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Abstract

In this paper we consider tests for nonlinear time series, which are motivated by the

notion of serial dependence. The proposed tests are based on comparisons with the quantile

spectral density, which can be considered as a quantile version of the usual spectral density

function. The quantile spectral density ‘measures’ the sequential dependence structure of

a time series, and is well defined under relatively weak mixing conditions. We propose an

estimator for the quantile spectral density and derive its asympototic sampling properties.

We use the quantile spectral density to construct a goodness of fit test for time series and

explain how this test can also be used for comparing the sequential dependence structure

of two time series. The asymptotic sampling properties of the test statistic is derived under

the null and an alternative. Furthermore, a bootstrap procedure it proposed to obtain a

finite sample approximation. The method is illustrated with simulations and some real data

examples.

Key words and phrases: Bootstrap, goodness of fit tests, mixing, nonlinear time

series, quantile spectral density.

1 Introduction

The analysis of most time series is based on a set of assumptions, which in practice need to be

tested. This is usually done through a goodness of fit test. The majority of goodness of fit tests

for time series are based on fitting the conjectured model to the data, estimating the residuals

of the model and testing for lack of correlation, normally with a Ljung-Box type test (see for

example, Anderson (1993) and Hong (1996)). Chen and Deo (2004) propose a test based on the
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spectral density, and Hallin and Puri (1992) propose robust tests based on ranks. If one restricts

the class of models to just linear time series models, then these tests can correctly identify the

model. However, problems can arise, if one widens the class of models and allow for nonlinear

time series. For example, if the time series were to satisfy an ARCH process, then it will be

uncorrelated, but it is not independent. Furthermore, the squares will satisfy an autoregressive

representation, with errors which are martingale differences. Therefore, correlation based test

for nonlinear time series models may not identify the model.

Neumann and Paparoditis (2008) propose a goodness of fit test for Markov time series models

based on the one step ahead transition distribution. But this test is specifically for Markov

models. An alternative approach is to generalise the notion of correlation to measuring the

general dependence between pairs of random variables in a time series. This notion is usually

called serial dependence, and can be traced dates back to Hoeffding (1948). Skaug and Tjøstheim

(1993) and Hong (2000) use this definition to test for serial independence of a time series. Hong

(1998) takes these notions further, and generalises the spectral density to sequential dependence.

He does this by defining the generalised spectral density, which is the Fourier transform of the

characteristic function of pair-wise dependent data. He uses this device in Hong (1998) and Hong

and Lee (2003) to test for goodness of fit of a time series model, mainly through the analysis of

the estimated residuals. However, sometimes the residuals cannot be or are not easy to estimate.

For example, it is possible to estimate the residuals of an ARCH (Xt = Ztσt), possible but

difficult with a GARCH and usually impossible for many models of the type Xt = g(Xt−1, εt).

In this paper, we use the notion of serial dependence to test for goodness of fit, but without

estimating the residuals. In Section 2.1 we motivate our test by considering the Microsoft daily

log return data and compare it with the GARCH(1, 1) model (one of the standard models for such

data sets). We show that though the GARCH model seems to model well some of the stylised

facts of this data, ie. the uncorrelatedness of the data and positive correlation in the absolute

values, if one made a deeper analysis and compared the correlation of other transformations such

as cov(I(Xt ≤ x), I(Xt+r ≤ y)) (where I denotes the indictator function), there is large difference

between the data and GARCH model. This motivates us to define the quantile autocovariance

function and the quantile spectral density. The quantile spectral density can be considered as a

measure of serial dependence of a time series. In Sections 2.2 and 2.3 we propose a method for

estimating the quantile spectral density, and use the quantile spectral density as the basis of a

test which compares the quantile spectral density estimator with the spectral density estimator

under the null hypothesis. The asymptotic sampling properties of the quantile spectral density

estimator are derived in Section 3.1. Recently there have been several articles defining and

estimating the spectral density of sequential dependence. In particular, Li (2008), Hagemann

(2011) and Dette, Hallin, Kley, and Volgushav (2011) define spectral density functions similar to

the quantile spectral density, however these authors, estimate the periodogram and the quantile

spectral density using L1 methods. In contrast, our approach is motivated by the definition of
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the periodogram, this leads to an estimator of the quantile spectral density with an analytic

form, thus can easily be used in both goodness of fit and other tests. However, it is interesting,

and rather surprising, to note that the L1 estimator proposed in Dette et al. (2011) and our

estimator of the quantile spectral density share similar asymptotic properties. In Section 3.2 we

derive the asymptotic sampling properties of the test statistic. An advantage of our approach is

that it can easily be extended to test other quantities, for example with a small adaption it can

be used to test for equality of serial dependence of two time series, this is considered in Section

4. In Section 5 we propose a bootstrap method for estimating the finite sampling distribution of

the test statistic under the null. The proofs can be found in the Appendix and technical report.

2 The quantile spectral density and the test statistic

2.1 Motivation

To motivate our approach, we analyze the Microsoft daily log returns (MSFT) between March

1986 - June 2003, which we denote as {Xt}. One argument for fitting GARCH types models to

financial data is their ability to model the so called ‘stylised facts’ seen in such data sets. We

now demonstrate why this is the case for the MSFT data (see Zivot (2009)). Using the maximim

likelihood, the GARCH model which best fits the log differences of the MSFT is Xt = µ + εt,

where εt = σtZt, σ
2
t = a0 +a1ε

2
t−1 + bσ2

t−1 ({Zt} are independent, identically distributed standard

normal random variables), with µ = 1.56 × 10−3, a0 = 1.03 × 10−5, a1 = 0.06 and b = 0.925.

In Figure 1 we give the sample autocorrelation plots of {Xt} and {|Xt|}, together with the

autocorrelation plots of the corresponding GARCH(1, 1) model. Comparing the two plots, it

appears that the GARCH(1, 1) captures the ‘stylised facts’ in the Microsoft data, such as the

near zero autocorrelation of the observations and the persistant positive autocorrelations of the

absolute log returns. However, if we want to check the suitability of the GARCH model for

modelling the general pair-wise dependence structure, that is the joint distribution of (Xs, Xt)

for all s and t (often called sequential dependence), then we need to look beyond the covariance

of {Xt} and {|Xt|}. To make a more general comparison we transform the data into indicator

variables {I(Xt ≤ x)} and check the correlation structure of the indicator variables over various x.

For example, define the multivariate vector time series Y t = (I(Xt ≤ q0.1), I(Xt < q0.5), I(Xt ≤
q0.9)), where qα denotes the estimated α-percentile of Xt. Plots of the cross-covariances of Y t and

the corresponding GARCH model (with Gaussian innovations) are given in Figure 2. In Figure

2, there are clear differences in the dependence structure of the data and the GARCH model.

The 10th, 50th and 90th percentiles correspond to large negative, zero and large positive values

of Xt (big negative change, no change and large positive changes in the returns). In order to do

the analysis, we will use the following observations. By using that cov(I(X0 ≤ x), I(Xr ≤ y)) =
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P (X0 ≤ x,Xr ≤ y)− P (X0 ≤ x)P (Xr ≤ y), for all x, y ∈ R we have

cov(I(X0 ≤ x), I(Xr ≤ y)) = cov(I(X0 ≥ x), I(Xr ≥ y)) = −cov(I(X0 ≤ x), I(Xr > y)).

From Figure 2 we observe:

• The ACF of I(Xt ≤ q0.5) of the GARCH is zero. This is due to the symmetry of the

GARCH process: given the event X0 ≤ 0, we have equal chance Xr > 0 and Xr < 0 (ie.

cov(I(X0 ≤ 0), I(Xr ≤ 0)) = −cov(I(X0 ≤ 0), I(Xr > 0))). This means that cov(I(X0 ≤
0), I(Xr ≤ 0)) = 0. On the other hand, for the MSFT data we see that there is a clear

positive correlation in the sample autocorrelation of {I(Xt < 0)}. One interpretation for

this behaviour, is that a decrease in consecutive values, is likely to lead to future decreases.

• The cross correlation cov(I(X0 < q0.1), I(Xr < q0.9)), where {Xt} comes from a GARCH is

symmetric, ie. cov(I(X0 < q0.1), I(Xr < q0.9)) = cov(I(X0 < q0.1), I(X−r < q0.9)). On the

other hand, the corresponding sample cross-correlations of the MSFT is not symmetric.

Thus the GARCH process is time reversible, whereas it appears that the MSFT data may

not be.

The cross and autocovariances in Figure 2 are a graphical representation of the serial dependence

structure of the time series. These plots suggest that for the MSFT data the GARCH model

may not be the most appropriate model, especially if validity is based on modelling the serial

dependence structure. In the sections below we will test this.

2.2 The quantile spectral density function

We now formalise the discussion above. Let us suppose that {Xt} is a strictly stationary time

series. It is obvious that the cross covariance of the indicator functions {I(Xt ≤ x), I(Xt ≤ y)}
is

Cr(x, y) := cov(I(X0 ≤ x), I(Xr ≤ y)) = P (X0 ≤ x,Xr ≤ y)− P (X0 ≤ x)P (Xr ≤ y).

Skaug and Tjøstheim (1993) and Hong (2000) use a similar quantity to test for serial inde-

pendence of a time series. We call Cr(·) the quantile covariance. If {Xt} is an α-mixing time

series with mixing rate s > 1 (s is defined in Assumption 3.1, below) it can be shown that

supx,y
∑

r |cov(I(X0 ≤ x), I(Xr ≤ y))| <∞, thus for all x, y ∈ R, it’s Fourier transform

G(x, y;ω) =
1

2π

∑
r

Cr(x, y;ω) exp(irω),
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is well defined. Since G(x, y;ω) can be considered as the cross-spectral density of {I(Xt <

x), I(Xt < y)}, we call G(·) the quantile spectral density.

2.2.1 Properties of the quantile spectral density

The quantile spectral density carries all the information about the serial dependence structure

of the time series. For example (i) if {Xt} is serially independent, then G does not depend on

ω and G(x, y;ω) = ρ(x, y) (ii) if for all r, the distribution function of (X0, Xr) is identical to

the distribution function of (X0, X−r), then G(·) will be real and (iii) for any given x and y,

G gives information about any periodicities that may exists at a given threshold. In addition,

G(·) captures the covariance structure of any transformation of {Xt} . For example, consider

the transformation {h(Xt)}, then it is straightforward to show that the spectral density of the

time series {h(Xt)} is

fh(ω) =
1

2π

∑
r

cov(h(X0), h(Xr)) exp(irω) =

∫ ∫
h(x)h(y)G(dx, dy;ω).

Of course, G(x, y;ω) only captures the serial dependency, and may miss higher order structure.

Only in the case that {Xt} is Markovian, does G(x, y;ω) capture the entire joint distribution of

{Xt}.

Remark 2.1 The quantile spectral density is closely related to the generalised spectral den-

sity introduced in Hong (1998). He defines the generalised spectral density as h(x, y;ω) =∑
r cov(exp(ixX0), exp(iyXr)) exp(irω). Essentially, this is the Fourier transform of the charac-

teristic function of pairwise distributions minus their marginals, therefore the relationship between

the quantile spectral density and the generalised spectral density is analogous to that between the

distribution function and the characteristic function of a random variable. Hong (1998, 2003)

uses the generalised spectral density as a tool in various tests goodness of fit tests, which are

mainly based on the residual. On the other hand, the goodness of fit test that we propose, is

based on checking for similarity between the estimated quantile spectral density and the proposed

spectral density.

Remark 2.2 (The Copula spectral density) A closely related quantity to the quantile spec-

tral density is the copula spectral density, which is defined as

GC(u1, u2;ω) =
1

2π

∑
r

Cr(u1, u2;ω) exp(irω), (1)

where Cr(u1, u2) = cov(I(F (X0) ≤ u1), I(F (Xr) ≤ u2)) = E(I(F (X0) ≤ u1)I(F (Xr) ≤ u2)) −
u1u2, and F (·) is marginal distribution function of {Xt}. Note that by definition u1, u2 ∈ [0, 1].
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Thus, unlike the quantile spectral density, the copula spectral density is invariant to any mono-

tonic transformation of {Xt}, for example mean and variance shifts. By considering the ranks

of {Xt}, the methods detailed in the section below can also be used to estimate GC. Dette et al.

(2011) have recently proposed L1-methods for estimating GC, and the asymptotic sampling prop-

erties have been derived for this estimator.

In Figures 3, 4 and 5 we plot the quantile spectral density for the autoregressive (Xt = 0.9Xt−1 +

Zt), ARCH (Xt = σtZt with σ2
t = 1/1.9+0.9X2

t−1) and squared ARCH, with independent, identi-

cally distributed (iid) Gaussian innovations Zt. The diagonals are of G(x, x;ω), the lower triangle

contains the real part of G(x, y;ω) and the upper triangle the imaginary part of G(x, y;ω). We

observe that the AR and ARCH quantile spectral densities are very different. The AR has a

similar shape for all x, whereas for the ARCH, it is flat (like the spectral density of uncorrelated

data) at about the 50% percentile, but moves away from flatness at the extremes. Furthermore,

recalling that the AR and ARCH squared have the same spectral density (if the moments of the

ARCH squared exists), there is a large difference between the quantile spectral density of the

AR and the ARCH squared.

2.2.2 Estimating the quantile spectral density

The quantile spectral density G(x, y;ω) can be considered as the cross spectral density of the

bivariate time series {I(Xt ≤ x), I(Yt ≤ y)}. Therefore, our estimator of G(x, y;ω) is motivated

by the classical cross spectral. To do this we define the class of lag windows we shall use.

Definition 2.1 The lag window takes the form

λ(u) =
( r∑
j=−r

ar exp(i2πru)−
r∑
j=1

bj|u|j
)
I[−1,1](u),

where I[−1,1](u) = 1 for u ∈ [−1, 1] and zero otherwise. This class of lag windows is quite large,

and includes the truncated window, the Bartlett window and general Tukey window (see, for

example, Priestley (1981) Section 6.2.3 for properties of these lag windows).

To obtain an estimator of G, we define the centralised, transformed variable Zt(x) = I(Xt ≤
x) − F̂T (x) (where F̂T (x) = 1

T

∑
t I(Xt ≤ x)). We estimate the quantile covariance Cr(x, y) =

P (X0 ≤ x,Xr ≤ y) − P (X0 ≤ x)P (Xr ≤ y) with Ĉr(x, y) = 1
T

∑
Zt(x)Zt+r(y), and use as an

estimator of G

ĜT (x, y;ωk) =
1

2π

∑
r

λM(r)Ĉr(x, y) exp(irωk) (2)

=
∑
s

KM(ωk − ωs)JT (x;ωs)JT (y;ωs),
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where λM(r) = λ(r/M), JT (x;ω) = 1√
2πT

∑T
t=1 Zt(x) exp(itω) andKM(ω) = 1

T

∑
r λM(r) exp(irω).

2.3 The test statistic

The proposed test is based on the fit of the estimated quantile spectral density to the conjec-

tured quantile spectral density. More precisely, we test H0 : G(x, y;ω) = G0(x, y;ω) against

HA : G(x, y;ω) 6= G0(x, y;ω), where G is the quantile spectral density of {Xt}, G0(x, y;ω) =
1
2π

∑
r C0,r(x, y) exp(irω) and C0,r(x, y) = F0,r(x, y) − F0(x)F0(y). Thus under the null the

marginal distribution is F0(·) and the joint distribution is F0,r(·). We use the quadratic distance

to measure the distance between the estimated quantile spectral density and the conjectured

spectral density, and define the test statistic as

QT =
1

T

T∑
k=1

∫
|ĜT (x, y;ωk)−

1

2π

∑
r

λM(r)C0,r(x, y) exp(irωk)|2dF0(x)dF0(y)

=
1

T

T∑
k=1

∫
|ĜT (x, y;ωk)−

T∑
s=1

KM(ωk − ωs)G0(ωs)|2dF0(x)dF0(y)

=
1

2π

∑
r

λM(r)2
∫ ∫ ∣∣Ĉr(x, y)− C0,r(x, y)

∣∣2dF0(x)dF0(y), (3)

where the above immediately follows from Parseval’s theorem. The choice of lag window will

have an influence on the type of alternatives the test can detect. For example, the truncated

window (λ(u) = I[−1,1](u)) gives equal weights to all the quantile covariances, whereas the Bartlett

window (λ(u) = (1−|u|)I[−1,1](u)) gives more weight to the lower order lags. Therefore the tests

ability to detect the alternative will depend on which lags of the quantile covariance deviates the

most from the null, and the weight the lag window places on these. We derive the asymptotic

distribution of QT in Section 3.2.

Remark 2.3 The test can be adapted to be invariant to monotonic transformations (such as

shifts of mean and variance). This can be done by replacing the quantile spectral density with

the copula spectral density GC(·) defined in (1). In this case the null is H0 : GC(x, y;ω) =

GC,0(x, y;ω) = 1
2π

∑
r C0,r(u1, u2;ω) exp(irω) against HA : GC(x, y;ω) 6= GC,0(x, y;ω). The test

statistic in this case is

QT,C =
1

T

T∑
k=1

∫
|ĜT,C(u1, u2;ωk)−

1

2π

∑
r

λM(r)C0,r(u1, u2) exp(irωk)|2du1du2,

where we estimate ĜT,C(u1, u2;ωk) in the same way as we have estimated ĜT in (2) but replace

{Xt}t with {F̂T (Xt)}t. The distribution of QT,C is beyond the scope of the current paper.
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3 Sampling properties

In this section we derive the sampling properties of the quantile spectral density ĜT and the test

statistic QT . We will use the α-mixing assumptions below.

Assumption 3.1 Let us suppose that {Xt} is a strictly stationary α-mixing time series such

that

sup
A∈σ(Xr,Xr+1,...)
B∈σ(X0,X−1,...)

|P (A ∩B)− P (A)P (B)| ≤ α(r),

where α(r) are the mixing coefficients which satisfy α(r) ≤ K|r|−s for some s > 2.

3.1 Sampling properties of ĜT

In the following lemma we derive the limiting distribution of ĜT , this will allow us to construct

point wise confidence intervals for G.

Theorem 3.1 Suppose Assumption 3.1 holds. Then

E(ĜT (x, y;ω)) = G(x, y;ω) +O(
1

M s−1 ),

and for 0 < ωk < π we have

VT (x, y;ωk)
−1/2

(
<ĜT (x, y;ωk)−<E(ĜT (x, y;ωk))

=ĜT (x, y;ωk)−=E(ĜT (x, y;ωk))

)
D→ N

(
0, I2

)
VT (x, x;ωk)

−1/2
(
ĜT (x, x;ωk)− E(ĜT (x, x;ωk))

)
D→ N (0, 1),

where M →∞ and M/T → 0 as T →∞,

VT (x, y;ωk) =
T∑
k=1

KM(ωk − ωs)2
(
A(x, y;ωs) C(x, y;ωs)

C(x, y;ωs) B(x, y;ωs)

)
= O(

M

T
),

and

A(x, y;ωs) =
1

2

(
G(x, x;ωs)G(y, y;ωs) + <G(x, y;ωs)

2 −=G(x, y;ωs)
2

)
B(x, y;ωs) =

1

2

(
G(x, x;ωs)G(y, y;ωs) + =G(x, y;ωs)

2 −<G(x, y;ωs)
2

)
C(x, y;ωs) = <G(x, y;ωs)=G(x, y;ωs).
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Thus, if M
T
>> 1

M2(s−1) , in other words the variance of ĜT dominates the bias, then we can use

the above result to construct confidence intervals for G.

3.2 Sampling properties of test statistic under the null hypothesis

We now derive the limiting distribution of the test statistic under the null hypothesis. Let

ET =
1

T

∫ ∫
WM(ω − θ)2G(x, x; θ)G(y, y; θ)dF0(x)dF0(y)dθdω

VT =
4

T 2

∫ ∫
∆M(θ1 − θ2)2

2∏
i=1

G(x1, x2; θi)G(y1, y2; θi)dθidF0(xi)dF0(yi), (4)

where

WM(θ) =
T

2π
KM(θ) =

1

2π

∑
r

λM(r) exp(irθ)

∆M(θ1 − θ2) =

∫
WM(ω − θ1)WM(ω − θ2)dω. (5)

Lemma 3.1 Suppose that Assumption 3.1 holds and G(·) is the quantile spectral density of {Xt}.
Then under the null hypthesis we have

E
(
QT
)

= ET +O(
1

T
) = O(

M

T
) and var

(
QT
)

= VT +O(
1

T
) = O(

M

T 2
).

Using the above we obtain the limiting distribution under the null.

Theorem 3.2 Suppose that Assumption 3.1 holds. Then under the null hypthesis we have

V
−1/2
T

(
QT − ET

) D→ N (0, 1)

as M →∞ and M/T → 0 as T →∞.

Using estimates of ĜT (·), ET and VT can both be estimated. Thus by using the above result, we

reject the null at the α% level if V
−1/2
T

(
QT −ET

)
> z1−α (where z1−α denotes the 1−α quantile

of a standard normal distribution).

3.3 Behaviour of the test statistic under the alternative hypothesis

We now examine the behaviour of the test statistic under the alternative HA : G(x, y;ω) =

G1(x, y;ω) = 1
2π

∑
r

(
Fr,1(x, y) − F1(x)F1(y)

)
exp(irω). To obtain the limiting distribution we
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decompose the test statistic QT as QT = QT,1 +QT,2 +QT,3, where

QT,1 =
1

T

T∑
k=1

∫ ∣∣ĜT (x, y;ωk)− E(ĜT (x, y;ωk))
∣∣2dF0(x)dF0(y)

QT,2 =
2

T
<

T∑
k=1

∫ [
ĜT (x, y;ωk)− E(ĜT (x, y;ωk))

][
E(ĜT (x, y;ωk))− G̃(x, y;ωk)

]
dF0(x)dF0(y)

QT,3 =
1

T

T∑
k=1

∫ ∣∣E(ĜT (x, y;ωk))− G̃(x, y;ωk)
∣∣2dF0(x)dF0(y),

and

G̃(x, y;ωk) =
1

2π

∑
r

λM(r)Cr,0(x, y) exp(irω) =
∑
s

KM(ωk − ωs)G0(x, y;ωs).

From the decomposition of QT , we observe that there are two stochastic terms QT,1 and QT,2,
and a deterministic term QT,3. By using Lemma 3.1, it can be shown that QT,1 = Op(

M1/2

T
+ M

T
).

On the other hand, we show in the proof of the theorem below that QT,2, is of lower order than

QT,1 and, thus, determines the distribution of QT . To understand the role that QT,3 plays in the

test, we replace G̃(x, y;ω) and E(ĜT (x, y;ω)) with G0 and G1 respectively and obtain

QT,3 =
1

T

T∑
k=1

∫ ∣∣G1(x, y;ωk)−G0(x, y;ωk)
∣∣2dF0(x)dF0(y) +O(

1

M s−1 ).

Thus QT,3 measures the deviation of the alternative from the null hypothesis, and shifts the

mean of the test statistic.

Theorem 3.3 Suppose that Assumption 3.1 holds, and for all r, supx,y |C0,r(x, y)| ≤ K|r|−(2+δ),
for some δ > 0. Under the alternative hypothesis we have

√
TQT,2

D→ N (0, VT,2), (6)

and

√
T
(
QT −QT,3

) D→ N (0, VT,2) (7)
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where M →∞ and
√
M/T → 0 as T →∞, and

VT,2 =
8

T
<
∫ ∫

ΛT (x1, y1;ω)ΛT (x2, y2;ω){
G1(x1, x2;ω)G1(y1, y2;ω) +G1(x1, y2;ω)G1(y1, x2;ω)

}
dω

2∏
i=1

dF0(xi)dF0(yi)

+
8

T
<
∫ ∫

ΛT (x1, y1;ω1)ΛT (x2, y2;ω2)G(x1,y1,x2,y2)(ω1,−ω1, ω2)
2∏
i=1

dF0(xi)dF0(yi)dωi,

where ΛT (x, y;ωs) = 1
2π

∑
r λM(r)2(T−|r|

T
)[C1,r(x, y)−C0,r(x, y)] exp(irωk) and G(x1,y1,x2,y2) is the

cross tri-spectral density of {(I(Xt ≤ x1), I(Xt ≤ y1), I(Xt ≤ x2), I(Xt ≤ y2))}t.

The theorem above tells us that the mean of the test statistic is shifted the further the alternative

is from the null. Interestingly, we observe from the definition of ΛT (·), that the variance also

depends on the difference between the null and alternative. However, for a fixed alternative, the

power of the test converges to 100% as the sample size grow.

4 Testing for equality of serial dependence of two time

series

The above test statistic can easily be adapted to test other hypothesis. In this section, we

consider one such example, and test for equality of serial dependence between two time series.

Let us suppose that {Ut} and {Vt} are two stationary time series, and we wish to test whether

they have the same sequential dependence structure. Using the same motivation as that for the

the goodness of fit test described above we define the test statistic

PT =
1

T

T∑
k=1

∫
|Ĝ1,T (x, y;ωk)− Ĝ2,T (x, y;ωk)|2dF (x)dF (y),

where Ĝ1,T and Ĝ2,T are the quantile spectral density estimators based on {Ut} and {Vt} respec-

tively and F is any distribution function. In order to obtain the limiting distribution under the

null hypothesis we have H0 : G1(x, y;ω) = G2(x, y;ω) and the alternative HA : G1(x, y;ω) 6=
G2(x, y;ω) we expand PT

PT := Q1,1,T +Q2,2,T −Q1,2,T −Q2,1,T + 2L1,T + 2L2,T +D,
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where

Qi,j,T =
1

T

T∑
k=1

∫ [
Ĝi,T (x, y;ωk)− E(Ĝi,T (x, y;ωk))

][
Ĝj,T (x, y;ωk)− E(Ĝj,T (x, y;ωk))

]
dF(x)dF(y),

Li,T = < 1

T

T∑
k=1

∫ [
Ĝi,T (x, y;ωk)− E(Ĝi,T (x, y;ωk))

][
E(Ĝ1,T (x, y;ω))− E(Ĝ2,T (x, y;ω))

]
dF(x)dF(y)

and

D =

∫ ∫ ∫
|E(Ĝ1,T (x, y;ω))− E(Ĝ2,T (x, y;ω))|2dF(x)dF(y)dω.

Therefore, using the above expansion under the null hypothesis we have

PT := Q1,1,T +Q2,2,T −Q1,2,T −Q2,1,T ,

where the moments are E
(
PT
)

= ET,3 + O( 1
T

) = O(M
T

) and var
(
PT
)

= VT,3 + O( 1
T

) = O(M
T 2 ),

with

ET,3 =
1

T

∫ ∫
WM(ω − θ)2

(
G1(x, x; θ)G1(y, y; θ) +G2(x, x; θ)G2(y, y; θ)

)
dF(x)dF(y)dθdω

VT,3 =
4

T 2

2∑
i=1

∫ ∫
∆M(θ1 − θ2)2

2∏
j=1

Gi(x1, y2; θi)Gj(y1, x2; θj)dθjdF (xj)dF (yj).

By using identical arguments as those used in the proof of Theorem 3.2, under the null hypothesis

we have

V
−1/2
T,3

(
PT − ET,3

) D→ N (0, 1).

Using the above result, we test for equality of sequential dependence, that is we reject the null

hypothesis at the α-level if |V −1/2T,3 (PT − ET,3)| > z1−α.

The limiting distribution of the alternative can be derived using the same methods as those used

to derive the limiting distribution of QT under its alternative. It can be shown that

PT −D := 2L1,T + 2L2,T︸ ︷︷ ︸
Op(

1√
T
)

+Op(
M1/2

T
),

where 2L1,T + 2L2,T can be approximated by a quadratic form. Using this quadratic approxima-

tion, asymptotic normality of the above can be shown. Thus under a fixed alternative the power
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grows to 100% as T →∞.

Remark 4.1 We can easily adapt our method to test that the distributions of (X0, Xr) and

(X−r, X0) are identical for all r (ie. Fr(x, y) = F−r(x, y)). This implies that the imaginary part

of the quantile spectral density G(·) is zero over all x, y and ω. In this case, we use the test

statistic

RT =
1

T

∑
r

∣∣=ĜT (x, y;ω)
∣∣2dF (x)dF (y),

where F is some distribution, and by using identical methods to those derived above we can obtain

the limiting distribution of the test under the null. It is worth mentioning that Dette et al. (2011)

also discuss the impact time reversibility has on the quantile spectral density.

5 Bootstrap approximation

The asymptotic normality result that we use to obtain the p-value of the test statisic QT is

only an approximation. For small samples, the normality approximation may not be particularly

good, mainly because QT is a positive random variable, whose distribution will be skewed. This

may well lead to more false positive than we can control for in our type I error.

To correct for this, we propose estimating the finite sample distribution of QT using a frequency

domain bootstrap procedure. In a multivariate time series, the periodogram matrix at the

fundamental frequencies asymptotically follow a Wishart distribution, moreover for our purposes

they are close enough to be independent such that we don’t loose too much information by

treating them as independent (observe that the asymptotic variance of the test statistic QT is

only in terms of the pair-wise distributions and does not contain any higher order dependencies).

Thus motivated by the frequency domain bootstrap methods proposed in Hurvich and Zeger

(1987) and Franke and Härdle (1992) for univariate data and Berkowitz and Diebold (1998) and

Dette and Paparoditis (2009) for multivariate data, we propose the following bootstrap scheme

to obtain an estimate of the finite sample distribution under the null hypothesis.

Let x1 < · · · < xq be a finite discretisation of the real line (noting that we approximate QT with

the discretisation

QT =
2π

T

T∑
k=1

q∑
i1,i2=2

|Ĝ(xi1 , xi2 ;ωk)−
∑
s

KM(ωk − ωs)G0(xi,1, xi2 ;ωk)|2 ×

(F0(xi1)− F0(xi1−1))(F0(xi2)− F0(xi2−1)).

We observe that under the null hypothesis that GZ(ω) will be the spectral density matrix of the

multivariate q-dimensional time series Zt = (Z̃t(x1), · · · , Z̃t(xq)) where Z̃t(x) = I(Xt ≤ x)−F (x)
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and GZ(ω)i1,i2 = G0(xi1 , xi2 ;ω). Thus we use the transformation of Xt into a high dimensional

multivariate time series to construct the the bootstrap distribution.

The steps of the frequency domain bootrap for the test statistic QT are as follows:

Step 1: Generate T independent matrices I∗Z(ωk) = GZ(ωk)
1/2W ∗

kGZ(ωk)
1/2, where

W ∗
k ∼


WC
q (1, Iq) 1 ≤ k ≤ T/2

WR
q (1, Iq) k ∈ {0, T/2}
W ∗
T−k T/2 < k ≤ T

,

and WC and WR denote the complex and real Wishart distributions.

Step 2: Construct the bootstrap quantile spectral density matrix estimators with Ĝ∗Z(ωk) =∑
sKM(ωk − ωs)I∗Z(ωs) for k = 1, . . . , T .

Step 3: Obtain the bootstrap test statistic

Q∗T =
2π

T

T∑
k=1

q∑
i1,i2=2

|Ĝ∗(xi1 , xi2 ;ωk)−GM
0 (xi1 , xi2 ;ωk)|2(F0(xi1)− F0(xi1−1))(F0(xi2)− F0(xi2−1)),

where GM
0 (x, y;ω) = 1

2π

∑
k λ( k

M
)C0,r(x, y) exp(irω).

Step 4: Approximate the distribution of QT under the null by using the empirical distri-

bution of the bootstrap sample {Q∗T}.

Step 5: Based on the bootstrap distribution estimate the p-value of QT .

We illustrate our procedure in Figure 6, for this example we use the quantile spectral density

G0, based on an ARCH(1) (Xt = Ztσt and σ2
t = a0 + a1X

2
t−1), where a0 = 1/1.9, a1 = 0.9, Zt are

iid standard normal random variables and T = 500. A plot of the normal approximation, the

density of QT (which is estimated and based on 500 replications) and the bootstrap estimator of

the density (along with their rejection regions) is given in Figure 6. We observe that the skew in

the finite sample distribution means that the normal distribution is under estimating the location

of the rejection region. However, the bootstrap approximation appears to capture relatively well

the finite sample distribution, and approximate well the rejection region. Since the bootstrap

scheme is based on sampling from iid random variables, we can write the bootstrap test statistic

as a quadratic form. Thus by using Lee and Subba Rao (2010), asymptotic normality of Q∗T can

be shown with mean and variance given in (4). Hence the limiting distribution of the bootstrap

statistic and limiting distribution of the test statistic QT , under the null, coincide.
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6 Simulations and Real data examples

6.1 Simulations

In this section we conduct a simulation study. In order to determine the effectiveness of the test

we will use two different models that have the same first and second order structure (thus a test

based on the covariance structure would not be able to distinguish between them). In particular,

we will consider the AR(1) model Xt = µ + aXt−1 + εt and the squares of the ARCH(1) model

Yt = a0 + aYt−1 + (Z2
t − 1)(a0 + aYt−1), where {εt} and {Zt} are iid zero mean Gaussian random

variables with var(Zt) = 1 and µ and var(εt) chosen such that Xt and Yt have the same mean

and covariance structure. Note that in the simulation we only consider a ≤ 0.55, so that the

spectral density of the squared ARCH exists. For each model we did 1000 replications and the

tests was done at both the α = 0.1 and α = 0.05 level.

In our simulations we used the Bartlett window, compared the test for various M and used both

the normal approximation and the proposed bootstrap procedure. The results for H0 : AR(1)

against the alternative HA : ARCH(1) (various a, fixing a0 = 0.4) are given in Table 2 and 3.

The results for H0 : ARCH(1) against HA : AR(1) are given in Table 4 and 5. We use the sample

sizes T = 100 and 500.

As expected under the null hypothesis the null hypothesis tends to over reject, whereas the

bootstrap gives a better approximation of the significance level. There appears to be very little

difference in the behaviour under the null for various values of a and between the AR and the

ARCH. Under the alternative, the power seems to be quite high even for quite small samples.

The only model where the power is not close to 100% is when a = 0.3, sample size T = 100,

the null is an AR(1) and the alternative is an ARCH(1). This can be explained by the fact that

for small values of a, both the AR and the ARCH models are relatively close to independent

observations, thus making it relatively difficult to reject the null.

6.2 Real Data

In this section we consider the the Microsoft daily return data (March, 1986 - June, 2003)

discussed in Section 2.1 and the Intel monthly log return data (January 1973 - December 2003).

In the analysis below we will test whether the GARCH and ARCH models are appropriate for

the Microsoft and Intel data, respectively. We use the Bartlett window.

A plot of the estimated ĜT together with the piece-wise confidence intervals (obtained using the

results in Theorem 3.1) and the corresponding quantile spectral density of the GARCH(1,1) is

given in Figure 7 for the Microsoft data. It is clear from the plot that the GARCH(1, 1) model

with coefficients evaluated using the maximum likelihood estimator is not the appropriate model
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to fit to this data. The plots suggest that the main deviation from the GARCH(1, 1) arises at

about x, y = 0, This observation is confirmed by the results of our test. Using various values of

M ranging from 30− 70, the p-value corresponding to QT is almost zero with both the normal

approximation and also the Bootstrap method. Therefore, from our analysis it seems that the

GARCH(1, 1) is not a suitable model for modelling the Microsoft daily returns from 1986-2003.

We now consider the second data set, the Intel monthly log returns from 1973 - 2003. Tsay (2005)

propose fitting an ARCH(1) (with Gaussian innovations) model to this data, and maximum

likelihood yields the estimators µ = 0.0166, a0 = 0.0125 and a1 = 0.363, where Xt = µ + εt,

εt = σtZt and σ2
t = a0 + a1ε

2
t−1. A plot of the estimated ĜT with the piece-wise confidence

intervals together the quantile spectral density of the ARCH(1) model is given in Figure 8. We

observe that quantile spectral density of the ARCH model lies in the confidence intervals for

almost all frequencies. These observations are confirmed by the proposed goodness of fit test. A

summary of the results for various M , using both the normal approximation and the bootstrap

method is given in Table 1. The p-values for the normal approximation tend to be smaller than

the p-values of the bootstrap method, this is probably due to the skew in the finite sample

distribution which results in smaller p-values. However, both the normal approximation and

the bootstrap give relatively large p-values for all values of M . Therefore there is not enough

evidence to reject the null. This backs the claims in Tsay (2005) that the ARCH(1) may be an

appropriate model for the the Intel data.

M 15 20 25 30

Normal p-value 0.0905 0.1279 0.1807 0.2643

Bootstrap p-value 0.3880 0.4320 0.4020 0.4780

Table 1: The p-values for the Intel Data and various values of M
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A Proofs

To obtain the sampling properties of ĜT (·) and QT (under both the null and alternative), we first

replace the empirical distribution function F̂T (x), with the true distribution and show that the

error is negligible. Define the zero mean, transformed variable Z̃t(x) = I(Xt ≤ x)−F (x), where

F (·) denotes the marginal distribution of {Xt}. In addition define C̃r(x, y) = 1
T

∑
t Z̃t(x)Z̃t+r(y),

G̃T (x, y;ωk) =
1

2π

∑
r

λM(r)C̃r(x, y) exp(irωk) =
∑
s

KM(ωk − ωs)J̃T (x;ωs)J̃T (y;ωs),

Q̃T =
1

T

T∑
k=1

∫
|G̃T (x, y;ωk)−

∑
r

λM(r)C0,r(x, y) exp(irωk)|2dF0(x)dF0(y).

where J̃T (x;ω) = 1√
2πT

∑T
t=1 Zt(x) exp(itω).

In the proofs below we shall use the notation ‖X‖r = (E(|X|r))1/r. We first show that replacing

F̂T (x) with F (x) does not affect the asymptotic sampling properties of GT (·) and QT .

Lemma A.1 Suppose Assumption 3.1 holds. Then we have

(E|ĜT (x, y;ω)− G̃T (x, y;ω)
∣∣2)1/2 = O(

M

T
) (8)

and

(E|QT − Q̃T
∣∣2)1/2 = O(

1

T
). (9)

PROOF. We first observe that

JT (x;ωk)JT (y;ωk)− J̃T (x;ωk)J̃T (y;ωk)

=

{
0 ωk 6= 0, π

T (F̂T (x)− F (x))(F̂T (y)− F (y)) otherwise
.

Substituting the above into ĜT (ωs)− G̃T (ωs) gives

ĜT (ωs)− G̃T (ωs) = TKM(ωs)(F̂T (x)− F (x))(F̂T (y)− F (y)). (10)

Using KM(·) = O(M
T

) and ||F̂T (x)−F (x)||2 = O( 1
T

) in (10), we obtain the desired result for (8).
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To prove (9) note that

QT − Q̃T

=

∫
1

T

T∑
s=1

(
ĜT (x, y;ωs)− G̃T (x, y;ωs)

)(
ĜT (x, y;ωs) + G̃T (x, y;ωs)

)
dF0(x)dF0(y)

+ <
(∫

2

T

T∑
s=1

(
ĜT (x, y;ωs)− G̃T (x, y;ωs)

)
G(x, y;ωs)dF0(x)dF0(y)

)
.

Thus substituting (10) into the above gives

QT − Q̃T
=

∫
(F̂T (x)− F (x))(F̂T (y)− F (y))×( T∑
s=1

KM(ωs)
(
ĜT (x, y;ωs) + G̃T (x, y;ωs)

))
dF0(x)dF0(y)

+ 2

∫
(F̂T (x)− F (x))(F̂T (y)− F (y))<

( T∑
s=1

KM(ωs)G(x, y;ωs)

)
dF0(x)dF0(y).

Therefore ∥∥QT − Q̃T∥∥2
≤

∫ ∥∥F̂T (x)− F (x)
∥∥
8

∥∥F̂T (y)− F (y)
∥∥
8
×( T∑

s=1

(∣∣KM(ωs)
∣∣ · (∥∥ĜT (x, y;ωs)

∥∥
8

+ ‖G̃T (x, y;ωs)
∥∥
8

)))
dF0(x)dF0(y)

+ 2

∫ ∥∥F̂T (x)− F (x)
∥∥
4

∥∥F̂T (y)− F (y)
∥∥
4
×( T∑

s=1

∣∣KM(ωs)| · |G(x, y;ωs)|
)
dF0(x)dF0(y).

For all r ≥ 2, we have ‖F̂T (x)− F (x)‖r = O( 1√
T

), substituting this into the above gives
∥∥QT −

Q̃T
∥∥
2

= O( 1
T

), and the desired result. �

PROOF of Theorem 3.1 To show asymptotic normality of ĜT (·), we first replace ĜT with G̃T ,

by (8) the replacement error is Op(
M
T

). Thus ĜT and G̃T have the same asymptotic distribution

and we can show how asymptotic normality of ĜT by considering G̃T (·) instead. To show

asymptotic normality of G̃T we use identical methods to those in Lee and Subba Rao (2011),

where, since {I(Xt < x)} are bounded random variables, we can use Ibragimov’s covariance

bounds for bounded random variables. To obtain the limiting variance we note that under
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Assumption 3.1, since s > 2, we have that
∑

r |r| · |cov(I(X0 ≤ x), I(Xr ≤ y))| < ∞ and∑
r1,r2,r2

(1 + |rj|)|cum(I(X0 ≤ x0), I(Xr1 ≤ x1), I(Xr2 ≤ x2), I(Xr3 ≤ x3))| < ∞. Thus, the

assumptions in Brillinger (1981), Theorem 3.4.3 are satisfied, which allows us to obtain the

stated limiting variance. �

We use the following lemma to obtain a bound for the variance of QT .

Lemma A.2 Let the lag window be defined as in Definition 2.1 and suppose h1(·) and h2(·) are

bounded functions. Then we have

L1 =

∫
h1(u1)h2(u2)∆M(u1 − u2)2du1du2 = O(M) (11)

and

L2 =

∫
h1(u1)h2(u2)∆M(u1 + u2)∆M(u1 − u2)du1du2 = O(1) (12)

where ∆M(·) is defined in (5).

PROOF. To simplify notation we prove the result for the truncated lag window λ(u) = I[−1,1](u),

but a similar result can also be proven for lag windows which satisfy Definition 2.1. In the proof

we use the following two identities

T∑
t=0

eitω = e
iTω
2

sin(T+1
2
ω)

sin(ω/2)
and

( ∫ ∣∣sin(M+1
2

(u))

sin((u)/2)

∣∣pdu)1/p = O(M1−p−1

). (13)

We start by expanding ∆M and using the above, to give

∆M(θ1 − θ2) =

∫ M∑
j1,j2=−M

λM(j1)λM(j2) exp(ij1(ωs1 − θ)) exp(ij2(ωs2 − θ))dω

=
∑
j

λM(j)λM(−j) exp(ij(θ1 − θ2))

=
sin((M + 1)(θ1 − θ2)/2)

sin((θ1 − θ2)/2)
2<e

iM(θ1−θ2)
2 . (14)

Substituting the above and (13) into (11) gives

|L1| =
∣∣ ∫ ∫ h1(u1)h2(u2)∆M(u1 − u2)2du1du2

∣∣ ≤ sup
u,i
|hi(u)|2

∫ ∫ ∣∣sin(M+1
2

(u1 − u2))
sin((u1 − u2)/2)

∣∣2du1du2 = O(M).

This proves (11). To prove (12) we observe that by a change of variables (v1 = u1 − u2 and
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v2 = u1 + u2) we have

|L2| ≤ C

∫
|∆M(u1 + u2)| · |∆M(u1 − u2)|du1du2 ≤ C

( ∫
|∆M(u)|du

)2
.

Now by substituting (14) and (13) into the above gives L2 = O(1). Thus we have obtained the

desired result. �

PROOF Lemma 3.1 We first evalulate the expectation of QT . By using Lemma A.1 we have

E(QT )

=
1

T

T∑
s=1

∫ T∑
k1,k2=1

KM(ωs − ωk1)KM(ωs − ωk2)cov
(
J̃T (x;ωk1)J̃T (y;ωk1), J̃T (x;ωk2)J̃T (y;ωk2)

))
+O(

1

T
)

= I1 + I2 + I3 +O(
1

T
),

where

I1 =
1

T

∫ T∑
s,k1,k2=1

2∏
i=1

KM(ωs − ωki)cov
(
J̃T (x;ωk1), J̃T (x;ωk2))cov(J̃T (y;ωk2), J̃T (y;ωk2))dF0(x)dF0(y)

I2 =
1

T

∫ T∑
s,k1,k2=1

2∏
i=1

KM(ωs − ωki)cov
(
J̃T (x;ωk1), J̃T (y;ωk2))cov(J̃T (y;ωk1), J̃T (y;ωk2))dF0(x)dF0(y)

I3 =
1

T

∫ T∑
s,k1,k2=1

2∏
i=1

KM(ωs − ωki)cum
(
J̃T (x;ωk1), JT (y;ωk1), J̃T (x;ωk2), J̃T (y;ωk2)

)
dF0(x)dF0(y).

Under Assumption 3.1, we have that
∑

r |r| · |cov(I(X0 ≤ x), I(Xr ≤ y))| <∞ and
∑

r1,r2,r2
(1 +

|rj|)|cum(I(X0 ≤ x0), I(Xr1 ≤ x1), I(Xr2 ≤ x2), I(Xr3 ≤ x3))| < ∞. Therefore we can apply

Brillinger (1981), Theorem 3.4.3 to obtain

I1 =
1

T

T∑
s=1

∫ T∑
k=1

KM(ωs − ωk)2
∫
G(x, x;ωk)G(y, y;ωk)dF0(x)dF0(y) +O(

1

T
) = O(

M

T
)

I2 =
1

T

T∑
s=1

∫ T∑
k=1

KM(ωs − ωk)KM(ωs + ωk)

∫
G(x, y;ωk)G(y, x;ωk)dF0(x)dF0(y) +O(

1

T
) = O(

1

T
)

I3 =
1

T 2

∫ ∑
r

λM(r)2
T∑

t1,t2=1

cum(Zt1(x), Zt1+r(y), Zt2(x), Zt2+r(y))dF0(x)dF0(y) = O(
1

T
).

This gives us an asymptotic expression for the expectation. We now obtain an expression for the
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variance. Replacing Zt(·) with Z̃t(·) gives

var(QT ) =

1

T 2

T∑
s1,s2=1

∫ ( ∑
k1,k2,k3,k4

KM(ωs1 − ωk1)KM(ωs1 − ωk2)KM(ωs2 − ωk3)KM(ωs2 − ωk4)

×cov
(
(Jk1,x1Jk1,y1 − E(Jk1,x1Jk1,y1))(Jk2,x1Jk2,y1 − E(Jk2,x1Jk2,y1)),

(Jk3,x2Jk3,y2 − E(Jk3,x2Jk3,y2))(Jk4,x2Jk4,y2 − E(Jk4,x2Jk4,y2))
))
dF0(x1)dF0(y1)dF0(x2)dF0(y2) +O(

1

T
)

= II1 + II2 + II3 +O(
1

T
)

where Jk,x = J̃T (x;ωk),

II1 =
1

T 2

T∑
s1,s2=1

∫ ∑
k1,k2,k3,k4

cum(Jk1,x1 J̄k1,y1 , J̄k3,x2Jk3,y2)cum(Jk2,x1 J̄k2,y1 , Jk4,x2Jk4,y2)

2∏
i=1

KM(ωs1 − ωki)
4∏
i=3

KM(ωs2 − ωki)dF0(x1)dF0(y1)dF0(x2)dF0(y2)

II2 =
1

T 2

T∑
s1,s2=1

∫ ∑
k1,k2,k3,k4

cum(Jk1,x1 J̄k1,y1 , Jk4,x2Jk4,y2)cum(Jk2,x1 J̄k2,y1 , J̄k3,x2Jk3,y2)

2∏
i=1

KM(ωs1 − ωki)
4∏
i=3

KM(ωs2 − ωki)dF0(x1)dF0(y1)dF0(x2)dF0(y2)

II3 =
1

T 2

T∑
s1,s2=1

∫ ∑
k1,k2,k3,k4

cum(Jk1,x1 J̄k1,y1 , Jk2,x1 J̄k2,y1 , J̄k3,x2Jk3,y2 , Jk4,x2Jk4,y2)

2∏
i=1

KM(ωs1 − ωki)
4∏
i=3

KM(ωs2 − ωki)dF0(x1)dF0(y1)dF0(x2)dF0(y2).

21



To obtain an expression for the variance we start by expanding II1

II1 =
1

T 2

∑
s1,s2

∫ ∑
k1,k2,k3,k4

2∏
i=1

KM(ωs1 − ωki)
4∏
i=3

KM(ωs2 − ωki)

×
(

cov(Jk1,x1 , Jk3,x2)cov(Jk1,y1 , Jk3,y2)cov(Jk2,x1 , Jk4,x2)cov(Jk2,y1 , Jk4,y2)

+ cov(Jk1,x1 , Jk3,x2)cov(Jk1,y1 , Jk3,y2)cov(Jk2,x1 , Jk4,y2)cov(Jk2,y1 , Jk4,x2)

+ cov(Jk1,x1 , Jk3,x2)cov(Jk1,y1 , Jk3,y2)cum(Jk2,x1 , Jk2,y1 , Jk4,x2 , Jk4,y2)

+ cov(Jk1,x1 , Jk3,y2)cov(Jk1,y1 , Jk3,x2)cov(Jk2,x1 , Jk4,x2)cov(Jk2,y1 , Jk4,y2)

+ cov(Jk1,x1 , Jk3,y2)cov(Jk1,y1 , Jk3,x2)cov(Jk2,x1 , Jk4,y2)cov(Jk2,y1 , Jk4,x2)

+ cov(Jk1,x1 , Jk3,y2)cov(Jk1,y1 , Jk3,x2)cum(Jk2,x1 , Jk2,y1 , Jk4,x2 , Jk4,y2)

+ cum(Jk1,x1 , Jk1,y1 , Jk3,x2 , Jk3,y2)cov(Jk2,x1 , Jk4,x2)cov(Jk2,y1 , Jk4,y2)

+ cum(Jk1,x1 , Jk1,y1 , Jk3,x2 , Jk3,y2)cov(Jk2,x1 , Jk4,y2)cov(Jk2,y1 , Jk4,x2)

+ cum(Jk1,x1 , Jk1,y1 , Jk3,x2 , Jk3,y2)cum(Jk2,x1 , Jk2,y1 , Jk4,x2 , Jk4,y2)

) 2∏
j=1

dF0(xj)dF0(yj)

:=
9∑
j=1

II1,j.

We use (Brillinger, 1981), Theorem 3.4.3 to obtain the following expression for II1,1

II1,1 =
1

T 2

∑
s1,s2

∫ ( T∑
k1,k2=1

( 2∏
i=1

KM(ωsi − ωk1)KM(ωsi − ωk2)
)

cov(Jk1,x1 , Jk1,x2)cov(Jk1,y1 , Jk1,y2)cov(Jk2,x1 , Jk2,x2)cov(Jk2,y1 , Jk2,y2)

)
2∏
j=1

dF0(xj)dF0(yj) +O(
1

T 2
)

=
1

T 2

∫ ∫ (∫
WM(ωs1 − θ1)WM(ωs1 − θ2)dωs1

)
×(∫

WM(ωs2 − θ1)WM(ωs2 − θ2)dωs2
) 2∏

i=1

G(x1, x2; θi)G(y1, y2;−θi)dθi

2∏
j=1

dF0(xj)dF0(yj) +O(
1

T 2
)

=
1

T 2

∫ ∫
∆M(θ1 − θ2)2

2∏
i=1

G(x1, x2; θi)G(y1, y2;−θi)dθi
2∏
j=1

dF0(xj)dF0(yj) +O(
1

T 2
).

Therefore by using (11) we have II1,1 = O(M
T 2 ). We now consider II1,2, by using a similar method
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we have

II1,2 =
1

T 2

∫ (
WM(ωs1 − θ1)WM(ωs1 − θ2)WM(ωs2 − θ1)WM(ωs2 + θ2)×

G(x1, x2, θ1)G(y1, y2,−θ1)G(x1, y2, θ2)G(y1, x2,−θ2)
)
dθ1dθ2dωs1dωs2

2∏
j=1

dF0(xj)dF0(yj) +O(
1

T 2
)

=
1

T 2

∫
∆M(θ1 − θ2)∆M(θ1 + θ2)G(x1, x2, θ1)G(y1, y2,−θ1)

G(x1, y2, θ2)G(y1, x2,−θ2)dθ1dθ2
2∏
j=1

dF0(xj)dF0(yj) +O(
1

T 2
).

By using (12) the above integral is O(1), and altogether II1,2 = O( 1
T 2 ). Using a similar argument,

one can show that II1,3, II1,4 are smaller than O(M
T 2 ), so negligible. For II1,5, we use that

cov(Jk1,x, Jk2,y) =

G(x, y, ωk1) k1 + k2 = T

O( 1
T

) otherwise

, which follows from (Brillinger, 1981), Theorem 3.4.3. This leads to

II1,5 =
1

T 2

∑
s1,s2

∫ ( T∑
k1,k2=1

( 2∏
i=1

KM(ωs1 − ωki)KM(ωs2 + ωki)
)

cov(Jk1,x1 , Jk1,y2)cov(Jk1,y1 , Jk1,x2)cov(Jk2,x1 , Jk2,y2)cov(Jk2,y1 , Jk2,x2)

)
2∏
j=1

dF0(xj)dF0(yj) +O(
1

T 2
)

=
1

T 2

∫ ∫ (∫
WM(ωs1 − θ1)WM(ωs1 − θ2)dωs1

)
×(∫

WM(ωs2 + θ1)WM(ωs2 + θ2)dωs2

) 2∏
i=1

G(x1, y2; θi)G(y1, x2;−θi)dθi

2∏
j=1

dF0(xj)dF0(yj) +O(
1

T 2
)

= II1,1

because of ∆(θ) = ∆(−θ) and interchangeability of integrals about (x1, x2, y1, y2). With a similar

method, one can show that II1,6 . . . , II1,9 are all dominated by II1,1 and II1,5 Altogether this

23



gives

II1 =
2

T 2

∫
∆M(θ1 − θ2)2

2∏
i=1

G(x1, x2; θi)G(y1, y2; θi)dθi

2∏
j=1

dF0(xj)dF0(yj) +O(
1

T 2
).

Using the identical argument with the above, we can show that

II2 =
2

T 2

∫
∆M(θ1 − θ2)2

2∏
i=1

G(x1, x2; θi)G(y1, y2; θi)dθi

2∏
j=1

dF0(xj)dF0(yj) +O(
1

T 2
).

To bound II3 we recall that

II3 =
1

T 2

T∑
s1,s2=1

∫ ∑
k1,k2,k3,k4

KM(ωs1 − ωk1)KM(ωs1 − ωk2)KM(ωs2 − ωk3)KM(ωs2 − ωk4)

cum
(
Jk1,x1Jk1,y1 , Jk2,x1Jk2,y1 , Jk3,x2Jk3,y2 , Jk4,x2Jk4,y2

)
dF0(x1)dF0(y1)dF0(x2)dF0(y2) +O(

1

T
).

By using the method of indecomposable partitions (see (Brillinger, 1981), Theorem 2.3.2) to

partition the above cumulant of products into the product of cumulants. This together with

(Brillinger, 1981), Theorem 3.4.3 gives us II3 = O(M
T 3 ) (see Lee’s thesis for further details).

Combining the expressions for II1, II2 and II3 gives us the expression for the variance and

completes the proof. �

A.1 Proof of Theorem 3.2

Now we show that QT can be approximated by the sum of martingale differences, this will allow

us to use the martingale central limit theorem to prove Theorem 3.2.

We first define the martingale difference decomposition of Z̃t(x) =
∑t

j=0M
(x)
j (t − j), where

M
(x)
j (t−j) = E(Zt(x)|Ft−j)−E(Zt(x)|Ft−j−1), where for t > 0 we have Ft = σ(Xt, Xt−1, . . . , X1)

and for t ≤ 0 we let Ft = σ(1), and Mj(s) = 0 for j ≥ s. Using the above notation we define the

random variable

ST =
1

T 2

∫ ∞∑
j1,...,j4=0

∑
t1,r,t2∈A

λM(r)2M
(x)
j1

(t1 − j1)M (y)
j2

(t1 + r − j2)

×M (x)
j3

(t2 − j3)M (y)
j4

(t2 + r − j4)dF0(x)dF0(y), (15)

where A = {(t1 − j1, t1 + r − j2, t2 − j3, t2 + r − j4) are all different }.

Theorem A.1 Suppose Assumption 3.1 holds, ST is defined as in (15) and the null hypothesis
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is true. Then we have

QT − E(QT ) = ST +Op(
1

T
+
M1/2

T 3/2
)

and for all r ≥ 2
∥∥ST∥∥r = O(M

1/2

T
).

PROOF. We prove the result using a combination of iterative martingales and Burkholder’s

inequality for martingale differences. We note that for r ≥ 2 we have

‖M (x)
j (t− j)‖r = ‖E(Zt(x)|Ft−j)− E(Zt(x)|Ft−j−1)‖2 ≤ 2‖E(Zt(x)|Ft−j)‖r ≤ Cα(j),(16)

where Ft = σ(Xt, Xt−1, . . . , X1), which follows from Ibragimov’s inequality. Substituting the

representation Zt(x) =
∑∞

j=1M
(x)
j (t− j) into QT gives

QT − E(QT )

=
1

T 2

∞∑
j1,...,j4=0

M∑
r=−M

λM(r)2
∑
t1,t2

(
M

(x)
j1

(t1 − j1)M (y)
j2

(t1 + r − j2)×M (x)
j3

(t2 − j3)M (y)
j4

(t2 + r − j4)

− E
(
M

(x)
j1

(t1 − j1)M (y)
j2

(t1 + r − j2)×M (x)
j3

(t2 − j3)M (y)
j4

(t2 + r − j4))
))
dF0(x)dF0(y),

where X denotes the centralised random variable X−E(X) (note that Mj(s) = 0 for s ≤ 0). We

now partition the above sum into several cases, where we treat j1, . . . , j4 as free and condition

on t1, t2 and r:

(i) A = {(t1, t2, r) such that (t1 − j1, t1 + r − j2, t2 − j3, t2 + r − j4) are all different }.

(ii) B = {(t1, t2, r) such that (t1 − j1 = t1 + r − j2) and (t2 − j3 = t2 + r − j4)}.

(iii) C = {(t1, t2, r) such that (t1 − j1) = (t2 − j3) or (t2 + r− j4) and (t1 + r− j2) 6= (t1 − j1)}.

(iv) D = {(t1, t2, r) such that (t1+r−j2) = (t2−j3) or (t2+r−j4) and (t1−j1) 6= (t1+r−j2)}.

(v) E = {(t1, t2, r) such that (t2 − j3) = (t1 − j1) or (t1 + r − j2) and (t2 + r − j4 6= t2 − j3)}.

(iv) F = {(t1, t2, r) such that (t2+r−j4) = (t1−j2) or (t1+r−j2) and (t2−j3) 6= (t2+r−j4)}.

Thus

QT − E(QT ) =

∫ (
IA + IB + IC + ID + IE + IF

)
dF0(x)dF0(y),
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where

IA =
1

T 2

∞∑
j1,...,j4=0

∑
r,t1,t2∈A

λM(r)2M
(x)
j1

(t1 − j1)M (y)
j2

(t1 + r − j2)M (x)
j3

(t2 − j3)M (y)
j4

(t2 + r − j4),

IB =
1

T 2

∞∑
j1,...,j4=0

∑
r,t1,t2∈B

λM(j1 − j2)2
(
M

(x)
j1

(t1 − j1)M (y)
j2

(t1 − j1)×M (x)
j3

(t2 − j3)M (y)
j4

(t2 − j3)−

E
(
M

(x)
j1

(t1 − j1)M (y)
j2

(t1 − j1)×M (x)
j3

(t2 − j3)M (y)
j4

(t2 − j3)
))

for IC, . . . , IF are defined similarly.

We first bound IA. We partitionA into 24 cases by the order of (t1−j1, t1+r−j2, t2−j3, t2+r−j4).
The first is A1 = {(t1, t2, r) such that t1 − j1 > t1 + r − j2 > t2 − j3 > t2 + r − j4} which gives

IA,1 =
1

T 2

∞∑
j1,...,j4=0

∑
r,t1,t2∈A1

λM(r)2M
(x)
j1

(t1 − j1)M (y)
j2

(t1 + r − j2)M (x)
j3

(t2 − j3)M (y)
j4

(t2 + r − j4).

The other 23 cases are defined similarly (different orderings of t1−j1, . . . , t2+r−j4), such that we

have IA =
∑24

j=1 IAj . We start by bounding IA,1. Since t1−j1 > t1+r−j2 > t2−j3 > t+r−j4, it is

easy to see that M
(x)
j1

(t1−j1)
∑

r<j2−j1 λM(r)2M
(y)
j2

(t1+r−j2)
∑

t2<t1−j1+j3 M
(x)
j3

(t2−j3)M (y)
j4

(t2+

r − j4) is a martingale over t1, M
(y)
j2

(t1 + r − j2)
∑

t2<t1−j1+j3 M
(x)
j3

(t2 − j3)M (y)
j4

(t2 + r − j4) is a

martingale over r and {M (x)
j3

(t2 − j3)M (y)
j4

(t2 + r − j4)} is a martingale over t2. Thus by using

Burkhölder’s inequality together with Hölder’s inequality three times, for any q ≥ 2 we have

‖IA,1‖q =
1

T 2

∞∑
j1,...,j4=0

( ∑
r,t1,t2

λM(r)2‖M (x)
j1

(t1 − j1)‖24q‖M
(y)
j2

(t1 + r − j2)‖24q

‖M (x)
j3

(t2 − j3)‖24q‖M
(y)
j4

(t2 + r − j4)‖24q
)1/2

.

Thus by using (16) we have that ‖IA,1‖q = O(M
1/2

T
) and by the same argument we have IA,j =

O(M
1/2

T
) (for 2 ≤ j ≤ 24). Therefore, altogether this gives ‖IA‖q = O(M

1/2

T
). We now bound IB.

We first define the random variable

A
(x,y)
j1,j2;i

(t1 − j1 − i) =

E(M
(x)
j1

(t1 − j1)M (y)
j2

(t1 − j1)|Ft1−j1−i)− E(M
(x)
j1

(t1 − j1)M (y)
j2

(t1 − j1)|Ft1−j1−i).
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To bound ‖A(x,y)
j1,j2;i

(t1 − j1 − i)‖q, we repeatedly use Ibragimov’s inequality and (16) to give

‖A(x,y)
j1,j2;i

(t1 − j1 − i)‖q ≤ 2‖E(M
(x)
j1

(t1 − j1)M (y)
j2

(t1 − j1)|Ft1−j1−i)‖
≤ Cα(i)‖M (x)

j1
(t1 − j1)M (y)

j2
(t1 − j1)‖q ≤ Cα(i)α(j1)α(j2). (17)

This gives the representation

M
(x)
j1

(t1 − j1)M (y)
j2

(t1 − j1) =
∑
i

A
(x,y)
j1,j2;i

(t1 − j1 − i).

Substituting the above representation into IB gives

IB =
1

T 2

∞∑
j1,...,j4,i1,i2=0

∑
t1,t2∈B

λM(j1 − j2)2
[
A

(x,y)
j1,j2;i1

(t1 − j1 − i)A(x,y)
j3,j4;i2

(t2 − j3 − i2)

−E(A
(x,y)
j1,j2;i1

(t1 − j1 − i)A(x,y)
j3,j4;i2

(t2 − j3 − i2))
]

:= IB,1 + IB,2 + IB,3,

where

IB,1 :=
1

T 2

∞∑
j1,...,j4,i1,i2=0

∑
t1−j1−i1>t2−j3−i2

λM(j1 − j2)2A(x,y)
j1,j2;i1

(t1 − j1 − i)A(x,y)
j3,j4;i2

(t2 − j3 − i2)

IB,2 :=
1

T 2

∞∑
j1,...,j4,i1,i2=0

∑
t1−j1−i1<t2−j3−i2

λM(j1 − j2)2A(x,y)
j1,j2;i1

(t1 − j1 − i)A(x,y)
j3,j4;i2

(t2 − j3 − i2)

IB,3 :=
1

T 2

∞∑
j1,...,j4,i1,i2=0

∑
t1−j1−i1=t2−j3−i2

λM(j1 − j2)2A(x,y)
j1,j2;i1

(t1 − j1 − i)A(x,y)
j3,j4;i2

(t2 − j3 − i2).

Using similar techniques to those used to bound ‖IA,1‖q, Burkhölder’s and Hölder’s inequalities

twice on ‖IB,1‖q, together with (17), we obtain the bound ‖IB,1‖q = O( 1
T

). A similar argument

can be used for ‖IB,2‖q = O( 1
T

). To bound ‖IB,3‖q, we need to decompose

A
(x,y)
j1,j2;i1

(t1 − j1 − i)A(x,y)
j3,j4;i2

(t2 − j3 − i2)− E(A
(x,y)
j1,j2;i1

(t1 − j1 − i)A(x,y)
j3,j4;i2

(t2 − j3 − i2)),

into the sum of martingale differences, using this martingale decomposition we can use the

same argument as those used above to obtain ‖IB,3‖ = O( 1
T 3/2 ). Therefore, altogether we have

‖IB‖q = O( 1
T

). Now by using similiar arguments and repeated decompositions into martingale

differences we can show that ‖IC‖q, . . . , ‖IF‖q = O(M
1/2

T 3/2 ). Thus we have shown that IA is the

dominating term in QT − E(QT ). Since ST =
∫
IAdF0(x)dF0(y) we have obtained the desired

result. �
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To prove the result we use the martingale central limit theorem on

ST =
1

T 2

∫ ∞∑
j1,...,j4=0

∑
t1,r,t2∈A

λM(r)2M
(x)
j1

(t1 − j1)M (y)
j2

(t1 + r − j2)M (x)
j3

(t2 − j3)M (y)
j4

(t2 + r − j4)dF0(x)dF0(y).

To do this, we use the same decompositions of IA, as that used in the proof of Theorem A.1. We

set ST,i := IA,i, recalling that

ST,i =
1

T 2

∞∑
j1,...,j4=0

∑
r,t1,t2∈A,i

λM(r)2M
(x)
j1

(t1 − j1)M (y)
j2

(t1 + r − j2)M (x)
j3

(t2 − j3)M (y)
j4

(t2 + r − j4),

where Ai is an ordering of {t1 − j1, t1 + r − j2, t2 − j3, t2 + r − j4}. We show that ST,i can

be written as the sum of martingale differences. First consider ST,1, this can be written as

ST,1 = 1
T 2

∑T
k=1 Uk,1, where with a change of variables we have

Uk,1 =

∫ T−k∑
j1=0

Mj1(k)
∑
j2,j3,j4

∑
r,t1∈Ãk,1

λM(r)2M
(y)
j2

(k + j1 + r − j2)M (x)
j3

(t2 − j3)M (y)
j4

(t2 + r − j4)dF0(x)dF0(y)

and Ãk,1 = {(r, t2) such that (k > k + j1 + r − j2 > t2 − j3 > t2 + r − j4)}. Using a similar

argument we can decompose ST,i as ST,i = 1
T 2

∑T
k=1 Uk,i (and Uk,i is defined similar to above).

Therefore, altogether ST is the sum of martingale differences, where ST = 1
T 2

∑T
k=1

∑24
i=1 Uk,i,

and
∑24

i=1 Uk,i ∈ σ(Xk, Xk−1, . . .) are the martingale differences. Therefore under the conditions

in Theorem A.1 we have

QT − E(QT ) = ST +Op(
1

T
+
M1/2

T 2
) =

1

T 2

T∑
k=1

24∑
i=1

Uk,i +Op(
1

T
+
M1/2

T 2
).

These approximations will allow us to use the martingale central limit theorem to prove asymp-

totic normality, which requires the following lemma.

Lemma A.3 Suppose that Assumption 3.1 holds. Then for all 1 ≤ i ≤ 24 and 1 ≤ k ≤ T we

have

‖
24∑
i=1

Uk,i‖q = O(T 1/2M1/2) (18)

1

T 2M

T∑
k=1

E
( 24∑
i=1

U2
k,i

)
→ 4

M

∫ ∫
∆M(θ1 − θ2)2

2∏
i=1

G(x1, x2; θi)G(y1, y2; θi)dθi

2∏
j=1

dF0(xj)dF0(yj) (19)
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and

1

T 2M

T∑
k=1

[
E
(

(
24∑
i=1

Uk,i)
2|Fk−1

)
− E

( 24∑
i=1

Uk,i
)2] P→ 0. (20)

PROOF. To prove the result we concentrate on Uk,1, a similar proof applies to the other terms.

By using the Hölder inequality, for any q ≥ 2, we obtain

‖Uk,1‖q ≤
∫ T−k∑

j1=0

‖Mj1(k)‖4q
∥∥ ∑
j2,j3,j4

∑
r,t1∈Ãk,1

λM(r)2M
(y)
j2

(k + j1 + r − j2)×

M
(x)
j3

(t2 − j3)M (y)
j4

(t2 + r − j4)‖4q/3dF0(x)dF0(y).

Now by repeated use of Burkhölder’s inequality we have ‖Uk,1‖q = O(M1/2T 1/2), using a similar

method we obtain a similar bound for ‖Uk,i‖q, this gives (18).

The proof of (19) follows from the proof of Theorem A.1 (noting that the asymptotic variance

of QT is determined by the variance of ST ).

To prove (20), we consider only the Uk,1 (the proof involving the other terms in similar). For

brevity we write Uk,1 as

Uk,1 =

∫ T−k∑
j1=0

M
(x)
j1

(k)N
(x,y)
j1,k−1,1dF0(x)dF0(y),

where

N
(x,y)
j1,k−1,1 =

∑
j2,j3,j4

∑
r,t1∈Ãk,1

λM(r)2M
(y)
j2

(k + j1 + r − j2)M (x)
j3

(t2 − j3)M (y)
j4

(t2 + r − j4).

Noting that N
(x,y)
j1,k−1,1 ∈ Fk−1 we have

1

T 2M

T∑
k=1

(
E
(
Uk,1)

2|Fk−1
)
− E

(
Uk,1

)2)
=

1

T 2M

T∑
k=1

∫ T−k∑
j1,j2=0

(
E(M

(x)
j1

(k)M
(x1)
j2

(k)|Fk−1)− E(M
(x)
j1

(k)M
(x2)
j2

(k))
)
N

(x1,y2)
j1,k−1,1N

(x2,y2)
j1,k−1,1

2∏
i=1

dF0(xi)dF0(yi)

+
1

T 2M

T∑
k=1

∫ T−k∑
j1,j2=0

E(M
(x)
j1

(k)M
(x2)
j2

(k))
)(
N

(x1,y2)
j1,k−1,1N

(x2,y2)
j1,k−1,1 − E(N

(x1,y2)
j1,k−1,1N

(x2,y2)
j1,k−1,1)

) 2∏
i=1

dF0(xi)dF0(yi).

Now by using similar methods to the iterative martingale methods detailed in the proof of

Theorem A.1, we can show that the ‖ · ‖q-norm (q ≥ 2) of the above converges to zero, thus we
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have (20).

PROOF of Theorem 3.2 Using the above we have QT = 1
T 2

∑T
k=1

∑24
i=1 Uk,i + Op(

1
T

+ M1/2

T 2 ),

thus QT −E(QT ) can be written as the sum of martingales plus a smaller order term. Therefore

to prove asymptotic normality of QT we can use the martingale central limit, for this we need

to verify (a) the conditional Lindeberg condition 1
MT 2

∑T
k=1 E(|

∑24
i=1 Uk,i|2I( 1

M1/2T
|
∑24

i=1 Uk,i| >
ε)|Fk−1)

P→ 0 for all ε > 0, (b) that 1
MT 2

∑T
k=1 E(|

∑24
i=1 Uk,i|2|Fk−1)−

T 2

M
var(QT )

P→ 0.

To verify the conditional Lindeberg condition, we observe that the Cauchy-Schwartz and Markov’s

inequalities give

1

MT 2

T∑
k=1

E
(
|

24∑
i=1

Uk,i|2I(
1

M1/2T
|

24∑
i=1

Uk,i| > ε)|Fk−1
)
≤ 1

εM2T 4

T∑
k=1

E(|
24∑
i=1

Uk,i|4|Fk−1) := BT .

By using (18) the expectation of the above is E(BT ) = O( 1
T

). As BT is a non-negative random

variable, this implies BT
P→ 0 as T → ∞. Thus we have shown that the Lindeberg condition is

satisfied. To prove (b) we note that

1

MT 2

T∑
k=1

E
(
|

24∑
i=1

Uk,i|2|Fk−1
)
− T 2

M
var(QT )

=
1

MT 2

T∑
k=1

[
E
(
|

24∑
i=1

Uk,i|2|Fk−1
)
− E(|

24∑
i=1

Uk,i|2)
]

+
1

MT 2

T∑
k=1

E(|
24∑
i=1

Uk,i|2)−
T 2

M
var(QT ).

By using (19) and (20) the above converges to zero in probability. Thus we have verified the

conditions of the martingale central limit theorem and we have the desired result. �

A.2 Proof of Theorem 3.3

As the limiting distribution of QT is determined by QT,2, we rewrite QT,2 in such a way that the

same methods used to prove Theorem 2 in Lee and Subba Rao (2010), can be used to obtain the

limiting distribution. We observe that

QT,2 =
2

T
<
∫ ∑

k

ΛT (x, y;ωk)
{
JT (x;ωk)JT (y;ωk)− E(JT (x;ωk)JT (y;ωk))

}
dF0(x)dF0(y)

=

∫
2

T

∑
t,τ

λM(t− τ)2Dt−τ,T (x, y)(Zt(x)Zτ (y)− E(Zt(x)Zτ (y)))dF0(x)dF0(y)

=

∫
2

T

∑
t,τ

λM(t− τ)2Dt−τ,T (x, y)(Z̃T (x)Z̃τ (y)− Cr(x, y))dF0(x)dF0(y) +Op(
1

T
),
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where ΛT (x, y;ωs) =
∑

r λM(r)2(T−|r|
T

)[Cr,1(x, y)−Cr,0(x, y)] exp(irωk), Dr,T (x, y) = (T−|r|
T

)[Cr,1(x, y)−
Cr,0(x, y)] and Z̃t(x) = I(Xt ≤ x)− F1(x).

PROOF of Theorem 3.3 Now we observe that under the stated assumptions of the theorem we

have that the quantile covariances under the null decay at the rate supx,y |Cr,0(x, y)| ≤ K|r|−(2+δ)

(for some δ > 0) and supx,y |Cr,1(x, y)| ≤ K|r|−s (for some s > 2). Thus by definition of Dr,T (·),
we have supx,y |λM(r)Dr,T (x, y)| ≤ K|r|−min(2+δ,s). Thus we can write QT,2 as

QT,2 =

∫
2

T

∑
t,τ

λM(t− τ)2Dt−τ,T (x, y)(Z̃T (x)Z̃τ (y)− E(Z̃T (x)Z̃τ (y)))dF0(x)dF0(y) +Op(
1

T
),

where we observe that terms where |t − τ | > 2M , are zero. Thus using the Bernstein blocking

arguments for quadratic forms used to prove Theorem 2, Lee and Subba Rao (2011), we can

show asymptotic normality of the above. This proves (6). Finally to prove (7), we note that

QT = QT,2 + ET,2 +Op(
M1/2

T
+ M

T
+ 1

Ms−1 ), by using (6), this immediately leads to (7). �
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Figure 1: The ACF plots of {Xt} and {|Xt|} of the MSFT and the corresponding GARCH model
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Figure 2: The quantile covariance of the MSFT and the corresponding GARCH
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Figure 3: The quantile spectral density of Xt = 0.9Xt−1 + Zt
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Figure 4: The quantile spectral density of Xt = σtZt, where σ2
t = 1/1.9 + 0.9X2
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Figure 5: The quantile spectral density of X2
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t = 1/1.9 + 0.9X2
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Figure 6: The fine line is the standard normal (with the 5% rejection line), the thick solid line
is the finite sample density of the test statistic (with 5% rejection region) and the thick dashed
line is the bootstrap approximation (with 5% rejection region).
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Figure 7: The quantile spectral density of the fitted GARCH(1, 1) model using Microsoft data
with the confidence intervals
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Figure 8: The quantile spectral density of the fitted ARCH(1) from Intel data with the confidence
intervals

Table 2: H0 : AR(1), HA : ARCH T = 100

T = 100
α = 0.1 α = 0.05

Bootstrap Normal Bootstrap Normal
a M H0 HA H0 HA H0 HA H0 HA

0.3

11 0.052 1 0.076 1 0.021 0.972 0.054 1
16 0.04 0.869 0.062 0.971 0.011 0.262 0.04 0.854
21 0.048 0.386 0.064 0.561 0.021 0.106 0.043 0.348
25 0.021 0.071 0.048 0.229 0.014 0.016 0.029 0.12

0.4

11 0.048 1 0.082 1 0.02 1 0.055 1
16 0.043 1 0.059 1 0.013 0.939 0.041 1
21 0.046 0.932 0.066 0.997 0.011 0.416 0.046 0.929
25 0.036 0.582 0.055 0.832 0.01 0.124 0.037 0.598

0.5

11 0.046 1 0.073 1 0.015 1 0.052 1
16 0.049 1 0.078 1 0.027 1 0.045 1
21 0.046 1 0.06 1 0.015 0.985 0.037 1
25 0.047 1 0.062 1 0.015 0.397 0.043 1

0.55

11 0.041 1 0.096 1 0.018 1 0.057 1
16 0.045 1 0.066 1 0.017 1 0.046 1
21 0.065 1 0.06 1 0.034 1 0.034 1
25 0.045 1 0.051 1 0.024 1 0.032 1
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Table 3: H0 : AR(1), HA : ARCH(1) T = 500

T = 500
α = 0.1 α = 0.05

Bootstrap Normal Bootstrap Normal
a M H0 HA H0 HA H0 HA H0 HA

0.3

14 0.053 1 0.098 1 0.024 1 0.063 1
21 0.064 1 0.082 1 0.023 1 0.052 1
28 0.06 1 0.093 1 0.024 1 0.062 1
35 0.07 1 0.086 1 0.033 1 0.062 1

0.4

14 0.043 1 0.092 1 0.014 1 0.064 1
21 0.058 1 0.092 1 0.015 1 0.056 1
28 0.066 1 0.094 1 0.03 1 0.061 1
35 0.073 1 0.087 1 0.032 1 0.052 1

0.5

14 0.031 1 0.105 1 0.018 1 0.072 1
21 0.059 1 0.079 1 0.03 1 0.05 1
28 0.076 1 0.111 1 0.046 1 0.069 1
35 0.053 1 0.086 1 0.022 1 0.055 1

0.55

14 0.038 1 0.107 1 0.014 1 0.077 1
21 0.056 1 0.108 1 0.021 1 0.067 1
28 0.071 1 0.103 1 0.032 1 0.06 1
35 0.051 1 0.089 1 0.026 1 0.06 1

Table 4: H0 : ARCH(1), HA = AR(1) T = 100

T = 100
α = 0.1 α = 0.05

Bootstrap Normal Bootstrap Normal
a M H0 HA H0 HA H0 HA H0 HA

0.3

11 0.039 0.994 0.08 0.997 0.022 0.984 0.051 0.995
16 0.043 0.978 0.086 0.991 0.009 0.925 0.055 0.983
21 0.045 0.98 0.07 0.99 0.016 0.934 0.051 0.983
25 0.026 0.939 0.059 0.976 0.011 0.895 0.045 0.965

0.4

11 0.046 1 0.086 1 0.012 0.999 0.053 1
16 0.049 0.993 0.092 0.999 0.014 0.988 0.062 0.996
21 0.03 0.994 0.07 0.997 0.017 0.983 0.046 0.997
25 0.038 0.994 0.083 0.997 0.024 0.982 0.059 0.994

0.5

11 0.054 1 0.107 1 0.024 1 0.067 1
16 0.063 1 0.098 1 0.03 1 0.066 1
21 0.051 1 0.083 1 0.022 1 0.061 1
25 0.028 0.997 0.06 0.998 0.012 0.995 0.043 0.998

0.55

11 0.074 1 0.113 1 0.03 1 0.081 1
16 0.056 1 0.087 1 0.02 1 0.054 1
21 0.065 1 0.08 1 0.038 1 0.057 1
25 0.067 1 0.088 1 0.03 1 0.065 1

37



Table 5: H0 : ARCH(1) and HA : AR(1) T = 500

T = 500
α = 0.1 α = 0.05

Bootstrap Normal Bootstrap Normal
a M H0 HA H0 HA H0 HA H0 HA

0.3

14 0.072 1 0.09 1 0.025 1 0.059 1
21 0.062 1 0.094 1 0.032 1 0.059 1
28 0.067 1 0.097 1 0.024 1 0.062 1
35 0.076 1 0.101 1 0.026 1 0.073 1

0.4

14 0.045 1 0.097 1 0.022 1 0.059 1
21 0.075 1 0.105 1 0.03 1 0.077 1
28 0.06 1 0.111 1 0.024 1 0.07 1
35 0.085 1 0.12 1 0.041 1 0.086 1

0.5

14 0.053 1 0.129 1 0.032 1 0.079 1
21 0.1 1 0.121 1 0.054 1 0.082 1
28 0.111 1 0.124 1 0.071 1 0.085 1
35 0.066 1 0.117 1 0.029 1 0.075 1

0.55

14 0.099 1 0.143 1 0.047 1 0.104 1
21 0.074 1 0.119 1 0.042 1 0.083 1
28 0.078 1 0.11 1 0.037 1 0.072 1
35 0.082 1 0.119 1 0.037 1 0.085 1
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