theorems 3.1 and 3.5

The main objective of this section is to prove Theorems 3.1 and 3.5. We will show that in the
stationary case the leading term of (A]T(r, 0) is Cp(r, £), whereas in the nonstationary case it is
CT(r, ?) plus two additional terms which are defined below. This is achieved by making a Taylor
expansion and decomposing the difference Cr(r,¢) — Cr(r,£) into several terms (see Theorem
A.3). On first impression, it may seem surprising that in the stationary case the bandwidth b
does not have an influence on the asymptotic distribution of aT(r, ). This can be explained by
the decomposition below, where each of these terms are sums of DFTs. The DFTs over their
frequencies behave like stochastic process with decaying correlation, how fast correlation decays
depends on whether the underlying time series is stationary or not (see Lemmas A.4 and A.8

for the details).
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We start by deriving the difference between V/T(¢j, j,(r, €) — G, j, (1, £)).
Lemma A.3 Suppose that the assumptions in Lemma A.2(c) hold. Then we have

\/T(/C\J'hjz (T’ f) - Ejl:j2 (7“, E)) = Al,l + ALQ + \/T(STJLJE (Ta f) + BT,jl,Jé (Ta 6)) + OP(A2) + Op(BQ)v

where
1 T d
T T 7 i / bw
Al,l = ﬁ Z Z [Jk,sl Jk+7",82 - E(Jk,s1 Jk+7",52)] (i]f’r - E(ikyr)) VAj1,81,j2752 (ik,r)e b
k=1 s1,52=1
1 T d
T T 7 / bw
Az = ﬁ Z Z [‘]’f’sl‘]’f”’@ B E(kasl‘]k-FT’Sz)] (E(ikr) o ikr) VAj 512,50 (ik,r)e o
k=1 s1,52=1
(A.6)
T d
~ , ~
Ay = 7\/» Z Z ‘Jk s1Jk+r s9 T E(Jk,sljk-i-?",sQ){ . ‘(fk,r _ik,r) VQAjl’SLjQ’SQ(ik,r)(ik,r — ik,r) ,
k=1 s1,50=1
T d ~
By = \/> Z Z E(Jx 1 ke, 52)‘ ’ ’(f - f ) VA ]1,51,]2,52 (fkr)(ik,r - ik,r)
k=1 o=1
and
LI d - o
Stjrga (1, l) = TZ > E( ks Thrrsa) (£, = B ) VA s gasa (£ )€™ (ALT)
k=1 s1,s2=1
1 T d
T, 7 ! ilw
BTJIJQ (’I”, E) = TZ Z E(Jk,51 Jk+r782)(E(i]€,7’) _ik,’r) VAj1’517j2’32(ik;77~>6£ k.,
k=1 s1,s2=1

PROOF. We decompose the difference between ¢;, j, (7, ¢) and ¢;, j,(r,¢) as

\/T(Ejl,jz (r,£) = Cjy o (r, £) E \/> Z Z Jh s Jk+7‘ s2 (A]17S1,]2,82 (fk T) Aj 512,52 (fk,r)> e’

k=1 s1,52=1

T d

1 - N ,

VT Z Z Jk s1ktrs; = B(Jks Jk+7‘,82)] <AJ17817j2,sz (ik,r) = Aj 512,52 (fkﬂﬂ)) e

k=1 s1,s52=1
1 T d R |
ﬁ Z E(Jk,slt]k+7';82)(Ajl,shjz,SQ (ik’ﬂ‘) - Aj17517j2,52 (fkm))elfwk
k=1 s1,s52=1
= I+1I.

We observe that the difference depends on Aj, s, iy s, @k )= A1 512,50 (f ), therefore we replace

this with the Taylor expansion

A(zk,r) o A(ik) 'r)

)

- (Ek,r o ik,r)/VA(ik,T) T §($kz,r o ik,r)IVQA(ik,r)(zk,r

—_

- ikr) (A-S)
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with zkr lying between zk ,and f, and A as defined in (A.1) (for clarity, both in the above
and for the remainder of the proof we let A = A;, 4, j, s,). Substituting the expansion (A.8) into

I and I1 gives [ = A —|—;12 and I = By —|—é2, where

T d
1 _ o~ .
Al = 7T Z Z [Jk,81‘]]€+7”782 - E(Jk,sn Jk+r,s2)] (ik,r - ik,T)IVA(ikm)ewwk
k=1 s1,52=1
1 — o S / it
By = —= Z Z E(Jk”Sl Jk"_T’S?) (ik,r o ik,r) VA(ik,r)e
T k=1 s1,52=1
A = LS T - BT 7 V2A(f, )(F o
2 = ﬁ Z Z [ k,s1Yk+rso — ( k,s1 k+7’,52)] <ik,r - ik,r) (ik,r)(ik,r - ik,r)e )
k=1 s1,52=1
5 1 - o (7 = ” by
By = Z Z E(Jk751 J'IH_T’S?)(fkr o ik,r) \ A(ik,r)(ik,r o ik,r)e ’

2vT k=1 s1,50=1 -
Next we substitute the decomposition Ek,r — ik,r = Ek’r — E(Ekr) + E@I”) — ik
By to obtain A; = A1 + A2 and By = \/T[ST,J-MQ (r,€) + Brj, j»(r,€)]. Therefore we have
I=A11+ Ao+ Ay and 1T = VT (Syjy o (1, €) + Brjy jo (7, 0)) + Ba.
Finally, by using Lemma A.2(c) we have

. into A and

sup |V2A(f (w1), Fp(w2)') = V2A(f (w1, f(w2))] 5 0.

w1,w2
Therefore, we take the absolute values of Ay and Eg, and replace VQA(zk r) with its deterministic

limit VQA(ik ), to give the result. O

To simplify the notation in the rest of this section, we will drop the multivariate suffix and
assume that we are in the univariate setting (the proof is identical for the multivariate case).

Therefore

VT [5(7", 0) —&(r, e)} = A1+ Ao + VT(Sp(r,0) + Br(r,£)) + O,(As) + Op(Ba), (A.9)

where
T
A= > (s~ BTir ) ., - B, 6
T
As = \% ; UiTorr — E(JeTirn)] {E(}\m) _ fk,r} Glwon) (A.10)
1 & R R -
Sr(r ) = 7 > E(JiTksr) [ Jor —E f]w)] G(wp) (A.11)
1 k;l i
Br(r,t) = —=> E(JJiwr) |E(f,,) = £, |Gler)
\/T ) )

B
Il
—
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1 &, I
A2 = ﬁ;}efka]k-i-r_E(Jka-&-r)‘"(fk’r_fkm)2H(Wk)a
1 & |
B, = ﬁ;}E<Jka+T>\-\(fk,r—fk,r)sz(wk), (A12)

with G(wg) = VA(f, r)em"k, H(wg) = V2A(L€ ) and Ji, = Jr(w). In the following lemmas we

obtain bounds for each of these terms.

In the proofs below, we will often use the result that if the cumulants are absolutely

summable, in the sense that sup, >, . |eam(Xy, Xitjy, ..o, Xeaj, )| < 00, then
K
sup  |cum(Jp(wi), ..., Jr(wn))| < a1 (A.13)
W1y yWn
for some constant K.
In the following lemma, we bound Ay ;.
Lemma A.4 Suppose that for 1 <n <8, we have >_; . |eum(Xy, Xiyjy,- - Xigj, )] <

Q.

(i) In addition, suppose that for r # 0, we have |cov(Jr(wy), Jr(Wiir))| = O(T™Y), then
1A11]l2 = O(= + 75)-

(i) On the other hand, suppose that Y ;_, |cov(Jr(wy), Jr(wisr))| < ClogT, then we have
1ALL]l2 < CGET).

PROOF. We prove the result in case (ii) (the proof of (i) is a simpler version on this result). By

using the spectral representation of the spectral density function in (A.5), we have

1 _ _
Ay = > H(we) Ky(wr, — ) (JeTbr — E(eTbgr)) (1717 = BIJJ?). (A.14)
k,l

Evaluating the expectation of A; 1 gives

1 _ _
E(A1)) = T3z Z H (wp) Ky (wi, — wp)eov (T jrr, J1J1)
il
1 L B B _ B
= 7T3/2 Z H(Wk)Kb(wk — wl) <COV(Jk, JZ)COV(J]H_T, Jl) + COV(Jk, JZ)COV(J/H_T, Jl) + cum(Jk, Jetrs J1, Jl)>
Kl

= I+II+11I

By using that > E(JiJp4r) < ClogT, we can show I, 1] = O(ll?\g}%) and by using (A.13), we

have I1] = O(%) Altogether, this gives E(A11) = O(*8L1) (under the conditions in (i) we

WT
have E(Al,l) = O(%))
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We now evaluate a bound for var(A; ;). Again using (A.14) gives

VaI‘ A1 1 3 Z Z H wkl ka)Kb(wkl - wll)Kb(wk2 - w12)
k1,1 ka,l2

><C()V((Jkl*]/lﬁ-l-?’ - E(Jkljkﬁ-?“)) (Jlljll - E(Jl1jll))7 (szjkz-H" - E(Jk2jk2+r)) (Jl2jl2 - E(‘]l2‘]lz))> .
By using indecomposable partitions (see Brillinger (1981) for the definition) we can show that

var(A; 1) = O((IOT%Z;)s) (under (i) it will be var(Ay,1) = O(745)). This gives the desired result.
]

In the following lemma, we bound Aj 5.
Lemma A.5 Suppose that sup, Zt17t2,t3 lcum( Xy, Xiye,, Xigty, Xitts)| < 00.

(i) In addition, suppose that for r # 0 we have |cov(Jr(wk, Jr(wpir))| = O(T™1), then
| 41212 < C'sup,, [E(fr(w)) - f(w)!.

(i) On the other hand, suppose that Y ;_, |cov(Jr(wy), Jr(wisr))| < ClogT, then we have
|412]l2 < Clog T sup,, [E(fr(w)) - f(w)!.

PROOF. Since the mean of A; > is zero, we evaluate the variance
1 & 1 &
ar (ﬁ Z e (Tiejs Tt go — E( Tk gy Jk+r,j2))> == Z Py Py €OV (T Ty 45 Ty Ty )
=1 k1,ko=1

Nl

T
Z th{cov Jiys iy ) €OV (Tky s Tyt ) + €OV (Jiy s Thgtr ) €OV (T ey s Jiy ) +
kr ko =1

Cum(Jkl ) jkl—‘r’l‘) sz ) jkg—‘r’l‘) } .
Therefore, under the stated conditions, and by using (A.13), the result immediately follows. O

In the following lemma, we bound As and Bs.

Lemma A.6 Suppose {X;}; is a time series where for n =2,...,8, we have
supy Ztl,...,tn_l lcum (X, Xegjy, -y Xigj,_, )| < 00 and the assumptions of Lemma A.2 are sat-
isfied. Then
| TkTirr = E(JrJrsr) ||, = O(1) (A.15)
and
1 1
Aslly = O +b2ﬁ> B :o(+b2ﬁ>. A.16
42 = 0= B2l =0 (= (210
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PROOF. We have

T
I 1
JeJktr — E(Jka+r) = 271_77—, Z Pt,r (XtXT - E(XtXT))a
t,r=1

where p; ; = exp(iwg(t — 7)) exp(—iw,7). Now, by evaluating the variance, we get

ElJiJhir — BE(Judir)|” < (I+ 11+ II), (A.17)

1
27)2

—~

where

T T
I = 772 Z Z Pt1,71 Pt maCOV( Xy, Xy, )eov( Xy, X7y)

t1,ta=171,70=1
T

T
I = 717 Z Z Pty 71 Pra,r €OV ( Xy, Xy )cov (X, X3, )

t1,to=171,72=1
T

T
I = T_2 Z Z pt1,T1pt2,Tzcum(Xt1’XT17Xt27X7'2)'

t1,to=171,720=1
Therefore, by using sup; > .. [cov(Xy, X7)| < 0o and sup; )
we have (A.15).

|Cum(Xtv XTlet2vX7'2)| < o0,

T1,02,T2

To obtain a bound for As and Bs we simply use the Cauchy-Schwarz inequality to obtain

T
1 T - i 2
A2l < 7T ;21 |\ JeTktr — E(Je it - HL“. - ik,rH4|H(wk)|’
1 ) [ ~ 2
I < SB[~ Lo, )
Thus, by using (A.15) and Lemma A.2(a,b), we have (A.16). O

Finally, we obtain bounds for vTSy(r,£) and /T Br(r,£).

Lemma A.7 Suppose {X;}; is a time series whose cumulants satisfy sup; Y _;, |cov(X¢, Xeqn)| <
oo and supy Ztl,tg,tg \cum(Xt, Xt+t1’Xt+t27Xt+t3)| < 0.
(i) If |[E(Jr(wi) Jr(wiir))| = O(%) for all k and r # 0, then
1 b

(ii) On the other hand, if for fived r and k we have |E(Jr(wy)Jr(witr))| = h(wg, ) + O(7F)
(where h(-,r) is a function with a bounded derivative over [0,2w]) and the conditions in

Lemma A.2(a) hold, then we have
|S7(r, O)ll2 = O(T™Y?) and |Br(r,€)| = O(b).
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PROOF. We first prove (i). Bounding ||Sz (7, £)||2 and |Br(r, £)| gives

T
ISr(r,0)ll2 < fz (eTeso)l|| £y, — () |Gl
k=1
1< ]
|BT(T7€)| = Tz‘ (kak—‘r'r” E(ik,r)_ik,r |G(Wk)|
k=1

and by substituting the bounds in Lemma A.2(a) and |E(JyJr1.)| = O(T~!) into the above, we
obtain (i).

The proof of (ii) is rather different. We don’t obtain the same bounds as in (i), because we
do not have |E(JyJi1r)| = O(T71). To bound Sr(r, ), we rewrite it as a quadratic form (see

Section A.4 for the details)

Sr(r,0)
- kZT:E (iTger) explitis) (f%» (bt B
- e st (N R ) rom
e

t,T =1

) +ol

~dw, (t—T+L)

We show in Lemma A.12 that the coefficients satisfy |d,, (s)|1 < C(|s|~2 +T~1). Using this we
can show that var(Sy(r, £)) = O(T~'/2). The bound on By (r,¢) follows from Lemma A.2(a). O

Having bounds for all the terms in Lemma A.3, we now show that Assumptions 3.1 and 3.2

satisfy the conditions under which we obtain these bounds.

Lemma A.8 (i) Suppose {X} is a second order stationary time series with ) |cov(Xo, X;)| <

0o. Then, we have max;<g<r [cov(Jr(wy), Jr(wir))| < & forr #0,7/2,T

(ii) Suppose Assumption 3.2(L2) holds. Then, we have
COV(JT(wkl), JT(ka)) = h(wkl, ki — /{2) + R(wkl,wkz), (A.18)

where El SUDy, w, |Rr(wi,ws)| = O(T™1) and

1
h(w, k1 — ko) = /0 flu,w) exp(—2mi(ky — ko)u)du.
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PROOF. (i) follows from (Brillinger, 1981), Theorem 4.3.2.

To prove (ii) under local stationarity, we expand cov(Jkl, Jk2) to give

b

COV(Jkl,Jk2) T

OV(Xt,Ta XT,T) exp(—i(t - T)wkl + T(wkl - wkz))'

[\D

HMH

1

Now, using Assumption 3.2(L2), we can replace cov(X; 7, X; ) with m(%; t—7) to give

m(%,t — 1) exp(—i(t — T)wg, ) exp(—iT(wy, — wk,)) + R1

S"H
N
B

cov (J;€1 , Jk2) =

t, =1
1 T T—1 -
= oz > exp(—it(wp, — wy)) (5 h) exp(—ihwr,) + By
=1 h=—T1

and by using Assumption 3.2(L2), we can show that Ry < &3, |h| - k2(h) = O(T1). Next we

replace the inner sum with ZZ’;?OO to give

cov(Jkl, JkQ = wkl )exp(—i(k1 — ko)w;) + R1 + Ro,

||Mﬂ

where

T
1 , .
Ry = T ;_1 exp(—iT(wy, — Wk,) < E + E ) —, h) exp(—ihwy, ).

h=—occ T—71

By using Corollary A.1, we have that sup, |r(u, h)| < C|h|~(3+9) therefore |Ry| < CT'.

Finally, by replacing the sum by an integral, we get

1
cov(Jkl, JkQ) = / f(u,wi, ) exp(—i(k1 — k2)ws)du + Ry + Ra + R,
0
where |Ry + Ry + R3] < CT~!, which gives (A.18). O

In the following lemma and corollary, we show how the a-mixing rates are related to summa-

bility of the cumulants. We state the results for the multivariate case.

Lemma A.9 Let us suppose that {X,} is an a-mizing time series with rate K|t|™% such that

there exists an v where || X,||; < oo and o > r(k —1)/(r — k). If t1 <ty < ... < iy, then we
k/r
)

have |Cum(Xt17j1’ - th:v]k)| < Ck Sup, T HXtT”k Hz 2 ‘t —li- 1|

k1
_ o (1=k/r
sup Z jcum (X, gy, -5 Xy i )| < Crosup || Xe 17 (Zt’ = )> < 00, (A.19)
t’j

oy, te=1 t
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and, for all 2 < j <k, we have

S;lp Z 1+‘tj ’Cllm(thm, : th]k)’<cksup”Xt,J
L otg,te=1

where Cy, is a finite constant which depends only on k.

PROOF. The proof is identical to the proof of Lemma 4.1 in Lee and Subba Rao (2011) (see
also Statulevicius and Jakimavicius (1988) and Neumann (1996)). O

Corollary A.1 Suppose Assumption 3.1(P1, P2) or 3.2(L1, L3) holds. Then there exists an
e > 0 such that |cov(Xy, X;)|1 < C|h|~2+9) | sup, lcov(Xy 1 Xypp ) < C\h|f(2+5) and

Sup Z (1 + ’tl’) ’ |Cum(Xt1,j17Xt2,j2>Xt3,j3vXt4,j4)| <oo, 1=1,23,
t17j17--~7j4 t2,t3,t4
Furthermore, if Assumption 3.1(P1, P4) or 3.2(L1, L5) holds, then for 1 <n < 8 we have
S?p Z leum (X, g1y Xto jos - - s Xtnjn )| < 00.
1 t27 7tn

PROOF. The proof immediately follows from Lemma A.9, thus we omit the details. O

Theorem A.1 Suppose that Assumption 3.1 holds, then we have

VTE(r, ) = VTE(r,0) + O, (b&f Fht b2T1/2> | (A.21)

Under Assumption 3.2, we have

VTe(r, £) = VTe(r,0) + VTSr(r,£) + VTBr(r,0) + O, <1b \g/T +blogT + b*VT > (A.22)

PROOF. To prove (A.21), we use the expansion (A.9) to give

VT (E(r,0) —&(r,0)) = Air + Als +0u(A2) + Op(Ba) +VT(Sr(r,£) + Br(r,t))
~— ~~ ~
Lemma A.4(¢) Lemma A.5(%) (A.16) Lemma A.7()
_ 1 1 2
= O<T1/2+ +b+M+bf>

To prove (A.22) we first note that by Lemma A.7(ii) we have | Sy (r,€)|2 = O(T~/?) and
|Br(r,£)| = O(b*/?), therefore we use expansion (A.9) to give

k—1
(Zyty“(kl > < o0, (A.20)

VT (@(r,0) = &(r, 1)) — W((ST(r, f) + Br(r, f)) = Ay o+ A 40 <A2> + 0,(B2)
~— ~—
Lemma A.4(4i) Lemma A. 5(“ A.16)
log 2 )
- 0 FblogT 4 o 4 VT
(b\/T o8

This proves the result.

Proof of Theorems 3.1 and 3.5 The proof of Theorems 3.1 and 3.5 follows immediately
from Theorem A.1. O
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A.3 Proof of Theorem 3.2 and Lemma 3.1

Throughout the proof, we will assume that T is sufficiently large, i.e. such that 0 < r < % and
0<l< % hold. This avoids issues related to symmetry and periodicity of the DFTs. The proof
relies on the following important lemma. We mention, that unlike the previous (and future)
sections in the Appendix, we will prove the result for the multivariate case. This is because
for the variance calculation there are subtle differences between the multivariate and univariate

cases.

Lemma A.10 Suppose that {X,} is fourth order stationary such that ), |h|-|cov(Xy, X} )1 <
oo and Dy 44 (1 + |ha]) - Jeum (X, Xy Xy, Xy )0 < oo (where | - |1 is taken pointwise over
every cumulant combination). We mention that these conditions are satisfied under Assump-
tion 3.1(P1,P2) (see Corollary A.1). Then, for all fixred 1,12 € N and ¢1,0ls € Ny and all
Ji,J2,J3,Ja € {1,...,d}, we have

Tcov (Ejlij (7“1, fl)v ,Cvj37j4 (TQ’ 52)) = {5j1j36j2j4 55132 + 5]'1j46j2j3 5517—52} 57‘1,?‘2
. 1
+K‘(K17£2)(]1>]21]37]4)57"1,7"2 + (0] <T> 5

~ = 1
T'cov <Cj1,j2(rlv61)7Cj3,j4(r2a£2)) = 0 <T> )

— 1
Tcov (le,p(?‘h51)703‘344(7“2,52)) = 0 <T> :

T'cov <5j1,j2 (11, €1), Cjg s (T2, 52)) = {051530425u00165 + 05134055500y~ } Ory iy
A 1
+ﬁ(£17£2)(.]17]27]37]4)5’/‘1,7“2 + O <T> 3

where 05, = 1 if j = k and d;;, = 0 otherwise.
PROOF. Straightforward calculations give

T'cov (Cjy 45 (11, £1), Cjg s (T2, £2))

T d
1
= T Z Z Lj s, (Wkl )szsz (wk1 +r1 )Lj383 (ka )Lj484 (wk2+7“2)

k1,k2=1 s1,52,83,54=1

XCOV(JIC17S1 Jk1+7‘1782> Jk2,83 Jk2+7’2,84) exp(wlwk’l - M?wk&)'
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and by using the identity cum(Zl,Z, 73, Z4) = COV(Z172, ZgZ)—E(le)E(ZZ4)—E(Zl Z4)E(ZQZ3)

for complex-valued and zero mean random variables 71, Z5, Z3, Z4, we get
Tcov(Cjy,ja (15 01), Cs ja (12, £2))

T d
1
= f Z Z Lj181 (wkl )Lj282 (w/ﬂ +7r1 )Ljsss (wk2 )Lj484 (wkz-i-rz)

k1,k2=1 s1,52,53,54=1

{E(thsl JkQ,SS)E(J’ﬂJrTLSz Jk2+T2,S4) + E(thsl Jk2+7"2,84 )E(JlirTl,SQ Jk2753)

+Cum(<]k17517 Jk1+7“1,827 Jk2783’ Jk2+T27S4)} exp(wlwlﬂ - M?wkz)
= I+I1I+1II.

Substituting the identity E(Jk, 5, Jky.50) = = Z:_iTH Ksisy(P) th:_llhl ™M@ =@k) into I and

replacing the inner sum with Zle @k W) gives

T d
1
I = T Z Z Ljy s, (wr, )Lj252 (Why 471 )Lj383 (wWrs )Lj484 (Wry+rs)

k1,k2=1 s1,52,83,54=1

T-1 T
1 —ihw —it(wp, —w
o o D DN (O s (Ze e ez 0<h>>

h=—(T-1) t=1

1 T-1 ‘ T

%7 Z Foopsy (h)ezhwk2+r2 <Z ezt(wk1+r1 —wk2+r2) + O(h)) eXp(iflwkl — i€2wk2),
h=—(T—1) t=1
where it is clear that the O(h) = — ZtT:Tf htl e~ MWk k) term is uniformly bounded over all

frequencies and h. By using ), |hks, s, (h)| < 00, we have

T d

1 — .
I = T Z Z Lj151(wkl)f8153(wk2)Lj383(wk2)eXp(wlwlﬂ)

k1,ko=1 \s51,83=1

d
. 1
X Z Lijoso (Whi 1) Fsosa (Whatrs ) Ljysy (Whotry) €XP(—ilowiy ) | OkykyOriry + O <T>

S9,84=1

1
5j1j35j2j45mr2541,€2 +0 <T> )

where L(wk)f(wk)L(wk)/ =1, and %Zle exp(—i(f; — lo)wy) = 1 if £; = ¢ and zero otherwise

have been used. Using similar arguments, we obtain

T d
1 _— .
I = f E E Lj181(wk’l)f8184(wk2+r2)Lj4S4(wk2+T’2)exp(wlw’ﬂ)

k’l,k2=1 81784:1

d
S S , 1
Z Lij,s, (wk1+r1)f3233 (wkz)LJSS:a (wkz) exp(—MkaQ) 5k1,*k2*T25k1+T1,*k2 + O <T>

s2,53=1

1
= 5j1j45j3j26£1,—6257‘17’2 + O <T> s
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where exp(—ilow,,) — 1 as T — oo and %ZZZI exp(—i(f1 + lo)wy) = 1 if £ = —¥ and zero

otherwise have been used. Finally, by using Theorem 4.3.2, (Brillinger, 1981), we have

T d
1 . .
111 = T § § Lj s, (wr, )Lj282 (Whky 471 )Ljsss (Wrs )Lj484 (Why+ry) €xp(il1wy, — ilowg, )

k1,ka=1 51,52,53,54=1

T
2 - 1
X <T2 f4 ;81,582,53,54 (wkl, —Wky 4y —Wko Zl elt( UJr1+WT2) + O <T>>
2 ) . .
= ﬁ Z Z Lj181 (Wk1)Lj282 (wk1+r1)Lj353 (wkz)Lj4s4 (wk2+T2) exp(wlwkl _ ngwk2)

k1,ka=1 s1,52,53,54=1

1
Xf4§81,82783,84 (wku —WEki+r1) _wk2)6T1T2 +0 <T>

2w 2
= / Z Ljis1 (M) Ljysy (A1) Ljssy (A2) Ljysy (A2) exp(il1 A1 — ilaA2)

51,52,83,84=1

1
Xf4;81,52753,54()\17 7)\17 7)\2)d)\1d)\257'17”2 + O (T>

. 1
= &)y, da, 43, 54)0ryrs + O <T> 7

which concludes the proof of the first part. This result immediately implies the fourth part by
taking into account that (142 (51, jo, s, js) is real-valued by (A.23) below. In the computations

for the second and the third part, a d,, —,, crops up, which is always zero due to r1,70 € N. [J

PROOF of Theorem 3.2

To prove part (i), we consider the entries of Cyp(r, ¢)

T d
1 -
E(cj, j,(r, 0)) = Z Z Lj, s (wk)E (Jhsy Jitr,ss ) Lio,sa (Wrtr) exp(iwpl)

k:l s1,52=1

and using Lemma A.8(i) yields E (Jk,lekerQ) = O(%) for r # Tk, k € 7Z, which gives the
assertion. Part (ii) follows from RZ = 3(Z + Z), SZ = 5 (Z — Z) and Lemma A.10. O

Lemma A.11 Under suitable assumptions, H(EI’ZQ)(jl,jQ,j:g,sz) satisfies

K/(ZI:ZZ)( 01,02 (7617762

j17j27j3)j4) = K( )(jl)j27j37j4) = H(€27£1)(j37j4aj17j2) =K )(j27j17j47j3)' (A23)

In particular, k%) (41, 42, js, ja) is always real-valued. Furthermore, (A.23) causes the limits

of var (\/Tvec (%6T(r, 0))) and var (ﬁvec (S(NJT(T, O))) to be singular.

PROOF. The first identity in (A.23) follows by substituting A\; — —A; and Ay — —A2 in

,1(51,E2)(j17j27j37j4)7 Ljs(_)‘) = Ljs()‘) and f4;81782753,84(_)‘17 A1, )‘2) = f4;81782753,84()‘17 —A1, _>‘2)'
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The second follows from exchanging A; and g in £(1:42) (1, ja, js, ja) and fi.s; sy 55,50 (A2, — A2, —A1) =
faiss 50,5180 (A1, —A1, —A2). The third identity follows by substituting A\; — —A; and Ay — — A2
in £C52) (1, o, 53, 1) and fas syoss.a (= A AL A2) = Fhissosysa.ss(A, —A1, —A2). The first iden-
tity immediately implies that £(¢1:2) (41, ja, j3, js) is real-valued. To prove the second part of this
lemma, we consider only the real part of (~3T(r, 0) and we can assume wlog that d = 2. From

Lemma A.10, we get immediately

var (\/Tvec (?R(NET(T, 0)))
1 000 0(1,1,1,1) &00(1,1,2,1) £O09(1,1,1,2) &©9(1,1,2,2)
N 01 10 1L 0(2,1,1,1) &O09(2,1,2,1) «09(2,1,1,2) x©0(2,1,2,2)
o1 Lo 2 0(1,2,1,1) £©9(1,2,2,1) #©0(1,2,1,2) x09(1,2,2,2) |
00 0 1 £00(2,2,1,1) £©0(2,2,2,1) k©0(2,2,1,2) &(09(2,2 2 2)
and due to (A.23), the second and third rows are equal leading to the singularity. O

PROOF of Lemma 3.1 By using Lemma A.8(ii) (generalized to the multivariate setting)

we have
- 1L , ,
BCr(r0) = 73 Llwn) Bpwn) L () Vs ,) exp(itin))
k=1
1 ! — 1
= ZL(wk)(/ f(u;wk)exp(—27ri7“u)du>L(wk+r) exp(ilwy)) + O(=) (by (A.18))
T f T
k=1
1 [ ! , — 1
= 3 L(w) / f(u;w) exp(—2miru)du | L(w + w,) exp(ilwy)) +O(T)
27r 1
= (w) exp(i2mru) exp(ilw)dudw + O(T)
= A(r, 6) + O(T)
Thus giving the required result. O
PROOF of Lemma 3.2 The proof of (i) follows immediately from L(w)f(u;w)L(w)/ €
Loy(RY).

To prove (ii), we note that if {X,} is second order stationary, then f(u;w) = f(w). Therefore,
L(w)f(u;w)m/ = I; and A(r,¢) = 0 for all r and ¢, except A(0,0) = I;. To prove the only
if part, suppose A(r,{) = 0 for all r # 0 and all £ € Z then 3, A(r,{) exp(—2miru) exp(ifw)
is only a function of w, thus f(u;w) is only a function of w which immediately implies that the
underlying process is second order stationary.

To prove (iii) we use integration by parts. Under Assumption 3.2(L2, L4) the first derivative

of f(u;w) exists with respect to u and the second derivative exists with respect to w (moreover
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with respect to w L(w)f (u;w)L(w)/) is a periodic continuous function. Therefore by integration

by parts, twice with respect to w and once with respect to u, we have

27
A(r,l) = 27r / G (u;w) exp(i2mru) exp(ilw)dudw
1 T 902G (u;w) T 3G (u;w)
= ? P D
0@ /. 52 exp(i wru)de . 02 @nr) 2777“ / / R exp(i2rru)dwdu,

where G (u; w) = L(w)f (u; w)L(w),. Taking absolutes of the above, we have | A(r, £)|; < K|¢|72|r|~*
for some finite constant K.

To prove (iv), we note that
1 2w ., ) '
A(-r,—0) = — / L(w)f(u;w)L(w) exp(—i2mru) exp(—ilw)dudw
1 [ = . . .
= — / L(w)f(u; —w)L(w) exp(—i2mru) exp(ifw)dudw (by a change of variables)

2w o,
= 5 / L(w)f(u; w)'L(w) exp(—i2mru) exp(ilw)dudw (since f(u;w) = f(u; —w))
= A(-n0)

Thus we have proven the lemma. O

A.4 Proof of Theorems 3.3 and 3.6

The objective in this section is to prove asymptotic normality of GT(T, £). We start by studying
its approximation ¢;, j, (7, ¢), which we use to show normality. Expanding ¢;, ;,(r, ¢) gives the

quadratic form

Ej17j2 (r,€)
1 <& , ,
= 7 > T (Wrar) Ly o (Wrar) Lijy o (wi) L (wp) expibwy)
k=1
1 L 7/
= 57 > X;&,T( ZLD, (wWr+r) Lijy o (W) exp(iwy (¢ —T+€))> X, pexp(—itw,[A.24)
t,7=1 k=1

In Lemmas A.12 and A.13 we will show that the inner sum decays sufficiently fast over (t —7+/¢)

to allow us to use show asymptotic normality of ¢;, j,(r,£).

Lemma A.12 Suppose f(w) is a non-singular matriz and the second derivatives of the elements
of f(w) with respect to w are bounded. Then we have

0°La(f(w))Le(f(w + 2))
sup | 0i0?
z€[0,27]

| < o0 (A.25)
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and

sup |a;(s; 2)| < % and  sup|dj(s;z)|l1 < % for s #0,
EN ‘S| J N ’3’
where
1 2m
aj(s;2) = o ; Ljy 2 (£ (@) Ljs ju (f (w + 2)) exp(isw) de,
1 [ ,
G52 = 5 [ R0 o o s ) L (£ -+ 2)) explise) il A.26)

and hjyj, (wir) = fol Fjojs (u; w) exp(2miur)du with a finite constant C.

PROOF. Implicit differentiation gives

ILjs(f(w)) 0f (w)’

A O
O?L:s(f(w 92 f(w) (9 w' 8 w

By using Lemma A.1, we have that sup,, |VL;s(f(w))| < oo and sup,, ‘Vf js(f(w))] < oo.

Since Y, h%|k(h)]1 < oo (or equivalently in the nonstationary case, the integrated covariance

satisfies this assumption), then we have | w)| < oo and ]a f(“’)|1 < o0o. Substituting these
bounds into (A.27) gives (A.25).

To prove sup, |a;(s; )| < C|s|=2 (for s # 0), we use (A.25) and apply integration by parts
twice to al(s; 2z) to obtain the bound (similar to the proof of Lemma 3.1, in Appendix A.3). We

use the same method to obtain sup, [d;(s;2)| < C|s|=2 (for s # 0). O

Lemma A.13 Suppose that either Assumption 3.1(P1, P3, Pj) or Assumption 3.2 (L1, L2,
L3) holds (in the stationary case we let X; = X; 7). Then we have

T
1 . 1
1) = g 3 KLt =7+ 0K, o0(irn) +0, (7)

-, .
where G, (k) = fol Lj;e(w + wr) Lj; o (w) exp(iwk)dw = Eg1,32:1 Wjy 512,52 (K3 W), |G, (K)| <
C/lk|?.

PROOF. We replace (- ST L (wkw)/Ljh.(wk) exp(iwg(t—7+¢))) in (A.24) with its integral
limit Gy, (t — 7+ ¢), and by using (A.26), we obtain bounds on G, (s). This gives the required
result. O
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Theorem A.2 Suppose that {X}; satisfies Assumption 3.1(P1-P3). Then for all fived r € N

and { € 7, we have
VTvech <§R(~JT(T, Z)) BN (Qd(dJrl)/Q,Wu) and /Twvech <%(~JT(7“, 6)) BN (Qd(d+1)/2,Wg7g) ,(A.28)
where 044112 18 the d(d +1)/2 zero vector and

Wi = Wée) +W(2) (defined in (2.11) and (2.15)).

PROOF. Since each element of éT(T, ¢) can be approximated by the quadratic form given
in Lemma A.13, to show asymptotic normality of éT(r, ¢), we use a central limit theorem
for quadratic forms. One such central limit theorems is given in Lee and Subba Rao (2011),
Corollary 2.2 (which holds for both stationary and nonstationary time series). Assumption
3.1(P1-P3) implies the conditions in Lee and Subba Rao (2011), Corollary 2.2, therefore by
using Cramer-Wold device we have asymptotic normality of (~JT(T, 0). O

PROOF of Theorem 3.3 Since \/TGT(T, 0) = VTCr(r,0) + op(1) to show asymptotic
normality of ﬁaT(r, ¢), we simply need to show asymptotic normality of vT'Cr(r, ). Now by
applying identical methods to the proof of Theorem A.2, we obtain the result. O

PROOF of Theorem 3.4 Follows immediately from Theorem 3.3.

We now derive the distribution of 6(7“, ¢) under the assumption of local stationarity. We
recall from Theorem 3.5 that the distribution of (A}T(r, ¢) is determined by Cr(r, ) and Sp(r, £).
We have shown in Lemma A.13 that éT(r, ?) can be approximated by a quadratic form. We

now show that Sp(r, /) is also a quadratic form. Substituting the quadratic form expansion

L”—E kr = Z Mo(t —7)g(X, X7) exp(i(t — T)wg)
into St j, j, (7, ¢) (defined in (A.7)) gives

ST,jl,jz (T’, Z)

1 T

~

T\ (7 ' ity
E(Jk,81 Jk+7"752) (ik,r - E(fkﬂ«)) VAJ'LSLJQ,SQ (ikﬂn)e o

I
M~

T k= =1
=1 s1,52= h3132 (T'wk)
d 1 T T
_ S Z 1727@ E:I Mot —7)g( X, XL) ;exp it =7 + Owi)hsysy (Wi 1)V Ajy sy oo (F, )
1,82— ST—

d]l 51,J2,50,Wr (t T+£) by (A26)

d T
1
- Z o Z Ap(t —7)g(X XY 4y 51 o spion(t—T+£)+ 0 <T>

s1,52=1 t,r=1

‘ -
S

(A.29)
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where the random vector g(X,X") is defined as

/ vech(X, X7) vech(X, X7)
Q(XtXT) = —E
vech(X, X ) exp(i(t — 7)w,) vech(X, X ) exp(i(t — 7)w,)

and d;

2J1,81,J2,82,Wr (

t — 7 —{) is defined in (A.26).
PROOF of Theorem 3.6 Theorem 3.5 implies that

—~ ~ 1

Cj1,j2 (r,0) — BT,jle (r,€) = Cj1,g2 (r,6) + ST,jl,jz (r,0) + Op ﬁ :
By using Lemma A.13 and (A.29), we have that ¢, j,(r,€) + St j, (7, £) is a quadratic form.
Therefore, by applying Lee and Subba Rao (2011), Corollary 2.2 to ¢;, j, (7, €) + St j, j, (1, £), we
can prove (3.12). O

A.5 Proof of results in Section 4

PROOF of Lemma 4.1. We first prove (i). Politis and Romano (1994) have shown that
the stationary bootstrap leads to a bootstrap sample which is stationary with respect to the
observations {Xt}thl. Therefore, by using the same argument, as those used to prove Lemma
1, Politis and Romano (1994), and conditioning on the block length for 0 < t; < ty... < t,, we

have

cum™ (X7, Xy, .., X7 ) = cum™ (X[, X}, ..., X |L < [ta])P(L < |ty])

teum* (X7, X7, XL > [t )P(L > [ta]).

We observe that cum* (X,

- X{|L < |tn|) = 0 (since the random variables in separate blocks
are conditionally independent), cum™ (X}

F L XL > te]) = RO (ta—t1, ..., ty—t1) and P(L >
tn]) = (1—p)!*l. Thus altogether, we have cum*(X{ ..., X)) = (1—p)IRC (tg—t1, ... tn—t1).
We now prove (ii). We first bound the difference 7i$ (h1, ..., hn—1) —fin(h1, ..., hn_1). With-
out loss of generality, we consider the case 1 < hy < hy--- < h,—1 < T. Comparing ﬁg with
fin, we observe that the only difference is that fi$ contains a few additional terms due to Y; for
t > T, therefore
1 T n—1
B8 (hi,y ... hn1) = fin(hay .o hy1) = T Z Y, H Yiin,-
t=T—hp_14+1 =1

Since Y; = Ximod 7, We have

|ho—1]
T

7S b ) = B )l < 5 00 X
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and substituting this bound into (4.2) gives (ii).

We partition the proof of (iii) in two stages. First, we derive the sampling properties of
the sample moments and using these results we derive the sampling properties of the sample
cumulants. Assume 0 < hy; < ... < h,_1 and define the product Z; = X; H?_ll Xiin,, then
by using Ibragimov’s inequality, we have ||E(Z|Fi—;) — E(Zt| Fieiz1)llm < Cl|Z¢||1]i|~ (o),
Let M;(t) = E(Z|Fi—i) — E(Z¢|Fi—i—1), then Z; — E(Z;) = >, M;(t). Using the above and
Burkholder’s inequality (in the case that m > 2), we obtain the bound

[Fin (P, - 1) — (un(hl,... 1)) |lm
T
1
P (et

= A - B, < H%zzww

t=1 1
1 T L
T;H;Mmumé ;ZHM )2 < f ZI!"‘( :

<oo if a(m=1—r—1)>1

IN

which is finite if for some r > ma/(a — m) we have sup, ||Y:||, < co. Now we write this in
terms of moments of X;. Since sup, ||[Yz|lr < (sup, || X¢l[rn)", if @ > m and [| X, < oo where
r > nma/(a—m), then ||fn(hi, ... hoo1) = E(@n(h1, -y hno1))|lm = O(T~1/?). As the sample
cumulant is the product of sample moments, we use the above to bound the difference in the

product of sample moments:

| Hﬁdk(hm,m,hmk H (Fiay, (ha, 17---7hk,dk)”q/n

< ZH'LLd .771"" ]d ) E(//J'\dj(hj:l"“’hjvdj))Hqu/(ndj)
7j=1

><<H fay (Prcps - - Pc.ay,) HqD/ndk> H fray, (R, 1s - - - s Py ),

k=j+1
where D; = Zizl dy, (sum of all the sample moment orders). Applying the previous discussion

to this situation, we see that if the mixing rate is such that o > % and the moment bound

satisfies
qD;
d: and
o= nd

for all j, then

H (et hi,) — H (Hay b1y -5 hiay) Hq/n o(Tr—/?).
k=1 k=1
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We use this to bound

B (1, hne1) = Fon(h, o 1) [l g < Z || — 1)!

M| T finrics) = T] EGin(mics))

Ber Ber a/n

In order to show that the above difference O(T~'/2) we will use (A.30) to obtain sufficient
mixing and moment conditions. To get the minimum mixing rate o, we consider the case D =n
and di = 1, this correspond to o > ¢. To get the minimum moment rate, we consider the
case D = n and dj = n, this gives r > ga/(a — %). Therefore, under these conditions we have
|En(h1s- .o s hn=1)) — En(h1, ... hn—1))|lqg = O(ﬁ) This proves (4.6)

We now prove (4.7). It is straightforward to show that if hy; = 0 and 0 < hgo < ... <

hi,q, < T, then we have

T—hy o, 1 T h
k,d
\f > B(XiXiihy o Xihys ) — - D B(XiXiihy - Xighya )| < C=5t.
t=1 t=1

Using this and the same methods as above we have (4.7) thus we have shown (iii).

To prove (iv), we note that it is immediately clear that k,, is the nth order cumulant of a
stationary time series. However, in the case that the time series is nonstationary, the story is
different. To prove (iva), we note that under the assumption that E(X;) is constant for all ¢, we

have
1 & 1 d
Ra(h) = =) B(XiXin) — (5 ) B(X
=
T
- 2 ZE((Xt —10)(Xeen —p))  (using B(Xy) = p)
T

T
1
= f Z COV(Xt, Xt+h)-

To prove (ivb), we note that by using the same argument as above, we have
T 1 T
Rg(hi,h) = Z E(X Xthy Xtvhy) — Z (XeXe1h,) + B(Xepn Xerny) + B(Xi Xegn,)| )+ 24°
T=

T T
1 1
= 7 > E((Xs = 1) (Xeny — 1) (Xin, — 1) = T ;:1: cum(Xg, Xeyhys Xetho),

which proves (ivb).

So far, the above results are the average cumulants. However, this pattern does not continue
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for n > 4. We observe that

T
1
kia(h1, he, hs) = D E[(X = 1) (Kiny — 1)Ky, — 1) (Xiin, — )] —
t=1
1 & 1« 1 &
<T Zcov(Xt,Xt+h1 ) (T Zcov Xt+h2,Xt+h3)> — (T Zcov(Xt,Xt+h2)> X
t=1

t=1 t=1

T

T T
1 1 1
<T ; oV (Xethy s Xty ) <T Z cov (X, Xt+h3)> <T ; cov(Xiin,, Xt+h2)> ,

which cannot be written as the average of the fourth order cumulant. However, it is straightfor-
ward to show that the above can be written as the average of the fourth order cumulants plus
the additional average covariances. This proves (ivc). The proof of (ivd) is similar and we omit

the details. O

PROOF of Lemma 4.2. To prove (i), we use the triangle inequality to obtain

~

‘hn(wl, . ,wn_l) — finyT(wl, . ,wn_1)| <I+1I,

where
1 T
I = T Z (1- p)max(n,O) min(r;,0 }/{n TlyeeosTn—1) — Rn(T1,. .y Tn=1)],
T1yeeestn—1=—1T"
1 T
I = (27T)n—1 Z (1 o p>max(7“i,0) min(r;,0 ‘Hn T1y. .. ,Tn_l) — En(rl, Ceey Tn—l)‘-

T1yeesT—1=—T

Term I can be split into two main cases:

(i) f0<r <...<r,_1 we have

T

Z (1 _p)max(rn,l,O)—min(rl,O) < Z?"n_Q(l _p)r < nl_l
0<r<ra< . <ra_1<T r=1 P
(ii) If < 0 but r,—; > 0 we have
max —min 1
> (1 — pyrextrnmn 00 < oo,
—T<r1<ro<..<r, 1T p
r1<0,rp—1>0
Altogether this gives

T
Z (1 _ p)max(ri,O)fmin(ri,O) < Cpf(nfl)' (Agl)
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Therefore, by using (4.6) and (A.31), we have

1 (e 0zt O) N1om _
]2 < (2r)i T Z (1 — p)max(ri:0) mm(”’O)H'in(ﬁ,---,rnq)*fin(ﬁ,u-,?“nq)HQ

71y Pp—1==T
O(T=1/2) (uniform in 7;) by eq. (4.6)

1

To bound ||, we use (4.7) to give

T

I<S Y ()0 ) (mas(ry, 0) — min(r, 0) = Of

Ty n—1==—T

1
Tpm

);

where the final bound on the right hand side of the above is deduced using the same arguments
used to bound (A.31). This proves (i).

To prove (ii), we note that
‘?Ln(wl, e ,wn_l) - fn(wl, N ,wn_l)‘

~

< ‘hn(wla ceyWno1) — fn,T(wh cee 7wn—1)’ + |fn,T(w1, vy wWn—1) = falwi, . wno1)|

A bound for the first term on the right hand side of the above is given in part (i). To bound the
second term, we note that &, (-) = ky,(-) (where k,(+) are the cumulants of a nth order stationary

time series). Furthermore, we have the inequality
o (@i, -y wn1) = falwl, - wn1)| < TIT+ IV

where

e
1y P—1=—1
1

v = > (71, 1)

[r1],... or yoo|rn—1|>T

Substituting the bound |1—(1—p)!| < Klp, into I11 gives |I1I| = O(p). Finally, by using similar
arguments to those used in Brillinger (1981), Theorem 4.3.2 (based on the absolute summability
of the kth order cumulant), we have IV = O(4). Altogether this gives (ii).

We now prove (iii). In the case that n € {2,3}, the proof is identical to the stationary
case since iLQ an iLg are estimators of fo 7 and f3 7, which are the Fourier transforms of average
covariances and average cumulants. Since the second and third order covariances decay at a
sufficiently fast rate, fo 7 and f3p are finite. This proves (iiia)

On the other hand, we will prove that for n > 4, fn,T depends on p. We prove the result

for n = 4 (the result for the higher order cases follow similarly). Lemma A.9 implies that
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Sl F Yy cov(Xe, Xogn)| < 00 and 30, | S cum (Xp, Xy Xevhgy Xevny)| < 00

Therefore

IN
—_
(1~
_
=
~
g
o
JaN
3
e
|
£
=]
£
e
=0
e
>
—
>
o
>
Nl

su f w1, wWo, W
w1,w2I,)w3‘f47T( 1, W2, 3)| (27r)

T
< CZ(l —p)"=0(p™!), (using the definition of 74(-) in (4.8)),

where C is a finite constant (this proves (iiic)). The proof for the bound of the higher order f,, r

is similar. Thus we have shown (iii). O

PROOF of Theorem 4.1. Substituting Lemma 4.1(i) into cum™(J7(wg, ), - - -, JT (Wk,))

gives
cum™(Jp(wg, ), - -+ Jp(wg,))
T
1 . ) )
- - 1— maxi((ti—tl),O)—mmi((ti—tl),O)/I%C to—t1, ooty —t e—ztlwkl—...—ztnwkn.
@), Zt :1( p) n(tz =t th —t1)

Let r, = tl' - tl

cum™(Jp(wg, ), - -+, Jp(wk,))
1 T—1 T—| max(r;,0)]
_ _ 2\l —iroWhy = — TR Wy, —it(wpy Wk +- A Wiy, )
D S R
79, tn=—T+1 t=| min, (r;,0)|+1
where g(r) = max;(r;,0) — min;(r;,0). Using that ||&S (r2,...,rn)|1 < oo, it is clear from the

above that ||cum* (5 (wk, ), - - -, J5(wWk, ))|l1 = O(775=r=—1 ), Which proves (4.13). However, this

Tn/271pn—l

is a crude bound and below we obtain more precise bounds (under stronger conditions).

Let
T—| max;(r;,0)|
6(’ min(ri, O)|7 | max(ri, O)D = Z e_it(wkl +"Jk2+---+wkn)_
? 7
t=| min, (r;,0)|+1
Replacing &S (ra, ..., 7,) in the above with &y (r2,...,7,) gives
Cum*(‘];(wh)? B J;’(wkn))
1 T-1 ' '
= G 2 (n Ry e e minr, O), it O)) + Ry
T9yeeny P =—
where
1 T-1
- oy (= = . |
= (27TT)n/2 Z (1 p)gr <Hn (7’2,...,7’,1) ﬁn(T’Q;...77’n)>6(‘miln(7’“0)|7|mzax(r“0)’)_

79, rpn=—"T+1
(A.32)
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Therefore, by substituting (4.5) into R; and using a similar inequality to (A.31), that is,

> (L =p)™rn <Z yrente L (A.33)

p”’
—TH+1<re<..<rn<T—1

we have || Ry |q/, = O(pn;i!nm). Finally, we replace e(| min;(r;,0)|, | max;(r;,0)|) with e(0,0) to

give
um* (@i )s - -, T ()
T-1
1
= o _mn/2 —p) Oz —irgWy —..—iTpW, —it(why Fwhy AWk,
(27T)"/2 Z (1 —=p)?"E,(re,...,rn)e 2 Z e L HWky
r2,..,Tn=—T+1
+R1 + RQ,
1 T
= it (W FWiy Wiy, )
(27TT)n/2h Wkg Wkn Ze 1 2 _’_R1+R2’

t=1
where R; is defined in (A.32) and

T-1

1
Ry = ———— > (1-p) &, (ra,...,7m0)
(27TT) / 9, rn=—T+1

X @ T2Why —- TN Wy, (e(| min(r;, 0)|, | max(r;, 0)]) — e(0, 0))
(A KA

This leads to the bound

T-1

1 )i~ .
|Ra| < W Z (1 —p)9(7)|ﬂn(r2, . ,rn)|(| m?X(ri,0)| + |mi1n(7‘i,0)|).
2., Tn=—T+1

By using Hélder’s inequality, it is straightforward to show that [[Kn(r2,...,70)|¢m < C < o0

This implies

T-1
C . .
||R2||q/n < W Z (1 _p)g(f)(|mzax(7”i,0)’ + |Iniln(7“i,0)’)
T2, Tn=—T+1

2C — n!
T2 (1= )" max(|ri|) = O(—75):
(27T)"/2 rz,.‘.,rnzzzTH i Tn/2pn

IN

where the above follows from (A.33). Therefore, by letting Rt = R1+ Ra we have || Ry |lq/m =
O(Tn/2 —). This proves (4.14).

To prove (a), we note that if > ;" ; wy, ¢ Z, then the first term in (4.14) is zero and we have
(4.15) (since Ry, = O (T"/2 —)). On the other hand, if ), k; € Z, then the first term in (4.14)
dominates and we use Lemma 4.2(ii) to obtain the other part of (4.15). The proof of (b) is

similar, but uses Lemma 4.2(iii) rather than Lemma 4.2(ii), we omit the details. O
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A.6 Proofs for Section 5

PROOF of Lemma 5.1. We first note that by Assumption 5.1, we have summability of the
2nd to 8th order cumulants (see Lemma A.9 for details). Therefore, to prove (ia) we can use

Theorem 4.1(ii) to obtain

* * * 1
cum (JT,jl (W, ), JT,jg (wry)) = fZJlJz Wky ) 77 ZeXp (it(wr, + wry)) + Op (Tp2)
=
1
= Fajn (@) Ik = —k2) + Opl(755)
The proof of (ib) and (ii) is identical, hence we omit the details. O

PROOF of Theorem 5.1 Since the only random component in ¢

(1, €1) are the DFTs,

evaluating the covariance with respect to the bootstrap measure and using Lemma 5.2 to obtain

an expression for the covariance between the DFTs gives

* [~ 01,0 L 1
T'cov (thp (r,01), 65 Cjs.ga (r, 62)) = 01j3052ja0t162 + 05134 0jajs Oy, —tr + “g“l 2)(‘71"72’]3734) O <Tp4>

00), . .. 1
Tcov” ( Cj1.52 (r, £1), ¢ Cjs.a (r, 52)) = 0j1450425a 00105 + 0515405 js Oty —5 + ’igﬂl 2)(317327]3’34) +0p <Tp4> ’
which gives both part (i) and (ii). O

The proof of the above lemma is based on ¢ . (r,/) and we need to show that this is

1552
equivalent to ¢t . (r,¢) and &

s (T % j»(1:£), which requires the following lemma.

Lemma A.14
Suppose {X,}+ is a time series with a constant mean which satisfies Assumption 5.2(B2). Let

/f\j’i be defined in (2.21) and define ?}(wk) = ?}(wk) = E(E"i(wk)) Then we have

I i)l =0 (5 + g7 + 775 h0
Jewm (B (wp) [, = O ( T (T;Q)Q) | (A.35)
el = © (7 * ) 450
B2, (wi) 7., (i)l = O((l + (Tll/zp))l/2>, (A.37)
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1

W)’ (A.38)

(I jy Tkra) s = O

O((pTll/Q)z), k=sork=s+r (A.30)

O( (pT11/2)3 )a OthET”UH;SE

[cov™ (J7., (W) TF g, Wrr), T35 (W) I, 5, (ws)) ][, =

chmg(‘]ﬁ?,jl (wkl )J%,jz (wk1+7‘)7 Jﬂ*“,jg (ka)JiM (wk2+7”)? f;;jﬁ (wlﬂ)) Hg/g

O(W), ki =ko or ki +r =ko (A40)

otherwise

1 1
O(bT(T1/2p)4 =+ (pT1/2)3>7

0(1), kl :kQ or k?l :]<?2+7“

(|cum™ (75, (i) I7 g, @iy +0))s I (@ha) T (o) s = (A.41)

O(W), otherwise

* [ Tk T /. N\ r* 1 1
HCHmQ(JT,jl (wkl)JT,jz (wk1+T)7 fj3j4 (ka))Hzl = O<(pT1/2)3 + bT(pT1/2)2>’ (A42)

. . - Ot + ! ), k1 =kyorky=ko+r
x [ Tk * % Tk T1/2p)3 Tb)(T1/2p)2 /7
B (18, s o Ly rginsia o Fr) | = (e ) (A.43)

O((Tl/lzp)4 + (Tb)(%l/Qp)3)7 otherwise

all these bounds are uniform over frequency and 1:;;7, =1, —E (I,’;T).

PROOF. Without loss of generality, we will prove the result in the univariate case (and under the
assumption of nonstationarity). We will make wide use of (4.15) and (4.16) which we summarize

below. For n € {2,3}, we have

) <Tn/12—1 + (T1/2;)n71> ) Z?:l Wiy € Z

lewnn® (5 (i )s - Tr@r )l = n
1 a/ 9] <m) , Zl:l Wiy ¢ Z

(A.44)

and, for n > 4,

* * * O n/2711 n—3 + 1/21 n—1 ) Z?:l (.L)kl & Z
|cum (JT(wk1)7""JT(Wkn))Hq/n - <T 1 P (T7p) ) -
(W) ’ ZZ:I Wk ¢ Z
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To simplify notation, let J7(wy) = J;. To prove (A.34), we expand Var*(f} (w)) to give

[lvar* (F* (i)l

< H ZK;, wi — wiy ) Kp(wi — wi,) [COV(JZ o/ )cov(Jl ,Jl ) + cov(Jy, ,Jl )cov(Jll, Ji) +
I 12
cum(Jl*l,j;;, J[;,j;;) )
- % l; Kp(wy — wiy ) Kp(wg, — wy,) |:COV(J[§, Jé)cov(jz,jz;) + cov(Jl";,j;)cov(jZ, Jl’;)} \
1 £l
% zzz Ky(wi — wi ) Ky (wr, — wyy )eum (5, Ty, Jz*zaJZ)] \ +
1,12
% zl: Ky(wi — wy)?|cov(JF, JF)|? \
< % > Ky (wr — wi, ) Ky (wi — wlz)((T1/12p)4 + (T1/12p)3 + %) +

l1,l2

C 1 .
T2 El:Kb(wk - wl)Q(l + m) (by using (A.44))

1 1 1 . .
= 0 (bT + T12p)3 + (bT)(Tp1/2)> (these are just the leading terms).

We now prove (A.36), expanding cumj‘l(f* (wg)) gives

ey (F*(w)l2 = T4 3 (HKb wi — wy, )cum*(yJ;;\?,|J;;!2,\J;;|2,!JZ;\Q)HQ'

lloylsla N i=1
By using indecomposable partitions to decompose the cumulant
cum*(|Jl*1 2, \Jl’;|2, T, 2, |J[Z|2) in terms of cumulants of J and using (A.44), we can show that
the leading term of cum* (]J;; 12, B/ 2, | T, 2, \JZLF) is the product of four covariances of the type

cum(Jj, , J12)cum(ﬁ2, Jls)cum(jlg, Jl4)cov(jl4, jll)

s 1 1 I 1 1
fowsi e =0 (i 4+ )"+ G e * g * )

which proves (A.36). Since E*(f*(w)) = 0, we have

B[ ) [* = Bvan® (7 (w))? + comna (F* (1)),
therefore by using (A.34) and (A.35), we obtain (A.36).
To prove (A.37), we note that E*|.J5(wi) Ji(wryr)| < (B*|[ T (wr) T (wrtr)|?) /2. Therefore,
by using
E*J7 () I3 Wrer)|? = B (wn) PE* 7 (@rer) [P+ B (7 (wn) S (@r0)) P +

|E* (I3 (wi) T3 (@hrr ) [P A+ cumn® (J3 (k) T3 @kt ) T3 (k) I3 (ko))
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we have

- L17/8
|75 (wor) T () |

IN

| E* 172 (o) T P] ) = E' 1B (J (o) T ()]

1/2 1 1/2
which proves (A.37). The proof of (A.38) immediately follows from (A.44).
To prove (A.39), we expand it in terms of covariances and cumulants
cov* (JjTerr T2 TS)

= cum®(J},, J)eum* (Jg, ., J7) 4+ cum*(J5,, T )eum* (Jp, o, J5) + cam* (S5, 5 ), s ),

thus by using (A.44) we obtain (A.39).
To prove (A.40), we expand the sample bootstrap spectral density in terms of DFTs to

obtain
Cum3(‘]k1‘]k1+rv<]k2<]k2+rvf W, )) ZKb (wr, — Cum3(<]k1<]k1+r7<]k2‘]k2+r’ oA ?).

By using indecomposable partitions to partition cumj(Jy, Iy k1 +T,J,:2722 v | 7)) in terms of

cumulants of the DFTs, we observe that the leading term is the product of covariances. This

gives
.
2
O((1+ T%@,) (W)), ki =1and k; +r =k;
chm:?(J:ljzﬁm Jl:2722+7“7 ‘JI*P)”S/ZS = O((l + T11/2p)((T1/12p)4)>, ki = kj or ki +r=1
0 <(T1/12m6> . otherwise
for 7,7 € {1,2}. By substituting the above into (A.45), we get
%/ 7% TF « —F % O(W), k;lzkig or ]C1+T:k2
AL Y I F
T(T1/2p)4 (pT1/2)3

which proves (A.40). The proofs of (A.41) and (A.42) are identical to the proof of (A.40), hence
we omit the details.

To prove (A.43), we expand the expectation in terms of cumulants and use identical methods
to those used above to obtain the result.

Finally to prove (A.47), we use the Minkowski inequality to give
1 * 0 7k T F N
<|7 3 Kol = )57 = Tl +

T

8

15 ot - ]+ Tt s~ s, a9
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where hy is defined in (4.9). We now bound the above terms. By using Theorem 4.1(ii) (for

n = 2), we have

1

1 w77 K " 1 (7T K
|5 Bl = (BT = Talep]| < 3 3 Koo — i) B 575) = B < Ol
j 8 ] p

By using Lemma 4.2(ii), we obtain
1 ~ 1 ~ 1
T Z Ky(wy — wj)[h2(wj) — f(wy)] . <=z Z Kp(wr, — wj)|[ha(wj) — flw))||g = O(m +p)
J J
By using using similar methods to those used to prove Lemma A.2(i), we have &> i Kp(wy —

w;) f(wj) — f(wg) = O(b). Substituting the above into (A.45) gives (A.42). O

Analogous to GT(T, ?), direct analysis of the variance of (A]*T(T, ¢) and Crp(r,0) with respect
to the bootstrap measure is extremely difficult because of the i*(wk) and i(wk) in the definition
of CAJ*T(T, ¢) and Cr(r,£). However, analysis of Ci(r, /) is much easier, therefore to show that
the bootstrap variance converges to the true variance we will show that Var*(a*T('r, ¢)) and
Var*(C}(r, ¢)) can be replaced with Var*(éi}(r, ¢)). To prove this result, we require the following

definitions

T d
Z Z Aji 512,82 (ikﬂ,)Jl: s1 JI:_H« so exp(ilwg),
k=1
1 T d .
éjjkl ]2 (r E) = T Z Z Aj17517j2752 (E* (ik’,’l‘))J’: S1 JI:J,-T S2 eXp(igwk)7
k=1
T

r.l) =

d
]1 ]2( Z Aj17517j2752 (ik‘,T’)J’: S1 JI:J,-T S92 eXp(Zg(AJk-) <A46)

We also require the following lemma which is analogous to Lemma A.2; but applied to the
bootstrap spectral density estimator E*(J,(w)Jy(w)’).

Lemma A.15 Suppose that {X,} is an a-mizing second order stationary or locally stationary
time series (which satisfies Assumption 3.2(L2)) with o > 4 and the moment sup, || X,||s < oo
where s > 4a/(a — 2). For h # 0 either the covariance of local covariance satisfies |k(h)|1 <

C|h|=%*) or |k(u; b))y < C|h|~CF9). Let Ji(wy) be defined as in Step 5 of the bootstrap scheme.
(a) If Tp? — 0o and p — 0 as T — oo, then we have

(i) sup; cper [B[E* (B (wi))] — £(wi)] = O(p + b+ (bT)71) and var(fr(wi)) = O( +
T + ).

. s P
(ii) supy<per [E* (B (wr)) — flwr)|i = 0,
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(14i) Further, if f(w) is nonsingular on [0,2x], then for all 1 < s1,s2 < d, we have
x(7F P,
SUP1<k<T ‘LS1782 (E (iT(Wk))) — Lsy s, (i(wk))‘ — 0.

(b) In addition, suppose for the mizing rate o > 16 there exists a s > 16a/(av — 2) such that

sup, || X,||s < oo. Then, we have

| E*(f (wk))—f(wk)Hg:O<T1/2p+p2T+p+b+bT). (A.47)

PROOF. To reduce notation, we prove the result in the univariate case. By using Theorem 4.1

and equation (4.14), we have

E*|J5(w;)|? = ha(w;) + Ri(w)),

o~

where || sup,, |Ri(wj)||l2 = O(%ﬁ). Therefore, substituting the above result into E*(f7(wy)) =

B (1 12 1 Ki(wi — wj)|Jr(w;)|?), we have
o 1 r . A~ D rs 3
E*(f7(wr) = T > ()1 = )T exp(irwe)in(r) + Ra(wr) = frwe) + Ra(wr), (A.48)
|r|<T—-1
where Fr(w) = 4 Xcqmy M) (1= p)V explirw)in(r) and || sup,, Ra(wr)llz = O(zhs). Thus
for the remainder of the proof, we only need to analyze the leading term fT(w) (note that unlike
E* (fj’i (ws)), ]?T(w) is defined over [0, 27| not just the fundamental frequencies).

Using the same methods as those used in the proof of Lemma A.2(a), it is straightforward

to show that
E(fr(w)) = f(w) + Rs(w), (A.49)

where sup,, |R3(w)| = O(3 + b+ p), this proves sup; <<y |E[E* (f;(wk))] — flwe)| =O0(p+b+
(bT)~1). Using (4.6), it is straightforward to show that var(fp(w)) = O((pT)~1), therefore by
(A.48) and the above we have (ai).

By using identical methods to those used to prove Lemma A.2(ci) we can show sup,, | fr(w) —
E(fr(w))] £ 0. Thus from uniform convergence of fr(w) and (ai) we immediately obtain uniform
convergence of E*(fr(w)) (supj<g<p IB*(fr(wp)) — f(wy))]). Similarly to show (aiii) we apply
identical method to those used in the proof of Lemma A.2(cii) to fT(w).

Finally, to show (b), we use that

IE*(F*(wr) = flwlly < || Fr(wn) — BCr(wn)|ls + [E(r(wr) = Fwi)] + [|R2(wp)]ls.

By using (4.6) and the Minkowski inequality, we can show HfT(wk)—E(fT(wk)) Hs = 0((Tp*)~/?),

where this and the bounds above give (b). O
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Lemma A.16 Suppose that Assumption 5.2 and the conditions in Lemma A.15 hold. Then we

have

T<E* (G0 o (r1 OB [E5, 5, (r2, 62)] = B[, 5, (1, )] B[, 5, (7“2af2)]> = Op (a(T, b, p))A-50)
(5 500 05 o ] B [55000 00 ] ) = Oy b)) (A51)
-1 1 4, 1 1o, 1
where a(T',b,p) = i T T T RT T b+ T T T/

PROOF. To simplify notation, we consider the case d =1, /1 = {5 =0 and r; = ro = . We first
prove (A.50). Recalling that the only difference between ¢*(r,0) and ¢*(r,0), is that A(E; L) s
replaced with A(E*(E; T)), the difference between their expectations squared (with respe’ct to
the stationary bootstra’p measure) is
t%@@@%fymwmwﬁ=TZ(WW&Q%%AWM@M%KW]

k1,k2

~%

—mwwmmmwﬁ;mwuamwmm%ﬁwﬁ

1 « ~ o~ *
= = Z (E* aj, I, JE [ak, I, 0] — aklaklE*[IkhT]E*[IZQVT]>, (A.52)
k1, k2

~% ~%

o, = A(f,,), @ =AEf, ), fi =, —E,,) and I, = JiTi . (A53)

To bound the above, we use the above Taylor expansion

1~

—E () VAE G ) + 5 (Fy, — B )V VAL ), — BT ().

~% ~%

A(f, ) = AE N+,

)

where V and V? denotes the first and second partial derivative with respect to f o and zz . lies

~%

between zz . and E*(f

f,. ). To reduce cumbersome notation (and with a slight loss of accuracy,

since it will not effect the calculation) we shall ignore that Ek . is a vector and that many parts

of the proof below require us to the complex conjugate I . (we use instead I} ) and use (A.53)

to rewrite the Taylor expansion as

* —~ ~ 00,  ~o10%
ap = ak+ka+fk2§ 8f2k’

(A.54)

where a; = VQA(f;T). Substituting (A.54) into (A.52), we obtain the decomposition

8

T(|E* @ (r,0)|* — |[E* @ (r,0) ) = I,

i=1
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where the terms {I;}5_, are

Oak . el
Il - Z @k, 2E Ili‘)E (Ik:2,rfk2)
k1,k2
3ak . e
= *Z Ty 2E (T, VB (1 1 1) (A.55)
k1,k2
8Ak 8ak ~ ~
n o= Y STy IR, 5]
Tkl,kg of of 1 1 2 2
1 8ak 8ak * % Tk «TTh T
= 72 p ap Bl B T )
k1,k2
I3 = Z a, B |:Ik17" i RIE }E*(I,€2 L)
k1 ko
8%2 27 .
I = 72 k17’fk1 2 E [Ik27"fk2]
of
k1 ,k2
1 2 * 2—*
Iy = E |:k17'fk1 8f2 :| |:k2rfk2 an :|
k1,k2

(with TZT = I, — E*(I};,)) and Iy, I5, I are defined similarly. We first bound [;. Writing
=2 Z;‘-le Kp(wy — wj)f;,o gives
8ak

1 . x .
I = T Z Kp(wg, — wj)ak, anE (Ikl rJeov” (Ik27”’ j,O)'
k1,k2,7

By using the uniform convergence result in Lemma A.15(a), we have supy, |ax — ag| £ 0. There-

fore, |I;| = Op(1)I1, where

1 ~ ~
b2 K = o 52 [0 oo (T, T
k1,k2.j

with ay = A(f, ) and aakl = VfA(f .). Taking expectations inside I, gives

Oay,

o) 0, e Jov* (U Tl

rr+35,0

~ 1
il = 7 > 1 Kb(wry —w))l|ax,
kl7k2»j

(A.37) (A4.39)

thus we have I; = Op (4= + o) = O(Tp4) and I1 = Op(=4= + —2) = O( We now bound

1
p4T + p6T2 p4T + p6T2 Tp )

I. By using an identical method to that given above, we have |I5| = O,(1)I, where

~ 1 6ak 8ak. Tk
IQ = f Z |Kb(wk‘2 _wjl)HKb(ka _WJQ)H 8f1 8f2 HCO Ikl T’Ijl O)COV (Ikg r’Ijg, )‘
k1,k2,51,52
T 1 aakl aal@ * (T *
= ||‘[2H S T Z |Kb(Wk2 - le)HKb(Wk2 - w]Q)H af af ‘ H Ik‘l r j1,0)H2 : HCOV (Ik‘z,’l"Ijz, )
k1,k2,51,72

(A.39) (A.39)
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which gives I = O(T%pAl) and thus I = Op(T%pzl).

To bound I3, we use Holder’s inequality

1 ~ x| pAx * x| 1/6x 0 a’z 1/3 sk 7=
Il < 5 S fawl - BUIR2E 1 R | ()P (0 )
K1,k

f?

Under Assumption 5.2(B1), we have that E*}( akl) ‘1/ % s uniformly bounded in probability.
Therefore, using this and Lemma A.15(a), we have |I3| = O,(1)I3, where
1 1/6
T O lawgl - BT 1| VO )1
k1,k2
Taking expectations of the above and using Holder’s inequality gives

T * * * 1/6 * [Tk
E(l3) < = Z iy - 1B FE1 22 |28, Pl - B (17, ) I3
k17k2

1 1 2 1/6
= 7 2l BRI B2 P B ()
k1,k2

(A.36) (A.37) (A.38)

Thus by using Lemma A.14, we obtain |I3] = Op(
‘17’ = Op(l)f7, where

ﬁ) Using a similar method, we obtain

- ) - -
= Y o (B | OB LR P PR T ) and
k1,k2
Il < g D0 JE i U B I leow B, T,
1,k (A.37) (A.36) (A1)

Finally we use identical arguments as above to show that |Is| = O,(1)Is, where

% Z E*|f I/QE*‘ i T{l/GE*IfM I/QE*] er}l/G'
ki,k2
Thus, using similar arguments as those used to bound || 3|1, we have |Is| = O((b*>T)~"). Similar
arguments can be used to obtain the same bounds for Iy,. .., Is, which altogether gives (A.50).
To bound (A.51), we write Iy, as I, = fm + E(Ii,) and substitute this in the difference
to give

T (E* & (r,0)|* — [E*|¢(r,0)[%) = 7 > (E lak, ar, i o Ly ) —aklaklE*[Izl,TI;;?,r])
k1,k2

1 ~ -
= 1 3 (B RAE B )~ BP0 ) U, )0, ] — G BRI, B — B (07, B (1, )
k1,k2

1 *[ k% Tk Tk ~ o~ ®[T% Tk
72 (E (ak, @k, 17, oI5, ] — @O B [Ikl,rfm,r]]'
L
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We now substitute the Taylor expansion into (A.54) to get
T(E*e(r,0)| — |[E*|&"(r,0)]%) = 11, (A.56)

where

8ak1

2 T * * [Tk * ([ Tk *182@ 8a‘k *180’
T Z (2Ik1,TE(Ik‘2,7”) - E (Ikl,T)E (I]{:Q,T)> (a’kl + fk’l f + fk‘122 8f2k> (fk'Q f2 fk‘222 afgz

K1,k

day, *
5, = Z " 8f2E I,f1 TI,C2 rsz)
1, = a’“ a“’” B [T:  Fi It F
2 = Z klﬂfku k2ﬂ“fk2]’
1,k2
1 o%a;
1y = ﬁ Zk |:k17' kl 8f21 k2ﬂ“]’

2
II7 = T Zk QE* |:Ik17‘ kl afg Ikg, fk2:|7

27 2d*
IIS = Tzk: |:k17‘fk1 an k27 fkg 8f2:|

and I14,I15, 11 are defined similarly. By using similar methods to those used to bound (A.50),
Assumption 5.2(B1), (A.36), (A.37) and (A.38), we can show that |IIy| = O,((Tp*b)~'). To
bound |I11|,...,|I1Ig| we use the same methods as those used to bound (A.50) and the bound
in (A.36), (A.37), (A.40), (A.41), (A.42) and (A.43) to show (A.51), we omit the details as they
are identical to the proof of (A.50). O

Lemma A.17
Suppose that Assumption 5.2(B2) and the conditions in Lemma A.15 hold. Then, we have

T<E* [ ]1 \J2 (7’1, El)] E [5;3,3'4 (TQ’ £2)] - ‘E* [6;173'2 (7’1, El)] E* [5;3,3'4 (T27 62)}> - OP (CL(T, bu p))(A57)

T(E* [v; i (ry,01)¢ s (7"2,62)] —E* [53517]2 (r1,01)ct o ia (7“2,52)]) = Oy (a(T,b,p)), (A.58)

T(E* [ (ri, O JB*[ &5, S (ra, ba)] — [E* [, 5, (r1, 01)|E* [, 5 (ra, £2)] | = Op (a(T, b, p) J(A.59)

T(E*[ & (7'1761) Cis ia (7‘2,52)] E*[ Ciy o (Tlagl) Cla ja (TQ,KQ)]) = Op (a(T, b,p)) , (AGO)

where a(T', b, p) = 2 + Tp4 + o tb+ sz + T1/2
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PROOF. Without loss of generality, we consider the case d =1, {1 =l =0and ry =ro =1
and use the same notation introduced in the proof of Lemma A.16. To bound (A.57), we use

the Taylor expansion

ak1al€2 - alﬁakz
~ 8ak c‘%ik —~ 8 ak 1 8 ak ~ 8ak 8ak
fk?2a’k1 af +fkla‘]f2 8f1 7fk2 k1 af22 ifk2ak2 an +fk1fk2 af2 8f1

(A.61)

which gives

T(E*[u; J2 (r, 0)]E*[ Cjsja (r, O)] E* [71 J2 (r, 0)]E*[ s J4 ZIII“ (A.62)
where
aak‘g * *
nn = —Z ki BT (0 VB (I 1)
k1,k2
11, = —Zakla 2 [ BN (I OB (T, ),
k1,k2
re 8ak aak [Tk * [ Tk
I3 = Tkzkj Fio Fra =g ¢ 7 B Ui B (L )
1,R2

By using Lemma A.15, (A.37) and (A.47) and the same procedure used to bound (A.50), we
obtain (A.57).

To bound (A.58), we use a similar decomposition to (A.62) to give

3
T([E*|&*(r,0)* — [E*[e*(r,0)]) = Y _IV;,
=0
where
1 " I " P ~ 8ak 6Zik - 825%
IVO = _Tkzl; <2Ik1,rE (Ikg,r)+E(Ik1,r)E (Ikg,r)> (szakl 8f +fk1ak’287f1 7fk2 k1 afgz +
1,k2
1 ? ke, ~ (9@]€2 8ak1
kaQakQ a72 + i frs af of
8ak %
I‘/l = T Z ak?l kaE (Ik’l T‘Ikg T)
k1,k2
IV2 - 2l Z ak‘l 8 E*<Ik1, Ikg T)
k1,k2
8ak 8ak %7 Tk ~
IV kzkj Frr fra afl anE (It oIy )
1,k2
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Again using the same methods to bound (A.50), Lemma A.15 (A.38), (A.41) and (A.47) we
obtain IV; = Op(b + — 2 T Tl/g + 7or 77 ), and thus (A.58).
To bound (A.59) and (A.60) we use identical methods to those given above, hence we omit

the details. O
PROOF of Lemma 5.2 We will prove (ii), the proof of (i) is similar. We observe that
T’cov Ci1.2(1,01), €5, 5, (1,02)) — cov™(c5, 4, (7, 01),¢5, 5, (7, 02))‘

< (B (6, (100, (1 0a)) ~ B (5, 05,0 )
T (B0 0 DG, (00) — B (5, O, , (70 ).

Substituting (A.50)-(A.58) into the above gives the bound O,(a(T,b,p)). By using a similar

method, we can show

T‘cov (c: i, 32(7“ 01),c* i, ]4(7“, 02)) — cov™(¢c; i, ]2(7“ 01),c* cj, ]4(7“, 02))’ = Op(a(T,b,p)).

Together, these two results give the bounds in Lemma 5.2. O

PROOF of Theorem 5.2 The proof in the fourth order stationary case follows by using

that W is a consistent estimator of W, (see Theorem 5.1 and Lemma 5.2) therefore

P
T = Tmon,dl = 0-

ELAS)

Since T n,a is asymptotically a chi-squared (see Theorem 3.4). Thus we have proven (i)
To prove (ii), we need to consider the case that {X,} is locally stationary with A, (r,¢) # 0.
From Theorem 3.6, we know that vT(RK,(r) — RA,(r) — RB,(r)) is asymptotically normal
—_———  ——
o(1) o(b)
with mean zero. Therefore, since W* = O(p~1), we have (W3)~1/2 = O(p'/?). This altogether
gives

VT (W3) 7 2RK (r)]* + [VT(W3) 28K (r) = Oy(Tp),

and thus the required result. O
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