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Abstract

It is well known that the discrete Fourier transforms (DFT) of a second order stationary time series

between two distinct Fourier frequencies are asymptotically uncorrelated. In contrast for a large class

of second order nonstationary time series, including locally stationary time series, this property does

not hold. In this paper these starkly differing properties are used to define a global test for stationarity

based on the DFT of a vector time series. It is shown that the test statistic under the null of station-

arity asymptotically has a chi-squared distribution, whereas under the alternative of local stationarity

asymptotically it has a noncentral chi-squared distribution. Further, if the time series is Gaussian and

stationary, the test statistic is pivotal. However, in many econometric applications, the assumption

of Gaussianity can be too strong, but under weaker conditions the test statistic involves an unknown

variance that is extremely difficult to directly estimate from the data. To overcome this issue, a scheme

to estimate the unknown variance, based on the stationary bootstrap, is proposed. The properties of the

stationary bootstrap under both stationarity and nonstationarity are derived. These results are used

to show consistency of the bootstrap estimator under stationarity and to derive the power of the test

under nonstationarity. The method is illustrated with some simulations. The test is also used to test

for stationarity of FTSE 100 and DAX 30 stock indexes from January 2011-December 2012.

Keywords and Phrases: Discrete Fourier transform; Local stationarity; Nonlinear time

series; Stationary bootstrap; Testing for stationarity

1 Introduction

In several disciplines, as diverse as finance and the biological sciences, there has been a dramatic increase

in the availability of multivariate time series data. In order to model this type of data, several multivariate

time series models have been proposed, including the Vector Autoregressive model and the vector GARCH
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model, to name but a few (see, for example, Lütkepohl (2005) and Laurent, Rombouts, and Violante

(2012)). The majority of these models are constructed under the assumption that the underlying time

series is stationary. For some time series this assumption can be too strong, especially over relatively long

periods of time. However, relaxing this assumption, to allow for nonstationary time series models, can

lead to complex models with a large number of parameters, which may not be straightforward to estimate.

Therefore, before fitting a time series model, it is important to check whether or not the multivariate time

series is second order stationary.

Over the years, various tests for second order stationarity for univariate time series have been proposed.

These include, Priestley and Subba Rao (1969), Loretan and Phillips (1994), von Sachs and Neumann

(1999), Paparoditis (2009, 2010), Dahlhaus and Polonik (2009), Dwivedi and Subba Rao (2011), Dette,

Preuss, and Vetter (2011), Dahlhaus (2012), Example 10, Jentsch (2012), Lei, Wang, and Wang (2012) and

Nason (2013). However, as far as we are aware there does not exist any tests for second order stationarity

of multivariate time series (Jentsch (2012) does propose a test for multivariate stationarity, but the test

was designed to the detect the alternative of a multivariate periodically stationary time series). One crude

solution is to individually test for stationarity for each of the univariate processes. However, there are

a few drawbacks with this approach. The first is that most multiple testing schemes use a Bonferroni

correction, which results in a test statistic which is extremely conservative. The second problem is that

such a strategy can lead to misleading conclusions. For example if each of the marginal time series are

second order stationary, but the cross-covariances are second order nonstationary, the above testing scheme

would not be able detect the alternative. Therefore there is a need to develop a test for stationarity of a

multivariate time series, which is the aim in this paper.

The majority of the univariate tests, are local, in the sense that they are based on comparing the

local spectral densities over various segments. This approach suffers from some possible disadvantages. In

particular, the spectral density may locally vary over time, but this does not imply that the process is

second order nonstationary, for example Hidden Markov models can be stationary but the spectral density

can vary according to the regime. For these reasons, we propose a global test for multivariate second order

stationarity.

Our test is motivated by the tests for detecting periodic stationarity (see, for example, Goodman

(1965), Hurd and Gerr (1991), Bloomfield, Hurd, and Lund (1994) and S. Olhede and Ombao (2013))

and the test for second order stationarity proposed in Dwivedi and Subba Rao (2011), all these tests

use fundamental properties of the discrete Fourier transform (DFT). More precisely, the above mentioned

periodic stationarity tests are based on the property that the discrete Fourier transform is correlated if

the difference in the frequencies is a multiple of 2π/P (where P denotes the periodicity), whereas Dwivedi

and Subba Rao (2011) use the idea that the DFT asymptotically uncorrelates stationary time series, but
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not nonstationary time series. Motivated by Dwivedi and Subba Rao (2011), in this paper, we exploit

the uncorrelating property of the DFT to construct the test. However, the test proposed here differs from

Dwivedi and Subba Rao (2011) in several important ways, these include (i) our test takes into account the

multivariate nature of the time series, (ii) the test proposed here is defined such that it can detect a wider

range of alternatives and (iii) the test in Dwivedi and Subba Rao (2011) assumes Gaussianity or linearity

of the underlying time series (and calculates the power under the assumption of Gaussianity), which in

several econometric applications is unrealistic, whereas our test allows for testing of nonlinear stationary

time series.

In Section 2, we motivate the test statistic by comparing the covariance between the DFT of stationary

and nonstationary time series, where we focus on the large class of nonstationary processes called locally

stationary time series (see Dahlhaus (1997), Dahlhaus and Polonik (2006) and Dahlhaus (2012) for a

review). Based on these observations, we define DFT covariances which in turn are used to define a

Portmanteau-type test statistic. Under the assumption of Gaussianity, the test statistic is pivotal, however

for non-Gaussian time series the test statistic involves a variance which is unknown and extremely difficult

to estimate. If we were to ignore this variance (and thus implicitly assume Gaussianity) then the test

can be unreliable. Therefore in Section 2.4 we propose a bootstrap procedure, based on the stationary

bootstrap (first proposed in Politis and Romano (1994)), to estimate the variance. In Section 3, we derive

the asymptotic sampling properties of the DFT covariance. We show that under the null hypothesis, the

mean of the DFT covariance is asymptotically zero. In contrast, under the alternative of local stationarity,

we show that the DFT covariance estimates nonstationary characteristics in the time series. These results

are used to derive the sampling distribution of the test statistic. Since the stationary bootstrap is used to

estimate the unknown variance, in Section 4, we analyze the stationary bootstrap when the underlying time

series is stationary and nonstationary. Some of these results may be of independent interest. In Section 5

we show that under (fourth order) stationarity the bootstrap variance estimator is a consistent estimator

of the true variance. In addition, we analyze the bootstrap variance estimator under nonstationarity and

show that it has an influence on the power of the test. The test statistic involves some tuning parameters

and in Section 6.1, we give some suggestions on how to select these tuning parameters. In Section 6.2,

we analyze the performance of the test statistic under both the null and the alternative and compare the

test statistic when the variance is estimated using the bootstrap and when Gaussianity is assumed. In

the simulations we include both stationary GARCH and Markov switching models and for nonstationary

models we consider time-varying linear models and the random walk. In Section 6.3, we apply our method

to analyze the FTSE 100 and DAX 30 stock indexes. Typically, stationary GARCH-type models are used

to model this type of data. However, even over the relatively short period January 2011-December 2012,

the results from our test suggest that the log returns are nonstationary.
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The proofs can be found in the Appendix.

2 The test statistic

2.1 Motivation

Let us suppose {Xt = (Xt,1, . . . , Xt,d)
′, t ∈ Z} is a d-dimensional constant mean, multivariate time series

and we observe {Xt}Tt=1. We define the vector discrete Fourier transform (DFT) as

JT (ωk) =
1√
2πT

T∑

t=1

Xte
−itωk , k = 1, . . . , T,

where ωk = 2π k
T are the Fourier frequencies. Suppose that {Xt} is a second order stationary multivariate

time series, where the autocovariance matrices of {Xt} satisfy

∞∑

h=−∞
|h| · |cov(Xh,j1 , X0,j2)| < ∞ for all j1, j2 = 1, . . . , d. (2.1)

It is well known for k1 − k2 6= 0, that cov(JT,m(ωk1), JT,n(ωk2)) = O( 1
T ) (uniformly in T , k1 and k2), in

other words the DFT has transformed a stationary time series into a sequence which is approximately

uncorrelated. The behavior in the case that the vector time series is second order nonstationary is very

different. To obtain an asymptotic expression for the covariance between the DFTs, we will use the

rescaling device introduced by Dahlhaus (1997) to study locally stationary time series, which is a class of

nonstationary processes. {Xt,T } is called a locally second order stationary time series, if its covariance

structure changes slowly over time such that there exist smooth matrix functions {κ(·; r)}r which can

approximate the time-varying covariance matrices. More precisely, |cov(Xt,T , Xτ,T ) − κ( τT ; t− τ)|1 ≤
T−1κ(t−τ), where

∑
h κ(h) < ∞. An example of a locally stationary model which satisfies these conditions

is the time-varying moving average model defined in Dahlhaus (2012), equations (63)–(65) (with ℓ(j) =

log(|j|)1+ε|j|2 for |j| 6= 0). It is worth mentioning that Dahlhaus (2012) uses the slightly weaker condition

ℓ(j) = log(|j|)1+ε|j|. In the Appendix (Lemma A.8), we show that

cov(JT (ωk1), JT (ωk2)) =

∫ 1

0
f(u;ωk1)exp(−i2πu(k1 − k2))du+O

(
1

T

)
, (2.2)

uniformly in T , k1 and k2, where f(u;ω) = 1
2π

∑∞
h=−∞ κ(u;h) exp(−ihω) is the local spectral density

matrix (see Lemma A.8 for details). We recall if {Xt}t is second order stationary then the ‘spectral density’

function f(u;ω) does not depend on u and the above expression reduces to cov(JT (ωk1), JT (ωk2)) = O( 1
T )

for k1 − k2 6= 0. It is interesting to observe that for locally stationary time series its DFT sequence mimics

the behavior of a time series, in the sense that the correlation between the DFTs decays the further apart

the frequencies.
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A further, related motivation for our test is that a time series {Xt} is second order stationary if and

only if it admits the Fourier-Stieltjes integral (Cramér Representation)

Xt =

∫ 2π

0
exp(itω)dZ(ω), (2.3)

where {Z(ω);ω ∈ [0, 2π]} is an orthogonal increment vector process (see for example, Yaglom (1987),

Chapter 2). The DFT JT (ωk) can be considered as an estimator of the increment dZ(ωk). The represen-

tation (2.3) can be generalized to include an increments process {Z(ω);ω ∈ [0, 2π]} which no longer has

orthogonal increments. By doing so we induce second order nonstationarity within the time series, this

general representation is called a Harmonizable time series (see for example, Yaglom (1987) and Lii and

Rosenblatt (2002)). It is worth noting that periodically stationary time series have this representation as

well as locally stationary time series, since we can represent {Xt,T } as

Xt,T =

∫ 2π

0
exp(itω)dZT (ω), (2.4)

where ZT (ω) =
1√
2πT

∑⌊ ω
2π

T ⌋
k=1 JT (ωk), noting that the correlation between the increments is given in (2.2).

Therefore, testing for uncorrelatedness of the DFTs is effectively the same as testing for uncorrelatedness

of the increment process.

2.2 The weighted DFT covariance

The discussion in the previous section suggests that to test for stationarity, we can transform the time

series into the frequency domain and test if the vector sequence {JT (ωk)} is asymptotically uncorrelated.

Testing for uncorrelatedness of a multivariate time series is a well established technique in time series

analysis (see, for example, Hosking (1980, 1981) and Escanciano and Lobato (2009)). Most of these tests

are based on constructing a test statistic which is a function of sample autocovariance matrices of the time

series. Motivated by these methods, we will define the weighted (standardized) covariance DFT and use

this to define the test statistic.

To summarize the previous section, if {Xt} is a second order stationary time series which satisfies (2.1),

then E(JT (ωk)) = 0 (for k 6= 0, T/2, T ) and var(JT (ωk)) → f(ωk) as T → ∞, where f : [0, 2π] → C
d×d

with

f(ω) = {fj1,j2(ω); j1, j2 = 1, . . . , d} =
1

2π

∞∑

h=−∞
κ(h) exp(−ihω)

is the spectral density matrix of {Xt}, where κ(r) = cov(Xr, X0). If the spectral density f(ω) is non-

singular on [0, 2π], then its Cholesky decomposition is unique and well defined on [0, 2π]. More precisely,

f(ω) = B(ω)B(ω)′, (2.5)
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where B(ω) is a lower triangular matrix and B(ω)′ denotes the transpose and complex conjugate of B(ω).
Let L(ωk) := B−1(ωk), thus f−1(ωk) = L(ωk)

′
L(ωk). Therefore, if {Xt} is a second order stationary

time series, then the vector sequence, {L(ω1)JT (ω1), . . . ,L(ωT )JT (ωT )}, is asymptotically an uncorrelated

sequence with a constant variance.

Of course, in reality the spectral density matrix f(ω) is unknown and has to be estimated from the

data. Let f̂T (ω) be a nonparametric estimate of f(ω), where

f̂T (ω) =
1

2πT

T∑

t,τ=1

λb(t− τ)exp(−i(t− τ)ω)
(
Xt −X

)(
Xτ −X

)′
ω ∈ [0, 2π] ω ∈ [0, 2π],

{λb(r) = λ(br)} are the lag weights and X = 1
T

∑T
t=1Xt. Below we state the assumptions we require on

the lag window, which we use throughout this article.

Assumption 2.1 (The lag window and bandwidth) (K1) The lag window λ : R → R, where λ(·)
has a compact support [1, 1], is symmetric about 0 with λ(0) = 1 such that the derivative λ′(u)

exists in (0, 1) and is bounded. Some consequences of the above conditions are
∑

h |λb(h)| = O(b−1),
∑

h |h| · |λb(h)| = O(b−2) and |λb(h)− 1| ≤ supu |λ′(u)| · |hb|.

(K2) T−1/2 << b << T−1/4.

Let f̂T (ωk) = B̂(ωk)B̂(ωk)
′
, where B̂(ωk) is the (lower-triangular) Cholesky decomposition of f̂T (ωk) and

L̂(ωk) := B̂−1(ωk). Thus B̂(ωk) and L̂(ωk) are estimators of B(ωk) and L(ωk) respectively.

Using the above spectral density matrix estimator, we now define the weighted DFT covariance matrix

at lags r and ℓ

ĈT (r, ℓ) =
1

T

T∑

k=1

L̂(ωk)JT (ωk)JT (ωk+r)
′
L̂(ωk+r)

′
exp(iℓωk), r > 0 and ℓ ∈ Z. (2.6)

We observe that due to the periodicity of the DFT, ĈT (r, ℓ) is also periodic in r with ĈT (r, ℓ) = ĈT (r+T, ℓ)

for all integers r > 0. To understand the motivation behind this definition, we recall that if the time series

is second order stationary, then L(ωk)JT (ωk) is the DFT of a prewhitened multivariate time series. If the

time series is nonstationary then L(ωk)JT (ωk) can be considered as the DFT of some linearly transformed

multivariate time series. The correlations between {L(ωk)JT (ωk); k} are used to detect for nonstationarities

in this transformed time series. However, if we restrict the DFT covariance to only {ĈT (r, 0); r} then we

will only be able to detect changes in the variance of the transformed time series. For the majority

of nonstationary time series, the ‘nonstationarity’ can be detected here, but there can arise exceptional

situations where changes can only be found in the higher order covariance lags and not the variance. By

generalizing the covariance to ĈT (r, ℓ) the DFT covariance is able to detect changes in the transformed

time series at covariance lag ℓ. The precise details can be found in Section 3.3. It is worth mentioning
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that there is a connection between ĈT (r, ℓ) and classical frequency domain methods for stationary time

series. For example, if we were to allow r = 0 we observe that in the univariate case ĈT (0, 0) corresponds

to the classical Whittle likelihood (where L̂(ωk) is replaced with the square-root inverse of a spectral

density function which has a parametric form, see for example, Whittle (1953), Walker (1963) and Eichler

(2012)). Likewise, by removing L̂(ωk) from the definition, we find that ĈT (0, ℓ) corresponds to the sample

Yule-Walker autocovariance of {Xt} at lag ℓ.

Example 2.1 We illustrate the above for the univariate case (d = 1). If the time series is second order

stationary, then E|JT (ω)|2 → f(ω), which means E|f(ω)−1/2JT (ω)|2 → 1. The corresponding weighted

DFT covariance is

ĈT (r, ℓ) =
1

T

T∑

k=1

JT (ωk)JT (ωk+r)

f̂T (ωk)1/2f̂T (ωk+r)1/2
exp(iℓωk), r > 0 and ℓ ∈ Z.

We will show later in this section that under Gaussianity, the asymptotic variance of ĈT (r, ℓ) does not

depend on any nuisance parameters. One can also define the DFT covariance without standardizing with

f(ω)−1/2. However, the variance of the non-standardized DFT covariance is a function of the spectral

density function and only detects changes in the autocovariance function at lag ℓ.

In later sections, we derive the asymptotic distribution properties of ĈT (r, ℓ). In particular, we show

that under second order stationarity (and some additional technical conditions) and for all fixed m,n ∈ N,

we have weak convergence

√
T




ℜK̂n(1)

ℑK̂n(1)
...

ℜK̂n(m)

ℑK̂n(m)




D→ N




0mnd(d+1),




Wn 0 0 . . . 0

0 Wn 0 . . . 0
...

. . .
. . .

. . .
...

0 0
. . . Wn 0

0 0 . . . 0 Wn







, (2.7)

as T → ∞, where ℜZ and ℑZ are the real and the imaginary parts of a random variable Z, 0d denotes

the d-dimensional zero vector and

K̂n(r) =
(
vech(ĈT (r, 0))

′, vech(ĈT (r, 1))
′, . . . , vech(ĈT (r, n− 1))′

)′
(2.8)

with vech(ĈT (r, ℓ)) defined in (2.12) (see Theorem 3.3 for the details). This result is used to define the

test statistic in Section 2.3. However, in order to construct the test statistic, we need to understand Wn.

Therefore, for the remainder of this section, we will discuss (2.7) and the form that Wn takes for various

stationary time series (the remainder of this section can be skipped on first reading).

7



The DFT covariance of univariate stationary time series

We first consider the case that {Xt} is a univariate (d = 1), fourth order stationary (to be precisely defined

in Assumption 3.1) time series. To detect nonstationarity, we will consider the DFT covariance over various

lags of ℓ and define the vector

K̂n(r) =
(
ĈT (r, 0), . . . , ĈT (r, n− 1)

)′
.

Since K̂n(r) is a complex random vector we consider separately the real and imaginary parts denoted by

ℜK̂n(r) and ℑK̂n(r), respectively. In the simple case that {Xt} is a univariate stationary Gaussian time

series, it can be shown that the asymptotic normality result in (2.7) holds, where

Wn =
1

2
diag(2, 1, 1, . . . , 1︸ ︷︷ ︸

n−1

). (2.9)

and 0d denotes the d-dimensional zero vector. Therefore, for stationary Gaussian time series, the distri-

bution of K̂n(r) is asymptotically pivotal (does not depend on any unknown parameters). However, if we

were to relax the assumption of Gaussianity, then a similar result holds but Wn is more complex, that is,

Wn =
1

2
diag(2, 1, 1, . . . , 1︸ ︷︷ ︸

n−1

) +W(2)
n ,

where the (ℓ1 + 1, ℓ2 + 1)th element of W(2) is W
(2)
ℓ1+1,ℓ2+1 =

1
2κ

(ℓ1,ℓ2) with

κ(ℓ1,ℓ2) =
1

2π

∫ 2π

0

∫ 2π

0

f4(λ1,−λ1,−λ2)

f(λ1)f(λ2)
exp(iℓ1λ1 − iℓ2λ2)dλ1dλ2 (2.10)

and f4 is the tri-spectral density f4(λ1, λ2, λ3) = 1
(2π)3

∑∞
h1,h2,h3=−∞ κ4(h1, h2, h3)exp(−i(h1λ1 + h2λ2 +

h3λ3)) and κ4(t1, t2, t3) = cum(Xt1 , Xt2 , Xt3 , X0) (for statistical properties of the tri-spectral density see

Brillinger (1981), Subba Rao and Gabr (1984) and Terdik (1999)). κ(ℓ1,ℓ2) can be rewritten in terms of

fourth order cumulants by observing that if we define the pre-whitened time series {Zt} (where {Zt} is a

linear transformation of {Xt} which is uncorrelated) then

κ(ℓ1,ℓ2) =
∑

h∈Z
cum(Zh, Zh+ℓ1 , Zℓ2 , Z0). (2.11)

The expression for W
(2)
n is unwieldy, but in certain situations (besides the Gaussian case) it has a

simple form. For example, in the case that the time series {Xt} is non-Gaussian, but linear with transfer

function A(λ), and innovations with variance σ2 and fourth order cumulant κ4, respectively, then the above

reduces to

κ(ℓ1,ℓ2) =

∫
κ4|A(λ1)A(λ2)|2
σ4|A(λ1)2|A(λ2)|2

exp(iℓ1λ1 − iℓ2λ2)dλ1dλ2 =
κ4
σ4

δℓ1,0δℓ2,0,
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where δjk is the Kronecker delta. Therefore, for (univariate) linear time series, we have that the (1, 1)-

entry of W
(2)
n equals κ4

σ4 with all other entries being zero and Wn is still a diagonal matrix. This example

illustrates that even in the univariate case the complexity of the variance of the DFT covariance K̂n(r)

increases the more we relax the assumptions on the distribution. Regardless of the distribution of {Xt},
so long as it satisfies (2.1) (and some mixing-type assumptions), then K̂n(r) is asymptotically normal and

centered about zero.

The DFT covariance of multivariate stationary time series

We now consider the distribution of ĈT (r, ℓ) in the multivariate case. We will show in Lemma A.11 (in

the Appendix) that the covariance matrix of (vectorized) ĈT (r, 0) is singular. To avoid the singularity, we

will only consider the lower triangular vectorized version of ĈT (r, ℓ), i.e.

vech(ĈT (r, ℓ)) = (ĉ1,1(r, ℓ), ĉ2,1(r, ℓ), . . . , ĉd,1(r, ℓ), ĉ2,2(r, ℓ), . . . , ĉd,2(r, ℓ), . . . , ĉd,d(r, ℓ))
′, (2.12)

where ĉj1,j2(r, ℓ) is the (j1, j2)th element of ĈT (r, ℓ), and we use this to define the nd(d+1)/2-dimensional

vector K̂n(r) (given in (2.8)). In the case that {Xt} is a Gaussian stationary time series we obtain

a result analogous to (2.9) where similar to the univariate case Wn is a diagonal matrix with Wn =

diag(W
(1)
0 , . . . ,W

(1)
n−1), where

W
(1)
ℓ =





1
2Id(d+1)/2 ℓ 6= 0

diag(λ1, . . . , λd(d+1)/2) ℓ = 0
(2.13)

with

λj =





1, j ∈
{
1 +

∑d
n=m+1 n for m ∈ {1, 2, . . . , d}

}

1
2 , otherwise

.

However, in the non-Gaussian case Wn is equal to the above diagonal matrix plus an additional (not

necessarily diagonal) matrix consisting of the fourth order spectral densities, i.e. Wn consists of n2 square

blocks of dimension d(d+ 1)/2, where the (ℓ1 + 1, ℓ2 + 1)th block is

(Wn)ℓ1+1,ℓ2+1 = W
(1)
ℓ1

δℓ1,ℓ2 +W
(2)
ℓ1,ℓ2

, (2.14)

with W
(1)
ℓ and W

(2)
ℓ1,ℓ2

defined in (2.13) and in (2.17) below. In order to appreciate the structure of W
(2)
ℓ1,ℓ2

,

we first consider some examples. We start by defining the multivariate version of (2.10)

κ(ℓ1,ℓ2)(j1, j2, j3, j4) =
1

2π

∫ 2π

0

∫ 2π

0

d∑

s1,s2,s3,s4=1

Lj1s1(λ1)Lj2s2(λ1)Lj3s3(λ2)Lj4s4(λ2) exp(iℓ1λ1 − iℓ2λ2)

×f4;s1,s2,s3,s4(λ1,−λ1,−λ2)dλ1dλ2, (2.15)
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where

f4;s1,s2,s3,s4(λ1, λ2, λ3) =
1

(2π)3

∞∑

h1,h2,h3=−∞
κ4;s1,s2,s3,s4(h1, h2, h3)exp(−i(h1λ1 + h2λ2 + h3λ3))

is the joint tri-spectral density of {Xt} and

κ4;s1,s2,s3,s4(h1, h2, h3) = cum(Xh1,s1 , Xh2,s2 , Xh3,s3 , X0,s4). (2.16)

Example 2.2 (Structure of Wn) For n ∈ N and ℓ1, ℓ2 ∈ {0, . . . , n − 1}, we have (Wn)ℓ1+1,ℓ2+1 =

W
(1)
ℓ1

δℓ1,ℓ2 +W
(2)
ℓ1,ℓ2

, where:

(i) For d = 2, we have W
(1)
0 = 1

2diag(2, 1, 2) and for ℓ ≥ 1 W
(1)
ℓ = 1

2I3 and

W
(2)
ℓ1,ℓ2

=
1

2




κ(ℓ1,ℓ2)(1, 1, 1, 1) κ(ℓ1,ℓ2)(1, 1, 2, 1) κ(ℓ1,ℓ2)(1, 1, 2, 2)

κ(ℓ1,ℓ2)(2, 1, 1, 1) κ(ℓ1,ℓ2)(2, 1, 2, 1) κ(ℓ1,ℓ2)(2, 1, 2, 2)

κ(ℓ1,ℓ2)(2, 2, 1, 1) κ(ℓ1,ℓ2)(2, 2, 2, 1) κ(ℓ1,ℓ2)(2, 2, 2, 2)




(ii) For d = 3, we have W
(1)
0 = 1

2diag(2, 1, 1, 2, 1, 2), W
(1)
ℓ = 1

2I6 for ℓ ≥ 1 and W
(2)
ℓ1,ℓ2

is analogous to

(i).

(iv) For general d and n = 1, we have Wn = W
(1)
0 +W(2), where W

(1)
0 is the diagonal matrix defined in

(2.13) and W(2) = W
(2)
0,0 (which is defined in (2.17), below).

We now define the general form of the block matrix W(2) = (W
(2)
ℓ1,ℓ2

)ℓ1,ℓ2=0,...,n−1, that is,

W
(2)
ℓ1,ℓ2

= EdV
(2)
ℓ1,ℓ2

Ed, (2.17)

where Ed with Edvec(A) = vech(A) is the (d(d + 1)/2 × d2) elimination matrix [cf. Lütkepohl (2006),

p.662] that transforms the vec-version of a (d × d) matrix A to its vech-version. The entry (j1, j2) of the

(d2 × d2) matrix V
(2)
ℓ1,ℓ2

is such that

(
V

(2)
ℓ1,ℓ2

)
j1,j2

= κ(ℓ1,ℓ2)
(
(j1 − 1)mod d+ 1,

⌈
j1
d

⌉
, (j2 − 1)mod d+ 1,

⌈
j2
d

⌉)
, (2.18)

respectively, where ⌈x⌉ is the smallest integer greater than or equal to x.

Example 2.3 (κ(ℓ1,ℓ2)(j1, j2, j3, j4) under linearity of {Xt}) Suppose the additional assumption of lin-

earity of the process {Xt} is satisfied, that is, {Xt} satisfies the representation

Xt =
∞∑

ν=−∞
Γνet−ν , t ∈ Z, (2.19)
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where
∑∞

ν=−∞ |Γν |1 < ∞, Γ0 = Id and {et, t ∈ Z} are zero mean, i.i.d. random vectors with E(ete
′
t) = Σe

positive definite and whose fourth moments exist. By plugging-in (2.19) in (2.16) and then evaluating the

integrals in (2.15), the quantity κ(ℓ1,ℓ2)(j1, j2, j3, j4) becomes

κ(ℓ1,ℓ2)(j1, j2, j3, j4) =
d∑

s1,s2,s3,s4=1

κ4;s1,s2,s3,s4

{
1

2π

∫ 2π

0
(L(λ1)Γ(λ1))j1s1 (L(λ1)Γ(λ1))j2s2 exp(iℓ1λ1)dλ1

}

×
{

1

2π

∫ 2π

0
(L(λ2)Γ(λ2))j3s3 (L(λ2)Γ(λ2))j4s4 exp(−iℓ2λ2)dλ2

}
,

where κ4;s1,s2,s3,s4 = cum(e0,s1 , e0,s2 , e0,s3 , e0,s4) and Γ(ω) = 1√
2π

∑∞
ν=−∞ Γνe

−iνω is the transfer function

of {Xt}. The shape of κ(ℓ1,ℓ2)(j1, j2, j3, j4) is now discussed for two special cases of linearity.

(i) If Γν = 0 for ν 6= 0, we have Xt = et and κ(ℓ1,ℓ2)(j1, j2, j3, j4) simplifies to

κ(ℓ1,ℓ2)(j1, j2, j3, j4) = κ̃4;j1,j2,j3,j4δℓ1,0δℓ2,0,

where Σ
−1/2
e et = (ẽt,1, . . . , ẽt,d)

′ and κ̃4;s1,s2,s3,s4 = cum(ẽ0,s1 , ẽ0,s2 , ẽ0,s3 , ẽ0,s4).

(ii) The univariate time series {Xt,k} are independent for k = 1, . . . , d (the components of {Xt} are

independent), then we have

κ(ℓ1,ℓ2)(j1, j2, j3, j4) = κ4,jδℓ10δℓ201(j1 = j2 = j3 = j4 = j),

where κ4,j = cum4(e0,j)/σ
4
j and Σe = diag(σ2

1, . . . , σ
2
d).

2.3 The test statistic

We now use the results in the previous section to motivate the test statistic. We have seen in (2.7)

that {K̂n(r)}r (and also ℜK̂n(r) and ℑK̂n(r)) are asymptotically uncorrelated. Therefore, we simply

standardize {K̂n(r)} and define the test statistic

Tm,n,d = T
m∑

r=1

(
|W−1/2

n ℜK̂n(r)|22 + |W−1/2
n ℑK̂n(r)|22

)
, (2.20)

where K̂n(r) and Wn are defined in (2.8) and (2.14), respectively, and |A|22 = tr(A′A) denotes the squared

Frobenius norm of a matrix A. By using (2.7), it is clear that

Tm,n,d
D→ χ2

mnd(d+1),

where χ2
mnd(d+1) is a χ2-distribution with mnd(d+ 1) degrees of freedom.

Therefore, using the above result, we reject the null of second order stationarity at the α× 100% level

if Tm,n,d > χ2
mnd(d+1)(1 − α), where χ2

mnd(d+1)(1 − α) is the (1 − α)-quantile of the χ2-distribution with

mnd(d+ 1) degrees of freedom.
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Example 2.4 (i) In the univariate case (d = 1) using n = 1, the test statistic reduces to

Tm,1,1 =
m∑

r=1

|ĈT (r, 0)|2
1 + 1

2κ
(0,0)

,

where κ(0,0) is defined in (2.10).

(ii) In most situations, it is probably enough to use n = 1. In this case the test statistic reduces to

Tm,1,d = T
m∑

r=1

(
|W−1/2

1 vech(ℜĈn(r, 0))|22 + |W−1/2
1 vech(ℑĈn(r, 0))|22

)
.

(iii) If we can assume that {Xt} is Gaussian, then Tm,n,d has the simple form

Tm,n,d,G = T
m∑

r=1

(
|(W(1)

0 )−1/2vech(ℜĈT (r, 0))|22 + |(W(1)
0 )−1/2vech(ℑĈT (r, 0))|22

)

+2T
m∑

r=1

n−1∑

ℓ=1

(
|vech(ℜĈT (r, ℓ))|22 + |vech(ℑĈT (r, ℓ))|22

)
, (2.21)

where W
(1)
0 is a diagonal matrix composed of ones and halves defined in (2.13).

The above test statistic was constructed as if the standardization matrix Wn were known. However,

only in the case of Gaussianity this matrix will be known, for non-Gaussian time series we need to estimate

it. In the following section, we propose a bootstrap method for estimating Wn.

2.4 A bootstrap estimator of the variance Wn

The proposed test does not make any model assumptions on the underlying time series. This level of

generality means that the test statistic involves unknown parameters which, in practice, can be extremely

difficult to directly estimate. The objective of this section is to construct a consistent estimator of these

unknown parameters. We propose an estimator of the asymptotic variance matrix Wn using a block

bootstrap procedure. There exist several well known block bootstrap methods, (cf. Lahiri (2003) and

Kreiss and Lahiri (2012) for a review), but the majority of these sampling schemes, are nonstationary

when conditioned on the original time series. An exception is the stationary bootstrap, proposed in Politis

and Romano (1994) (see also Parker, Paparoditis, and Politis (2006)), which is designed such that the

bootstrap distribution is stationary. As we are testing for stationarity, we use the stationary bootstrap to

estimate the variance.

The bootstrap testing scheme

Step 1. Given the d-variate observations X1, . . . , XT , evaluate vech(ℜĈT (r, ℓ)) and vech(ℑĈT (r, ℓ)) for r =

1, . . . ,m and ℓ = 0, . . . , n− 1.
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Step 2. Define the blocks

BI,L =
{
Y I , . . . , Y I+L−1

}
,

where Y j = Xjmod T −X (hence there is wrapping on a torus if j > T ) and X = 1
T

∑T
t=1Xt. We will

suppose that the points on the time series {Ii} and the block lengths {Li} are iid random variables,

where P (Ii = s) = T−1 for 1 ≤ s ≤ T (discrete uniform distribution) and P (Li = s) = p(1 − p)s−1

for s ≥ 1 (geometric distribution).

Step 3. We draw blocks {BIi,Li}i until the total length of the blocks (BI1,L1 , . . . , BIr,Lr) satisfies
∑r

i=1 Li ≥ T

and we discard the last
∑r

i=1 Li − T values to get a bootstrap sample X∗
1, . . . , X

∗
T .

Step 4. Define the bootstrap spectral density estimator

f̂∗T (ωk) =
1

T

⌊T
2
⌋∑

j=−⌊T−1
2

⌋

Kb(ωk − ωj)J
∗
T (ωj)J

∗
T (ωj)

′
, (2.22)

where Kb(ω) =
∑∞

r=−∞ λb(r) exp(−irω) and J∗
T (ωk) =

1√
2πT

∑T
t=1(X

∗
t −X

∗
)e−itωk is the (centered)

bootstrap DFT. Further, denote by B̂∗(ω) the lower-triangular Cholesky matrix of f∗T (ωk), by L̂∗(ω) =

(B̂∗(ω))−1 its inverse and compute the bootstrap DFT covariances

Ĉ∗
T (r, ℓ) =

1

T

T∑

k=1

L̂∗(ωk)J
∗
T (ωk)J

∗
T (ωk+r)

′
L̂∗(ωk+r)

′
exp(iℓωk). (2.23)

Step 5. Repeat Steps 1 - 4 N times (where N is large), to obtain vech(ℜĈ∗
T (r, ℓ))

(j) and vech(ℑĈ∗
T (r, ℓ))

(j),

j = 1, . . . , N . For r = 1, . . . ,m and ℓ1, ℓ2 = 0, . . . , n − 1, we compute the bootstrap covariance

estimators of the real parts, that is,

(
Ŵ∗

ℜ(r)
)
ℓ1+1,ℓ2+1

= T


 1

N

N∑

j=1

vech(ℜĈ∗
T (r, ℓ1))

(j)vech(ℜĈ∗
T (r, ℓ2))

(j)′ (2.24)

−


 1

N

N∑

j=1

vech(ℜĈ∗
T (r, ℓ1))

(j)




 1

N

N∑

j=1

vech(ℜĈ∗
T (r, ℓ2))

(j)




′


and, similarly, we define its analogues
(
Ŵ∗

ℑ(r)
)
ℓ1+1,ℓ2+1

using the imaginary parts.

Step 6. Define the bootstrap covariance estimator
(
Ŵ∗(r)

)
ℓ1+1,ℓ2+1

as

(
Ŵ∗(r)

)
ℓ1+1,ℓ2+1

=
1

2

[(
Ŵ∗

ℜ(r)
)
ℓ1+1,ℓ2+1

+
(
Ŵ∗

ℑ(r)
)
ℓ1+1,ℓ2+1

]
,

and let Ŵ∗(r) =
(
(Ŵ∗(r))ℓ1+1,ℓ2+1

)
ℓ1,ℓ2=0,...,n−1

be the bootstrap estimator of the blocks of Wm,n

defined in (3.6) that correspond to ℜK̂n(r) and ℑK̂n(r).
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Step 7. Finally, define the bootstrap test statistic T ∗
m,n,d as

T ∗
m,n,d = T

m∑

r=1

(
|(Ŵ∗(r))−1/2ℜK̂n(r)|22 + |(Ŵ∗(r))−1/2ℑK̂n(r)|22

)
(2.25)

and reject H0 if T ∗
m,n,d > χ2

mnd(d+1)(1 − α), where χ2
mnd(d+1)(1 − α) is the (1 − α)-quantile of the

χ2-distribution with mnd(d+ 1) degrees of freedom to obtain a test of asymptotic level α ∈ (0, 1).

Remark 2.1 (Step 4∗) A simple variant of the above bootstrap, is to use the spectral density estimator

f̂T (ω) rather than bootstrap spectral density estimator f̂∗T (ω) i.e.

Ć∗
T (r, ℓ) =

1

T

T∑

k=1

L̂(ωk)J
∗
T (ωk)J

∗
T (ωk+r)

′
L̂(ωk+r)

′
exp(iℓωk). (2.26)

Using the above bootstrap covariance greatly simplifies the speed of the bootstrap procedure and the theoretical

analysis of the bootstrap (in particular the assumptions required). However, empirical evidence suggests that

estimating the spectral density matrix at each bootstrap sample gives a better finite sample approximation of

the variance (though we cannot theoretically prove that using Ĉ∗
T (r, ℓ) gives a better variance approximation

than Ć∗
T (r, ℓ)).

We observe that because the blocks are random and their length is determined by a geometric distribution,

their lengths vary. However, the mean length of a block is approximately 1/p (only approximately since

only block lengths less than length T are used in the scheme). As it has to be assumed that p → 0 and

Tp → ∞ as T → ∞, the mean block length increases as the sample size T grows. However, we will show in

Section 5 that a sufficient condition for consistency of the stationary bootstrap estimator is that Tp4 → ∞
as T → ∞. This condition constrains the mean length of the block and prevents it growing too fast.

Remark 2.2 An interesting variant on the above scheme is to use the bootstrap DFT covariances {Ĉ∗
T (r, ℓ)}

to directly construct bootstap rejection regions for the test statistic. However, in this paper we will only use

the χ2-approximation rather than the bootstrap distribution. It is worth noting that the moments of this

bootstrap distribution can be evaluated using the results in Section 4.

3 Analysis of the DFT covariance under stationarity and nonstation-

arity of the time series

3.1 The DFT covariance ĈT (r, ℓ) under stationarity

Directly deriving the sampling properties of ĈT (r, ℓ) is not possible as it involves the estimators L̂(ω).

Instead, in the analysis below, we replace L̂(ω) by its deterministic limit L(ω), and consider the quantity

C̃T (r, ℓ) =
1

T

T∑

k=1

L(ωk)JT (ωk)JT (ωk+r)
′
L(ωk+r)

′
exp(iℓωk). (3.1)
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Below, we show that ĈT (r, ℓ) and C̃T (r, ℓ) are asymptotically equivalent. This allows us to analyze C̃T (r, ℓ)

without any loss in generality. We will require the following assumptions.

3.1.1 Assumptions

Let | · |p denote the ℓp-norm of a vector or matrix, i.e. |A|p = (
∑

i,j |Aij |p)1/p for some matrix A = (aij)

and let ‖X‖p = (E|X|p)1/p.

Assumption 3.1 (The process {Xt}) (P1) Let us suppose that {Xt, t ∈ Z} is a d-variate constant

mean, fourth order stationary (i.e. the first, second, third and fourth order moments of the time

series are invariant to shift), α-mixing time series which satisfies

sup
k∈Z

sup
A∈σ(Xt+k,Xt+k+1,...)

B∈σ(Xk,Xk−1,...)

|P (A ∩B)− P (A)P (B)| ≤ Ct−α, t > 0, (3.2)

for constants C < ∞ and α > 0.

(P2) For some s > 4α
α−6 > 0 with α such that (3.2) holds, we have supt∈Z ‖Xt‖s < ∞.

(P3) The spectral density matrix f(ω) is non-singular on [0, 2π].

(P4) For some s > 8α
α−7 > 0 with α such that (3.2) holds, we have supt∈Z ‖Xt‖s < ∞.

(P5) For a given lag order n, let Wn be the variance matrix defined in (2.14), then Wn is assumed to be

non-singular.

Some comments on the assumptions are in order. The α-mixing assumption is satisfied by a wide

range of processes, including, under certain assumptions on the innovations, the vector AR models (see

Pham and Tran (1985)) and other Markov models which are irreducible (cf. Feigin and Tweedie (1985),

Mokkadem (1990), Meyn and Tweedie (1993), Bousamma (1998), Franke, Stockis, and Tadjuidje-Kamgaing

(2010)). We show in Corollary A.1 that Assumption (P2) implies
∑∞

h=−∞ |h| · |cov(Xh,j1 , X0,j2)| < ∞ for

all j1, j2 = 1, . . . , d and absolute summability of the fourth order cumulants. In addition, Assumption (P2)

is required to show asymptotic normality of C̃T (r, ℓ) (using a Mixingale proof). Assumption (P4) is slightly

stronger than (P2) and it is used to show the asymptotic equivalence of
√
T ĈT (r, ℓ) and

√
T C̃T (r, ℓ). In

the case that the multivariate time series {Xt} is geometric mixing, Assumption (P4) implies that for some

δ > 0, (8 + δ)-moments of {Xt} should exist. Assumption (P5) is immediately satisfied in the case that

{Xt} is a Gaussian time series. In this case Wn is a diagonal matrix (see (2.14)).

Remark 3.1 (The fourth order stationarity assumption) Although the purpose of this paper is to

derive a test for second order stationarity, we derive the proposed test statistic under the assumption
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of fourth order stationarity of {Xt} (see Theorem 3.3). The main advantage of this slightly stronger

assumption is that it guarantees that the DFT covariances ĈT (r1, ℓ) and ĈT (r2, ℓ) are asymptotically

uncorrelated at different lags r1 6= r2. For details see the end of the proof of Theorem 3.2, on the bounds

of the fourth order cumulant term).

3.2 The sampling properties of ĈT (r, ℓ) under the assumption of fourth order station-

arity

Using the above assumptions we have the following result.

Theorem 3.1 (Asymptotic equivalence of ĈT (r, ℓ) and C̃T (r, ℓ) under the null) Suppose Assump-

tion 3.1 is satisfied and let ĈT (r, ℓ) and C̃T (r, ℓ) be defined as in (2.6) and (3.1), respectively. Then we

have

√
T
∣∣ĈT (r, ℓ)− C̃T (r, ℓ)

∣∣
1
= Op

(
1

b
√
T

+ b+ b2
√
T

)
.

We now obtain the mean and variance of C̃T (r, ℓ) under the stated assumptions. Let c̃j1,j2(r, ℓ) =

C̃T (r, ℓ)j1,j2 denote entry (j1, j2) of the unobserved (d× d) DFT covariance matrix C̃T (r, ℓ).

Theorem 3.2 (First and second order structure of {C̃T (r, ℓ)}) Suppose
∑

h |h|·|cov(Xh,j1 , X0,j2)| <
∞ and

∑
h1,h2,h3

|hi| · |cum(Xh1,j1 , Xh2,j2 , Xh3,j3 , X0,j4)| < ∞ hold for all j1, . . . , j4 = 1, . . . , d and i = 1, 2, 3

(satisfied by Assumption 3.1(P1,P2)). Then, the following assertions are true

(i) For all fixed r ∈ N and ℓ ∈ Z, we have E(C̃T (r, ℓ)) = O( 1
T ).

(ii) For fixed r1, r2 ∈ N and ℓ1, ℓ2 ∈ Z and all j1, j2, j3, j4 ∈ {1, . . . , d}, we have

T cov (ℜc̃j1,j2(r1, ℓ1),ℜc̃j3,j4(r2, ℓ2)) =
1

2
{δj1j3δj2j4δℓ1ℓ2 + δj1j4δj2j3δℓ1,−ℓ2} δr1,r2

+
1

2
κ(ℓ1,ℓ2)(j1, j2, j3, j4)δr1,r2 +O

(
1

T

)
(3.3)

T cov (ℜc̃j1,j2(r1, ℓ1),ℑc̃j3,j4(r2, ℓ2)) = O( 1
T ) and

T cov (ℑc̃j1,j2(r1, ℓ1),ℑc̃j3,j4(r2, ℓ2)) =
1

2
{δj1j3δj2j4δℓ1ℓ2 + δj1j4δj2j3δℓ1,−ℓ2} δr1,r2

+
1

2
κ(ℓ1,ℓ2)(j1, j2, j3, j4)δr1,r2 +O

(
1

T

)
, (3.4)

where δjk = 1 if j = k and δjk = 0 otherwise.

Below we state the asymptotic normality result, which forms the basis of the test statistic.
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Theorem 3.3 (Asymptotic distribution of vech(ĈT (r, ℓ)) under the null) Suppose Assumptions 2.1

and 3.1 hold. Let the nd(d+1)/2-dimensional vector K̂n(r) be defined as in (2.8). Then, for fixed m,n ∈ N,

we have

√
T




ℜK̂n(1)

ℑK̂n(1)
...

ℜK̂n(m)

ℑK̂n(m)




D→ N (0mnd(d+1),Wm,n), (3.5)

where Wm,n is a (mnd(d+ 1)×mnd(d+ 1)) block diagonal matrix

Wm,n = diag(Wn, . . . ,Wn︸ ︷︷ ︸
2m times

), (3.6)

and Wn is defined in (2.17).

The above theorem immediately gives the asymptotic distribution of the test statistic.

Theorem 3.4 (Limiting distribution of Tm,n,d under the null) Suppose that Assumptions 2.1 and

3.1 are satisfied. Then we have

Tm,n,d
D→ χ2

mnd(d+1),

where χ2
mnd(d+1) is a χ2-distribution with mnd(d+ 1) degrees of freedom.

3.3 Behavior of ĈT (r, ℓ) for locally stationary time series

We now consider the behavior of the DFT covariance ĈT (r, ℓ) when the underlying process is second order

nonstationary. There are several different alternatives one can consider, including unit root processes,

periodically stationary time series, time series with change points etc. However, here we shall focus on

time series whose correlation structure changes slowly over time (early work on time-varying time series

include Priestley (1965), Subba Rao (1970) and Hallin (1984)). As in nonparametric regression and other

work on nonparametric statistics we use the rescaling device to develop the asymptotic theory. The same

tool has been used, for example, in nonparametric time series by Robinson (1989) and by Dahlhaus (1997)

in his definition of local stationarity. We use rescaling to define a locally stationary process as a time series

whose second order structure can be ‘locally’ approximated by the covariance function of a stationary time

series (see Dahlhaus (1997), Dahlhaus and Polonik (2006) and Dahlhaus (2012), for a recent overview of

the current state-of-the art).
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3.3.1 Assumptions

In order to prove the results in this paper for the case of local stationarity, we require the following

assumptions.

Assumption 3.2 (Locally stationary vector processes) Let us suppose that the locally stationary pro-

cess {Xt,T } is a d-variate, constant mean time series that satisfies the following assumptions:

(L1) {Xt,T } is an α-mixing time series which satisfies

sup
k,T∈Z

sup
A∈σ(Xt+k,T ,Xt+k+1,T ,...)

B∈σ(Xk,T ,Xk−1,T ,...)

|P (A ∩B)− P (A)P (B)| ≤ Ct−α, t > 0 (3.7)

for constants C < ∞ and α > 0.

(L2) There exists a covariance function {κ(u;h)}h and function κ(h) such that |cov(Xt1,T , Xt2,T )− κ( t2T ; t1 − t2

1
T κ(t1−t2). We assume the functions {κ(u;h)}h satisfy the following conditions: supu∈[0,1] |κ(u;h)|1 ≤
C|h|−(2+ε) (for h 6= 0, some ε > 0 and finite constant C) and supu∈[0,1]

∑
h h

2|∂κ(u;h)∂u |1 < ∞, where

on the boundary 0 and 1 we use the right and left derivative (this assumption can be relaxed to

κ(u;h) being piecewise continuous, where within each piece the function has a bounded first and

second derivative). The function {κ(h)} satisfies
∑

h κ(h) < ∞.

(L3) For some s > 4α
α−6 > 0 with α such that (3.7) holds, we have supt,T ‖Xt,T ‖s < ∞.

(L4) Let f(u;ω) = 1
2π

∑∞
h=−∞ κ(u;h) exp(−ihω). Then the integrated spectral density f(ω) =

∫ 1
0 f(u;ω)du

is non-singular on [0, 2π]. Note that (L2) implies that supu |∂f(u;ω)∂u |1 < ∞.

(L5) For some s > 8α
α−7 > 0 with α such that (3.7) holds, we have supt,T ‖Xt,T ‖s < ∞.

As in the stationary case, it can be shown that several nonlinear time series satisfy Assumption 3.2 (L1)

(cf. Fryzlewicz and Subba Rao (2011) and Vogt (2012) who derive sufficient conditions for α-mixing of a

general class of nonstationary time series). Assumption 3.2(L2) is used to show that the covariance changes

slowly over time (these assumptions are used in order to derive the limit of the DFT covariance under local

stationarity). It is worth pointing out that Assumption 3.2(L2) means that the error of approximation

between the covariance of a locally stationary process cov(Xt1,T , Xt2,T ) and the approximating stationary

covariance κ( t2T ; t1 − t2) decays as the distance |t1 − t2| grows. This may appear counter intuitive, but our

explanation for this assumption is that that the covariances cov(Xt1,T , Xt2,T ) and κ( t2T ; t1 − t2) decay to

zero as |t1 − t2| → ∞, therefore a bound for the difference between the two should reflect this decay. The

stronger Assumption (L5) is required to replace L̂(ω) with its deterministic limit (see below for the limit).

18



3.3.2 Sampling properties of ĈT (r, ℓ) under local stationarity

As in the stationary case, it is difficult to directly analyze ĈT (r, ℓ). Therefore, we show that it can be

replaced by C̃T (r, ℓ) (defined in (3.1)), where in the locally stationary case L(ω) are lower-triangular

Cholesky matrices which satisfy L(ω)
′
L(ω) = f−1(ω) and f(ω) =

∫ 1
0 f(u;ω)du.

Theorem 3.5 (Asymptotic equivalence of ĈT (r, ℓ) and C̃T (r, ℓ) under local stationarity) Suppose

Assumption 2.1 and 3.2 are satisfied and let ĈT (r, ℓ) and C̃T (r, ℓ) be defined as in (2.6) and (3.1), respec-

tively. Then we have

√
T ĈT (r, ℓ) =

√
T

(
C̃T (r, ℓ) + ST (r, ℓ) + BT (r, ℓ)

)
+OP

(
log T

b
√
T

+ b log T + b2
√
T

)
(3.8)

and

ĈT (r, ℓ) = E(C̃T (r, ℓ)) + op(1),

where BT (r, ℓ) = O(b) and ST (r, ℓ) are a deterministic bias and a stochastic term, respectively, which are

defined in Appendix A.2, equation (A.8).

Remark 3.2 There are some subtle differences between Theorems 3.1 and 3.5. In particular, the inclusion

of the additional terms ST (r, ℓ) and BT (r, ℓ). We give a rough justification for this difference in the

univariate case (d = 1). By taking differences, it can be shown that

ĈT (r, ℓ)− C̃T (r, ℓ) ≈ 1

T

T∑

k=1

E
(
JT (ωk)JT (ωk+r)

)[
f̂
k,r

− E
(
f̂
k,r

)]
G(ωk)

︸ ︷︷ ︸
ST (r,ℓ)

+
1

T

T∑

k=1

E
(
JT (ωk)JT (ωk+r)

)[
E
(
f̂
k,r

)
− f

k,r

]
G(ωk)

︸ ︷︷ ︸
BT (r,ℓ)

,

where f̂
k,r

= (f̂(ωk), f̂(ωk+r))
′, f

k,r
= (f(ωk), f(ωk+r))

′ and G(ωk) is defined in Lemma A.3 (see Ap-

pendix A.2 for the details). In the case of second order stationarity, since E(JT (ωk)JT (ωk+r)) = O(T−1)

(for r 6= 0), the above terms are negligible, whereas in the case that the time series is nonstationary,

E(JT (ωk)JT (ωk+r)) is no longer negligible. In the nonstationary univariate case, the ST (r, ℓ) and BT (r, ℓ)

become

ST (r, ℓ) = − 1

2T

T∑

t,τ=1

λb(t− τ)(XtXτ − E(XtXτ )

× 1

T

T∑

k=1

h(ωk; r)e
iℓωk

(
e−i(t−τ)ωk

√
f(ωk)3f(ωk+r)

+
e−i(t−τ)ωk+r

√
f(ωk)f(ωk+r)3

)
+O

(
1

T

)

BT (r, ℓ) = − 1

2T

T∑

k=1

h(ωk, r)


 E[f̂T (ωk)]− f(ωk)

E[f̂T (ωk+r)]− f(ωk+r)




′

A(ωk, ωk+r),
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where

A(ωk, ωk+r) =




1
(f(ωk)3f(ωk+r))1/2

1
(f(ωk)f(ωk+r)3)1/2




and h(ω; r) =
∫ 1
0 f(u;ω) exp(2πiur)du (see Lemma A.7 for details). A careful analysis will show that

ST (r, ℓ) and C̃T (r, ℓ) are both quadratic forms of the same order, this allows us to show asymptotic normality

of ĈT (r, ℓ) under local stationarity.

Lemma 3.1 Suppose Assumption 3.2 is satisfied. Then, for all r ∈ Z and ℓ ∈ Z, we have

E
(
C̃T (r, ℓ)

)
→ A(r, ℓ), and ĈT (r, ℓ)

P→ A(r, ℓ)

as T → ∞, where

A(r, ℓ) =
1

2π

∫ 2π

0

∫ 1

0
L(ω)f(u;ω)L(ω)

′
exp(i2πru) exp(iℓω)dudω. (3.9)

Since ĈT (r, ℓ) is an estimator of A(r, ℓ), we now discuss how to interpret this.

Lemma 3.2 Let A(r, ℓ) be defined as in (3.9). Then, under Assumption 3.2(L2,L4), we have that

(i) L(ω)f(u;ω)L(ω)
′
satisfies the representation

L(ω)f(u, ω)L(ω)
′

=
∑

r,ℓ∈Z
A(r, ℓ)exp(−i2πru) exp(−iℓω).

and, consequently, f(u, ω) = B(ω)
(∑

r,ℓ∈ZA(r, ℓ)exp(−i2πru) exp(−iℓω)

)
B(ω)′.

(ii) A(r, ℓ) is zero for all r 6= 0 and ℓ ∈ Z iff {Xt} is second order stationary.

(iii) For all ℓ 6= 0 and r 6= 0, |A(r, ℓ)|1 ≤ K|r|−1|ℓ|−2 (for some finite constant K).

(iv) A(r, ℓ) = A(−r, ℓ).

We see from part (ii) of the the above lemma that for r 6= 0, the coefficients {A(r, ℓ)} characterize the

nonstationarity. One consequence of Lemma 3.2 is that only for second order stationary time series, we

have that

m∑

r=1

n−1∑

ℓ=0

(
|Sr,ℓvech(ℜA(r, ℓ))|22 + |Sr,ℓvech(ℑA(r, ℓ))|22

)
= 0 (3.10)

for any non-singular matrices {Sr,ℓ} and all n,m ∈ N. Therefore, under the alternative of local stationarity,

the purpose of the test statistic is to detect the coefficients A(r, ℓ). Lemma 3.2 highlights another crucial

point, that is, under local stationarity |A(r, ℓ)|1 decays at the rate C|r|−1|ℓ|−2. Thus, the test will lose

power if a large number of lags are used.
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Theorem 3.6 (Limiting distributions of vech(K̂n(r))) Let us assume that Assumption 2.1 and 3.2

holds and let K̂n(r) be defined as in (2.8). Then, for fixed m,n ∈ N, we have

√
T




ℜK̂n(1)−ℜAn(1)−ℜBn(1)

ℑK̂n(1)−ℑAn(1)−ℑBn(1)
...

ℜK̂n(m)−ℜAn(m)−ℜBn(m)

ℑK̂n(m)−ℑAn(m)−ℑBn(m)




D→ N
(
0mnd(d+1),W̃m,n

)
,

where W̃m,n is an (mnd(d + 1) × mnd(d + 1)) covariance matrix (which is not necessarily block diago-

nal), An(r) = (vech(A(r, 0))′, . . . , vech(A(r, n − 1))′)′ are the vectorized Fourier coefficients and Bn(r) =

(vech(B(r, 0))′, . . . , vech(B(r, n− 1))′)′ = O(b).

At this point it is interesting to point out that the quantity A(r, ℓ) is closely related to the ‘Ambiguity

function’ recently introduced in Hindberg and Olhede (2010). The ambiguity function is the Dicrete Fourier

transform over t of the empirical covariances at a given lag ℓ (see equation (1) and in S. C. Olhede (2011)),

whereas A(r, ℓ) is the Fourier coefficient (over u) of 1
2π

∫ 2π
0 L(ω)f(u;ω)L(ω)

′
exp(iℓω)dω.

4 Properties of the stationary bootstrap applied to stationary and non-

stationary time series

In this section, we consider the moments and cumulants of observations sampled using the stationary

bootstrap and its corresponding discrete Fourier transform. We use these results to analyze the bootstrap

procedure proposed in Section 2.4. In order to reduce unnecessary notation, we state the results in this

section for the univariate case only (all these results easily generalize to the multivariate case). The results

in this section may also be of independent interest as they compare the differing characteristics of the

stationary bootstrap when the underlying process is stationary and nonstationary. For this reason, this

section is self-contained, where the main assumptions are mixing and moment conditions. The justification

for the use of these mixing and moment conditions can be found in the proof of Lemma 4.1 (see Appendix

A.5).

We start by defining the cyclical and the ordinary sample covariances for 0 ≤ h ≤ T − 1

κ̂C(h) =
1

T

T∑

t=1

YtYt+h − (X)2, κ̂(h) =
1

T

T−h∑

t=1

XtXt+h − (X)2,

respectively, where Yt = X(t−1)mod T+1 and X = 1
T

∑T
t=1Xt. We will also consider the higher order
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cumulants. Therefore we define the corresponding sample moments for 0 ≤ h1, . . . , hn−1 ≤ T − 1 as

µ̂C
n (h1, . . . , hn−1) =

1

T

T∑

t=1

Yt

n−1∏

i=1

Yt+hi , µ̂n(h1, . . . , hn−1) =
1

T

T−max(hi)∑

t=1

Xt

n−1∏

i=1

Xt+hi , (4.1)

where the notation max(hi) = max{h1, . . . , hn−1} is used, and the nth order cumulants corresponding to

these moments

κ̂Cn (h1, . . . , hn−1) =
∑

π

(|π| − 1)!(−1)|π|−1
∏

B∈π
µ̂C
|B|(B), (4.2)

κ̂n(h1, . . . , hn−1) =
∑

π

(|π| − 1)!(−1)|π|−1
∏

B∈π
µ̂|B|(B),

where π runs through all partitions of {0, h1, . . . , hn−1}, B are the blocks in the partition π and |B| denotes
the cardinality of the set B. We note these definitions are invariant to the ordering of the {h1, . . . , hn−1}.
We now define the sampling cumulants in the case that hi < 0. Since the cumulants are invariant to

ordering we will assume that h1 ≤ h2 ≤ . . . ≤ hn−1. If h1 < 0 and hn−1 − h1 ≤ T − 1, then we

set κ̂n(h1, . . . , hn−1) = κ̂n(−h1, h2 − h1, . . . , hn−1 − h1). If h1 ≥ 0 and hn−1 > T − 1 or h1 < 0 and

hn−1 − h1 > T − 1, then we set κ̂n(h1, . . . , hn−1) = 0. κ̂Cn (h1, . . . , hn−1) is defined in a similar way for

h1 < 0. In order to obtain an expression for the cumulant of the DFT, we require the following lemma.

We note that E∗, cov∗ and cum∗ denote the expectation, covariance and cumulant with respect to the

stationary bootstrap measure defined in Step 2 of Section 2.4.

Lemma 4.1 Let {Xt} be a time series with constant mean and supt E|Xt|n < ∞. Let µ̂n(h1, . . . , hn−1) be

defined as in (4.1). We define the following expected quantities. For 0 ≤ h1, . . . , hn−1 ≤ T − 1, let

κ̃n(h1, . . . , hn−1) =
∑

π

(|π| − 1)!(−1)|π|−1
∏

B∈π
E[µ̂|B|(B)], (4.3)

where π runs through all partitions of {0, h1 . . . , hn−1}. Further, define

κn(h1, . . . , hn−1) =
∑

π

(|π| − 1)!(−1)|π|−1
∏

B∈π

(
1

T

T∑

t=1

E(Xt+i1Xt+i2 . . . Xt+i|B|
)

)
, (4.4)

where B = {i1, . . . , i|B|}. κn(h1, . . . , hn−1) is defined in a similar way to κ̃n(h1, . . . , hn−1) for h1 < 0.

(i) Suppose that 0 ≤ t1 ≤ t2 . . . ≤ tn−1, then

cum∗(X∗
1 , X

∗
1+t1 , . . . , X

∗
1+tn−1

) = (1− p)tn−1 κ̂Cn (t1, . . . , tn−1).

To prove the assertions (ii-iv) below, we require the additional assumption that the time series {Xt} is α-

mixing, where for a given q ≥ 2n we have α > q and for some r > qα/(α− q/n) we have supt ‖Xt‖r < ∞.

Note that this is a technical assumption that is used to give the following moment bounds, the exact details

for their use can be found in the proof. Without loss of generality we will assume that 0 ≤ h1 ≤ h2 ≤ . . . ≤
hn−1.
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(ii) Approximation of circulant cumulant κ̂C by regular sample cumulant. We have

∥∥κ̂Cn (h1, . . . , hn−1)− κ̂n(h1, . . . , hn−1)
∥∥
q/n

≤ C
hn−1

T
sup
t

‖Xt‖nq , (4.5)

where C is a finite constant which only depends on the order of the cumulant.

(iii) Approximation of regular sample cumulant by ‘the cumulant of averages’. We have

‖κ̂n(h1, . . . , hn−1)− κ̃n(h1, . . . , hn−1)‖q/n = O(T−1/2) (4.6)

and, for some finite constant C,

|κ̃n(h1, . . . , hn−1)− κn(h1, . . . , hn−1)| ≤ C
hn−1

T
. (4.7)

(iv) In the case of nth order stationarity, it is clear that κn(h1, . . . , hn−1) = cum(Xt, Xt+h1 , . . . , Xt+hn−1).

However, if the time series is nonstationary, then

(a) κ2(h) =
1
T

∑T
t=1 cov(Xt, Xt+h)

(b) κ3(h1, h2) =
1
T

∑T
t=1 cum(Xt, Xt+h1 , Xt+h2)

(c) The situation is different for the fourth order cumulant and we have

κ4(h1, h2, h3) =
1

T

T∑

t=1

cum(Xt, Xt+h1 , Xt+h2 , Xt+h3)

+
1

T

T∑

t=1

cov(Xt, Xt+h1)cov(Xt+h2 , Xt+h3)−
(
1

T

T∑

t=1

cov(Xt, Xt+h1)

)(
1

T

T∑

t=1

cov(Xt+h2 , Xt+h3)

)

+
1

T

T∑

t=1

cov(Xt, Xt+h2)cov(Xt+h1 , Xt+h3)−
(
1

T

T∑

t=1

cov(Xt, Xt+h2)

)(
1

T

T∑

t=1

cov(Xt+h1 , Xt+h3)

)

+
1

T

T∑

t=1

cov(Xt, Xt+h3)cov(Xt+h1 , Xt+h2)−
(
1

T

T∑

t=1

cov(Xt, Xt+h3)

)(
1

T

T∑

t=1

cov(Xt+h1 , Xt+h2)

)

(4.8)

(d) A similar expansion holds for κn(h1, . . . , hn−1) (n > 4), i.e. κn(·) can be written as the average

nth order cumulants plus additional lower order average cumulants terms.

In the above lemma we have shown that for stationary time series, the bootstrap cumulant is an ap-

proximation of the corresponding cumulant of the time series, which is not surprising. However, in the

nonstationary case the bootstrap cumulant behaves differently. Under the assumption that the mean of

the nonstationary time series is constant, the bootstrap cumulant of both second and third orders are

the averages of the corresponding local cumulants. In other words, the second and third order bootstrap
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cumulants of a nonstationary time series behave like a stationary cumulant, i.e. there is a decay in the

cumulant the further apart the time lag. However, the bootstrap cumulants of higher orders (fourth and

above) is not the average of the local cumulants, there are additional terms (see (4.8)). This means that

the cumulants do not have the same decay as regular cumulants have. For example, from equation (4.8)

we see that as the difference |h1 − h2| → ∞, the function κ̄4(h1, h2, h3) does not converge to zero, whereas

cum(Xt, Xt+h1 , Xt+h2 , Xt+h3) does (see Lemma A.9, in the Appendix).

We use Lemma 4.1 to derive results analogous to Brillinger (1981), Theorem 4.3.2, where an expression

for the cumulant of DFTs in terms of the higher order spectral densities was derived. However, to prove

this result we first need to derive the limit of the Fourier transform of the cumulant estimators. We define

the sample higher order spectral density function as

ĥn(ω1, . . . , ωn−1) (4.9)

=
1

(2π)n−1

T−1∑

h1,...,hn−1=−(T−1)

[max(hi,0)−min(hi,0)]≤T−1

(1− p)max(hi,0)−min(hi,0)κ̂n(h1, . . . , hn−1)e
−ih1ω1−...−ihn−1ωn−1 ,

where κ̂n(·) are the sample cumulants defined in (4.2). In the following lemma, we show that ĥn(·)
approximates the ‘pseudo’ higher order spectral density

fn,T (ω1, . . . , ωn−1) (4.10)

=
1

(2π)n−1

T−1∑

h1,...,hn−1=−(T−1)

[max(hi,0)−min(hi,0)]≤T−1

(1− p)max(hi,0)−min(hi,0)κn(h1, . . . , hn−1)e
−ih1ω1−...−ihn−1ωn−1 ,

where κn(·) is defined in (4.4).

We now show that under certain conditions ĥn(·) is an estimator of the higher order spectral density

function.

Lemma 4.2 Suppose the time series {Xt} (where E(Xt) = µ for all t) is α-mixing and supt ‖Xt‖r < ∞
for some r > qα/(α− q/n) (and α > q).

(i) Let ĥn(·) and fn,T (·) be defined in (4.9) and (4.10), respectively. Then we have

sup
ω1,...,ωn−1

∥∥∥∥ĥn(ω1, . . . , ωn−1)− fn,T (ω1, . . . , ωn−1)

∥∥∥∥
q/n

= O

(
1

Tpn
+

1

T 1/2p(n−1)

)
, (4.11)

(ii) If the time series is nth order stationary which is α-mixing with rate α > 2r(n− 1)/(r − n) (we use

this bound to obtain a rate of decay on the nth order cumulant), then we have

sup
ω1,...,ωn−1

∥∥∥∥ĥn(ω1, . . . , ωn−1)− fn(ω1, . . . , ωn−1)

∥∥∥∥
q/n

= O

(
1

Tpn
+

1

T 1/2p(n−1)
+ p

)
(4.12)
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and supω1,...,ωn−1
|fn(ω1, . . . , ωn−1)| < ∞, where fn is the nth order spectral density function defined

as

fn(ω1, . . . , ωn−1) =
1

(2π)n−1

∞∑

h1,...,hn−1=−∞
κn(h1, . . . , hn−1)e

−ih1ω1−...−ihn−1ωn−1

and κn(h1, . . . , hn−1)= cum(X0, Xh1 , . . . , Xhn−1) denotes the nth order joint cumulant of the station-

ary time series {Xt}.

(iii) On the other hand, if the time series is nonstationary:

(a) For n ∈ {2, 3}, we have

sup
ω

∥∥∥∥ĥ2(ω)− f2,T (ω)

∥∥∥∥
q/n

= O

(
1

Tp2
+

1

T 1/2p

)
,

sup
ω1,ω2

∥∥∥∥ĥ3(ω1, ω2)− f3,T (ω1, ω2)

∥∥∥∥
q/n

= O

(
1

Tp3
+

1

T 1/2p2

)
,

where f2,T (ω) = 1
2π

∑∞
h=−∞ κ̄2(h) exp(ihω) with κ̄2(h) defined as in Lemma 4.1(iva) and f3,T

is defined similarly. Since the average covariances and cumulants are absolutely summable, we

have supT,ω |f2,T (ω)| < ∞ and supT,ω1,ω2
|f3,T (ω1, ω2)| < ∞.

(b) For n = 4, we have supω1,ω2,ω3
|f4,T (ω1, ω2, ω3)| = O(p−1).

(c) For n ≥ 4, we have supω1,...,ωn−1
|fn,T (ω1, . . . , ωn−1)| = O(p−(n−3)).

The following result is the bootstrap analogue of (Brillinger, 1981), Theorem 4.3.2.

Theorem 4.1 Let J∗
T (ω) denote the DFT of the stationary bootstrap observations. Under the assumption

that supt ‖Xt‖n < ∞, we have

∥∥cum∗(J∗
T (ωk1), . . . , J

∗
T (ωkn))

∥∥
1
= O

(
1

Tn/2−1pn−1

)
. (4.13)

By imposing the additional condition that {Xt} is an α-mixing time series with a constant mean, q/n ≥ 2,

the mixing rate α > q and ‖Xt‖r < ∞ for some r > qα/(α− q/n), we obtain

cum∗(J∗
T (ωk1), . . . , J

∗
T (ωkn))

=
(2π)n/2−1

Tn/2−1
ĥn(ωk1 , . . . , ωkn−1)

1

T

T∑

t=1

exp(−it(ωk1 + . . .+ ωkn)) +RT,n, (4.14)

where ‖RT,n‖q/n = O( 1
(T 1/2p)n

).
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(a) If {Xt} is nth order stationary which is α-mixing with rate α > 2r(n− 1)/(r − n), then we have

cum∗(J∗
T (ωk1), . . . , J

∗
T (ωkn))

=
(2π)n/2−1

Tn/2−1
fn(ωk1 , . . . , ωkn−1)

1

T

T∑

t=1

exp(−it(ωk1 + . . .+ ωkn)) +RT,n

=





O
(

1
Tn/2−1 + 1

(T 1/2p)n

)
,
∑n

l=1 ωkl ∈ 2πZ

O
(

1
(T 1/2p)n

)
,

∑n
l=1 ωkl /∈ 2πZ

, (4.15)

which is uniform over {ωk1 , . . . , ωkn} and ‖RT,n‖q/n = O( 1
(T 1/2p)n

).

(b) If {Xt} is nonstationary (with constant mean) then for n ∈ {2, 3}, we can replace fn with f2,T and

f3,T in (4.15), respectively, and obtain the same as above.

For n ≥ 4, we have

∥∥cum∗(J∗
T (ωk1), . . . , J

∗
T (ωkn))

∥∥
q/n

=





O
(

1
Tn/2−1pn−3 + 1

(T 1/2p)n

)
,
∑n

l=1 ωkl ∈ 2πZ

O
(

1
(T 1/2p)n

)
,

∑n
l=1 ωkl /∈ 2πZ

. (4.16)

A very useful consequence of the above theorem is that the stationary bootstrap can be used to estimate

the nth order spectral density. More precisely, suppose {Xt} is an nth order stationary time series which

satisfies the assumptions of Theorem 4.1(a) above, then for ωk1 + . . .+ ωkn ∈ 2πZ we have

Tn/2−1

(2π)n/2−1
cum∗(J∗

T (ωk1), . . . , J
∗
T (ωkn)) = fn(ωk1 , . . . , ωkn−1) +Op

(
1

Tpn

)

In other words by evaluating the empirical cumulant of the stationary bootstrap samples of DFTs we obtain

an estimator of the nth order spectral density function. We observe that p plays the role of a bandwidth.

On the other hand, if {Xt} is a nonstationary time series (with a constant mean), then for n ≥ 4 we have

that

Tn/2−1

(2π)n/2−1
cum∗(J∗

T (ωk1), . . . , J
∗
T (ωkn)) = Op

(
1

pn−3

)
.

Note that if {Xt} has a time dependent mean, then the above result is true for n ≥ 2.

5 Analysis of the test statistic

In Section 3.1, we derived the properties of the DFT covariance in the case of stationarity. These results

show that the distribution of the test statistic, in the unlikely event that W(2) is known, is a chi-square (see

Theorem 3.4). In the case that W(2) is unknown as in Section 2.4 we proposed a method to estimate W(2)

and thus the bootstrap statistic. In this section we show that under fourth order stationarity of the time

series, the bootstrap variance defined in Step 6 of the algorithm is a consistent estimator of W(2). Thus,
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the bootstrap statistic T ∗
m,n,d asymptotically converges to a chi-squared distribution. We also investigate

the power of the test under the alternative of local stationarity. To derive the power, we use the results in

Section 3.3, where we show that for at least some values of r and ℓ (usually the low orders), ĈT (r, ℓ) has

a non-centralized normal distribution. However, the test statistic also involves W(2), which is estimated

as if the underlying time series is stationary (using the stationary bootstrap procedure). Therefore, in this

section, we derive an expression for the quantity that W(2) is estimating under the assumption of second

order nonstationarity, and explain how this influences the power of the test.

We use the following assumption in Lemma 5.1, where we show that the variances of the bootstrap

cumulants converge to zero as the sample size increases.

Assumption 5.1 Suppose that {Xt} is α-mixing with α > 8 and the moments satisfy ‖X‖s < ∞, where

s > 8α/(α− 2).

Lemma 5.1 Suppose that the time series {Xt} satisfies Assumption 5.1.

(i) {Xt} is fourth order stationary, then we have

(a) cum∗(J∗
T,j1

(ωk1), J
∗
T,j2

(ωk2)) = fj1,j2(ωk1)I(k1 = −k2) +R1,T .

(b) cum∗(J∗
T,j1

(ωk1), J
∗
T,j2

(ωk2), J
∗
T,j3

(ωk3), J
∗
T,j4

(ωk4)) =
2π
T f4;j1,...,j4(ωk1 , ωk2 , ωk3)I(k4 = −k1 − k2 −

k3) +R2,T ,

where ‖R1,T ‖4 = O( 1
Tp2

) and ‖R2,T ‖2 = O( 1
T 2p4

)

(ii) {Xt} has a constant mean, but it is not fourth order stationary, then we have

(a) cum∗(J∗
T,j1

(ωk1), J
∗
T,j2

(ωk2)) = f2,T ;j1,j2(ωk1)I(k1 = −k2) +R1,T

(b) cum∗(J∗
T,j1

(ωk1), J
∗
T,j2

(ωk2), J
∗
T,j3

(ωk3), J
∗
T,j4

(ωk4)) = (2π)
T f4,T ;j1,...,j4(ωk1 , ωk2 , ωk3)I(k4 = −k1 −

k2 − k3) +R2,T ,

where f2,T ;j1,j2(ωk1) and f4,T ;j1,...,j4(ωk1 , ωk2 , ωk3) are multivariate analogues of (4.10), ‖R1,T ‖4 =

O( 1
Tp2

) and ‖R2,T ‖2 = O( 1
T 2p4

).

In order to obtain the limit of the bootstrap variance estimator, we define

C̃∗
T (r, ℓ) =

1

T

T∑

k=1

L(ωk)J
∗
T (ωk)J

∗
T (ωk+r)

′
L(ωk+r)

′
exp(iℓωk).

We observe that this is almost identical to the bootstrap DFT Ĉ∗
T (r, ℓ) and Ć∗

T (r, ℓ), except that L̂
∗(·) and

L̂(·) have been replaced with their limit L(·). We first obtain the variance of C̃∗
T (r, ℓ), which is simple a

consequence of Lemma 5.1. Later, we show that it is equivalent to the bootstrap variances of Ĉ∗
T (r, ℓ) and

Ć∗
T (r, ℓ).
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Theorem 5.1 (Consistency of the variance estimator based on C̃∗
T (r, ℓ)) Suppose that {Xt} is an

α-mixing time series which satisfies Assumption 5.1 and let

K̃∗
n(r) =

(
vech(C̃∗

T (r, 0))
′, vech(C̃∗

T (r, 1))
′, . . . , vech(C̃∗

T (r, n− 1))′
)′

.

Suppose Tp4 → ∞, bTp2 → ∞, b → 0 and p → 0 as T → ∞,

(i) In addition suppose that {Xt} is a fourth order stationary time series. Let Wn be defined as in (2.14).

Then for fixed m,n ∈ N we have Tvar∗(ℜK̃∗
n(r)) = Wn + op(1) and Tvar∗(ℑK̃∗

n(r)) = Wn + op(1).

(ii) On the other hand, suppose {Xt} is a locally stationary time series which satisfies Assumption

3.2(L2). Let

κ
(ℓ1,ℓ2)
T (j1, j2, j3, j4) =

2π

T 2

T∑

k1,k2=1

d∑

s1,s2,s3,s4=1

Lj1s1(ωk1)Lj2s2(ωk1)Lj3s3(ωk2)Lj4s4(ωk2)

× exp(iℓ1ωk1 − iℓ2ωk2)f4,T ;s1,s2,s3,s4(ωk1 ,−ωk1 ,−ωk2), (5.1)

where L(ω)
′
L(ω) = f−1(ω), f(ω) =

∫ 1
0 f(u;ω)du and

f4,T ;s1,s2,s3,s4(λ1, λ2, λ3) =
1

(2π)3

T−1∑

h1,h2,h3=−(T−1)

[max(hi,0)−min(hi,0)]≤T−1

(1− p)max(hi,0)−min(hi,0)

×κ4;s1,s2,s3,s4(h1, h2, h3) exp(−i(h1λ1 + h2λ2 + h3λ3)).

Using the above we define

(WT,n)ℓ1+1,ℓ1+1 = W
(1)
ℓ1

δℓ1,ℓ2 +W
(2)
ℓ1,ℓ2

, (5.2)

where W
(1)
ℓ and W

(2)
ℓ1,ℓ2

are defined as in (2.13) and (2.17) but with κ(ℓ1,ℓ2)(j1, j2, j3, j4) replaced

with κ
(ℓ1,ℓ2)
T (j1, j2, j3, j4). Then, for fixed m,n ∈ N, we have Tvar∗(ℜK̃∗

n(r)) = WT,n + op(1)

and Tvar∗(ℑK̃∗
n(r)) = WT,n + op(1). Furthermore, |κ(ℓ1,ℓ2)T (j1, j2, j3, j4)| = O(p−1) and |WT,n|1 =

O(p−1).

The above theorem shows that if f(ω) and consequently C̃∗
T (r, ℓ) were known, then the bootstrap

variance estimator is consistent under fourth order stationarity. Now we show that both the asymptotic

bootstrap variances of Ĉ∗
T (r, ℓ) and Ć∗

T (r, ℓ) are asymptotically equivalent to the variance of C̃∗
T (r, ℓ).

Assumption 5.2 (Variance equivalence) (B1) Let f̄∗α,T (ω) = α(ω)f̂∗T (ω) + (1− α(ω))f̂T (ω), where α :

[0, 2π] → [0, 1] and Lj1,j2(·) denote the (j1, j2)th element of the matrix L(·). Let ∇iLj1,j2(f(ω))

denote the ith derivative with respect to vec(f(ω)). We assume that for every ε > 0 there exists a

0 < Mε < ∞ such that

P

(
sup
α,ω

(E∗|∇iLj1,j2(f̄
∗
α,T (ω))|8)1/8 > Mε

)
< ε,
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for i = 0, 1, 2. In other words the sequence {supα,ω(E∗|∇iLj1,j2(f̄
∗
α,T (ω))|8)1/8}T is bounded in proba-

bility.

(B2) The time series {Xt} is α-mixing with α > 16 and has a finite sth moment (supt ‖Xt‖s < ∞) such

that s > 16α/(α− 2).

Remark 5.1 (On Assumption 5.2(B1)) (i) This is a technical assumption that is required when

showing equivalence of the bootstrap variance estimator using Ĉ∗
T (r, ℓ) to the bootstrap variance using

C̃∗
T (r, ℓ). In the case we use Ć∗

T (r, ℓ) to construct the bootstrap variance (defined in (2.26)) we do

not require this assumption.

(ii) Let ∇2 denote the second derivative with respect to the vector (f̄∗α,T (ω1), f̄
∗
α,T (ω2)). Assumption

5.2(B1) implies that the sequence supω1,ω2,α E
∗|∇2Lj1,j2(f̄

∗
α,T (ω1))Lj1,j2(f̄

∗
α,T (ω2))|4)1/4 is bounded in

probability. We use this result in the proof of Lemma A.16.

(ii) In the case d = 1, L(ω) = f−1/2(ω) and Assumption 5.2(B1) corresponds to the condition that for

i = 0, 1, 2 the sequence {supα,ω
[
E∗(f̄∗

α,T (ω)
−4(2i+1)

)]1/8}T is bounded in probability.

Using the assumptions above, we derive a bound for the difference between the covariances Ĉ∗
T (r, ℓ)

and C̃∗
T (r, ℓ).

Lemma 5.2 Suppose that {Xt} is a fourth order stationary time series or a constant mean locally station-

ary time series which satisfies Assumption 3.2(L2)), Assumption 5.2(B2) holds and Tp4 → ∞, bTp2 → ∞,

b → 0 and p → 0 as T → ∞. Then, we have

(i)

|T
(
cov∗(ℜĆ∗

T (r, ℓ1),ℜĆ∗
T (r, ℓ2))− cov∗(ℜC̃∗

T (r, ℓ1),ℜC̃∗
T (r, ℓ2))

)
| = op(1).

and

|T
(
cov∗(ℑĆ∗

T (r, ℓ1),ℑĆ∗
T (r, ℓ2))− cov∗(ℑC̃∗

T (r, ℓ1),ℑC̃∗
T (r, ℓ2))

)
| = op(1)

(ii) If in addition Assumption 5.2(B1) holds, then we have

|T
(
cov∗(ℜĈ∗

T (r, ℓ1),ℜĈ∗
T (r, ℓ2))− cov∗(ℜC̃∗

T (r, ℓ1),ℜC̃∗
T (r, ℓ2))

)
| = op(1)

and

|T
(
cov∗(ℑĈ∗

T (r, ℓ1),ℑĈ∗
T (r, ℓ2))− cov∗(ℑC̃∗

T (r, ℓ1),ℑC̃∗
T (r, ℓ2))

)
| = op(1).
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Finally, by using the above, we obtain the following result.

Theorem 5.2 Suppose Assumptions 5.2(B2) holds. Let the test statistic T ∗
m,n,d be defined as in (2.25),

where the bootstrap variance is constructed using either Ĉ∗
T (r, ℓ) or Ć

∗
T (r, ℓ) (if Ĉ

∗
T (r, ℓ) is used to construct

the test statistic, then Assumption 5.2(B1) needs to hold too).

(i) Suppose Assumption 3.1 holds. Then we have

T ∗
m,n,d

P→ χ2
mnd(d+1).

(ii) Suppose Assumption 3.2 and A(r, ℓ) 6= 0 for some 0 < r ≤ m and 0 ≤ ℓ ≤ n hold, then we have

T ∗
m,n,d = Op(Tp).

The above theorem shows that under fourth order stationarity the asymptotic distribution of T ∗
m,n,d (where

we use the bootstrap variance as an estimator of Wn) is asymptotically equivalent to the test statistic as if

Wn were known. We observe that the mean length of the bootstrap block 1/p does not play a role in the

asymptotic distribution under stationarity. This is in sharp contrast to the locally stationary case. If we

did not use a bootstrap scheme to estimate W
−1/2
n (i.e. we were to use Wn = W

(1)
n , which is the variance

in the case of Gaussianity), then under local stationarity Tm,n,d = Op(T ). However, by using the bootstrap

scheme we incur a slight loss in power since T ∗
m,n,d = Op(Tp).

6 Practical Issues

In this section, we consider the implementation issues related to the test statistic. We will be considering

both the test statistic T ∗
m,n,d, where we use the stationary bootstrap to estimate the variance, and compare

it to the test statistic Tm,n,d,G (defined in (2.21)) that is constructed as if the observations are Gaussian.

6.1 Selection of the tuning parameters

We recall from the definition of the test statistic that there are four different tuning parameters that need

to be selected in order to construct the test statistic, to recap these are b the bandwidth for spectral density

matrix estimation, m the number of DFT covariances ĈT (r, ℓ) (where r = 1, . . . ,m), n the number of DFT

covariances ĈT (r, ℓ) (where ℓ = 0, . . . , n − 1) and p which determines the average block length (which

is p−1) in the bootstrap scheme. For the simulations below and the real data example, we use n = 1.

This is because (a) in most situations it is likely that the nonstationarity is ‘seen’ in ĈT (r, 0) and (b) we

have shown that under the alternative of local stationarity ĈT (r, ℓ)
P→ A(r, ℓ), where for ℓ 6= 0 or r 6= 0

A(r, ℓ) = O(|ℓ|−2|r|−1), thus a large n can result in a loss of power. However, we do recommend that a
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plot of ĈT (r, ℓ) (or a standardized ĈT (r, ℓ)) is made against r and ℓ (similar to Figures 1–3) to see if there

are any large coefficients which may be statistically significant. We now discuss how to select b, m and p.

These procedures will be used in the simulations below.

Choice of the bandwidth b

To estimate the spectral density matrix we need to select the bandwidth b. We use the cross-validation

criterion, suggested in Beltrao and Bloomfield (1987) (see also Robinson (1991)).

Choice of the number of lags m

We select m by adapting the data driven rule suggested by Escanciano and Lobato (2009) (who propose

a method for selecting the number of lags in a Portmanteau test for testing uncorrelatedness of a time

series). We summarize their procedure and then discuss how we use it to selectm in our test for stationarity.

For univariate time series {Xt}, Escanciano and Lobato (2009) suggest selecting the number of lags in a

Portmanteau test using the criterion

m̃P = min{m : 1 ≤ m ≤ D : Lm ≥ Lh, h = 1, 2, . . . , D},

where Lm = Qm − π(m,T, q), Qm = T
∑m

j=1 |R̂(j)/R̂(0)|2, D is a fixed upper bound and π(m,T, q) is a

penalty term that takes the form

π(m,T, q) =




m log(T ), max1≤k≤D

√
T |R̂(k)/R̂(0)| ≤

√
q log(T )

2m, max1≤k≤D

√
T |R̂(k)/R̂(0)| >

√
q log(T )

,

where R̂(k) = 1
T−k

∑T−|k|
j=1 (Xj − X)(Xj+|k| − X). We now propose to adapt this rule to select m. More

precisely, depending on whether we use T ∗
m,1,d or Tm,1,d;G we define the sequences of bootstrap DFT

covariances {γ̂∗(r), r ∈ N} and non-bootstrap DFT covariances {γ̂(r), r ∈ N}, where

γ̂∗(r) =
1

d(d+ 1)

d(d+1)/2∑

j=1

{
(Ŵ∗

1(r))
−1/2ℜK̂1(r)j + (Ŵ∗

1(r))
−1/2ℑK̂1(r)j

}

and γ̂(r) is defined similarly with Ŵ∗(r) = (Ŵ∗(r))1,1 (defined in Step 6 of the bootstrap scheme) replaced

by W
(1)
0 as in (2.21). We select m by using

m̂ = min{m : 1 ≤ m ≤ D : Lm ≥ Lh, h = 1, 2, . . . , D},

where Lm = T ∗
m,n,d − π∗(m,T, q) (or Tm,n,d;G − π(m,T, q) if Gaussianity is assumed) and

π∗(m,T, q) =




m log(T ), max1≤r≤D

√
T |γ̂∗(r)| ≤

√
q log(T )

2m, max1≤r≤D

√
T |γ̂∗(r)| >

√
q log(T )

,

and π(m,T, q) is defined similarly but using γ̂(r) instead of γ̂∗(r).
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Choice of the average block size 1/p

For the bootstrap test, the tuning parameter 1/p is chosen by adapting the rule suggested by Politis

and White (2004) (and later corrected in Patton, Politis, and White (2009)) that was originally proposed

in order to estimate the finite sample distribution of the univariate sample mean (using the stationary

bootstrap). More precisely, to bootstrap the sample mean for dependent univariate time series {Xt}, they
suggest to select the tuning parameter for the stationary bootstrap as

1

p
=

(
Ĝ2

ĝ2(0)

)1/3

T 1/3, (6.1)

where Ĝ =
∑M

k=−M λ(k/M)|k|R̂(k), ĝ(0) =
∑M

k=−M λ(k/M)R̂(k), R̂(k) defined above and

λ(t) =





1, |t| ∈ [0, 1/2]

2(1− |t|), |t| ∈ [1/2, 1]

0, otherwise

is a trapezoidal shape symmetric flat-top taper. We have to adapt the rule (6.1) in two ways for our

purposes. First, the theory established in Section 5 requires Tp4 → ∞ for the stationary bootstrap to be

consistent. Hence, we suggest to use the same (estimated) constant as in (6.1), but we multiply it with T 1/5

instead of T 1/3 to meet these requirements. Second, as (6.1) is tailor-made for univariate data, we propose

to apply it separately to all components of multivariate data and to define 1/p as the average value. We

mention that proper selection of a p (and in general the block length in any bootstrap procedure) is an

extremely difficult problem and requires further investigation (see, for example, Paparoditis and Politis

(2004) and Parker et al. (2006)).

6.2 Simulations

We now illustrate the performance of the test for stationarity of a multivariate time series through sim-

ulations. We will compare the test statistics T ∗
m,n,d and Tm,n,d;G, which are defined in (2.25) and (2.21),

respectively. In the following, we refer to T ∗
m,n,d and Tm,n,d;G as the bootstrap and the non-bootstrap test,

respectively. Observe that the non-bootstrap test is asymptotically a test of level α only in the case that

the fourth order cumulants are zero (which includes the Gaussian case). We reject the null of stationarity

at the nominal level α ∈ (0, 1) if

T ∗
m,n,d > χ2

mnd(d+1)(1− α) and Tm,n,d;G > χ2
mnd(d+1)(1− α). (6.2)
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6.2.1 Simulation setup

In the simulations below, we consider several stationary and nonstationary bivariate (d = 2) time series

models. For each model we have generated M = 400 replications of the bivariate time series (Xt =

(Xt,1, Xt,2)
′, t = 1, . . . , T ) with sample size T = 500. As described above, the bandwidth b for estimating

the spectral density matrices is chosen by cross-validation. To select m, we set q = 2.4 (as recommended

in Escanciano and Lobato (2009)) and D = 10. To compute the quantities Ĝ and ĝ(0) for the selection

procedure of 1/p (see (6.1)), we set M = 1/b. Further, we have used N = 400 bootstrap replications for

each time series.

6.2.2 Models under the null

To investigate the behavior of the tests under the null of (second order) stationarity of the process {Xt},
we consider realizations from two vector autoregressive models (VAR), two GARCH-type models and one

Markov switching model. Throughout this section, let

A =


 0.6 0.2

0 0.3


 and Σ =


 1 0.3

0.3 1


 . (6.3)

To cover linear time series, we consider data X1, . . . , XT from the bivariate VAR(1) models

Model S(I) & S(II) Xt = AXt−1 + et, (6.4)

where {et, t ∈ Z} is a bivariate i.i.d. white noise process. For Model S(I), let et ∼ N (0,Σ). For Model

S(II), the first component of {et, t ∈ Z} consists of i.i.d. uniformly distributed random variables, et,1 ∼
R(−

√
3,
√
3) and the second component {et,2} of t-distributed random variables with 5 degrees of freedom

that are suitably multiplied such that E(ete
′
t) = Σ holds. Observe that the excess kurtosis for these two

innovation distributions are −6/5 and 6, respectively.

The two GARCH-type Models S(III) and S(IV) are based on two independent, but identically dis-

tributed univariate GARCH(1,1) processes {Yt,i, t ∈ Z}, i = 1, 2, each with

Model S(III) & S(IV) Yt,i = σt,iet,i, σ2
t,i = 0.01 + 0.3Y 2

t−1,i + 0.5σ2
t−1,i, (6.5)

where {et,i, t ∈ Z}, i = 1, 2, are two independent i.i.d. standard normal white noise processes. Now, Model

S(III) and S(IV) correspond to the processes {Xt = Σ1/2(Yt,1, Yt,2)
′, t ∈ Z} and {Xt = Σ1/2{(|Yt,1|, |Yt,2|)′−

E[(|Yt,1|, |Yt,2|)′]}, t ∈ Z}, respectively (the first is the GARCH process, the second are the (centered)

absolute values of the GARCH). Both these models are nonlinear and their fourth order cumulant structure

is complex. Finally, we consider a VAR(1) regime switching model

Model S(V) Xt =




AXt−1 + et, st = 0,

et, st = 1,

(6.6)
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where {st} is a (hidden) Markov process with two regimes such that P (st ∈ {0, 1}) = 1 and P (st = st−1) =

0.95 and {et, t ∈ Z} is a bivariate i.i.d. white noise process with et ∼ N (0,Σ)).

Realizations of stationary Models S(I)–S(V) are shown in Figure 1 together with the corresponding DFT

covariances T |Ĉ11(r, 0)|2, T |
√
2Ĉ21(r, 0)|2 and T |Ĉ22(r, 0)|2, r = 1, . . . , 10. The performance under the null

of both tests T ∗
m,n,d and Tm,n,d;G are reported in Table 1.

Discussion of the simulations under the null

For the stationary Models S(I)–S(V), the DFT covariances for lags r = 1, . . . , 10 are shown in Figure

1. These plots illustrate their different behaviors under Gaussianity and non-Gaussianity. In particular,

for the Gaussian Model S(I), it can be seen that the DFT covariances seem to fit to the theoretical χ2-

distribution. Contrary to that, for the corresponding non-Gaussian Model S(II), they appear to have larger

variances. Hence, in this case, it is necessary to use the bootstrap to estimate the proper variance in order

to standardize the DFT covariances before constructing the test statistic. For the non-linear GARCH-type

Models S(III) and S(IV), this effect becomes even more apparent and here it is absolutely necessary to

use the bootstrap to correct for the larger variance (due to the fourth order cumulants). For the Markov

switching Model S(V), this effect is also present, but not that strong in comparison to the GARCH-type

models S(III) and S(IV).

In Table 1, the performance in terms of actual size of the bootstrap test T ∗
m,n,d and of the non-bootstrap

test Tm,n,d;G are presented. For Model S(I), where the underlying time series is Gaussian, the test Tm,n,d;G

performs superior to T ∗
m,n,d, which tends to be conservative and underrejects the null. However, if we leave

the Gaussian world, the corresponding non-Gaussian Model S(II) shows a different picture. In this case,

the non-bootstrap test Tm,n,d;G clearly overrejects the null significantly, where the bootstrap test T ∗
m,n,d

still remains conservative, but holds the prescribed level. For the GARCH-type Model S(III), both tests

do not succeed in attaining the nominal level (overrejecting the null). However, there are two important

factors which explain this. On the one hand, the non-bootstrap test Tm,n,d;G just does not take the fourth

order structure contained in the process dynamics into account, which leads to a test that significantly

overrejects the null, because in this case the DFT covariances are not properly standardized. On the other

hand, the bootstrap procedure used for constructing T ∗
m,n,d relies to a large extent on the choice of the

tuning parameter p, which controls the average block length of the stationary bootstrap and, hence, for

the dependence captured by the bootstrap samples. However, the data-driven rule (defined in Section 6.1)

for selecting 1/p is based on the correlation structure of the data and the GARCH process is uncorrelated.

This leads the rule to selecting a very small 1/p (typically it chooses a mean block length of 1 or 2). With
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such a small block length the fourth order cumulant in the variance cannot be estimated properly, indeed

it underestimates it. For Model S(IV), we take the absolute values of GARCH processes, such that serial

correlation becomes visible in the data. Hence, the data-driven rule selects a larger tuning parameter 1/p

in comparison to Model S(III). Therefore, a relatively accurate estimate of the (large) variance of the DFT

covariance is obtained, leading to the bootstrap test T ∗
m,n,d attaining an accurate nominal level. How-

ever, as expected, the non-bootstrap test Tm,n,d;G fails to attain the nominal level (since the kurtosis of the

GARCH model is large, thus this model is highly ‘non-Gaussian’). Finally, the bootstrap test performs well

for the VAR(1) switching Model S(V), whereas the non-bootstrap test Tm,n,d;G tends to slightly overreject

the null.

6.2.3 Models under the alternative

To illustrate the behavior of the tests under the alternative of (second order) nonstationarity, we consider

realizations from three models fulfilling different types of nonstationary behavior. As we focus on locally

stationary alternatives, where nonstationarity is caused by smoothly changing dynamics, we consider first

the time-varying VAR(1) model (tvVAR(1))

Model NS(I) Xt = AXt−1 + σ

(
t

T

)
et, t = 1, . . . , T, (6.7)

where σ(u) = 2 sin (2πu) and A as defined in (6.3). Further, we include a second tvVAR(1) model, where

the dynamics are not present in the innovation variance, but in the coefficient matrix. More precisely, we

consider the tvVAR(1) model

Model NS(II) Xt = A

(
t

T

)
Xt−1 + et, t = 1, . . . , T, (6.8)

where A(u) = sin (2πu)A. Finally, we consider the unit root case (noting that several authors have

considered tests for stochastic trend, including Pelagatti and Sen (2013)), though this case has not been

treated in our asymptotic theory. In particular, we consider observations from a bivariate random walk

Model NS(III) Xt = Xt−1 + et, t = 1, . . . , T, X0 = 0. (6.9)

In all Models NS(I)–NS(III) above, {et, t ∈ Z} is a bivariate i.i.d. white noise process with et ∼ N (0,Σ)

and Σ as defined in (6.3).

In Figure 2 we show realizations of nonstationary Models NS(I)–NS(III) together with DFT covariances

T |Ĉ11(r, 0)|2, T |
√
2Ĉ21(r, 0)|2 and T |Ĉ22(r, 0)|2, r = 1, . . . , 10 to illustrate how the type of nonstationarity

is encoded. The performance under nonstationarity of both tests T ∗
m,n,d and Tm,n,d;G are reported in Table

2 for sample size T = 500.
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Discussion of the simulations under the alternative

The DFT covariances for the nonstationary Models NS(I)–NS(III) as displayed in Figures 2 illustrate how

and why the proposed testing procedure is able to detect nonstationarity in the data. For both locally

stationary Models NS(I) and NS(II), it can be seen that the nonstationarity is encoded mainly in the DFT

covariances at lag two, where the peak is significantly more pronounced for Model NS(I) in comparison to

Model NS(II). Contrary to that behavior, for the random walk Model NS(III), the DFT covariances are

large for all lags.

In Table 2 we report the results for the tests, where the power for the bootstrap test T ∗
m,n,d and for

the non-bootstrap test Tm,n,d;G are given. It can be seen that both tests have good power properties

for the tvVAR(1) Model NS(I), where the non-bootstrap test Tm,n,d;G is slightly superior to the boot-

strap test T ∗
m,n,d. Here, it is interesting to note that the time-varying spectral density for Model NS(I) is

f(u, ω) = 1
2(1−cos(4πu))fY (ω), where fY (ω) is the spectral density matrix corresponding to the stationary

time series Y t = AY t−1 + 2et. Comparing this to the Fourier coefficients A(r, 0) (defined in (3.9)), we

see that for this example A(2, 0) 6= 0 whereas A(r, 0) = 0 for r 6= 2, r > 0 (which can be seen in Figure

2). In contrast, neither the bootstrap nor non-bootstrap test performs well for Model NS(II) (here the

rejection rate is less than 40% even in the Gaussian case when using the 10% level). However, from Figure

2 of the DFT covariance we do see a clear peak at lag two, but this peak is substantially smaller than the

corresponding peak in Model NS(I). A plausible explanation for the poor performance of the test in this

case is that even when m = 2 the test we use a chi-square with d(d + 1) × m = 2 × 3 × 2 = 12 degrees

of freedom which pushes the rejection region to the right, thus making it extremely difficult to reject the

null unless the sample size or A(r, ℓ) are extremely large. Since a visual inspection of the covariance shows

clear signs of nonstationarity, this suggests that further work is needed in selecting which DFT covariances

should be used in the testing procedure (especially in the multivariate setting where using a component

wise scheme may be useful).

Finally, both tests have good power properties for the random walk Model NS(III). As the theory

suggests (see Theorem 5.2), for all three nonstationary models the non-bootstrap procedure has better

power than the bootstrap procedure.

6.3 Real data application

We now consider a real data example, in particular the log-returns over T = 513 trading days of the FTSE

100 and the DAX 30 stock price indexes between January 1st 2011 and December 31st, 2012. A plot of

both indexes is given in Figure 3. Typically, a stationary GARCH-type model is fitted to the log returns
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Model α T ∗
m,n,d Tm,n,d;G

S(I) 1% 0.00 0.00

5% 0.50 3.00

10% 1.25 6.00

S(II) 1% 0.00 21.25

5% 0.25 32.25

10% 1.00 40.25

S(III) 1% 55.00 89.75

5% 69.00 93.50

10% 76.50 96.50

S(IV) 1% 0.50 88.75

5% 3.50 93.75

10% 6.75 95.25

S(V) 1% 0.00 1.75

5% 2.50 7.50

10% 5.00 13.00

Table 1: Stationary case: Actual size of T ∗
m,n,d and of Tm,n,d;G for d = 2, n = 1, m = m̂ for sample size

T = 500 and stationary Models S(I)–S(V).

of stock index data. Therefore, in this section we investigate whether it is reasonable to assume that

this time series is stationary. We first make a plot of the DFT covariances T |Ĉ11(r, 0)|2, T |
√
2Ĉ21(r, 0)|2

and T |Ĉ22(r, 0)|2 (see Figure 3). We observe that most of the covariances are above the 5% level of a χ2
2

distribution (however we note that ĈT (r, 0) has not been standardized). We then apply the bootstrap test

T ∗
m,n,d and the non-bootstrap test Tm,n,d;G to the raw log-returns. In this case, both tests reject the null of

second-order stationarity at the α = 1% level. However, we recall from the simulation study in Section 6.2

(Models S(III) and S(IV)) that the tests tends to falsely reject the null for a GARCH model. Therefore, to

make sure that the small p-value is not a mistake in the testing procedure, we consider the absolute values

of log returns. A plot of the corresponding DFT covariances T |Ĉ11(r, 0)|2, T |
√
2Ĉ21(r, 0)|2 and T |Ĉ22(r, 0)|2

is given in Figure 3. Applying the non-bootstrap test gives a p-value of less than 0.1% and the bootstrap

test gives a p-value of 3.9%. Therefore, an analysis of both the log-returns and the absolute log-returns of

the FTSE 100 and DAX 30 stock price indexes strongly suggest that this time series is nonstationary and

fitting a stationary model to this data may not be appropriate.
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Figure 1: Stationary case: Bivariate realizations (left panels) and DFT covariances (right panels)

T |Ĉ11(r, 0)|2 (solid), T |
√
2Ĉ21(r, 0)|2 (dashed) and T |Ĉ22(r, 0)|2 (dotted) for stationary models S(I)–S(V)

(top to bottom). The dashed red line is the 0.95-quantile of the χ2 distribution with two degrees of freedom

and DFT covariances are reported for sample size T = 500.
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Figure 2: Nonstationary case: Bivariate realizations (left panels) and DFT covariances (right panels)

T |Ĉ11(r, 0)|2 (solid), T |
√
2Ĉ21(r, 0)|2 (dashed) and T |Ĉ22(r, 0)|2 (dotted) for nonstationary models S(I)–

S(III) (top to bottom). The dashed red line is the 0.95-quantile of the χ2 distribution with two degrees of

freedom and DFT covariances are reported for sample size T = 500.
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Model α T ∗
m,n,d Tm,n,d;G

NS(I) 1% 87.00 100.00

5% 94.50 100.00

10% 96.75 100.00

NS(II) 1% 2.75 10.75

5% 9.75 24.25

10% 16.50 35.25

NS(III) 1% 61.00 94.75

5% 66.00 95.50

10% 68.50 95.75

Table 2: Nonstationary case: Power of T ∗
m,n,d and of Tm,n,d;G for d = 2, n = 1, m = m̂ for sample size

T = 500 and nonstationary Models NS(I)–NS(II).
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Figure 3: Log-returns of the FTSE 100 (top left panel) and of the DAX 30 (top right panel) stock price

indexes over T = 513 trading days from January 1st, 2011 to December 31, 2012. Corresponding DFT

covariances T |Ĉ11(r, 0)|2 (solid, FTSE), T |
√
2Ĉ21(r, 0)|2 (dashes) and T |Ĉ22(r, 0)|2 (dotted, DAX) based

on log-returns (bottom left panel) and on absolute values of log-returns (bottom right panel). The dashed

red line is the 0.95-quantile of the χ2 distribution with two degrees of freedom.
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A Proofs

A.1 Preliminaries

In order to derive its properties, we use that c̃j1,j2(r, ℓ) can be written as

c̃j1,j2(r, ℓ) =
1

T

T∑

k=1

Lj1,•(ωk)JT (ωk)JT (ωk+r)
′
Lj2,•(ωk+r)

′
exp(iℓωk)

=
1

T

T∑

k=1

d∑

s1,s2=1

Lj1,s1(ωk)JT,s1(ωk)JT,s2(ωk+r)Lj2,s2(ωk+r) exp(iℓωk),

where Lj,s(ωk) is entry (j, s) of L(ωk) and Lj,•(ωk) denotes its jth row.

We will assume throughout the appendix that the lag window satisfies Assumption 2.1 and we will

use the notation f(ω) = vec(f(ω)), f̂(ω) = vec(f̂(ω)), Jk,s = JT,s(ωk), fk
= f(ωk), f̂k

= f̂(ωk), fk,r
=

(vec(f̂(ωk))
′, vec(f̂(ωk+r))

′)′,

Aj1,s1,j2,s2(f(ω1), f(ω2)) = Lj1s1(f(ω1))Lj2s2(f(ω2)) (A.1)

and Aj1,s1,j2,s2(fk,r
) = Lj1s1(fk

)Lj2s2(fk+r
). Furthermore, let us suppose that G is a positive definite

matrix, G = vec(G) and define the lower-triangular matrix L(G) such that L(G)GL(G)
′
= I (hence L(G)

is the inverse of the Cholesky decomposition of G). Let Ljs(G) denote the (j, s)th element of the Cholesky

matrix L(G). Let ∇Ljs(G) = (
∂Ljs(G)
∂G11

, . . . ,
∂Ljs(G)
∂Gdd

)′ and ∇nLjs(G) denote the vector of all partial nth

order derivatives wrt G. Furthermore, to reduce notation let L̂js(ω) = Ljs(f̂(ω)) and Ljs(ω) = Ljs(f(ω)).

In the stationary case, let κ(h) = cov(Xh, X0) and in the locally stationary case κ(u;h) is defined in

Assumption 3.2.

Before proving Theorems 3.1 and 3.5 we first state some preliminary results.

Lemma A.1 (i) Let G = (gkl) be a positive definite (d × d) matrix. Then, for all 1 ≤ j, s ≤ d and all

r ∈ N0, there exists an ǫ > 0 and a set Mǫ = {M : |G −M|1 < ǫ and M is positive definite} such

that

sup
M∈Mǫ

|∇rLjs(M)|1 < ∞.

(ii) Let G(ω) be a (d×d) uniformly continuous spectral density matrix function with infω λmin(G(ω)) > 0.

Then, for all 1 ≤ j, s ≤ d and all r ∈ N0, there exists an ǫ > 0 and a set Mǫ,ω = {M(·) :

|G(ω)−M(ω)|1 < ǫ and M(ω) is positive definite for all ω} such that

sup
ω

sup
M(·)∈Mǫ

|∇rLjs(M(ω))|1 < ∞.
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PROOF. (i) For a positive definite matrix M, let M = BB
′
, where B denotes the lower-triangular

Cholesky decomposition of M and we set C = B−1. Further, let Ψ and Φ be defined by B = Ψ(G) and

C = Φ(B), i.e. Ψ maps a positive definite matrix to its Cholesky matrix and Φ maps an invertible matrix

to its inverse. Further suppose λmin(G) =: η and λmax(G) =: η for some positive constants η ≤ η and let

ǫ > 0 be sufficiently small such that 0 < η − δ ≤ λmin(M) ≤ λmax(M) ≤ η + δ < ∞ for all M ∈ Mǫ and

some δ > 0. The latter is possible because the eigenvalues are continuous functions in the matrix entries.

Now, due to

Lkl(M) = ckl = Φkl(B) = Φkl(Ψ(M))

and the chain rule, it suffices to show that (a) all entries of Ψ have partial derivatives of all orders on the

set of all positive definite matrices M = (mkl) with 0 < η − δ ≤ λmin(M) ≤ λmax(M) ≤ η + δ < ∞ for

some δ > 0 and (b) all entries of Φ have partial derivatives of all orders on the set Lǫ of all lower triangular

matrices with diagonal elements lying in [ζ, ζ] for some suitable 0 < ζ ≤ ζ < ∞ depending on δ above such

that Ψ(Mǫ) ⊂ Lǫ. In particular, the diagonal entries (the eigenvalues) of B are bounded from above and

also away from zero. As there are no explicit formulas for B = Ψ(M) and C = Φ(B), their entries have

to be calculated recursively by

bkl =





1
bll
(mkl −

∑l−1
j=1 bkj b̄lj), k > l

(mkk −
∑k−1

j=1 bkj b̄kj)
1/2, k = l

0, k < l

and ckl =





− 1
bkk

∑k−1
j=l bkjcjl, k > l

1
bkk

, k = l

0, k < l

,

where the recursion is done row by row (top first), starting from the left hand side of each row to the right.

To prove (a), we order the non-zero entries of B row-wise and get for the first entry Ψ11(M) = b11 =
√
m11,

which is arbitrarily often partially differentiable as m11 > 0 is bounded away from zero on Mǫ. Now we

proceed recursively by induction. Suppose that bkl = Ψkl(M) is arbitrarily often partially differentiable

for the first p non-zero elements of B on Mǫ. The (p+ 1)th non-zero element is bst, say. For s = t, we get

Ψss(M) = bss =


mss −

s−1∑

j=1

bsj b̄sj




1/2

=


mss −

s−1∑

j=1

Ψsj(M)Ψsj(M)




1/2

,

and for s > t, we have

Ψst(M) = bst =
1

Ψtt(M)


mst −

t−1∑

j=1

Ψsj(M)Ψtj(M)


 ,

such that all partial derivatives of Ψst(M) exist on Mǫ as Ψst(M) is composed of such functions and due

to mss −
∑s−1

j=1 bsj b̄sj and Ψtt(M) uniformly bounded away from zero on Mǫ. This proves part (a). To
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prove part (b), we get immediately that Φkk(B) = ckk = 1/bkk has all partial derivatives on Lǫ as bkk is

bounded way from zero for all k. Now, we order the non-zero off-diagonal elements of C row-wise and for

the first such entry we get Φ21(B) = c21 = −b21c11/b22 which is arbitrarily often partially differentiable

again as b22 is bounded way from zero. Now we proceed again recursively by induction. Suppose that

ckl = Φkl(B) is arbitrarily often partially differentiable for the first p non-zero off-diagonal elements of C.

The (p+ 1)th non-zero element equals cst, say, and we have

Φst(B) = cst = − 1

bss

s−1∑

j=l

bsjcjt = − 1

bss

s−1∑

j=l

bsjΦjt(B)

and all partial derivatives of Φst(B) exist on Lǫ as Φst(B) is composed of such functions and due to bss > 0

uniformly bounded away from zero on Lǫ. This proves part (b) and concludes part (i) of this proof.

(ii) As in part (i), we get with an analogue notation (depending on ω) the relation

Lkl(M(ω)) = ckl(ω) = Φkl(B(ω)) = Φkl(Ψ(M(ω)))

and again by the chain rule, it suffices to show that (a) all entries of Ψ have partial derivatives of all orders

on the set of all uniformly positive definite matrix functions M(·) with 0 < η − δ ≤ infω λmin(M(ω)) ≤
supω λmax(M(ω)) ≤ η + δ < ∞ for some δ > 0 and (b) all entries of Φ have partial derivatives of all

orders on the set Lǫ,ω of all lower triangular matrix functions with diagonal elements lying in [ζ, ζ] for

some suitable 0 < ζ ≤ ζ < ∞ depending on δ such that Ψ(Mǫ,ω) ⊂ Lǫ,ω. The rest of the proof of part (ii)

is analogue to the proof of (i) above. �

Lemma A.2 Suppose that {Xt} is a second order stationary or locally stationary time series (which

satisfies Assumption 3.2(L2)) where for h 6= 0 either the covariance or local covariance satisfies |κ(h)|1 ≤
C|h|−(2+ε) or |κ(u;h)|1 ≤ C|h|−(2+ε) for some constant C < ∞, respectively, and further, we assume

supt
∑

h1,h2,h3
|cum(Xt,j1 , Xt+h1,j2 , Xt+h2,j1 , Xt+h3,j2)| < ∞. Let f̂T (ω) be defined as in (2.6). Then,

(a) var(f̂T (ω)) = O((bT )−1) and supω |E(f̂T (ω))− f(ω)| = O(b+ (bT )−1).

(b) If in addition, we have supt
∑

h1,...,hs
|cum(Xt,j1 , Xt+h1,j2 , . . . , Xt+hs,js+1)| < ∞ for s = 1, . . . , 7, then

‖f̂T (ω)− E(f̂T (ω))‖4 = O( 1
(bT )1/2

).

(c) If in addition, b2T → ∞ then we have

(i) supω |̂fT (ω)− f(ω)|1 P→ 0,

(ii) Further, if f(ω) is nonsingular on [0, 2π], then we have supω |Ljs(f̂(ω)) − Ljs(f(ω))| P→ 0 as

T → ∞ for all 1 ≤ j, s ≤ d.

44



PROOF. To simplify the proof most parts will be proven for the univariate case - the proof of the

multivariate case is identical. By making a simple expansions it is straightforward to show that

f̂T (ω) =
1

2πT

T∑

t,τ=1

λb(t− τ)(Xt − µ)(Xτ − µ)exp(−i(t− τ)ω) +RT (ω), (A.2)

where

RT (ω) =
µ−X

2πT

T∑

t,τ=1

λb(t− τ)e−i(t−τ)ω

[
(Xt − µ) + (Xτ − µ)− (µ−X)

]

=
(µ−X)2

2π

T−1∑

h=−(T−1)

T − |h|
T

λb(h)e
−ihω

+
µ−X

2π

T−1∑

h=−(T−1)

λb(h)(e
−ihω + eihω)

[
1

T

min(T−T−h)∑

t=max(1,1−h)

(Xt − µ)

]

Under absolute summability of the second and fourth order cumulants and Assumption 2.1 we have

E| supω RT (ω)| = O( 1
Tb +

1
T 3/2b3/2

) (similar bounds can also be obtained for higher moments if the corre-

sponding cumulants are absolutely summable). We will show later on in the proof that RT (ω) is dominated

by the first term in on the right hand side of (A.2). Therefore, to simplify notation, as the mean estimator

is insignificant, for the remainder of the proof we will assume that the mean is known and it is E(Xt) = 0.

Consequently, the mean is not estimated and the spectral density estimator is

f̂T (ω) =
1

2πT

T∑

t,τ=1

λb(t− τ)XtXτexp(−i(t− τ)ω).

To prove (a) we evaluate the variance of f̂T (ω)

var(f̂T (ω)) =
1

4π2T 2

T∑

t1,τ1=1

T∑

t2,τ2=1

λb(t1 − τ1)λb(t2 − τ2)cov(Xt1Xτ1 , Xt2Xτ2)exp(−i(t1 − τ1 − t2 + τ2)ω).

By using indecomposable partitions on the covariances in the sum to partition it into covariances and

cumulants of Xt and under the absolute summable covariance and cumulant assumptions, we have that

var(f̂T (ω)) = O( 1
bT ).

Next we obtain a bound for the bias. We do so, under the assumption of local stationarity, in par-

ticular the smooth assumptions in Assumptions 3.2(L2) (in the stationary case we do not require these

assumptions). Taking expectations we have

E(f̂T (ω)) =
1

2π

T−1∑

h=−(T−1)

λb(h) exp(−ihω)
1

T

min(T,T−h)∑

t=max(1,1−h)

cov(Xt+h, Xt)

=
1

2π

T−1∑

h=−(T−1)

λb(h) exp(−ihω)
1

T

min(T,T−h)∑

t=max(1,1−h)

κ

(
t

T
;h

)
+R1(ω), (A.3)
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where

sup
ω

|R1(ω)| ≤
1

2πT

T∑

t,τ=1

λb(t− τ)
∣∣cov(Xt, Xτ )− κ

( τ
T
; t− τ

)∣∣
︸ ︷︷ ︸

T−1κ2(t−τ)

= O

(
1

T

)
(by Assumption 3.2(L2)).

Changing the inner sum in (A.3) with an integral gives

E(f̂T (ω)) =
1

2π

T−1∑

h=−(T−1)

λb(h)exp(−ihω)κ(h) +R1(ω) +R2(ω)

where κ(h) =
∫ 1
0 κ(u;h)du and

sup
ω

|R2(ω)| ≤
1

2π

T−1∑

h=−(T−1)

λb(h)

( |h|
T

max
u

|κ(u;h)|+
∣∣∣∣
1

T

T∑

t=1

κ(
t

T
;h)−

∫ 1

0
κ(u;h)du

∣∣∣∣
)

= O

(
1

bT

)
.

Finally, we take differences between E[f̂T (ω)] and f(ω) which gives

E[f̂T (ω)]− f(ω) =
1

2π

∑

|h|≤1/b

(
λb(h)− 1

)
κ(h) exp(−ihω)

︸ ︷︷ ︸
R3(ω)

+
1

2π

∑

|h|>1/b

κ(h) exp(−ihω)

︸ ︷︷ ︸
R4(ω)=O(b)

+R1(ω) +R2(ω).

To bound R3(ω), we use Assumption 2.1(K1) to give

R3(ω) =
1

2π

∑

|h|≤1/b

(
λ(hb)− 1

)
κ(h)exp(−ihω) =

b

2π

∑

|h|≤1/b

h · λ′(xhb)κ(h)exp(−ihω),

where xhb lies between 0 and hb. Therefore, we have supω |R3(ω)| = O(b). Altogether, this gives the bias

O(b+ 1
bT ) and we have proven (a).

To evaluate E|f̂T (ω)− E(f̂T (ω))|4, we use the expansion

E|f̂T (ω)− E(f̂T (ω))|4 = 3var(f̂T (ω))
2

︸ ︷︷ ︸
O((bT )−2)

+cum4(f̂T (ω)).

The bound for cum4(f̂T (ω)) uses an identical method to the variance calculation in part (a). By using the

cumulant summability assumption we have cum4(f̂T (ω)) = O( 1
(bT )2

), this proves (b).

We now prove (ci). By the triangle inequality, we have

sup
ω

|f̂T (ω)− f(ω)| ≤ sup
ω

|f̂T (ω)− E(f̂(ω))| + sup
ω

|E(f̂T (ω))− f(ω)|
︸ ︷︷ ︸

O(b+(bT )−1) by (a)

.

Therefore, we only need to show that the first term of the above converges to zero. To prove supω |f̂T (ω)−
E[f̂T (ω)]| P→ 0, we first show

E

(
sup
ω

∣∣f̂T (ω)− E(f̂T (ω))
∣∣2
)

→ 0 as T → ∞
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and then we apply Chebyshev’s inequality. To bound E(supω
∣∣f̂T (ω) − E(f̂T (ω))

∣∣2), we will use Theorem

3B, page 85, Parzen (1999). There it is shown that if {X(ω);ω ∈ [0, π]} is a zero mean stochastic process,

then

E
(

sup
0≤ω≤π

|X(ω)|2
)
≤ 1

2
E|X(0)|2 + 1

2
E|X(π)|2 +

∫ π

0

[
var(X(ω))var

(
∂X(ω)

∂ω

)]1/2
dω. (A.4)

To apply the above lemma, let X(ω) = f̂T (ω)− E[f̂T (ω)] and the derivative of f̂T (ω) is

∂f̂T (ω)|
∂ω

=
1

2πT

T∑

t,τ=1

−i(t− τ)XtXτλb(t− τ) exp(−i(t− τ)ω).

By using the same arguments as those used in (a), we have var(∂f̂T (ω)
∂ω ) = O( 1

b2T
). Therefore, by using

(A.4), we have

E
(

sup
0≤ω≤π

|f̂T (ω)− E(f̂T (ω))|2
)

≤ 1

2
var|f̂T (0)|+

1

2
var|f̂T (π)|+

∫ π

0

[
var(f̂T (ω))var(

∂f̂T (ω)

∂ω
)
]1/2

dω = O

(
1

b3/2T

)
.

Thus by using the above and Chebyshev’s inequality, for any ε > 0, we have

P

(
sup
ω

∣∣f̂T (ω)− E[f̂T (ω)]
∣∣ > ε

)
≤ E supω

∣∣f̂T (ω)− E[f̂T (ω)]
∣∣2

ε2
= O

(
1

Tb3/2ε

)
→ 0

as Tb3/2 → ∞, b → 0 and T → ∞. This proves (ci).

To prove (cii), we return to the multivariate case. We recall that a sequence {XT } converges in

probability to zero if and only if for every subsequence {Tk} there exists a subsequence {Tki} such that

XTki
→ 0 with probability one (see, for example, (Billingsley, 1995), Theorem 20.5). Now, the uniform

convergence in probability result in (ci) implies that for every sequence {Tk} there exists a subsequence

{Tki} such that supω |f̂
Tki

(ω) − f(ω)| P→ 0 with probability one. Therefore, by applying the mean value

theorem to Ljs, we have

Ljs(f̂Tki

(ω))− Ljs(f(ω)) = ∇Ljs(f̄Tki

(ω))
(
f̂
Tki

(ω)− f(ω)
)
,

where f̄
Tki

(ω) = vec(f̄Tki
(ω)) with f̄Tki

(ω) = αTki
(ω)f̂Tki

(ω)+(1−αTki
(ω))f(ω). Clearly, for Tk large enough,

f̄Tki
(ω) is a positive definite matrix (since it is a weighted average of two positive definite matrices) and we

have that f̄
Tki

(ω) is such that supω |f̂
Tki

(ω)− f(ω)| < ε for all Tki > Tk. Thus, the conditions of Lemma

A.1(ii) are satisfied and for large enough Tk we have that

sup
ω

∣∣Ljs(f̂Tki

(ω))− Ljs(f(ω))
∣∣ ≤ sup

ω
|∇Ljs(f̄Tki

(ω))|
︸ ︷︷ ︸
bounded in probability

sup
ω

∣∣f̂
Tki

(ω)− f(ω)
∣∣→ 0.
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As the above result is true for every sequence {Tk}, we have proven (cii). �

Above we have shown (the well known result) that spectral density estimator with unknown mean is

asymptotically equivalent to the spectral density estimator as if the mean were known. Furthermore, we

observe that in the definition of the DFT, we have not subtracted the mean, this is because JT (ωk) =

J̃T (ωk) for all k 6= 0, T/2, T , where

J̃T (ωk) =
1√
2πT

T∑

t=1

(Xt − µ) exp(−itωk), (A.5)

with µ = E(Xt). Therefore

ĈT (r, ℓ) =
1

T

T∑

k=1

L̂(ωk)JT (ωk)JT (ωk+r)
′
L̂(ωk+r)

′
exp(iℓωk)

=
1

T

T∑

k=1

L̂(ωk)J̃T (ωk)J̃T (ωk+r)
′
L̂(ωk+r)

′
exp(iℓωk) +Op(

1

T
)

uniformly over all frequencies. In other words, the DFT covariance is asymptotically the same as the

DFT covariance constructed as if the mean were known. Therefore, from now onwards, in order to avoid

unnecessary notation in the proofs, we will assume that the mean of the time series is zero and the spectral

density matrix is estimated using

f̂T (ωk) =
1

2πT

T∑

t,τ=1

λb(t− τ)exp(−i(t− τ)ωk)XtX
′
τ =

1

T

⌊T
2
⌋∑

j=−⌊T−1
2

⌋

Kb(ωk − ωj)JT (ωj)JT (ωj)
′
, (A.6)

where Kb(ωj) =
∑

r λb(r)e
−irωj .

A.2 Proof of Theorems 3.1 and 3.5

The main objective of this section is to prove Theorems 3.1 and 3.5. We will show that in the stationary case

the leading term of ĈT (r, ℓ) is C̃T (r, ℓ), whereas in the nonstationary case it is C̃T (r, ℓ) plus two additional

terms which are defined below. This is achieved by making a Taylor expansion and decomposing the

difference ĈT (r, ℓ) − C̃T (r, ℓ) into several terms (see Theorem A.3). On first impression, it may seem

surprising that in the stationary case the bandwidth b does not have an influence on the asymptotic

distribution of ĈT (r, ℓ). This can be explained by the decomposition below, where each of these terms are

sums of DFTs. The DFTs over their frequencies behave like stochastic process with decaying correlation,

how fast correlation decays depends on whether the underlying time series is stationary or not (see Lemmas

A.4 and A.8 for the details).

We start by deriving an expression for
√
T
[
ĉj1,j2(r, ℓ)− c̃j1,j2(r, ℓ)

]
.
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Lemma A.3 Suppose that the assumptions in Lemma A.2(c) hold. Then we have

√
T
(
ĉj1,j2(r, ℓ)− c̃j1,j2(r, ℓ)

)
= A1,1 +A1,2 +

√
T (ST,j1,j2(r, ℓ) + BT,j1,j2(r, ℓ)) +Op(A2) +Op(B2),

where

A1,1 =
1√
T

T∑

k=1

d∑

s1,s2=1

[
Jk,s1Jk+r,s2 − E(Jk,s1Jk+r,s2)

](
f̂
k,r

− E(f̂
k,r

)
)′∇Aj1,s1,j2,s2(fk,r

)eiℓωk ,

A1,2 =
1√
T

T∑

k=1

d∑

s1,s2=1

[
Jk,s1Jk+r,s2 − E(Jk,s1Jk+r,s2)

](
E(f̂

k,r
)− f

k,r

)′∇Aj1,s1,j2,s2(fk,r
)eiℓωk , (A.7)

A2 =
1

2
√
T

T∑

k=1

d∑

s1,s2=1

∣∣Jk,s1Jk+r,s2 − E(Jk,s1Jk+r,s2)
∣∣ ·
∣∣∣∣
(
f̂
k,r

− f
k,r

)′∇2Aj1,s1,j2,s2(fk,r
)
(
f̂
k,r

− f
k,r

)∣∣∣∣,

B2 =
1

2
√
T

T∑

k=1

d∑

s1,s2=1

∣∣E(Jk,s1Jk+r,s2)
∣∣ ·
∣∣∣∣
(
f̂
k,r

− f
k,r

)′∇2Aj1,s1,j2,s2(fk,r
)
(
f̂
k,r

− f
k,r

)∣∣∣∣

and

ST,j1,j2(r, ℓ) =
1

T

T∑

k=1

d∑

s1,s2=1

E(Jk,s1Jk+r,s2)
(
f̂
k,r

− E(f̂
k,r

)
)′∇Aj1,s1,j2,s2(fk,r

)eiℓωk (A.8)

BT,j1,j2(r, ℓ) =
1

T

T∑

k=1

d∑

s1,s2=1

E(Jk,s1Jk+r,s2)
(
E(f̂

k,r
)− f

k,r

)′∇Aj1,s1,j2,s2(fk,r
)eiℓωk .

with Aj1,s1,j2,s2(fk,r
) defined as in (A.1).

PROOF. We decompose the difference between ĉj1,j2(r, ℓ) and c̃j1,j2(r, ℓ) as

√
T
(
ĉj1,j2(r, ℓ)− c̃j1,j2(r, ℓ)

)

=
1√
T

T∑

k=1

d∑

s1,s2=1

[
Jk,s1Jk+r,s2 − E(Jk,s1Jk+r,s2)

](
Aj1,s1,j2,s2(f̂k,r

)−Aj1,s1,j2,s2(fk,r
)

)
eiℓωk

+
1√
T

T∑

k=1

d∑

s1,s2=1

E(Jk,s1Jk+r,s2)

(
Aj1,s1,j2,s2(f̂k,r

)−Aj1,s1,j2,s2(fk,r
)

)
eiℓωk

=: I + II.

We observe that the difference depends on Aj1,s1,j2,s2(f̂k,r
)−Aj1,s1,j2,s2(fk,r

), therefore we replace this with

the Taylor expansion

A(f̂
k,r

)−A(f
k,r

) =
(
f̂
k,r

− f
k,r

)′∇A(f
k,r

) +
1

2

(
f̂
k,r

− f
k,r

)′∇2A(f̆
k,r

)
(
f̂
k,r

− f
k,r

)
(A.9)

with f̆
k,r

lying between f̂
k,r

and f
k,r

and A defined as in (A.1) (for clarity, both in the above and for

the remainder of the proof we let A = Aj1,s1,j2,s2). Substituting the expansion (A.9) into I and II gives
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I = A1 + Ă2 and II = B1 + B̆2, where

A1 =
1√
T

T∑

k=1

d∑

s1,s2=1

[
Jk,s1Jk+r,s2 − E(Jk,s1Jk+r,s2)

](
f̂
k,r

− f
k,r

)′∇A(f
k,r

)eiℓωk

B1 =
1√
T

T∑

k=1

d∑

s1,s2=1

E(Jk,s1Jk+r,s2)
(
f̂
k,r

− f
k,r

)′∇A(f
k,r

)eiℓωk

and

Ă2 =
1

2
√
T

T∑

k=1

d∑

s1,s2=1

[
Jk,s1Jk+r,s2 − E(Jk,s1Jk+r,s2)

](
f̂
k,r

− f
k,r

)′∇2A(f̆
k,r

)
(
f̂
k,r

− f
k,r

)
eiℓωk ,

B̆2 =
1

2
√
T

T∑

k=1

d∑

s1,s2=1

E(Jk,s1Jk+r,s2)
(
f̂
k,r

− f
k,r

)′∇2A(f̆
k,r

)
(
f̂
k,r

− f
k,r

)
eiℓωk .

Next we substitute the decomposition f̂
k,r

−f
k,r

= f̂
k,r

−E(f̂
k,r

)+E(f̂
k,r

)−f
k,r

into A1 and B1 to obtain

A1 = A1,1 + A1,2 and B1 =
√
T [ST,j1,j2(r, ℓ) + BT,j1,j2(r, ℓ)]. Therefore we have I = A1,1 + A1,2 + Ă2 and

II =
√
T (ST,j1,j2(r, ℓ) + BT,j1,j2(r, ℓ)) + B̆2.

Finally, by using Lemma A.2(c), we have

sup
ω1,ω2

|∇2A(f̂
T
(ω1), f̂T

(ω2))−∇2A(f(ω1), f(ω2))| P→ 0.

Therefore, we take the absolute values of Ă2 and B̆2, and replace ∇2A(f̆
k,r

) with its deterministic limit

∇2A(f
k,r

) to give the result. �

To simplify the notation in the rest of this section, we will drop the multivariate suffix and assume that

we are in the univariate setting (the proof is identical for the multivariate case). Therefore

√
T
(
ĉ(r, ℓ)− c̃(r, ℓ)

)
= A1,1 +A1,2 +

√
T
(
ST (r, ℓ) + BT (r, ℓ)

)
+Op(A2) +Op(B2), (A.10)

where

A1,1 =
1√
T

T∑

k=1

[
JkJk+r − E(JkJk+r)

](
f̂
k,r

− E(f̂
k,r

)
)′
G(ωk),

A1,2 =
1√
T

T∑

k=1

[
JkJk+r − E(JkJk+r)

](
E(f̂

k,r
)− f

k,r

)′
G(ωk), (A.11)

ST (r, ℓ) =
1

T

T∑

k=1

E(JkJk+r)
(
f̂
k,r

− E(f̂
k,r

)
)′
G(ωk), (A.12)

BT (r, ℓ) =
1

T

T∑

k=1

E(JkJk+r)
(
E(f̂

k,r
)− f

k,r

)′
G(ωk),
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|A2| ≤ 1

2
√
T

T∑

k=1

∣∣JkJk+r − E(JkJk+r)
∣∣ · |f̂

k,r
− f

k,r
|22|H(ωk)|2,

|B2| ≤ 1

2
√
T

T∑

k=1

∣∣E(JkJk+r)
∣∣ · |f̂

k,r
− f

k,r
|22|H(ωk)|2, (A.13)

with G(ωk) = ∇A(f
k,r

)eiℓωk and H(ωk) = ∇2A(f
k,r

). In the following lemmas we obtain bounds for each

of these terms.

In the proofs below, we will often use the result that if the cumulants are absolutely summable, in the

sense that supt
∑

h1,...,hn−1
|cum(Xt, Xt+h1 , . . . , Xt+hn−1)| < ∞, then

sup
ω1,...,ωn

∣∣cum(JT (ω1), . . . , JT (ωn))
∣∣ ≤ C

Tn/2−1
(A.14)

for some constant C. In the following lemma, we bound A1,1.

Lemma A.4 Suppose that for 1 ≤ n ≤ 8, we have supt
∑

h1,...,hn−1
|cum(Xt, Xt+h1 , . . . , Xt+hn−1)| < ∞.

Let A1,1 be defined as in (A.11).

(i) In addition, suppose that for r 6= 0, we have |cov(JT (ωk), JT (ωk+r))| = O(T−1), then ‖A1,1‖2 =

O( 1√
T
+ 1

bT ).

(ii) On the other hand, suppose that
∑T

k=1 |cov(JT (ωk), JT (ωk+r))| ≤ C log T , then we have ‖A1,1‖2 ≤
C( log T

b
√
T
).

PROOF. We prove the result in case (ii) (the proof of (i) is a simpler version of this result). By using the

spectral representation of the spectral density function in (A.6), we have

A1,1 =
1

T 3/2

T∑

k=1

⌊T
2
⌋∑

l=−⌊T−1
2

⌋

(
Kb(ωk − ωl),Kb(ωk+r − ωl)

)
G(ωk)

(
JkJk+r − E(JkJk+r)

)(
|Jl|2 − E|Jl|2

)
.(A.15)

Evaluating the expectation of A1,1 gives

E(A1,1) =
1

T 3/2

T∑

k=1

⌊T
2
⌋∑

l=−⌊T−1
2

⌋

(
Kb(ωk − ωl),Kb(ωk+r − ωl)

)
G(ωk)cov

(
JkJk+r, JlJ l

)

=
1

T 3/2

T∑

k=1

⌊T
2
⌋∑

l=−⌊T−1
2

⌋

(
Kb(ωk − ωl),Kb(ωk+r − ωl)

)
G(ωk)

×
(
cov(Jk, Jl)cov(Jk+r, J l) + cov(Jk, J l)cov(Jk+r, Jl) + cum(Jk, Jk+r, J l, Jl)

)

=: I + II + III.
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By using that
∑

r E(JkJk+r) ≤ C log T , we can show I, II = O( log T
b
√
T
) and by using (A.14), we have III =

O( 1√
T
). Altogether, this gives E(A1,1) = O( log T

b
√
T
) (under the conditions in (i) we have E(A1,1) = O( 1√

T
)).

We now evaluate a bound for var(A1,1). Again using (A.15) gives

var(A1,1) =
1

T 3

∑

k1,l1

∑

k2,l2

(
Kb(ωk1 − ωl1),Kb(ωk1+r − ωl1)

)
G(ωk1)G(ωk2)

′(Kb(ωk2 − ωl2),Kb(ωk2+r − ωl2)
)′

×cov

((
Jk1Jk1+r − E(Jk1Jk1+r)

)(
Jl1J l1 − E(Jl1J l1)

)
,
(
Jk2Jk2+r − E(Jk2Jk2+r)

)(
Jl2J l2 − E(Jl2J l2)

))
.

By using indecomposable partitions (see Brillinger (1981) for the definition) we can show that var(A1,1) =

O( (log T )3

T 3b2
) (under (i) it will be var(A1,1) = O( 1

T 3b2
)). This gives the desired result. �

In the following lemma, we bound A1,2.

Lemma A.5 Suppose that supt
∑

h1,h2,h3
|cum(Xt, Xt+h1 , Xt+h2 , Xt+h3)| < ∞. Let A1,2 be defined as in

(A.11).

(i) In addition, suppose that for r 6= 0 we have |cov(JT (ωk), JT (ωk+r))| = O(T−1), then ‖A1,2‖2 ≤
C supω |E(f̂T (ω))− f(ω)|.

(ii) On the other hand, suppose that
∑T

k=1 |cov(JT (ωk), JT (ωk+r))| ≤ C log T , then we have ‖A1,2‖2 ≤
C log T supω |E(f̂T (ω))− f(ω)|.

PROOF. Since the mean of A1,2 is zero, we evaluate the variance

var

(
1√
T

T∑

k=1

hk
(
JkJk+r − E(JkJk+r)

))
=

1

T

T∑

k1,k2=1

hk1hk2cov
(
Jk1Jk1+r, Jk2Jk2+r

)

=
1

T

T∑

k1,k2=1

hk1hk2

{
cov
(
Jk1 , Jk2

)
cov
(
Jk1+r, Jk2+r

)
+ cov

(
Jk1 , Jk2+r

)
cov
(
Jk1+r, Jk2

)
+

cum
(
Jk1 , Jk1+r, Jk2 , Jk2+r

)}
,

where hk =
(
E(f̂

k,r
)−f

k,r

)′
G(ωk). Therefore, under the stated conditions, and by using (A.14), the result

immediately follows. �

In the following lemma, we bound A2 and B2.

Lemma A.6 Suppose {Xt}t is a time series where for n = 2, . . . , 8, we have

supt
∑

h1,...,hn−1
|cum(Xt, Xt+h1 , . . . , Xt+hn−1)| < ∞ and the assumptions of Lemma A.2 are satisfied. Then

∥∥JkJk+r − E
(
JkJk+r

)∥∥
2
= O(1) (A.16)
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and

‖A2‖1 = O

(
1

b
√
T

+ b2
√
T

)
‖B2‖2 = O

(
1

b
√
T

+ b2
√
T

)
. (A.17)

where A2 and B2 are defined in (A.13).

PROOF. We have

JkJk+r − E
(
JkJk+r

)
=

1

2πT

T∑

t,τ=1

ρt,τ
(
XtXτ − E(XtXτ )

)
,

where ρt,τ = exp(−iωk(t− τ)) exp(iωrτ). Now, by evaluating the variance, we get

E|JkJk+r − E
(
JkJk+r

)∣∣2 ≤ 1

(2π)2
(I + II + III), (A.18)

where

I = T−2
T∑

t1,t2=1

T∑

τ1,τ2=1

ρt1,τ1ρt2,τ2cov(Xt1 , Xt2)cov(Xτ1 , Xτ2),

II = T−2
T∑

t1,t2=1

T∑

τ1,τ2=1

ρt1,τ1ρt2,τ2cov(Xt1 , Xτ2)cov(Xτ1 , Xt2),

III = T−2
T∑

t1,t2=1

T∑

τ1,τ2=1

ρt1,τ1ρt2,τ2cum(Xt1 , Xτ1 , Xt2 , Xτ2).

Therefore, by using supt
∑

τ |cov(Xt, Xτ )| < ∞ and supt
∑

τ1,t2,τ2
|cum(Xt, Xτ1 , Xt2 , Xτ2)| < ∞, we have

(A.16).

To obtain bounds for A2 and B2, we get from (A.13) and Cauchy-Schwarz inequality

‖A2‖1 ≤ 1√
2T

T∑

k=1

∥∥JkJk+r − E(JkJk+r)
∥∥
2
· ‖f̂

k,r
− f

k,r
‖24|H(ωk)|2,

‖B2‖1 ≤ 1

2
√
T

T∑

k=1

∣∣E(JkJk+r)
∣∣ · ‖f̂

k,r
− f

k,r
‖22|H(ωk)|2,

Thus, by using (A.16) and Lemma A.2(a,b), we have (A.17). �

Finally, we obtain bounds for
√
TST (r, ℓ) and

√
TBT (r, ℓ).

Lemma A.7 Suppose {Xt}t is a time series whose cumulants satisfy supt
∑

h |cov(Xt, Xt+h)| < ∞ and

supt
∑

h1,h2,h3
|cum(Xt, Xt+h1 , Xt+h2 , Xt+h3)| < ∞.

(i) If |E(JT (ωk)JT (ωk+r))| = O( 1
T ) for all k and r 6= 0, then

‖ST (r, ℓ)‖2 = O

(
1

b1/2T 3/2

)
and |BT (r, ℓ)| = O

(
b

T

)
.
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(ii) On the other hand, if for fixed r and k we have |E(JT (ωk)JT (ωk+r))| = h(ωk; r)+O( 1
T ) (where h(·, r)

is a function with a bounded derivative over [0, 2π]) and the conditions in Lemma A.2(a) hold, then

we have

‖ST (r, ℓ)‖2 = O(T−1/2) and |BT (r, ℓ)| = O(b).

PROOF. We first prove (i). Bounding ‖ST (r, ℓ)‖2 and |BT (r, ℓ)| gives

‖ST (r, ℓ)‖2 ≤ 1

T

T∑

k=1

|E(JkJk+r)|
∥∥∥∥f̂k,r

− E(f̂
k,r

)

∥∥∥∥
2

|G(ωk)|2,

|BT (r, ℓ)| =
1

T

T∑

k=1

|E(JkJk+r)|
∣∣∣∣E(f̂k,r

)− f
k,r

∣∣∣∣
1

· |G(ωk)|1

and by substituting the bounds in Lemma A.2(a) and |E(JkJ̄k+r)| = O(T−1) into the above, we obtain (i).

The proof of (ii) is rather different. We don’t obtain the same bounds as in (i), because we do not

have |E(JkJ̄k+r)| = O(T−1). To bound ST (r, ℓ), we rewrite it as a quadratic form (see Section A.4 for the

details)

ST (r, ℓ)

=
−1

2T

T∑

k=1

E(JkJk+r) exp(iℓωk)

(
f̂T (ωk)− E(f̂T (ωk))√

f(ωk)3f(ωk+r)
+

f̂T (ωk+r)− E(f̂T (ωk+r))√
f(ωk)f(ωk+r)3

)

=
−1

2T

T∑

k=1

h(ωk, r) exp(iℓωk)

(
f̂T (ωk)− E(f̂T (ωk))√

f(ωk)3f(ωk+r)
+

f̂T (ωk+r)− E(f̂T (ωk+r))√
f(ωk)f(ωk+r)3

)
+O

(
1

T

)

=
−1

2T

∑

t,τ

λb(t− τ)(XtXτ − E(XtXτ )
1

T

T∑

k=1

h(ωk, r)e
iℓωk

(
e−i(t−τ)ωk

√
f(ωk)3f(ωk+r)

+
e−i(t−τ)ωk+r

√
f(ωk)f(ωk+r)3

)

︸ ︷︷ ︸
=dT (t−τ+ℓ;ωr)

+O

(
1

T

)

with dT (ν;ωr) = d(ν;ωr) + O( 1
T ), where d(ν;ωr) as defined in Lemma A.12 (for the case d = 1). There,

we show that |d(ν;ωr)| = O( 1
ν2
) such that dT (ν;ωr) = O( 1

ν2
+ 1

T ) (for ν 6= 0). Using this we can show that

var(ST (r, ℓ)) = O(T−1). The bound on BT (r, ℓ) follows again from Lemma A.2(a). �

Having obtained bounds for all the terms in Lemma A.3 (see also equation (A.10)), we now show that

Assumptions 3.1 and 3.2 satisfy the conditions under which we obtain these bounds.

Lemma A.8 (i) Suppose {Xt} is a second order stationary time series with
∑

h |cov(Xh, X0)| < ∞.

Then, we have max1≤k≤T |cov(JT (ωk), JT (ωk+r))| = O( 1
T ) for r 6= 0, T/2, T .

(ii) Suppose Assumption 3.2(L2) holds. Then, we have

cov
(
JT (ωk1), JT (ωk2)

)
= h(ωk1 ; k2 − k1) +RT (ωk1 , ωk2), (A.19)

where h(ω; r) is defined in Remark 3.2 and supω1,ω2
|RT (ω1, ω2)| = O(T−1).
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PROOF. (i) follows from (Brillinger, 1981), Theorem 4.3.2.

To prove (ii) under local stationarity, we expand cov
(
Jk1 , Jk2

)
to give

cov
(
Jk1 , Jk2

)
=

1

2πT

T∑

t,τ=1

cov(Xt,T , Xτ,T )exp(−i(t− τ)ωk1 − iτ(ωk1 − ωk2)).

Now, using Assumption 3.2(L2), we can replace cov(Xt,T , Xτ,T ) with κ( τT ; t− τ) to give

cov
(
Jk1 , Jk2

)
=

1

2πT

T∑

t,τ=1

κ
( τ
T
; t− τ

)
exp(−i(t− τ)ωk1) exp(−iτ(ωk1 − ωk2)) +R1(ωk1 , ωk2)

=
1

2πT

T∑

τ=1

exp(−iτ(ωk1 − ωk2))
T−τ∑

h=−τ+1

κ
( τ
T
, h
)
exp(−ihωk1) +R1(ωk1 , ωk2)

and by using Assumption 3.2(L2), we can show that |R1(ωk1 , ωk2)| ≤ C
T

∑
h κ2(h) = O(T−1). Next we

replace the inner sum with
∑∞

h=−∞ to give

cov
(
Jk1 , Jk2

)
=

1

T

T∑

τ=1

f
( τ
T
;ωk1

)
exp

(
i2π(k2 − k1)

τ

T

)
+R1(ωk1 , ωk2) +R2(ωk1 , ωk2),

where

R2(ωk1 , ωk2) =
1

2πT

T∑

τ=1

exp(−iτ(ωk1 − ωk2))

( −τ∑

h=−∞
+

∞∑

T−τ+1

)
κ(

τ

T
;h) exp(−ihωk1).

Under Assumption 3.2(L2), we have that supu |κ(u, h)| ≤ C|h|−(2+ε), therefore |R2(ωk1 , ωk2)| ≤ CT−1.

Finally, by replacing the sum by an integral, we get

cov
(
Jk1 , Jk2

)
=

∫ 1

0
f(u;ωk1)exp (i2π(k2 − k1)u)du+RT (ωk1 , ωk2),

where |RT (ωk1 , ωk2)| ≤ CT−1, which gives (A.19). �

In the following lemma and corollary, we show how the α-mixing rates are related to summability of

the cumulants. We state the results for the multivariate case.

Lemma A.9 Let us suppose that {Xt} is an α-mixing time series with rate K|t|−α such that there

exists an r where ‖Xt‖r < ∞ and α > r(k − 1)/(r − k). If t1 ≤ t2 ≤ . . . ≤ tk, then we have

|cum(Xt1,j1 , . . . , Xtk,jk)| ≤ Cksupt,j ‖Xt,j‖kr
∏k

i=2 |ti − ti−1|−α(
1−k/r
k−1

),

sup
t1

∞∑

t2,...,tk=1

|cum(Xt1,j1 , . . . , Xtk,jk)| ≤ Ck sup
t,j

‖Xt,j‖kr

(∑

t

|t|−α(
1−k/r
k−1

)

)k−1

< ∞. (A.20)

If α > 2r(k − 1)/(r − k), we have

sup
t1

∞∑

t2,...,tk=1

(1 + |tj |)|cum(Xt1,j1 , . . . , Xtk,jk)| ≤ Ck sup
t,j

‖Xt,j‖kr

(∑

t

|t|−α(
1−k/r
k−1

)+1

)k−1

< ∞, (A.21)

where Ck is a finite constant which depends only on k.
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PROOF. The proof is identical to the proof of Lemma 4.1 in Lee and Subba Rao (2011) (see also

Statulevicius and Jakimavicius (1988) and Neumann (1996)). �

Corollary A.1 Suppose Assumption 3.1(P1, P2) or 3.2(L1, L3) holds. Then there exists an ε > 0 such

that |cov(X0, Xh)|1 < C|h|−(2+ε), supt |cov(Xt,T , Xt+h,T )|1 < C|h|−(2+ε) and

sup
t1,j1,...,j4

∑

t2,t3,t4

(1 + |ti|) · |cum(Xt1,j1 , Xt2,j2 , Xt3,j3 , Xt4,j4)| < ∞, i = 1, 2, 3,

Furthermore, if Assumption 3.1(P1, P4) or 3.2(L1, L5) holds, then for 1 ≤ n ≤ 8 we have

sup
t1

∑

t2,...,tn

|cum(Xt1,j1 , Xt2,j2 , . . . , Xtn,jn)| < ∞.

PROOF. The proof immediately follows from Lemma A.9, thus we omit the details. �

We can now obtain bounds for the difference |
√
T (ĉ(r, ℓ)−c̃(r, ℓ))| which leads to the proofs of Theorems

3.1 and 3.5.

Theorem A.1 Suppose that Assumption 3.1 holds, then we have

√
T ĉ(r, ℓ) =

√
T c̃(r, ℓ) +Op

(
1

b
√
T

+ b+ b2
√
T

)
. (A.22)

Under Assumption 3.2, we have

√
T ĉ(r, ℓ) =

√
T c̃(r, ℓ) +

√
TST (r, ℓ) +

√
TBT (r, ℓ) +Op

(
log T

b
√
T

+ b log T + b2
√
T

)
. (A.23)

PROOF. To prove (A.22), we use the expansion (A.10) to give

√
T
(
ĉ(r, ℓ)− c̃(r, ℓ)

)
= A1,1︸︷︷︸

Lemma A.4(i)

+ A1,2︸︷︷︸
Lemma A.5(i)

+Op(A2) +Op(B2)︸ ︷︷ ︸
(A.17)

+
√
T
(
ST (r, ℓ) + BT (r, ℓ)︸ ︷︷ ︸

Lemma A.7(i)

)

= O

(
1

T 1/2
+

1

bT
+ b+

1

b
√
T

+ b2
√
T +

b√
T

)

To prove (A.23) we first note that by Lemma A.7(ii) we have ‖ST (r, ℓ)‖2 = O(T−1/2) and |BT (r, ℓ)| =
O(b), therefore we use expansion (A.10) to give

√
T

(
ĉ(r, ℓ)− c̃(r, ℓ)− ST (r, ℓ) + BT (r, ℓ)

)
= A1,1︸︷︷︸

Lemma A.4(ii)

+ A1,2︸︷︷︸
Lemma A.5(ii)

+Op(A2) +Op(B2)︸ ︷︷ ︸
(A.17)

= O

(
log T

b
√
T

+ b log T +
1

b
√
T

+ b2
√
T

)
.

This proves the result. �

Proof of Theorems 3.1 and 3.5 The proofs of Theorems 3.1 and 3.5 follow immediately from

Theorem A.1. �
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A.3 Proof of Theorem 3.2 and Lemma 3.1

Throughout the proof, we will assume that T is sufficiently large, i.e. such that 0 < r < T
2 and 0 ≤ ℓ < T

2

hold. This avoids issues related to symmetry and periodicity of the DFTs. The proof relies on the following

important lemma. We mention, that unlike the previous (and future) sections in the Appendix, we will

prove the result for the multivariate case. This is because for the variance calculation there are subtle

differences between the multivariate and univariate cases.

Lemma A.10 Suppose that {Xt} is fourth order stationary such that
∑

h |h| · |cov(X0,j1 , Xh,j2)| < ∞ and
∑

h1,h2,h3
|hi| · |cum(X0,j1 , Xh1,j2 , Xh2,j3 , Xh3,j4)| < ∞ hold for all j1, . . . , j4 = 1, . . . , d and i = 1, 2, 3. We

mention that these conditions are satisfied under Assumption 3.1(P1,P2) (see Corollary A.1). Then, for

all fixed r1, r2 ∈ N and ℓ1, ℓ2 ∈ N0 and all j1, j2, j3, j4 ∈ {1, . . . , d}, we have

T cov (c̃j1,j2(r1, ℓ1), c̃j3,j4(r2, ℓ2)) = {δj1j3δj2j4δℓ1ℓ2 + δj1j4δj2j3δℓ1,−ℓ2} δr1,r2
+κ(ℓ1,ℓ2)(j1, j2, j3, j4)δr1,r2 +O

(
1

T

)

T cov
(
c̃j1,j2(r1, ℓ1), c̃j3,j4(r2, ℓ2)

)
= O

(
1

T

)
,

where δjk = 1 if j = k and δjk = 0 otherwise. As both right-hand sides above are unaffected by complex con-

jugation, T cov(c̃j1,j2(r1, ℓ1), c̃j3,j4(r2, ℓ2)) and T cov(c̃j1,j2(r1, ℓ1), c̃j3,j4(r2, ℓ2)) satisfy the same properties,

respectively.

PROOF. Straightforward calculations give

T cov (c̃j1,j2(r1, ℓ1), c̃j3,j4(r2, ℓ2)) =
1

T

T∑

k1,k2=1

d∑

s1,s2,s3,s4=1

Lj1s1(ωk1)Lj2s2(ωk1+r1)Lj3s3(ωk2)Lj4s4(ωk2+r2)

×cov(Jk1,s1Jk1+r1,s2 , Jk2,s3Jk2+r2,s4) exp(iℓ1ωk1 − iℓ2ωk2).

and by using the identity cum(Z1, Z2, Z3, Z4) = cov(Z1Z2, Z3Z4) − E(Z1Z3)E(Z2Z4) − E(Z1Z4)E(Z2Z3)

for complex-valued and zero mean random variables Z1, Z2, Z3, Z4, we get

T cov(c̃j1,j2(r1, ℓ1), c̃j3,j4(r2, ℓ2))

=
1

T

T∑

k1,k2=1

d∑

s1,s2,s3,s4=1

Lj1s1(ωk1)Lj2s2(ωk1+r1)Lj3s3(ωk2)Lj4s4(ωk2+r2)
{
E(Jk1,s1Jk2,s3)E(Jk1+r1,s2Jk2+r2,s4)

+E(Jk1,s1Jk2+r2,s4)E(Jk1+r1,s2Jk2,s3) + cum(Jk1,s1 , Jk1+r1,s2 , Jk2,s3 , Jk2+r2,s4)
}
exp(iℓ1ωk1 − iℓ2ωk2)

=: I + II + III.
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Substituting the identity E(Jk1,s1Jk2,s3) =
1

2πT

∑T−1
h=−(T−1) κs1s3(h)e

−ihωk2

(∑T
t=1 e

−it(ωk1
−ωk2

) +O(h)
)
into

I and replacing the inner sum with
∑T

t=1 e
it(ωk1

−ωk2
) gives

I =
1

T

T∑

k1,k2=1

d∑

s1,s2,s3,s4=1

Lj1s1(ωk1)Lj2s2(ωk1+r1)Lj3s3(ωk2)Lj4s4(ωk2+r2)

×


 1

2πT

T−1∑

h=−(T−1)

κs1s3(h)e
−ihωk2

(
T∑

t=1

e−it(ωk1
−ωk2

) +O(h)

)


×


 1

2πT

T−1∑

h=−(T−1)

κs2s4(h)e
ihωk2+r2

(
T∑

t=1

eit(ωk1+r1
−ωk2+r2

) +O(h)

)
 exp(iℓ1ωk1 − iℓ2ωk2),

where it is clear that theO(h) term is uniformly bounded over all frequencies and h. Due to
∑

h |h||κs1s2(h)| <
∞, we have

I =
1

T

T∑

k1,k2=1




d∑

s1,s3=1

Lj1s1(ωk1)fs1s3(ωk2)Lj3s3(ωk2) exp(iℓ1ωk1)




×




d∑

s2,s4=1

Lj2s2(ωk1+r1)fs2s4(ωk2+r2)Lj4s4(ωk2+r2) exp(−iℓ2ωk2)


 δk1k2δr1r2 +O

(
1

T

)

= δj1j3δj2j4δr1r2δℓ1,ℓ2 +O

(
1

T

)
,

where L(ωk)f(ωk)L(ωk)
′
= Id and 1

T

∑T
k=1 exp(−i(ℓ1 − ℓ2)ωk) = 1 if ℓ1 = ℓ2 and zero otherwise have been

used. Using similar arguments, we obtain

II =
1

T

T∑

k1,k2=1




d∑

s1,s4=1

Lj1s1(ωk1)fs1s4(ωk2+r2)Lj4s4(ωk2+r2) exp(iℓ1ωk1)







d∑

s2,s3=1

Lj2s2(ωk1+r1)fs2s3(ωk2)Lj3s3(ωk2) exp(−iℓ2ωk2)


 δk1,−k2−r2δk1+r1,−k2 +O

(
1

T

)

= δj1j4δj3j2δℓ1,−ℓ2δr1r2 +O

(
1

T

)
,
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where exp(−iℓ2ωr1) → 1 as T → ∞ and 1
T

∑T
k=1 exp(−i(ℓ1 + ℓ2)ωk) = 1 if ℓ1 = −ℓ2 and zero otherwise

have been used. Finally, by using Theorem 4.3.2, (Brillinger, 1981), we have

III =
1

T

T∑

k1,k2=1

d∑

s1,s2,s3,s4=1

Lj1s1(ωk1)Lj2s2(ωk1+r1)Lj3s3(ωk2)Lj4s4(ωk2+r2) exp(iℓ1ωk1 − iℓ2ωk2)

×
(
2π

T 2
f4;s1,s2,s3,s4(ωk1 ,−ωk1+r1 ,−ωk2)

T∑

t=1

eit(−ωr1+ωr2 ) +O

(
1

T

))

=
2π

T 2

T∑

k1,k2=1

d∑

s1,s2,s3,s4=1

Lj1s1(ωk1)Lj2s2(ωk1+r1)Lj3s3(ωk2)Lj4s4(ωk2+r2) exp(iℓ1ωk1 − iℓ2ωk2)

×f4;s1,s2,s3,s4(ωk1 ,−ωk1+r1 ,−ωk2)δr1r2 +O

(
1

T

)

=
1

2π

∫ 2π

0

∫ 2π

0

d∑

s1,s2,s3,s4=1

Lj1s1(λ1)Lj2s2(λ1)Lj3s3(λ2)Lj4s4(λ2) exp(iℓ1λ1 − iℓ2λ2)

×f4;s1,s2,s3,s4(λ1,−λ1,−λ2)dλ1dλ2δr1r2 +O

(
1

T

)

= κ(ℓ1,ℓ2)(j1, j2, j3, j4)δr1r2 +O

(
1

T

)
,

which gives the first claimed equality. In the computations for the second equality of this lemma, a δr1,−r2

crops up, which is always zero due to r1, r2 ∈ N. Further, as κ(ℓ1,ℓ2)(j1, j2, j3, j4) is real-valued by Lemma

A.11 below, this immediately implies the second assertion. �

PROOF of Theorem 3.2

To prove part (i), we consider the entries of C̃T (r, ℓ)

E(c̃j1,j2(r, ℓ)) =
1

T

T∑

k=1

d∑

s1,s2=1

Lj1,s1(ωk)E
(
Jk,s1Jk+r,s2

)
Lj2,s2(ωk+r) exp(iωkℓ)

and using Lemma A.8(i) yields E
(
Jk,s1Jk+r,s2

)
= O( 1

T ) for r 6= Tk, k ∈ Z, which gives the assertion. Part

(ii) follows from ℜZ = 1
2(Z + Z), ℑZ = 1

2i(Z − Z) and Lemma A.10. �

Lemma A.11 For κ(ℓ1,ℓ2)(j1, j2, j3, j4) defined in (2.15), we have

κ(ℓ1,ℓ2)(j1, j2, j3, j4) = κ(ℓ1,ℓ2)(j1, j2, j3, j4) = κ(ℓ2,ℓ1)(j3, j4, j1, j2) (A.24)

In particular, κ(ℓ1,ℓ2)(j1, j2, j3, j4) is always real-valued. Furthermore, (A.24) causes the limits of the

variances var
(√

Tvec
(
ℜC̃T (r, 0)

))
and var

(√
Tvec

(
ℑC̃T (r, 0)

))
to be singular.

PROOF. By substituting λ1 → −λ1 and λ2 → −λ2 in κ(ℓ1,ℓ2)(j1, j2, j3, j4), Ljs(−λ) = Ljs(λ) and

f4;s1,s2,s3,s4(−λ1, λ1, λ2) = f4;s1,s2,s3,s4(λ1,−λ1,−λ2), we get the first identity in (A.24). The second fol-

lows from exchanging variable denotation of λ1 and λ2 and reordering terms in κ(ℓ1,ℓ2)(j1, j2, j3, j4) and
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from f4;s1,s2,s3,s4(λ2,−λ2,−λ1) = f4;s3,s4,s1,s2(λ1,−λ1,−λ2). The first identity immediately implies that

κ(ℓ1,ℓ2)(j1, j2, j3, j4) is real-valued. To prove the second part of this lemma, we consider only the real part

of C̃T (r, 0) and we can assume wlog that d = 2. From Lemma A.10, we get immediately

var
(√

T vec
(
ℜC̃T (r, 0)

))

→




1 0 0 0

0 1
2

1
2 0

0 1
2

1
2 0

0 0 0 1




+
1

2




κ(0,0)(1, 1, 1, 1) κ(0,0)(1, 1, 2, 1) κ(0,0)(1, 1, 1, 2) κ(0,0)(1, 1, 2, 2)

κ(0,0)(2, 1, 1, 1) κ(0,0)(2, 1, 2, 1) κ(0,0)(2, 1, 1, 2) κ(0,0)(2, 1, 2, 2)

κ(0,0)(1, 2, 1, 1) κ(0,0)(1, 2, 2, 1) κ(0,0)(1, 2, 1, 2) κ(0,0)(1, 2, 2, 2)

κ(0,0)(2, 2, 1, 1) κ(0,0)(2, 2, 2, 1) κ(0,0)(2, 2, 1, 2) κ(0,0)(2, 2, 2, 2)




,

and due to (A.24), the second and third rows are equal leading to singularity. �

PROOF of Lemma 3.1 By using Lemma A.8(ii) (generalized to the multivariate setting) we have

E(C̃T (r, ℓ)) =
1

T

T∑

k=1

L(ωk)E(JT (ωk)JT (ωk+r)
′
)L(ωk+r)

′
exp(iℓωk))

=
1

T

T∑

k=1

L(ωk)

(∫ 1

0
f(u;ωk)exp(2πiru)du

)
L(ωk+r)

′
exp(iℓωk)) +O

(
1

T

)
(by (A.19))

=
1

2π

∫ 2π

0
L(ω)

(∫ 1

0
f(u;ω)exp(2πiru)du

)
L(ω + ωr)

′
exp(iℓω)dω +O

(
1

T

)

=
1

2π

∫ 2π

0

∫ 1

0
L(ω)f(u;ω)L(ω)

′
exp(i2πru) exp(iℓω)dudω +O

(
1

T

)

= A(r, ℓ) +O

(
1

T

)
.

Thus giving the required result. �

PROOF of Lemma 3.2 The proof of (i) follows immediately from L(ω)f(u;ω)L(ω)
′ ∈ L2(R

d×d).

To prove (ii), we note that if {Xt} is second order stationary, then f(u;ω) = f(ω). Therefore,

L(ω)f(u;ω)L(ω)
′
= Id and A(r, ℓ) = 0 for all r and ℓ, except A(0, 0) = Id. To prove the only if part,

suppose A(r, ℓ) = 0 for all r 6= 0 and all ℓ ∈ Z then
∑

r,ℓA(r, ℓ)exp(−2πiru) exp(−iℓω) is only a function

of ω, thus f(u;ω) is only a function of ω which immediately implies that the underlying process is second

order stationary.

To prove (iii) we use integration by parts. Under Assumption 3.2(L2, L4) the first derivative of f(u;ω)

exists with respect to u and the second derivative exists with respect to ω (moreover with respect to ω

L(ω)f(u;ω)L(ω)
′
is a periodic continuous function). Therefore by integration by parts, twice with respect

to ω (using that G(u; 0) = G(u; 2π) and ∂G(u;0)
∂ω = ∂G(u;2π)

∂ω , where G(u;ω) = L(ω)f(u;ω)L(ω)
′
) and once
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with respect to u, we have

A(r, ℓ) =
1

2π

∫ 2π

0

∫ 1

0
G(u;ω)exp(i2πru) exp(iℓω)dudω

=
1

(iℓ)2

∫ 2π

0

∂2G(u;ω)

∂ω2
exp(i2πru) exp(iℓω)dωdu

=
exp(i2πru)

(iℓ)2(i2πr)

∫ 2π

0

∂2G(u;ω)

∂ω2
exp(iℓω)dω

⌋u=2π

u=0

− 1

(iℓ)2(i2πr)

∫ 1

0

∫ 2π

0

∂3G(u;ω)

∂u∂ω2
exp(iℓω)exp(i2πru)dωdu.

Taking absolutes of the above, we have |A(r, ℓ)|1 ≤ K|ℓ|−2|r|−1 if both r 6= 0 and ℓ 6= 0 for some finite

constant K.

To prove (iv), we note that

A(r, ℓ) =
1

2π

∫ 2π

0

∫ 1

0
L(ω)f(u;ω)L(ω)′exp(−i2πru) exp(−iℓω)dudω

=
1

2π

∫ 2π

0

∫ 1

0
L(−ω)f(u;−ω)L(−ω)′exp(−i2πru) exp(iℓω)dudω (by a change of variables)

=
1

2π

∫ 2π

0

∫ 1

0
L(ω)f(u;ω)L(ω)

′
exp(i2π(−r)u) exp(iℓω)dudω (since f(u;−ω) = f(u;ω))

= A(−r, ℓ).

Thus we have proven the lemma. �

A.4 Proof of Theorems 3.3 and 3.6

The objective in this section is to prove asymptotic normality of ĈT (r, ℓ). We start by studying its

approximation c̃j1,j2(r, ℓ), which we use to show asymptotic normality. Expanding c̃j1,j2(r, ℓ) gives the

quadratic form

c̃j1,j2(r, ℓ) =
1

T

T∑

k=1

JT (ωk+r)
′
Lj2,•(ωk+r)

′
Lj1,•(ωk)JT (ωk) exp(iℓωk)

=
1

T

T∑

t,τ=1

X ′
t,T

(
1

2πT

T∑

k=1

Lj2,•(ωk+r)
′
Lj1,•(ωk)exp(−iωk(t− τ − ℓ))

)
Xτ,T exp(iτωr).(A.25)

In Lemmas A.12 and A.13 we will show that the inner sum decays sufficiently fast over (t− τ − ℓ) to allow

us to show asymptotic normality of c̃j1,j2(r, ℓ) and ST (r, ℓ).

Lemma A.12 Suppose f(ω) is a non-singular matrix and the second derivatives of the elements of f(ω)

with respect to ω are bounded. Then, for all j1, s1, j2, s2 = 1, . . . , d, we have

sup
z,ω∈[0,2π]

∣∣∣∣∣
∂2{Lj1,s1 [f(ω)]Lj2,s2 [f(ω + z)]}

∂ω2

∣∣∣∣∣ < ∞ (A.26)
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and

sup
z
|aj(ν; z)| ≤

C

|ν|2 and sup
z
|dj(ν; z)|1 ≤

C

|ν|2 for ν 6= 0, (A.27)

where j = (j1, s1, j2, s2) and

aj(ν; z) =

∫ 2π

0
Lj1,s1(f(ω))Lj2,s2(f(ω + z))exp(−iνω)dω,

dj(ν; z) =

∫ 2π

0
hs1,s2(ω; r)∇f(ω),f(ω+z){Lj1,s1 [f(ω)]Lj2,s2 [f(ω + z)]}exp(−iνω)dω (A.28)

and hs1,s2(ω; r) =
∫ 1
0 fs1,s2(u;ω) exp(2πiur)du with a finite constant C.

PROOF. Implicit differentiation of ∂Ljs(f(ω)) and implicit differentiation together with the product rule

of
∂2Ljs[f(ω)]

∂ω2 gives

∂Ljs[f(ω)]

∂ω
=

∂f(ω)

∂ω

′
∇fLjs[f(ω)] and

∂2Ljs[f(ω)]

∂ω2
=

∂2f(ω)

∂ω2

′
∇fLj,s[f(ω)] +

∂f(ω)

∂ω

′
∇2

fLj,s[f(ω)]
∂f(ω)

∂ω
. (A.29)

By using Lemma A.1, we have supω |∇fLjs[f(ω)]| < ∞ and supω
∣∣∇2

fLjs[f(ω)]| < ∞. Since
∑

h h
2|κ(h)|1 <

∞ (or equivalently in the nonstationary case, the integrated covariance satisfies this assumption), then we

have |∂f(ω)∂ω |1 < ∞ and |∂2f(ω)
∂ω2 |1 < ∞. Substituting these bounds into (A.29) gives (A.26).

To prove supz |aj(ν; z)| ≤ C|ν|−2 (for ν 6= 0), we use (A.26) and apply integration by parts twice to

aj(ν; z) to obtain the bound (similar to the proof of Lemma 3.1, in Appendix A.3). We use the same

method to obtain supz |dj(ν; z)| ≤ C|ν|−2 (for ν 6= 0). �

Lemma A.13 Suppose that either Assumption 3.1(P1, P3, P4) or Assumption 3.2 (L1, L2, L3) holds (in

the stationary case let Xt = Xt,T ). Then we have

c̃j1,j2(r, ℓ) =
1

T

T∑

t,τ=1

X ′
t,TGωr(t− τ − ℓ)Xτ,T exp(iτωr) +Op

(
1

T

)
,

where Gωr(ν) =
∫ 2π
0 Lj2,•(ω + ωr)

′
Lj1,•(ω)exp(−iνω)dω = {aj1,s1,j2,s2(ν;ωr); 1 ≤ s1, s2 ≤ d}, |Gωr(ν)|1 ≤

C/|ν|2.

PROOF. We replace 1
2πT

∑T
k=1 Lj2,•(ωk+r)

′
Lj1,•(ωk)exp(−iωk(t− τ − ℓ)) in (A.25) with its integral limit

Gωr(t− τ + ℓ), and by using (A.27), we obtain bounds on Gωr(s). This gives the required result. �
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Theorem A.2 Suppose that {Xt}t satisfies Assumption 3.1(P1-P3). Then for all fixed r ∈ N and ℓ ∈ Z,

we have

√
T vech

(
ℜC̃T (r, ℓ)

)
D→ N

(
0d(d+1)/2,Wℓ,ℓ

)
and

√
T vech

(
ℑC̃T (r, ℓ)

)
D→ N

(
0d(d+1)/2,Wℓ,ℓ

)
, (A.30)

where 0d(d+1)/2 is the d(d+ 1)/2 zero vector and Wℓ,ℓ = W
(1)
ℓ +W

(2)
ℓ,ℓ as defined in (2.13) and (2.17).

PROOF. Since each element of C̃T (r, ℓ) can be approximated by the quadratic form given in Lemma

A.13, to show asymptotic normality of C̃T (r, ℓ), we use a central limit theorem for quadratic forms. One

such central limit theorems is given in Lee and Subba Rao (2011), Corollary 2.2 (which holds for both

stationary and nonstationary time series). Assumption 3.1(P1-P3) implies the conditions in Lee and

Subba Rao (2011), Corollary 2.2 as satisfied, therefore by using ℜZ = 1
2(Z + Z), ℑZ = 1

2i(Z − Z) and

Cramer-Wold device, we get asymptotic normality of
√
Tvech

(
ℜC̃T (r, ℓ)

)
and

√
Tvech

(
ℑC̃T (r, ℓ)

)
. �

PROOF of Theorem 3.3 Since
√
T ĈT (r, ℓ) =

√
T C̃T (r, ℓ) + op(1), to show asymptotic normality

of
√
T ĈT (r, ℓ), we are only required to show asymptotic normality of

√
T C̃T (r, ℓ). Asymptotic normality

of
√
T C̃T (r, ℓ) follows immediately from Theorem A.2 and, similarly, by the Cramer-Wold device, we can

show the desired joint normality result. �

PROOF of Theorem 3.4 Follows immediately from Theorem 3.3.

We now derive the distribution of Ĉ(r, ℓ) under the assumption of local stationarity. We recall from

Theorem 3.5 that the distribution of ĈT (r, ℓ) is determined by C̃T (r, ℓ) and ST (r, ℓ). We have shown in

Lemma A.13 that C̃T (r, ℓ) can be approximated by a quadratic form. We now show that ST (r, ℓ) is also a

quadratic form. Substituting the quadratic form expansion

f̂
k,r

− E(f̂
k,r

) =
1

2πT

T∑

t,τ=1

λb(t− τ)g(XtX
′
τ )exp(−i(t− τ)ωk),

where the random vector g(XtX
′
τ ) is defined as

g(XtX
′
τ ) =


 1

exp(−i(t− τ)ωr)


⊗

[
vec(XtX

′
τ )− E(vec(XtX

′
τ ))
]
,
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into ST,j1,j2(r, ℓ) (defined in (A.8)) together with Lemma A.8 and A.12 gives

ST,j1,j2(r, ℓ)

=
1

T

T∑

k=1

d∑

s1,s2=1

E(Jk,s1Jk+r,s2)︸ ︷︷ ︸
≈hs1s2 (ωk;r)

(
f̂
k,r

− E(f̂
k,r

)
)′∇Aj1,s1,j2,s2(fk,r

)eiℓωk

=
d∑

s1,s2=1

1

2πT

T∑

t,τ=1

λb(t− τ)g(XtX
′
τ )

′ 1
T

T∑

k=1

exp(−i(t− τ − ℓ)ωk)hs1s2(ωk; r)∇Aj1,s1,j2,s2(fk,r
)

︸ ︷︷ ︸
=dj1,s1,j2,s2

(t−τ−ℓ;ωr)+O(1/T ) by (A.28)

+O

(
1

T

)

=
d∑

s1,s2=1

1

2πT

T∑

t,τ=1

λb(t− τ)g(XtX
′
τ )

′dj1,s1,j2,s2(t− τ − ℓ;ωr) +O

(
1

T

)

(A.31)

where dj1,s1,j2,s2(t− τ − ℓ;ωr) is defined in (A.28).

PROOF of Theorem 3.6 Theorem 3.5 implies that

ĉj1,j2(r, ℓ)− BT,j1j,2(r, ℓ) = c̃j1,j2(r, ℓ) + ST,j1,j2(r, ℓ) + op

(
1√
T

)
.

By using Lemma A.13 and (A.31), we have that c̃j1,j2(r, ℓ) + ST,j1,j2(r, ℓ) is a quadratic form. Therefore,

by applying Lee and Subba Rao (2011), Corollary 2.2 to c̃j1,j2(r, ℓ) + ST,j1,j2(r, ℓ), we can prove (3.11). �

A.5 Proof of results in Section 4

PROOF of Lemma 4.1. We first prove (i). Politis and Romano (1994) have shown that the stationary

bootstrap leads to a bootstrap sample which is stationary conditional on the observations {Xt}Tt=1. There-

fore, by using the same arguments, as those used to prove Lemma 1 in Politis and Romano (1994), and

conditioning on the first block length L1 for 0 ≤ t1 ≤ t2 . . . ≤ tn−1, we have

cum∗(X∗
1 , X1+t1 . . . , X

∗
1+tn−1

) = cum∗(X∗
1 , X1+t1 . . . , X

∗
1+tn−1

|L1 > tn−1)P (L1 > tn−1)

+cum∗(X∗
1 , X1+t1 . . . , X

∗
1+tn−1

|L1 ≤ tn−1)P (L1 ≤ tn−1).

We observe that cum∗(X∗
1 , X1+t1 . . . , X

∗
1+tn−1

|L1 ≤ tn−1) = 0 (since the random variables in separate

blocks are conditionally independent), cum∗(X∗
1 , X1+t1 . . . , X

∗
1+tn−1

|L1 > tn−1) = κ̂Cn (t1, . . . , tn−1) and

P (L1 > tn−1) = (1−p)tn−1 . Thus altogether, we have cum∗(X∗
1 , X

∗
t1 , . . . , X

∗
tn−1

) = (1−p)tn−1 κ̂Cn (t1, . . . , tn−1).

We now prove (ii). We first bound the difference µ̂C
n (h1, . . . , hn−1)− µ̂n(h1, . . . , hn−1). Without loss of

generality, we consider the case 1 ≤ h1 ≤ h2 · · · ≤ hn−1 < T . Comparing µ̂C
n with µ̂n, we observe that the

only difference is that µ̂C
n contains a few additional terms due to Yt for t > T , therefore

µ̂C
n (h1, . . . , hn−1)− µ̂n(h1, . . . , hn−1) =

1

T

T∑

t=T−hn−1+1

Yt

n−1∏

i=1

Yt+hi .
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Since Yt = X(t−1)mod T+1, we have

∥∥µ̂C
n (h1, . . . , hn−1)− µ̂n(h1, . . . , hn−1)

∥∥
q/n

≤ hn−1

T
sup
t

‖Xt‖nq

and substituting this bound into (4.2) gives (ii).

We partition the proof of (iii) in two stages. First, we derive the sampling properties of the sample mo-

ments, then using these results we derive the sampling properties of the sample cumulants. We assume 0 ≤
h1 ≤ . . . ≤ hn−1, and define the product Zt = Xt

∏n−1
i=1 Xt+hi and the sigma-algebra Ft = σ(Xt, Xt−1, . . .).

By using Ibragimov’s inequality, we have ‖E(Zt|Ft−i)−E(Zt|Ft−i−1)‖m ≤ C‖Zt‖r|i|−α( 1
m
− 1

r
). Let Mi(t) =

E(Zt|Ft−i)− E(Zt|Ft−i−1), then we have the representation Zt − E(Zt) =
∑

iMi(t). Using the above and

applying Burkholder’s inequality (in the case that m ≥ 2), to the last line below, we obtain the bound

‖µ̂n(h1, . . . , hn−1)− E(µ̂n(h1, . . . , hn−1))‖m

≤
∥∥∥∥
1

T

T∑

t=1

(
Xt

n−1∏

j=1

Xt+hj − E(Xt

n−1∏

j=1

Xt+hj )

)∥∥∥∥
m

=
∥∥ 1
T

T∑

t=1

(Zt − E(Zt))
∥∥
m

≤
∥∥ 1
T

T∑

t=1

∑

i

Mi(t)
∥∥
m

≤ 1

T

∑

i

∥∥
T∑

t=1

Mi(t)
∥∥
m

≤ 1

T

∑

i

(
T∑

t=1

‖Mi(t)‖2m

)1/2

≤ C√
T

sup
t

‖Zt‖r
∑

i

|i|−α( 1
m
− 1

r
)

which is of order O(T−1/2) if for some r > mα/(α − m) we have supt ‖Zt‖r < ∞. Next we write these

conditions in terms of the moments of Xt. Since supt ‖Zt‖r ≤ (supt ‖Xt‖rn)n, if α > m and r is such that

supt‖Xt‖r < ∞ where r > nmα/(α − m), then ‖µ̂n(h1, . . . , hn−1) − E(µ̂n(h1, . . . , hn−1))‖m = O(T−1/2).

As the sample cumulant is a sum of products of sample moments, we use the above to bound products of

sample moments (extracted from the nth order cumulant in (4.3)). By the (generalized) Hölder inequality,

we get

∥∥∥∥
∏

B∈π
µ̂|B|(B)−

∏

B∈π
E[µ̂|B|(B)]

∥∥∥∥
q/n

≤
|π|∑

j=1

∥∥µ̂|Bj |(Bj)− E[µ̂|Bj |(Bj)]
∥∥
qDj/(n|Bj |)

( j−1∏

k=1

‖µ̂|Bk|(Bk)‖qDj/(n|Bk|)

) |π|∏

k=j+1

E[µ̂|Bk|(Bk)]

where π = {B1, . . . , B|π|} and Dj =
∑j

k=1 |Bk| (noting that D|π| =
∑|π|

k=1 |Bk| = n). Applying the previous

discussion to this situation (with n = |Bj | and m = qDπ

n|Bj | = q/|Bj |), we see that to ensure O(T−1/2)

convergence of the above expression we require that the mixing rate should satisfy α > q
|Bj | and

r >
|Bj |qα/|Bj |
α− q

|Bj |
=

qα

α− q/|Bj |
for all j. (A.32)

Noting that 1 ≤ |Bj | ≤ n, the minimum conditions for the above to be true for all partitions π ∈
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{h1, . . . , hn−1} is α > q and ‖Xt‖r < ∞ for r > qα/(α− q/n). Altogether this gives

‖κ̂n(h1, . . . , hn−1)− κ̃n(h1, . . . , hn−1)‖q/n ≤
∑

π

(|π| − 1)!

∥∥∥∥
∏

B∈π
µ̂|B|(B)−

∏

B∈π
E[µ̂|B|(B)]

∥∥∥∥
q/n

= O

(
1

T 1/2

)

(under the condition α > q and ‖Xt‖r < ∞ for r > qα/(α− q/n)). This proves (4.6).

We now prove (4.7). It is straightforward to show that if 0 ≤ h1 ≤ . . . ≤ hn−1 ≤ T , then we have

∣∣ 1
T

T−hn−1∑

t=1

E(XtXt+h1 . . . Xt+hn−1)−
1

T

T∑

t=1

E(XtXt+h1 . . . Xt+hn−1)
∣∣ ≤ C

hn−1

T
.

Using this and the same methods as above we have (4.7) thus we have shown (iii).

To prove (iv), we note that it is immediately clear that κ̄n(·) is the nth order cumulant of a stationary

time series. However, in the case that the time series is nonstationary, the story is different. To prove

(iva), we note that under the assumption that E(Xt) is constant for all t, we have

κ̄2(h) =
1

T

T∑

t=1

E(XtXt+h)−
(

1

T

T∑

t=1

E(Xt)

)2

=
1

T

T∑

t=1

E
(
(Xt − µ)(Xt+h − µ)

)
(using E(Xt) = µ)

=
1

T

T∑

t=1

cov(Xt, Xt+h).

To prove (ivb), we note that by using the same argument as above, we have

κ̄3(h1, h2) =
1

T

T∑

t=1

E(XtXt+h1Xt+h2)−
( 1
T

T∑

t=1

[
E(XtXt+h1) + E(Xt+h1Xt+h2) + E(XtXt+h2)

])
µ+ 2µ3

=
1

T

T∑

t=1

E
(
(Xt − µ)(Xt+h1 − µ)(Xt+h2 − µ)

)
=

1

T

T∑

t=1

cum(Xt, Xt+h1 , Xt+h2),

which proves (ivb).

So far, the above results give the average cumulants. However, this pattern does not continue for n ≥ 4.

We observe that

κ̄4(h1, h2, h3) =
1

T

T∑

t=1

E
[
(Xt − µ)(Xt+h1 − µ)(Xt+h2 − µ)(Xt+h2 − µ)

]
−

(
1

T

T∑

t=1

cov(Xt, Xt+h1)

)(
1

T

T∑

t=1

cov(Xt+h2 , Xt+h3)

)
−
(
1

T

T∑

t=1

cov(Xt, Xt+h2)

)
×

(
1

T

T∑

t=1

cov(Xt+h1 , Xt+h3)

)
−
(
1

T

T∑

t=1

cov(Xt, Xt+h3)

)(
1

T

T∑

t=1

cov(Xt+h1 , Xt+h2)

)
,
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which cannot be written as the average of the fourth order cumulant. However, it is straightforward to

show that the above can be written as the average of the fourth order cumulants plus the additional average

covariances. This proves (ivc). The proof for (ivd) is similar and we omit the details. �

PROOF of Lemma 4.2. To prove (i), we use the triangle inequality to obtain

∣∣ĥn(ω1, . . . , ωn−1)− fn,T (ω1, . . . , ωn−1)
∣∣ ≤ I + II,

where

I =
1

(2π)n−1

T−1∑

h1,...,hn−1=−(T−1)

(1− p)max(hi,0)−min(hi,0)
∣∣κ̂n(h1, . . . , hn−1)− κ̃n(h1, . . . , hn−1)

∣∣,

II =
1

(2π)n−1

T−1∑

h1,...,hn−1=−(T−1)

(1− p)max(hi,0)−min(hi,0)
∣∣κ̃n(h1, . . . , hn−1)− κn(h1, . . . , hn−1)

∣∣.

We first bound the sum
∑T−1

h1,...,hn−1=−(T−1)(1 − p)max(hi,0)−min(hi,0). There are a (n − 1)! orderings of

{h1, . . . , hn−1}, thus we have the bound

T−1∑

h1,...,hn−1=−(T−1)

(1− p)max(hi,0)−min(hi,0) ≤ (n− 1)!
T−1∑

h1,...,hn−1=−(T−1)

h1≤h2≤...≤hn−1

(1− p)max(hn−1,0)−min(h1,0).

Therefore we need only consider the sum when h1 ≤ h2 ≤ . . . ≤ hn−1. This sum can be further partitioned

into n cases

T−1∑

h1,...,hn−1=−(T−1)

h1≤h2≤...≤hn−1

(1− p)max(hn−1,0)−min(h1,0) =
n−1∑

m=0

Im

where

I0 =
∑

h1≤h2≤...≤hn−1
h1≥0

(1− p)hn−1 , In−1 =
∑

h1≤h2≤...≤hn−1
hn−1<0

(1− p)−h1

and for 1 ≤ m < n− 1

Im =
∑

h1≤h2≤...≤hn−1
hm<0 and hm+1≥0

(1− p)hn−1−h1 .

To bound I0 we use that

I0 =
∑

h1≤h2≤...≤hn−1
h1≥0

(1− p)
∑n−1

i=1 (hi−hi−1)
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where h0 = 0. By making a change of variables, with g1 = h1, g2 = h2−h1, gn−1 = hn−1−hn−2 we obtain

I1 ≤ [
∑∞

g=1(1− p)g]n−1 = p1−n. To bound Im (where 1 ≤ m < n− 1) we split the sum into negative and

positive indices

Im =

( ∑

h1≤h2≤...≤hm<0

(1− p)−h1

)
×
( ∑

0≤hm+1≤hm+2≤...≤hn−1

(1− p)hn−1

)
.

By applying the same argument to bound I0 to each of the sums above we obtain Im ≤ p1−n. Finally,

noting that I0 = In−1 we obtain In−1 ≤ p1−n. Altogether this gives

T−1∑

h1,...,hn−1=−(T−1)

(1− p)max(hi,0)−min(hi,0) ≤ (n− 1)!np1−n =n!p1−n. (A.33)

Therefore, by using (4.6) and (A.33), we have

‖I‖q/n ≤ 1

(2π)n−1

T−1∑

h1,...,hn−1=−(T−1)

(1− p)max(hi,0)−min(hi,0)
∥∥κ̂n(h1, . . . , hn−1)− κ̃n(h1, . . . , hn−1)

∥∥
q/n︸ ︷︷ ︸

O(T−1/2) (uniform in hi) by eq. (4.6)

= O

(
1

T 1/2pn−1

)
(by eq. (A.33)).

To bound II we use (4.7) to give

|II| ≤ C

T

T−1∑

h1,...,hn−1=−(T−1)

(1− p)max(hi,0)−min(hi,0)(max(hi, 0)−min(hi, 0)).

By using the same decomposition of the integral used to bound (A.33), together with the bound

∑

0≤h1≤...≤hn−1

hn−1(1− p)hn−1 ≤
∞∑

h=0

hn−1(1− p)h ≤ Cp−n,

(where C is a finite constant) we obtain

T−1∑

h1,...,hn−1=−(T−1)

(1− p)max(hi,0)−min(hi,0)(max(hi, 0)−min(hi, 0)) ≤ Cn!p−n.

Thus |II| = O( 1
Tpn ). This proves (i).

To prove (ii), we note that

∣∣ĥn(ω1, . . . , ωn−1)− fn(ω1, . . . , ωn−1)
∣∣

≤
∣∣ĥn(ω1, . . . , ωn−1)− fn,T (ω1, . . . , ωn−1)

∣∣+ |fn,T (ω1, . . . , ωn−1)− fn(ω1, . . . , ωn−1)|.

A bound for the first term on the right hand side of the above is given in part (i). To bound the second

term, we note that κ̄n(·) = κn(·) (where κn(·) are the cumulants of an nth order stationary time series).

Using this leads to the triangle inequality

|fn,T (ω1, . . . , ωn−1)− fn(ω1, . . . , ωn−1)| ≤ III + IV
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where

III =
1

(2π)n−1

T−1∑

h1,...,hn−1=−(T−1)

[max(hi,0)−min(hi,0)]≤T−1

∣∣(1− p)max(hi,0)−min(hi,0) − 1
∣∣ ·
∣∣κn(h1, . . . , hn−1)

∣∣,

IV =
1

(2π)n−1

∑

[max(hi,0)−min(hi,0)]≥T

|κn(h1, . . . , hn−1)|.

Substituting the bound |1− (1− p)l| ≤ Klp, into III gives |III| = O(p). To bound IV , we will use that

under the assumption that α > 2r(n− 1)/(r − n) and using Lemma A.9 for 0 < h1 < . . . < hn−1 we have

that κn(h1, . . . , hn−1) ≤ C
∏n−1

i=1 (hi−hi−1)
−2 (where we set h0 = 0) and for h1 < h2 < . . . hm < 0 < hm+1 <

. . . < hn−1 we have that κn(h1, . . . , hn−1) ≤ C(−hm)−2h−2
m+1

∏2
i=m(hi − hi−1)

−2
∏n−1

i=m+2(hi − hi−1)
−2 (the

case that hi = hi+1 is similarly defined, where we set (hi − hi)
−2 = C). This is now used to bound IV . As

in the bound of I (above) we can show that

IV ≤ (n− 1)!

(2π)n−1

∑

h1≤h2≤...≤hn−1

[max(hn−1,0)−min(h1,0)]≥T

|κn(h1, . . . , hn−1)| =
n−1∑

m=0

IVm,

where

IV0 =
(n− 1)!

(2π)n−1

∑

h1≤h2≤...≤hn−1
hn−1≥T and h1≥0

|κn(h1, . . . , hn−1)|

IVm =
(n− 1)!

(2π)n−1

∑

h1≤h2≤...≤hn−1

[hn−1−h1]≥T,hm<0 and hm+1≥0

|κn(h1, . . . , hn−1)| 1 ≤ m ≤ n− 2,

IVn−1 =
(n− 1)!

(2π)n−1

∑

h1≤h2≤...≤hn−1
h1≤−T and hn−1<0

|κn(h1, . . . , hn−1)|

We first bound IV0. By definition of IV0, hn−1 ≥ T , this means that for at least one 1 ≤ i ≤ n − 1 we

have (hi−hi−1) ≥ T/(n−1). Therefore, by using the bound κn(h1, . . . , hn−1) ≤ C
∏n−1

i=1 (hi−hi−1)
−2, this

gives IV0 ≤ C(T/n)−1 (where C is a finite constant that only depends on n). The same argument can be

used to show IVm ≤ C(T/n)−1 for 1 ≤ m ≤ n− 1. Altogether this gives

|IV | ≤ Cn× n!

T
,

and the bounds for III and IV give (ii).

We now prove (iii). In the case that n ∈ {2, 3}, the proof is identical to the stationary case since ĥ2

an ĥ3 are estimators of f2,T and f3,T , which are the Fourier transforms of average covariances and average

cumulants. Since the second and third order covariances decay at a sufficiently fast rate, f2,T and f3,T are

finite. This proves (iiia).
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On the other hand, we will prove that for n ≥ 4, fn,T depends on p. We prove the result for n = 4 (the re-

sult for the higher order cases follow similarly). Lemma A.9 implies that supt
∑

h | 1T
∑

t=1 cov(Xt, Xt+h)| <
∞ and supt

∑
h1,h2,h3

| 1T
∑T

t=1 cum(Xt, Xt+h1 , Xt+h2 , Xt+h3)| < ∞. Therefore, taking absolutes inside the

sum of f4,T (·), using the h1 ≤ h2 ≤ . . . ≤ hn−1 decomposition given above and that
∑

h1,h2
|κ4(h1, h2, h3)| <

∞ (note the boundedness of (4.8) over the double (but not triple) sum) we get

sup
ωk1

,ωk2
,ωk3

|f4,T (ω1, ω2, ω3)| ≤ 1

(2π)3

T−1∑

h1,h2,h3=−(T−1)

(1− p)max(hi,0)−min(hi,0)|κ4(h1, h2, h3)|

≤ C
T−1∑

h=1

(1− p)h = O(p−1),

where C is a finite constant (this proves (iiic)). The proof for the bound of the higher order fn,T is similar.

Thus we have shown (iii). �

PROOF of Theorem 4.1. Substituting Lemma 4.1(i) into cum∗(J∗
T (ωk1), . . . , J

∗
T (ωkn)) gives

cum∗(J∗
T (ωk1), . . . , J

∗
T (ωkn))

=
1

(2πT )n/2

T∑

t1,...,tn=1

(1− p)maxi((ti−tn),0)−mini((ti−tn),0)κ̂Cn (t1 − tn, . . . , tn−1 − tn)e
−itnωk1

−...−itnωkn .

For 1 ≤ i ≤ n− 1 let hi = ti − tn and t = tn, then the above can be written as

cum∗(J∗
T (ωk1), . . . , J

∗
T (ωkn))

=
1

(2πT )n/2

T−1∑

h1,...,hn−1=−(T−1)

(1− p)g(h)κ̂Cn (h1, . . . , hn−1)e
−ih1ωk1

−...−ihn−1ωkn−1

×
T−|maxi(hi,0)|∑

t=|mini(hi,0)|+1

e−it(ωk1
+ωk2

+...+ωkn ),

where g(h) = maxi(hi, 0) − mini(hi, 0). Using that ‖κ̂Cn (h1, . . . , hn−1)‖1 < ∞, it is clear from the above

that ‖cum∗(J∗
T (ωk1), . . . , J

∗
T (ωkn))‖1 = O( 1

Tn/2−1pn−1 ), which proves (4.13). However, this is a crude bound

and below we obtain more precise bounds (under stronger conditions). Let

Eh(ωk1 , . . . , ωkn) =

T−|maxi(hi,0)|∑

t=|mini(hi,0)|+1

e−it(ωk1
+ωk2

+...+ωkn ).

Replacing κ̂Cn (h1, . . . , hn−1) in the above with κ̂n(h1, . . . , hn−1) gives

cum∗(J∗
T (ωk1), . . . , J

∗
T (ωkn))

=
1

(2πT )n/2

T−1∑

h1,...,hn−1=−(T−1)

(1− p)g(h)κ̂n(h1, . . . , hn−1)e
−ih1ωk1

−...−ihn−1ωkn−1Eh(ωk1 , . . . , ωkn) +R1,(A.34)
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where

R1 =
1

(2πT )n/2

T−1∑

h1,...,hn−1=−(T−1)

(1− p)g(h)
(
κ̂Cn (h1, . . . , hn−1)− κ̂n(h1, . . . , hn−1)

)
Eh(ωk1 , . . . , ωkn).

(A.35)

Substituting (4.5) into R1 and using identical arguments to those used in the bound on I given in the proof

of Lemma 4.2 we have

‖R1‖q/n ≤ n! supt ‖Xt‖q
(2πT )n/2

T−1∑

h1,...,hn−1=−(T−1)

h1≤h2≤...≤hn−1

(1− p)g(h)
g(h)

T
|Eh(ωk1 , . . . , ωkn)|︸ ︷︷ ︸

≤(T−1−maxi(hi,0)−mini(hi,0))

≤ n! supt ‖Xt‖q
(2πT )n/2

T−1∑

h1,...,hn−1=−(T−1)

h1≤h2≤...≤hn−1

(1− p)g(h)g(h).

Just as the bound on I (in the proof of Lemma 4.2) we decompose the above sum into n sums where

0 ≤ h1 ≤ . . . ≤ hn−1 using this decomposition and the same arguments as those used in Lemma 4.2 we have

‖R1‖q/n = O( 1
pnTn/2 ). We return to (A.34) and replace Eh(ωk1 , . . . , ωkn) with

∑T
t=1 e

−it(ωk1
+ωk2

+...+ωkn )

to give

cum∗(J∗
T (ωk1), . . . , J

∗
T (ωkn))

=
1

(2πT )n/2

T−1∑

h1,...,hn−1=−(T−1)

(1− p)g(h)κ̂n(h1, . . . , hn−1)e
−ih1ωk1

−...−ihn−1ωkn−1

T∑

t=1

e−it(ωk1
+ωk2

+...+ωkn )

+R1 +R2,

=
(2π)n/2−1

Tn/2
ĥn(ωk1 , . . . , ωkn−1)

T∑

t=1

e−it(ωk1
+ωk2

+...+ωkn ) +R1 +R2, (A.36)

where R1 is defined in (A.35) and

R2 =
1

(2πT )n/2

T−1∑

h1,...,hn−1=−(T−1)

(1− p)g(h)κ̂n(h1, . . . , hn−1)

×e−ih1ωk1
−...−ihn−1ωkn−1

( T−|maxi(hi,0)|∑

t=|mini(hi,0)|+1

−
T∑

t=1

)
e−it(ωk1

+ωk2
+...+ωkn ).

(A.36) is in the form given in (4.14), with RT,n = R1 +R2. To bound R2 we take absolutes to give

|R2| ≤ 1

(2πT )n/2

T−1∑

h1,...,hn−1=−(T−1)

(1− p)g(h)|κ̂n(h1, . . . , hn−1)|
(
|max

i
(hi, 0)|+ |min

i
(hi, 0)|

)
.

By using Hölder’s inequality, it is straightforward to show that ‖κ̂n(h1, . . . , hn−1)‖q/n ≤ C < ∞. This
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implies

‖R2‖q/n ≤ C

(2πT )n/2

T−1∑

h1,...,hn−1=−(T−1)

(1− p)g(h)
(
|max

i
(hi, 0)|+ |min

i
(hi, 0)|

)

≤ 2C

(2πT )n/2

T−1∑

h1,...,hn−1=−(T−1)

(1− p)g(h)max
i

(|hi|) = O(
1

Tn/2pn
).

Therefore, since ‖RT,n‖q/n ≤ ‖R1‖q/n + ‖R2‖q/n we have ‖RT,n‖q/n = O( 1
(T 1/2p)n

). This proves (4.14).

To prove (a), we note that if
∑n

l=1 ωkl /∈ 2πZ, then the first term in (4.14) is zero and we have (4.15)

(since RT,n = Op(
1

(T 1/2p)n
)). On the other hand, if

∑n
l=1 ωkl ∈ 2πZ, then the first term in (4.14) dominates

and we use Lemma 4.2(ii) to obtain the other part of (4.15). The proof of (b) is similar, but uses Lemma

4.2(iii) rather than Lemma 4.2(ii), we omit the details. �

A.6 Proofs for Section 5

PROOF of Lemma 5.1. We first note that by Assumption 5.1, we have summability of the 2nd to 8th

order cumulants (see Lemma A.9 for details). Therefore, to prove (ia) we can use Theorem 4.1 to obtain

cum∗(J∗
T,j1(ωk1), J

∗
T,j2(ωk2)) = fj1,j2(ωk1)

1

T

T∑

t=1

exp(−it(ωk1 + ωk2)) +Op

(
1

Tp2

)

= fj1,j2(ωk1)I(k1 = −k2) +Op

(
1

Tp2

)

The proof of (ib) and (ii) is identical, hence we omit the details. �

PROOF of Theorem 5.1 Since the only random component in c̃∗j1,j2(r, ℓ1) are the DFTs, evaluating

the covariance with respect to the bootstrap measure and using Lemma 5.2 to obtain an expression for the

covariance between the DFTs gives

T cov∗
(
c̃∗j1,j2(r, ℓ1), c̃

∗
j3,j4(r, ℓ2)

)
= δj1j3δj2j4δℓ1ℓ2 + δj1j4δj2j3δℓ1,−ℓ2 + κ

(ℓ1,ℓ2)
T (j1, j2, j3, j4) +Op

(
1

Tp4

)

T cov∗
(
c̃∗j1,j2(r, ℓ1), c̃

∗
j3,j4

(r, ℓ2)
)

= Op

(
1

Tp4

)
,

which gives both part (i) and (ii). �

The proof of the above theorem is based on c̃∗j1,j2(r, ℓ) and we need to show that this is equivalent to

ĉ∗j1,j2(r, ℓ) and ć∗j1,j2(r, ℓ), which requires the following lemma.

Lemma A.14

Suppose {Xt}t is a time series with a constant mean which satisfies Assumption 5.2(B2). Let f̂∗T be defined
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in (2.22), and define f̃∗
j1,j2

(ωk) = f̂∗
j1,j2

(ωk) − E∗(f̂∗
j1,j2

(ωk)) and Ĩ∗k,r,j1,j2 = I∗k,r,j1,j2 − E∗(I∗k,r,j1,j2), where

I∗k,r,j1,j2 = J∗
j1
(ωk)J

∗
j2
(ωk+r). Then we have for all 1 ≤ r < T/2

∥∥E∗|f̃∗
j1,j2(ωk)

∣∣2∥∥
4
= O

(
1

bT
+

1

T 3/2p3
+

1

T 2p2b

)
, (A.37)

∥∥cum∗
4

(
f̃∗
j1,j2(ωk)

)∥∥
2
= O

(
1

(bT )3
+

1

(pT 1/2)4(bT )2
+

1

(pT 1/2)6(bT )
+

1

(pT 1/2)8

)
, (A.38)

∥∥E∗|f̃∗
j1,j2(ωk)

∣∣4∥∥
2
= O

([
1

bT
+

1

T 3/2p3
+

1

T 3/2pb

]2)
, (A.39)

∥∥∥∥E∗|J∗
T,j1(ωk)J

∗
T,j2

(ωk+r)|
∥∥∥∥
8

= O

((
1 +

1

(pT 1/2)2

))
, (A.40)

∥∥∥∥E∗(JT,j1(ωk)
∗J∗

T,j2
(ωk+r)

)∥∥∥∥
8

= O

(
1

(pT 1/2)2

)
, (A.41)

∥∥cov∗(J∗
T,j1(ωk)J

∗
T,j2

(ωk+r), J
∗
T,j3(ωs)J∗

T,j4
(ωs))

∥∥
4
=





O
(

1
(pT 1/2)2

)
, k = ±s or k = ±(s+ r)

O
(

1
(pT 1/2)4

)
, otherwise

, (A.42)

∥∥∥∥cum∗
3

(
J∗
T,j1(ωk1)J

∗
T,j2

(ωk1+r), J
∗
T,j3(ωk2)J

∗
T,j4

(ωk2+r), f̃
∗
j5j6(ωk1)

)∥∥∥∥
8/3

=





O
(

1
bT (pT 1/2)2

+ 1
(pT 1/2)4

)
, k1 = k2 or k1 + r = k2 or k1 = k2 + r

O
(

1
bT (pT 1/2)4

+ 1
(pT 1/2)6

)
, otherwise

, (A.43)

∥∥∥cum∗
2

(
J∗
T,j1(ωk1)J

∗
T,j2

(ωk1+r), J
∗
T,j1

(ωk2)J
∗
T,j2(ωk2+r)

)∥∥∥
4
=





O(1), k1 = k2 or k1 = k2 + r

O
(

1
(pT 1/2)4

)
, otherwise

,(A.44)

∥∥cum∗
2(J

∗
T,j1(ωk1)J

∗
T,j2

(ωk1+r), f̃
∗
j3j4(ωk2))

∥∥
4
= O

(
1

(pT 1/2)4
+

1

bT (pT 1/2)2

)
, (A.45)

∥∥∥E∗(Ĩ∗k1,r,j1,j2 Ĩ∗k2,r,j3,j4 f̃∗
j1,j2(ωk1)f̃

∗
j3,j4(ωk2)

)∥∥∥
2

=





O
(

1
bT + 1

T 3/2p3
+ 1

T 3/2pb

)
, k1 = k2 or k1 = k2 + r or k2 = k1 + r

O
(

1
(pT 1/2)4

)
, otherwise

, (A.46)

and

∥∥E∗[f̂∗
j1,j2(ωk)]− fj1,j2(ωk)

∥∥
8
= O

(
1

pT 1/2
+ p+ b

)
, (A.47)

with bT → and p1/2T → ∞ as T → ∞, b → 0 and p → 0. Note that all these bounds are uniform over

frequency.
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PROOF. Without loss of generality, we will prove the result in the univariate case (and under the as-

sumption of nonstationarity). We will make wide use of (4.15) and (4.16) which we summarize below. For

n ∈ {2, 3}, we have

∥∥cum∗(J∗
T (ωk1), . . . , J

∗
T (ωkn))

∥∥
q/n

=





O
(

1
Tn/2−1 + 1

(pT 1/2)n

)
,
∑n

l=1 ωkl ∈ Z

O
(

1
(pT 1/2)n

)
,

∑n
l=1 ωkl /∈ Z

(A.48)

and, for n ≥ 4,

∥∥cum∗(J∗
T (ωk1), . . . , J

∗
T (ωkn))

∥∥
q/n

=





O
(

1
Tn/2−1pn−3 + 1

(pT 1/2)n

)
,
∑n

l=1 ωkl ∈ Z

O
(

1
(pT 1/2)n

)
,

∑n
l=1 ωkl /∈ Z

To simplify notation, let J∗
T (ωk) = J∗

k . To prove (A.37), we expand E∗(f̃∗2
T (ω)) = var∗(f̂∗

T (ω)) to give

‖var∗(f̂∗
T (ωk))‖4

≤
∥∥∥∥
1

T 2

∑

l1,l2

Kb(ωk − ωl1)Kb(ωk − ωl2)

[
cov∗(J∗

l1 , J
∗
l2)cov

∗(J
∗
l1 , J

∗
l2) + cov∗(J∗

l1 , J
∗
l2)cov

∗(J
∗
l1 , J

∗
l2) +

cum∗
4(J

∗
l1 , J

∗
l1 , Jl2

∗
, J∗

l2)

∥∥∥∥
4

=

∥∥∥∥
1

T 2

∑

l1 6=l2

Kb(ωk − ωl1)Kb(ωk − ωl2)cov
∗(J∗

l1 , J
∗
l2)cov

∗(J
∗
l1 , J

∗
l2)

∥∥∥∥
4

+

∥∥∥∥
1

T 2

∑

l1 6=−l2

Kb(ωk − ωl1)Kb(ωk − ωl2)cov
∗(J∗

l1 , J
∗
l2)cov

∗(J
∗
l1 , J

∗
l2)

∥∥∥∥
4

+

∥∥∥∥
1

T 2

∑

l1,l2

Kb(ωk − ωl1)Kb(ωk − ωl2)cum
∗
4(J

∗
l1 , J

∗
l1 , J

∗
l2 , J

∗
l2)

]∥∥∥∥
4

+

∥∥∥∥
2

T 2

∑

l

Kb(ωk − ωl)
2|cov∗(J∗

l , J
∗
l )|2

∥∥∥∥
4

≤ C

T 2

∑

l1,l2

Kb(ωk − ωl1)Kb(ωk − ωl2)

(
1

(pT 1/2)4
+

1

(pT 1/2)3
+

1

T

)

+
C

T 2

∑

l

Kb(ωk − ωl)
2

(
1 +

1

(pT 1/2)2

)
(by using (A.48))

= O

(
1

T 3/2p3
+

1

bT
+

1

bT (pT 1/2)2

)
(these are just the leading terms).

We now prove (A.38), expanding cum∗
4(f̃

∗
T (ωk)) gives

∥∥cum∗
4(f̃

∗
T (ωk))‖2 =

∥∥ 1

T 4

∑

l1,l2,l3,l4

( 4∏

i=1

Kb(ωk − ωli)

)
cum∗

4

(
|J∗

l1 |2, |J∗
l2 |2, |J∗

l3 |2, |J∗
l4 |2
)∥∥

2
.

By using indecomposable partitions to decompose the cumulant cum∗
4

(
|J∗

l1
|2, |J∗

l2
|2, |J∗

l3
|2, |J∗

l4
|2
)
in terms of

the product of cumulants of Jj and by (A.48), the leading term of cum∗
4

(
|J∗

l1
|2, |J∗

l2
|2, |J∗

l3
|2, |J∗

l4
|2
)
can be
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shown to be the product of four covariances of the type cov∗(J∗
l1
, J∗

l2
)cov∗(J̄∗

l2
, J∗

l3
)cov∗(J̄∗

l3
, J∗

l4
)cov∗(J̄∗

l4
, J̄∗

l1
).

Using this and straightforward (but long) calculations we can show that

∥∥cum∗
4(f̃

∗
T (ωk))‖2 = O

(
1

(bT )3
+

1

(pT 1/2)4(bT )2
+

1

(pT 1/2)6(bT )
+

1

(pT 1/2)8

)
,

which proves (A.38).

Since E∗[f̃∗
T (ω)] = 0, we have

E∗|f̃∗
T (ωk)

∣∣4 = 3var∗(f̃∗
T (ωk))

2 + cum∗
4(f̃

∗
T (ωk)),

therefore by using (A.37) and (A.38), we obtain (A.39).

To prove (A.40), we note that E∗|J∗
kJ

∗
k+r| ≤ (E∗|J∗

kJ
∗
k+r|2)1/2, therefore

∥∥E∗|J∗
kJ

∗
k+r|

∥∥
8
≤
∥∥ (E∗|J∗

kJ
∗
k+r|2

)1/2 ∥∥
8
=
[
E
(
E∗|J∗

kJ
∗
k+r|2

)4]1/8
=
∥∥E∗|J∗

kJ
∗
k+r|2

∥∥1/2
4

. (A.49)

Substituting the expansion

E∗∣∣J∗
T (ωk)J

∗
T (ωk+r)

∣∣2 = E∗|J∗
T (ωk)|2E∗|J∗

T (ωk+r)|2 +
∣∣E∗[J∗

T (ωk)J
∗
T (ωk+r)]

∣∣2 +
∣∣E∗[J∗

T (ωk)J
∗
T (ωk+r)]

∣∣2 + cum∗(J∗
T (ωk), J

∗
T (ωk+r), J

∗
T (ωk), J

∗
T (ωk+r)),

into (A.49) gives

∥∥E∗|J∗
kJ

∗
k+r|

∥∥
8

≤
(∥∥E∗|J∗

k |2E∗|Jk+r
∗|2
∥∥
4
+
∥∥∣∣E∗[J∗

kJ
∗
k+r]

∣∣2∥∥
4
+
∥∥∣∣E∗[J∗

kJ
∗
k+r]

∣∣2∥∥
4
+
∥∥cum∗(J∗

k , J
∗
k+r, J

∗
k , J

∗
k+r)

∥∥
4

)1/2

.

Thus by using (A.48) we obtain
∥∥E∗|J∗

kJk+r
∗|
∥∥
8
= O(1 + 1

(pT 1/2)2
), and thus (A.40).

The proof of (A.41) immediately follows from (A.48) (using n = 2 and q/2 = 8).

To prove (A.42), we expand it in terms of covariances and cumulants

cov∗(J∗
kJk+r

∗
, J∗

s Js
∗
)

= cov∗(J∗
k , J

∗
s )cov

∗(Jk+r
∗
, Js

∗
) + cov∗(J∗

k , Js
∗
)cov(Jk+r

∗
, J∗

s ) + cum∗
4(J

∗
k , Jk+r

∗
, J

∗
s, J

∗
s ),

thus by using (A.48) we obtain (A.42).

To prove (A.43), we expand the sample bootstrap spectral density in terms of DFTs to obtain

cum∗
3(J

∗
k1J

∗
k1+r, J

∗
k2J

∗
k2+r, f̃

∗
T (ωk1)) =

1

T

∑

l

Kb(ωk1 − ωl)cum
∗
3(J

∗
k1J

∗
k1+r, J

∗
k2J

∗
k2+r, |J∗

l |2).(A.50)

By using indecomposable partitions to partition cum∗
3(J

∗
k1
J
∗
k1+r, J

∗
k2
J
∗
k2+r, |J∗

l |2) in terms of cumulants of

the DFTs, we observe that the leading term is the product of covariances. This gives

‖cum∗
3(J

∗
k1J

∗
k1+r, J

∗
k2J

∗
k2+r, |J∗

l |2)‖8/3 =





O
(

1
(pT 1/2)2

)
, (ki = l and ki + r = kj) etc.

O
(

1
(pT 1/2)4

)
, k1 = k2 or ki + r = l or kj = l

O

(
1

(pT 1/2)6

)
, otherwise

.
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for i, j ∈ {1, 2}. By substituting the above into (A.50), we get

∥∥cum∗
3(J

∗
k1J

∗
k1+r, J

∗
k2J

∗
k2+r, f̃

∗
T (ωk1))

∥∥
8/3

=





O
(

1
bT (pT 1/2)2

+ 1
(pT 1/2)4

)
, k1 = k2 or k1 + r = k2 or k1 = k2

O

(
1

bT (pT 1/2)4
+ 1

(pT 1/2)6

)
, otherwise

which proves (A.43). The proofs of (A.44) and (A.45) are identical to the proof of (A.43), hence we omit

the details.

To prove (A.46), in the case that k1 = k2, k1 = k2+ r or k2 = k1+ r we use Cauchy-Schwarz inequality

to give

∥∥∥E∗(Ĩ∗k1,r,j1,j2 Ĩ∗k2,r,j3,j4 f̃∗
j1,j2(ωk1)f̃

∗
j3,j4(ωk2)

)∥∥∥
2

≤
∥∥∥E∗∣∣Ĩ∗k1,r,j1,j2 Ĩ∗k2,r,j3,j4

∣∣2
∥∥∥
1/2

2

∥∥∥∥E∗
∣∣∣f̃∗

j1,j2(ωk1)
∣∣∣
4
∥∥∥∥
1/4

2

∥∥∥∥E∗
∣∣∣f̃∗

j3,j4(ωk2)
∣∣∣
4
∥∥∥∥
1/4

2

.

We observe that
∥∥∥E∗(Ĩ∗k1,r,j1,j2 Ĩ∗k2,r,j3,j4

)∥∥∥
2
= O(1), thus by using (A.39) we get (A.46) when either k1 = k2

or k1 = k2 + r. This bound is too crude when both k1 6= k2, k1 6= k2 + r and k2 6= k1 + r. Instead, we

decompose the expectation as the product of cumulants and use (A.42)-(A.45) to get (A.46). Finally to

prove (A.47), we use the Minkowski inequality to give

∥∥∥∥E∗[f̂∗
T (ωk)]− f(ωk)

∥∥∥∥
8

≤
∥∥∥∥
1

T

∑

j

Kb(ωk − ωj)
[
E∗(J∗

j Jj
∗
)− ĥ2(ωj)

]∥∥∥∥
8

+

∥∥∥∥
1

T

∑

j

Kb(ωk − ωj)
[
ĥ2(ωj)− f(ωj)

]∥∥∥∥
8

+

∣∣∣∣
1

T

∑

j

Kb(ωk − ωj)f(ωj)− f(ωk)

∣∣∣∣, (A.51)

where ĥ2 is defined in (4.9). We now bound the above terms. By using Theorem 4.1 (for n = 2), we have

∥∥∥∥
1

T

∑

j

Kb(ωk − ωj)
[
E∗(J∗

j Jj
∗
)− ĥ2(ωj)

]∥∥∥∥
8

≤ 1

T

∑

j

Kb(ωk − ωj)
∥∥E∗(J∗

j Jj
∗
)− ĥ2(ωj)

∥∥
8
= O

(
1

(pT 1/2)2

)
.

By using Lemma 4.2(ii), we obtain

∥∥∥∥
1

T

∑

j

Kb(ωk − ωj)
[
ĥ2(ωj)− f(ωj)

]∥∥∥∥
8

≤ 1

T

∑

j

Kb(ωk − ωj)
∥∥ĥ2(ωj)− f(ωj)

∥∥
8
= O

(
1

Tp
+

1

pT 1/2
+ p

)
.

By using similar methods to those used to prove Lemma A.2(i), we have

1

T

∑

j

Kb(ωk − ωj)f(ωj)− f(ωk) = O(b).

Substituting the three bounds above into (A.51) gives (A.47). �

Analogous to ĈT (r, ℓ), direct analysis of the variance of Ĉ∗
T (r, ℓ) and Ć∗

T (r, ℓ) with respect to the

bootstrap measure is extremely difficult because of the L̂∗(ωk) and L̂(ωk) in the definition of Ĉ∗
T (r, ℓ)

and Ć∗
T (r, ℓ). However, analysis of C̃∗

T (r, ℓ) is much easier, therefore to show that the bootstrap variance
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converges to the true variance we will show that var∗(Ĉ∗
T (r, ℓ)) and var∗(Ć∗

T (r, ℓ)) can be replaced with

var∗(C̃∗
T (r, ℓ)). To prove this result, we require the following definitions

ĉ∗j1,j2(r, ℓ) =
1

T

T∑

k=1

d∑

s1,s2=1

Aj1,s1,j2,s2(f̂
∗
k,r

)J∗
k,s1J

∗
k+r,s2

exp(iℓωk),

c̆∗j1,j2(r, ℓ) =
1

T

T∑

k=1

d∑

s1,s2=1

Aj1,s1,j2,s2(E
∗(f̂

∗
k,r

))J∗
k,s1J

∗
k+r,s2

exp(iℓωk),

ć∗j1,j2(r, ℓ) =
1

T

T∑

k=1

d∑

s1,s2=1

Aj1,s1,j2,s2(f̂k,r
)J∗

k,s1J
∗
k+r,s2

exp(iℓωk),

c̃∗j1,j2(r, ℓ) =
1

T

T∑

k=1

d∑

s1,s2=1

Aj1,s1,j2,s2(fk,r
)J∗

k,s1J
∗
k+r,s2

exp(iℓωk). (A.52)

We also require the following lemma which is analogous to Lemma A.2, but applied to the bootstrap

spectral density estimator f̂∗T (ω).

Lemma A.15 Suppose that {Xt} is an α-mixing second order stationary or locally stationary time series

(which satisfies Assumption 3.2(L2)) with α > 4 and the moment supt ‖Xt‖s < ∞ where s > 4α/(α− 2).

For h 6= 0 either the covariance of locally stationary covariance satisfies |κ(h)|1 ≤ C|h|−(2+ε) or |κ(u;h)|1 ≤
C|h|−(2+ε) for some ǫ > 0. Let J∗

T (ωk) be defined as in Step 5 of the bootstrap scheme.

(a) If Tp2 → ∞ and p → 0 as T → ∞, then we have

(i) sup1≤k≤T |E
[
E∗(f̂∗T (ωk)

)]
− f(ωk)| = O(p + b + (bT )−1 + (p2T )−1) and var(f̂T (ωk)) = O( 1

pT +

1
T 3/2p5/2

+ 1
T 2p4

).

(ii) sup1≤k≤T |E∗(f̂∗T (ωk)
)
− f(ωk)|1 P→ 0,

(iii) Further, if f(ω) is nonsingular on [0, 2π], then for all 1 ≤ s1, s2 ≤ d, we have

sup1≤k≤T |Ls1,s2

(
E∗(f̂∗

T
(ωk))

)
− Ls1,s2(f(ωk))| P→ 0.

(b) In addition, suppose for the mixing rate α > 16 there exists an s > 16α/(α−2) such that supt ‖Xt‖s <
∞. Then, we have

∥∥E∗ [̂f∗(ωk)]− f(ωk)‖8 = O

(
1

pT 1/2
+

1

p2T
+ p+ b+

1

bT

)
. (A.53)

PROOF. To reduce notation, we prove the result in the univariate case. By using Theorem 4.1 and equation

(4.14), we have

E∗|J∗
T (ωj)|2 = ĥ2(ωj) +R1(ωj),
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where ĥ2(ωj) is defined in (4.9) and ‖ sup1≤j≤T |R1(ωj)|‖2 = O( 1
Tp2

). From E∗(f̂∗
T (ωk)) = E∗( 1

T

∑
jKb(ωk−

ωj)|J∗
T (ωj)|2

)
and the result above, we get

E∗(f̂∗
T (ωk)

)
= f̃T (ωk) +R2(ωk), (A.54)

where f̃T (ω) = 1
T

∑
|r|<T−1 λb(r)(1 − p)|r|exp(−irω)κ̂2(r) and κ̂2(r) is defined in (4.2). It can be shown

that ‖ supωk
R2(ωk)‖2 = O( 1

Tp2
). Since R2(ωk) is negligible, for the rest of the proof, we only need to

analyze the leading term f̃T (ω) (note that unlike E∗(f̂∗
T (ωs)

)
, f̂T (ω) is defined over [0, 2π] and not just for

the fundamental frequencies).

Using the same methods as those used in the proof of Lemma A.2(a), it is straightforward to show that

E[f̃T (ω)] = f(ω) +R3(ω), (A.55)

where supω |R3(ω)| = O( 1
bT + b+ p). This proves sup1≤k≤T |E

[
E∗(f̂∗

T (ωk)
)]

− f(ωk)| = O(p+ b+ (bT )−1 +

(p2T )−1). Using (4.6), it is straightforward to show that var(f̃T (ω)) = O(1/(pT )), therefore by (A.54) and

the above we have shown (ai).

By using identical methods to those used to prove Lemma A.2(ci) we can show supω |f̃T (ω)−E(f̃T (ω))| P→
0. Thus from uniform convergence of f̃T (ω) and part (ai) of this lemma we immediately obtain uniform

convergence of E∗[f̂∗
T (ωk)] (sup1≤k≤T |E∗[f̂∗

T (ωk)] − f(ωk)|). Similarly to show (aiii) we apply identical

methods to those used in the proof of Lemma A.2(cii) to f̃T (ω).

Finally, to show (b), we use that

∥∥E∗[f̂∗
T (ωk)]− f(ωk)

∥∥
8

≤
∥∥f̃T (ωk)− E[f̃T (ωk)]

∥∥
8
+ |E[f̃T (ωk)]− f(ωk)|+ ‖R2(ωk)‖8.

By using (4.6) and the Minkowski inequality, we can show
∥∥f̃T (ωk)− E[f̃T (ωk)]

∥∥
8
= O((Tp2)−1/2), where

this and the bounds above give (b). �

Lemma A.16 Suppose that Assumption 5.2 and the conditions in Lemma A.15 hold. Let ĉ∗j1,j2(r, ℓ) and

c̆∗j1,j2(r, ℓ) be defined as in (A.52). Then we have

T

(
E∗[ĉ∗j1,j2(r1, ℓ1)

]
E∗[ĉ∗j3,j4(r2, ℓ2)

]
− E∗[c̆∗j1,j2(r1, ℓ1)

]
E∗[c̆∗j3,j4(r2, ℓ2)

])
= Op (a(T, b, p))

(A.56)

T

(
E∗[ĉ∗j1,j2(r1, ℓ1)ĉ∗j3,j4(r2, ℓ2)

]
− E∗[c̆∗j1,j2(r1, ℓ1)c̆∗j3,j4(r2, ℓ2)

])
= Op (a(T, b, p))

(A.57)

where a(T, b, p) = 1
bTp2

+ 1
Tp4

+ 1
b2T

+ b+ 1
Tp2

+ 1
pT 1/2 .

PROOF. To simplify notation, we prove the result for the case d = 1, ℓ1 = ℓ2 = 0 and r1 = −r2 = r (the

proof is identical for d > 1, ℓ1 = ℓ2 6= 0 and r1 6= −r2). We first prove (A.56). Recalling that the only
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difference between ĉ∗(r, 0) and c̆∗(r, 0), is that A(f̂
∗
k,r

) is replaced with A(E∗(f̂
∗
k,r

)), the difference between

their expectations squared (with respect to the stationary bootstrap measure) is

T

([
E∗(ĉ∗(r, 0))

]2 −
[
E∗(c̆∗(r, 0))

]2
)

=
1

T

∑

k1,k2

(
E∗[A(f̂

∗
k1,r

)J∗
k1J

∗
k1+r

]
E∗[A(f̂

∗
k2,r

)J∗
k2J

∗
k2+r

]

−A(E∗(f̂
∗
k1,r

))A(E∗(f̂
∗
k2,r

))E∗(J∗
k1J

∗
k1+r)E

∗(J∗
k2J

∗
k2+r)

)

=
1

T

∑

k1,k2

(
E∗[a∗k1I∗k1,r

]
E∗[a∗k2I∗k2,r

]
− âk1 âk2E

∗[I∗k1,r]E
∗[I∗k2,r]

)
, (A.58)

where

a∗k = A(f̂
∗
k,r

), âk = A(E∗(f̂
∗
k,r

)) and f̃
∗
k,r

= f̂
∗
k,r

− E∗(f̂
∗
k,r

) (A.59)

and Ik,r is defined in Lemma A.14. To bound the above, we use the Taylor expansion

A(f̂
∗
k,r

) = A(E∗(f̂
∗
k,r

)) + (f̂
∗
k,r

− E∗(f̂
∗
k,r

))′∇A(E∗(f̂
∗
k,r

)) +
1

2
(f̂

∗
k,r

− E∗(f̂
∗
k,r

))′∇2A(f̄
∗
k,r

)(f̂
∗
k,r

− E∗(f̂
∗
k,r

)),

where ∇ and ∇2 denotes the first and second partial derivative with respect to f
k,r

and f̄
∗
k,r

lies between

f̂
∗
k,r

and E∗(f̂
∗
k,r

). To reduce cumbersome notation (and with a slight loss of accuracy, since it will not

effect the calculation) we shall ignore that f̂
k,r

is a vector and use (A.59) to rewrite the above Taylor

expansion as

a∗k = âk + f̃∗
k

∂âk
∂f

+ f̃∗2
k

1

2

∂2ā∗k
∂f2

, (A.60)

where ā∗k = ∇2A(f̄
∗
k,r

). Substituting (A.60) into (A.58), we obtain the decomposition

T
(∣∣E∗(ĉ∗(r, 0))

∣∣2 −
∣∣E∗(c̆∗(r, 0))

∣∣2) =
8∑

i=1

Ii,

where the terms {Ii}8i=1 are

I1 =
1

T

∑

k1,k2

âk1
∂âk2
∂f

E∗(I∗k1,r)E
∗(Ĩ∗k2,rf̃∗

k2

)
(A.61)

I2 =
1

T

∑

k1,k2

∂âk1
∂f

∂âk2
∂f

E∗[Ĩ∗k1,rf̃∗
k1

]
E∗[Ĩ∗k2,rf̃∗

k2

]

I3 =
1

2T

∑

k1,k2

âk2E
∗
[
I∗k1,rf̃

∗2
k1

∂2ā∗k1
∂f2

]
E∗(I∗k2,r)

I7 =
1

T

∑

k1,k2

∂âk2
∂f

E∗
[
I∗k1,rf̃

∗2
k1

∂2ā∗k1
∂f2

]
E∗[Ĩ∗k2,rf̃∗

k2

]

I8 =
1

4T

∑

k1,k2

E∗
[
I∗k1,rf̃

∗2
k1

∂2ā∗k1
∂f2

]
E∗
[
I∗k2,rf̃

∗2
k2

∂2ā∗k2
∂f2

]
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(with Ĩ∗k,r = I∗k,r − E∗(I∗k,r)) and I4, I5, I6 are defined similarly. We first bound I1. Writing the bootstrap

spectral density function estimator as f̃∗
k = 1

T

∑
jKb(ωk − ωj)Ĩ

∗
j,0 gives

I1 =
1

T

∑

k1,k2,j

Kb(ωk2 − ωj)âk1
∂âk2
∂f

E∗(I∗k1,r)cov
∗(Ĩ∗k2,r, Ĩ

∗
j,0).

By using the uniform convergence result in Lemma A.15(a), we have supk |âk − ak| P→ 0. Therefore,

|I1| = Op(1)Î1, where

Î1 =
1

T

∑

k1,k2,j

|Kb(ωk2 − ωj)| ·
∣∣ak1

∂ak2
∂f

∣∣ ·
∣∣E∗(I∗k1,r)cov

∗(Ĩ∗k2,r, Ĩ
∗
j,0)
∣∣

with ak = A(f
k,r

) and ∂ak
∂f = ∇fA(f

k,r
). Using Cauchy-Schwarz inequality gives

‖Î1‖1 ≤
1

T

∑

k1,k2,j

|Kb(ωk2 − ωj)| ·
∣∣ak1

∂ak2
∂f

∣∣ ·
∥∥E∗(I∗k1,r)‖2︸ ︷︷ ︸

(A.40)

‖cov∗(Ĩ∗k2,r, Ĩ∗j,0)
∥∥
2︸ ︷︷ ︸

(A.42)

,

thus we have Î1 = Op(
1

p4T
+ 1

p6T 2 ) = O( 1
Tp4

) and I1 = Op(
1

p4T
+ 1

p6T 2 ) = O( 1
Tp4

). We now bound I2. By

using an identical method to that given above (and the same notation), we have |I2| = Op(1)Î2, where

Î2 =
1

T

∑

k1,k2,j1,j2

|Kb(ωk1 − ωj1)| · |Kb(ωk2 − ωj2)| ·
∣∣∂ak1
∂f

∂ak2
∂f

∣∣ ·
∣∣cov∗(Ĩ∗k1,r, Ĩ∗j1,0)cov∗(Ĩ∗k2,r, Ĩ∗j2,0)

∣∣

⇒ ‖Î2‖ ≤ 1

T

∑

k1,k2,j1,j2

|Kb(ωk1 − ωj1)| · |Kb(ωk2 − ωj2)| ·
∣∣∂ak1
∂f

∂ak2
∂f

∣∣ ·
∥∥cov∗(Ĩ∗k1,r, Ĩ∗j1,0)

∥∥
2︸ ︷︷ ︸

(A.42)

·
∥∥cov∗(Ĩ∗k2,r, Ĩ∗j2,0)

∥∥
2︸ ︷︷ ︸

(A.42)

which gives Î2 = Op(
1

T 2p4
) and thus I2 = Op(

1
T 2p4

).

To bound I3, we use Hölder’s inequality to give

|I3| ≤
1

2T

∑

k1,k2

|âk2 |
(
E∗|f̃∗

k1 |4
)1/2 (

E∗∣∣I∗k1,r
∣∣6
)1/6

(
E∗∣∣∂

2ā∗k1
∂f2

|3
)1/3

|E∗(I∗k2,r)|.

Under Assumption 5.2(B1), we have that
(
E∗∣∣∂2ā∗k1

∂f2 |3
)1/3

is uniformly bounded in probability. Therefore,

using this and Lemma A.15(a), we have |I3| = Op(1)Î3, where

Î3 =
1

T

∑

k1,k2

|ak2 |
(
E∗|f̃∗

k1 |4
)1/2 (

E∗∣∣I∗k1,r|6
)1/6 |E∗(I∗k2,r)|.

Taking expectations of the above and using Hölder’s inequality gives

E(Î3) ≤ 1

T

∑

k1,k2

|ak2 | ·
∥∥∥∥
(
E∗|f̃∗

k1 |4
)1/2∥∥∥∥

2

·
∥∥∥
(
E∗∣∣I∗k1,r|6

)1/6∥∥∥
6
· ‖E∗(I∗k2,r)‖3

=
1

T

∑

k1,k2

|ak2 | · ‖E∗|f̃∗
k1 |4‖

1/2
1︸ ︷︷ ︸

(A.39)

‖E∗∣∣I∗k1,r|6‖
1/6
1︸ ︷︷ ︸

(A.40)

‖E∗(I∗k2,r)‖3︸ ︷︷ ︸
(A.41)

.
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Thus by using Lemma A.14, we obtain |I3| = Op(
1

bTp2
). Using a similar method, we obtain |I7| = Op(1)Î7,

where

Î7 =
1

T

∑

k1,k2

∣∣∂ak2
∂f

∣∣(E∗|I∗k1,r|6
)1/6

(
E∗|f̃∗

k1 |4
)1/2∣∣E∗[Ĩ∗k2,rf̃∗

k2

]∣∣ and

‖Î7‖1 ≤ 1

T

∑

k1,k2

‖E∗∣∣I∗k1,r
∣∣6‖1/61︸ ︷︷ ︸

(A.40)

‖E∗|f̃∗
k1 |4‖

1/2
1︸ ︷︷ ︸

(A.39)

∥∥cov∗[Ĩ∗k2,r, f̃∗
k2 ]
∥∥
3︸ ︷︷ ︸

(A.45)

= O

(
1

Tp7T 5/2
+

1

b2T 5/2p3

)
.

Finally we use identical arguments as above to show that |I8| = Op(1)Î8, where

Î8 ≤ 1

4T

∑

k1,k2

(
E∗|f̃∗

k1 |4
)1/2 (

E∗∣∣I∗k1,r
∣∣6
)1/6 (

E∗|f̃∗
k2 |4
)1/2 (

E∗∣∣I∗k2,r
∣∣6
)1/6

.

Thus, using similar arguments as those used to bound ‖Î3‖1, we have |I8| = Op((b
2T )−1). Similar arguments

can be used to obtain the same bounds for I4, . . . , I6, which altogether gives (A.56).

To bound (A.57), we write I∗k,r as I∗k,r = Ĩ∗k,r + E∗(I∗k,r) and substitute this in the difference to give

T
(
E∗[ĉ∗(r, 0)]2 − E∗[c̆∗(r, 0)]2

)
=

1

T

∑

k1,k2

(
E∗[a∗k1a∗k2I∗k1,rI∗k2,r

]
− âk1 âk2E

∗[I∗k1,rI
∗
k2,r]

)

=
1

T

∑

k1,k2

E∗
([

a∗k1a
∗
k2 − âk1 âk2

][
Ĩ∗k1,rE

∗(I∗k2,r) + E∗(I∗k1,r)Ĩ
∗
k2,r + E∗(I∗k1,r)E

∗(I∗k2,r)
])

+
1

T

∑

k1,k2

E∗
([

a∗k1a
∗
k2 − âk1 âk2

][
Ĩ∗k1,r Ĩ

∗
k2,r

])
.

We now substitute the Taylor expansion of a∗k about âk in (A.60) into the above to give

T
(
E∗[ĉ∗(r, 0)]2 − E∗[c̆∗(r, 0)]2

)
=

8∑

i=0

IIi, (A.62)

where

II0 =
1

T

∑

k1,k2

E∗
([

Ĩ∗k1,rE(I
∗
k2,r) + E∗(I∗k1,r)Ĩ

∗
k2,r + E∗(I∗k1,r)E

∗(I∗k2,r)
]
×

[
âk1 + f̃∗

k1

∂âk1
∂f

+ f̃∗2
k1

1

2

∂2ā∗k1
∂f2

][
f̃∗
k2

∂âk2
∂f

+ f̃∗2
k2

1

2

∂2ā∗k2
∂f2

])
,
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II1 =
1

T

∑

k1,k2

âk1
∂âk2
∂f

E∗(Ĩ∗k1,r Ĩ∗k2,rf̃∗
k2

)
,

II2 =
1

T

∑

k1,k2

∂âk1
∂f

∂âk2
∂f

E∗[Ĩ∗k1,rf̃∗
k1 Ĩ

∗
k2,rf̃

∗
k2

]
,

II3 =
1

2T

∑

k1,k2

âk2E
∗
[
Ĩ∗k1,rf̃

∗2
k1

∂2ā∗k1
∂f2

Ĩ∗k2,r

]
,

II7 =
1

T

∑

k1,k2

∂âk2
∂f

E∗
[
Ĩ∗k1,rf̃

∗2
k1

∂2ā∗k1
∂f2

Ĩ∗k2,rf̃
∗
k2

]
,

II8 =
1

4T

∑

k1,k2

E∗
[
Ĩ∗k1,rf̃

∗2
k1

∂2ā∗k1
∂f2

Ĩ∗k2,rf̃
∗2
k2

∂2ā∗k2
∂f2

]

and II4, II5, II6 are defined similarly. By using similar methods to those used to bound (A.56), Assumption

5.2(B1), (A.39), (A.40) and (A.41), we can show that |II0| = Op((Tp
2b)−1). To bound |II1|, . . . , |III8| we

use the same methods as those used to bound (A.56) and the bound in (A.39), (A.40), (A.43), (A.44),

(A.45) and (A.46) to show (A.57), we omit the details as they are identical to the proof of (A.56). �

Lemma A.17

Suppose that Assumption 5.2(B2) and the conditions in Lemma A.15 hold. Let c̆∗j1,j2(r, ℓ), ć
∗
j1,j2

(r, ℓ) and

c̃∗j1,j2(r, ℓ) be defined as in (A.52). Then, we have

T

(
E∗[c̆∗j1,j2(r1, ℓ1)

]
E∗[c̆∗j3,j4(r2, ℓ2)

]
− E∗[c̃∗j1,j2(r1, ℓ1)

]
E∗[c̃∗j3,j4(r2, ℓ2)

])
= Op (a(T, b, p)) , (A.63)

T

(
E∗[c̆∗j1,j2(r1, ℓ1)c̆∗j3,j4(r2, ℓ2)

]
− E∗[c̃∗j1,j2(r1, ℓ1)c̃∗j3,j4(r2, ℓ2)

])
= Op (a(T, b, p)) , (A.64)

T

(
E∗[ć∗j1,j2(r1, ℓ1)

]
E∗[ć∗j3,j4(r2, ℓ2)

]
− E∗[c̃∗j1,j2(r1, ℓ1)

]
E∗[c̃∗j3,j4(r2, ℓ2)

])
= Op (a(T, b, p)) , (A.65)

T

(
E∗[ć∗j1,j2(r1, ℓ1)ć∗j3,j4(r2, ℓ2)

]
− E∗[c̃∗j1,j2(r1, ℓ1)c̃∗j3,j4(r2, ℓ2)

])
= Op (a(T, b, p)) , (A.66)

where a(T, b, p) = 1
bTp2

+ 1
Tp4

+ 1
b2T

+ b+ 1
Tp2

+ 1
pT 1/2 .

PROOF. Without loss of generality, we consider the case d = 1, ℓ1 = ℓ2 = 0 and r1 = −r2 = r and use the

same notation introduced in the proof of Lemma A.16. To bound (A.63), we use the Taylor expansion

âk1 âk2 − ak1ak2

= f̃k2ak1
∂âk2
∂f

+ f̃k1ak2
∂ak1
∂f

+
1

2
f̃2
k2ak1

∂2āk2
∂f2

+
1

2
f̃2
k1ak2

∂2āk1
∂f2

+ f̃k1 f̃k2
∂āk2
∂f

∂āk1
∂f

, (A.67)

where ak = A(f
k,r

), āk = A(f̄
k,r

) and f̄
k,r

lies between f̂
k,r

and f
k,r

. Using the above we have

T

((
E∗[c̆∗(r, 0)

])2 −
(
E∗[c̃∗(r, 0)

])2
)

=
3∑

i=1

IIIi, (A.68)
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where

III1 =
2

T

∑

k1,k2

ak1
∂ak2
∂f

f̃k2E
∗(I∗k1,r)E

∗(I∗k2,r
)
,

III2 =
1

T

∑

k1,k2

ak1
∂ā2k2
∂f2

f̃2
k2E

∗(I∗k1,r)E
∗(I∗k2,r),

III3 =
1

T

∑

k1,k2

f̃k1 f̃k2
∂āk1
∂f

∂āk2
∂f

E∗(I∗k1,r)E
∗(I∗k2,r).

By using Lemma A.15, (A.40) and (A.53) and the same procedure used to bound (A.56), we obtain (A.63).

To bound (A.64), we use a similar decomposition to (A.68) to give

T

(
E∗[c̆∗(r, 0)]2 − E∗[c̃∗(r, 0)]2

)
=

3∑

i=0

IVi,

where

IV0 =
1

T

∑

k1,k2

E∗[Ĩ∗k1,rE∗(I∗k2,r) + E∗(I∗k1,r)Ĩ
∗
k2,r + E∗(I∗k1,r)E

∗(I∗k2,r)
][
f̃k2 âk1

∂âk2
∂f

+ f̃k1 âk2
∂âk1
∂f

+

1

2
f̃2
k2 âk1

∂2āk2
∂f2

+
1

2
f̃k2 âk2

∂2āk1
∂f2

+ f̃k1 f̃k2
∂āk2
∂f

∂āk1
∂f

]
,

IV1 =
2

T

∑

k1,k2

ak1
∂ak2
∂f

f̃k2E
∗(Ĩ∗k1,r Ĩ

∗
k2,r

)
,

IV2 =
1

T

∑

k1,k2

ak1
∂ā2k2
∂f2

f̃2
k2E

∗(Ĩ∗k1,r Ĩ
∗
k2,r),

IV3 =
1

T

∑

k1,k2

f̃k1 f̃k2
∂āk1
∂f

∂āk2
∂f

E∗(Ĩ∗k1,r Ĩ
∗
k2,r).

Again using the same methods to bound (A.56), Lemma A.15 (A.41), (A.44) and (A.53) we obtain IVi =

Op(b+
1

Tp2
+ 1

pT 1/2 + 1
Tp4

), and thus (A.64).

To bound (A.65) and (A.66) we use identical methods to those given above, hence we omit the details.

�

PROOF of Lemma 5.2 We will prove (ii), the proof of (i) is similar. We observe that

T

(
cov∗

[
ĉ∗j1,j2(r, ℓ1), ĉ

∗
j3,j4(r, ℓ2)

]
− cov∗

[
c̃∗j1,j2(r, ℓ1), c̃

∗
j3,j4(r, ℓ2)

])

≤ T

(
E∗[ĉ∗j1,j2(r, ℓ1)ĉ∗j3,j4(r, ℓ2)

]
− E∗[c̃∗j1,j2(r, ℓ1)c̃∗j3,j4(r, ℓ2)

])

+T

(
E∗[ĉ∗j1,j2(r, ℓ1)

]
E∗[ĉ∗j3,j4(r, ℓ2)

]
− E∗[c̃∗j1,j2(r, ℓ1)

]
E∗[c̃∗j3,j4(r, ℓ2)

])
.
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Substituting (A.56)-(A.64) into the above gives the bound Op(a(T, b, p)). By using a similar method, we

can show

T

(
cov∗

[
ĉ∗j1,j2(r, ℓ1), ĉ

∗
j3,j4

(r, ℓ2)
]
− cov∗

[
c̃∗j1,j2(r, ℓ1), c̃

∗
j3,j4

(r, ℓ2)
])

= Op(a(T, b, p)).

Together, these two results give the bounds in Lemma 5.2. �

PROOF of Theorem 5.2 The proof of (i) (in the case of fourth order stationarity) follows by using

that W∗
n is a consistent estimator of Wn (see Theorem 5.1 and Lemma 5.2) therefore

|T ∗
m,n,d − Tm,n,d| P→ 0.

Since Tm,n,d is asymptotically a chi-squared (see Theorem 3.4), it immediately follows from the above that

T ∗
m,n,d is asymptotically a chi-squared too.

To prove (ii), we need to consider the case that {Xt} is locally stationary with An(r, ℓ) 6= 0 for some

0 ≤ r ≤ m. From Theorem 3.6, we know that
√
T (ℜK̂n(r) − ℜAn(r) − ℜBn(r)) and

√
T (ℑK̂n(r) −

ℑAn(r) − ℑBn(r)) have a finite variance and are asymptotically normal with mean asymptotically equal

to zero. Therefore, since W∗
n = O(p−1), we have (W∗

n)
−1/2 = O(p1/2). This altogether gives

|
√
T (W∗

n)
−1/2ℜK̂n(r)|2 + |

√
T (W∗

n)
−1/2ℑK̂n(r)|2 = Op(Tp),

and thus the required result. �
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