A test for second order stationarity of a multivariate time series

Carsten Jentsch* and Suhasini Subba Rao!

September 6, 2014

Abstract

It is well known that the discrete Fourier transforms (DFT) of a second order stationary time series
between two distinct Fourier frequencies are asymptotically uncorrelated. In contrast for a large class
of second order nonstationary time series, including locally stationary time series, this property does
not hold. In this paper these starkly differing properties are used to define a global test for stationarity
based on the DFT of a vector time series. It is shown that the test statistic under the null of station-
arity asymptotically has a chi-squared distribution, whereas under the alternative of local stationarity
asymptotically it has a noncentral chi-squared distribution. Further, if the time series is Gaussian and
stationary, the test statistic is pivotal. However, in many econometric applications, the assumption
of Gaussianity can be too strong, but under weaker conditions the test statistic involves an unknown
variance that is extremely difficult to directly estimate from the data. To overcome this issue, a scheme
to estimate the unknown variance, based on the stationary bootstrap, is proposed. The properties of the
stationary bootstrap under both stationarity and nonstationarity are derived. These results are used
to show consistency of the bootstrap estimator under stationarity and to derive the power of the test
under nonstationarity. The method is illustrated with some simulations. The test is also used to test
for stationarity of FTSE 100 and DAX 30 stock indexes from January 2011-December 2012.
Keywords and Phrases: Discrete Fourier transform; Local stationarity; Nonlinear time

series; Stationary bootstrap; Testing for stationarity

1 Introduction

In several disciplines, as diverse as finance and the biological sciences, there has been a dramatic increase
in the availability of multivariate time series data. In order to model this type of data, several multivariate

time series models have been proposed, including the Vector Autoregressive model and the vector GARCH

“Department  of  Economics, University of  Mannheim, L7, 3-5, 68131  Mannheim, Germany,

cjentsch@mail.uni-mannheim.de
TDepartment of Statistics, Texas A&M University, College Station, Texas 77845, USA, suhasini@stat.tamu.edu (corre-

sponding author)



model, to name but a few (see, for example, Liitkepohl (2005) and Laurent, Rombouts, and Violante
(2012)). The majority of these models are constructed under the assumption that the underlying time
series is stationary. For some time series this assumption can be too strong, especially over relatively long
periods of time. However, relaxing this assumption, to allow for nonstationary time series models, can
lead to complex models with a large number of parameters, which may not be straightforward to estimate.
Therefore, before fitting a time series model, it is important to check whether or not the multivariate time
series is second order stationary.

Over the years, various tests for second order stationarity for univariate time series have been proposed.
These include, Priestley and Subba Rao (1969), Loretan and Phillips (1994), von Sachs and Neumann
(1999), Paparoditis (2009, 2010), Dahlhaus and Polonik (2009), Dwivedi and Subba Rao (2011), Dette,
Preuss, and Vetter (2011), Dahlhaus (2012), Example 10, Jentsch (2012), Lei, Wang, and Wang (2012) and
Nason (2013). However, as far as we are aware there does not exist any tests for second order stationarity
of multivariate time series (Jentsch (2012) does propose a test for multivariate stationarity, but the test
was designed to the detect the alternative of a multivariate periodically stationary time series). One crude
solution is to individually test for stationarity for each of the univariate processes. However, there are
a few drawbacks with this approach. The first is that most multiple testing schemes use a Bonferroni
correction, which results in a test statistic which is extremely conservative. The second problem is that
such a strategy can lead to misleading conclusions. For example if each of the marginal time series are
second order stationary, but the cross-covariances are second order nonstationary, the above testing scheme
would not be able detect the alternative. Therefore there is a need to develop a test for stationarity of a
multivariate time series, which is the aim in this paper.

The majority of the univariate tests, are local, in the sense that they are based on comparing the
local spectral densities over various segments. This approach suffers from some possible disadvantages. In
particular, the spectral density may locally vary over time, but this does not imply that the process is
second order nonstationary, for example Hidden Markov models can be stationary but the spectral density
can vary according to the regime. For these reasons, we propose a global test for multivariate second order
stationarity.

Our test is motivated by the tests for detecting periodic stationarity (see, for example, Goodman
(1965), Hurd and Gerr (1991), Bloomfield, Hurd, and Lund (1994) and S. Olhede and Ombao (2013))
and the test for second order stationarity proposed in Dwivedi and Subba Rao (2011), all these tests
use fundamental properties of the discrete Fourier transform (DFT). More precisely, the above mentioned
periodic stationarity tests are based on the property that the discrete Fourier transform is correlated if
the difference in the frequencies is a multiple of 27 /P (where P denotes the periodicity), whereas Dwivedi

and Subba Rao (2011) use the idea that the DFT asymptotically uncorrelates stationary time series, but



not nonstationary time series. Motivated by Dwivedi and Subba Rao (2011), in this paper, we exploit
the uncorrelating property of the DFT to construct the test. However, the test proposed here differs from
Dwivedi and Subba Rao (2011) in several important ways, these include (i) our test takes into account the
multivariate nature of the time series, (ii) the test proposed here is defined such that it can detect a wider
range of alternatives and (iii) the test in Dwivedi and Subba Rao (2011) assumes Gaussianity or linearity
of the underlying time series (and calculates the power under the assumption of Gaussianity), which in
several econometric applications is unrealistic, whereas our test allows for testing of nonlinear stationary
time series.

In Section 2, we motivate the test statistic by comparing the covariance between the DFT of stationary
and nonstationary time series, where we focus on the large class of nonstationary processes called locally
stationary time series (see Dahlhaus (1997), Dahlhaus and Polonik (2006) and Dahlhaus (2012) for a
review). Based on these observations, we define DFT covariances which in turn are used to define a
Portmanteau-type test statistic. Under the assumption of Gaussianity, the test statistic is pivotal, however
for non-Gaussian time series the test statistic involves a variance which is unknown and extremely difficult
to estimate. If we were to ignore this variance (and thus implicitly assume Gaussianity) then the test
can be unreliable. Therefore in Section 2.4 we propose a bootstrap procedure, based on the stationary
bootstrap (first proposed in Politis and Romano (1994)), to estimate the variance. In Section 3, we derive
the asymptotic sampling properties of the DFT covariance. We show that under the null hypothesis, the
mean of the DFT covariance is asymptotically zero. In contrast, under the alternative of local stationarity,
we show that the DFT covariance estimates nonstationary characteristics in the time series. These results
are used to derive the sampling distribution of the test statistic. Since the stationary bootstrap is used to
estimate the unknown variance, in Section 4, we analyze the stationary bootstrap when the underlying time
series is stationary and nonstationary. Some of these results may be of independent interest. In Section 5
we show that under (fourth order) stationarity the bootstrap variance estimator is a consistent estimator
of the true variance. In addition, we analyze the bootstrap variance estimator under nonstationarity and
show that it has an influence on the power of the test. The test statistic involves some tuning parameters
and in Section 6.1, we give some suggestions on how to select these tuning parameters. In Section 6.2,
we analyze the performance of the test statistic under both the null and the alternative and compare the
test statistic when the variance is estimated using the bootstrap and when Gaussianity is assumed. In
the simulations we include both stationary GARCH and Markov switching models and for nonstationary
models we consider time-varying linear models and the random walk. In Section 6.3, we apply our method
to analyze the FTSE 100 and DAX 30 stock indexes. Typically, stationary GARCH-type models are used
to model this type of data. However, even over the relatively short period January 2011-December 2012,

the results from our test suggest that the log returns are nonstationary.



The proofs can be found in the Appendix.

2 The test statistic

2.1 DMotivation

Let us suppose {X, = (X¢1,..., X q)',t € Z} is a d-dimensional constant mean, multivariate time series

and we observe {X,}]_;. We define the vector discrete Fourier transform (DFT) as

T
1 .
o) = VorT DXy k=1, T,
t=1

where wy, = 277% are the Fourier frequencies. Suppose that {X,} is a second order stationary multivariate
time series, where the autocovariance matrices of {X,} satisfy

0o

Z |h] - |cov(Xp jy» Xo,4,)] < oo forall ji,jo=1,...,d. (2.1)

h=—00

It is well known for ki — ko # 0, that cov(Jrm(wk,), J1n(Wk,)) = O(%) (uniformly in 7', ky and ko), in
other words the DFT has transformed a stationary time series into a sequence which is approximately
uncorrelated. The behavior in the case that the vector time series is second order nonstationary is very
different. To obtain an asymptotic expression for the covariance between the DFTs, we will use the
rescaling device introduced by Dahlhaus (1997) to study locally stationary time series, which is a class of
nonstationary processes. {X,r} is called a locally second order stationary time series, if its covariance
structure changes slowly over time such that there exist smooth matrix functions {&(-;7)}, which can
approximate the time-varying covariance matrices. More precisely, |cov(X,, X, ) — k(7;t— 7)1 <
T 'k(t—7), where 3, r(h) < co. An example of a locally stationary model which satisfies these conditions
is the time-varying moving average model defined in Dahlhaus (2012), equations (63)-(65) (with ¢(j) =
log(|7])1¢]4|? for |j| # 0). It is worth mentioning that Dahlhaus (2012) uses the slightly weaker condition
£(5) = log(]5])**4|4]. In the Appendix (Lemma A.8), we show that

1
cov(Jp(wr, ), Jr(wk,)) = /0 f(u; wg, Jexp(—i2mu(ky — k2))du + O (;) , (2.2)

uniformly in T, k1 and ko, where f(u;w) = % Y ope oo K(u; h) exp(—ihw) is the local spectral density
matrix (see Lemma A.8 for details). We recall if { X, }; is second order stationary then the ‘spectral density’
function f(u;w) does not depend on u and the above expression reduces to cov(Jp(wk, ), Jp(wk,)) = O(%F)
for k1 — ko # 0. It is interesting to observe that for locally stationary time series its DFT sequence mimics
the behavior of a time series, in the sense that the correlation between the DFTs decays the further apart

the frequencies.



A further, related motivation for our test is that a time series {X,} is second order stationary if and

only if it admits the Fourier-Stieltjes integral (Cramér Representation)

2
Xt:/o exp(itw)dZ(w), (2.3)

where {Z(w);w € [0,27]} is an orthogonal increment vector process (see for example, Yaglom (1987),
Chapter 2). The DFT Jp(wk) can be considered as an estimator of the increment dZ(wy). The represen-
tation (2.3) can be generalized to include an increments process {Z(w);w € [0,27]} which no longer has
orthogonal increments. By doing so we induce second order nonstationarity within the time series, this
general representation is called a Harmonizable time series (see for example, Yaglom (1987) and Lii and
Rosenblatt (2002)). It is worth noting that periodically stationary time series have this representation as

well as locally stationary time series, since we can represent {X, 1} as

2
Xt’T:/o exp(itw)dZp(w), (2.4)

1 2= T) . . . . .
where Zp(w) = NCTTd 212 Jr(wg), noting that the correlation between the increments is given in (2.2).
Therefore, testing for uncorrelatedness of the DF'Ts is effectively the same as testing for uncorrelatedness

of the increment process.

2.2 The weighted DFT covariance

The discussion in the previous section suggests that to test for stationarity, we can transform the time
series into the frequency domain and test if the vector sequence {J(wy)} is asymptotically uncorrelated.
Testing for uncorrelatedness of a multivariate time series is a well established technique in time series
analysis (see, for example, Hosking (1980, 1981) and Escanciano and Lobato (2009)). Most of these tests
are based on constructing a test statistic which is a function of sample autocovariance matrices of the time
series. Motivated by these methods, we will define the weighted (standardized) covariance DFT and use
this to define the test statistic.

To summarize the previous section, if {X,} is a second order stationary time series which satisfies (2.1),
then E(J (wp)) = 0 (for k # 0,7/2,T) and var(J(wi)) — f(wg) as T — oo, where f : [0,27] — C*4
with

oo

= % Kk(h) exp(—ihw)

h=—o00

flw) = {fjl,jz(w)§j17j2 =1,...,d}

is the spectral density matrix of {X,}, where k(r) = cov(X,,X,). If the spectral density f(w) is non-

singular on [0, 27], then its Cholesky decomposition is unique and well defined on [0, 27]. More precisely,

f(w) = B(w)B(w) , (2.5)



where B(w) is a lower triangular matrix and B(w)/ denotes the transpose and complex conjugate of B(w).

!/

Let L(wy) := B~ Y(wy), thus f~1(w;) = L(wi) L(wy). Therefore, if {X,} is a second order stationary
time series, then the vector sequence, {L(w1)Jp(w1), ..., L(wr)Jr(wr)}, is asymptotically an uncorrelated
sequence with a constant variance.

Of course, in reality the spectral density matrix f(w) is unknown and has to be estimated from the
data. Let f7(w) be a nonparametric estimate of f(w), where
fr(w) = 27TT Z Mo(t — T)exp(—i(t — T)w) (X, — X) (X, —X)/ w e [0,27] w € 0,27,

t,r=1

{X(r) = A(br)} are the lag weights and X = + Zle X,. Below we state the assumptions we require on

the lag window, which we use throughout this article.

Assumption 2.1 (The lag window and bandwidth) (K1) The lag window A : R — R, where A(-)
has a compact support [1,1], is symmetric about 0 with A(0) = 1 such that the derivative N (u)

exists in (0,1) and is bounded. Some consequences of the above conditions are >, |X\p(h)| = O(b™1),

2o IRl [A(h)| = O(b72) and |Ay(h) — 1] < sup, [ (u)] - [d].

(K2) T71/? << b << T V4

!/

Let £7(wg) = B(wg)B(wy,) , where B(wy,) is the (lower-triangular) Cholesky decomposition of fr(wy) and
L(wg) := B~ (wy,). Thus B(wy) and L(wy) are estimators of B(wy) and L(wy,) respectively.
Using the above spectral density matrix estimator, we now define the weighted DFT covariance matrix

at lags r and /¢

!/

L(wy) I (wi) L7 (W) i(wk_w) exp(ilwy), r>0and /€ Z. (2.6)

M%

k:
We observe that due to the periodicity of the DET, Cp(r, ¢) is also periodic in  with Crp(r, £) = Cp(r+T, ¢)
for all integers r > 0. To understand the motivation behind this definition, we recall that if the time series
is second order stationary, then L(wg)Jp(wy) is the DFT of a prewhitened multivariate time series. If the
time series is nonstationary then L(wy)J(wg) can be considered as the DFT of some linearly transformed
multivariate time series. The correlations between {L(wg)J(wg); k} are used to detect for nonstationarities
in this transformed time series. However, if we restrict the DFT covariance to only {GT(T, 0);r} then we
will only be able to detect changes in the variance of the transformed time series. For the majority
of nonstationary time series, the ‘nonstationarity’ can be detected here, but there can arise exceptional
situations where changes can only be found in the higher order covariance lags and not the variance. By
generalizing the covariance to GT(’F, ¢) the DFT covariance is able to detect changes in the transformed

time series at covariance lag . The precise details can be found in Section 3.3. It is worth mentioning



that there is a connection between aT(T, ¢) and classical frequency domain methods for stationary time
series. For example, if we were to allow r = 0 we observe that in the univariate case aT(O, 0) corresponds
to the classical Whittle likelihood (where L(wy) is replaced with the square-root inverse of a spectral
density function which has a parametric form, see for example, Whittle (1953), Walker (1963) and Eichler
(2012)). Likewise, by removing i(wk) from the definition, we find that (AJT(O, ?) corresponds to the sample
Yule-Walker autocovariance of {X,} at lag /.

Example 2.1 We illustrate the above for the univariate case (d = 1). If the time series is second order
stationary, then E|Jrp(w)|? — f(w), which means B|f(w)~2Jr(w)|> — 1. The corresponding weighted
DF'T covariance is

ZT: JT wk JT W+ )
wk 1/2fT( )1/2

exp(ilwy), 1 >0 andl € Z.

We will show later in this section that under Gaussianity, the asymptotic variance of aT(r, ¢) does not
depend on any nuisance parameters. One can also define the DF'T covariance without standardizing with
f(w)_1/2. However, the variance of the non-standardized DFT covariance is a function of the spectral

density function and only detects changes in the autocovariance function at lag €.

In later sections, we derive the asymptotic distribution properties of aT(r, ¢). In particular, we show
that under second order stationarity (and some additional technical conditions) and for all fixed m,n € N,

we have weak convergence

RK,, (1) W, 0 0 ... 0
SK, (1) 0 W, 0 ... 0
VT : BN Qpmaagny |7 0 e : (2.7)
RK,, () 0O 0 . W, 0
SK,(m) 0 0 ... 0 W,

as T — oo, where RZ and 3Z are the real and the imaginary parts of a random variable Z, 0; denotes

the d-dimensional zero vector and
~ —~ ~ ~ !
K,(r) = (Vech(CT(r, 0)),vech(Cp(r,1)),...,vech(Cr(r,n — 1))’) (2.8)

with vech((AJT(r7 ?)) defined in (2.12) (see Theorem 3.3 for the details). This result is used to define the
test statistic in Section 2.3. However, in order to construct the test statistic, we need to understand W,,.
Therefore, for the remainder of this section, we will discuss (2.7) and the form that W,, takes for various

stationary time series (the remainder of this section can be skipped on first reading).



The DFT covariance of univariate stationary time series

We first consider the case that {X;} is a univariate (d = 1), fourth order stationary (to be precisely defined
in Assumption 3.1) time series. To detect nonstationarity, we will consider the DFT covariance over various

lags of ¢ and define the vector

~ o~ —~ /
K. (r) = (Cr(r,0),....Cr(r,n = 1)) .

Since ﬁn(r) is a complex random vector we consider separately the real and imaginary parts denoted by

RK,,(r) and SK,,(r), respectively. In the simple case that {X;} is a univariate stationary Gaussian time

series, it can be shown that the asymptotic normality result in (2.7) holds, where

1
W, = ~diag(2,1,1,...,1). (2.9)
2 N—
n—1
and 0, denotes the d-dimensional zero vector. Therefore, for stationary Gaussian time series, the distri-
bution of Kn(r) is asymptotically pivotal (does not depend on any unknown parameters). However, if we

were to relax the assumption of Gaussianity, then a similar result holds but W,, is more complex, that is,

1
W, = =diag(2,1,1,...,1) + W),
2 ~—

n—1

where the (¢1 + 1,05 4 1)th element of W(?) is w2 = 1x006) with

1
l1+1,004+1 — 2

1 2m 27 f ()\ =) )
(b)) — — 1(A1, =A1, =X o 2.1
K 27’{'/0 0 f()\l)f()\Q) eXp(ZEl)\l ZEQ)\Q)d)\Id)\Z ( ) O)

and f4 is the tri-spectral density fi(A1, A2, A3) = ﬁ Z;’i’h%,m:_oo ka(h1, ha, hs)exp(—i(hiA\1 + hoda +
hsAs)) and ka4(t1,t2,t3) = cum(Xy, Xv,, Xt,, Xo) (for statistical properties of the tri-spectral density see
Brillinger (1981), Subba Rao and Gabr (1984) and Terdik (1999)). x(1:2) can be rewritten in terms of
fourth order cumulants by observing that if we define the pre-whitened time series {Z;} (where {Z;} is a

linear transformation of {X;} which is uncorrelated) then

E(Zl’ez) = Zcum(Zh,Zthgl,Zgz,Zo). (2.11)
heZ

The expression for Wg) is unwieldy, but in certain situations (besides the Gaussian case) it has a

simple form. For example, in the case that the time series {X;} is non-Gaussian, but linear with transfer
function A()), and innovations with variance o2 and fourth order cumulant ry4, respectively, then the above

reduces to

E(Zl,fz):/ ral A A [?
ot|A(A)?[A(A2)[?

. . K
exp(z€1A1 — 262)\2)60\1(1)\2 = Ufiégl’(](sgz,(),



where §;;, is the Kronecker delta. Therefore, for (univariate) linear time series, we have that the (1,1)-

entry of Wg)

equals %4 with all other entries being zero and W, is still a diagonal matrix. This example
illustrates that even in the univariate case the complexity of the variance of the DFT covariance Rn(r)
increases the more we relax the assumptions on the distribution. Regardless of the distribution of {X;},
so long as it satisfies (2.1) (and some mixing-type assumptions), then Kn(r) is asymptotically normal and

centered about zero.

The DFT covariance of multivariate stationary time series

We now consider the distribution of Cr(r,¢) in the multivariate case. We will show in Lemma A.11 (in
the Appendix) that the covariance matrix of (vectorized) Cr(r,0) is singular. To avoid the singularity, we

will only consider the lower triangular vectorized version of (A?T(r, 0), i.e.
VeCh(aT(T’, 5)) = (/6\1’1(7', 6),/6\271(7’, 5), e ,/C\d71(7“, E),/C\QVQ(’I’, E), e ,/C\dg(r, ﬁ), e ,/C\d7d(7', 5))/, (2.12)

where ¢, j,(r, £) is the (j1, j2)th element of Cr(r, ), and we use this to define the nd(d + 1)/2-dimensional
vector K, (r) (given in (2.8)). In the case that {X,} is a Gaussian stationary time series we obtain
a result analogous to (2.9) where similar to the univariate case W,, is a diagonal matrix with W, =

diag(W(()l), .. ,W(l) ), where

n—1

5Laa+1)/2 t#0
diag(A1, - -5 Agea41)2) €=0

wi) = (2.13)

with

1, je {1+ X0 pin forme{1,2,...,d}}

, otherwise

A\ =

N[

However, in the non-Gaussian case W, is equal to the above diagonal matrix plus an additional (not
necessarily diagonal) matrix consisting of the fourth order spectral densities, i.e. W, consists of n? square

blocks of dimension d(d + 1)/2, where the (¢1 4+ 1,¢2 4+ 1)th block is

1 2
(Wa)e 1,641 = Wél)%,eg + Wél?g27 (2.14)
with Wél) and Wg)@ defined in (2.13) and in (2.17) below. In order to appreciate the structure of Wéf)b,

we first consider some examples. We start by defining the multivariate version of (2.10)

o 1 2m 2 d . .
KR (G, o, g, da) = ), /0 > L M) L (M) Ljgss (M) Ly, (Ao) expliti Ay — ila Do)
51,52,53,54=1
X fa5s1,52,83,54 (A1, =A1, =A2)dA1d A, (2.15)



where

1 > .
f4;51752,53,54 (AL A2, )\3) = (271')3 Z Rd;s1,59,83,54 (h17 ha, h3)exp(_l(h1>‘1 + hada + h3)‘3))
hi,ha,hg=—o00

is the joint tri-spectral density of {X,} and
Kdisy,s2,58,50 (P15 ha, ha) = cum(Xp, g1, Xny 505 Xng,sg0 X0,54)- (2.16)

Example 2.2 (Structure of W,) For n € N and (1,0 € {0,...,n — 1}, we have (Wy)p41,0+1 =
Wg)éghgg + Wg?b’ where:

(i) For d =2, we have W(()l) = 1diag(2,1,2) and for { > 1 W((Zl) =313 and

kO (1,1,1,1) £O2)(1,1,2,1) kO42)(1,1,2,2)

1
Wg?@:i kO (2.1,1,1) ££2)(2,1,2,1) £@2)(2,1,2,2)
02)(221,1) £2)(2,2,2,1) 1:2)(2,2,2,2)

(i) For d = 3, we have W(()l) = %diag(Q, 1,1,2,1,2), ng) = %16 for £ >1 and Wg)52 s analogous to
(i)-

(iv) For general d and n =1, we have W,, = W(()l) + WO where W((]l) is the diagonal matriz defined in
(2.13) and W) = W((f(% (which is defined in (2.17), below).

We now define the general form of the block matrix w® = (Wg?b)é’l £o=0,...n—1, that is,

ey

_ (2)
lily — EthlgEd’ (2.17)

where E4 with Egvec(A) = vech(A) is the (d(d + 1)/2 x d?) elimination matrix [cf. Liitkepohl (2006),
p.662] that transforms the vec-version of a (d x d) matrix A to its vech-version. The entry (ji,j2) of the

(d? x d?) matrix Vég)g is such that
1,42
2 . J1 . J2
m(l}b)jl,p _ L00) <(Jl — 1)mod d + 1, LJ ,(j2 — 1)mod d + 1, [dD , (2.18)
respectively, where [z] is the smallest integer greater than or equal to .

Example 2.3 (k(“42)(j1, jo, j3, j4) under linearity of {X,}) Suppose the additional assumption of lin-
earity of the process {X,} is satisfied, that is, {X,} satisfies the representation

oo
X,= > T, tez, (2.19)

V=—00

10



where Y 2 |Tyl1 < oo, Do =14 and {e,,t € Z} are zero mean, i.i.d. random vectors with E(e,e;) = 3

positive definite and whose fourth moments exist. By plugging-in (2.19) in (2.16) and then evaluating the
integrals in (2.15), the quantity k%) (j1, j2, js, j1) becomes

d 27
S 1 e .
SO rdadad) = Y Wi (e | CODTOD),,, EOIT,,, explifih)in |

51,82,83,84=1

27
x{ 1 / (L)L), (L(AQ)F(AQ))j4S4exp(—MQAz)dAz},
0

o

where K4;s1,59,53,84 — Cum(eo,sl,60,52760,53,60,54) and I‘(w) = \/% Zlojoz_oo ', e ™% is the transfer function

of {X,}. The shape of %) (1, ja, j3,j4) is now discussed for two special cases of linearity.

(i) IfT, =0 for v # 0, we have X, = e, and ) (j1, jo, j3, ja) simplifies to

b1 l2) (s s s N =
H( )(]17]27,737]4) — "414;]1,]2,]3,]4511,06&,07

—-1/2 ~ ~ \7 ~ ~ o~~~
where X e, = (€11, .., €r.4) and Kass, s9,55,55 = CUM (€05, €0,50, €0,555 €0,54) -

(i) The univariate time series {X; i} are independent for k = 1,...,d (the components of {X,} are

independent), then we have

K2 (51, G, g3, a) = K4,j00,000,01(j1 = Ja = js = ja = j),

where Ky j = Cum4(eo7j)/a;-l and £, = diag(c?,...,032).

2.3 The test statistic

We now use the results in the previous section to motivate the test statistic. We have seen in (2.7)
that {IA{n(r)}r (and also §RIA{n(r) and %IA{n(T)) are asymptotically uncorrelated. Therefore, we simply
standardize {K, ()} and define the test statistic

Touma =T Y (Wi 20K, (1) + W, 25K (1) 3) (2.20)
r=1

where Rn(r) and W, are defined in (2.8) and (2.14), respectively, and |A|3 = tr(A’A) denotes the squared

Frobenius norm of a matrix A. By using (2.7), it is clear that

D 2
Tm’n)d — and(d—‘rl)’

2

where and(d-l—l

) is a x2-distribution with mnd(d + 1) degrees of freedom.
Therefore, using the above result, we reject the null of second order stationarity at the a x 100% level
if Trnd > ermd(d—i—l)(l — «), where X?nnd(d-l—l)(l — a) is the (1 — a)-quantile of the x2-distribution with

mnd(d + 1) degrees of freedom.
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Example 2.4 (i) In the univariate case (d = 1) using n =1, the test statistic reduces to

| Cr(r, 0)[
Tmi1 = ;
; 1+ 300

where kK09 is defined in (2.10).

(ii) In most situations, it is probably enough to use n = 1. In this case the test statistic reduces to

Tonta =T (W 2vech(RC (r,0))§ + W1 2veeh(SCo (r,0))3)

r=1

(i) If we can assume that {X,} is Gaussian, then Tp, 4 has the simple form

Tonac = Ty (I(W§) ™ 2vech(RCr(r, 0)[3 + [(W() ™/ 2vech(SCr (r,0)3)
r=1
m n—1 N R
+2ry (]vech(?RCT(r, )2 + |vech(SCr (r, z))\g) : (2.21)
r=1 ¢=1

where W((]l) is a diagonal matrixz composed of ones and halves defined in (2.13).

The above test statistic was constructed as if the standardization matrix W,, were known. However,
only in the case of Gaussianity this matrix will be known, for non-Gaussian time series we need to estimate

it. In the following section, we propose a bootstrap method for estimating W,,.

2.4 A bootstrap estimator of the variance W,,

The proposed test does not make any model assumptions on the underlying time series. This level of
generality means that the test statistic involves unknown parameters which, in practice, can be extremely
difficult to directly estimate. The objective of this section is to construct a consistent estimator of these
unknown parameters. We propose an estimator of the asymptotic variance matrix W, using a block
bootstrap procedure. There exist several well known block bootstrap methods, (cf. Lahiri (2003) and
Kreiss and Lahiri (2012) for a review), but the majority of these sampling schemes, are nonstationary
when conditioned on the original time series. An exception is the stationary bootstrap, proposed in Politis
and Romano (1994) (see also Parker, Paparoditis, and Politis (2006)), which is designed such that the
bootstrap distribution is stationary. As we are testing for stationarity, we use the stationary bootstrap to

estimate the variance.

The bootstrap testing scheme

Step 1. Given the d-variate observations X,..., X, evaluate vech(%(AJT(r, ?)) and vech(%(AJT(r, 0)) for r =
1,....mand £ =0,...,n—1.
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Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Define the blocks

BI,L — {X[7 [ )XI+L71}5

where Y; = X 47— X (hence there is wrapping on a torus if j > T) and X = 4 ST X, We will
suppose that the points on the time series {I;} and the block lengths {L;} are iid random variables,
where P(I; = s) = T~ ! for 1 < s < T (discrete uniform distribution) and P(L; = s) = p(1 — p)*~1

for s > 1 (geometric distribution).

We draw blocks { By, 1, }; until the total length of the blocks (By, 1, ..., By, 1) satisfies Y | Ly > T
and we discard the last >, ; L; — T values to get a bootstrap sample X7,..., X7.

Define the bootstrap spectral density estimator

13
Y 1 * * /
fr(wi) = T Z Ky(wi — wj)J7(wj) L7 (w;) (2:22)
j=—1F]

where Kpy(w) = Y02 Mp(r) exp(—irw) and J7(wg) = \/ﬁ Z?ﬂ(if — X ")e ™ is the (centered)

bootstrap DFT. Further, denote by B* (w) the lower-triangular Cholesky matrix of £7.(wy,), by L* (w) =

(E* (w))~! its inverse and compute the bootstrap DFT covariances

T
A~k 1 T x * e aa——a ! .
Cr(r.6) =7 > L (wi) L5 (wi) L7 (Whr) L (W) exp(iluwy). (2.23)
k=1
Repeat Steps 1 - 4 N times (where N is large), to obtain Vech(%(A]*T(r, €)Y and Vech(%é}(r, 0)\),
j=1,....,N. Forr =1,...,m and ¢1,l, = 0,...,n — 1, we compute the bootstrap covariance

estimators of the real parts, that is,

N

_ 1 . : . Y

; = T~ h(RC; U)vech(RC; G) 2.24

(W), Njglvec (RC(r, £1))Vvech(RC(r, £2)) (2.24)
/

N N
1 N ; 1 A~ j
|~ Z vech(RCH (1, £1)) W) N Z vech(RC(r, £3)) W)
j=1 j=1

and, similarly, we define its analogues (Wg(ﬂ)e oot using the imaginary parts.
1+1,42+

Define the bootstrap covariance estimator (W*(r)) as
l1+1,0241

<W*(r))z1+1,62+1 - % [(Wgﬁ(r))eﬁl,bﬂ * (Wg(r)>€1+l,€2+l:| ’

and let V/\\f*(r) = ((W*(r))glﬂ’gﬁl)e o ) be the bootstrap estimator of the blocks of W, ,,
1,£2=U,...,Nn—

defined in (3.6) that correspond to ?RIA{n(r) and %IA{n(r)

13



Step 7. Finally, define the bootstrap test statistic Tn’;n’ 4 s
Trvmd = TZ (IW ()~ 2RR A (1)1 + |(W* (1) 725K (1) 3) (2.25)

and reject Ho if 77, ; > and(d+1)( «), where and(d+1)(1 a) is the (1 — a)-quantile of the
x2-distribution with mnd(d + 1) degrees of freedom to obtain a test of asymptotic level o € (0, 1).

Remark 2.1 (Step 4*) A simple variant of the above bootstrap, is to use the spectral density estimator
fr(w) rather than bootstrap spectral density estimator £} T(w) i.e.

7,\7/
Cx(r,0) ZL wi) L7 (w) L (Wit L(warr) exp(ilwy,). (2.26)
=

Using the above bootstrap covariance greatly simplifies the speed of the bootstrap procedure and the theoretical
analysis of the bootstrap (in particular the assumptions required). However, empirical evidence suggests that
estimating the spectral density matrix at each bootstrap sample gives a better finite sample approzimation of
the variance (though we cannot theoretically prove that using (Aji}(r, ) gives a better variance approzimation

than Ci(r,0)).

We observe that because the blocks are random and their length is determined by a geometric distribution,
their lengths vary. However, the mean length of a block is approximately 1/p (only approximately since
only block lengths less than length 7' are used in the scheme). As it has to be assumed that p — 0 and
Tp — oo as T — oo, the mean block length increases as the sample size T' grows. However, we will show in
Section 5 that a sufficient condition for consistency of the stationary bootstrap estimator is that Tp* — oo

as T' — oo. This condition constrains the mean length of the block and prevents it growing too fast.

Remark 2.2 An interesting variant on the above scheme is to use the bootstrap DF'T covariances {6}(1“, )}
to directly construct bootstap rejection regions for the test statistic. However, in this paper we will only use
the x2-approzimation rather than the bootstrap distribution. It is worth noting that the moments of this

bootstrap distribution can be evaluated using the results in Section 4.

3 Analysis of the DFT covariance under stationarity and nonstation-

arity of the time series

3.1 The DFT covariance Cy(r, ) under stationarity

Directly deriving the sampling properties of (A}T(r, /) is not possible as it involves the estimators f,(w)

Instead, in the analysis below, we replace L(w) by its deterministic limit L(w), and consider the quantity

Cr(r,¢) ZL wie) L (i) I @ty ) L(wpir) explilwy). (3.1)
k 1
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Below, we show that aT(r, /) and éT(T, ¢) are asymptotically equivalent. This allows us to analyze éT(r, 0)

without any loss in generality. We will require the following assumptions.

3.1.1 Assumptions

Let | - |, denote the £,-norm of a vector or matrix, i.e. [A[, = (32, ; |Ai;|P)1/P for some matrix A = (a;;)

and let [1X|, = (EIX7)/7.

Assumption 3.1 (The process {X,}) (P1) Let us suppose that {X,,t € Z} is a d-variate constant
mean, fourth order stationary (i.e. the first, second, third and fourth order moments of the time
series are invariant to shift), a-mizing time series which satisfies

sup sup |P(ANB) - P(A)P(B)| < Ct™™, t>0, (3.2)

keZ AGU(KH_]Q 7Xt+k+1 7)
Beo(X,, Xp_15)

for constants C < co and o > 0.
(P2) For some s > 2 > 0 with o such that (3.2) holds, we have sup,cz | X, s < oo.
(P3) The spectral density matriz f(w) is non-singular on [0, 27].
(P4) For some s > 2% > 0 with o such that (3.2) holds, we have supcz || X,[|s < oo.

(P5) For a given lag order n, let W, be the variance matriz defined in (2.14), then W, is assumed to be

non-singular.

Some comments on the assumptions are in order. The a-mixing assumption is satisfied by a wide
range of processes, including, under certain assumptions on the innovations, the vector AR models (see
Pham and Tran (1985)) and other Markov models which are irreducible (cf. Feigin and Tweedie (1985),
Mokkadem (1990), Meyn and Tweedie (1993), Bousamma (1998), Franke, Stockis, and Tadjuidje-Kamgaing
(2010)). We show in Corollary A.1 that Assumption (P2) implies Y 3> |h| - |cov(Xp j,, Xo,j,)| < oo for
all j1,72 = 1,...,d and absolute summability of the fourth order cumulants. In addition, Assumption (P2)
is required to show asymptotic normality of éT(r, ?) (using a Mixingale proof). Assumption (P4) is slightly
stronger than (P2) and it is used to show the asymptotic equivalence of \/T(A]T(r, ¢) and VTCr(r,¢). In
the case that the multivariate time series {X,} is geometric mixing, Assumption (P4) implies that for some
d > 0, (8 + d)-moments of {X,} should exist. Assumption (P5) is immediately satisfied in the case that

{X,} is a Gaussian time series. In this case W,, is a diagonal matrix (see (2.14)).

Remark 3.1 (The fourth order stationarity assumption) Although the purpose of this paper is to

derive a test for second order stationarity, we derive the proposed test statistic under the assumption
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of fourth order stationarity of {X,;} (see Theorem 3.3). The main advantage of this slightly stronger
assumption is that it guarantees that the DFT covariances aT(rl,E) and aT(rg,E) are asymptotically
uncorrelated at different lags 1 # ro. For details see the end of the proof of Theorem 3.2, on the bounds

of the fourth order cumulant term).

3.2 The sampling properties of (A}T(r, ¢) under the assumption of fourth order station-

arity
Using the above assumptions we have the following result.
Theorem 3.1 (Asymptotic equivalence of éT(r, ¢) and Cp(r,¢) under the null) Suppose Assump-

tion 3.1 is satisfied and let GT(T, 0) and Cr(r,0) be defined as in (2.6) and (3.1), respectively. Then we

have

VT|Cr(r,0) — Cr(r,0)|, = O (l)% +b+ bQ\/T> .

We now obtain the mean and variance of Crp(r,¢) under the stated assumptions. Let Cjr o (1, 0) =

Cr(r, 0);,.j» denote entry (ji,j2) of the unobserved (d x d) DFT covariance matrix Cr(r,0).

Theorem 3.2 (First and second order structure of {Crp(r,0)}) Suppose >on bl lcov(Xp jy s Xo4,)| <
00 and 3y py pg [l - leum(Xn, 51 Xng jos Xng jss Xo0,j4)| < 00 hold for all j1,...,ja=1,....,d andi=1,2,3
(satisfied by Assumption 3.1(P1,P2)). Then, the following assertions are true

(i) For all fized r € N and ¢ € Z, we have E(Crp(r,0)) = O(7).

(ii) For fized ri,m9 € N and l1,0s € Z and all j1, 72,753,754 € {1,...,d}, we have
1

Teov (Rejy g (11, 1), s ja (r2,£2)) - = 5 4051js0jajaOats + 013 0jagadts,—t2} Orvo
%Mv@(ya,jg,jg,j4>5r1,r2 +0 (;) (3.3)
Tcov (R¢j, j, (11,41), ICjy 4 (12, l2)) = O(%) and
Teov (365,55, (11, 41), Sy s (12, 42)) - = %{5]-1]-35]»2]-4631@2 + 0j1ja0jags 0t —t2 } Ory o
+%K(€1’£2)(j1,j2,j33j4)5r1,r2 +0 (;) ; (3.4)

where 6, = 1 if j =k and d;, = 0 otherwise.

Below we state the asymptotic normality result, which forms the basis of the test statistic.
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Theorem 3.3 (Asymptotic distribution of vech(Cr(r,/)) under the null) Suppose Assumptions 2.1

~

and 3.1 hold. Let the nd(d+1)/2-dimensional vector K,,(r) be defined as in (2.8). Then, for fited m,n € N,

we have

VT : BN Onagasrys Winn), (3.5)
RK,, (m)
K, (m)

where W, p, s a (mnd(d + 1) x mnd(d + 1)) block diagonal matriz

Wi = diag(Wh, ..., W), (3.6)
——

2m times

and W, is defined in (2.17).
The above theorem immediately gives the asymptotic distribution of the test statistic.

Theorem 3.4 (Limiting distribution of 7,, , 4 under the null) Suppose that Assumptions 2.1 and

3.1 are satisfied. Then we have

D 2
Tm1n7d - Xmnd(d+1)>

where Xind(d+1) is a x2-distribution with mnd(d + 1) degrees of freedom.

3.3 Behavior of GT(T, ?) for locally stationary time series

We now consider the behavior of the DFT covariance (A?T(r, ¢) when the underlying process is second order
nonstationary. There are several different alternatives one can consider, including unit root processes,
periodically stationary time series, time series with change points etc. However, here we shall focus on
time series whose correlation structure changes slowly over time (early work on time-varying time series
include Priestley (1965), Subba Rao (1970) and Hallin (1984)). As in nonparametric regression and other
work on nonparametric statistics we use the rescaling device to develop the asymptotic theory. The same
tool has been used, for example, in nonparametric time series by Robinson (1989) and by Dahlhaus (1997)
in his definition of local stationarity. We use rescaling to define a locally stationary process as a time series
whose second order structure can be ‘locally’ approximated by the covariance function of a stationary time
series (see Dahlhaus (1997), Dahlhaus and Polonik (2006) and Dahlhaus (2012), for a recent overview of

the current state-of-the art).
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3.3.1 Assumptions

In order to prove the results in this paper for the case of local stationarity, we require the following

assumptions.

Assumption 3.2 (Locally stationary vector processes) Let us suppose that the locally stationary pro-

cess {X; 7} is a d-variate, constant mean time series that satisfies the following assumptions:
(L1) {X;r} is an a-mizing time series which satisfies

sup sup |P(ANB) — P(A)P(B)| < Ct™ ¢, t>0 (3.7)
kTeZ Aco( Xy Xitpi1,m5)
Beo (X p'Xp_1,75-)

for constants C < oo and o > 0.

(L2) There exists a covariance function {K(u; h)} and function k(h) such that |cov(Xy, 7, Xy, 1) — k(%it —t
Tk(ti—t2). We assume the functions {k(u; h)}y, satisfy the following conditions: SUPyefo,1) [K(ush)|1 <
C|h|=3+2) (for h # 0, some € > 0 and finite constant C') and SUPyc(0,1] 2 hﬂ%h < 00, where
on the boundary 0 and 1 we use the right and left derivative (this assumption can be relaxzed to
K(u; h) being piecewise continuous, where within each piece the function has a bounded first and

second derivative). The function {k(h)} satisfies ), r(h) < oo.
(L3) For some s > ;% > 0 with o such that (3.7) holds, we have sup; r || X, 7|ls < oc.

(L4) Let f(u;w) = o= 30 k(u; h) exp(—ihw). Then the integrated spectral density f( fo
8f(u w)

is non-singular on [0,27]. Note that (L2) implies that sup,, | |1 < 0.

(L5) For some s > %= > 0 with a such that (3.7) holds, we have sup, 1 || X, rl[s < oo.

As in the stationary case, it can be shown that several nonlinear time series satisfy Assumption 3.2 (L1)
(cf. Fryzlewicz and Subba Rao (2011) and Vogt (2012) who derive sufficient conditions for a-mixing of a
general class of nonstationary time series). Assumption 3.2(L2) is used to show that the covariance changes
slowly over time (these assumptions are used in order to derive the limit of the DFT covariance under local
stationarity). It is worth pointing out that Assumption 3.2(L2) means that the error of approximation
between the covariance of a locally stationary process cov(X;, 7, X;, 7) and the approximating stationary
covariance K‘,( ;t1 — tg) decays as the distance [t; — to| grows. This may appear counter intuitive, but our
explanation for this assumption is that that the covariances cov(X,, 7, Xy, ) and K£(%;t1 — t2) decay to
zero as |t] — ta| — 0o, therefore a bound for the difference between the two should reflect this decay. The

stronger Assumption (L5) is required to replace L(w) with its deterministic limit (see below for the limit).

18



3.3.2 Sampling properties of GT(T, ¢) under local stationarity

As in the stationary case, it is difficult to directly analyze (A?T(r, ). Therefore, we show that it can be
replaced by éT(T, ) (defined in (3.1)), where in the locally stationary case L(w) are lower-triangular
Cholesky matrices which satisfy L(w),L(w) =f1(w) and f(w) = fol f(u; w)du.

Theorem 3.5 (Asymptotic equivalence of éT(T‘, ¢) and Cp(r,¢) under local stationarity) Suppose
Assumption 2.1 and 3.2 are satisfied and let Cp(r,0) and Cp(r,{) be defined as in (2.6) and (3.1), respec-
tively. Then we have

VTCr(r,t) =T <(~3T(r, 0) + Sr(r,0) + Br(r, z)) +Op <1;§; +blogT + b2\/:7> (3.8)

and
Cr(r,£) = B(Cr(r,0)) + op(1),
where Br(r,£) = O(b) and Sr(r,l) are a deterministic bias and a stochastic term, respectively, which are

defined in Appendiz A.2, equation (A.8).

Remark 3.2 There are some subtle differences between Theorems 3.1 and 3.5. In particular, the inclusion
of the additional terms Sp(r,f) and Br(r,f). We give a rough justification for this difference in the

univariate case (d =1). By taking differences, it can be shown that

Cr(r,0) — Cp(r,0) ~ % zT: E (JT(wk)JT(waH,)) _zm ~E @) } G (wy)
k=1 -
Sr(r,l)

- % ;1 E (JT(wk)m) E @kr) - f;w] G(wr),

Br(rl)
where zk,r = (f(wp), f(wisr)) L” = (f(wk), f(wktr)) and G(wg) is defined in Lemma A.3 (see Ap-
pendiz A.2 for the details). In the case of second order stationarity, since E(Jr(wi)Jr(wiir)) = O(T™1)
(for v # 0), the above terms are negligible, whereas in the case that the time series is nonstationary,

E(Jr(wg)Jr(wikir)) is no longer negligible. In the nonstationary univariate case, the Sp(r,t) and Brp(r,£)

become
T
Sr(r ) = —% S lt— 1) (XiXs — B(X,X,)
t,r=1
1 Z | it T ,
(i ) (8
< 2 s T e T
1 Z Blfr(n)] - fwr) )
Br(r,t) = —5=) h(wkr) ~ A(wk, Wktr),
! 2T E ' E[fT(wk+T)] - f(wk—l-'r) S
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where

1

w)3 f(w 1/2
Awryigr) = | TETTEx)
(f (wr) f(whyr)3)172
and h(w;r) fo u;w) exp(2miur)du (see Lemma A.7 for details). A careful analysis will show that

Sp(r, ) and CT(’I”, ) are both quadratic forms of the same order, this allows us to show asymptotic normality

of Cr(r, ) under local stationarity.

Lemma 3.1 Suppose Assumption 3.2 is satisfied. Then, for all r € Z and £ € Z, we have
E(Cr(r,0)) = A(r,0), and Cop(r,0) 5 A(r,0)

as T — oo, where

27
A(r,l) = o / / )L(w) exp(127rru) exp(ifw)dudw. (3.9)

Since (AJT(r, ) is an estimator of A(r,¢), we now discuss how to interpret this.
Lemma 3.2 Let A(r,0) be defined as in (3.9). Then, under Assumption 3.2(L2,L4), we have that
(i) L(w)f(u;w)L(w), satisfies the representation

L(w)f(u,w)m, = ZA(r,ﬁ)exp(—ﬂm’u)exp(—iﬁw).
rlel

/

and, consequently, f(u,w) = B(w) < > ez Alr, Oexp(—i2mru) exp(—i&u))B(w) .
(ii) A(r,0) is zero for allr # 0 and ¢ € Z iff {X,} is second order stationary.
(iii) For all £ # 0 and v # 0, |A(r,0)|y < K|r|~1|(|=2 (for some finite constant K ).
(iv) A(r,0) = A(=r,0).

We see from part (ii) of the the above lemma that for » # 0, the coefficients {A(r,¢)} characterize the
nonstationarity. One consequence of Lemma 3.2 is that only for second order stationary time series, we
have that

m

D D (ISrevech(RA(r, 0)[5 + [Sy.gvech(SA(r, £))]3) =0 (3.10)

r=1 (=0
for any non-singular matrices {S, ¢} and all n,m € N. Therefore, under the alternative of local stationarity,
the purpose of the test statistic is to detect the coefficients A(r, ). Lemma 3.2 highlights another crucial
point, that is, under local stationarity |A(r,¢)|; decays at the rate C|r|~'|¢|72. Thus, the test will lose

power if a large number of lags are used.
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Theorem 3.6 (Limiting distributions of vech(K,,(r))) Let us assume that Assumption 2.1 and 3.2
holds and let Kn(r) be defined as in (2.8). Then, for fired m,n € N, we have

RK, (1) — RA,(1) — RB,(1)
SK, (1) — SAL(1) — SBa(1)
VT : 2N (and(dﬂ)awm,n) ,
RK,,(m) — RAp(m) — RBn(m)
SK,(m) — SA,(m) — SBy(m)

where Wmm is an (mnd(d + 1) x mnd(d + 1)) covariance matriz (which is not necessarily block diago-
nal), A, (r) = (vech(A(r,0)), ..., vech(A(r,n — 1))") are the vectorized Fourier coefficients and B, (r) =
(vech(B(r,0)), ..., vech(B(r,n —1))") = O(b).

At this point it is interesting to point out that the quantity A(r, ) is closely related to the ‘Ambiguity
function’ recently introduced in Hindberg and Olhede (2010). The ambiguity function is the Dicrete Fourier
transform over ¢ of the empirical covariances at a given lag ¢ (see equation (1) and in S. C. Olhede (2011)),

whereas A(r, () is the Fourier coefficient (over u) of 5- 027r L(w)f(u;w)L(w)/ exp(ilw)dw.

4 Properties of the stationary bootstrap applied to stationary and non-

stationary time series

In this section, we consider the moments and cumulants of observations sampled using the stationary
bootstrap and its corresponding discrete Fourier transform. We use these results to analyze the bootstrap
procedure proposed in Section 2.4. In order to reduce unnecessary notation, we state the results in this
section for the univariate case only (all these results easily generalize to the multivariate case). The results
in this section may also be of independent interest as they compare the differing characteristics of the
stationary bootstrap when the underlying process is stationary and nonstationary. For this reason, this
section is self-contained, where the main assumptions are mixing and moment conditions. The justification
for the use of these mixing and moment conditions can be found in the proof of Lemma 4.1 (see Appendix
AL5).
We start by defining the cyclical and the ordinary sample covariances for 0 < h < T — 1

T T—h
—~ 1 — N 1 _
RO = 2 ) ViV = (X)°, R(h) =% ) XX — (%)%,
t=1 t=1

respectively, where YV; = X _1)moq 741 and X = %Zthl X;. We will also consider the higher order
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cumulants. Therefore we define the corresponding sample moments for 0 < hy, ..., hy_1 <T —1 as

T—max(h;) n—1

AC(ha, .. h an[mh, fulh )= S X[ X (@)

t=1 i=1
where the notation max(h;) = max{h,...,h,—1} is used, and the nth order cumulants corresponding to

these moments

R (hay o hna) = Y (x| =)W= ] A (B (4.2)

T Ber
Rlhry o hna) =S (|l = D= T gy (B
P Ber

where 7 runs through all partitions of {0, hy, ..., h,—1}, B are the blocks in the partition 7 and |B| denotes
the cardinality of the set B. We note these definitions are invariant to the ordering of the {hy,..., hy—1}.
We now define the sampling cumulants in the case that h; < 0. Since the cumulants are invariant to
ordering we will assume that hy < hy < ... < hpy. If by < 0 and hp,—1 —hy < T — 1, then we
set K, (hi,...,hn—1) = K,(=hi,ha — h1,...,hp—1 — h1). If by > 0 and hy,—1 > T —1 or hy < 0 and
hp—1—h1 > T — 1, then we set &, (h1,...,hp—1) = 0. Enc(hl, ...yhp—1) is defined in a similar way for
h1 < 0. In order to obtain an expression for the cumulant of the DFT, we require the following lemma.
We note that E*, cov* and cum* denote the expectation, covariance and cumulant with respect to the

stationary bootstrap measure defined in Step 2 of Section 2.4.

Lemma 4.1 Let {X;} be a time series with constant mean and sup, E|X;|" < oo. Let fin(hi,...,hn—1) be
defined as in (4.1). We define the following expected quantities. For 0 < hy,...,hp_1 <T —1, let

Fon(h1y o hn1) = > (x| = D=1 T] Effi (B (4.3)

s Ber

where ™ runs through all partitions of {0,hy ..., hn—1}. Further, define

T
Tl - ) = S (1 = DD (; S B(Xesn Xer, ..Xt+,~|B)>, (4.4)

™ Ber t=1

where B = {i1,...,4p|}. Kn(h1,...,hn-1) is defined in a similar way to Kn(hy, ..., hy—1) for hy <O0.
(i) Suppose that 0 <ty <ta...<t,_1, then

cum* (X7, Xipe-or Xfpe ) = (1= p)" B (t1, ..ty 1),

To prove the assertions (ii-iv) below, we require the additional assumption that the time series {X;} is a-
mixing, where for a given q > 2n we have o > q and for some r > qa/(a — q/n) we have sup, || X, < co.
Note that this is a technical assumption that is used to give the following moment bounds, the exact details
for their use can be found in the proof. Without loss of generality we will assume that 0 < h; < hy < ... <
hp—1.
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(ii) Approximation of circulant cumulant RC by regular sample cumulant. We have

P
< o1

H hl,... n— 1)—I€n(h1,... hn 1 H SngXt n

a/n = ”‘1’

where C' is a finite constant which only depends on the order of the cumulant.

(iii) Approximation of regular sample cumulant by ‘the cumulant of averages’. We have
[Bn (1, he1) = Fon(has o 1) [l gm = O(T )

and, for some finite constant C,

hn—l
T

|%n(h1, ey hnfl) — En(hl, cey hn71)| < C

(iv) In the case of nth order stationarity, it is clear that Ry (hi, ..., hn—1) = cum(X¢, Xetny, - - -

However, if the time series is nonstationary, then

(a) Fa(h) = £ 32—y cov(Xe, Xesn)
(b) K3 hlﬂ h2) T Zt 1 Cum(Xt7 Xt+h1 ) Xt+h2)

(c) The situation is different for the fourth order cumulant and we have

T

Fa(h1, ho, hs) = Z cum (X, Xy ny, Xeho Xighs)
t 1
T

+—= ZCOV XtaXt+h1)C0V(Xt+h2aXt+h3 < ZCOV Xt,XtJrhl)) (

N
M’ﬂ

I
N

Nl =
M'ﬂ

T
1
+= ZCOV Xty Xiny )0V (Xpyny, Xeyng) — <T ZCOV Xt7Xt+hz)> <
T T

w
Il
A

(4.5)

(4.6)

(4.7)

) Xt+hn—1 ) .

(Xt+h2 3 Xt+h3

oV(Xtihys Xiths) )
8

T
1 1
+= Z Cov Xt, Xt+h3)COV(Xt+h1 s Xt+h2 <T — Ccov Xt, Xt+h3)> <T ; COV(Xt+h1 s Xt+h2
(4.
(d) A similar expansion holds for Ryn(hi,...,hn—1) (n >4), i.e. Rp(-) can be written as the average

nth order cumulants plus additional lower order average cumulants terms.

In the above lemma we have shown that for stationary time series, the bootstrap cumulant is an ap-

proximation of the corresponding cumulant of the time series, which is not surprising. However, in the

nonstationary case the bootstrap cumulant behaves differently. Under the assumption that the mean of

the nonstationary time series is constant, the bootstrap cumulant of both second and third orders are

the averages of the corresponding local cumulants. In other words, the second and third order bootstrap
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cumulants of a nonstationary time series behave like a stationary cumulant, i.e. there is a decay in the
cumulant the further apart the time lag. However, the bootstrap cumulants of higher orders (fourth and
above) is not the average of the local cumulants, there are additional terms (see (4.8)). This means that
the cumulants do not have the same decay as regular cumulants have. For example, from equation (4.8)
we see that as the difference |hy — ho| — 0o, the function R4(h1, he, hg) does not converge to zero, whereas
cum(X¢, Xeynyy Xephys Xitng) does (see Lemma A.9, in the Appendix).

We use Lemma 4.1 to derive results analogous to Brillinger (1981), Theorem 4.3.2, where an expression
for the cumulant of DFTs in terms of the higher order spectral densities was derived. However, to prove
this result we first need to derive the limit of the Fourier transform of the cumulant estimators. We define

the sample higher order spectral density function as

~

hn(wl, . ,wn_l) (4.9)
1 - max(h;,0)—min(h; 0) —ihiwi—...—thp_1wp—1
C S g e

[max(h,,O) mm(hl,O)] -1

where R, (-) are the sample cumulants defined in (4.2). In the following lemma, we show that ﬁn()

approximates the ‘pseudo’ higher order spectral density

fn,T(wla cee 7wn—1) (410)
T-1
_ 1 _oymax(hg,0)— mln(hl,O) —thiwi—...—thp_1Wn—1
= Gt > (1-p) (.o hn1)e :
,,,,, hp_1=—(T—1)
[max(h,,O) Imln(hz,O)] -1

where %, (+) is defined in (4.4).
We now show that under certain conditions /ﬁn() is an estimator of the higher order spectral density

function.

Lemma 4.2 Suppose the time series {X;} (where E(X;) = p for all t) is a-mizing and sup, || X¢||» < oo

for some r > qa/(a —q/n) (and o > q).

(i) Let ﬁn() and fnr(-) be defined in (4.9) and (4.10), respectively. Then we have

1 1
:O( + ), 4.11
o/n Tpn T1/2p(n—1) ( )

(ii) If the time series is nth order stationary which is a-mizing with rate o > 2r(n —1)/(r —n) (we use

sup hn(wi, ... ;wn—1) = for(Wi,...,wn—-1)

W1yeeyWn—1

this bound to obtain a rate of decay on the nth order cumulant), then we have

1 1
=0 <Tpn + T13,0D) —|—p> (4.12)

o~

hn(wl, e ,wn_l) — fn(wl, e ,wn_l)

sup
W1y ,Wn—1

a/n
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and supy,, ., |fo(wi, ... wno1)| < 0o, where f is the nth order spectral density function defined

as
1 oo
_ —thiwi—...—thp—1wp—
fn(w17...,wn_1) = W Z /in(hl,...7hn_1)e 1w 1 1
hi,....hpn_1=—00
and kp(h1,. .., hp—1)= cum(Xo, Xp,, ..., Xpn, ,) denotes the nth order joint cumulant of the station-

ary time series {X;}.
(i7i) On the other hand, if the time series is nonstationary:

(a) Forn € {2,3}, we have

ha(w) — far(w)

(1 7m)
sup = _— 7
W a/n Tp2 T1/2p

1 1
SPTERN
o/ Tp " T2p2

where for(w) = 5= > 53° _ Ra(h) exp(ihw) with Kao(h) defined as in Lemma 4.1(iva) and f3r

sup ﬁs(wlawz) - f3,T(W17W2)

wi,w2

is defined similarly. Since the average covariances and cumulants are absolutely summable, we
have Supr ., |f2,T(W)| < oo and SUPT w1 ,wo |f3,T(W1, w2)| < 0.
(b) For n =4, we have SUDL, ws ws | fa,r(wi, w2, ws)| = O(p™1).

(¢) Forn >4, we have SUPy, won s |[for(wiy. .. ywn1)] = O(p_(”_?’)),
The following result is the bootstrap analogue of (Brillinger, 1981), Theorem 4.3.2.

Theorem 4.1 Let J;(w) denote the DF'T of the stationary bootstrap observations. Under the assumption

that sup, || X¢||n < 0o, we have

* * * 1
(| eum™ (J7(wky ) - - -, J(wr,))||, = O (Tn/zlpnl> . (4.13)

By imposing the additional condition that { X} is an a-mizing time series with a constant mean, q/n > 2,

the mizing rate o > q and || X¢||, < oo for some r > qa/(a — q/n), we obtain

cum™ (J7(wky ), - - -5 J7(Wky )
T
(271_)11/2—1/\ 1 .
a1 Wk W) ; exp(—it(wpy + - . +wh,)) + Ry, (4.14)
where || Ry, llg/n = O(W)-
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(a) If {X:} is nth order stationary which is a-mizing with rate o > 2r(n —1)/(r —n), then we have

cum™(Jp(wg, ), - -+, Jr(wr,))

(27.‘.)71/2—1

T

1 .

= an(wkp e ’wknfl)f Zexp(—zt(wkl + ... twg,)) + Ry,
t=1

1 1 n
= O(Tn/2-1+<T1/2p>n>’ iz o € 212 : (4.15)

O (W) s E?:l wkl ¢ 27TZ

which is uniform over {wg,,...,wk, } and ||Ry, llg/n = O(W).

(b) If {X:} is nonstationary (with constant mean) then for n € {2,3}, we can replace f, with for and

fa,r in (4.15), respectively, and obtain the same as above.

Forn > 4, we have

0 ™ _1 n— + : n | n_ € 21l
Jeum et T3l = oET ) o
(

1 ' (4.16)
W) ; Dol Wiy & 27

A very useful consequence of the above theorem is that the stationary bootstrap can be used to estimate
the nth order spectral density. More precisely, suppose {X;} is an nth order stationary time series which
satisfies the assumptions of Theorem 4.1(a) above, then for wy, + ...+ wy, € 27Z we have
T . 1

(27T)n/2_10um (J7(Wry)s - s T (Wi ) = fro(Whys -+ Wk ) + Op (W)
In other words by evaluating the empirical cumulant of the stationary bootstrap samples of DF'T's we obtain
an estimator of the nth order spectral density function. We observe that p plays the role of a bandwidth.
On the other hand, if {X}} is a nonstationary time series (with a constant mean), then for n > 4 we have
that

Tn/2-1

* * * 1
e U ) i) = O (15 )

Note that if {X;} has a time dependent mean, then the above result is true for n > 2.

5 Analysis of the test statistic

In Section 3.1, we derived the properties of the DFT covariance in the case of stationarity. These results
show that the distribution of the test statistic, in the unlikely event that W2 is known, is a chi-square (see
Theorem 3.4). In the case that W@ is unknown as in Section 2.4 we proposed a method to estimate W (%)
and thus the bootstrap statistic. In this section we show that under fourth order stationarity of the time

series, the bootstrap variance defined in Step 6 of the algorithm is a consistent estimator of W), Thus,
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the bootstrap statistic T;:L’m 4 asymptotically converges to a chi-squared distribution. We also investigate
the power of the test under the alternative of local stationarity. To derive the power, we use the results in
Section 3.3, where we show that for at least some values of 7 and ¢ (usually the low orders), Cp(r, £) has
a non-centralized normal distribution. However, the test statistic also involves W), which is estimated
as if the underlying time series is stationary (using the stationary bootstrap procedure). Therefore, in this
section, we derive an expression for the quantity that W@ ig estimating under the assumption of second
order nonstationarity, and explain how this influences the power of the test.

We use the following assumption in Lemma 5.1, where we show that the variances of the bootstrap

cumulants converge to zero as the sample size increases.

Assumption 5.1 Suppose that {X,} is a-mizing with o > 8 and the moments satisfy || X||s < oo, where
s> 8a/(a—2).
Lemma 5.1 Suppose that the time series {X,} satisfies Assumption 5.1.
(i) {X,} is fourth order stationary, then we have
(a) cam™(J7 ; (Wi, )s ITj, (Wky)) = Fir o (Wiy ) I (k1 = —k2) + Rar.
(b) Cum*(']ik“7j1 (wku)v J;Zk“,jz (sz), J;‘,j;j (wk3)7 J;ﬁjzl (wk4)) = 2%f4;j1,-..,j4 (wk’lvwkmwkg)l(k‘l =—k1—ko—
k3) + Rar,
where [ Ryzlls = O(75) and | Rarllz = O(x)

(i) {X,} has a constant mean, but it is not fourth order stationary, then we have

(a) com™ (J7 ; (W, ), JT j, (Why ) = f2,1351 50 (Wh )T (k1 = —k2) + Rur

(b) Cum*(J;ﬁjl (wk1)7‘];‘,j2(wk2)>J;‘,j;;(wks)?‘];‘,ﬂ(wkz;)) = @f‘lyT?jl,---,jzl(wk‘l?wk27wk'3)l(k4 = —k1 —

ko — k3) + Rar,

where for. jo(Wey) and farj,. . Wk, Why, Wey) are multivariate analogues of (4.10), ||Ri 7|4 =

O(74) and | Rorll2 = O(77).

In order to obtain the limit of the bootstrap variance estimator, we define

T

Cj(r,0) Z (@)L (@) L (i) Lwisr) explite).
Tz

We observe that this is almost identical to the bootstrap DFT a}(r, ¢) and Ck(r, £), except that L*(-) and
fJ() have been replaced with their limit L(-). We first obtain the variance of é*T(r, ), which is simple a

consequence of Lemma 5.1. Later, we show that it is equivalent to the bootstrap variances of (AJ}(T, /) and

C}(r, 0).
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Theorem 5.1 (Consistency of the variance estimator based on (Nji}(’r, 0)) Suppose that {X,} is an
a-mizing time series which satisfies Assumption 5.1 and let

!/

K (r) = (vech(é*T(r, 0)), vech(Ci(r, 1)), ..., vech(Ch(r,n — 1))'> .
Suppose Tp* — oo, bT'p?> — 00, b — 0 and p — 0 as T — oo,

(i) In addition suppose that {X,} is a fourth order stationary time series. Let W, be defined as in (2.14).
Then for fized m,n € N we have Tvar*(RK? (1)) = W, + op(1) and Tvar*(SK%(r)) = W, + op(1).

(ii) On the other hand, suppose {X,} is a locally stationary time series which satisfies Assumption

3.2(L2). Let
2 T d
K (1, s s da) = % > > Ljysy (W) Ljgsy Wk ) Dy (Why) Ly (Why)
k1,ko=1 s1,52,53,54=1
X exp(iliwg, — oWk, ) f4,T:s1,50,53,50 (Why s —Whky> —Whks ) (5.1)

where WIL(W) =fHw), fw) = fol f(u;w)du and

T-1

x(h;,0)—min(h;,0
FitimsmsnsM 02 ) = 5 > (1 — pyme(has0)—min(hi0)
hi,hghg=—(T—1)

[max(h;,0)—min(h;,0)]<T—1
XFd;s1,50,58,51 (P15 h2, h3) exp(—i(h1A1 + haa + h3A3)).

Using the above we define
1 2
(W) stae1 = W6 o, + Wél?gz, (5.2)

where Wél) and Wéf)b are defined as in (2.13) and (2.17) but with £k“0%2) (1, o, js, ja) replaced
with Hgfl’ez)(jl,]é,jg,j;;). Then, for fited m,n € N, we have Tvar*(RK?(r)) = Wr, + 0p(1)
and Tvar*(Sf(;';(r)) = Wy, + 0,(1). Furthermore, |ﬁ¥l’£2)(j1,j2,j3,j4)| = O(p™Y) and [Wr,1 =

o).

The above theorem shows that if f(w) and consequently 6}(7‘, ¢) were known, then the bootstrap
variance estimator is consistent under fourth order stationarity. Now we show that both the asymptotic

bootstrap variances of (Aji}(r, ¢) and C?(r, ) are asymptotically equivalent to the variance of (Nji}(r, 0).
Assumption 5.2 (Variance equivalence) (B1) Let f;7T(w) = a(w)?}(w) +(1- a(w))ﬁp(w), where « :
[0,27] — [0,1] and Lj, j,(-) denote the (j1,j2)th element of the matriz L(-). Let V'Lj, ;,(f(w))

denote the ith derivative with respect to vec(f(w)). We assume that for every e > 0 there exists a

0 < M, < oo such that

P(sup(E*rvile,h(‘;,T(w))rS)l/s > Ms) <e,

o,w
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fori=0,1,2. In other words the sequence {supa,w(E*|Vile7j2(f';,T(w))|8)1/8}T is bounded in proba-
bility.

(B2) The time series {X,} is a-mizing with o > 16 and has a finite sth moment (sup, | X¢||s < 00) such
that s > 16 /(v — 2).

Remark 5.1 (On Assumption 5.2(B1)) (i) This is a technical assumption that is required when
showing equivalence of the bootstrap variance estimator using éi}(r, ?) to the bootstrap variance using
6}(7’, 0). In the case we use C*T(r, ) to construct the bootstrap variance (defined in (2.26)) we do

not require this assumption.

(ii) Let V? denote the second derivative with respect to the vector (f’;T(wl),fo”;T(wg)). Assumption
5.2(B1) implies that the sequence sup,, ., o E*\VQLjMé(fo"‘[’T(wl))Ljth (f;T(wg))]‘l)l/‘l is bounded in

probability. We use this result in the proof of Lemma A.16.

(i) In the case d = 1, L(w) = f~'/?(w) and Assumption 5.2(B1) corresponds to the condition that for

i =0,1,2 the sequence {sup,,, [E*( 7;’T(w)*4(2”1))] 1/8}T is bounded in probability.

Using the assumptions above, we derive a bound for the difference between the covariances (Aj?(r,ﬁ)

and é*T(r, 0).

Lemma 5.2 Suppose that {X,} is a fourth order stationary time series or a constant mean locally station-
ary time series which satisfies Assumption 3.2(L2)), Assumption 5.2(B2) holds and Tp* — oo, bTp* — oo,

b—0andp—0 asT — oo. Then, we have
(i)
T (cov (RC3(r, 64), RCF (1, £2) — cov* (RC7(r, 1), RC7 (1, £2)) ) | = 0p(1).
and
T (cov*(sé*T(r, 1), SCh(r, £2)) — cov(SCh(r, 1), SC(r, 62))) | = 0p(1)
(ii) If in addition Assumption 5.2(B1) holds, then we have
| (cov*(afeé*T(r, 01), RC(r, £2)) — cov* (RC(r, £1), RC(r, @))) | = 0,(1)

and



Finally, by using the above, we obtain the following result.

Theorem 5.2 Suppose Assumptions 5.2(B2) holds. Let the test statistic Ty, ; be defined as in (2.25),
where the bootstrap variance is constructed using either 6}(7“, ) or (’3}(7“, 0) (if 6}(1", ) is used to construct

the test statistic, then Assumption 5.2(B1) needs to hold too).

(i) Suppose Assumption 3.1 holds. Then we have

*

P 2
myn,d Xmnd(d+1)*
(ii) Suppose Assumption 3.2 and A(r,l) # 0 for some 0 <r <m and 0 < ¢ <n hold, then we have

" Op(Tp).

m,n,d

The above theorem shows that under fourth order stationarity the asymptotic distribution of 'Tw*m, 4 (where
we use the bootstrap variance as an estimator of W) is asymptotically equivalent to the test statistic as if
W,, were known. We observe that the mean length of the bootstrap block 1/p does not play a role in the
asymptotic distribution under stationarity. This is in sharp contrast to the locally stationary case. If we
did not use a bootstrap scheme to estimate W, 1/2 (i.e. we were to use W,, = W,(ll)7 which is the variance

in the case of Gaussianity), then under local stationarity 7, , 4 = Op(T). However, by using the bootstrap

scheme we incur a slight loss in power since 77, = Op(Tp).

6 Practical Issues

In this section, we consider the implementation issues related to the test statistic. We will be considering
both the test statistic Tr;n’ 4» Where we use the stationary bootstrap to estimate the variance, and compare

it to the test statistic Tp, n ., (defined in (2.21)) that is constructed as if the observations are Gaussian.

6.1 Selection of the tuning parameters

We recall from the definition of the test statistic that there are four different tuning parameters that need
to be selected in order to construct the test statistic, to recap these are b the bandwidth for spectral density
matrix estimation, m the number of DFT covariances aT(r, ¢) (where r = 1,...,m), n the number of DFT
covariances Cr(r,£) (where £ = 0,...,n — 1) and p which determines the average block length (which
is p~!) in the bootstrap scheme. For the simulations below and the real data example, we use n = 1.
This is because (a) in most situations it is likely that the nonstationarity is ‘seen’ in éT(T, 0) and (b) we
have shown that under the alternative of local stationarity éT(T‘, ?) 5 A(r,?), where for ¢ #0 or r # 0

A(r,0) = O(]¢|2|r|71), thus a large n can result in a loss of power. However, we do recommend that a
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plot of Cr(r, £) (or a standardized Cr(r, £)) is made against 7 and ¢ (similar to Figures 1-3) to see if there
are any large coefficients which may be statistically significant. We now discuss how to select b, m and p.

These procedures will be used in the simulations below.

Choice of the bandwidth b

To estimate the spectral density matrix we need to select the bandwidth b. We use the cross-validation

criterion, suggested in Beltrao and Bloomfield (1987) (see also Robinson (1991)).

Choice of the number of lags m

We select m by adapting the data driven rule suggested by Escanciano and Lobato (2009) (who propose
a method for selecting the number of lags in a Portmanteau test for testing uncorrelatedness of a time
series). We summarize their procedure and then discuss how we use it to select m in our test for stationarity.
For univariate time series {X;}, Escanciano and Lobato (2009) suggest selecting the number of lags in a

Portmanteau test using the criterion
mp=min{m:1<m<D:L,>Lyh=12,...,D},

where L, = Qn — 71(m,T,q), Qm = TZ;”Zl \ﬁ(])/§(0)|2, D is a fixed upper bound and 7(m,T,q) is a
penalty term that takes the form

mlog(T), maxicken VIIR(K)/R(0)| < /7T08(T)
w(m,T,q) = ;

2m, maxi<z<p VT|R(k)/R(0)| > \/qlog(T)

T—|k|

where R(k) = i > (X — X)(Xj4jk — X). We now propose to adapt this rule to select m. More

precisely, depending on whether we use 7, ; or T, 1.4 we define the sequences of bootstrap DFT
covariances {7*(r),r € N} and non-bootstrap DFT covariances {7(r),r € N}, where
| /2

T = g 2 W) TRR ), + (W) PSR (), )

and 7(r) is defined similarly with W+ (r) = ({7\\7*(7"))171 (defined in Step 6 of the bootstrap scheme) replaced
by W(()l) as in (2.21). We select m by using
m=min{m:1<m<D:L, >L,,h=1,2,...,D},

where L,, = T*

m,n,

g — ™ (m,T,q) (or Tpypnac—m(m,T,q) if Gaussianity is assumed) and

. mlog(T), maxi<,<p VT[7*(r)| < /qlog(T)
m™*(m,T,q) = )
2m, maxi<,<p \/TW*(TH > /qlog(T)

and w(m, T, q) is defined similarly but using 7(r) instead of 7*(r).
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Choice of the average block size 1/p

For the bootstrap test, the tuning parameter 1/p is chosen by adapting the rule suggested by Politis
and White (2004) (and later corrected in Patton, Politis, and White (2009)) that was originally proposed
in order to estimate the finite sample distribution of the univariate sample mean (using the stationary
bootstrap). More precisely, to bootstrap the sample mean for dependent univariate time series {X;}, they
suggest to select the tuning parameter for the stationary bootstrap as

1 a2 \"?
_ 1/3
o (az«») T, (61)

where G = M N(k/M)|k|R(k), (0) = S A(k/M)R(K), R(k) defined above and

1,[t| € [0,1/2]
At) = Q201 — [¢]), |t] € [1/2,1]

0, otherwise

is a trapezoidal shape symmetric flat-top taper. We have to adapt the rule (6.1) in two ways for our
purposes. First, the theory established in Section 5 requires Tp* — oo for the stationary bootstrap to be
consistent. Hence, we suggest to use the same (estimated) constant as in (6.1), but we multiply it with 71/
instead of T/3 to meet these requirements. Second, as (6.1) is tailor-made for univariate data, we propose
to apply it separately to all components of multivariate data and to define 1/p as the average value. We
mention that proper selection of a p (and in general the block length in any bootstrap procedure) is an
extremely difficult problem and requires further investigation (see, for example, Paparoditis and Politis

(2004) and Parker et al. (2006)).

6.2 Simulations

We now illustrate the performance of the test for stationarity of a multivariate time series through sim-
ulations. We will compare the test statistics 7,  ; and T 4,6, which are defined in (2.25) and (2.21),
respectively. In the following, we refer to Tni‘m’ 4 and Ty, 4. as the bootstrap and the non-bootstrap test,
respectively. Observe that the non-bootstrap test is asymptotically a test of level o only in the case that
the fourth order cumulants are zero (which includes the Gaussian case). We reject the null of stationarity

at the nominal level « € (0,1) if

Tnnd > Xgnnd(dﬂ)(l —a) and Timndic > innd(dﬂ)(l —a). (6.2)
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6.2.1 Simulation setup

In the simulations below, we consider several stationary and nonstationary bivariate (d = 2) time series
models. For each model we have generated M = 400 replications of the bivariate time series (X, =
(X¢1,Xp2),t =1,...,T) with sample size T' = 500. As described above, the bandwidth b for estimating
the spectral density matrices is chosen by cross-validation. To select m, we set ¢ = 2.4 (as recommended
in Escanciano and Lobato (2009)) and D = 10. To compute the quantities G and §(0) for the selection
procedure of 1/p (see (6.1)), we set M = 1/b. Further, we have used N = 400 bootstrap replications for

each time series.

6.2.2 Models under the null

To investigate the behavior of the tests under the null of (second order) stationarity of the process {X,},
we consider realizations from two vector autoregressive models (VAR), two GARCH-type models and one

Markov switching model. Throughout this section, let

0.6 0.2 1 03

A= and X = . (6.3)
0 0.3 03 1
To cover linear time series, we consider data X, ..., X, from the bivariate VAR(1) models
Model S(I) & S(II) X, =AX, | +e, (6.4)

where {e,,t € Z} is a bivariate i.i.d. white noise process. For Model S(I), let ¢, ~ N(0,%). For Model
S(II), the first component of {e;,t € Z} consists of i.i.d. uniformly distributed random variables, e ~
R(—+/3,v/3) and the second component {e; 2} of t-distributed random variables with 5 degrees of freedom
that are suitably multiplied such that FE(e,e;) = ¥ holds. Observe that the excess kurtosis for these two
innovation distributions are —6/5 and 6, respectively.

The two GARCH-type Models S(III) and S(IV) are based on two independent, but identically dis-
tributed univariate GARCH(1,1) processes {Y;;,t € Z}, i = 1,2, each with

Model S(III) & S(IV)  Yi; = overi, o7, =0.01+ 0.3V, +0.507 1, (6.5)

where {e;;,t € Z}, i = 1,2, are two independent i.i.d. standard normal white noise processes. Now, Model
S(ITT) and S(IV) correspond to the processes {X; = X1/2(Y;1,Y;5),t € Z} and {X, = SV2{(|Y;.1],|Yi2]) —
E[(|Yia], [Y22]) ]}t € Z}, respectively (the first is the GARCH process, the second are the (centered)

absolute values of the GARCH). Both these models are nonlinear and their fourth order cumulant structure

is complex. Finally, we consider a VAR(1) regime switching model
Alt71 +e, se=0,
Model S(V) X, = (6.6)

[ St = ]-7
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where {s;} is a (hidden) Markov process with two regimes such that P(s; € {0,1}) = 1 and P(s; = s¢—1) =
0.95 and {e;,t € Z} is a bivariate i.i.d. white noise process with ¢, ~ N(0,X)).

Realizations of stationary Models S(I)-S(V) are shown in Figure 1 together with the corresponding DFT
covariances T\an(r, 0)%, T\ﬂégl(r, 0)|? and T]CA’QQ(T, 0)|?, 7 =1,...,10. The performance under the null
of both tests 7* n.a and Tmn,d:c are reported in Table 1.

Discussion of the simulations under the null

For the stationary Models S(I)-S(V), the DFT covariances for lags » = 1,...,10 are shown in Figure
1. These plots illustrate their different behaviors under Gaussianity and non-Gaussianity. In particular,
for the Gaussian Model S(I), it can be seen that the DFT covariances seem to fit to the theoretical y?-
distribution. Contrary to that, for the corresponding non-Gaussian Model S(II), they appear to have larger
variances. Hence, in this case, it is necessary to use the bootstrap to estimate the proper variance in order
to standardize the DFT covariances before constructing the test statistic. For the non-linear GARCH-type
Models S(III) and S(IV), this effect becomes even more apparent and here it is absolutely necessary to
use the bootstrap to correct for the larger variance (due to the fourth order cumulants). For the Markov
switching Model S(V), this effect is also present, but not that strong in comparison to the GARCH-type
models S(III) and S(IV).

In Table 1, the performance in terms of actual size of the bootstrap test 7,7, and of the non-bootstrap
test Ton.d:c are presented. For Model S(I), where the underlying time series is Gaussian, the test 7y, 5 4.

performs superior to T *

o> which tends to be conservative and underrejects the null. However, if we leave

the Gaussian world, the corresponding non-Gaussian Model S(IT) shows a different picture. In this case,
the non-bootstrap test 7, 4. clearly overrejects the null significantly, where the bootstrap test Té}md
still remains conservative, but holds the prescribed level. For the GARCH-type Model S(III), both tests
do not succeed in attaining the nominal level (overrejecting the null). However, there are two important
factors which explain this. On the one hand, the non-bootstrap test 7y, n 4.¢ just does not take the fourth
order structure contained in the process dynamics into account, which leads to a test that significantly
overrejects the null, because in this case the DFT covariances are not properly standardized. On the other
hand, the bootstrap procedure used for constructing TJL% 4 Telies to a large extent on the choice of the
tuning parameter p, which controls the average block length of the stationary bootstrap and, hence, for
the dependence captured by the bootstrap samples. However, the data-driven rule (defined in Section 6.1)
for selecting 1/p is based on the correlation structure of the data and the GARCH process is uncorrelated.

This leads the rule to selecting a very small 1/p (typically it chooses a mean block length of 1 or 2). With
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such a small block length the fourth order cumulant in the variance cannot be estimated properly, indeed
it underestimates it. For Model S(IV), we take the absolute values of GARCH processes, such that serial
correlation becomes visible in the data. Hence, the data-driven rule selects a larger tuning parameter 1/p
in comparison to Model S(III). Therefore, a relatively accurate estimate of the (large) variance of the DFT
covariance is obtained, leading to the bootstrap test Tn’;%d attaining an accurate nominal level. How-
ever, as expected, the non-bootstrap test 7y, . 4.c fails to attain the nominal level (since the kurtosis of the
GARCH model is large, thus this model is highly ‘non-Gaussian’). Finally, the bootstrap test performs well
for the VAR(1) switching Model S(V), whereas the non-bootstrap test 7T, » 4. tends to slightly overreject
the null.

6.2.3 Models under the alternative

To illustrate the behavior of the tests under the alternative of (second order) nonstationarity, we consider
realizations from three models fulfilling different types of nonstationary behavior. As we focus on locally
stationary alternatives, where nonstationarity is caused by smoothly changing dynamics, we consider first

the time-varying VAR(1) model (tvVAR(1))
t
Model NS(I) X, =AX, |, +o <T> e, t=1,...,T, (6.7)

where o(u) = 2sin (27u) and A as defined in (6.3). Further, we include a second tvVAR(1) model, where
the dynamics are not present in the innovation variance, but in the coefficient matrix. More precisely, we

consider the tvVAR(1) model
t
Model NS(II) Xt:A<T) Xy 1+e, t=1,....T, (6.8)

where A(u) = sin(27u) A. Finally, we consider the unit root case (noting that several authors have
considered tests for stochastic trend, including Pelagatti and Sen (2013)), though this case has not been

treated in our asymptotic theory. In particular, we consider observations from a bivariate random walk
Model NS(III) X, =X, ;+¢, t=1,...,7, Xy=0. (6.9)

In all Models NS(I)-NS(III) above, {¢;,t € Z} is a bivariate i.i.d. white noise process with e, ~ N(0,)
and X as defined in (6.3).

In Figure 2 we show realizations of nonstationary Models NS(I)-NS(III) together with DFT covariances
T|C11(r,0)|2, T|\/2C5:1(r, 0)2 and T|Casa(r,0)|2, 7 = 1,...,10 to illustrate how the type of nonstationarity
is encoded. The performance under nonstationarity of both tests 7 . ; and 7, » 4. are reported in Table

2 for sample size T' = 500.
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Discussion of the simulations under the alternative

The DFT covariances for the nonstationary Models NS(I)-NS(III) as displayed in Figures 2 illustrate how
and why the proposed testing procedure is able to detect nonstationarity in the data. For both locally
stationary Models NS(I) and NS(II), it can be seen that the nonstationarity is encoded mainly in the DET
covariances at lag two, where the peak is significantly more pronounced for Model NS(I) in comparison to
Model NS(II). Contrary to that behavior, for the random walk Model NS(III), the DFT covariances are

large for all lags.

In Table 2 we report the results for the tests, where the power for the bootstrap test Tﬁmd and for
the non-bootstrap test 7, n4.c are given. It can be seen that both tests have good power properties
for the tvVAR(1) Model NS(I), where the non-bootstrap test 7, . is slightly superior to the boot-
strap test T:z,m 4 Here, it is interesting to note that the time-varying spectral density for Model NS(I) is
f(u,w) = 3(1—cos(4mu))fy (w), where fy (w) is the spectral density matrix corresponding to the stationary
time series Y, = AY,_; + 2¢,. Comparing this to the Fourier coefficients A(r,0) (defined in (3.9)), we
see that for this example A(2,0) # 0 whereas A(r,0) = 0 for r # 2, > 0 (which can be seen in Figure
2). In contrast, neither the bootstrap nor non-bootstrap test performs well for Model NS(II) (here the
rejection rate is less than 40% even in the Gaussian case when using the 10% level). However, from Figure
2 of the DF'T covariance we do see a clear peak at lag two, but this peak is substantially smaller than the
corresponding peak in Model NS(I). A plausible explanation for the poor performance of the test in this
case is that even when m = 2 the test we use a chi-square with d(d + 1) x m = 2 x 3 x 2 = 12 degrees
of freedom which pushes the rejection region to the right, thus making it extremely difficult to reject the
null unless the sample size or A(r, ¢) are extremely large. Since a visual inspection of the covariance shows
clear signs of nonstationarity, this suggests that further work is needed in selecting which DFT covariances
should be used in the testing procedure (especially in the multivariate setting where using a component
wise scheme may be useful).

Finally, both tests have good power properties for the random walk Model NS(III). As the theory

suggests (see Theorem 5.2), for all three nonstationary models the non-bootstrap procedure has better

power than the bootstrap procedure.

6.3 Real data application

We now consider a real data example, in particular the log-returns over T' = 513 trading days of the FTSE
100 and the DAX 30 stock price indexes between January 1st 2011 and December 31st, 2012. A plot of

both indexes is given in Figure 3. Typically, a stationary GARCH-type model is fitted to the log returns
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Model « o Tmn,dc
S(I) 1% | 0.00 0.00
5% | 0.50 3.00
10% | 1.25 6.00
S(II) 1% | 0.00 | 21.25
5% | 0.25 32.25
10% | 1.00 40.25
S(III) 1% | 55.00 | 89.75
5% | 69.00 | 93.50
10% | 76.50 | 96.50
S(IV) 1% | 0.50 | 88.75
5% | 3.50 | 93.75
10% | 6.75 95.25
S(V) 1% | 0.00 1.75
5% | 2.50 7.50
10% | 5.00 13.00

Table 1: Stationary case: Actual size of 7 =, and of Ty, a.¢ for d =2, n = 1, m = m for sample size

T = 500 and stationary Models S(I)-S(V).

of stock index data. Therefore, in this section we investigate whether it is reasonable to assume that
this time series is stationary. We first make a plot of the DFT covariances T|Chy(r, 0)[2, T|v/2Ca1(r, 0)[2
and T|Cas(r,0)[2 (see Figure 3). We observe that most of the covariances are above the 5% level of a 2
distribution (however we note that 671(7“, 0) has not been standardized). We then apply the bootstrap test
Tﬁmd and the non-bootstrap test 7., 4. to the raw log-returns. In this case, both tests reject the null of
second-order stationarity at the a = 1% level. However, we recall from the simulation study in Section 6.2
(Models S(III) and S(IV)) that the tests tends to falsely reject the null for a GARCH model. Therefore, to
make sure that the small p-value is not a mistake in the testing procedure, we consider the absolute values
of log returns. A plot of the corresponding DFT covariances T|Cy1(r, 0)|2, T|v/2Ca1 (r, 0)[% and T|Cas(r, 0)[2
is given in Figure 3. Applying the non-bootstrap test gives a p-value of less than 0.1% and the bootstrap
test gives a p-value of 3.9%. Therefore, an analysis of both the log-returns and the absolute log-returns of
the FTSE 100 and DAX 30 stock price indexes strongly suggest that this time series is nonstationary and

fitting a stationary model to this data may not be appropriate.
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Figure 1: Stationary case: Bivariate realizations (left panels) and DFT covariances (right panels)
T|Ci1(r, 0|2 (solid), T|v/2Ca1(r,0)[* (dashed) and T|Chaa(r,0)|? (dotted) for stationary models S(I)-S(V)
(top to bottom). The dashed red line is the 0.95-quantile of the x? distribution with two degrees of freedom

and DF'T covariances are reported for sample size T" = 500.
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Figure 2: Nonstationary case: Bivariate realizations (left panels) and DFT covariances (right panels)
T|Cy1(r, 0)[2 (solid), T|v/2Cs1(r,0)[? (dashed) and T|Caa(r,0)? (dotted) for nonstationary models S(I)—
S(III) (top to bottom). The dashed red line is the 0.95-quantile of the x? distribution with two degrees of

freedom and DFT covariances are reported for sample size T' = 500.
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Model « mond | Tmn,dG
NS(I) 1% | 87.00 | 100.00
5% | 94.50 | 100.00
10% | 96.75 | 100.00
NS(II) 1% | 275 | 10.75
5% | 9.75 24.25
10% | 16.50 | 35.25
NS(III) 1% | 61.00 | 94.75
5% | 66.00 | 95.50
10% | 68.50 | 95.75

Table 2: Nonstationary case: Power of 7* . and of T, 4. for d = 2, n = 1, m = m for sample size

T = 500 and nonstationary Models NS(I)-NS(II).
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Figure 3: Log-returns of the FTSE 100 (top left panel) and of the DAX 30 (top right panel) stock price

indexes over T' = 513 trading days from January 1st, 2011 to December 31, 2012. Corresponding DFT
covariances T|C11(r,0)[2 (solid, FTSE), T|v/2Ca(r,0)|? (dashes) and T|Cas(r,0)|? (dotted, DAX) based

on log-returns (bottom left panel) and on absolute values of log-returns (bottom right panel). The dashed

red line is the 0.95-quantile of the y? distribution with two degrees of freedom.

40



Acknowledgement

The research of Carsten Jentsch has been supported by the Research Center (SFB) 884 ”Political Economy
of Reforms” (Project B6), funded by the German Research Foundation (DFG), and by the travel program
of the German Academic Exchange Service (DAAD). Suhasini Subba Rao has been supported by the
NSF grants DMS-0806096 and DMS-1106518. The authors are grateful to Rainer von Sachs, Mohsen
Pourahmadi and Hernando Ombao for interesting discussions on harmonizable processes. The authors are
extremely grateful to the co-editor, associate editor and two anonymous referees whose valuable comments

and suggestions substantially improved the quality and content of the paper.

41



A Proofs

A.1 Preliminaries

In order to derive its properties, we use that ¢;, j,(r,£) can be written as

Ci1 o (1,€) = L, o (W) p(wi) L (wWrktr) Lijy 0 (Wrtr) exp(ilwy)

el
E

i
L

d
Z 71,81 wk JT ,51 (wk)JT ED) (wk’-i-r)sz,Sz (wk-‘rr) exp(ifwk),

1
N =
fMﬂ

where Lj s(wy) is entry (j,s) of L(wy) and L; 4(wy) denotes its jth row.

We will assume throughout the appendix that the lag window satisfies Assumption 2.1 and we will
use the notation f(w) = vec(f(w)), f(w) = vec(f(w)), Jrs = Jrs(wr), [, = flwr), [, = [(w), for =
(vee(B(wr))', vee(F(wrsr)))

Aj1,817j2,82 (i(wl)vi("@)) j181 (f( )) J252 (f( )) (Al)

and Aj s, joso (f) ) = Ljisi (f}) Ljass (ikz—i-r)’ Furthermore, let us suppose that G is a positive definite
matrix, G = vec(G) and define the lower-triangular matrix L(G) such that L(Q)GL(Q)/ =1I (hence L(G)
is the inverse of the Cholesky decomposition of G). Let L;s(G) denote the (j, s)th element of the Cholesky
matrix L(G). Let VL (G) = (85851@, ce aggid@)’ and V"L;s(G) denote the vector of all partial nth
order derivatives wrt G. Furthermore, to reduce notation let Ejs(w) = Ljs(z(w)) and Ljs(w) = Ljs(f(w)).

In the stationary case, let k(h) = cov(X},X,) and in the locally stationary case w(u;h) is defined in
Assumption 3.2.

Before proving Theorems 3.1 and 3.5 we first state some preliminary results.

Lemma A.1 (i) Let G = (gx1) be a positive definite (d x d) matriz. Then, for all 1 < j,s < d and all
r € Ny, there exists an € > 0 and a set M. = {M : |G — M|y < € and M is positive definite} such
that

sup |V"L;s(M)]1 < oo.
MeM.

(ii) Let G(w) be a (dxd) uniformly continuous spectral density matriz function with inf, Apin(G(w)) > 0.
Then, for all 1 < j,s < d and all v € Ny, there exists an € > 0 and a set M., = {M(:) :
|G(w) — M(w)|1 < € and M(w) is positive definite for all w} such that

sup sup |V'Ljs(M(w))) < oo.
w M()eM.
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PROOF. (i) For a positive definite matrix M, let M = BEI, where B denotes the lower-triangular
Cholesky decomposition of M and we set C = B~!. Further, let ¥ and ® be defined by B = ¥(G) and
C = ®(B), i.e. ¥ maps a positive definite matrix to its Cholesky matrix and ® maps an invertible matrix
to its inverse. Further suppose Ayin(G) =: 1 and Aj02(G) =: 7 for some positive constants 7 < 77 and let
€ > 0 be sufficiently small such that 0 <7 — 0 < Apin(M) < Apaz(M) <7+ 6 < oo for all M € M, and
some § > 0. The latter is possible because the eigenvalues are continuous functions in the matrix entries.

Now, due to
Liy(M) = ¢y = @p(B) = @y (¥ (M))

and the chain rule, it suffices to show that (a) all entries of ¥ have partial derivatives of all orders on the
set of all positive definite matrices M = (my;) with 0 < — 3 < Apin(M) < Apae(M) <+ 8 < oo for
some ¢ > 0 and (b) all entries of ® have partial derivatives of all orders on the set L, of all lower triangular
matrices with diagonal elements lying in [C, (] for some suitable 0 < (< { < oo depending on § above such
that ¥(M,) C L. In particular, the diagonal entries (the eigenvalues) of B are bounded from above and
also away from zero. As there are no explicit formulas for B = ¥(M) and C = ®(B), their entries have

to be calculated recursively by

bill(mkl — 22;11 bkjglj)7 k>1 _ﬁ Z;C;ll bjej, k>1
bt = \ (mk — 2571 bagbeg)'/?, k=1 andcu = q g k=1
0, k<l 0, k<l

where the recursion is done row by row (top first), starting from the left hand side of each row to the right.
To prove (a), we order the non-zero entries of B row-wise and get for the first entry W1, (M) = by = /m11,
which is arbitrarily often partially differentiable as mi; > 0 is bounded away from zero on M.. Now we
proceed recursively by induction. Suppose that by = Wy (M) is arbitrarily often partially differentiable

for the first p non-zero elements of B on M,. The (p + 1)th non-zero element is by, say. For s = ¢, we get

a1 1/2 a1 1/2
\DSS(M) = bss = | Mss — Z bsstj = | Mss — Z \I]SJ(M)\IJSJ(M) 5
j=1 =1

and for s > t, we have

t—1
1
Ve (M) = by = W Mst — JZ::l \IISJ(M)\IIU M) |,

such that all partial derivatives of W (M) exist on M, as Vg (M) is composed of such functions and due

to Mmgs — Zj;% bsjgsj and Wy (M) uniformly bounded away from zero on M.. This proves part (a). To
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prove part (b), we get immediately that ®(B) = cgpr = 1/bg has all partial derivatives on L. as by is
bounded way from zero for all k. Now, we order the non-zero off-diagonal elements of C row-wise and for
the first such entry we get ®91(B) = co1 = —baic11 /b2 which is arbitrarily often partially differentiable
again as byy is bounded way from zero. Now we proceed again recursively by induction. Suppose that
ck = P (B) is arbitrarily often partially differentiable for the first p non-zero off-diagonal elements of C.

The (p + 1)th non-zero element equals ¢y, say, and we have
1 s—1 1 s—1
(I)st(B) = Cst — —bf stjcjt = _bi Z bsjq)jt(B)
SS ]:l SS j:l

and all partial derivatives of ®4(B) exist on L, as @4 (B) is composed of such functions and due to bss > 0
uniformly bounded away from zero on L. This proves part (b) and concludes part (i) of this proof.

(ii) As in part (i), we get with an analogue notation (depending on w) the relation
Liy(M(w)) = cpi(w) = Pu(B(w)) = @ (¥ (M(w)))

and again by the chain rule, it suffices to show that (a) all entries of ¥ have partial derivatives of all orders
on the set of all uniformly positive definite matrix functions M(-) with 0 < n — ¢ < infy, Apin(M(w)) <
Sup,, Amaz(M(w)) < 77+ 6 < oo for some 6 > 0 and (b) all entries of ® have partial derivatives of all
orders on the set L, of all lower triangular matrix functions with diagonal elements lying in [¢, (] for
some suitable 0 < ¢ < { < 0o depending on § such that ¥(M,,,) C L. The rest of the proof of part (ii)

is analogue to the proof of (i) above. O

Lemma A.2 Suppose that {X,} is a second order stationary or locally stationary time series (which
satisfies Assumption 3.2(L2)) where for h # 0 either the covariance or local covariance satisfies |k(h)|1 <
Clh|= 3+ or |k(u; b))y < Clh|~3+9) for some constant C' < oo, respectively, and further, we assume

supy, Zhhhﬁ% leum (X, Xethy jor Xtthojrs Xiths jo)| < 00. Let ?T(w) be defined as in (2.6). Then,
(a) var(fr(w)) = O((bT)™1) and sup,, |E(fr(w)) — £(w)| = O(b + (bT)1).

(b) If in addition, we have sup, 3 .,  leum( Xy, Xetny jos - ooy Xty joa )| <00 for s =1,....7, then

ceey

[Br() ~ BE @) = Ol gzbes).
(c) If in addition, b*T — oo then we have

(i) sup, [Er(w) —£(@)l 50,
(ii) Further, if f(w) is nonsingular on [0,27], then we have sup,, \Ljs(f(w)) — Ljs(f(w))] 50 as
T — o0 foralll <j,s<d.
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PROOF. To simplify the proof most parts will be proven for the univariate case - the proof of the

multivariate case is identical. By making a simple expansions it is straightforward to show that

T
—~ 1 .
friw) =5 D> lt = 1) (Xs — ) (X7 — pexp(—i(t — 7)w) + Rr(w), (A.2)
t,r=1
where
p-X o 5'e
Rr(o) = M 3T M= e (- )+ () - (- )|
t,r=1
~X)2 & Tk e
_ (sz) Z ||)\(h) h
=—(T-1)
L _Y T—1 ' ' 1 min(T—T—h)
LR ame )Y (-]
h=—(T-1) t=max(1,1—h)

Under absolute summability of the second and fourth order cumulants and Assumption 2.1 we have
E|sup, Rr(w)| = O(£ + W) (similar bounds can also be obtained for higher moments if the corre-
sponding cumulants are absolutely summable). We will show later on in the proof that Ry (w) is dominated
by the first term in on the right hand side of (A.2). Therefore, to simplify notation, as the mean estimator
is insignificant, for the remainder of the proof we will assume that the mean is known and it is E(X;) = 0.

Consequently, the mean is not estimated and the spectral density estimator is

-~ 1

T
friw) = 5= D At = T) X Xrexp(—i(t — 7)w).

,7=1
To prove (a) we evaluate the variance of fT(w)
R 1 T T
V&I’(fT(w)) = W Z Z )\b(tl — Tl)Ab(tQ — TQ)COV(thXTI,XtQXTQ)eXp(—i(tl — 71 — 1o+ Tg)w).

t1,71=1 to,o=1
By using indecomposable partitions on the covariances in the sum to partition it into covariances and
cumulants of X; and under the absolute summable covariance and cumulant assumptions, we have that
var(Fr(w)) = O().
Next we obtain a bound for the bias. We do so, under the assumption of local stationarity, in par-
ticular the smooth assumptions in Assumptions 3.2(L2) (in the stationary case we do not require these
assumptions). Taking expectations we have

T—1 1 min(7T,T—h)

—~ 1 .
E(frw)) = — Z )\b(h)exp(—zhw)f Z cov(Xiin, Xt)
h=—(T-1) t=max(1,1—h)

T—1 1 min(7,7—h)

= — Z )\b(h)exp(—ihw)f Z m<;;h> + Ry (w), (A.3)

h=—(T-1) t=max(1,1—h)
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where

T
1 T 1 .
sgp |R1(w)| < Mtzl Mot = 7) |cov(Xy, X7) — & (T;t - 7')‘ =0 <T) (by Assumption 3.2(L2)).
’ T 1ko(t—7)
Changing the inner sum in (A.3) with an integral gives
E(fr(w)) Z Mo(h)exp(—ihw)k(h) + Ry (w) + Ra(w)
Th="(r-1)
where #( f() w; h)du and
w3 (B lstusnl | 23 s - [ stsnin]) <o (1L
sup | Rp(w)| < o o b 7 max|k(u; 2 K( k(u; h)du| | = i)

Finally, we take differences between E[fr(w)] and f(w) which gives

Blr@)] — Fw) = 5= 3 (W(h) ~ )s(h)exp(—ihw) +- 3 w(h)exp(—ihw) +Ri(w) + Ro(w).

Y T
|h|<1/b |h|>1/b

R3(w) Ry (w;;O(b)

To bound R3(w), we use Assumption 2.1(K1) to give
1 .
R3(w) = o Z (A(hb) — 1) k(h)exp(—ihw) Z h- N(zpy)k(h)exp(—ihw),
|h|<1/b T hi<a b
where xp;, lies between 0 and hb. Therefore, we have sup,, |R3(w)| = O(b). Altogether, this gives the bias
O(b+ ) and we have proven (a).

To evaluate E| fr(w) — E(fr(w))|*, we use the expansion

Blfr(w) = E(fr@)|' = 3yar(fr(@)) +eumy(fr(w)).
—_———
o((b1)~2)
The bound for cum4(]/‘\T(w)) uses an identical method to the variance calculation in part (a). By using the
cumulant summability assumption we have cum4(]?T(w)) = O(ﬁ), this proves (b).
We now prove (ci). By the triangle inequality, we have

sup | fr(w) — £(@)] < sup |fr() ~ E(F(w))] + sup [E(fr() — ()]

O(b+(T)~1) by (a)

Therefore, we only need to show that the first term of the above converges to zero. To prove sup,, |fT(W) —

E[fr(w)]| 50, we first show

E<sgp ‘fT(w) - E(]?T(w))‘2> =0 as T — oo
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and then we apply Chebyshev’s inequality. To bound E(sup, ‘]/”\T(w) — E(fr (w))‘2), we will use Theorem
3B, page 85, Parzen (1999). There it is shown that if {X (w);w € [0, 7]} is a zero mean stochastic process,
then

7r o)\ 112
E( sup |X(w)]?) < %E[X(O)]2 + %E|X(7r)|2 —l—/o [Var(X(w))var <8X( )>] dw. (A.4)

0<w<n ow

To apply the above lemma, let X (w) = ]?T(w) - E[fT(w)] and the derivative of ]?T(w) is

7 T
afgf:))’ _ 271T t;l —i(t - T)XtXT)\b(t — 7') eXp(—i(t _ T)w).

By using the same arguments as those used in (a), we have V&I‘(%Ugw)) = O(725). Therefore, by using

»2T
(A.4), we have

E( sup \fT(w)—E(J/C\T(W))yz)

0<w<m

~ ~ ™ ~ dfr(w
< %var|fT(O)\ + %V&I“fT(ﬂ')‘ +/0 [var(fr(w))var( fg{i ))]1/2dw =0 <b3/12T> .

Thus by using the above and Chebyshev’s inequality, for any € > 0, we have

- n 2
. (Sgp o) — ElFr ()| > ) _ Bsup, \fT(w;— Elfr@I” _ ( Tb?% > 0

as Tb%? — 00, b — 0 and T — oo. This proves (ci).

To prove (cii), we return to the multivariate case. We recall that a sequence {Xr} converges in
probability to zero if and only if for every subsequence {T}} there exists a subsequence {T,} such that
X, — 0 with probability one (see, for example, (Billingsley, 1995), Theorem 20.5). Now, the uniform
convergence in probability result in (ci) implies that for every sequence {T}} there exists a subsequence
{T},} such that sup, |sz (w) = f(w)] £ 0 with probability one. Therefore, by applying the mean value
theorem to L;,, we have Z

Ljs(f, @) = Lis(£(@)) = VLjs(f7, @)(Fy,

L5

(w) = f(w)),

where szA (w) = vec(kai (w)) with kai (w) = ar,, (w)kai (w)+(1—ag, (w))f(w). Clearly, for Tj large enough,
kai (w) is a positive definite matrix (since it is a weighted average of two positive definite matrices) and we
have that iTk. (w) is such that sup, @Tk (w) = f(w)| < e for all Ty, > Tj,. Thus, the conditions of Lemma

A.1(ii) are satisfied and for large enough T}, we have that

sup [Lyo(f, (@) = Lis(f@)] <sup [VLis(fy, @) sup |f7, (@) = fw)] =0,

| —
bounded in probability
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As the above result is true for every sequence {1}, we have proven (cii). t

Above we have shown (the well known result) that spectral density estimator with unknown mean is
asymptotically equivalent to the spectral density estimator as if the mean were known. Furthermore, we
observe that in the definition of the DFT, we have not subtracted the mean, this is because Jp(wy) =

Jr(wy) for all k #0,T/2,T, where

1

Jr(wr) = (X — p) exp(—itwy), (A.5)

B

t=1

with p = E(X,). Therefore

T
~ 1 ~ I — ‘
Cr(r6) = 5> L@ Jp(wi)r@irr) Lwpsr) exp(itwr)
k=1
1~ ~ = / 1
= 7 ; L(wr)dr(wr) L (@rsr) L(wpsr) exp(ilwr) + Op()

uniformly over all frequencies. In other words, the DFT covariance is asymptotically the same as the
DFT covariance constructed as if the mean were known. Therefore, from now onwards, in order to avoid
unnecessary notation in the proofs, we will assume that the mean of the time series is zero and the spectral

density matrix is estimated using

T Ed
< 1 , 1
fr(we) = 5% D Ao(t — m)exp(—i(t — 7)wr) X, X, = T > Kplwr— w) (W) Irw;),  (A6)
tr=1 =15

where Kp(w;) =Y, Ap(r)e .

A.2 Proof of Theorems 3.1 and 3.5

The main objective of this section is to prove Theorems 3.1 and 3.5. We will show that in the stationary case
the leading term of (A?T(r, ¢) is Cp(r, £), whereas in the nonstationary case it is Cp(r, £) plus two additional
terms which are defined below. This is achieved by making a Taylor expansion and decomposing the
difference Cp(r,¢) — Cp(r,¢) into several terms (see Theorem A.3). On first impression, it may seem
surprising that in the stationary case the bandwidth b does not have an influence on the asymptotic
distribution of (A?T(r, ¢). This can be explained by the decomposition below, where each of these terms are
sums of DFTs. The DFTs over their frequencies behave like stochastic process with decaying correlation,
how fast correlation decays depends on whether the underlying time series is stationary or not (see Lemmas
A.4 and A.8 for the details).
We start by deriving an expression for v'T'[¢), j,(r, €) — j, j, (r, £)].
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Lemma A.3 Suppose that the assumptions in Lemma A.2(c) hold. Then we have

VT (S, (1, 0) = Gy gy (1, 0)) = Ar1 + Avo + VT (St jo (1, 0) + Brjy gy (1,£)) + Op(A2) + Oy(Ba),

where
1 T d
> 7 / ilw
Al,l = ﬁ Z Z [Jk,sl Ttrsy — E(Jk,s1 Jk+7",82)] (ik,r - E(ik,r)) VAj1,81,j2752 (ik,r)e ‘ "
k=1 s1,52=1
1 T d
T T n / l w,
A = Naa ST [k Jrrrss — B(Jrs, Torrsy)] (B Fer) = F10) VAjisiosa(fr e ok (A7)
k=1 s1,52=1
1 T d
. ~ , ~
AQ = = Z Z }Jk S1 JkJrr So E(Jk:,sl Jk+7’,s2)‘ : ’ (ik o ik: 7“) V2Aj17517j2,52 (ik’ 7’) (ik . ik 7n) s
VT (3,50 7 ’ ’ 7 7
1 T d
- ~ , ~
P = T Z Z [E ks Titrsa)| ‘(fkm - Lc,r) VA, s1,josn (ikz,r)(ik,r _ikm)
k=1 s1,52=1
and
1 T d
7 7 / lw
STj1.5a (r,f) = T Z Z E(Jk,81 Jk+?‘,82)(ik,r - E(ik,r)) VAjl,517j2,32 (ikﬂ,)e o (A.8)

T d
1 T \(R(F it
BT,jl,jQ (T7 E) = T Z Z E(Jk,s1 Jk-f—T,SQ)(E(ik,T) o ik,T)IVA]'l,ShJQ,SQ (ik”,)e .
with Aj s, ja,s:(f, ) defined as in (A.1).
PROOF. We decompose the difference between ¢;, j, (7, ¢) and ¢;, j,(r,£) as

ﬁ(/c\jl J2 (r,€) — Civ g (r, 6))

T d
1 T - o~ .
= — Z [Jk,sl Jk+T752 - E(Jk,sl Jk+7~752)] <Aj1,81,j2,52 (f ) 31,81,32,52 (fk T)> eHwr
VT k=1 s1,50=1 ,
=1s1,82=
1 T d
. N .
+ Z Z E<Jk»31J/€+T‘,82> (Aj1751,j2,sz (f ) ]1,51,J2782 (fk T)>€Z -
VT k=1 s1,52=1 :
=1s1,50=
= I+1I.

We observe that the difference depends on Aj, s j, 5o (/f )= A stz s (fk ), therefore we replace this with

the Taylor expansion

o~

" / 1~ P ¥ ~
A(ik,r) o A(ik,r) - (ik,r a ik,r> VA(ik,r) + 7(ik,7° o ik,r) V2A(ik,r) (ik,r B ik,r) (Ag)

2

with zkr lying between zkr and f, ~and A defined as in (A.1) (for clarity, both in the above and for
the remainder of the proof we let A = A; 4, i, s,). Substituting the expansion (A.9) into I and 11 gives
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I = A, + Ay and II = By + Bs, where

A =

1
VT
1 T d
o~ / ilw
Bio= = DL BUkaJerns)(fy, = f1,) VAU, )™

k=1 s1,52=1
and
T d
Ay = 7 kz: Z [Jks1 Thtrss = B( ks Thgrss )] @” - ik,r)’WA(fk,T)@k,r = fr e,
.
By = 7 kz Bk Titra) ([, = £4,) VA, )y, = )€

Next we substitute the decomposition EIM _Lc,r’ = Ek’r - E(Ekr) +E@k,r) _Lc,r into A; and B; to obtain
A=A 1+ A2 and By = \/T[ST,j17j2(r, 0) 4+ Brj, j,(1,¢)]. Therefore we have I = Ay 1+ Aj2 + Ay and
II = VT(Sr,j, 5 (r, 0) + Brjy js (1. €)) + Bo.

Finally, by using Lemma A.2(c), we have

sup [V2A(f . (w1), fp(w2)) — VPA(f(w1), f(w2))] 2 0.

w1,w2
Therefore, we take the absolute values of Ay and By, and replace VQA(LM) with its deterministic limit

VQA(ik .) to give the result. O

To simplify the notation in the rest of this section, we will drop the multivariate suffix and assume that

we are in the univariate setting (the proof is identical for the multivariate case). Therefore

VT (e(r, ) —&(r,0)) = A1+ A1z + VT (Sp(r,€) + Br(r,€)) + Op(A2) + Oy(B2), (A.10)
where
1 & I -
A1y = = [ Idksr — EGeden) | (F, — B(f,)) Glwr),
1,1 \/T;[kH kJk+ }(7,{7 k, ) k
1 - - S ,
Arg = =3 [Dedker — E(idirn) | (B(f,) = £,.,) Glwr), (A.11)
1,2 \/Tkz_l[kk+ kJk+ }( I, k7) k
1 & . Y
Sr(rl) = TZE(J,CJH,,)(LW—E(Lw)) G(w), (A.12)
k=1
T
Br(r ) — %ZE(J,TW)(E@”) ~ £,,) Glwn),
k=1
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T
1 . L
[As| < —= | Tedkrr — B(Ikdere)| - If . = £, 51 H (wi)l2,
2T 1 ’ ’

T
1 L
Bl < oom S BT IFy, 4 B0l (A13
k=1

with G(wy) = VA(f, )e'™* and H(wy) = V2A(f

I, f}.,)- In the following lemmas we obtain bounds for each

of these terms.

In the proofs below, we will often use the result that if the cumulants are absolutely summable, in the

sense that sup; >, 5 feum(Xe, Xegpys oo oy Xegn, )| < 00, then
C
wsup lcum(Jp(w1), ..., Jr(wn))| < Trja—1 (A.14)
1yeeeyWn
for some constant C. In the following lemma, we bound A1 ;.
Lemma A.4 Suppose that for 1 < n <8, we have sup; » 3, 5 Jeum(X¢, Xiynys ooy Xegn, )| < o0

Let Ay 1 be defined as in (A.11).

(i) In addition, suppose that for r # 0, we have |cov(Jr(wg), J7(wkir))| = O(T™Y), then ||A1q]2
O(ﬁ + ).

IN

(ii) On the other hand, suppose that 3 p_, [cov(Jr(wk), Jr(wiir))| < ClogT, then we have || Ay

C(ED).

PROOF. We prove the result in case (ii) (the proof of (i) is a simpler version of this result). By using the

spectral representation of the spectral density function in (A.6), we have

15)

T
1 — _
Al,l = T3/2kzl z; 1 (Kb(wk - wl),Kb(warr — wl))G(wk)(Jka+r — E(szjk-i-r)) (‘Jl|2 — E|Jl’2).(A.15)
L= 55

Evaluating the expectation of A;; gives

T 13]
1 f— —
E(A11) = WZ Z (Kp(wi — wi), Kp(wpr — wi)) Glwi)cov (T i, Ji11)
F=li=— | 15
;I 15
- 3/22 Z (Ky(wr — wi), Ky(wpsr —w1)) Glwr)
=1

X <COV(JI~:7 J)eov (s 1) + cov(Jy, J1)cov (S gqr, Ji) + cum (g, Jrqr, Ji, Jz))
= I+ II+1I1I.
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By using that > E(JyJg4r) < ClogT, we can show I,1] = O(lbo\iz) and by using (A.14), we have I1] =
O(\%) Altogether, this gives E(A; 1) = O(lg’\g/%) (under the conditions in (i) we have E(A; ;) = O(ﬁ))

We now evaluate a bound for var(A; ;). Again using (A.15) gives

var(Ai1) = 73 Z > (Bywr, — wiy)y Kp(Why4r — w1y)) Gwiy) Glwiy) (Kb (wry — wiy)s Ky (Whyr — w1,))’
k1,l1 k2,l2

XCOV((J]ﬁJlirT — E(Jkljk1+r)) (Jlljll - E(Jlljll))y (Jkgjk2+r - E(szjk2+7")) (J127l2 - E(lejlz))>'

By using indecomposable partitions (see Brillinger (1981) for the definition) we can show that var(A; ;) =

O((I;%Z;)B) (under (i) it will be var(A4;1) = O(ﬁ)) This gives the desired result. O

In the following lemma, we bound A; ».

Lemma A.5 Suppose that supy Yy, p, o lC0m(Xe, Xigny s Xeny Xeng)| < 00 Let Ay g be defined as in
(A.11).

(i) In addition, suppose that for v # 0 we have |cov(Jr(wk), Jr(wper))| = O(T7Y), then ||A1sll2 <
Csup, [B(Fr(w)) — 1))

(ii) On the other hand, suppose that Zfil |cov(Jr(wk), Jr(wkir))| < ClogT, then we have |
Clog Tsup,, [E(Fr(w)) — f(w)].

IN

PROOF'. Since the mean of A; o is zero, we evaluate the variance

1

T T
(f kz k(T by — E(kak+r))> =7 Z Py Pioy €0V (Jiy Ty s Thoo Ty r)

k1,ko=1

T
Z klhk2{cov Jky s JkQ)cov(Jk1+r,Jk2+r) +cov(Jkl,Jk2+T)cov(Jk1+r,sz)
kl,k

Cum(Jkl ; jk1+7“7 jk‘g) sz-i—T‘) }7

where hy, = (E@k 74) -f, 7q)lG(wk). Therefore, under the stated conditions, and by using (A.14), the result

immediately follows. O

In the following lemma, we bound As and Bs.

Lemma A.6 Suppose {X;}; is a time series where for n =2,...,8, we have
sup, Zhl,...,hn_1 lcum (X, Xegpys .oy Xiwn, o )| < 00 and the assumptions of Lemma A.2 are satisfied. Then
| kTt — E(Jidigr) ||, = O(1) (A.16)
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and

[A2lly = O (b&f - b2ﬁ> | B2 = O (b\% - b2ﬁ> . (A.17)

where Ay and Ba are defined in (A.13).

PROOF. We have
T
TeTerr — B(Ter) = 5o S per (XeXs — B(X,X)),
2T t,r=1
where p; ; = exp(—iwg(t — 7)) exp(iw,7). Now, by evaluating the variance, we get

1
(27)?

ElJiJitr — BE(Jidir)|” < (I+1I+1I), (A.18)
where

T T
I =17 Z Z Ptr,71 Pra,ra €OV (X, Xy Jeov(Xr, X7y ),

t1,to=171,72=1
T T

I = 7°7° Z Z pt1,7'1pt27T2COV(Xt1’XTz)COV(XTNth))

t1,to=1711,70=1
T

T
I1r = T_2 Z Z pt1,T1pt2,T2cum(Xt17XT17Xt27XTg)-

t1,ta=171,720=1
Therefore, by using sup; > .. [cov(Xy, X7)| < oo and sup; ) |cum (X, X7, Xy, Xry)| < 00, we have
(A.16).

To obtain bounds for Ay and Bs, we get from (A.13) and Cauchy-Schwarz inequality

T1,2,72

T
1 _ _ ~
2l < =3 IiTisr = BTl - 1y, = £, B )l
k=1

T
1 N
Bolli £ —=) [E(Jpdksr)| - — fo 31 H (wg)]2,
[Balli < zﬁ;‘ Tedkrr)| - 11, = L I21H (@) ]2
Thus, by using (A.16) and Lemma A.2(a,b), we have (A.17). O

Finally, we obtain bounds for vTSy(r,£) and /T Br(r,£).

Lemma A.7 Suppose {X;}; is a time series whose cumulants satisfy sup; Y, |cov(Xy, Xipp)| < 00 and

Supy Zh17h27h3 |Cum(Xt’ Xt-‘rhl ) Xt+h27 Xt+h3)| < 0.

(i) If |[E(Jr(w)Jr(wksr))| = O(F) for all k and r # 0, then
1 b
HST(T, K)HQ = O <b1/21_'3/2> and ‘BT(T, 6)‘ = O <T> .
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(ii) On the other hand, if for fized r and k we have |E(Jr(wg)Jr(wi+r))| = h(wi;7) +O(%) (where h(-,r)
is a function with a bounded derivative over [0,27]) and the conditions in Lemma A.2(a) hold, then

we have
ISz(r, 0)|l2 = O(T™Y?) and |Br(r,£)| = O(b).

PROOF. We first prove (i). Bounding ||Sz (7, £)||2 and |Br(r, £)| gives

1 & . N

ISerolle < 3 3 BT fkm—E(fk,T)HzlG(Wk)\z,
k=1
1 & R I

Brr] = 1 Y IBGTE,,) - fio] 160
k=1

and by substituting the bounds in Lemma A.2(a) and |E(JyJk1.)| = O(T1) into the above, we obtain (i).

The proof of (ii) is rather different. We don’t obtain the same bounds as in (i), because we do not
have |E(JyJyir)| = O(T~1). To bound Sr(r, £), we rewrite it as a quadratic form (see Section A.4 for the
details)

ST(’I", E)

fr(wp) = E(fr(wp)) n Fr(wesr) — E(fT(WkJrr)))
f(wr)3 f(Wrtr) V f(wr) f(wir)?

T
1 _ .
= ﬁE E(JkaJrr)eXP(wak)(
P

~1 ¢ o Frwr) = E(fr(wr) | Fr(wier) — E(Fr(wier) 1
= — h(wg,r) exp(ilw O =
a7 2 ek r) e ’“)< T @) T @) >+ ( >

T
-1 1 T ) e—i(t—r)wk e—i(t—r)wk+,« 1
= — Mt — 1) (X X, — E(X X)) = hw,rem"k< + )+O<>
ek P P Wi ore 7 ewes B orn o T

=dp (t—7+lwr)

with dr(v;w,) = d(v;w,) + O(7), where d(v;w,) as defined in Lemma A.12 (for the case d = 1). There,
we show that |d(v;w,)| = O(-%) such that dr(v;w,) = O(-% + &) (for v # 0). Using this we can show that

vZ vZ

var(Sr(r,£)) = O(T~1). The bound on Br(r,£) follows again from Lemma A.2(a). O

Having obtained bounds for all the terms in Lemma A.3 (see also equation (A.10)), we now show that

Assumptions 3.1 and 3.2 satisfy the conditions under which we obtain these bounds.

Lemma A.8 (i) Suppose {X;} is a second order stationary time series with ), |cov(Xp, Xo)| < oo.
Then, we have maxi<g<t [cov(Jr(wy), Jr(witr))| = O(%) for r #0,7/2,T.

(ii) Suppose Assumption 3.2(L2) holds. Then, we have
COV(JT(wkl), JT(wkz)) = h(wkl;kz — k‘l) + RT(wkl,ka), (A.lg)
where h(w;r) is defined in Remark 8.2 and sup,,, ,, |[Rr(wi,w2)] = O(T1).
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PROOF. (i) follows from (Brillinger, 1981), Theorem 4.3.2.

To prove (ii) under local stationarity, we expand cov(Jkl, sz) to give

T
1 . .
cov (Jiy s Jiy) = T E cov(Xyr, Xrr)exp(—i(t — T)wg, — iT (Wi, — Wi,))-
t,r=1

~—

Now, using Assumption 3.2(L2), we can replace cov(Xyr, X7 1) with x(F;t —7) to give

‘H
N
WE

(:ov(Jk1 , Jk2) = o

t 1

3
Il

T—1

[
3
~
~
M=

s

T=1 h=—71+1

. T .
exp(—iT(wg, — Wk, )) Z K (T’ h) exp(—thwg, ) + Ri(wk, , Wk,)

K (% ' — T) exp(—i(t — T)wp, ) exp(—ir(wh, — wiy)) + RBi(wh,, wry)

and by using Assumption 3.2(L2), we can show that |Ri(wg,,wk,)| < G35, ka(h) = O(T~1). Next we

replace the inner sum with » ;2 to give

1

T
cov( Sy, Jiy) = = Z f ( chl) exp (i27r(k‘2 - kﬂ%) + Ry (wky , Wky ) + Ro(wiy s Wy )

T

where

R zexp S—— (z z) (7 expl—ihi,).

h=—oc0 T—71+1

Under Assumption 3.2(L2), we have that sup,, |s(u, h)| < C|h|=?*9), therefore |Ra(wy,,wr,)| < CT 1

Finally, by replacing the sum by an integral, we get

1
cov (Jp,, Ji,) = /0 [ (u;wiy Jexp (12 (ke — k1)u)du + Ry (wgy , Wy )

where | Ry (wg,,wk,)| < CT~1, which gives (A.19).

O

In the following lemma and corollary, we show how the a-mixing rates are related to summability of

the cumulants. We state the results for the multivariate case.

Lemma A.9 Let us suppose that {X,} is an a-mizing time series with rate K|t|™® such that there

exists an r where | X;||, < oo and a > r(k —1)/(r — k). Ift; < ta < ... < ti, then we have

_ —k/r
Jeum (Xe, jy - Xoy gi)| < Crsupy | X 1 T [ — |00

k—1
o (1=Kk/r
swp 3 eun(Xiy g s Xop )| < Cusup o1 (Z\t\ “CE >) < co.
t?j t

by =1

Ifa>2r(k—1)/(r — k), we have

k—1
o 1-k/r
SUP Z + |t] |Cum(Xt1 NIEERE ’th’jk)| S Ck‘ Stup HXt,ij <§ |t| a( 1 )+1> - .
7]

t to,..tp=1 t

where Cy, is a finite constant which depends only on k.
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PROOF. The proof is identical to the proof of Lemma 4.1 in Lee and Subba Rao (2011) (see also
Statulevicius and Jakimavicius (1988) and Neumann (1996)). O

Corollary A.1 Suppose Assumption 3.1(P1, P2) or 3.2(L1, L3) holds. Then there exists an € > 0 such
that |cov(Xy, X3,)|1 < C|h|=3+9), sup, |cov(X, 7 Xernr)l <ClR|™ 2+e) and

sup Z (1 + ’tlD ’ |Cum(th7j17Xt27j27Xt3,j37Xt4,j4)‘ <oo, 1=1,2,3,

11,51 50-,04 ta,t3,ta

Furthermore, if Assumption 3.1(P1, P4) or 3.2(L1, L5) holds, then for 1 <n < 8 we have
sSup Z lcum(XthjletQ,jzv th,jn)| < 00.

PROOF. The proof immediately follows from Lemma A.9, thus we omit the details. O

We can now obtain bounds for the difference |v/T(€(r, £) —¢(r, £))| which leads to the proofs of Theorems
3.1 and 3.5.

Theorem A.1 Suppose that Assumption 3.1 holds, then we have

1
VTé(r,0) = VTe(r, 0) + O <+b+bZVT>. A.22
C(T ) C(T ) p b\/T ( )
Under Assumption 3.2, we have
logT
VTE(r,0) = VTe(r,t) + VTSy(r,0) + VTBr(r,0) + O, < ;jf +blogT + b2\/T> . (A.23)

PROOF. To prove (A.22), we use the expansion (A.10) to give

VT(/C\(’I", f) —E(’I", f)) = A171 + ALQ —{—Op(Ag) + Op(BQ)+VT(ST(T, f) —I—BT(T, 5))
~— ~—
Lemma A.4(:) Lemma A.5(%) (A.17) Lemma A.7(7)
1 1 1 b
= 0 b+ —— + b —
<T1/2+b tht =+ f+ﬁ>

To prove (A.23) we first note that by Lemma A.7(ii) we have ||Sy(r,£)|ls = O(T~/?) and |Br(r,£)| =
O(b), therefore we use expansion (A.10) to give

ﬁ(?:\(r, 6) — E(T’, 6) — ST(T‘, 6) + BT(T’, é)) = Al,l + Aq ,2 +0 (AQ) + Op(Bg
-~ -~
Lemma A.4(i7) Lemma A.5(74) A7)
- 0 <logT+b1 T++b2f)
WT
This proves the result. 0

Proof of Theorems 3.1 and 3.5 The proofs of Theorems 3.1 and 3.5 follow immediately from
Theorem A.1. O
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A.3 Proof of Theorem 3.2 and Lemma 3.1

Throughout the proof, we will assume that 7' is sufficiently large, i.e. such that 0 < r < % and 0 </ < %
hold. This avoids issues related to symmetry and periodicity of the DFE'Ts. The proof relies on the following
important lemma. We mention, that unlike the previous (and future) sections in the Appendix, we will
prove the result for the multivariate case. This is because for the variance calculation there are subtle

differences between the multivariate and univariate cases.

Lemma A.10 Suppose that {X;} is fourth order stationary such that ), |h|-|cov(Xo,, Xn j,)| < 00 and
Dby o il - leum(Xo gy, Xny oy Xy s Xy gu)| < 00 hold for all ju,...,j2=1,...,d and i =1,2,3. We
mention that these conditions are satisfied under Assumption 3.1(P1,P2) (see Corollary A.1). Then, for
all fized r1,r9 € N and 01,0 € Ny and all j1, jo, j3, ja € {1,...,d}, we have

Tcov (S, 5 (11, 01), Cjg ja (12, €2)) = {051450)234 00105 + 051aOjagsOr,—e5 } Ory g

L 1
+&C (1 5o, g3, a) 0y + O (>

of2). T

where 6;;, = 1 if j = k and d;, = 0 otherwise. As both right-hand sides above are unaffected by complex con-

T'cov (53‘1 g2 (11, 41), Gy g (72, 52))

Jugation, T'cov(cj, j,(r1,41), Cjy,ju(12,€2)) and T'cov(cj, j,(71,01), Cjs,ju (12, €2)) satisfy the same properties,

respectively.

PROOF. Straightforward calculations give

T d
~ - 1
Tcov (Cjy,jo (11, 41), Cjaja (r2, b2)) = T Z Z Lij1 sy (Why ) Ljgso (Why 471 ) Ly (Why ) Ljysa (Whgtrs)

k1,k2=1 s1,52,83,54=1

XCOV(‘]k1,81 Tor471,525 Jhea s Jk2+7‘2784) eXp(wlwlﬁ - ig?wkz)'

and by using the identity cum(Z1, Zo, Z3, Z4) = cov(Z1 22, Z3Zy) — E(Z1Z3)E(ZsZy) — E(Z124)E(Z2Z3)

for complex-valued and zero mean random variables 71, Zs, Z3, Z4, we get

Tecov(Cj, j, (11, €1), Cjy,ju (12, £2))

T d
1
= T Z Z Lj181(wk1)Lj282(wk1+T1)Ljsss(wkz)Lj4S4(wk2+T2) {E(Jk1781Jk2,$3)E(Jk1+7’1,52Jk2+7”2,54)

k1,k2=1 81,82,53,54=1

+E<Jk1781 Jk2+T27S4)E(Jk1+T1,82 Jk2,83) =+ Cum(‘]khsw Jk1+T1,S27 Jk27837 Jk2+r2784)} eXp(wlwkl - M?wkz)

= I+II+11I

57



Substituting the identity E(Jg, s, Jky,55) = 527 fi@_l) K 55 (h)e 1k (Zle oWy ~why) 4 o(h)> into
I and replacing the inner sum with >, Wk =Wka) gives

T d
Z Z Lj s, (wkl )Lj282 (wkl +r1 )Lj383 (wkz )Lj484 (wk2+7“2 )

T k1,ko=1 s1,52,53,54=1
1 T-1 ‘ T '
ﬁ Z K, ss (h)e—zhwkg <Z efzt(wkl —Why) + O(h))
h=—(T—1) t=1
1 T—1 ' T A
e dD DO (Z (i on i) 0<h>> exp(ifies, — i)
h=—(T-1) =1

where it is clear that the O(h) term is uniformly bounded over all frequencies and h. Due to ), |h||ks;s, (R)] <

00, we have
1 T d -
I = = Z Z Ly sy (Wky ) fors3 Wy ) Ljs s (why ) exp (i1, )
kl,kg 1 81,8321
d
. 1
| D" Lines (Why 1) Fnsa @hara) Lasa Wy ) €XD(—ilatwsy) 5k1k25m2+0<T>
Ss2,54=1

1
5j1j35j2j45r1r25£17£2 +0 <T) ,

where L(wk)f(wk)L(wk)/ =1, and £ 25:1 exp(—i(¢1 — lo)wy) = 1 if 1 = f5 and zero otherwise have been

used. Using similar arguments, we obtain

T d
Z Z Lj s, wkl)f5184(wk2+T2)L 4584 (wk2+T2)eXp(wlwk1)

Nl =

11 =

k1,ko=1 \s1,54=1
—_— 1
Z Lijys, wk1+7"1)f8283 (wk2)LJ385 (Wi, ) exp(—ilawy,) Ok ,—ha—rg Ok +r1,—ky + O T

s2,53=1

1
= JIJ4 .73]25417 625r17~2 + O <T> ,
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where exp(—ilow,,) — 1 as T — oo and %2521 exp(—i(l1 + lo)wy) = 1 if 1 = —¢5 and zero otherwise

have been used. Finally, by using Theorem 4.3.2, (Brillinger, 1981), we have

T d
1 . .
I = T E , E , Lj181 (wkl)LjQSQ (wk1+T1)Lj383 (wkz)Lj4S4 (wk2+7‘2)exp(wlwk1 - w?wb)
k1,ka=151,52,53,54=1
21 it(—wry +wry) 1
X T2 fa51,5,58,54 (Why s —Why 4715 —Whs) ;e 179r2) 1 O 7

T d
2T . .
) Z Z Lij1o1 (Why ) Ljgiso (Why 471 ) Lij s (Wi ) Ljysa (Whg 4y ) €xp(ibiwg, — ilawy, )

k1,k2=1 s1,52,83,54=1

1

Xf4%81782783784 (wklv —Wki+r1) _wkz)émm +0 <T>

1 2 2 d ) »
— o [ ] Y L L0 el L () expliti — i)

81,582,83,84=1

1
Xf4;31,52,53,84 <)\17 _)\17 _/\Q)d)\ld)\25r17‘2 + O <T)

1

= /{(61742)(].1’j2aj37j4)57“17'2 +0 <T> )

which gives the first claimed equality. In the computations for the second equality of this lemma, a 6, .,
crops up, which is always zero due to r1,ro € N. Further, as 5(51’52)(3'1, J2,Js, ja) is real-valued by Lemma

A.11 below, this immediately implies the second assertion. ]

PROOF of Theorem 3.2

To prove part (i), we consider the entries of Cp(r, ¢)

T d
~ 1 .
E(Cji (1, 0)) = Z Z Ljy s, (wi)E (Jk:,81Jk:+r‘782) Ljj 55 (Wi ) exp(iwg )
k=1s1

s1,52=1

M|

and using Lemma A.8(1) yields E (Jy s, Ji1r,s,) = O(%) for r # Tk, k € Z, which gives the assertion. Part
(i) follows from RZ = L(Z + Z), SZ = %-(Z — Z) and Lemma A.10. O

Lemma A.11 For x%2) (41, jo. j3, ja) defined in (2.15), we have

KO (1 Go. 33, 9a) = KOO (1, Go, 43, 4a) = K20 (3, da, 41, J2) (A.24)

In particular, <) (41, 4o, j3,j4) is always real-valued. Furthermore, (A.24) causes the limits of the

variances var (ﬁvec (%(NZT(T, 0))) and var (ﬁvec (%(NJT(T, ()))) to be singular.

PROOF. By substituting Al — —A1 and Ay — —Xs in /{(zl’éz)(j17j2,j3,j4), L]’S(—A) = LJS()\) and
facst s0.83,80 (A1 AL A2) = fais) so,85,81 (A1, —A1, —A2), we get the first identity in (A.24). The second fol-

lows from exchanging variable denotation of A; and Ay and reordering terms in x(1:42)(jy, jo, 53, 74) and
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from fa.s; s9.55,50(A2, = A2, =A1) = faisg,54,81,80 (A1, —A1, —A2).  The first identity immediately implies that
k1 752)( J1, 72+ 73, Ja) is real-valued. To prove the second part of this lemma, we consider only the real part

of éT(r, 0) and we can assume wlog that d = 2. From Lemma A.10, we get immediately

var (\/fvec (%GT(T, O)))
1 000 kO0(1,1,1,1) &09(1,1,2,1) &©9(1,1,1,2) £©0(1,1,2,2)
01 1o 1 k00(2,1,1,1) £©0(2,1,2,1) £09(2,1,1,2) «09(2,1,2,2)
— o )
01 1o 2 00)(1,2,1,1) £©0(1,2,2,1) &09(1,2,1,2) x©9(1,2,2 2)
00 01 £002,2,1,1) £09(2,2,2,1) £©0(2,2,1,2) (092,22, 2)
and due to (A.24), the second and third rows are equal leading to singularity. O

PROOF of Lemma 3.1 By using Lemma A.8(ii) (generalized to the multivariate setting) we have

T
E(Cr(r,0)) = %ZL(Wk)E(lT(Wk)lT(wk+T‘),)L(wk+7‘), exp(ifwy))
k=1
T 1 -
— ;;L(uﬂc)</ﬂ f(u;wk)exp(Qﬂiru)du>L(wk+r) exp(ilwy)) + O <;> (by (A.19))
1 2T 1 ' I ' .
= 3 ; L(w)</0 f(u;w)exp(eru)du)L(w+wT) exp(ifw)dw + O <T)
1 2w 1 ., ' . 1
= 5 . L(w)f(u; w)L(w) exp(i27ru) exp(ilw)dudw + O (T)
— A(r0)+0 (;‘F)
Thus giving the required result. 0

PROOF of Lemma 3.2 The proof of (i) follows immediately from L(w)f(u;w)L(w)/ € Lo(R4x9).

To prove (ii), we note that if {X,} is second order stationary, then f(u;w) = f(w). Therefore,
L(w)f(u;w)m/ = I; and A(r,¢) = 0 for all r and ¢, except A(0,0) = I;. To prove the only if part,
suppose A(r,£) =0 for all r # 0 and all £ € Z then >, A(r,{)exp(—2miru) exp(—ifw) is only a function
of w, thus f(u;w) is only a function of w which immediately implies that the underlying process is second
order stationary.

To prove (iii) we use integration by parts. Under Assumption 3.2(L2, L4) the first derivative of f(u;w)
exists with respect to u and the second derivative exists with respect to w (moreover with respect to w

L(w)f(u; w)L(w)/ is a periodic continuous function). Therefore by integration by parts, twice with respect

to w (using that G(u;0) = G(u;27) and ac;a(ﬁ;o) = aGg:j%), where G(u;w) = L(w)f(u;w)L(w)/) and once
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with respect to u, we have

27
A(r,l) = o /Guw)exp(zQﬂ'ru)exp(z&u)dudw
T
2m 92
= (2)2/ ac;(;)exp(ﬂﬂ'ru) exp(ilw)dwdu
2 0 W

exp(i2mru) [2" 902G (u; u=2m
— (zl};((ﬁﬂr))/ (2 )exp(zﬁw)deuo

T P3G (u;w) , .
Ze (i27r) / / T OudwZ exp(ilw)exp(i2mru)dwdu.

Taking absolutes of the above, we have |A(r,£)|; < K|¢|72|r|~! if both r # 0 and £ # 0 for some finite
constant K.

To prove (iv), we note that

2
A(r,l) = L /L(w)f(u;w)L(w)’exp(—i27rru)exp(—iﬁw)dudw

1 2
= — / L(—w)f(u; —w)L(—w) exp(—i2nru) exp(ilw)dudw (by a change of variables)

27r
= / )L(w) exp(227r( r)u) exp(ilw)dudw (since f(u; —w) = f(u;w))
= A(

Thus we have proven the lemma. O

A.4 Proof of Theorems 3.3 and 3.6

The objective in this section is to prove asymptotic normality of aT(r, ¢). We start by studying its
approximation ¢;, j,(r,¢), which we use to show asymptotic normality. Expanding c;, j,(r,¢) gives the

quadratic form

T
Cjrga (1, 0) = Z Jr(Wkir) Lj, . (wkﬁ"),Lﬁ o (wr) Ly (wk) exp(ilwy)

T

1 1 —_— . )
= X7 (27TT Z Lj, o (Whtr) Lj, o (wg)exp(—iwg(t — 7 — é)))XTjTexp(ZTwTQA.%)
k=1

In Lemmas A.12 and A.13 we will show that the inner sum decays sufficiently fast over (t — 7 — ¢) to allow

us to show asymptotic normality of ¢, j,(r,£) and Sp(r,£).

Lemma A.12 Suppose f(w) is a non-singular matriz and the second derivatives of the elements of f(w)

with respect to w are bounded. Then, for all j1,81,752,82 =1,...,d, we have
O*{L;, 4 sl f(w+ 2
I P 0 s )Vt o)
z,w€(0,27] ow
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and

C
supla;(v; )| < e and  sup|d;(v;z)|1 < e forv #0, (A.27)
where j = (j1, 51, j2, 52) and
27
0032) = [ Ly (£ Ly (T T 2 enp(—ives)
27
di(y;z) = 0 hsy s (W;T)vi(w),i(w+z){Lj1,81[ ()] Ljp 55 [f (w + 2)] exp(—ivw)dw (A.28)

and hg, s, (w;T) = fol fs1 50 (usw) exp(2miur)du with a finite constant C.

PROOF. Implicit differentiation of dL;,(f(w)) and implicit differentiation together with the product rule
Ljs[f(w)]

T2 gives
Ogslitw)] 8i(w)/va-[ ()] and
Ow - Aw JHisl)
0% Ljs[f(w 8 f(w)' Of(w)’ Of(w
J&EJ;(H = afw(z) Vij,s[f(w)H";i}) V3L s[f ()] J(;Eu ), (A.29)

By using Lemma A.1, we have sup,, |V Ljs[f(w)]| < oo and sup,, ‘V2LJS[ (w)]| < oo. Since Y, h?|k(h)|1 <

oo (or equlvalently in the nonstatlonary case, the integrated covariance satisfies this assumption), then we

(w)

have | |1 < oo and | 8w2 )\ < 0. Substituting these bounds into (A.29) gives (A.26).
To prove sup, |a;(v; 2)| < C|v|=2 (for v # 0), we use (A.26) and apply integration by parts twice to
a;j(v;z) to obtain the bound (similar to the proof of Lemma 3.1, in Appendix A.3). We use the same

method to obtain sup, |d;(v; 2)| < Clv|=2 (for v # 0). O

Lemma A.13 Suppose that either Assumption 3.1(P1, P3, P4) or Assumption 3.2 (L1, L2, L3) holds (in

the stationary case let X, = X, ). Then we have

) 1
Cjy o (1 4) = tZIX —0) X, pexp(itw,) + Oy <T) ,
where G, ( ) f027TLj2,°(w +wT>/Lj1,0(w)eXp(_il/w)dw = {aj1751,j2782 (V§WT)§ 1 <s1,8 < d}: |Gwr(y)‘1 <
Cc/lv|*.

PROOF. We replace 5= Zgzl Lj27.(wk+r)/le’.(wk)exp(—iwk(t — 7 —{)) in (A.25) with its integral limit
Gy, (t — 7+ (), and by using (A.27), we obtain bounds on G, (s). This gives the required result. O

62



Theorem A.2 Suppose that {X,}:+ satisfies Assumption 3.1(P1-P3). Then for all fized r € N and ¢ € Z,

we have
VTvech (§R(~3T(r, E)) BN (Qd(d+1)/27W€,€) and /Tovech (%GT(r, E)) BN <Qd(d+1)/2,Wu> , (A.30)
where Ogegy1)/2 s the d(d +1)/2 zero vector and Wy, = Wél) + Wé?e) as defined in (2.13) and (2.17).

PROOF. Since each element of (~3T(r, ¢) can be approximated by the quadratic form given in Lemma
A.13, to show asymptotic normality of (~3T(T, ¢), we use a central limit theorem for quadratic forms. One
such central limit theorems is given in Lee and Subba Rao (2011), Corollary 2.2 (which holds for both
stationary and nonstationary time series). Assumption 3.1(P1-P3) implies the conditions in Lee and
Subba Rao (2011), Corollary 2.2 as satisfied, therefore by using RZ = 1(Z + Z), SZ = %(Z — Z) and
Cramer-Wold device, we get asymptotic normality of v/T'vech (S‘E(NZT(T, E)) and v/Tvech (%(NZT(T‘, E)) O

PROOF of Theorem 3.3 Since VT'Cr(r, ) = VTCrp(r,0) + 0p(1), to show asymptotic normality
of VT aT(r, ¢), we are only required to show asymptotic normality of vT'Cr(r,£). Asymptotic normality
of VT éT(r, ?) follows immediately from Theorem A.2 and, similarly, by the Cramer-Wold device, we can

show the desired joint normality result. O
PROOF of Theorem 3.4 Follows immediately from Theorem 3.3.

We now derive the distribution of (A}(r, ¢) under the assumption of local stationarity. We recall from
Theorem 3.5 that the distribution of Crp(r,¢) is determined by Crp(r,¢) and Sp(r,£). We have shown in
Lemma A.13 that éT(r, /) can be approximated by a quadratic form. We now show that Sy (r, ¢) is also a

quadratic form. Substituting the quadratic form expansion

(X, X7 )exp(—i(t — T)w),

)
e
3
=
=)
>
ﬁ\_/
|
(]~
>
=
=
|
-p
I

where the random vector g(X, X ) is defined as

g(X,X1) = ! © [uee(X,X") — B(vee(X,X"))].

exp(—i(t — 7)wr)
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into St j, j, (7, €) (defined in (A.8)) together with Lemma A.8 and A.12 gives

5Tj1 g2 (7, ﬁ)

= = Z Z Jk s1Jk+r 82) @kr - E(fk r)yVAjlesz,sQ (ikT)eiZwk
\—/—/ ? g ,

k: 1s1,50=1
1e2= ~Rhsyso (WriT)

d T T
1
- Z 5 Z ot —7)g(X, X2) Z exp(—i(t — 7 — O)wg) hsy 5o (Wi )V A, 51,505 (Lc,r) +0 (T)

s1,52=1 t,r=1 k 1

‘ —
S

=dj 51,9959 (t—7—L;wr)+0(1/T) by (A.28)

1
Mp(t —1)g(X, Xy dj17817j2782(t —7—l;w)+ 0O <>

B

T

d
- X &
S1,52=1 2rT t,r=1

(A.31)

where d;, o . ot —

T — {;w,) is defined in (A.28).
PROOF of Theorem 3.6 Theorem 3.5 implies that

N N 1
Cjy,ja (15 £) = Br 1o (1, €) = Cjy gy (7, €) + STy o (7,£) + 0p <ﬁ) ,

By using Lemma A.13 and (A.31), we have that ¢;, j,(r,£) + S7j, . (7, ¢) is a quadratic form. Therefore,
by applying Lee and Subba Rao (2011), Corollary 2.2 to ¢;, j,(r,£) + St 4, (7, £), we can prove (3.11). O

A.5 Proof of results in Section 4

PROOF of Lemma 4.1. We first prove (i). Politis and Romano (1994) have shown that the stationary
bootstrap leads to a bootstrap sample which is stationary conditional on the observations {X;}7_,. There-
fore, by using the same arguments, as those used to prove Lemma 1 in Politis and Romano (1994), and

conditioning on the first block length L; for 0 <t; <to... < t,_1, we have

Cum*(Xik,X1+t1 ... 7Xf+tn,1) = cum*(Xf,Xl_Hl .. "Xf+tn,1|L1 > tn_l)P(Ll > tn_1>

—|—cum*(Xf,X1+t1 e ’Xik+tn,1|L1 < tnfl)P(Ll < tnfl).

We observe that cum* (X7, X144, ..., X7, L1 < t,-1) = 0 (since the random variables in separate
blocks are conditionally independent), cum* (X7, X144, ..., X7, |[L1 > ta1) = RS (t1,...,ta—1) and
P(Ly > tp—1) = (1—p)'»—1. Thus altogether, we have cum* (X7, X7 ,..., X{. ) = (1-p)"'ES (t1, . . ., tn—1)-

We now prove (ii). We first bound the difference 7i$ (h1, ..., hn—1) — fin(h1,. .., hy_1). Without loss of
generality, we consider the case 1 < h; < hg--- < h,—1 <T. Comparing ﬁg with i, we observe that the

only difference is that il contains a few additional terms due to Y; for ¢ > T, therefore

T n—1
—~ - 1
Ng(hla"'yhnfl)_Mn(hla"'vhnfl):f E }/tH)/;H-hz
t=T—hp—-1+1 =1
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Since Y; = X(;_1)mod T+1, We have

nflsgp HXt n

~ h
H hlu'” l)_un(hl)”'ahn—l)Hq/nST Hq

and substituting this bound into (4.2) gives (ii).

We partition the proof of (iii) in two stages. First, we derive the sampling properties of the sample mo-
ments, then using these results we derive the sampling properties of the sample cumulants. We assume 0 <
hi <...< hy,_1, and define the product Z; = X; H?;ll Xit+n, and the sigma-algebra F; = o(X¢, X¢—1,...).
By using Ibragimov’s inequality, we have |[E(Z|Fi—i) — E(Zi|Fi—i1)|lm < C||Zil|oli| G —7). Let M;(t) =

E(Z¢|Fi—i) — E(Z¢|Fi—i—1), then we have the representation Z; — E(Z;) = >, M;(t). Using the above and
applying Burkholder’s inequality (in the case that m > 2), to the last line below, we obtain the bound

[#n (s - o5 1) = Efn(has o 1))

T n—1 T T
H}Z(XtHXHh—EXtHXm )| =17 - s, < 1 e
t=1 t=1 1

t=1 7j=1

IN

< ;}E?éwtwmé Z(ZHM Hm) < = swlzi, Dl

i
which is of order O(T~1/2) if for some r > ma/(a — m) we have sup, || Z¢||, < co. Next we write these
conditions in terms of the moments of X;. Since sup, || Z¢||, < (sup; || X¢|lrn)™, if @ > m and r is such that
sup, || X¢||, < oo where r > nma/(a —m), then ||fin(hi, ..., ho-1) — E(fin(hi, ... hono1))|lm = O(T~Y2).
As the sample cumulant is a sum of products of sample moments, we use the above to bound products of

sample moments (extracted from the nth order cumulant in (4.3)). By the (generalized) Holder inequality,

we get
LI 7 (B) = 11 Bl (B
Ber Bem n
|| j—1 ||
> ||zis, (B)) - E[M|Bj|(3j)]Hqu/(MBjD < 11 ||N|Bk(Bk)Hqu/(n|Bk)> 11 Elfis, (B
j=1 k=1 k=j+1
where 7 = {B1, ..., By} and D; = Z{C:l |Bi| (noting that Dy, = |k711 |Br| = n). Applying the previous
discussion to this situation (with n = |B;| and m = g@f‘ = q/|Bj|), we see that to ensure O(T~1/2)

convergence of the above expression we require that the mixing rate should satisfy a > ﬁ and

IB Iqa/lB | gqa
o — m —Q/‘Bj’

for all j. (A.32)

Noting that 1 < |Bj| < n, the minimum conditions for the above to be true for all partitions = €
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{h1,...,hpn_1}is a > q and || X¢[|, < oo for r > qa/(a — q/n). Altogether this gives

1 s (B) = 11 Bl (B

[Rn(P1s o 1) = Fon(hay o )y <) (] = 1)!
s Ber Ber

1
- O(zw)

(under the condition a > ¢ and || X¢||, < oo for r > ga/(ac — ¢/n)). This proves (4.6).

We now prove (4.7). It is straightforward to show that if 0 < hy < ... < h,—1 < T, then we have

1 " 1 & h
—1
}T ; E(XiXtiny - Xetn, 1) — T ;E(XtXtJrhl o X )| < nT

Using this and the same methods as above we have (4.7) thus we have shown (iii).

To prove (iv), we note that it is immediately clear that &,(-) is the nth order cumulant of a stationary

time series. However, in the case that the time series is nonstationary, the story is different

(iva), we note that under the assumption that E(X}) is constant for all ¢, we have

. To prove

T 2
Ro(h) = Z (X: Xopn) — ( ZE Xt>
T

= Z ) (Xern — ) (using E(Xy) = p)

T

= Z v (Xe, Xitn)-

To prove (ivb), we note that by using the same argument as above, we have

T T
_ 1 1
Rg(hi,ha) = D E(XiXiin Xerns) — Z (XeXtihy) + E(Xepn Xepns) + BXe Xein,)] )+ 207
=1 =
1 T 1 T
- T Z E((Xt - “)(Xt—i—hl - “)(Xt-&-hz T Z cum (X, Xt+h1’Xt+h2)7
=1 =1

which proves (ivb).

So far, the above results give the average cumulants. However, this pattern does not continue for n > 4.
We observe that

_ 1
Ra(h1, ho, ha) = S E[(X = ) (X, — 1) Xeny — 1) (Xin, — )] —
=1
1 o 1 o 1 o
<TZCOV(Xt7Xt+h1 ) <T > cov(Xithys Xighg > - < > cov( Xtht—i-hz)) X
=1 =1 =1
1 o 1 1 o
<T ZCOV(Xt—I—hMXt-‘rh?, ) (T ZCOV Xty Xithy ) < ZCOV Xt+h1vXt+h2)>v
t=1 t=1 t=1
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which cannot be written as the average of the fourth order cumulant. However, it is straightforward to
show that the above can be written as the average of the fourth order cumulants plus the additional average

covariances. This proves (ivc). The proof for (ivd) is similar and we omit the details. O

PROOF of Lemma 4.2. To prove (i), we use the triangle inequality to obtain

~

A (Wi, -+ wne1) = far(Wi, .oy wne1)| < T+ 11,

where
1 T-1 ‘
I = W Z (1 — p)max(hi,())—mln(hi,o) ‘k\n(hl, RN hnfl) — Rn(hl, ey hnfl)‘,
hi,eshn—1=—(T-1)
1 T-1 ‘
= W Z (1 N p)max<hi,0)_mln(hi70) ‘%n(hl, ) hnfl) - Rn(hla ey hnfl)‘.

Riyeshn—1=—(T—1)

We first bound the sum ZZ;I hn_lz—(T—l)(l — p)max(hi,0)—min(hi.0) - There are a (n — 1)! orderings of

{hi,...,hn_1}, thus we have the bound

T-1 T—1
Z (1 _ p)max(hi,O)—min(hi,O) < (’I’L _ 1)| Z (1 _ p)max(hn,ho)—min(hl,o)‘
hi,..ohn_1=—(T-1) hiyeeoshpy_1=—(T—1)

h1<ho<...<hp—1

Therefore we need only consider the sum when A1 < hy < ... < h;,_1. This sum can be further partitioned

into n cases

T-1 n—1
Z (1 _p)max(hn,l,O)—mm(hl,O) — Z I,
hi,eishy_1=—(T—1) m=0

where

L= >  (=p L= ), (1-p™m
hy<hg<..<hp_1 hi<hg<..<hn,_1
h1>0 hn_1<0
and for 1 <m<n-—1
Im = Z (1 _ p)hnfl_hl.
hq<ho<...<hp_1

hm <0 and hpm41>0

To bound Iy we use that
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where hg = 0. By making a change of variables, with g1 = hy, go = ha — h1, gn—1 = hn—1 — h—2 We obtain
I < [Z;‘;l(l —p)9]"~t = p'=". To bound I,,, (where 1 < m < n — 1) we split the sum into negative and
positive indices

I = (h > a-nm)x( ) (1)),

1<he <. <h, <0 0<hmt1<hm42<...<hp—1

By applying the same argument to bound Iy to each of the sums above we obtain I, < p'~". Finally,
noting that Iy = I,_1 we obtain I,_; < p'~™. Altogether this gives

T—1

Z (1-— p)max(h"’o)*min(h“o) < (n—1Dnp'™" =nlp'—™. (A.33)

Ry 1=—(T—1)
Therefore, by using (4.6) and (A.33), we have
1 T—1 .
Illgm = e Yoo (OO 17 () = R )|

hl,...,hnflz_(T_l)
O(T—1/2) (uniform in h;) by eq. (4.6)

1

T—1
17| < % > (1 — p)max(hs,0)=min(hi.0) (1 ax (hy, 0) — min(hy, 0)).
hiyeeshn—1=—(T—1)

By using the same decomposition of the integral used to bound (A.33), together with the bound

Yo haa(l=p)r <y A -p)t <Cph,
h=0

0<hi<..<hp—1

(where C'is a finite constant) we obtain

T—1
> (1 — p)ymax(hi0)=min(hi.0) (1ax(hy, 0) — min(hy, 0)) < Cnlp™™.
h1:~~~7hn—1:_(T_1)

Thus |II]| = O(T%)n). This proves (i).
To prove (ii), we note that

‘/}\Ln(wla cee awn—l) - fn(wla S 7wn—1)’

~

< ‘hn(wl, . ,wnfl) — fnj(wl, ... ,wnfl)‘ + \fn,T(wl, A ,wnfl) — fn(wl, ... ,wn,1)|.

A bound for the first term on the right hand side of the above is given in part (i). To bound the second
term, we note that &, (-) = k,(-) (where k,(-) are the cumulants of an nth order stationary time series).

Using this leads to the triangle inequality
\fnyT(wl, - ,wn_1> — fn(wl, R ,wn_l)] <IIT+1V
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where

T-1
1 max(h;,0)—min(h;,0
I = (27_‘_)”_1 Z ‘(l_p) ( ) ( )_1|'|K/n(h17"'7h’n—1)|7
..... hp1=—(T—1)
[max(h“O) min(h;,0)]<T—1
1
v = > ln (B 1))

n—1
(27T) [max(h;,0)—min(h;,0)]>T

Substituting the bound |1 — (1 — p)!| < Klp, into I gives |[III| = O(p). To bound IV, we will use that
under the assumption that a > 2r(n — 1)/(r — n) and using Lemma A.9 for 0 < h; < ... < hyp—1 we have
that sy (h, ... hno1) < C [0 (hi—hi—1)~2 (where we set hg = 0) and for hy < hg < ...y < 0 < hypyy <

. < hp—1 we have that r,(hi,...,hp—1) < C(=hy)~ Qh_Jr1 Hl m(hi—hi—1)~ 2H1 Cnaa(h —h;_1)72 (the
case that h; = h;y1 is similarly defined, where we set (h; — h;)~2 = C). This is now used to bound I'V. As

in the bound of I (above) we can show that

n—1
(n—1)!
IV < @y > (B, b)) = D TV,
h1<hg<..<hp_1 m=0
[max(hp—1,0)—min(h1,0)]>T
where
(n—1)!
IV, = T > \n(h1, ... b))

h1<ho<..<hp_1
hp—1>T and h1>0

IV, = : > (b1, hoo1)] 1<m<n—2,
h1<hg<..<hp_1
[hp—1—h1]>T,hm<0 and hpm41>0

n—1)!
IV, = (n—1) > Kn (B, 1)
h1<ho<..<hn_1
h1<—T and h,_1<0

We first bound I'V,. By definition of IVy, h,—1 > T, this means that for at least one 1 < i <n —1 we
have (h; —h;_1) > T/(n—1). Therefore, by using the bound f,,(h1, ..., hn_1) < C 11 (hi — hi—1)~2, this
gives IVy < C(T/n)~t (where C is a finite constant that only depends on n). The same argument can be
used to show IV, < C(T/n)~! for 1 < m < n — 1. Altogether this gives

v)< X
and the bounds for 11 and IV give (ii).
We now prove (iii). In the case that n € {2,3}, the proof is identical to the stationary case since hs
an Eg are estimators of fo 7 and f3 7, which are the Fourier transforms of average covariances and average
cumulants. Since the second and third order covariances decay at a sufficiently fast rate, fo 7 and f3 r are

finite. This proves (iiia).
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On the other hand, we will prove that for n > 4, f,, 7 depends on p. We prove the result for n = 4 (the re-
sult for the higher order cases follow similarly). Lemma A.9 implies that sup; > -, |% Do cov( Xy, Xoqp)| <
oo and Sup; Y Sy, 4o b |+ Zle cum (X, Xiny s Xithys Xiths)| < 0o. Therefore, taking absolutes inside the
sum of fy 7(-), using the hy < hy < ... < hy,—1 decomposition given above and that Zhl,hg |Ra(h1, ha, h3)| <

oo (note the boundedness of (4.8) over the double (but not triple) sum) we get

T-1
1 - 0)—min(h,;.0) | —
ap arlnenes)] € b ST (1 et mnGaO) gy hy )
wklvwk27wk3 h17h2,h3:—(T—1)
T-1
< CY (a-pt=00p),
h=1

where C' is a finite constant (this proves (iiic)). The proof for the bound of the higher order f,, 7 is similar.

Thus we have shown (iii). O

PROOF of Theorem 4.1. Substituting Lemma 4.1(i) into cum*(J}(wg, ), ..., J7(wg,)) gives

cum™ (J7(wg, ), - - -5 J7(wk,, )
T
_ 1 Z max; ((ti—tn),0)—ming ((ti—tn),0) ~C it —e—ibnwn
= th t:(l—p) Kn(tl—tn,...,tn_l—tn)e 1 .

For1<i<n-—1let h; =t; —t, and t = t,,, then the above can be written as

cum™(Jp(wg, ), - -+, Jp(wgk,))
T-1
= 71 Z (1 — p)g(b)/fic(hl, ceey hnfl)e_ihlwkl_m_ihnilwk"’l
(2rT)"/2 "

hi,...hn_1=—(T-1)
T—| max; (h;,0)]
X g e_lt(wkl +U.Jk2 +...+UJkn )’

t=| mini(hi,0)|+1
where g(h) = max;(h;,0) — min;(h;,0). Using that |RS (b1, ..., hn_1)[1 < 0o, it is clear from the above
that ||cum™(J5 (wk, ), - - -, S5 (wk, )| = O(W), which proves (4.13). However, this is a crude bound

and below we obtain more precise bounds (under stronger conditions). Let

T*| maxi(hi,0)|
E@(Wk‘la o ’wkn) _ Z e—zt(wkl +Wk2+...+wkn)'
tZ‘ mini(hi,D)\—i-l

Replacing RS (hy, ..., hy_1) in the above with &, (A1, ..., h,_1) gives

cum™(Jp(wk, ), - - - Jp(Wk, )
T—-1
1 ) )
= — _ () —ihiwg, —..—ihp 1w,
= (271'T)n/2 Z (1 p)g Iin(hl,-..,hn_l)e 1Wky 1WE lEﬁ(wku-”awkn) -(—AEBZ,L)

R1yeoshin—1=—(T—1)
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where

1 T-1

_ _ )9 s
R, = Ty > (1—p)? < (h1,. .. hn1) mn(hl,...,hn1)>Eh(wk1,...,wkn).
Riyeoshn—1=—(T—1)

(A.35)

Substituting (4.5) into R; and using identical arguments to those used in the bound on I given in the proof

of Lemma 4.2 we have

nlsup, [ Xy oy 910
[Rillg/m < xR Z (1—p)"* T |En(@rys -0k,
Ml <(T—1—max; (h;,0)—min; (h;,0))
T-1
n!sup, | X¢|lq Z (1- p)g(ﬁ)g(h).

(27T)"/2

Bseiishpy—1=—(T—1)
h1<ho<...<hn-—1

Just as the bound on I (in the proof of Lemma 4.2) we decompose the above sum into n sums where

0 < h; <...< hy1 using this decomposition and the same arguments as those used in Lemma 4.2 we have

| R1llq/m = O( nTn/Q) We return to (A.34) and replace Ep(wgy,...,w,) with Z e~ Wiy Fwky k)
to give
cum™(Jp(wg, )y - -+ Jp(wk,))
1 T-1 T
= o2 Z (1= p)BR, (A1, . hyg)e” PR T 1k, Z e~ Wy Hky ot )
(27TT) h1,...,hn_1=—(T—1) t=1
+R1 + Ra,
o \/2—1 . T
- ! 7TT)n/z P (@ e Wk, y) Y €T ) L Ry Ry, (A.36)

where R is defined in (A.35) and

T-1

Ry = L > (1= p) ™R, (h1,. .. ha)

n/2
(2xT)/ By 1 =—(T—1)

T—| max; (h;,0)]

Xe—ihlwkl—...—ihnlwkn_l< E o § > —at wk1+wk2+ +wkn)

t:|mini(hi,0)|+1 t=1
(A.36) is in the form given in (4.14), with Rz, = R; + Rs. To bound R» we take absolutes to give

T-1

1 ~ .
Bl S G 2 (o p PR k)] (e, 0)] + [ min(h, 0))
Biyohn_1=—(T—1)

By using Hélder’s inequality, it is straightforward to show that [[K,(h1,...,hn—1)|lgm < C < oo. This
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implies

T-1
C .
[Rallg/m < 7(27TT)”/2 E (1— p)g(ﬁ)ﬂ mzax(h,-, 0)] + | miln(hi, 0)])
By —=—(T—1)
T-1
2C 1
§ _ p)9h) 1) =

hiyeishin—1=—(T—1)

Therefore, since || Rrpllg/m < [[Rillg/m + | R2llq/n we have ||RT,n||q/n = O(

W). This proves (4.14).

To prove (a), we note that if >°;" | wy, ¢ 27Z, then the first term in (4.14) is zero and we have (4.15)
(since Ry, = OP(W))' On the other hand, if ;' | wy, € 27Z, then the first term in (4.14) dominates
and we use Lemma 4.2(ii) to obtain the other part of (4.15). The proof of (b) is similar, but uses Lemma

4.2(iii) rather than Lemma 4.2(ii), we omit the details. O

A.6 Proofs for Section 5

PROOF of Lemma 5.1. We first note that by Assumption 5.1, we have summability of the 2nd to 8th
order cumulants (see Lemma A.9 for details). Therefore, to prove (ia) we can use Theorem 4.1 to obtain
T
cum (JT,jl (wk’l)7 JT,jg (ka)) = fjl,]é (wlﬁ)f Z exp(—zt(wkl + wkz)) + OP T7p2
t=1

- fj1,j2(wk1)l(k‘1 = —]{72) + Op <Tlpﬂ>

The proof of (ib) and (ii) is identical, hence we omit the details. O

PROOF of Theorem 5.1 Since the only random component in ¢*

o (r,¢1) are the DFTs, evaluating

the covariance with respect to the bootstrap measure and using Lemma 5.2 to obtain an expression for the

covariance between the DFTs gives

* [~ ~x 01,0 . . . . 1
Teov™ (&, 5, (1 1), @y a (1 02) = 8j1js0inialtnts + 8j1ja0igsbts—tr + 3 (1, 2, 3. ja) + O <Tp4>
* (= =0 1
Tcov (cjm(r, 61),cj37j4(r, Kz)) = 0O, <T4> ,
p
which gives both part (i) and (ii). O

The proof of the above theorem is based on Ej

o~ -
1,42 (T’ 6) and 1,42

Lo (r,?) and we need to show that this is equivalent to

(r, ), which requires the following lemma.

Lemma A.14

Suppose {X,}+ is a time series with a constant mean which satisfies Assumption 5.2(B2). Let ?} be defined
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~

in (2.22), and define N;‘l’h(wk) = f, jo(wr) — E*(f} j,(wk)) and T:,r,jl,jz =I; 5 — E°(UL 5 5,)s where
I v i gs = I3 (Wi) T, (Wktr). Then we have for all 1 <r <T/2
*| % 2 1 1 1
1)l = © (5 + a7 + 7). (A3
s 1 1 1 1
[Jeum (£7, 5, (wi)) ||, = O <(bT)3 - (pT'/2)3(bT)2 T (pTY/2)6(bT) T (pT1/2)8> ’ (A.38)
= 4 1 1 1 77
HE*‘ffl,jz(wk)l HQ =0 <|:bT + T3/2p3 + Tg/gpb] ) ) (A,SQ)
S S— 1
E*|JT J5 . =0 (1+ —F== , A.40
|l 00T el =0 (1+ o) ) (A40)
* X Tk o 1
HE (JTm (wr) IT 4, (Wk+r)) ) =0 <(pT1/2)2> ) (A.41)
. E— - O(W), k=+sork==x(s+r)
HCOV (JT.j, (wk)J;“,jg(wk-i-T)vJT,j3(w8)‘];“,j4(w8))H4 = 1 ‘ ; (A42)
O (W) , otherwise
e (i g, () Ty @t r)s I, @) T g, @) By () /
8/3
_ O(bT(pT11/2)2 + (pTll/Q)4), ki=koorki+r=keorki=ko+r (A.43)
0] (bT(pT11/2)4 + (pTll/2)6) , otherwise
. . - K . O(l), ki =k orki=ko+r
o (o T Fmiaiome M, - { o 200 ) 7
(pT1/2)4 ) »
*( T* Y 1 1
chmQ(JT,jl (wkl)JT,jz (wlirT)? fj3j4 (ka))H4 - O((pT1/2)4 + bT(pT1/2)2>7 (A45)
‘ E* (11:1,T,j1 J2 I;;z,?",j?) 4 fj*l 2 (wk‘l )sz J4 (ka)) H2
_ O(biT—i_T‘?/#?p'S_FTW#?pb)’ ki=ko orki=ko+rorkys=k +r (A.46)
O (W) , otherwise
and
* A* 1
|B1f5, o (wr)] = Fir g (wr)|[g = O (pTl/Q +p+ b) ; (A.47)

with bT — and p'/?T — o0 as T — o0, b — 0 and p — 0. Note that all these bounds are uniform over

frequency.

73



PROOF. Without loss of generality, we will prove the result in the univariate case (and under the as-
sumption of nonstationarity). We will make wide use of (4.15) and (4.16) which we summarize below. For

n € {2,3}, we have

O + i | s S Wiy €7Z
chm*(J}(wkl),...,J}(wkn))Hq/n = OET /2t (T ) ) I=1 "k
(

; " (A.48)
W) ; Doy Wiy & Z

and, for n > 4,

O n _1 n— + , n | n— S Z
chm*(J}(wkl), . J{,ﬁ(wkn))Hq/n — (T /j T3 T (712 > Eln_l W,
0 (W) ’ lel Wk, ¢ Z

To simplify notation, let J7.(wy) = J;. To prove (A.37), we expand E*(N}Q(w)) = var*(]?r}(w)) to give

[lvar® (f3(wr)) I

Z Ky (wy — wiy ) Kp(wg, — wi,) [COV*(JI*I, Jj;, )eov® (jz , j;;) + cov*(J,, j;;)cov*(jz, Ji,) +

l1,l2

IN

1
T2

*( pk pr Ty ¥ *
Cum4(Jl17Jl17Jl2 7'][2)

4

D Ky (wr — wiy) Ky (wr, — wiy)eov™ (T, I Jeov™ (T, Tp,)
l1#lo

Iz
T2 4

1 * * 7k * Tk *
+ T2 Z Ky (wp — wiy) Kp(wr, — wiy Jeov™(J), Jy, Jeov™ (Jy,, Jp,)
li#—lo

1 * x Tk Tk *
+ 72 ZKb(wk — wyy ) Ky (wr — wyy )eumy (J), Jy, Jy,, JZQ)}

l1,l2

2 * * *
| 5 D2 Kl — wrPleov* (7 J7)
l

4

4

4

IN

C 1 1 1
73 ZKb(wk — wiy ) Ky (wi — wiy) <(pT1/2)4 + (pT1/2)3 + T)

l1,l2

+ ZKb(wk —w)? <1 + m> (by using (A.48))

1 1 1 . :
= 0 (T3/2p3 + VT + bT(pT1/2)2) (these are just the leading terms).

We now prove (A.38), expanding cumj(fr}(wk)) gives

4
- 1
|| cumn (f7(wi))ll2 = (= > HKb(wk—Wzi)>cumZ(IJZ§|2,|J1*2|27Ji;|2,|Ji;2)H2-

l1,l2,l3,la =1

By using indecomposable partitions to decompose the cumulant cumj (|.J; %, |J; [, [T |2, [T} |?) in terms of

the product of cumulants of J; and by (A.48), the leading term of cumj(].J} 2, |Jl*2|2, \J[;|2, |Jl";\2) can be
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shown to be the product of four covariances of the type cov*(J;', Jl*g)cov*(ZZ, J[;)COV*(j;;, J;;)cov*(jlz, jl*l)

Using this and straightforward (but long) calculations we can show that

%/ Tx 1 1 1 1
fewniFitwMls = © (75 + Grrmyorye + rvpny * v

which proves (A.38).
Since E* [f}(w)] =0, we have
B fr(on)|" = Bvar” (F(wn))? + comi(Ff (w),

therefore by using (A.37) and (A.38), we obtain (A.39).
To prove (A.40), we note that E*|J;J7, | < (E*|J5Jr | 2)1/2 therefore

1/8
JE T s < T ) N = [T )] = [T, RIS (aao)

Substituting the expansion
*| 7k Tw/ . V|2 k| T Y k[ T * 2
E*|J7(wi) S5 (wkar)]” = E | I (wr) PE* [ T3 (wrer) |* + |E*[J7 (wr) J7 (wrgr )|~ +

B[ (w) T @re)]|* + cum® (5 (@), Tp@irr)s T () F@rr),

into (A.49) gives

=178 Tl

1/2
< (1B Pl B L+ MR P+ Newnn® O T T )

Thus by using (A.48) we obtain HE*‘J/:J’CH*H‘g =0(1+ 7 T1/2) 5), and thus (A.40).
The proof of (A.41) immediately follows from (A.48) (using n = 2 and ¢/2 = 8).
To prove (A.42), we expand it in terms of covariances and cumulants
oV (JF Tpqr > J2T3)
= cov* (J5, ) eov (Trpr o Js )+ cov* (Ji Ts )eov (Tiqr > J2) 4 cumy (J7 Toar s J oy J5),
thus by using (A.48) we obtain (A.42).
To prove (A.43), we expand the sample bootstrap spectral density in terms of DFTs to obtain

cum (i, Tay 1o Ty Ty F1(@hy) ZKb (wiy, — wi)eum (T Tpy s iy Ty | J717)- (A50)

By using indecomposable partitions to partition cumj(Jy, I, ke Ty 22 4 |J7|?) in terms of cumulants of

the DFTs, we observe that the leading term is the product of covariances. This gives

0 (W) . (ki=land ki +7r=k;) etc.

*( 7k T* * Tk * 1 — . — J—
llewns (i, Ty s Ty Tyt [ ’2)H8/3 =4 0 (T2t ) > ki=kyorki+r=lorkj=10
O W , otherwise
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for i,j € {1,2}. By substituting the above into (A.50), we get

I - ~ O(bT(pT1/2)2+(T11/2)4)’ ki=koorki+r=kyork =k
chmii(‘]kl ‘]k1+r7 Jk‘g Jk2+T’ fT(wkl)) Hg/g = o 1 n 1 otherwise
bT(pTl/2)4 (pT1/2)6 ’

which proves (A.43). The proofs of (A.44) and (A.45) are identical to the proof of (A.43), hence we omit
the details.
To prove (A.46), in the case that k1 = ko, k1 = ko + 1 or ko = k1 +r we use Cauchy-Schwarz inequality

to give

< |

E* (I;:l iT5J1,J2 Iltzmjé 2Ja f;l \J2 (wkl )f;; »J4 (ka >) H 9
4)11/4 4||1/4

1, e a

E*‘Ikh rJ1

E*|f ;1 o (@Why )

\J2 kz, 7,J3,74 f]*3 ja (ka)

2

We observe that ’

E* (fgl,ﬁjl,jzfz%””y‘jiiajzl) ’2 = O(1), thus by using (A.39) we get (A.46) when either k; = ko
or k1 = ko + r. This bound is too crude when both ki # ko, k1 # ko + r and ko # ki + r. Instead, we

decompose the expectation as the product of cumulants and use (A.42)-(A.45) to get (A.46). Finally to
prove (A.47), we use the Minkowski inequality to give

H ZKb — wj) [h2(w;) — (wj)]H8+’;ZKb(Wk_wj)f(wj)_f(wk),
J

+
8

E*[f5(wp)] — flwr)

8 : Hr} ZJ-:Kb(wk — wj) [E*(JJ*TJ*) o E2(w‘7)}

(A.51)

where hy is defined in (4.9). We now bound the above terms. By using Theorem 4.1 (for n = 2), we have
* * i 1 * T 1
H ZKb ) [E*(JT;7) - hZ(Wj)]HS < 7 2 Kolwr = w))|[B*(757) ~ ha(wy)|s = (W> :
j
By using Lemma 4.2(ii), we obtain
1 1 ~ 1 1
T ZKb(Wk — wj) [ha(wj) — f(w;)] . <7 ZKb(Wk — wj)|[ha(ws) = flwj)||lg = O T + DT +p).
J J
By using similar methods to those used to prove Lemma A.2(i), we have
1
T > Ky(wr — wj) f(wj) = flwr) = O(b).
J

Substituting the three bounds above into (A.51) gives (A.47). O

Analogous to (A?T(r, ¢), direct analysis of the variance of (A?*T(n ¢) and C}(r, ¢) with respect to the
bootstrap measure is extremely difficult because of the L* (wp) and i(wk) in the definition of (A}}(r, 0)

and C}(r, ¢). However, analysis of 6}(7‘, /) is much easier, therefore to show that the bootstrap variance
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converges to the true variance we will show that Var*(ai}(r, ¢)) and Var*(C}(r, ¢)) can be replaced with

var*(é}(r, ?)). To prove this result, we require the following definitions

T d
. 1 ok R T — .
cjl,jg(rvg) = TZ Z Aj1781»]'2,52(ik’T)Jk,51Jk+r7S2eXp(Zgwk)v
k=1 s1,52=1
1 T d
Gl = =30 D Apsrnea B F )i T, explitin),
k=1 s1,52=1
1 T d
é;fl,jg(rvg) = TZ Z Aj1781»]'2,52(ik’T)Jl;k,sl‘]];k+r752eXp(ka)v
k=1 s1,52=1
1 T d
E;l,jg(rvg) = fz Z Aj1751»j2,52(ik’T)Jl;k,51J]:+r732eXp(ka)' (A.52)
k=1 s1,52=1

We also require the following lemma which is analogous to Lemma A.2; but applied to the bootstrap

spectral density estimator ?}(w)

Lemma A.15 Suppose that {X,} is an a-mizing second order stationary or locally stationary time series
(which satisfies Assumption 3.2(L2)) with a > 4 and the moment sup, || X,||s < oo where s > 4o /(a0 — 2).
For h # 0 either the covariance of locally stationary covariance satisfies |k (h)|1 < C|h|=3) or |k(u; h)|; <

C|h|=*e) for some € > 0. Let Ji(wi) be defined as in Step 5 of the bootstrap scheme.

(a) If Tp? — 0o and p — 0 as T — oo, then we have

(i) sup) <per [B[E* (B (wi))] — £(wi)| = O + b+ (bT) 71 + (p°T) ) and var(fr(wr)) = O(L +
g + )
(ii) supy<per [E* (E(wr)) — F(wi)l 20,

(1ii) Further, if f(w) is nonsingular on [0,2x], then for all 1 < s1,s9 < d, we have

~%

sup <<t Loy o0 (B* (£ (@r))) = Liysa (F (i) 5 0.

(b) In addition, suppose for the mizing rate o« > 16 there exists an s > 16a/(a—2) such that sup, || X, ||s <

oo. Then, we have

* [Pk 1 1 1
| E*[f (wk)]—f(wk)||8:O<pT1/2+pQT+p+b+ bT> . (A.53)

PROOF. To reduce notation, we prove the result in the univariate case. By using Theorem 4.1 and equation

(4.14), we have

E*|J5(w;j)|? = ho(w;) + Ri(w)),
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where ?Lz(wj) is defined in (4.9) and || supy< ;<7 [R1(wj)l[l2 = O(T%Dz). From E*(f}(wk)) = E*(%Zij(wk—

w;)|J5(w;)|?) and the result above, we get

E*(f7(wr)) = fr(wr) + Ra(wr), (A.54)

where fr(w) = + 2opr<r—1 (1) (1 = p)"lexp(—irw)Ra(r) and Ro(r) is defined in (4.2). It can be shown
that || sup,, Ra(wk)ll2 = O(T%ﬂ). Since Ra(wy) is negligible, for the rest of the proof, we only need to
analyze the leading term fr(w) (note that unlike E* (f}(ws)), fr(w) is defined over [0,27] and not just for
the fundamental frequencies).

Using the same methods as those used in the proof of Lemma A.2(a), it is straightforward to show that
Elfr(w)] = f(w) + Rs(w), (A.55)

where sup,, |R3(w)| = O(57 + b+ p). This proves sup,<,<7 |[E[E* (f}(wk))] — flwr)| = O(p+b+ (bT) 1 +
(p*T)~1). Using (4.6), it is straightforward to show that var(fr(w)) = O(1/(pT)), therefore by (A.54) and
the above we have shown (ai).

By using identical methods to those used to prove Lemma A.2(ci) we can show sup,, \]?T(w) —E(fr(w))| K
0. Thus from uniform convergence of fr(w) and part (ai) of this lemma we immediately obtain uniform
convergence of E* [fi’;(wk)] (supy<p<r [E* [f}(wk)] — f(wg)|). Similarly to show (aiii) we apply identical
methods to those used in the proof of Lemma A.2(cii) to fr(w).

Finally, to show (b), we use that

[E* [z (wi)] = Fwnlls < [1frwr) = Elfr@@r)llls + ELFr@r)] = f@r)] + | Ra(wr) ls.

By using (4.6) and the Minkowski inequality, we can show H]?T(wk) — E[fr(wp)] Hs = O((Tp?*)~Y/?), where
this and the bounds above give (b). O

Lemma A.16 Suppose that Assumption 5.2 and the conditions in Lemma A.15 hold. Let ¢

]17j2(
¢, j,(r,0) be defined as in (A.52). Then we have

r,0) and

T<E* (€5 5o (r, L) E*[E, 5, (r2, £2)] — E*[&, 4, (r1, 01)|E* [, ., (r2,€2)]> = O, (a(T, b,p))
(A.56)
T<E* [E;l,jz (rl’ 51)8;3&1 (TQ’ 62)] - E [5;17j2 (Tl’ 61)5;3&1 (TQ’ gQ)]) - Op (a(T’ b,p))
(A.57)

wherea(T’b’p):b;p2+ﬁ+ﬁ+b+ﬁz+pﬁ/2.

PROOF. To simplify notation, we prove the result for the case d =1, ;1 = ¢5 = 0 and r; = —ry = r (the
proof is identical for d > 1, {1 = ly # 0 and 1 # —ry). We first prove (A.56). Recalling that the only
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difference between ¢*(r,0) and ¢*(r,0), is that A(zz ) is replaced with A(E* (zz ), the difference between
their expectations squared (with respect to the stationary bootstrap measure) is

7([B @00 - [0 ) = 3 5 (B IAG, T AT, ) Thue]

k1,k2
A(E*(fkl, ))A(E*(ka,,.))E*(leJ21+T)E*(J1:2J1:2+r))
1 * * * * * * fo - * * * *
T > <E [ar, I, ) B [0k, T3y ] — G @, BV, L) [I/@,r]>, (A.58)
k1,k2
where

o~k ~ ~ ~ ~%

ai = A(f, ), = A(E*(i;r)) and i;r = L:,r -E(/,,) (A.59)

and I, is defined in Lemma A.14. To bound the above, we use the Taylor expansion

~% ~% ~% ~% ~x ]_ ~%

Af, ) = A® G )+ (T, — B (G ) VARG ) + 5 (F, — B )V VAL ), — BT ().

where V and V? denotes the first and second partial derivative with respect to / o and L: . lies between
E; and E (IZ .). To reduce cumbersome notation (and with a slight loss of accuracy, since it will not
effect the calculation) we shall ignore that zk . is a vector and use (A.59) to rewrite the above Taylor

expansion as

L0a, 0 10%

ap = ak+fk7+fk: 2972 (A.60)
where aj = VQA@Z ). Substituting (A.60) into (A.58), we obtain the decomposition
2 2 °
i=1
where the terms {I;}5_; are
8ak’2 * * (T Pk

I, = Z ap, — 2B (I B (I f) (A.61)

kl,kQ

oay, day, ~ ~ o~

L = = Z - ZE* Ikl Tfl:?k1]E* [I;sz Tfl:;]

T of of

2_

I3 = 2T Z ak’2E*|: k1, Tfkl 8f2 :| (II:Q,T‘)

k1,k2

8ak2 2_ *[T*

I = *Z I, o Ji afz E*[I}, . i)

k1,k2

1 2 *

Iy = AT |:]€17‘fk1 o2 ] [kzrfk2 O f2 }

k1,k2
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(with I} . = I} — E*(I} ) and Iy, I5, Is are defined similarly. We first bound I;. Writing the bootstrap
spectral density function estimator as ]?,j = %Z Ky (wi wj)fjf o gives
1

-~ 8ak *
L= Z Ky(wr, — wj)ar, anE (I}, )eov* (T, 1, T )
k1,k2,j

By using the uniform convergence result in Lemma A.15(a), we have supy |ax — ax| — 0. Therefore
|I1| = O,(1)I}, where

1 0
T Z [ Ky (wry — wj)] - ‘akl akQ‘ ‘E* Iy, »)eov” (Ik2 r ]o)|
k1,k2,j

with ap = A(f k’r) and %Lf = ViA(f k’r). Using Cauchy-Schwarz inequality gives

) 1 o N
H1lly < 7 > KWk, — wy)l - |ak, akQ\ |E* (L, )12 [|eov® (Ikg,ra 70l
k1,k2,j

(A 40) (A 42)

thus we have I = Op(ﬁ + pG#T” = O(T r) and [} = Op(ﬁ + Z%TQ) = O(TLPAL). We now bound I5. B
using an identical method to that given above (and the same notation), we have |I5| = O,(1)Iy, where
A 1

J2,0

Oday, 0 ~,
I, = T Z |Kb(wk1—wjl)| ’Kb Why — wJQ |§;1 5;2} }ov Ile,IJI0)00\7*([22’7",[]20)’
k1,k2,71,52
“ 1 6ak1 8ak2 % %
=Bl < 7 30 Kolwn —wi)l- Ko —wi)l- [ 52 [leov™ G o Tl - [leov (B, oo T o)
k1,k2.j1.52 |

(A.42) (A.42)
which gives I = OP<T2p4) and thus Ir, = O (T21p4).

To bound I3, we use Holder’s inequality to give

1 R o N1/2 1/6 o%ar 1/3
I3l < o= 3 fawl (B1F1) (2175, 0°) ( \af’“l?’) B (1, )
k1,k2

Under Assumption 5.2(B1), we have that ( )1/3

} 57 f is uniformly bounded in probability. Therefore

using this and Lemma A.15(a), we have |I3| = O,(1)I3, where

1 ~ 1/2
= 3 gl (A1) (|10 B (1 )

k1,k2

Taking expectations of the above and using Hélder’s inequality gives

: %Z‘%WH(E*%!‘*)WH 3 (ORI oR e/ P
k1,k2 2

* 1/2 * 1/6
- Z larg | - VB [ B |23 O C S (17, ) 13
k1 ko

(A.39) (A.40) (A.41)
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Thus by using Lemma A.14, we obtain |I3| = (pr ). Using a similar method, we obtain |I7| = O, (1),
where
T aak2 x| 7% 16)1/6 x| ok |4 e *[T*  Fx
I = = Z } E ‘Ikw"‘ ) E ’fkl‘ }E [[k2,7‘fl€2]| and
kl ko
7 % 61/6 1/2 1 1
I7lli < = Z 1B |75, 1l / ||E*’fk1‘ 1 / HCOV Ikg rafkg I, =0 (Tp7T5/2 + b2T5/2p3)
kl k2 (A.40) (A.39) (A.45)

Finally we use identical arguments as above to show that |Ig| = O,(1)Ig, where

A 1

o< X (1R () () ()

1,72

Thus, using similar arguments as those used to bound || 3|1, we have |Ig| = O,((b*T)~"). Similar arguments

can be used to obtain the same bounds for Iy, ..., Is, which altogether gives (A.56).

To bound (A.57), we write I} as Iy = T;T + E*(I};,) and substitute this in the difference to give

* [k k[ vk 1 * * * * * - -~ * * *
T (E*[e*(r, 0)]2 — E*[¢ (r,o)]Q) =7 § j (E [aklakzlkwf,w] — g, A, B [Ikl’rlkz,r]>
k1,k2

*ﬂ

Z (o, 05, — o) [, 70 )+ B0 T+ B (8 O (17,)] )
1,ko

v 3 B ([ohoi, — a0 75, 720 ).

k1,k2

We now substitute the Taylor expansion of aj about @ in (A.60) into the above to give

T(E*[e*(r,0)]* — E*[¢*(r,0)]%) = Z II;, (A.62)

where

Iy = 7 > E ([Iil,rE(IZw) +E (I, )y - + B BN, )]
K1,k

day,

[ak1+f]€1 f +f/€122 an ][ka a]}Z +fk222 afZ ]>7
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80’16 * Tx  px
L = Z ax, 2E Ikh,,lkwfh),

kl,kz
day, Oay, ., ~ S %
Il = 72 - 2E Ik177’fk1[k277‘f/€2]’
of of
k1,k2
II3 = Z G/k;QE* |:Ik1 r k'l 8f2 k2,7':|7
kl,kz
3ak2 . 2_
II7 = T Z E Ik:lr kl afg Ik)QT'ka )
k1 ko

1 _ 2 2 *
Iy = AT |:k17"fk1 3f2 kzr’sz 3f2]
k1,k2

and 114, I15, I I are defined similarly. By using similar methods to those used to bound (A.56), Assumption
5.2(B1), (A.39), (A.40) and (A.41), we can show that |IIo| = O,((Tp?*b)~'). To bound |I1|,...,|I1Ig| we
use the same methods as those used to bound (A.56) and the bound in (A.39), (A.40), (A.43), (A.44),
(A.45) and (A.46) to show (A.57), we omit the details as they are identical to the proof of (A.56). O

Lemma A.17
Suppose that Assumption 5.2(B2) and the conditions in Lemma A.15 hold. Let &, ; (r,0), & ;. (r,¢) and

¢, j,(r,£) be defined as in (A.52). Then, we have

T(E" [, 5, (r, 0) B & (ra, )] — B*[&, 5, (r1,01) | E* [5}37]'4(7“2,52)]) = Oy (a(T,b,p)), (A.63)

(=
(=
(=
(e

T(E" [, j,(r1, )&, 5, (ra, ba) | — B [E, ]2(T1751)5§3,j4(7’27€2)]> = O, (a(T,b,p)), (A.64)

T\ E[&, o (r1, C)]B* [, 5, (ra, 62)] — B [&, 5, (r1, 1) | E? [5};,]-4(7’2752)]) = Op (a(T'b,p)), (A.65)

& (11, 00) & S (r2,02)] — EX[&, 5, (11, 01) ¢, J4(7“27€2)}> = Op (a(T,b,p)), (A.66)

where a(T,b,p) = pr2 + Tp4 + bgT +b+ sz + T1/2

PROOF. Without loss of generality, we consider the case d =1, /1 = fo = 0 and r; = —r9 = r and use the

same notation introduced in the proof of Lemma A.16. To bound (A.63), we use the Taylor expansion

Qpey oy — Aoy Uy

Jday, Oa
o il

~ Oay., Oa
g, —2 8f +fk1ak2 af Ulky k1

of of’
where aj, = A(Lw), ar = A(Lw) and ik:,r lies between ik,r and ik:,r‘ Using the above we have

8 akl

8 akQ (Lk;
2 afg

k’1 8f2

1~ 1~

T((E*[é*(r,o)]) (B*[e(r, > ZHL, (A.68)
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where

aak * *
I = Z ak szE (T, ) E (I, )
k1 ks
I = = Zakl 572 f B (I, B (I, ),
k17k2
I3 = — Z klfkg 1 %0 (L, ) E (Iy 1)

of of

By using Lemma A.15, (A.40) and (A.53) and the same procedure used to bound (A.56), we obtain (A.63).
To bound (A.64), we use a similar decomposition to (A.68) to give

T(E*[é*(r,o)] . o > ZI%,

where

1 * [ Tx * [Tk X[ Tk Tx * [ Tk * [Tk
vy = T Z E*[1f E* (I}, ) + B (I, ), + EX(I DE (I, [Fra

akl
k1,k2 8f

1+ . 0% 1~ 0%ay, Oay, Oay,
5fk2ak1 af];? + sza’kQ afz +fk1fk:2 8;2 a;]

day, .
2l Z akl 2fk2E (Ik1 ’I‘Ikg 'I’)
kl,kz

T Z a’kl 2 kaE*(Ik‘l 7"Ik22 T)
klka 0f

8ak 8ak £/ T Tx
- E fklka afl 8f2E (Ik1,7“‘[k277“)'
kl,k2

Again using the same methods to bound (A.56), Lemma A.15 (A.41), (A.44) and (A.53) we obtain I'V; =
Op(b+ 72 + o7z + 1), and thus (A.64).

To bound (A.65) and (A.66) we use identical methods to those given above, hence we omit the details.
O

PROOF of Lemma 5.2 We will prove (ii), the proof of (i) is similar. We observe that
T<COV* (G510 (1, 00), €, (r €2) ] — cov™ [&5, 5, (r, £1), € 5, (1, £2>})
= T<E* [71 2 (1 6 5, (r lr)] —E [E;iuz (7, 1), 4, (1 EQ)])

i <E @, DB [, 02)] — E* [, (s 0] B2, (s £2)] > .
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Substituting (A.56)-(A.64) into the above gives the bound O,(a(T,b,p)). By using a similar method, we

can show

T<cov* €5, 5 (1, b)), e, 5, (r )] — cov* [, 4, (r, b)), ¢, 5, (r Eg)]) = Op(a(T,b,p)).
Together, these two results give the bounds in Lemma 5.2. ]

PROOF of Theorem 5.2 The proof of (i) (in the case of fourth order stationarity) follows by using

that W is a consistent estimator of W, (see Theorem 5.1 and Lemma 5.2) therefore

P
|T£nd_Tm,nd — 0.

tAd) ’

Since Ty n,q is asymptotically a chi-squared (see Theorem 3.4), it immediately follows from the above that
Tomn.a 18 asymptotically a chi-squared too.

To prove (ii), we need to consider the case that {X,} is locally stationary with A, (r,¢) # 0 for some
0 < r < m. From Theorem 3.6, we know that \/T(?RIA(n(r) — RA,(r) — RB,(r)) and \/T(%I/in(r) —
A, (r) — 8B, (r)) have a finite variance and are asymptotically normal with mean asymptotically equal

to zero. Therefore, since W = O(p~'), we have (W7)~1/2 = O(p'/?). This altogether gives
V(W) PRE(r) P + [VT (W) 728K, (r)|* = Oy(Th),

and thus the required result. ]

84



References

Beltrao, K. I., & Bloomfield, P. (1987). Determining the bandwidth of a kernel spectrum estimate. Journal
of Time Series Analysis, 8, 23-38.

Billingsley, P. (1995). Probability and measure (Third ed.). New York: Wiley.

Bloomfield, P., Hurd, H., & Lund, R. (1994). Periodic correlation in stratospheric data. Journal of Time
Series Analysis, 15, 127-150.

Bousamma, F. (1998). Ergodicité, mélange et estimation dans les modéles GARCH (Unpublished doctoral
dissertation). Paris 7.

Brillinger, D. (1981). Time series, data analysis and theory. San Francisco: STAM.

Dahlhaus, R. (1997). Fitting time series models to nonstationary processes. Annals of Statistics, 16, 1-37.

Dahlhaus, R. (2012). Handbook of statistics, volume 30. In S. Subba Rao T. Subba Rao & C. Rao (Eds.),
(p. 351-413). Elsevier.

Dahlhaus, R., & Polonik, W. (2006). Nonparametric quasi-maximum likelihood estimation for Gaussian
locally stationary processes. Annals of Statistics, 34, 2790-2824.

Dahlhaus, R., & Polonik, W. (2009). Empirical spectral processes for locally stationary time series.
Bernoulli, 15, 1-39.

Dette, H., Preuss, P., & Vetter, M. (2011). A measure of stationarity in locally stationary processes with
applications to testing. Journal of the Americal Statistical Association, 106, 1113-1124.

Dwivedi, Y., & Subba Rao, S. (2011). A test for second order stationarity based on the Discrete Fourier
Transform. Journal of Time Series Analysis, 32, 68-91.

Eichler, M. (2012). Graphical modelling of multivariate time series. Probability Theory and Related Fields,
153, 233-268.

Escanciano, J. C., & Lobato, I. N. (2009). An automatic Portmanteau test for serial correlation. Journal
of Econometrics, 151, 140-149.

Feigin, P., & Tweedie, R. L. (1985). Random coefficient Autoregressive processes: A Markov chain analysis
of stationarity and finiteness of moments. Journal of Time Series Analysis, 6, 1-14.

Franke, J., Stockis, J. P., & Tadjuidje-Kamgaing, J. (2010). On the geometric ergodicity of CHARME
models. Journal of Time Series Analysis, 31, 141-152.

Fryzlewicz, P., & Subba Rao, S. (2011). On mixing properties of ARCH and time-varying ARCH processes.
Bernoulli, 17, 320-346.

Goodman, N. R. (1965). Statistical test for stationarity within the framework of harmonizable processes
(Tech. Rep. No. 65-28 (2nd August)). Office for Navel Research.

Hallin, M. (1984). Spectral factorization of nonstationary moving average processes. Annals of Statistics,

85



12, 172-192.

Hindberg, H., & Olhede, S. C. (2010). Estimation of ambiguity functions with limited spread. IEEFE
Transactions on Signal Processing, 58, 2383-2388.

Hosking, J. R. M. (1980). The multivariate Portmanteau statistic. Journal of the American Statistical
Association, 75, 602-608.

Hosking, J. R. M. (1981). Lagrange-tests of multivariate time series models. Journal of the Royal Statistical
Society (B), 43, 219-230.

Hurd, H., & Gerr, N. (1991). Graphical methods for determining the presence of periodic correlation.
Journal of Time Series Analysis, 12, 337-350.

Jentsch, C. (2012). A new frequency domain approach of testing for covariance stationarity and for periodic
stationarity in multivariate linear processes. Journal of Time Series Analysis, 33, 177-192.

Kreiss, J.-P., & Lahiri, S. N. (2012). Handbook of statistics, volume 30. In S. Subba Rao T. Subba Rao
& C. Rao (Eds.), (p. 3-26). Elsevier.

Lahiri, S. N. (2003). Resampling methods for dependent data. New York: Springer.

Laurent, S., Rombouts, J., & Violante, F. (2012). On the forecasting accuracy of multivariate GARCH
models. Journal of Applied Econometrics, 27, 934-955.

Lee, J., & Subba Rao, S. (2011). A note on general quadratic forms of nonstationary processes. Preprint.

Lei, J., Wang, H., & Wang, S. (2012). A new nonparametric test for stationarity in the time domain.
Preprint.

Lii, K. S., & Rosenblatt, M. (2002). Spectral analysis for harmonizable processes. Annals of Statistics,
30, 258-297.

Loretan, M., & Phillips, P. C. B. (1994). Testing the covariance stationarity of heavy tailed time series.
Journal of Empirical Finance, 1, 211-248.

Liitkepohl, H. (2005). New introduction to multiple time series analysis. Berlin: Springer.

Meyn, S. P., & Tweedie, R. (1993). Markov chains and stochastic stability. London: Springer.

Mokkadem, A. (1990). Propertiés de mélange des processus autoregressifs polnomiaux. Annales de I'I H.
P., 26, 219-260.

Nason, G. (2013). A test for second-order stationarity and approximate confidence intervals for localized
autocovariances for locally stationary time series. Journal of the Royal Statistical Society, Series (B),
75.

Neumann, M. (1996). Spectral density estimation via nonlinear wavelet methods for stationary nonGaus-
sian time series. J. Time Series Analysis, 17, 601-633.

Olhede, S., & Ombao, H. (2013). Covariance of replicated modulated cyclical time series. IEEE Transac-
tions on Signal Processing, 61, 1944-1957.

86



Olhede, S. C. (2011). Ambiguity sparce processes. http://arxiv.org/pdf/1103.3932v2.pdf.

Paparoditis, E. (2009). Testing temporal constancy of the spectral structure of a time series. Bernoulli,
15, 1190-1221.

Paparoditis, E. (2010). Validating stationarity assumptions in time series analysis by rolling local peri-
odograms. Journal of the American Statistical Association, 105, 839-851.

Paparoditis, E., & Politis, D. N. (2004). Residual-based block bootstrap for unit root testing. Econometrica,
71, 813-855.

Parker, C., Paparoditis, E., & Politis, D. N. (2006). Unit root testing via the stationary bootstrap. Journal
of Econometrics, 133, 601-638.

Parzen, E. (1999). Stochastic processes. San Francisco: STAM.

Patton, A., Politis, D., & White, H. (2009). Correction to “automatic block-length selection for the
dependent bootstrap” by D. Politis and H. White’,. Econometric Reviews, 28, 372-375.

Pelagatti, M. M., & Sen, K. S. (2013). Rank tests for short memory stationarity. Journal of Econometrics,
172, 90-105.

Pham, T. D., & Tran, L. T. (1985). Some mixing properties of time series models. Stochastic processes
and their applicatons, 19, 297-303.

Politis, D., & Romano, J. P. (1994). The stationary bootstrap. Journal of the American Statistical
Association, 89, 1303-1313.

Politis, D., & White, H. (2004). Automatic block-length selection for the dependent bootstrap. Econometric
Reviews, 23, 53-70.

Priestley, M. B. (1965). Evolutionary spectral and nonstationary processes. Journal of the Royal Statistical
Society (B), 27, 385-392.

Priestley, M. B., & Subba Rao, T. (1969). A test for non-stationarity of a time series. Journal of the Royal
Statistical Society (B), 31, 140-149.

Robinson, P. (1989). Nonparametric estimation of time-varying parameters. In P. Hackl (Ed.), Statistical
analysis and Forecasting of Economic Structural Change (p. 253-264). Berlin: Springer.

Robinson, P. (1991). Automatic frequency inference on semiparametric and nonparametric models. Econo-
metrica, 59, 1329-1363.

Statulevicius, V., & Jakimavicius. (1988). Estimates of semiivariant and centered moments of stochastic
p rocesses with mixing: 1. Lithuanian Math. J., 28, 226-238.

Subba Rao, T. (1970). The fitting of non-stationary time-series models with time-dependent parameters.
Journal of the Royal Statistical Society B, 32, 312-22.

Subba Rao, T., & Gabr, M. M. (1984). An introduction to bispectral analysis and bilinear time series

models (Vol. 24). Berlin: Springer.

87



Terdik, G. (1999). Bilinear stochastic models and related problems of nonlinear time series analysis
(Vol. 142). Berlin: Springer.

Vogt, M. (2012). Nonparametric regression with locally stationary time series. Annals of Statistics, 40,
2601-2633.

von Sachs, R., & Neumann, M. H. (1999). A wavelet-based test for stationarity. Journal of Time Series
Analysis, 21, 597-613.

Walker, A. M. (1963). Asymptotic properties of least square estimate of the parameters of the spectrum
of a stationary non-deterministic time series. J. Austral. Math Soc., 4, 363-384.

Whittle, P. (1953). The analysis of multiple stationary time series. Journal of the Royal Statistical Society
(B).

Yaglom, A. M. (1987). Correlation theory of stationary and related random functions. New York: Springer.

88



