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Abstract

For multivariate stationary time series many important properties, such as par-

tial correlation, graphical models and autoregressive representations are encoded in

the inverse of its spectral density matrix. This is not true for nonstationary time

series, where the pertinent information lies in the inverse infinite dimensional covari-

ance matrix operator associated with the multivariate time series. This necessitates

the study of the covariance of a multivariate nonstationary time series and its rela-

tionship to its inverse. We show that if the rows/columns of the infinite dimensional

covariance matrix decay at a certain rate then the rate (up to a factor) transfers

to the rows/columns of the inverse covariance matrix. This is used to obtain a

nonstationary autoregressive representation of the time series and a Baxter-type

bound between the parameters of the autoregressive infinite representation and the

corresponding finite autoregressive projection. The aforementioned results lay the

foundation for the subsequent analysis of locally stationary time series. In partic-

ular, we show that smoothness properties on the covariance matrix transfer to (i)

the inverse covariance (ii) the parameters of the vector autoregressive representa-

tion and (iii) the partial covariances. All results are set up in such a way that the

constants involved depend only on the eigenvalue of the covariance matrix and can

be applied in the high-dimensional settings with non-diverging eigenvalues.

Keywords and phrases: Autoregressive parameters, Baxter’s inequality, high dimen-

sional time series, local stationarity and partial covariance.
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1 Introduction

Several important properties in multivariate analysis are encrypted within the inverse co-

variance of the underlying random vector. For example, the partial correlation, regression

parameters and the network corresponding to the (Gaussian) graphical model. For mul-

tivariate time series the covariance is now an infinite dimensional matrix. Nevertheless,

analogous to classical multivariate analysis many interesting properties in time series are

encoded in the inverse infinite dimensional variance matrix. They include (i) the partial

covariance between different components of time series after conditioning on the other

time series (ii) time series graphical models which takes into account the conditional rela-

tionships over the entire time series and (iii) vector autoregressive representations which

yield information on Granger causality. For stationary time series, however, it is rare to

directly deduce these relationships from the inverse covariance, as these quantities have

an equivalent representation in terms of the finite dimensional inverse spectral density

matrix corresponding to the autocovariance of the time series. For example, the partial

covariance can be expressed in terms of the partial spectral coherence (which is a function

of the inverse spectral density matrix; see, Priestley (1981), Chapter 9.2). The stationary

time series graphical model can be deduced from the zero and non-zeroes of the inverse

spectral density matrix (see, Dahlhaus (2000a)) and the vector autoregressive regressive

representation can be deduced from the causal factorisation of the inverse spectral density

matrix (see Wiener and Masani (1958)). However, once one moves away from station-

arity, a rigorous understanding of the above properties can only be achieved by directly

studying the inverse of the infinite dimensional covariance matrix (and its relationship to

the corresponding covariance). This is the main objective of this paper, which we make

precise below.

Let {Xt = (X
(1)
t , . . . , X

(p)
t )>; t ∈ Z} denote a p-dimensional multivariate time series

with p × p-dimensional covariance matrix Ct,τ = Cov[Xt, Xτ ] for all t, τ ∈ Z. Using

{Ct,τ}t,τ we define the linear operator or, equivalently, infinite dimensional matrix C =

(Ct,τ ; τ, t ∈ Z). Under suitable conditions on C, the inverse D = C−1 = (Dt,τ ; t, τ ∈ Z)

exists. Basu and Subba Rao (2022), Section 2, show that a graphical model for nonsta-

tionary time series can be defined from the structure of D (based on zero, Toeplitz and

non-Toeplitz submatrices in D). This general framework does not impose any conditions

on the nonstationary structure of the time series. However, in order to learn the network

from data Basu and Subba Rao (2022) focus on locally stationary time series; by now a

widely accepted and used class of nonstationary time series. Specifically, smoothness con-
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ditions are placed on the inverse covariance D, and the subsequent analysis is done under

these conditions. However, most locally stationary conditions are stated in terms of the

covariance rather than the inverse covariance. This leads to the question “do smoothness

conditions on C transfer to smoothness on D?” and provided the initial motivation for

this paper. It naturally lead to further questions on the ”transfer” of smoothness on C

to (a) vector autoregressive representations and (b) the partial covariance. Therefore, our

aim is to develop a suite of tools that answer such questions. To the best of our knowl-

edge there exists very few results in this area. One notable exception is the recent work

of Ding and Zhou (2021), but the aims and results in their work are different to those of

this paper. Ding and Zhou (2021) specifically focus on the univariate nonstationary time

series (X1, . . . , Xn) (with n → ∞). They show that there exists an autoregressive repre-

sentation of increasing order over the time points, whose coefficients decay at a certain

rate. The results are used to test for correlation stationarity. In contrast, we work within

the multivariate time series framework, and allow for both low and high dimensional time

series. The latter case is important because often to make meaningful conditional state-

ments about components in the time series (in terms of Granger causality and conditional

covariance) the number of time series included in the analysis may need to be extremely

large. We summarise the main results below.

In order to reconcile C and its inverse D, in Section 2 we show if ‖Ct,τ‖2 ≤ K|t− τ |−κ

for t 6= τ and some κ > 1 (‖ · ‖2 denotes the induced `2/spectral norm), then ‖Dt,τ‖2 ≤
K(1+log |t−τ |)κ(|t−τ |)−κ+1. This leads to a nonstationary VAR(∞) representation of the

time series {Xt}t where the corresponding VAR parameters decay at the same rate. We use

this result to obtain a Baxter-type bound between the parameters of autoregressive infinite

representation and the corresponding finite autoregressive projection. It is noteworthy

that the constant K depends only on the eigenvalues of C, but not on the dimension

p. Hence, if the eigenvalues of C do not grow with dimension p, these results hold for

arbitrary dimension.

The results in Section 2 are instrumental to proving the results in Section 3, where

we focus on locally stationary time series. In terms of second order structure, a time

series is called second order locally stationary if its covariance structure can locally be

approximated by a smooth function C(u). We show in Section 3.2 that C(u) is an

autocovariance of a stationary time series. In Section 3.3 we show that locally stationary

conditions based on the covariance structure imply that its inverse covariance can locally

be approximated by a smooth function D(u), which is the inverse autocovariance of a
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stationary time series i.e. D(u) = C(u)−1. We use this result to show that the parameters

of the vector autoregressive representation of the time series can be approximated by a

smooth function. Finally, in Section 3.4, we show that the smoothness conditions on the

nonstationary covariance transfer to smoothness conditions on the partial covariances.

We use this result to justify using an estimator of the local spectral density function to

estimate the local partial spectral coherence (as was done in Park et al. (2014)) and the

local partial correlation. The proof of the results can be found in the Appendix.

2 Rate of decay of the inverse covariance

2.1 Notation and assumptions

In order to derive the results in this paper we need to define the space on which the

operator C is acting. This requires the following notation.

Let R denote the real numbers, Z all (positive and negative) integers and N strictly

positive integers. For u, v ∈ Rp let 〈u, v〉 = u>v and ‖v‖2 denote the Euclidean distance.

We use `2 and `2,p to denote the sequence spaces `2 = {u = (. . . , u−1, u0, u1, . . .);uj ∈
R and

∑
j∈Z u

2
j < ∞} and `2,p = {v = (. . . , v−1, v0, v1, . . .); vj ∈ Rp and

∑
j∈Z ‖vj‖2

2 <

∞}. On the spaces `2 and `2,p we define the two inner products 〈u, v〉 =
∑

j∈Z ujvj (for

u, v ∈ `2) and 〈x, y〉 =
∑

j∈Z〈xj, yj〉 (for x = (. . . , x−1, x0, x1, . . .), y = (. . . , y−1, y0, y1, . . .) ∈
`2,p). For x ∈ `2,p, let ‖x‖2 = 〈x, x〉. Furthermore, for x ∈ `2,p and s ∈ Z, a ∈ 1, . . . , p, we

use x
(a)
s to denote the sth element of the ath (column) space. Suppose {As1,s2}s1,s2 are

p1 × p2-dimensional matrices, using this we define the infinite dimensional matrix A =

(As1,s2 ; s1, s2 ∈ Z). Under suitable conditions on A, A is a linear operator A : `2,p1 → `2,p2

in the sense that if Ax = y, then y = (. . . , y−1, y0, y1, . . .) where for all t ∈ Z, yt ∈ Rp2

and yt =
∑

τ∈ZAt,τxτ . Furthermore, we define ‖A‖2 = sup‖x‖2=1 ‖Ax‖2. All operators

are written in bold uppercase letters.

Assumption 2.1. Let v(·) = max(1, | · |).

(i) The covariance operator is positive definite with λsup = supv∈`2,p,‖v‖2=1〈v,Cv〉 < ∞
and 0 < λinf = infv∈`2,p,‖v‖2=1〈v,Cv〉.

(ii) There exists some κ > 1 such that for all t 6= τ we have for the p × p-dimensional

sub-matrices

‖Ct,τ‖2 ≤ Kv(t− τ)−κ,
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where K <∞ is some positive constant.

Since C is positive definite, the inverse covariance operator exists with D = C−1 =

(Dt,τ ; t, τ ∈ Z). We mention that the condition λsup < ∞ is implied by Assumption

2.1(ii).

The results in this paper allow for both low and high dimensional multivariate time

series and the assumptions used are specifically designed to allow for this. For high

dimensional time series, the condition that the largest eigenvalue is bounded excludes time

series with dynamic factors but allows for high dimensional sparse time series.1 Popular

examples include high dimensional sparse time series regression and vector autoregressive

(VAR) models which have recently received considerable attention; see, for example, Basu

and Michailidis (2015)2, Krampe et al. (2021), Krampe and Paparoditis (2021), (in the

context of stationary VAR models) and Ding et al. (2017) (for time-varying VAR models).

The condition that λinf > 0 omits co-linearity, where one component in the time series can

be perfectly explained by other components. Assumption 2.1(ii) quantifies the pairwise

dependencies between the components (over time) and is stated in terms of the (induced)

`2-norm ‖·‖2 of the p×pmatrices. However, no conditions are placed on the `1-norm, which

can grow with dimension p (as sparsity usually does in the sparse regression context). All

results in this paper are derived in terms of the ‖ · ‖2-norm. Thus we show that if

the pairwise interactions are controlled in the `2 sense as p grows, then the conditional

interactions are also controlled in the `2-sense.

Throughout this paper we use K to denote a generic constant that only depends on

λinf , λsup, K, κ and whose value may change from line to line. We define v(·) = max(1, | · |)
and ζ(j) as follows; for |j| ≤ 1 let ζ(j) = 1 and for |j| > 1 let ζ(j) = log |j|/|j|.

2.2 The inverse covariance

In the following theorem we obtain a bound on the rate of decay of the matrices Dt,τ that

make up the inverse covariance D = C−1. C is a bi-infinite matrix in the sense that the

entries Ct,τ span t, τ ∈ Z. We will also consider the one-sided infinite dimensional matrix

C(−∞, T ) = (Ct,τ ; t, τ ≤ T ). As will be clear later in the paper, the inverse of C(−∞, T )

1By dynamic factors we refer to the common component described in the representation given in
Forni et al. (2000). The common component contains (if any) the diverging eigenvalues of the process.
The bounded eigenvalues define in this decomposition the so-called idiosyncratic component. Hence,
if eigenvalues of C diverge with p, the results can be applied to the idiosyncratic component of this
decomposition.

2Note that the finite sample error bounds derived in Basu and Michailidis (2015) for the Lasso express
the dependence of the processes also in terms of λinf and λsup.
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contains (up to a factor) the AR prediction coefficients and the following result will be

used to obtain a bound on its rate of decay.

Theorem 2.1. Under Assumption 2.1, for all t, τ ∈ Z we have

‖Dt,τ‖2 ≤ Kζ(t− τ)κ−1, (1)

where K is a constant depending on K,κ, λinf , and λsup only and ζ(j) = v(log[v(j)])/v(j).

For t, τ ≤ T

‖[C(−∞;T )]−1]t,τ‖2 ≤ Kζ(t− τ)κ−1. (2)

Proof. The key ingredient in the proof is Lemma B.1 (in Appendix B), which bounds the

entries of the inverse of a banded matrix operator (and is a generalisation of Proposition

1 in Demko et al. (1984)). The details of the proof are in Appendix B.

The above result shows that if the pairwise interaction between the components is

bounded with a certain rate in the `2-sense then the conditional interactions are also

bounded with a certain rate in the `2-sense, see Remark 3.1 for a discussion on the role

of the dimension p.

Remark 2.1. In the case entries in C decay geometrically or are banded, then the entries

of D decay at a geometric rate.

Remark 2.2 (An alternative representation of the covariance C and its inverse). We

recall that we defined C as C = (Ct,τ ; t, τ ∈ Z), where Ct,τ are p×p-dimensional matrices.

An alternative method for defining C is to group the covariances according to component

i.e. C̃ = (C(a,b); 1 ≤ a, b ≤ p) where [C(a,b)]t,τ = C
(a,b)
t,τ = Cov[X

(a)
t , X

(b)
τ ]. C̃ is simply a

permutation of C, thus D̃ = C̃
−1

is a permutation of D. In certain applications, such

as nonstationary graphical models or condition covariance between two components of a

time series, the representations C̃ and D̃ may be more useful in the analysis than C and

D (see, for example, Basu and Subba Rao (2022)).

We now compare Theorem 2.1 with the classical result for stationary time series.

For this, suppose C = (Ct−τ ; t, τ ∈ Z) is a block Toeplitz operator from `2,p to `2,p,

where C satisfies the rate and positive definiteness conditions in Assumption 2.1. Then

D = C−1 = (Dt−τ ; t, τ ∈ Z) exists and is also a block Toeplitz operator. For block

Toeplitz operators Cheng and Pourahmadi (1993); Meyer and Kreiss (2015) work with
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a global condition on the sequence (Cs)s∈Z instead of the individual one used in this

paper. They showed that if the global condition
∑

s∈Z(1 + |s|κ)‖Cs‖2 < ∞ holds, then∑
s∈Z(1 + |s|κ)‖Ds‖2 < ∞. The global condition implies for all t, τ ∈ Z that ‖Ct−τ‖2 ≤

Kv(t− τ)−κ and ‖Dt−τ‖2 ≤ Kv(t− τ)−κ. Conversely, the individual condition that yields

this global condition is ‖Ct−τ‖2 ≤ Kv(t− τ)−κ−1−ε. In summary, even for block Toeplitz

matrices, at the individual level if ‖Ct−τ‖2 ≤ Kv(t − τ)−κ−ε then the above arguments

yield

‖Dt−τ‖2 ≤ Kv(t− τ)−κ+1, (3)

which is (without the log-factor) same as the rate derived in Theorem 2.1. To the best

of our knowledge, it is an open question if this rate at the individual level for the inverse

can be improved for stationary as well general nonstationary time series.

2.3 Vector Autoregressive representation and Baxter’s inequal-

ity

It is well known that for stationary time series the entries of C(−∞, T ) are closely related

to vector autoregressive (VAR(∞)) parameters of the underlying time series. The same

is true for nonstationary time series. Precisely, under Assumption 2.1 and by using the

projection theorem the bottom row of C(−∞, T )−1 contains the VAR(∞) coefficients in

the linear projection of XT onto the space spanned by sp(XT−1, XT−2, . . .) i.e.,

XT =
∞∑
j=1

ΦT,jXT−j + εT , where ΦT,j = −([C(−∞, T )−1]T,T )−1[C(−∞, T )−1]T,T−j, (4)

where εT is uncorrelated with {XT−j}∞j=1. Substituting the bound in Theorem 2.1 into

(4) gives

‖ΦT,j‖2 ≤ Kζ(t− τ)κ−1. (5)

In practice, it is often not possible to estimate the infinite number of AR parameters from

a finite data set. Therefore one often estimates the parameters of the projection of XT
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onto the finite past sp(XT−1, . . . , XT−d) i.e.,

XT =
d∑
j=1

ΦT,d,jXT−j + εT,d. (6)

The above is analogous to the best fitting VAR(d) parameters for stationary time series.

In stationary time series the difference between the finite past projection and the corre-

sponding infinite past projection is called the Baxter inequality; see Section 6 in Hannan

and Deistler (1988), Cheng and Pourahmadi (1993), and Meyer and Kreiss (2015). In

the same spirit, we now obtain a Baxter-type inequality for nonstationary multivariate

time series, between the VAR(∞) coefficients {ΦT,j}j and the finite prediction coefficients

{ΦT,d,j}j.
The coefficients {ΦT,d,j}j are embedded in the bottom row of the finite dimensional

matrix C(T − d, T )−1 where C(T − d, T ) = (Ct,τ ;T − d + 1 ≤ t, τ ≤ T ). Thus the

coefficients {ΦT,j}j and {ΦT,d,j}j are connected through C(T − d, T ) and C(−∞, T ) and

their inverses. Due to this connection we use Theorem 2.1 and the block operator inverse

identity (see equation (30) in Appendix A.2) to prove the result below.

Theorem 2.2 (Baxter type inequality). Suppose Assumption 2.1 holds with κ > 3/2. Let

{ΦT,j}j and {ΦT,d,j} be defined as in (4) and (6) respectively. Then for d ∈ N, j = 1, . . . , d

we have

sup
T
‖ΦT,d,j − ΦT,j‖2 ≤ Kζ(d)κ−3/2ζ(d− j)κ−3/2. (7)

Furthermore, if Assumption 2.1 holds with κ > 5/2 we have

sup
T

d∑
j=1

‖ΦT,d,j − ΦT,j‖2 ≤ Kζ(d)κ−3/2. (8)

Proof. In Appendix B.

Inequality (5) and Theorem 2.2 are related to Theorem 2.4 in Ding and Zhou (2021),

who obtain autoregressive approximations for nonstationary univariate time series. How-

ever, it is important to note that there are some differences in the autoregressive rep-

resentations derived in both papers. The autoregressive representation derived in (Ding

and Zhou, 2021) is based on the finite vector (X1, . . . , Xn) and their aim is to build an

autoregressive representation of increasing order over the time points of the data vector,
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i.e., Xi is represented as an AR(i − 1) model. In contrast, we derive an autoregressive

representation of a time series {Xt; t ∈ Z} where each time point has a V AR(∞) rep-

resentation. In the stationary context, building an autoregressive representation of an

increasing order relates to the Cholesky decomposition of Var(X1, . . . , Xn)−1 where the

ith model is given by the ith line. The AR(∞) model using the entire time series can be

considered as a limit of this, see Section 2 in Krampe and McMurry (2021) for further

discussion. With this difference in mind, we now compare the rates in Section 2.2 with the

results in Theorem 2.4 in Ding and Zhou (2021). Their decay rate for the autoregressive

coefficients matches with that derived in (5). In terms of Baxter’s inequality, they show

maxT>b max1≤j≤b |ΦT,T−1,j − ΦT,b,j| ≤ C(log b)κ−1b−κ+3. Using Theorem 2.2 we compare

the coefficients of the two finite AR models (order T − 1 and order b), and obtain tighter

bounds for their result. To be precise

max
T
‖ΦT,T−1,j − ΦT,b,j‖2 ≤ max

T
(‖ΦT,T−1,j − ΦT,j‖2 + ‖ΦT,j − ΦT,b,j‖2)

≤ K
(
ζ(T − j)κ−3/2 + ζ(b− j)κ−3/2

)
(log(b)/b)κ−3/2.

The above leads to the bound maxT>b max1≤j≤b |ΦT,T−1,j −ΦT,b,j| = O(b−κ+3/2 logκ−3/2 b)

instead of O(b−κ+3 logκ−1 b) (given in Ding and Zhou (2021)).

We now compare Theorem 2.2 to the stationary set-up. Meyer and Kreiss (2015)

showed that under the following global condition on the vector autoregressive parameters∑
s∈Z(1 + |s|κ)‖Φs‖2 <∞, that

d∑
j=1

(1 + j)κ‖Φd,j − Φj‖2 ≤ K
∞∑

j=d+1

(1 + j)κ‖Φj‖2, (9)

noting that we have dropped T as it is not necessary under stationarity. (9) implies∑d
j=1 ‖Φd,j − Φj‖2 ≤ Kd−κ. Based on the discussion at the end of Section 2.2, at the

individual level this means if ‖Cs‖2 ≤ Kv(s)−κ−ε, then
∑d

j=1 ‖Φd,j − Φj‖2 ≤ Kd−κ+1,

whereas Theorem 2.2 gives
∑d

j=1 ‖Φd,j −Φj‖2 ≤ Kd−κ+3/2. Thus stationarity of the time

series yields a better approximation bound between the finite and infinite AR parameters

than the bound in Theorem 2.2.
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3 Locally stationary time series

The first rigorous treatment of locally stationary time series was given in (Dahlhaus,

1997, 2000b). This was done by representing {Xt,T}Tt=1 in terms of a Cramér represen-

tation Xt,T =
∫ 2π

0
At,T (ω)dZ(ω), where {Z(ω);ω ∈ [0, 2π]} is an orthogonal increment

process and the time-varying transfer function At,T (ω) can locally be approximated by

the Lipschitz smooth function A(ω; ·) i.e. ‖At,T (ω)−A(ω;u)‖2 ≤ K(|t/N−u|+1/N). This

definition immediately leads to certain smoothness properties on the covariance structure

of the time series. More recently, several authors have extended this definition to non-

linear time series cf. (Dahlhaus and Subba Rao, 2006; Subba Rao, 2006; Zhou and Wu,

2009; Vogt, 2012; Truquet, 2019; Dahlhaus et al., 2019; Karmakar et al., 2021). In this

section, we return, in some sense, to the original formulation of local stationarity and

focus on the locally stationary second order structure. However, unlike (Dahlhaus, 1997,

2000b), we work within the time domain and not the frequency domain. We start by

introducing the locally stationary setting, i.e., we impose certain smoothness conditions

on the nonstationary time series. In Section 3.2 we obtain bounds on the eigenvalues of

the underlying covariance. Using Theorem 2.1, in Section 3.3 we show that smoothness

conditions placed on the covariance structure transfer over to the inverse covariance and

the parameters in the nonstationary AR(∞) representation. Finally, in Section 3.4, we

apply these results to show that the smoothness conditions also transfer to the partial

covariances.

3.1 Assumptions

We start by defining an infinite array, where for eachN ∈ N we associate a (non)stationary

multivariate time series {Xt,N ; t ∈ Z} and covariance C
(N)
t,τ = Cov[Xt,N , Xτ,N ] (for all

t, τ ∈ Z). For each N we define the infinite dimensional covariance matrix C(N) =

(C
(N)
t,τ ; t, τ ∈ Z). In the assumptions below we explicitly connect the sequence of infinite

dimensional covariance matrices {C(N)}N∈N through N , which plays the role of a smooth-

ing parameter. We mention that it is standard practice in the locally stationary literature

to define Xt,N on a triangular array i.e. {Xt,N}Nt=1. However, to avoid confusion, we do

not link N to sample size. It is also worth pointing out that we use N ∈ N to simplify the

exposition, we could, without loss of generality, allow N to be a non-integer and define it

on N ∈ [α,∞) (for some α > 0).
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Assumption 3.1. (i) Eigenvalue condition: There exists some N0 ≥ 1 where

0 < λinf ≤ inf
N≥N0

λinf(C
(N)) ≤ sup

N≥N0

λsup(C(N)) ≤ λsup <∞.

(ii) Covariance decay condition: For all N , t and τ ‖C(N)
t,τ ‖2 ≤ K

v(t−τ)κ
.

(iii) Smoothness condition: There exists a Lipschitz continuous matrix function {Cr(·), r ∈
Z} where (a) Cr(u) = C−r(u)>, (b) for all u, v ∈ R, r ∈ Z supu ‖Cr(u)‖2 ≤ K/v(r)κ,

and (c) ‖Cr(u)− Cr(v)‖2 ≤ K|u−v|
v(r)κ

, such that for all N

‖C(N)
t,τ − Ct−τ (t/N)‖2 ≤

K

v(t− τ)κ−1
min

(
1

N
,

2

v(t− τ)

)
. (10)

We assume that κ > 3.

Note that the above assumptions imply that

‖C(N)
t,τ − Ct−τ (u)‖2 ≤

K

v(t− τ)κ−1
min

[(
|u− t

N
|+ 1

N

)
,

2

v(t− τ)

]
.

Furthermore, the sequence {Cr(·), r ∈ Z} defines the infinite dimensional matrix operator

C(·) = (Ct−τ (·); t, τ ∈ Z) (from `2,p to `2,p), where C(·) is block Toeplitz.

Assumption 3.1(i) and (ii) can be viewed as Assumption 2.1 within the framework

of an infinite array. Assumption 3.1(iii) places smoothness conditions on the covariance

i.e., the (potentially) non-Toeplitz-operator C(N) can locally be approximated by a block

Toeplitz-operator C(·), where the approximation error is determined by the smoothing

parameter N . The use of min in Assumption 3.1(iii) is not standard within the locally

stationary literature. This arises because the time series {Xt,N}t is defined on t ∈ Z
and not t = 1, . . . , N (the typical locally stationary set-up). If |t − τ | < 2N , then

Assumption 3.1(iii) implies that ‖C(N)
t,τ − Ct−τ (t/N)‖2 ≤ K

Nv(t−τ)κ−1 (the classical locally

stationary condition). On the other hand, if |t− τ | ≥ 2N , then the smoothing parameter

N does not improve on the individual terms C
(N)
t,τ and Ct−τ (t/N) (which are extremely

small) and we have ‖C(N)
t,τ −Ct−τ (t/N)‖2 ≤ 2K

v(t−τ)κ
. To distinguish these two cases all the

relevant results will be stated with min.

Remark 3.1 (The role of dimension p). In Assumption 3.1 we have not included the

dimension p as an additional variable. This is to reduce cumbersome notation. However,

it is possible to state Assumption 3.1 in terms of uniform bounds over a three dimensional
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array where the eigenvalues are uniformly bounded over both N and p (and C(N) and

C(u) are indexed with p too). If these assumptions hold, then the results in this section

hold for high dimensional p too.

Assumption 3.1 is satisfied by a wide range of locally stationary time series. In Ex-

ample 3.1 (below) and 3.2 we define the time-varying Vector Moving Average (tv-VMA)

model and show that this model satisfies Assumption 3.1.

Example 3.1 (The time-varying vector MA(∞)(tv-VMA) process). Consider the tv-

VMA(∞)

Xt,N =
∞∑
j=0

Ψ
(N)
t,j εt−j =

∞∑
j=1

Ψ
(N)
t,j εt−j + Ψt,0εt, t ∈ Z,

where {εt}t are uncorrelated random variables with zero mean and variance Ip. In order for

the process to be well defined certain summability or decay conditions need to be imposed

on the coefficients {Ψt,j}. We assume that supN∈N supt∈Z ‖Ψ
(N)
t,j ‖2 ≤ Kv(j)−κ. With this,

we have

C
(N)
t,τ = Cov(

∞∑
j=0

Ψ
(N)
t,j εt−j,

∞∑
j=0

Ψ
(N)
τ,j ετ−j) =

∑
j∈Z

Ψ
(N)
t,j (Ψ

(N)
τ,j+τ−t)

>,

where we set Ψ
(N)
t,j = 0 for j < 0. Using the above decay condition on Ψ

(N)
t,j and Lemma A.4

we have ‖C(N)
t,τ ‖2 ≤ Kv(t− τ)κ; thus Assumption 3.1(ii) holds. We now introduce the lo-

cally stationary approximation to {Xt,N}. Analogous to Dahlhaus (1997) and Dahlhaus

and Polonik (2006) (for the case p = 1), we assume there exists a Lipschitz continu-

ous matrix function Ψj(·) where supu∈R ‖Ψj(u)‖2 ≤ Kv(j)−κ, supu∈R ‖Ψj(u)−Ψj(v)‖2 ≤
K|u− v|v(j)−κ, and ‖Ψ(N)

t,j −Ψj(t/N)‖ ≤ Kv(j)−κ/N . Using this, we define the station-

ary process {Xt(u)}t where Xt(u) =
∑∞

j=0 Ψt,j(u)εt−j which has autocovariance Cr(u) =∑
j∈Z Ψj(u)Ψj+r(u)> (where we set Ψj(u) = 0 for j < 0). Note supu ‖Cr(u)‖2 ≤ K/v(r)κ
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(this follows from Lemma A.4). Furthermore, under these conditions we have

‖C(N)
t,τ − Ct−τ (t/N)‖2 ≤

∑
j∈Z

‖Ψ(N)
t,j −Ψj(t/N)‖2‖Ψ(N)

τ,j+τ−t‖2

+
∑
j∈Z

‖Ψj(t/N)‖2

(
‖Ψj+τ−t(t/N)−Ψj+τ−t(τ/N)‖2

+‖Ψj+τ−t(τ/N)−Ψ
(N)
τ,j+τ−t‖2

)
≤ K

N

∑
j∈Z

(
1

v(j)κv(j + t− τ)κ−1
+

|t− τ |
v(j)κv(j + t− τ)κ

)
≤ K

Nv(t− τ)κ−1
.

Thus Assumption 3.1(iii) holds. We observe that this example illustrates why the rate

drops from κ to κ − 1 in ‖C(N)
t,τ − Ct−τ (t/N)‖2; there is an additional ”cost” due to the

inclusion of the term |t− τ |.
In Example 3.2 (in Section 3.2) we show that Assumption 3.1(i) is also satisfied (for

sufficiently large N).

3.2 Properties of the locally stationary covariance

In this subsection we show that positive definiteness of C(N) transfers to C(·) under the

stated smoothness condition. Conversely, we show that also the other direction holds i.e.,

for a sufficiently large N0 positive definiteness of C(u) implies that C(N) is also positive

definite (for N > N0).

Theorem 3.1 (Positive definiteness of C(u)). Suppose Assumption 3.1 holds. Then, for

all u ∈ R {Cr(u)}r is a positive definite sequence where λinf ≤ λinf(C(u)) ≤ λsup(C(u)) ≤
λsup.

Proof. In Appendix C.1.

Under the above theorem, {Cr(u)}r is a positive definite sequence. Consequently

by Kolmogorov’s extension theorem there exists a stationary multivariate time series

{Xt(u)}t∈Z which has {Cr(u)}r∈Z as its autocovariance function. This justifies call-

ing {Xt,N}t∈Z a “locally” second order stationary time series. A further implication of

Lemma 3.1 is that the inverse of C(u) exists, which we denote by D(u) = C(u)−1 =

{Dt−τ (u); t, τ ∈ Z}. Like C(u), D(u) is also block Toeplitz and by Theorem 2.1 the
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p× p-dimension matrix Dt−τ (u) has the bound

sup
u
‖Dt−τ (u)‖2 ≤ Kζ(t− τ)−κ+1. (11)

For a given nonstationary time series model, Assumption 3.1(i) is difficult to directly

verify. However, we now show that given a positive definite sequence {Cr(u)}r which

satisfies Assumption 3.1(ii,iii), then Assumption 3.1(i) holds. For the univariate case, a

similar result is given in (Ding and Zhou, 2021, Proposition 2.9).

Theorem 3.2. Suppose {Xt,N}t∈Z is a locally stationary time series whose covariance

C(N) = (C
(N)
t,τ ; t, τ ∈ Z) satisfies Assumption 3.1(ii,iii). Let f(ω;u) =

∑
r∈ZCr(u) exp(irω)

be the local spectral density. If

0 < γinf ≤ inf
u

inf
ω
λmin(f(ω;u)) ≤ sup

u
sup
ω
λmax(f(ω;u)) ≤ γsup <∞, (12)

then there exists a N0, λinf and λsup where for all N ≥ N0 we have

0 < λinf ≤ λinf(C
(N)) ≤ λsup(C(N)) ≤ λsup <∞.

Proof. In Appendix C.1.

Equipped with the above results, we return to Example 3.1.

Example 3.2 (Example 3.1, continued). We define the local spectral density as

f(ω;u) = [
∞∑
j=0

Ψj(t/N) exp(−ijω)][
∞∑
j=0

Ψj(t/N) exp(ijω)]>.

Under the conditions of Example 3.1 we have supu supω λmax(f(ω;u)) ≤
∑

j∈ZKv(j)−κ =:

γsup <∞. Furthermore, if we have a non-vanishing filter in the sense

inf
u∈R,z∈C,|z|=1

λmin(
∞∑
j=0

Ψj(u)zj) ≥ γ
1/2
inf > 0,

then infu infω λmin(f(ω;u)) ≥ γinf . Thus the conditions in Theorem 3.2 are satisfied, and

for a sufficiently large N0, there exists 0 < λinf ≤ λsup <∞ such that for all N ≥ N0 we

have

0 < λinf ≤ λinf(C
(N)) and λsup(C(N)) ≤ λsup <∞.
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In summary, the results in this section tell us the following. If an array of nonstationary

time series satisfy Assumption 3.1, then there exists a stationary time series {Xt(u)} whose

covariance is {Cr(u)}. Conversely, if we define a nonstationary time series {Xt,N}t with

covariance C(N) and an accompanying stationary time series {Xt(u)}t whose covariances

satisfy (12) and Assumption 3.1(ii,iii), then the positive definite condition in Assumption

3.1(i) holds. One important application of this result is given in Example 3.1. However,

the same result holds for more general models, including the models which satisfy the

physical dependence conditions considered in Zhou and Wu (2009), Dahlhaus et al. (2019),

Karmakar et al. (2021), Zhang and Wu (2021) and Ding and Zhou (2021)). In the following

theorem we make this precise.

Theorem 3.3. Suppose that {Xt,N}t is a zero mean multivariate time series of dimension

p with the causal representation Xt,N = Gt,N(Ft) where Ft = (εt, εt−1, . . .) and {εt} are

independent, identically distributed (iid) random vectors of dimension p. Associated with

{Xt,N} we define the multivariate stationary time series {Xt(u)}t where Xt(u) = G(u,Ft).

Using Xt,N and Xt(u) we define the error process

et,N = Xt,n −Xt(t/N) = Et,N(Ft).

and difference process Xv1,v2
t = (Xt(v1) − Xt(v2)). Suppose {ε̃t}t are iid random vec-

tors that are independent of {εt} but with the same distribution and define Ft|{t−j} =

(εt, εt−1, . . . , εt−j+1, ε̃t−j,

εt−j−1, . . .). Then we define the coupled processes as Xt,N |{t−j} = Gt,n(Ft|{t−j}), Xt|{t−j}(u) =

G(u,Ft|{t−j}), Xv1,v2
t|{t−j} = G(v1,Ft|{t−j}) − G(v2,Ft|{t−j}) and et,n|{t−j} = Et,N(Ft|{t−j}).

Suppose the following hold:

(A) Spectral-norm physical dependence

sup
N

sup
t
‖Var(Xt,N −Xt,N |{t−j})‖2 ≤ Kδj

sup
u
‖Var(Xt|{t−j}(u)−Xt|{t−j}(u))‖2 ≤ Kδj

sup
t
‖Var(Xv1,v2

t −Xv1,v2
t|{t−j})‖2 ≤ K|v1 − v2|δj

sup
N

sup
t
‖Var(et,N − et,N |{t−j})‖2 ≤ KN−1δj,

where δj = v(j)−κ, κ > 3 and K is a finite constant.

(B) Let Cr(u) = Cov[X0(u), Xr(u)] and f(ω;u) =
∑

r∈ZCr(u) exp(irω). Then we as-
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sume the spectral density matrices satisfy

0 < inf
u,ω

λinff(ω;u) ≤ sup
u,ω

λsupf(ω;u) <∞.

Under the above conditions, Assumption 3.1(ii,iii) is satisfied (with the same κ as that

given in the conditions) and for a sufficiently large N0, Assumption 3.1(i) is satisfied.

Proof. In Appendix C.1.

We observe that in the theorem above the physical dependence condition (A) is de-

scribed in terms of a spectral-norm of a variance.

Remark 3.2. It is worth mentioning that Condition (A) in Theorem 3.3 is equivalent to

‖Var(Xt,N −Xt,N |{t−j})‖2 = ( max
‖x‖2=1

E[|x>(Xt,N −Xt,N |{t−j})|2])1/2.

Using the latter representation a generalisation to a bound on the qth moment:

(max‖x‖2=1 E[|x>(Xt,N−Xt,N |{t−j})|q])1/q is possible, thus generalising physical dependence

in terms of any norm. Recently, ? used such a generalisation.

Example 3.3 (Locally stationary stochastic recurrence equations). We now show that

the nonstationary stochastic recurrence models studied in Subba Rao (2006) and Dahlhaus

et al. (2019) satisfy the conditions in Theorem 3.3.

Let us suppose that {Xt,N} has the representation

Xt,N = A(t/N, εt)Xt−1,N + b(t/N, εt)

where {εt} are iid random vectors. The above model includes time-varying random coeffi-

cient vector autogressive models, time-varying vector GARCH models and Bilinear models

(if the εt in A(t/N, εt) were changed to εt−1) as special cases.

Based on the above model we define the stationary time series model

Xt(u) = A(u, εt)Xt−1(u) + b(u, εt).

Suppose supu ‖E[A(u, εt)A(u, εt)
>]‖2 < ρ < 1, supu ‖E[b(u, εt)b(u, εt)

>]‖2 <∞ and for all

v1 and v2 ‖E[(A(v1, εt)−A(v2, εt))(A(v1, εt)−A(v2, εt))
>]‖2 ≤ K|v1−v2| and ‖E[(b(v1, εt)−

b(v2, εt))(b(v1, εt) − b(v2, εt))
>]‖2 ≤ K|v1 − v2|. Under these conditions it can be shown
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that Xt,N and Xt(u) almost surely have the causal solution

Xt,N = gt,N(Ft) =
∞∑
s=0

s−1∏
i=0

A((t− i)/N, εt−i)b((t− s)/N, εt−s)

Xt(u) = g(u,Ft) =
∞∑
s=0

s−1∏
i=0

A(u, εt−i)b(u, εt−s).

Further in Lemma C.4 we show that Condition (A) in Theorem 3.3 holds with

δj = K(
∞∑
s=j

s3/2ρ(s−1)/2)2.

3.3 Locally stationary approximations of the inverse covariance

In this section we show that properties on the covariance operator C(N) transfer to the

inverse covariance operator D(N) = (C(N))−1. Specifically, in the following theorem we

show that the relationship between C(N) and C(u) in Assumption 3.1(ii,iii) carry over

to D(N) and D(u) = C(u)−1 up to a (small) loss in rate. This result is used to show

”approximate” smoothness of the time-varying VAR coefficients in representation (4).

Theorem 3.4. Suppose Assumption 3.1 holds. Then for all t, τ ∈ Z, Dt−τ (u) is Lipschitz,

in the sense that for all u, v ∈ R

‖Dt−τ (u)−Dt−τ (v)‖2 ≤ K|u− v|ζ(τ − t)κ−1. (13)

Furthermore, we have for all t, τ ∈ Z∥∥∥∥[D(N) −D(t/N)
]
t,τ

∥∥∥∥
2

≤ Kζ(t− τ)κ−2 min(1/N, 2ζ(t− τ)), (14)

where K is a finite constant that is independent of u, v, t, τ .

Proof. In Appendix C.3.

An important consequence of Theorem 3.4 is that when working with C and D it is

enough to put smoothness conditions on one of them as the smoothness transfers to the

other. In particular, conditions can be stated in terms of the covariance of the original

time series. Furthermore, we note that differentiability conditions also transfer from Cr(u)

to Dr(u). E.g., if one starts with the condition that for all r supu ‖
dCr(u)
du
‖2 ≤ Kζ(r)κ−1,
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then using the same arguments as those used in the proof of Theorem 3.4 (outlined after

the proof of Theorem 3.4 in Appendix C.3) we have

‖dDr(u)

du
‖2 ≤ Kζ(r)κ−1. (15)

Smoothness and differentiability conditions on D(N) and D(u) are used in Basu and

Subba Rao (2022) (stated in Assumption 4.2) to obtain certain rates of decay on the

Fourier transform of D(N). Theorem 3.4 and (15) show that these conditions can be

equivalently stated in terms of smoothness and differentiability conditions on covariance

C(N) and C(u). It is worth noting that the loss in the rate of decay for the inverse in

Section 2 is also present in Theorem 3.4.

We now state a result that is analogous to Theorem 3.4, but for one-sided matrices.

This result will be useful in proving Theorem 3.6 (below) on smoothness properties of

time-varying VAR representations.

Theorem 3.5. Suppose Assumption 3.1 holds and let C(N)(−∞, T ) = (C
(N)
t,τ ; t, τ ≤ T )

and C(−∞, T ;u) = (Ct,τ (u); t, τ ≤ T ) Then for all t, τ ≤ T we have

‖
[
C(N)(−∞, T )−1 −C(−∞, T ;T/N)−1

]
t,τ
‖2

≤ Kζ(t− τ)κ−2 min(1/N, 2ζ(t− τ))

Proof. In Appendix C.3

We now apply Theorem 3.4 to the popular time-varying VAR model. Let us suppose

that {Xt,N} has the tv-VAR(d) representation

Xt,N =
d∑
j=1

Φj(t/N)Xt−j,N + Σ(t/N)1/2εt, t ∈ Z, (16)

where {εt}t are uncorrelated random vectors with variance Ip. In contrast to the tv-VAR

representation given in (6), the tv-VAR model is defined with Lipschitz conditions on the

matrices Φj(·) and Σ(·). The tv-VAR(d) model with smooth AR coefficients as defined

in (16) is attractive because its coefficients are straightforward to interpret and has been

used in econometrics and in neuroscience (see, for example, Ding et al. (2017); Safikhani

and Shojaie (2020); Yan et al. (2021)). Let C(N) denote the covariance corresponding

to {Xt,N}. Obtaining a rate of decay for the covariance by directly analyzing C(N) is
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unwieldy (see Künsch (1995) for the univariate proof). However, we show below that

starting with the inverse D(N) = (C(N))−1 (which is a banded matrix, since Xt,N has a

tvVAR(p) representation) we can use Theorem 2.1 and 3.4, to transfer the information

on the rate of decay of the inverse covariance operator to the covariance operator itself.

Corollary 3.1 (Application of Theorem 3.4 to tvVAR models). Suppose that the mul-

tivariate time series {Xt,N}t has the time-varying VAR(d) representation in (16), where

we assume there exists a δ > 0 and γ where

inf
u∈R,z∈C,|z|≤1+δ

λmin(Ip −
d∑
j=1

Φj(u)zj) ≥ γ > 0, (17)

and the matrices Φj(·) are Lipschitz continuous in the sense that ‖Φj(u) − Φj(v)‖2 ≤
K|u− v|. We further assume that Σ(·) is Lipschitz continuous in the sense that ‖Σ(u)−
Σ(v)‖2 ≤ K|u − v| and for all u ∈ R Σ(u) is positive definite (with eigenvalues that

are bounded from above and away from zero uniformly over all u). Let C(N) denote the

covariance operator of {Xt,N}t and Cr(u) =
∫ 2π

0
f(ω;u) exp(−irω)dω, where f(ω;u) =

[Ip−
∑d

j=1 Φj(u) exp(−ijω)]−1Σ(u)([Ip−
∑d

j=1 Φj(u) exp(ijω)]−1)>. Then, there exists an

N0 and 0 < ρ < 1 such that for all N > N0 we have ‖C(N)
t,τ ‖2 ≤ Kρ|t−τ |, ‖Cr(u)−Cr(v)‖2 ≤

K|u− v|ρ|t−τ |, and ‖C(N)
t,τ − Ct−τ (t/N)‖2 ≤ Kρ|t−τ |/N.

Proof. In Appendix C.3.

Remark 3.3 (Differentiability of the tv-VAR covariance). As mentioned after The-

orem 3.4 in equation (15), smoothness conditions in terms of differentiability trans-

fer between C(·) and D(·). For the tv-VAR model this implies that smoothness condi-

tions formulated in terms of differentiability of the transition matrices Φj(·) transfer to

D(·), then from equation (15) they transfer to C(·). Ding et al. (2017), Lemma 3.1

also prove that differentiability of Φ1(·) implies differentiability of the covariance for tv-

VAR(1) models. They show this result by directly connecting the covariance to Φ1(·)
through the tv-VAR(1) model. However, their proof requires the additional condition that

‖Φ1‖1 = max‖x‖1=1 ‖Φ1x‖1 < 1, which places quite strict conditions on the VAR parame-

ters.

We apply Corollary 3.1 to the time-varying ARCH process.

Example 3.4 (The time-varying ARCH(p) process). The time-varying ARCH model is
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defined as follows. Let

Xt,N = σt,NZt σ2
t,N = a0(t/N) +

p∑
j=1

aj(t/N)X2
t−j,

where {Zt} are iid random variables with mean zero and variance one and the coefficients

aj(·) are Lipschitz continuous and such that infu a0(u) > 0, for 1 ≤ j ≤ p aj(·) ≥ 0 and

are such that supu(E[Z4
0 ])1/2

∑p
j=1 aj(u) < 1. Under these conditions it can be shown that

supt,N E[X4
t,N ] <∞ and that X2

t,N has the tvAR(p) representation

X2
t,N = a0(t/N) +

p∑
j=1

aj(t/N)X2
t−j,N + εt,N

where εt,N = σ2
t,N(Z2

t − 1). The condition that supu
∑p

j=1 aj(u) < 1 (which is implied by

the condition supu(E[Z4
0 ])1/2

∑p
j=1 aj(u) < 1) implies that (17) holds. Thus by applying

Corollary 3.1, Assumption 3.1 holds for the time-varying ARCH process.

We have shown in (4) that under certain conditions all nonstationary time series have

an AR(∞) representation. But there is no guarantee that the AR parameters are smooth.

Below, we show below that under the locally stationary conditions in Assumption 3.1 a

smooth approximation is possible.

We recall from (4) that {XT,N}t has the representation

XT,N =
∞∑
j=1

Φ
(N)
T,j XT−j,N + εT,N , (18)

where {εT,N}t∈Z are uncorrelated random vectors with ΣT,N = Var[εT,N ]. We have shown

in Section 3.2 that under Assumption 3.1 there exists a stationary time series {Xt(u)}t
with autocovariance {Cr(u)}r. Using the arguments leading to (4), it can be shown that

{Xt(u)}t has the VAR(∞) representation

Xt(u) =
∞∑
j=1

Φj(u)Xt−j(u) + εt(u), (19)

where εt(u) are uncorrelated random vectors with variance Σ(u) = Var[εt(u)]. In the

following theorem we show that {Φ(N)
T,j } can be approximated by the stationary VAR

coefficients {Φj(u)}.
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Theorem 3.6. Suppose the array of time series {XT,N}t satisfy Assumption 3.1 and let

{Φ(N)
t,j }j be defined as in (18) with Σ

(N)
T = Var[εT,N ]. Additionally, let {Xt(u)}t be the

locally stationary approximation defined in (19).

(i) Then for all T ∈ Z and j ≥ 1 we have

‖Σ(N)
T − Σ(T/N)‖2 ≤

K
N

and ‖Φ(N)
T,j − Φj(T/N)‖2 ≤ Kζ(j)κ−2 min(2ζ(j), 1/N)

(ii) For all u1, u2 ∈ R and j ≥ 1

‖Σ(u1)− Σ(u2)‖2 ≤ K|u1 − u2|

and ‖Φj(u1)− Φj(u2)‖2 ≤ Kζ(j)κ−1|u1 − u2|.

Proof. In Appendix C.3

Remark 3.4 (Approximation and estimation by finite order tv-VAR). From above the-

orem, if a process is locally stationary then it can be approximated by an time-varying

VAR(∞) time series with slowly varying parameters. Consequently by using Meyer and

Kreiss (2015) this implies that the locally stationary time series can be approximated

with a finite order time-varying VAR(d) with slowly varying parameters. More pre-

cisely, let {Φd,j(u)}dj=1 denote the finite order (stationary) VAR(d) parameters associ-

ated with the vector autocovariance {Cr(u)}r. Then by Meyer and Kreiss (2015) we have

supu
∑d

j=1 ‖Φd,j(u) − Φj(u)‖2 ≤ Kd−κ. This result together with Theorems 2.2, 3.6 and

the triangle inequality gives

d∑
j=1

‖ΦT,d,j − Φd,j(T/N)‖2 ≤ K
(
N−1 + ζ(d)κ−3/2

)
.

A potential application of Theorem 3.6 is that it could be used (i) in forecasting and (ii)

to develop a bootstrap procedure for nonstationary time series by transferring the widely

used stationary AR-sieve to the locally stationary setup. Both procedures would require

estimators of the the finite order time-varying VAR parameters {Φd,j(T/N)}. One could

estimate this using local kernel methods or the sieve estimation method described in Ding

and Zhou (2020).

Remark 3.5 (Innovations and Kolomogorov’s formula). An immediate implication of the
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above result is that the time varying innovation variance Σ
(N)
t can be approximated by

Kolomogorov’s formula

det[Σ
(N)
t ] =

∫ π

−π
log det[f(t/N ;ω)]dω +O(1/N)

where f(u;ω) =
∑

r∈ZCr(u) exp(irω). A similar result was obtained in Liu et al. (2021),

Proposition 1 for a specific class of locally stationary time series.

3.4 The partial covariance of a locally stationary time series

The partial covariance is commonly used in the analysis of time series as a measure of

linear dependence between two time series after accounting for all the other components

in the time series. For stationary time series, the analysis is typically conducted through

the partial spectral coherence which is the standardized Fourier transform of the partial

covariance, and is, conveniently, a function of the spectral density matrix function (cf.

Priestley (1981); Brillinger (2001); Dahlhaus (2000a); Krampe and Paparoditis (2022)).

For nonstationary time series the time-varying partial spectral coherence can be defined

as a function of the localized inverse spectral density, as was done in Park et al. (2014).

However, as far as we are aware, there are no results that connect this definition (of the

time-varying partial spectral coherence) to the actual partial covariance of the underlying

nonstationary time series.

We use the results on inverse covariances (developed in Section 3.3) to show that the

partial covariance of a locally stationary time series (as defined in Assumption 3.1) can

be approximated by a smooth function, which, in turn, is the partial covariance of the

locally stationary approximation {Xt(u)}t. We show below that this result can be used

to justify using the time-varying partial spectral coherence as an approximation of the

Fourier transform of the localized partial covariance.

We start by defining the partial covariance for nonstationary time series. For this,

let H(N) = sp(X
(c)
t,N ; t ∈ Z, 1 ≤ c ≤ p) denote the space spanned by the entire multivari-

ate time series. Furthermore, let S ⊆ {1, . . . , p} =: V be a set of indices referring to

components of the time series and H(N) − (X(c); c ∈ S) = sp[X
(c)
s,N ; s ∈ Z, c ∈ S ′] be the

space spanned by the entire time series of the components in S ′ only, where S ′ denotes

the complement of S. Let PM(Y ) denote the orthogonal projection of Y ∈ H(N) onto

the subspace M. For any S ⊆ V , we define the residual of X
(a)
t,N after projecting on
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H(N) − (X(c); c ∈ S) as

X
(a)|9S
t,N := X

(a)
t,N − PH(N)−(X(c);c∈S)(X

(a)
t,N), t ∈ Z. (20)

In the definitions below we focus on the two sets S = {a, b} and S = {a}, a, b ∈ V, a 6= b.

Using the above, we define the partial covariance

∆
9{a,b}
t,τ,N =

(
ρ

(a,a)|9{a,b}
t,τ,N ρ

(a,b)|9{a,b}
t,τ,N

ρ
(b,a)|9{a,b}
t,τ,N ρ

(b,b)|9{a,b}
t,τ,N

)
:= Cov

[(
X

(a)|9{a,b}
t,N

X
(b)|9{a,b}
t,N

)
,

(
X

(a)|9{a,b}
τ,N

X
(b)|9{a,b}
τ,N

)]
(21)

and self partial covariance

ρ
(a,a)|9{a}
t,τ,N = Cov[X

(a)|9{a}
t,N , X

(a)|9{a}
τ,N ]. (22)

As will become clear in the proof of the following theorem ∆
9{a,b}
t,τ,N and ρ

(a,a)|9{a}
t,τ,N can be

expressed in terms of the matrix operator C(N) and its inverse. Under Assumption 3.1

and by Theorem 3.1 there exists a stationary time series {Xt(u)}t which has covariance

C(u), that locally approximates C(N). Using C(u) we will define the partial covariances

corresponding to the stationary time series {Xt(u)}t. In the theorem below we show that

the partial covariances of {Xt(u) = (X
(1)
t (u), . . . , X

(p)
t (u))>}t locally approximates the

partial covariance of {Xt,N = (X
(1)
t,N , . . . , X

(p)
t,N)>}t. To do this, analogous to (20), (21) and

(22) we define

X
(a)|9S
t (u) := X

(a)
t,N(u)− PHu−(X

(c)
u ;c∈S)

(X
(a)
t (u)) for t ∈ Z, (23)

∆
9{a,b}
t−τ (u) =

(
ρ

(a,a)|9{a,b}
u,t−τ ρ

(a,b)|9{a,b}
u,t−τ

ρ
(b,a)|9{a,b}
u,t−τ ρ

(b,b)|9{a,b}
u,t−τ

)
:= Cov

[(
X

(a)|9{a,b}
t (u)

X
(b)|9{a,b}
t (u)

)
,

(
X

(a)|9{a,b}
τ (u)

X
(b)|9{a,b}
τ (u)

)]
(24)

and self partial covariance

ρ
(a,a)|9{a}
t−τ (u) = Cov[X

(a)|9{a}
t (u), X(a)|9{a}

τ (u)]. (25)

We note that a key ingredient in the proof of the theorem below is that the partial

covariance can be expressed as

Var
[
X

(e)|9{a,b}
t,N ; t ∈ Z, e ∈ {a, b}

]
= CS,S −CS,S′C

−1
S′,S′C

>
S,S′ ,
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where S = {a, b}, CS,S = (C(e,f); e, f ∈ S) (similarly for CS,S′ and CS′,S′) and C(e,f) =

(Cov[X
(e)
t,N , X

(f)
τ,N ]; t, τ ∈ Z). The presence of C−1

S′,S′ in the above expression explains why

the results in the previous sections (in particular Theorem 3.4) are necessary for proving

the result.

Theorem 3.7. Suppose Assumption 3.1 holds and let further ∆
9{a,b}
t,τ,N , ρ

(a,a)|9{a}
t,τ,N , ∆

9{a,b}
t−τ (u),

and ρ
(a,a)|9{a}
t−τ (u) be defined as in (21), (22), (24) and (25). Then for all a, b ∈ {1, . . . , p}

‖∆9{a,b}
t,τ,N −∆

9{a,b}
t−τ (t/N)‖2 ≤ Kζ(t− τ)κ−2 min(1/N, ζ(t− τ)) (26)

‖∆9{a,b}
t−τ (u)−∆

9{a,b}
t−τ (v)‖2 ≤ K|u− v|ζ(t− τ)κ−1 (27)

‖ρ(a,a)|9{a}
t,τ,N − ρ(a,a)|9{a}

t−τ (t/N)‖2 ≤ Kζ(t− τ)κ−2 min(1/N, ζ(t− τ)) (28)

and ‖ρ(a,a)|9{a}
t−τ (u)− ρ(a,a)|9{a}

t−τ (v)‖2 ≤ K|u− v|ζ(t− τ)κ−1, (29)

where K is a positive generic constant.

Proof. In Appendix C.3.

The above result provides the tools to prove the following. Let {Xt,N}t be an array of

nonstationary time series that satisfy Assumption 3.1 and {Cr(u)}r the corresponding sta-

tionary approximation covariance. Let f(ω;u) =
∑

r∈ZCr(u)eirω and Γ(ω;u) = f(ω;u)−1.

Using the stationary partial spectral coherence (see Priestley (1981), Section 9.3 and

Dahlhaus (2000a)), the localized (complex) partial spectral coherence is defined as

ga,b(ω;u) = − Γ(a,b)(ω; t/N)

(Γ(a,a)(ω; t/N)Γ(b,b)(ω; t/N))1/2
,

where Γ(a,b)(ω) denotes the (a, b) entry of the matrix Γ(ω;u). Under Assumption 3.1 (for

κ > 3) and by using Theorem 3.7 it can be shown that

∑
r∈Z ρ

(a,b)|9{a,b}
t,t+r,N exp(irω)√∑

r∈Z ρ
(a,a)|9{a,b}
t,t+r,N exp(irω)

∑
r∈Z ρ

(b,b)|9{a,b}
t,t+r,N exp(irω)

= ga,b (ω; t/N) +O(N−1).

In other words, the estimated local partial spectral coherence (based on an estimator of

the local spectral density function) is an estimator of the Fourier transform of the partial

covariances of the nonstationary time series localised about time point t. This justifies

using local spectral density estimation approaches for estimating the partial covariance.
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A Supplementary material

A.1 Summary of results in supplementary material

In order to navigate the appendix we summarize below the contents and main results in

the appendix.

• Appendix A gives all the background lemmas.

In Appendix A.2 we state all the block operator identities that are required in this

paper. In Appendix A.3 we state and derive several matrix norm inequalities. This

includes a Cauchy-Schwarz type bound for the spectral norm of cross covariance

matrices (Lemma A.3).

• In Appendix B we prove the results in Section 2. A fundamental result required in

the proof is Lemma B.1 which gives a bound on the entries for the inverse of block

banded matrices.

• In Appendix C we prove the results for Section 3.

The proofs for Theorems 3.1 and 3.2 are given in Appendix C.1. In Appendix C.2 we

consider models which satisfy the physical dependence conditions first proposed in

Wu (2005). The proof of Theorems 3.4, 3.5 and 3.7 follow a similar set of arguments

and are given in Appendix C.3.

28



A.2 Notation and background

Before proceeding with the proofs, we need to introduce some notation. We define below

unit vectors of appropriate dimension to select sub-matrices or elements from the operator

A : `2,p → `2,p. That is, As1,s2 = (es1⊗ Ip)>A(es2⊗ Ip), where ⊗ is the Kronecker product

and Ip denotes the identity operator in Rp. Furthermore, A
(a,b)
s1,s2 = (es1 ⊗ ea)>A(es2 ⊗ eb)

and we introduce the short notation for this unit vector as e(a,s) = (es ⊗ ea).
In the proofs below we will often consider sub-matrices, where one column or row

has been removed. To set-up the matrix notation for this, let I denote the identity

operator in `2 and I−k the identity operator after removing the kth row, i.e., for u ∈ `2,

I−ku = (. . . , u−1, u0, u1, . . . , uk−1, uk+1, . . . ). The same notation is used for operators in

Rp and similar spaces. This results in the following operations applied to an operator

A : `2,p → `2,p:

• (es1 ⊗ ea)>A(es2 ⊗ eb) = A
(a,b)
s1,s2 .

• (I−k⊗ Ip)A removes from the infinite dimensional matrix p rows (of infinite length)

so that A
(a,b)
k,i is removed for all i ∈ Z, a, b ∈ {1, . . . , p}.

• A(I−k ⊗ Ip)> removes from the infinite dimensional matrix p columns (of infinite

length) so that A
(a,b)
i,k is removed for all i ∈ Z, a, b ∈ {1, . . . , p}.

• (I−k⊗Ip)A(I−k⊗Ip)> =: Ã is an infinite dimensional matrix where A
(a,b)
i,k and A

(a,b)
k,i

are removed for all i ∈ Z, a, b ∈ {1, . . . , p}.

• (I−k⊗ Ip)>Ã(I−k⊗ Ip) = B is an infinite dimensional matrix where p zero columns

and rows (of infinite length) are added so that B
(a,b)
i,k = 0, B

(a,b)
k,i = 0 for all i ∈

Z, a, b ∈ {1, . . . , p}. Additionally, for all s1 6= k and s2 6= k we have ((I−k ⊗
Ip)
>Ã(I−k ⊗ Ip))s1,s2 = (A)s1,s2 .

• (I−k ⊗ I−a)A removes from the infinite dimensional matrix p − 1 rows (of infinite

length) so that A
(c,b)
k,i is removed for all i ∈ Z, a, b ∈ {1, . . . , p}, c 6= a.

Similarly, for the other operations used above.

We denote (I−k ⊗ I−a) =: I−(a,k).

• We have that (I−k⊗Ip)>(I−k⊗Ip) is the identity operator on the reduced space and

(I−k ⊗ Ip)(I−k ⊗ Ip)> + (ek ⊗ Ip)(ek ⊗ Ip)> = I = (I ⊗ Ip), where I is the identify

on the full space. Furthermore, (ek ⊗ Ip)>(I−k ⊗ Ip) = 0.
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• For x ∈ `q, q ∈ [1,∞] we define ‖x‖q = (
∑

l∈Z x
q
l )

1/q and ‖x‖∞ = maxl∈Z |xl|. For

an operator B : `2 → `2, we also define the `q-induced norms, that is for q ∈ [1,∞]

we set ‖B‖q =: sup‖x‖q=1,x∈`2 ‖Bx‖q, where ‖B‖∞ = sups1∈Z
∑

s2∈Z |Bs1,s2 |.

An important tool in the proofs is the inversion and manipulation of infinite dimen-

sional (block) matrices. Under certain conditions on both the matrices and the spaces we

can treat these in much the same way as finite dimensional matrices. An identity that we

will make frequent use of is the analogous version of the block inversion identity but for

infinite dimensional operators. Suppose that U : (S1, S2)→ (S1, S2) where S1 and S2 are

two Hilbert spaces and

U =

(
A B

C D

)
.

If the eigenvalues of U are bounded away from zero and from infinite, then using equation

(1.7.4) in Tretter (2008), page 43 (setting λ = 0) for the inversion of block operator

matrices we have

U−1 =

(
Ã B̃

C̃ D̃

)
=

(
Ã −ÃBD−1

−D−1CÃ D−1 + D−1CÃBD−1

)
(30)

where from Definition 1.6.1 in Tretter (2008), page 35 we have

Ã = (A−BD−1C)−1 and D̃ = (D −CA−1B)−1. (31)

An immediately consequence of the above is that the difference in the block diagonal

entries is

A− Ã
−1

= BD−1C = B(D̃ − C̃Ã
−1
B̃)C. (32)

We will make frequent use of (30) and (32) in the proofs.

A.3 Some background results

Lemma A.1. Suppose that {A`}∞`=1 is a sequence of p × p dimensional matrices and∑∞
`=1 ‖A`‖2

2 < ∞. Define the sequence space `+
2,p = {w = (v1, v2, . . .) : vj ∈ Rp} and the
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linear operator A = (A`; ` ≥ 0), where A : `+
2,p → `+

2,p. Then

‖A‖2 ≤ (
∞∑
`=1

‖A`‖2
2)1/2

Proof. Let x = (x1, x2, . . .) where xl ∈ Rp. By definition of the ‖ · ‖2 operator norm we

have

‖A‖2 = sup
‖x‖2=1,x∈`2,p,1

x>A>Ax = sup
‖x‖2=1,x∈`2,p,1

(
∞∑

l1,l2=1

x>l1A
>
l1
Al2xl2)

1/2

≤ sup
‖x‖2=1,x∈`2,p,1

∞∑
l=1

‖xl‖2‖Al‖2

≤ sup
‖x‖2=1,x∈`2,p,T

(
∞∑
l=1

‖xl‖2
2)1/2(

∞∑
l=1

‖Al‖2
2)1/2 (by the Cauchy-Schwarz inequality)

= (
∞∑
l=1

‖Al‖2
2)1/2,

thus proving the result.

We use the following result in the proof of Lemma B.2 and Theorem 3.1.

Lemma A.2. Let B be a symmetric linear operator from `2,p to `2,p with ‖B‖2 < ∞.

Then,

‖B‖2 ≤ max
s1

∑
s2∈Z

‖Bs1,s2‖2

Proof. To prove the result we define the following operator based on B. Let B̃ =

(‖Bs1,s2‖2)s1,s2 be an operator from `2 to `2. Since B is symmetric, we have

‖B‖2 = sup
‖x‖2=1

x>Bx = sup
‖x‖2=1

∑
s1,s2∈Z

x>s1Bs1,s2xs2 ≤ sup
‖x‖2=1

∑
s1,s2∈Z

‖xs1‖2‖Bs1,s2‖2‖xs2‖2

= ‖B̃‖2 ≤ ‖B̃‖∞ = max
s1

∑
s2∈Z

‖Bs1,s2‖2.

This proves the result.

The following lemma is a generalisation of the Cauchy-Schwarz inequality to the spec-

tral norm of matrices.
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Lemma A.3. Let X and Y be finite dimensional random vectors (not necessarily of the

same dimension). Then, we have

‖Cov(Y,X)‖2
2 ≤ ‖Var(X)‖2‖Var(Y )‖2.

A generalisation of the above result is to the case that A and B denote two conformable

random matrices. Then

‖E(AB)‖2
2 ≤ ‖E(AA>)‖2‖E(BB>)‖2

Proof. To prove the result we start by first assuming that Var(X) is strictly positive

definite and later relax this condition to the case that Var(X) is non-negative definite.

Let

Var((X>, Y >)>)) =

(
Σ1,1 Σ1,2

Σ2,1 Σ2,2

)
.

Since Σ is a positive semi-definite matrix, Σ2,2 − Σ2,1Σ−1
1,1Σ1,2 is a positive semi-definite

matrix. Hence, we have (see, for example, (Lütkepohl, 1996, p.76))

‖Σ2,2‖2 ≥ ‖Σ2,1Σ−1
1,1Σ1,2‖2 = ‖Σ2,1Σ

−1/2
1,1 ‖2

2.

Thus,

‖Cov(Y,X)‖2
2 = ‖Σ2,1Σ

−1/2
1,1 Σ

1/2
1,1 ‖2

2 ≤ ‖Σ2,1Σ
−1/2
1,1 ‖2

2‖Σ
1/2
1,1 ‖2

2 ≤ ‖Σ2,2‖2‖Σ1,1‖2.

We now generalise the proof to the case that Σ11 = Var(X) is non-negative definite.

For this note that we have the eigenvalue decomposition Var(X) = BΛB∗. In the case

that Var(X) is only positive semi-definite but not positive definite, we have for some r < p

that Λ = diag(λ1, . . . , λr, 0, . . . , 0), where λj > 0 are the ordered positive eigenvalues. Let

R = {1, . . . , r}. We then define Z = I>p,RB
∗X. Then note that Var(Z) = I>p,RΛIp,R,

i.e, positive definite, ‖Var(Z)‖2 = ‖Var(X)‖2, and |B‖2 = 1. Furthermore, we have

X = BIp,RZ. This implies with the previous result for positive definite variances

‖Cov(Y,X)‖2 = ‖Cov(Y, Z)I>p,RB
∗‖2 ≤ ‖Var(Y )‖2‖Var(Z)‖2‖I>p,RB‖2

= ‖Var(X)‖2‖Var(Y )‖2.
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For the generalisation to matrices, suppose that A and B are random matrices, where

E

(
B

A

)(
B> A>

)
= E

(
BB> BA>

AB> AA>

)
.

Let Σ1,1 = EBB>, Σ1,2 = EBA>, Σ2,1 = EAB>, and Σ2,2 = EAA>. Then, we can follow

the previous arguments.

Remark A.1 (Generalisation of Lemma A.3 to Infinite dimensional operators). Suppose

that the eigenvalues of the symmetric positive semi-definite operator Σ are bounded, and

Σ =

(
A B

B∗ D

)
.

By using the same arguments as those in Lemma A.3 we have

‖B‖2
2 ≤ ‖A‖2‖D‖2.

An application of the Lemma A.3 is in obtaining a bound for the spectral norm of the

variance of infinite sums. Suppose the random matrix Y has the representation

Y =
∞∑
j=0

Uj,

where {Uj} are random matrices. Then

‖E[Y Y >]‖2 ≤
∞∑

j1,j2=0

‖E[Uj1U
>
j2

]‖2.

By applying Lemma A.3 to bound ‖E[Uj1U
>
j2

]‖2 we have

‖E[Y Y >]‖2 ≤

(
∞∑
j=0

‖E[UjU
>
j ]‖1/2

2

)2

. (33)

The above bound will be used to prove the results in Example 3.3.

The following lemma is used in the proofs of Theorems 3.4, 3.6 and 3.7.

Lemma A.4. Let v(j) = max(1, |j|) and ζ(j) = v(log[v(j)])/v(j). For all y ∈ R and

33



p ≥ 2 we have

∑
j∈Z

v(j)−pv(j + y)−p ≤ (π2 + 3)v(y − 1)−p (34)

and

∑
j∈Z

ζ(j)pζ(j + y)p ≤ 20ζ(y − 1)p (35)

Further, suppose that p, q, r ≥ 2 then

∑
j∈Z

v(j)−qv(j + y)−p ≤ (π2 + 3)v(y − 1)−min(p,q), (36)

∑
j∈Z

ζ(j)pζ(j + y)q ≤ 20ζ(y − 1)min(p,q), (37)

∑
s1,s2∈Z

v(s1 + t)−pv(s1 + s2)−qv(s2 + τ)−r ≤ (π2 + 3)2v(t− τ − 2)−min(p,q,r), (38)

and

∑
s1,s2∈Z

ζ(s1 + t)pζ(s1 + s2)qζ(s2 + τ)−r ≤ 400ζ(t− τ − 2)min(p,q,r) (39)

Proof. First note that
∑∞

k=1 k
−2 = π2/6. The strategy is to split the sum in several parts

and for each part we pull one of the factors out of say, of v(j)−pv(j + y)−p, leverage on

the pulled factor and show that the remaining sum is finite.

We first prove (34). Without loss of generality, let y > 0. We have

∑
j∈Z

v(j)−pv(j + y)−p = I1 + I2 + I3,
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where

I1 =
∞∑
j=0

v(j)−pv(j + y)−p ≤ (π2/6 + 1)v(y)−p,

I2 = 2v(y − 1)−p +

−y/2∑
j=−y+2

v(j)−pv(j + y)−p +
−2∑

j=−y/2+1

v(j)−pv(j + y)−p

≤ 2v(y − 1)−p + 2v(y/2)−p2−p+2 ≤ 2v(y − 1)−p + v(y)−p8(π2/6− 1)

≤ 2v(y − 1)−p + v(y)−p(2/3π2)

I3 =

−y∑
j=−∞

v(j)−pv(j + y)−p ≤ (π2/6 + 1)v(y)−p.

The bounds for I1, I2 and I3 prove (34).

To proof (35), note first that

∞∑
k=1

ζ(k)2 = 1 +
∞∑
k=2

ζ(k)2 ≤ 1 +

∫ ∞
1

(log(x)/x)2dx = 1 + 2.

We will also use that ζ(·) is monotonic decreasing after ζ(3), and ζ(1) = 1, ζ(2) = ζ(4) <

ζ(3). We start by follow the arguments as in the proof of (34) by splitting the sum into

three parts we have
∑

j∈Z ζ(j)pζ(j + y)p = I1 + I2 + I3 (where I1, I2 and I3 are the same

as those in the proof of (34) but with ζ(·) replacing v(·)−1). Without loss of generality

we prove the result for y ≥ 3. For y ≥ 3 and using the monotonicity property of ζ(·) we

have

I1 =
∞∑
j=0

ζ(j)pζ(j + y)p ≤ 3ζ(y)p

and by the same argument

I3 =

−y∑
j=−∞

ζ(j)pζ(j + y)p ≤ 3ζ(y)p.

Next we bound I2. For this we use that

ζ(y/2)p
∞∑
j=2

ζ(j)p ≤ ζ(y)2p
∞∑
j=2

ζ(j)p ≤ ζ(y)(
∞∑
j=1

ζ(j)p +
∞∑
j=1

ζ(j + 1/2)p) ≤ 6ζ(y).
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This gives

I2 =
−1∑
j=−y

ζ(j)pζ(j + y)p = 2ζ(y − 1)p +

−y/2∑
j=−y+2

ζ(j)pζ(j + y)p +
−2∑

j=−y/2+1

ζ(j)pζ(j + y)p

≤ 2ζ(y − 1)p + 12ζ(y)

≤ 14ζ(y − 1)p.

Thus we have bounds for the terms I1, I2 and I3 in
∑

j∈Z ζ(j)pζ(j + y)p, which proves

(35).

The proof of (36) uses that v(j)−p > v(j)−q, then the result immediately follows from

(34).

To prove (38), let us suppose wlog that p ≤ q ≤ r, then by using (36) we have

∑
s1,s2∈Z

v(s1 + t)−rv(s1 + s2)−pv(s2 + τ)−q =
∑
s1∈Z

v(s1 + t)−r
∑
s2∈Z

v(s1 + s2)−pv(s2 + τ)−q

≤ (π2 + 3)
∑
s1∈Z

v(s1 + t)−rv(s1 − τ − 1)−p

≤ (π2 + 3)2
∑
s1∈Z

v(t− τ − 2)−p

where the last two lines follow from (36). This proves the result. (37) and (39) follow

analogously.

B Proof of results in Section 2

The proof of Theorem 2.1 is based on decomposing C−1 in terms of the inverse of a banded

block matrix and its remainder, and balancing these two terms. An important result on

the inverse of banded matrices is given in Demko et al. (1984), Theorem 2.4. Specifically,

they consider positive definite infinite dimensional matrices of the form A : `2 → `2 where

A = (At,τ ; t, τ ∈ Z) (At,τ ∈ R). They show that if A has bandwidth M (in the sense

At,τ = 0 if |t− τ | > M) and A−1 = B = (Bt,τ ; t, τ ∈ Z), then

|Bt,τ | ≤
(1 +

√
r)2

b
ρb|t−τ |/Mc+1, (40)

where ρ = (
√
r−1)/(

√
r+1), r = b/a, b = supv∈`2,‖v‖2=1〈v,Av〉, and a = infv∈`2,‖v‖2=1〈v,Av〉.

An interesting application of this results is given in Ding and Zhou (2021), who use it
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to obtain a rate of decay for the parameters in an autoregressive approximation. As our

results are in the multivariate (possibly high dimensional) setting we require a bound on

the block entries of a banded matrix (and not just the individual entries). Thus in the

following lemma we obtain a generalisation of (40) for block matrices.

Lemma B.1. Let A be a positive definite linear operator on `2,p where A = (At,τ ; t, τ ∈ Z)

and At,τ is a p×p dimensional matrix. We suppose that A is block-banded with bandwidth

M and block-size p in the sense that for all s1, s2 with |s1 − s2| > M , As1,s2 = 0. Let

b = supv∈`2,p,‖v‖2=1〈v,Av〉, and a = infv∈`2,p,‖v‖2=1〈v,Av〉. Furthermore, r = b/a, ρ =

(
√
r − 1)/(

√
r + 1). Let B = A−1 = (Bt,τ ; t, τ ∈ Z) (where Bt,τ is a p × p dimensional

matrix). Then, the following bound holds for all p× p sub-matrices and t 6= τ

‖Bt,τ‖2 ≤
(1 +

√
r)2

b
ρb|t−τ |/Mc+1

where bxc denotes the largest integer less than or equal to x.

Let Ã = (I−k⊗Ip)>A(I−k⊗Ip) be a sub-matrix without the kth p-dimensional row and

column, where k ∈ Z. Then, for B̃ = Ã
−1

with B̃t,τ = (((I−k⊗Ip)Ã
−1

(I−k⊗Ip)>)t,τ ; t, τ ∈
Z) the following bound holds for all p× p sub-matrices and t 6= τ

‖B̃t,τ‖2 ≤
(1 +

√
r)2

b
ρb|t−τ |/Mc+1.

Proof. The proof is based on the proof of Proposition 2.2 in Demko et al. (1984), with

a modification to allow for block matrices. We use the notation from Proposition 2.2 in

Demko et al. (1984). More precisely, let Πn denote the space of polynomials up to order

n. A key ingredient in the proof is the following classical result from spectral theory.

Suppose A is a positive definite operator, then

‖A−1 − p(A)‖2 ≤ max
x∈[a,b]

|1/x− p(x)|,

where p is a real polynomial and recall b = supv∈`2,p,‖v‖2=1〈v,Av〉 and a = infv∈`2,p,‖v‖2=1〈v,Av〉.
Set r = b/a, ρ = (

√
r − 1)/(

√
r + 1). For any complex valued function f on K, define

the norm ‖f‖K = sup{|f(z)| : z ∈ K} (thus ‖1/x − p(x)‖[a,b] = maxx∈[a,b] |1/x − p(x)|).
Proposition 2.1, Demko et al. (1984) show that

inf{‖1/x− p(x)‖[a,b] : p ∈ Πn} =
(1 +

√
r)2

b
ρn+1. (41)
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Using this result we define the polynomial

p∗n = argp∈Πn inf{‖1/x− p(x)‖[a,b] : p ∈ Πn}. (42)

We note for any polynomial pn of order n and M block-banded matrix A with block size

p, if |t − τ | ≥ nM then pn(A)t,τ ≡ 0 where pn(A))t,τ denotes the (t, τ) p × p dimension

block matrix in pn(A).

For a given t and τ , set n = b|t − τ |/Mc. Let p∗n be defined as in (42). Then by

definition of n we have p∗n(A)t,τ = 0. Since Bt,τ = (A−1)t,τ this gives

‖Bt,τ‖2 = ‖(A−1 − p∗n(A))t,τ‖2 ≤ ‖A−1 − p∗n(A)‖2 = ‖1/x− p∗n(x)‖[a,b]

= (1+
√
r)2

b
ρb|t−τ |/Mc+1,

where the last part follows from (41). This completes the proof of the first assertion.

For the second assertion, our strategy is to extend Ã such that is an operator from

`2,p to `2,p and possesses the same banded-scheme as A. Then, we apply the results we

derived in the first assertion to this extended Ã, hence we obtain an inverse with the

desired properties. Lastly, we show that when shrinking the inverse of the extended Ã to

the space of Ã, we obtain an inverse of Ã. This idea can be formalised as follows. The

extended Ã is obtained by (I−k ⊗ Ip)Ã(I−k ⊗ Ip)> + c(ek ⊗ Ip)(ek ⊗ Ip)> =: E. We have

that E is a block-banded matrix. Additionally, if we set c = ‖(ek ⊗ Ip)>A(ek ⊗ Ip)‖2 the

largest and smallest eigenvalues of E can be bounded by those of A, that is its largest and

smallest eigenvalues are bounded above from b and below from a, respectively. Hence, the

previous assertion applies to E. We now show (I−k ⊗ Ip)>D−1(I−k ⊗ Ip) = (Ã)−1 which

gives the assertion. For this, we show (I−k⊗ Ip)>D−1(I−k⊗ Ip)Ã = (I−k⊗ Ip)>(I−k⊗ Ip)
and use the uniqueness of the inverse operator. The calculation is

(I−k ⊗ Ip)>D−1(I−k ⊗ Ip)Ã =(I−k ⊗ Ip)>((I−k ⊗ Ip)Ã(I−k ⊗ Ip)>+ c(ek ⊗ Ip)(ek ⊗ Ip)>)−1

× (I−k ⊗ Ip)(Ã(I−k ⊗ Ip)> + c(ek ⊗ Ip)(ek ⊗ Ip)>

− c(ek ⊗ Ip)(ek ⊗ Ip)>)(I−k ⊗ Ip)

=(I−k ⊗ Ip)>(I−k ⊗ Ip) + 0.

Thus, (I−k ⊗ Ip)>D−1(I−k ⊗ Ip) is an inverse of Ã and the second assertion follows.

We now apply the above result to a specific banded matrix (required in the proof of
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Theorem 2.1). Define the integer set tc = {τ ∈ Z, τ 6= t}, and Ctc,tc = (I−t⊗ Ip)>C(I−t⊗
Ip) (this is operator C but with the tth block row and column removed). We define BM

as the Mth banded version of Ctc,tc as follows. For all p× p sub-matrices and s1, s2 ∈ Z
let

((I−t ⊗ Ip)BM(I−t ⊗ Ip)>)s1,s2 = 1(|s1 − s2| ≤M)((I−t ⊗ Ip)Ctc,tc(I−t ⊗ Ip)>)s1,s2 , (43)

where 1 denotes the indicator function.

The following lemma is used in the proof of Theorems 2.1 and 3.2.

Lemma B.2. [Properties of BM ] Suppose Assumption 2.1 is satisfied and let BM be a

(symmetric) banded matrix defined as in (43). Define the space of vectors

`−t2,p = {v = (. . . , vt−1, vt+1, vt+2, . . .); vj ∈ Rp,
∑
j 6=t

‖vj‖2
2 <∞}

and the eigenvalues

aM = inf
v∈`−t2,p,‖v‖2=1

〈v,BMv〉 and bM = sup
v∈`−t2,p,‖v‖2=1

〈v,BMv〉.

Then

‖Ctc,tc −BM‖2 ≤ 2
K

(κ− 1)
(M − 1)−κ+1, (44)

aM ≥ λinf − 2
K

(κ− 1)
(M − 1)−κ+1, bM ≤ λsup + 2

K

(κ− 1)
(M − 1)−κ+1 (45)

and if M is such that λinf − 2 K
(κ−1)

(M − 1)−κ+1 > 0, then

‖B−1
M ‖2 ≤

(
λinf − 2

K

(κ− 1)
(M − 1)−κ+1

)−1

. (46)

The same rates to the banded matrices associated with C or C(−∞;T ].

Proof. We first prove (44). For this, we first expand Ctc,tc −BM with zero such that it
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is an operator from `2,p to `2,p again. Then, we apply Lemma A.2 to obtain

‖Ctc,tc −BM‖2 = ≤ sup
s1

∑
s2

‖((I−k ⊗ Ip)(Ctc,tc −BM)(I−k ⊗ Ip))s1,s2‖2

≤
∑
|s|>M

K

|s|−κ
≤ 2K

∑
s>M

∫ s

s−1

x−κdx = 2
K

(κ− 1)
(M − 1)−κ+1.

where the first bound on last line above follows from Assumption 2.1.

To prove (45) we use that BM = Ctc,tc + (Ctc,tc −BM) and the eigenvalues of Ctc,tc

are in [λinf , λsup]. Thus, with (44) we have

λinf(BM) ≥ λinf − 2
K

(κ− 1)
(M − 1)−κ+1 and λsup(BM) ≤ λsup + 2

K

(κ− 1)
(M − 1)−κ+1.(47)

The proof of (46) immediately follows from (45).

Using the above lemma we now prove Theorem 2.1.

Proof of Theorem 2.1. For (1) we focus here on the case t 6= τ and |t− τ | ≥ 2.

To motivate the proof, we first describe a more direct but naive approach which does

not give sufficiently sharp bounds. One strategy is to directly approximate D with the

inverse of a (block) banded matrix, say AM , and then use the Neuman series to bound

its error. I.e. use an expansion of the form

D = (AM + (D −AM))−1 = A−1
M +

∞∑
j=1

[A−1
M (D −AM)]j,

which holds when M is large enough such that ‖A−1
M (D −AM)‖2 < 1. The `2 bound of

the above is

‖Dt,τ‖2 ≤ ‖(A−1
M )t,τ‖2 +

∞∑
j=1

‖A−1
M (D −AM)‖j2

≤ ‖A−1
M ‖2 + ‖A−1

M (D −AM)‖2(1− ‖A−1
M (D −AM)‖2)−1

= I1 + I2.

By using Lemma B.1 we can show that

I1 ≤
(1 +

√
rM)2

λsup,M

ρ
b|s−τ |/Mc+1
M ,
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where rM = λsup,M/λinf,M ρM = (
√
rM − 1)/(

√
rM + 1) and λinf,M and λsup,M are the

eigenvalues of AM . It can also be shown that

I2 ≤
C

(κ− 1)
(M − 1)−κ+1.

This leads to the rate

‖Dt,τ‖2 ≤
(1 +

√
rM)2

λsup,M

ρ
b|s−τ |/Mc+1
M +

C

(κ− 1)
(M − 1)−κ+1.

However, this bound does not adequately utilize the rate of decay of the entries of C.

Instead we take an indirect approach, where we rewrite D as the inverse of a block matrix,

where the relevant entries are the inverse of one submatrix of C multipled with another

submatrix of C. The latter term allows us to leverage on the rate of decay of the entries

of C. We describe this approach below.

Define the integer set tc = {τ ∈ Z, τ 6= t}, and denote Ct,tc = (et ⊗ Ip)>C(I−t ⊗ Ip)
and Ctc,tc = (I−t ⊗ Ip)>C(I−t ⊗ Ip). Without loss of generality we consider a permuted

version of C, which contains Ct,t in the top left hand corner of C, where

C =

(
Ct,t Ct,tc

Ctc,t Ctc,tc

)
.

Setting U = C, A = Ct,t, B = Ct,tc , C = C>t,tc , D = Ctc,tc and applying the block

matrix operator inversion formula in (30) we have

D = C−1 =

(
Dt,t −D−1

t,t Ct,tcC
−1
tc,tc

−C−1
tc,tcCtc,tD

−1
t,t (Ctc,tc −Ctc,tC

−1
t,t Ct,tc)

−1

)
.

Using the above Dt,τ can be written as

Dt,τ = −D−1
t,t Ct,tcC

−1
tc,tc(I−t ⊗ Ip)>(eτ ⊗ Ip),

using that λ−1
sup ≤ Dt,t ≤ λ−1

inf we have ‖Dt,τ‖2 ≤ λsup‖(Ct,tcC
−1
tc,tc)(I

>
−teτ ⊗ Ip)‖2. Thus for

the remainder of the proof, we focus on bounding the induced `2-norm of

At,τ = (Ct,tcC
−1
tc,tc)(I

>
−teτ ⊗ Ip).

An outline in the proof is to (a) replace C−1
tc,tc with the inverse of a (block) banded
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matrix (b) use the Neuman series to obtain a bound on the replacement error and

(c) finally balance the rate of decay of the inverse banded matrix approximation of

(Ct,tcC
−1
tc,tc)(I

>
−teτ ⊗ Ip) with the spectral norm of the approximation error (both of which

depend on the bandwidth M).

Let BM denote the Mth banded matrix version of Ctc,tc ; the precise definition is given

in (43). By Lemma B.2, equation (44) we have the bound

‖Ctc,tc −BM‖2 ≤ 2
K

(κ− 1)
(M − 1)−κ+1. (48)

Using BM we write C−1
tc,tc as a Neumann series

C−1
tc,tc = B−1

M [I + B−1
M (Ctc,tc −BM)]−1 = B−1

M [I +
∞∑
s=1

(−1)s[B−1
M (Ctc,tc −BM)]s],

noting that the above expanion holds, when M > 1 + (2K/(κ− 1))1/(κ−1) thus ‖Ctc,tc −
BM‖2 < 1. Substituting the above into At,τ = (Ct,tcC

−1
tc,tc)(I

>
−teτ⊗Ip) gives for all t, τ ∈ Z

At,τ = Ct,tcB
−1
M [I +

∞∑
s=1

(−1)s[B−1
M (Ctc,tc −BM)]s](I>−teτ ⊗ Ip)

= Ct,tcB
−1
M (I>−teτ ⊗ Ip) + Ct,tcB

−1
M

∞∑
s=1

(−1)s[B−1
M (Ctc,tc −BM)]s](I>−teτ ⊗ Ip).

By applying the triangular inequality to the above we have ‖At,τ‖2 ≤ J1,t,τ + J2,t,τ where

J1,t,τ = ‖Ct,tcB
−1
M (I>−teτ ⊗ Ip)‖2

and J2,t,τ = ‖Ct,tcB
−1
M

∞∑
s=1

(−1)s[B−1
M (Ctc,tc −BM)]s](I>−teτ ⊗ Ip)‖2.

We now bound J1,t,τ and J2,t,τ . By using the sub-multiplicativity of ‖ · ‖2 we bound J2,t,τ

with

J2,t,τ ≤ ‖Ct,tcB
−1
M ‖2

∞∑
s=1

(‖[B−1
M ‖2‖(Ctc,tc −BM)]‖2)s. (49)

By using Lemma B.2, if M is such that λinf − 2 K
(κ−1)

(M − 1)−κ+1 > 0, then

‖[B−1
M ‖2‖(Ctc,tc −BM)]‖2 ≤

(
λinf − 2

K

(κ− 1)
(M − 1)−κ+1

)−1

2
K

(κ− 1)
(M − 1)−κ+1.
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Thus for

M > 1 + (2K/[min(1, λinf/2)(κ− 1)])1/(κ−1) := M2,

we have ‖[B−1
M ‖2‖(Ctc,tc −BM)]‖2 < 1. Hence, we obtain the geometric sum

J2,t,τ ≤ ‖Ct,tcB
−1
M ‖2

∞∑
s=1

‖[B−1
M ‖2‖(Ctc,tc −BM)]‖s2

≤ 2K/(κ− 1)(M − 1)−κ+1

1− ‖[B−1
M ‖2‖(Ctc,tc −BM)]‖2

= 2K/(κ− 1)(M − 1)−κ+1 =: J̃2,t,τ ,

where the last line of the above follows from Lemma B.2. In summary, for M > M2 we

have

J2,t,τ ≤ 2K/(κ− 1)(M − 1)−κ+1 = J̃2,t,τ . (50)

Next we bound J1,t,τ . We start by expanding Ct,tcB
−1
M , then use the sub-multiplicativity

of ‖ · ‖2 to give

J1,t,τ ≤
∑

s∈Z,s 6=t

‖Ct,s‖2 · ‖((I−t ⊗ Ip)B−1
M (I−t ⊗ Ip)>)s,τ‖2. (51)

We bound the terms inside of the sum
∑

s∈Z,s 6=t ‖Ct,s‖2 · ‖((I−t⊗ Ip)B−1
M (I−t⊗ Ip)>)s,τ‖2.

Under Assumption 2.1 we have ‖Ct,s‖2 ≤ Kv(t− s)−κ. To bound the second term, we use

Lemma B.1

‖((I−t ⊗ Ip)B−1
M (I−t ⊗ Ip)>)s,τ‖2 ≤

(1 +
√
rM)2

λsup,M

ρ
b|s−τ |/Mc+1
M , (52)

where rM = λsup,M/λinf,M ρM = (
√
rM − 1)/(

√
rM + 1) and λsup,M and λinf,M are such

that

λsup,M ≤ λsup + 2
K

κ− 1
(M − 1)−κ+1 and λinf,M ≥ λinf − 2

K

κ− 1
(M − 1)−κ+1.

This gives a bound for rM , λsup,M and ρM in terms of r, λsup, ρ and M . To remove the

dependency of M in these we choose M such that

M >

(
2K

κ− 1
max(2λ−1

inf , λ
−1
sup)

)1/(κ−1)

+ 1 := M1

For M > M1 we have λinf,M ≥ λinf/2 and λsup,M ≤ 2λsup. This means, rM ≤ 4r and
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ρM ≤ (2
√
r − 1)/(2

√
r + 1) =: ρ, where r = λsup/λinf . Substituting this into (52) gives

‖((I−t ⊗ Ip)B−1
M (I−t ⊗ Ip)>)s,τ‖2 ≤

2(1 + 2
√
r)2

λsup

ρb|s−τ |/Mc+1. (53)

Substituting (53) and ‖Ct,s‖2 ≤ Kv(t− s)−κ into (51) we have

J1,t,τ ≤ 2K(1+2
√
r)2

λsup

∑
s∈Z,s6=t |s− t|−κρb|s−τ |/Mc+1

≤ 2K(1+2
√
r)2

λsup

∑
s∈Z ρ

|s|/M 1
v(s−t+τ)κ

= J̃1,t,τ . (54)

Thus when M > Kc where

Kc := max(M1,M2) =

(
2K

κ− 1
max(2λ−1

inf , λ
−1
sup, 1)

)1/(κ−1)

+ 1

the bounds J1,t,τ and J2,t,τ in (54) and (50) hold and we have

‖Dt,τ‖2 ≤ λsup(J̃1,t,τ + J̃2,t,τ ),

where J̃1,t,τ and J̃2,t,τ are defined in (54) and (50) respectively.

The final part in the proof is to balance the two bounds J̃1,t,τ and J̃2,t,τ . For each

t, τ ∈ Z we set M = Mt−τ := − |t−τ | log(ρ)
2(κ−1) log(|t−τ |) (note 0 < ρ < 1). When |t−τ | is sufficiently

large i.e., Mt−τ ≥ Kc by substituting Mt−τ into the bounds for J1,t,τ and J2,t,τ it can be

shown that

‖Dt,τ‖2 ≤ 2K(1 + 2
√
r)2(2κ + 2Sκ)|t− τ |−κ+1 +

2K

κ− 1

(
| log(ρ)|
2(κ− 1)

|t− τ |
log |t− τ |

− 1

)−κ+1

.(55)

Note that the above expression, though unwieldy gives the desired decay ζ(t − τ)κ−1.

However, if |t− τ | is small, i.e., Mt−τ ≤ Kc the bound (54) does not hold and we use an

alternative bound for ‖Dt,τ‖2. It is easily seen that ‖Dt,τ‖2 ≤ ‖D‖2 ≤ λ−1
inf . We rewrite

the above in a similar form as (54) (but with different contants)

‖Dt,τ‖2 ≤ λ−1
inf ≤ (λinf min(λinf/2, λsup))−1 2K

κ− 1

(
| log(ρ)|
2(κ− 1)

|t− τ |
log |t− τ |

− 1

)−κ+1

. (56)
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Combining (54) and (55) gives the following global bound for all t, τ ∈ Z

‖Dt,τ‖2 ≤ 2K(1 + 2
√
r)2(2κ + 2Sκ)v(t− τ)−κ+1

+ max(1, (min(λinf/2, λsup)λinf)
−1)

2K

(κ− 1)

(
| log(ρ)|
2(κ− 1)

v(t− τ)

v(log v(t− τ))
− 1

)−κ+1

≤ Kζ(t− τ)κ−1.

Note that in the proof we have carefully tracked all the constants, to demonstrate that

the constants only depend on λinf , λsup, K and κ. To reduce notation, in the remainder of

the paper we use a generic constant K.

To prove (2), we only need a slight modification of the above arguments. We define

the integer set tcT = {τ ≤ T, τ 6= t} and obtain

C(−∞;T ) =

(
Ct,t Ct,tcT

CtcT ,t
CtcT ,t

c
T

)
.

This leads to

[C(−∞;T )−1]t,τ = −[C(−∞;T )−1]−1
t,tCt,tcT

C−1
tcT ,t

c
T
(I−t ⊗ Ip)>(eτ ⊗ Ip).

Then, we follow the same strategy as above. Note that the sums occurring now are going

from from −∞ to T instead before in deriving (1) in which they are from −∞ to ∞.

Proof of Theorem 2.2. We first recall that the coefficients {ΦT,j} and ΦT,d,j are embedded

in the last rows of C(−∞, T )−1 and C(T − d, T )−1 respectively. Therefore we first need

to connect the inverses of C(−∞, T ) and C(T − d, T ). For this, we write C(−∞, T ) in

terms of the following block matrix

C(−∞, T ) =

(
C(−∞, T − d) C(−∞, T − d, T )

C(−∞, T − d, T )> C(T − d, T )

)
,

where C(−∞, T − d, T ) = (Ct,τ ; t ≤ T − d, T − d + 1 ≤ τ ≤ T ) and C(T − d, T ) =

(Ct,τ ;T−d+1 ≤ t, τ ≤ T ). Next we represent C(−∞, T )−1 as a block operator (analogous

to C(−∞, T ))

C(−∞, T )−1 =

(
D̃(−∞, T − d) D̃(−∞, T − d, T )

D̃(−∞, T − d, T )> D̃(T − d, T )

)
.
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Note we have used the notation D̃ to show that they are not the inverse of the correspond-

ing submatrix of C. To evaluate C(T−d, T )−1−D̃(T−d, T ) we apply the second identity

in (32) where we set U = C(−∞, T )−1, A = D̃(−∞, T − d), B = D̃(−∞, T − d, T ),

C = D̃(−∞, T − d, T )>, D = D̃(T − d, T ) and D̃ = C(T − d, T ). This gives

C(T − d, T )−1 − D̃(T − d, T ) = −D̃(−∞, T − d, T )D̃(−∞, T − d)−1D̃(−∞, T − d, T )>.

Thus block-wise for all 1 ≤ t, τ ≤ d we have

[C(T − d, T )−1 − D̃(T − d, T )]T−t,T−τ

= −[(eT−t ⊗ Ip)>D̃(−∞, T − d, T )]D̃(−∞, T )−1[(eT−τ ⊗ Ip)>D̃(−∞, T − d, T )]>.

Using the above we obtain the bound

‖[C(T − d, T )−1 − D̃(T − d, T )]T−t,T−τ‖2

≤ λsup‖(eT−t ⊗ Ip)>D̃(−∞, T − d, T )‖2‖(eT−τ ⊗ Ip)>D̃(−∞, T − d, T )‖2. (57)

Next we obtain a bound for the matrix rows (eT−t⊗Ip)>D̃(−∞, T −d, T ) = (D̃(−∞, T −
d, T )T−t,`; ` < T ). By applying Lemma A.1 and using Theorem 2.1 we have

‖(eT−t ⊗ Ip)>D̃(−∞, T − d, T )‖2 ≤ (
T−d−1∑
`=−∞

‖D̃(−∞, T − d, T )T−t,`‖2
2)1/2

≤ K(
T−d−1∑
`=−∞

ζ(T − t− `)2(κ−1))1/2 ≤ Kζ(d− t)κ−3/2.

Substituting the above into (56) for all 1 ≤ t, τ ≤ d we have

‖[C(T − d, T )−1 − D̃(T − d, T )]T−t,T−τ‖2 ≤ Kζ(d− t)κ−3/2ζ(d− τ)κ−3/2. (58)

We now return to the VAR coefficients. Using the block inverse operator identity in

(30) it can be shown that 1 ≤ j ≤ d

ΦT,d,j − ΦT,j = −[C(T − d, T )−1]−1
T,T [C(T − d, T )−1]T,T−j + [D̃(T − d, T )]−1

T,T [D̃(T − d, T )]T,T−j,

(the bottom rows of C(T − d, T )−1 and D̃(T − d, T ) respectively). Using the above and
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(57) we will prove (7). Setting t = 0 and τ = j in (57) gives

‖ΦT,d,j − ΦT,j‖2 ≤ λsup‖[C(T − d, T )−1 − D̃(T − d, T )]T,T−j‖2

+λsup‖[[C(T − d, T )−1]−1
T,T − D̃(T − d, T )]−1

T,T‖2

≤ Kζ(d)κ−3/2ζ(d− j)κ−3/2.

This proves (7). Using (7) we immediately obtain (8).

Note that projection methods can also be used to prove the above result (and the

same bound obtained). In this case the proof would be similar to that given in the proof

of Theorem 3.2 in Meyer et al. (2017) (in the context of spatially stationary processes).

C Proofs of results in Section 3

C.1 Proofs of results in Section 3.2

The following lemma is used in the proof of Theorem 3.1.

Lemma C.1. Suppose Assumption 3.1 holds and let Gu,M(ω), G
(N)
u,M(ω) and Gu(ω) be

defined as in (61), (62) and (60) respectively. Then

sup
ω
‖Gu,M(ω)−G(N)

u,M(ω)‖2 ≤ K
M

N
(59)

and

sup
ω
‖Gu(ω)−Gu,M(ω)‖2 ≤ K

(
1

M
+

1

Mκ−1

)
(60)

where K is a constant that only depends on K and κ.

Proof. Under Assumption 3.1(iii) we have

‖G(N)
u,M(ω)−Gu,M(ω)‖2 ≤

1

M

Tu,N+M/2∑
t,τ=Tu,N−M/2+1

‖C(N)
t,τ − Ct−τ (u)‖2

≤ 1

M

Tu,N+M/2∑
t,τ=Tu,N−M/2+1

(
1

Nv(t− τ)κ−1
+
|(Tu,N − t)|
Nv(t− τ)κ

)
≤ KM

N
,
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this proves (58). To prove (59) we use that

Gu(ω) = Gu,M(ω) +
1

M

∑
|r|≤M/2

|r|Cr(u) exp(irω) +
∑
|r|>M/2

Cr(u) exp(irω).

Under Assumption 3.1(iii) we have ‖Cr(u)‖2 ≤ K/v(r)κ (where κ > 2), thus

‖Gu(ω)−Gu,M(ω)‖2 ≤
1

M

∑
|r|≤M/2

|r|‖Cr(u)‖2 +
∑
|r|>M/2

‖Cr(u)‖2 ≤ K
(

1

M
+

1

Mκ−1

)
.

Thus proving the result.

We are now equiped to prove Theorem 3.1.

Proof of Theorem 3.1. Our aim is to show that the ‖ · ‖2-norm of the matrix function

Gu(ω) =
∑
r∈Z

Cr(u) exp(irω) (61)

is bounded above and below by the λsup and λinf respectively (for all ω). Since C(u) is a

(block) Toeplitz matrix then by Toeplitz theorem (see Toeplitz (1911) and Böttcher and

Grudsky (2000), Theorem 1.1) this would immediately prove that the eigenvalues of C(u)

are bounded above and below by λsup and λinf (thus proving the result).

For a given u ∈ R and N ∈ N we define the integer Tu,N as Tu,N = buNc (where bxc
denotes the largest integer smaller than x). Let M ∈ 2N and define an M×M -dimensional

submatrix of C(M) that is centred about Tu,N

C
(N)
u,M := (C

(N)
Tu,N+s1,Tu,N+s2

)s1,s2=−M/2+1,...,M/2 =: (I
(M)
Tu,N
⊗ Ip)>C(N)(I

(M)
Tu,N
⊗ Ip).

We show below that if M is sufficiently small, then C
(N)
u,M is an approximation of the

M ×M -dimensional submatrix of C(u)

CM(u) := (Cs1−s2(u))s1,s2=−M/2+1,...,M/2 =: (I
(M)
(u) ⊗ Ip)

>C(u)(I
(M)
(u) ⊗ Ip).

We start by obtaining a finite approximation of Gu(ω) in terms of CM(u). Let

Gu,M(ω) =
1

M

Tu,N+M/2∑
t,τ=Tu,N−M/2+1

Ct−τ (u) exp(i(t− τ)ω) = (xω ⊗ Ip)∗CM(u)(xω ⊗ Ip), (62)
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where xω = 1/
√
M(exp(−itω))t=Tu,N−M/2+1,...,Tu,N+M/2. Using C

(N)
u,M for each M ∈ 2N and

ω ∈ [0, 2π] we define the quantity

G
(N)
u,M(ω) =

1

M

Tu,N+M/2∑
t,τ=Tu,N−M/2+1

C
(N)
t,τ exp(i(t− τ)ω) = (xω ⊗ Ip)∗C(N)

u,M(xω ⊗ Ip). (63)

Since C
(M)
u,N is a finite dimensional submatrix of C(N), for N > N0, the eigenvalues of

C
(N)
u,M are bounded above and below by λinf and λsup respectively. Then, since ‖xω‖2 = 1

we have

λinf ≤ ‖G(N)
u,M(ω)‖2 ≤ λsup for all N , M and ω. (64)

By using Lemma C.1, equation (58) we have

sup
ω
‖Gu,M(ω)−G(N)

u,M(ω)‖2 ≤ K
M

N
, (65)

where K is a generic constant that depends only on K and κ. The above immediately

implies λinf −KM/N ≤ ‖Gu,M(ω)‖2 ≤ λsup +KM/N . Finally we return to Gu(ω). Using

Lemma C.1, equation (59) we have supω ‖Gu(ω)−Gu,M(ω)‖2 ≤ K/M . By using this and

(64) we have

‖Gu(ω)‖2 = ‖G(N)
u,M(ω)‖2 +O

(
M

N
+

1

M

)
.

Finally, we set M = 2bN1/2c and substitute it into the above, this together with (63)

gives

λinf −
K
N1/2

≤ ‖Gu(ω)‖2 ≤ λsup +
K
N1/2

.

As this holds for all N > N0 we have that for any ε > 0 λinf − ε ≤ ‖Gu(ω)‖2 ≤ λsup + ε.

Thus leading to the required result.

Proof of Theorem 3.2. We start by giving a short overview of the proof. To show that

Assumption 3.1(i) holds (a uniform bound on the eigenvalues of C(N)) for a sufficiently

large N , we first replace the infinite dimensional matrix C(N) with an infinite dimensional

banded matrix C
(N)
M (where we obtain a bound for ‖C(N) − C

(N)
M ‖2). The central part

of the proof is to obtain a bound for the eigenvalues of C
(N)
M (that is uniform over a
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sufficiently large N). The key observation is that the banded matrix embeds an infinite

number of overlapping (M + 1)× (M + 1)-dimensional block matrices, where each block

matrix can be approximated by an (M + 1) × (M + 1)-dimensional block matrix whose

entries consist of a stationary autocovariance. We will show that a lower and upper

bound for the eigenvalues of each stationary approximation block matrix is γinf and γsup

respectively. This yields a bound for the eigenvalues of each (M+1)×(M+1)-dimensional

block matrices in C
(N)
M . Finally, motivated by the proof of Proposition 2.9 in Ding and

Zhou (2021), we show that the eigenvalues of the banded matrix C
(N)
M can be bounded

by the eigenvalues of “overlapping” (M + 1)× (M + 1)-dimensional block matrices. This

will prove the result.

We start by defining the infinite dimensional (block) banded matrix C
(N)
M where for all

t, τ ∈ Z the entries are defined by [C
(N)
M ]t,τ = 1(|t−τ | ≤M)Ct,τ . Without loss of generality

we assume that M = 2m where m ∈ N. Using Lemma B.2 we have ‖C(N) − C
(N)
M ‖2 ≤

KM−κ+1. Our aim is to obtain bounds for x>C
(N)
M x where x = (. . . , x−1, x0, x1, . . .)

> ∈
`2,p, xl ∈ Rp and ‖x‖2 = 1. To do this we define the (M + 1)p-dimensional shifting

subsequence xs−m,s+m = (xs−m, . . . , xs+m)> and the (M + 1)p × (M + 1)p dimensional

(block) matrix

C(N)(s−m, s+m) = (C
(N)
t,τ ; s−m ≤ t, τ ≤ s+m).

It can be shown that for |t − τ | ≤ M + 1 the entries of C
(N)
M can be written in terms of

C(N)(s−m, s+m)

[C
(N)
M ]t,t+r =

{
1

M−|r|
∑2m−r

s=0 C(N)(t− s, t+ 2m− s)(s+1,s+1+r−2m) r ≥ 0
1

M−|r|
∑2m−|r|

s=0 C(N)(t− 2m+ s, t+ s)(s+1+r−2m,s+1) r < 0

For each u ∈ Z we define the stationary approximation matrix C(s−m, s+m;u)

C(s−m, s+m;u) = (Ct−τ (u); s−m ≤ t, τ ≤ s+m).

Under Assumption 3.1(iii) and using Lemma A.2 we have

‖C(N)(s−m, s+m)−C(s−m, s+m; s/N)‖2

≤ sup
t∈(s−m,s+m)

s+m∑
τ=s−m

‖Ct,τ − Ct−τ (s/N)‖2 ≤ K
m

N
, (66)
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where K is a generic constant that holds for all N and s. The condition

0 < γinf ≤ inf
u

inf
ω
λinf(f(ω;u)) ≤ sup

u
sup
ω
λsup(f(ω;u)) ≤ γsup <∞

implies (see, among others, (Basu and Michailidis, 2015, Proposition 2.3)) that for all

u ∈ R

γinf ≤ inf
ω
λinf [f(ω;u)] ≤ λinf [C(s−m, s+m;u)]

≤ λsup[C(s−m, s+m;u)] ≤ sup
ω
λsup[f(ω;u)] ≤ γsup.

Therefore by using (65) and the above we have(
γinf −K

m

N

)
‖xs−m,s+m‖2 ≤ x>s−m,s+mC

(N)(s−m, s+m)xs−m,s+m

≤
(
γsup +Km

N

)
‖xs−m,s+m‖2. (67)

This gives a bound for each block. Next we obtain a bound between

x>C
(N)
M x =

∑
`∈Z

M∑
r=−M

x>` C`,`+rx`+r (68)

with the overlapping block matrix inner-product

X>MOMXM :=
1

M + 1

∑
s∈Z

x>s−m,s+mC
(N)(s−m, s+m)xs−m,s+m.

Note we have not formally defined XM or OM but have simply set it to equal the above.

Basic algebra gives

X>MOMXM =
∑
`∈Z

M∑
r=−M

(
M + 1− |r|
M + 1

)
x>` C`,`+rx`+r. (69)

Using (67) and (68) we have

x>C
(N)
M x−X>MOMXM =

1

M + 1

∑
`∈Z

M∑
r=−M

|r|x>` C`,`+rx`+r.
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Hence under Assumption 3.1(ii) we have

∥∥∥x>C(N)
M x−X>MOMXM

∥∥∥
2
≤ 1

M + 1

∑
`∈Z

m∑
r=−m

|r|
v(r)κ

‖x`‖2‖x`+r‖2

≤ 2

M + 1

(
∞∑
r=1

1

v(r)κ−1

)∑
`∈Z

‖x`‖2
2 =

2

M + 1

(
∞∑
r=1

1

v(r)κ−1

)
,(70)

where the last line follows because ‖x‖2 =
∑

`∈Z ‖x`‖2
2 = 1. Finally, we obtain an upper

and lower bound for X>MOMXM . We use (66) to give

(γinf −Km/N)

M

∑
s∈Z

‖xs−m,s+m‖2
2 ≤ X>MOMXM ≤

(γsup +Km/N)

M

∑
s∈Z

‖xs−m,s+m‖2
2.

Using that
∑

s∈Z ‖xs−m,s+m‖2
2 = (M + 1)‖x‖2

2 = (M + 1) we have

γinf −Km/N ≤ X>MOMXM ≤ γsup +Km/N.

Hence by using (69), ‖C(N) −C
(N)
M ‖2 ≤ KM−κ+1 and setting m = bN1/κc we have

γinf −KN−1+1/κ ≤ x>C(N)x ≤ γsup +KN−1+1/κ,

where K is generic constant that does not depend on N or M . Thus for a sufficiently

large N we have the result.

C.2 Proofs for spectral-norm physical dependence systems

In order to prove Theorem 3.3 we require the following lemma.

Lemma C.2. Suppose {Vt}t and {Ut}t are zero mean multivariate time series of di-

mension p that have the causal representation Vt = vt(Ft) and Ut = ut(Ft) where Ft =

(εt, εt−1, . . .) and {εt} are iid random vectors. Let {ε̃t}t are iid random vectors with the

same distribution as {εt}t but independent of them and set Ft|{t−j} = (εt, εt−1, . . . , εt−j+1, ε̃t−j, εt−j−1, . . .).

Let Ut|{t−j} = ut(Ft|{t−j}) and Vt|{t−j} = vt(Ft|{t−j}). We assume that {Vt} and {Ut} sat-

isfy the spectral-norm physical dependence conditions

sup
t
‖Var((Ut − Ut|{t−j})‖2 ≤ Aδj and sup

t
[Var(Vt − Vt|{t−j})‖2 ≤ Bδj
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where δj = v(j)−κ and κ > 1. Then

‖Cov(Ut, Vτ )‖2 ≤ ABδ|t−τ |

∞∑
j=0

δj.

Proof. To prove the result we write both Vt and Ut as the sum of martingale differences and

represent Cov(Ut, Vτ ) as the covariance of the martingale difference. This representation

together with the physical dependence condition will prove the result. The details are

below.

With a small abuse of notation we define the sigma algebra Ft = σ(εt, εt−1, . . .). Since

Ut, Vt ∈ Ft, almost surely we can represent Ut and Vt as the infinite sum

Ut =
∞∑
j=0

DU(t, j) and Vt =
∞∑
j=0

DV (t, j),

where DU(t, j) = E(Ut|Ft−j) − E(Ut|Ft−j−1) and DV (t, j) = E(Vt|Ft−j) − E(Vt|Ft−j−1).

Without loss of generality we assume that t− j1 < τ − j2, then by iterated expectations

E
[
DU(t, j1)DV (τ, j2)>

]
= E

[
DU(t, j1)E[DV (τ, j2)>|Ft−j1 ]

]
= E

[
DU(t, j1)E[(E(Vt|Ft−j)− E(Vt|Ft−j−1))>|Ft−j1 ]

]
= 0,(71)

where the above holds because for any t− j1 < τ − i, E[E(Vτ |Fτ−i)|Ft−j1 ] = E[Vτ |Ft−j1 ].
By a similar argument, E

[
DU(t, j1)DV (τ, j2)>

]
= 0 for t− j1 > τ − j2.

We use (70) to write Cov[Vt, Uτ ] as the product of martingale differences. Using (70)

and assuming t < τ we have

Cov[Vt, Uτ ] =
∞∑

j=τ−t

E[DV (t, j)DU(τ, τ − t+ j)>].

Applying Lemma A.3 to the above gives

‖Cov[Vt, Uτ ]‖2 ≤
∞∑

j=τ−t

‖Var[DV (t, j)]‖1/2
2 ‖Var[DU(τ, τ − t+ j)]‖1/2

2 . (72)

Finally to bound the above expectations we use the physical dependence condition and

the observation

DV (t, j) = E[Vt − Vt|{t−j}|Ft−j].
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Thus by using the law of total variance we have

‖Var[DV (t, j)]‖1/2
2 ≤ ‖Var[(Vt − Vt|{t−j})]‖1/2

2 ≤ Bδj.

By the same argument we have ‖Var[DU(τ, τ − t+ j)2]‖1/2
2 ≤ Aδτ−t+j. Substituting these

bounds into (71) and using that δj = v(j)−κ we have

|Cov[Vt, Uτ ]| ≤ ABδτ−t

∞∑
j=0

δj.

A similar bound holds for the case t > τ . Thus proving the result.

Proof of Theorem 3.3. We first show that condition (A) implies that Assumption 3.1(ii,iii)

hold.

By using Lemma C.2 (with Vt = Wt = Xt,N) and the spectral-norm physical depen-

dence condition on {Xt,N} it immediately follows that Assumption 3.1(ii) holds.

We now show that Cr(u) = Cov[X0(u), Xr(u)] satisfies Assumption 3.1(iii) parts

(a),(b) and (c). Assumption 3.1(iii) part (a) holds by definition of Cr(u). Assump-

tion 3.1(iii) part (b) follows from Lemma C.2 and the spectral-norm physical dependence

condition on {Xt(u)}t. To show that Assumption 3.1(iii) part (c) holds we treat the case

|u− v| ≤ 1 and |u− v| > 1 separately. For |u− v| > 1 by using (b) we have

‖Cov(Xt(u), Xτ (u))− Cov(Xt(v), Xτ (v))‖2 ≤ ‖Cov(Xt(u), Xτ (u))‖2+‖Cov(Xt(v), Xτ (v))‖2

≤ 2K

v(t− τ)κ
≤ 2K|u− v|

v(t− τ)κ
,

thus (c) holds for |u − v| > 1. For the case |u − v| ≤ 1, we first use condition i) which

states that X̃u,v
t = Xt(u)−Xt(v) satisfies the physical dependence condition ‖Var(X̃u,v

t −
X̃u,v
t|{t−j})‖2 ≤ |u−v|Kδj. Thus, by using the expansion Xτ (v) = Xτ (u)+X̃u,v

τ and applying

Lemma C.2 we have

‖Ct−τ (u)− Ct−τ (v)‖2 ≤
[
‖Cov[Xt(v), X̃u,v

τ ]‖2+‖Cov[X̃u,v
t , Xτ (v)]‖2+‖Cov[X̃u,v

τ , X̃u,v
t ‖2

]
≤ K|u− v|

v(t− τ)κ
+
K|u− v|
v(t− τ)κ

+
K|u− v|2

v(t− τ)κ
≤ 3K|u− v|

v(t− τ)κ
,

where the last inequality follows due to the condition |u − v| ≤ 1. This proves that

Assumption 3.1(ii)(c) holds.

54



Finally to prove that (10) holds, we use a similar technique as above. We focus on the

case |t−τ | > N and |t−τ | ≤ N separately. For |t−τ | > N and by using the above for the

bounds for C
(N)
t,τ and Ct−τ (t/N) it can be shown that ‖C(N)

t,τ −Ct−τ (t/N)‖2 ≤ 2Kv(t−τ)−κ.

On the other hand for |t− τ | ≤ N we use that

Xt,N = Xt(t/N) + et,N

and Xτ,N = Xτ (τ/N) + eτ,N = Xτ (t/N) + {Xτ (τ/N)−Xτ (t/N)}+ eτ,N .

Substituting the above into Cov(Xt,N , Xτ,N) gives

Cov(Xt,N , Xτ,N) = Cov [Xt(t/N) + et,N , Xτ (t/N) + {Xτ (τ/N)−Xτ (t/N)}+ eτ,N ] .

Expanding out the above covariance and using that Cov[Xt(t/N), Xτ (t/N)] = Ct−τ (t/N)

we have

‖C(N)
t,τ − Ct−τ (t/N)‖2

≤ ‖Cov[Xt(t/N), (Xτ (τ/N)−Xτ (t/N))]‖2 + ‖Cov[Xt(t/N), eτ,N ]‖2

+‖Cov[et,N , Xτ (t/N)]‖2 + ‖Cov[et,N , (Xτ (t/N)−Xτ (τ/N))]‖2 + ‖Cov[et,N , eτ,N ]‖2.

Under the spectral-norm physical dependence conditions (and by using Lemma C.2) we

have

‖C(N)
t,τ − Ct−τ (t/N)‖2

≤ K

(
|t− τ |N−1v(t− τ)−κ + 2 ·N−1v(t− τ)−κ +

|t− τ |
N2

v(t− τ)−κ +N−2v(t− τ)−κ
)

≤ K
(
2 ·N−1v(t− τ)−κ+1 + 3 ·N−1v(t− τ)−κ

)
≤ 5K ·N−1v(t− τ)−κ+1,

where the last line is due to |t− τ | ≤ N . The bounds for the two cases, |t− τ | ≤ N and

|t− τ | > N show that Assumption 3.1(iii) equation (10) holds.

Finally, under condition (B) and by applying Theorem 3.2 we have that Assumption

3.1(i) holds.

In order to study the properties of the stochastic recurrence equation defined in Ex-
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ample 3.3 we state a general result for the time series {Yt} where

Yt = Gt(Ft) =
∞∑
s=0

Bt−s+1,t(Ft−s+1,t)bt−s(εt−s) (73)

with Ft = (εt, εt−1, . . .), Ft−s,t = (εt, εt−1, . . . , εt−s) and {εt} are iid random variables.

Using Yt we define the following coupled process

Yt|{t−j} = Gt(Ft|{t−j}) =

t−j+2∑
s=0

Bt−s+1,t(Ft−s+1,t)bt−s(εt−s)

+Bt−j+1,t(Ft−s,t)bt−j(ε̃t−j) +

t−j+2∑
s=0

Bt−s+1,t(Ft−s+1,t)bt−s(εt−s), (74)

where Ft|{t−j} = (εt, εt−1, . . . , εt−j+1, ε̃t−j, εt−j−1, . . .) and if s < j Ft−s,t|{t−j} = Ft−s,t else

Ft−s,t|{t−j} = (εt, εt−1, . . . , ε̃t−j, εt−j−1 . . . , εt−s) and ε̃t−j is independent of εt−j.

To prove the following result we use that if B1 and B2 are conformable independent

random matrices then

‖E(B1B2B
>
2 B

>
1 )‖2 ≤ ‖E[B1B

>
1 ]‖2‖E[B2B

>
2 ]‖2. (75)

Taking this further, if B1, . . . , BK are independent conformable random matrices then

‖E(B1B2 . . . BKB
>
K . . . B

>
2 B

>
1 )‖2 ≤

K∏
i=1

‖E[BiB
>
i ]‖2. (76)

To simplify notation in the proofs below for the random vector or matrix X we let V (X) =

E[XX>].

Lemma C.3. Let Yt and Yt|{t−j} be defined as in (72) and (73) respectively. Then we

have

‖V (Yt − Yt|{t−j})‖2 ≤ 4(
∞∑
s=j

‖V [bt−s(εt−s)]‖1/2
2 ‖V [Bt−s+1,t(Ft−s+1,t)]‖

1/2
2 )2
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Proof. Using (72) and (73) we have

Yt − Yt|{t−j} = Bt−j+1,t(Ft−j+1,t)[bt−j(εt−j)− bt−j(ε̃t−j)]

+
∞∑

s=j+1

[Bt−s+1,t(Ft−s+1,t)−Bt−s+1,t(Ft−s+1,t|{t−j})]bt−s(εt−s). (77)

Applying (33) to the above gives

‖V (Yt − Yt|{t−j})‖1/2
2 ≤ ‖V (Bt−j+1,t(Ft−j+1,t)[bt−j(εt−j)− bt−j(ε̃t−j)])‖

1/2
2

+
∞∑

s=j+1

‖V ([Bt−s+1,t(Ft−s+1,t)−Bt−s+1,t(Ft−s+1,t|{t−j})]bt−s(εt−s))‖
1/2
2 .

By applying (74) to each of the terms above we have

‖V (Yt − Yt|{t−j})‖1/2
2 ≤ ‖V (bt−j(εt−j)− bt−j(ε̃t−j))‖1/2

2 ‖V [Bt−j+1,t(Ft−j+1,t)]‖1/2
2

+
∞∑

s=j+1

‖V [Bt−s+1,t(Ft−s+1,t)−Bt−s+1,t(Ft−s+1,t|{t−j})]‖
1/2
2 ‖V (bt−s(εt−s))‖1/2

2 . (78)

We now bound the terms inside the above sum. By using Lemma A.3 we have

‖V (bt−j(εt−j)− bt−j(ε̃t−j))‖2 ≤ ‖V (bt−j(εt−j))‖2 + ‖V (bt−j(ε̃t−j))‖2

+2‖E[bt−j(εt−j)bt−j(ε̃t−j)
>]‖2

≤ ‖V (bt−j(εt−j))‖2 + ‖V (bt−j(ε̃t−j))‖2 + 2‖V (bt−j(εt−j))‖1/2
2 ‖V (bt−j(ε̃t−j))]‖1/2

2

= 4‖V (bt−j(εt−j))‖2,

where the last line follows from the fact that V (bt−j(εt−j)) = V (bt−j(ε̃t−j)). By a similar

set of arguments we have

‖V [Bt−s+1,t(Ft−s+1,t)−Bt−s+1,t(Ft−s+1,t|{t−j})]‖2 ≤ 4‖V [Bt−s+1,t(Ft−s+1,t)]‖2.

Substituting these bounds into (77) gives the result.

We now apply the above result to the nonstationary model

Xt,N = A(t/N, εt)Xt−1,N + b(t/N, εt)
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and its stationary approximation

Xt(u) = A(u, εt)Xt−1(u) + b(u, εt).

In the case supu ‖E[A(u, εt)A(u, εt)
>]‖2 < 1, then both Xt,N and Xt(u) admit the causal

solutions

Xt,N = gt,N(Ft) =
∞∑
s=0

s−1∏
i=0

A((t− i)/N, εt−i)b((t− s)/N, εt−s)

Xt(u) = g(u,Ft) =
∞∑
s=0

s−1∏
i=0

A(u, εt−i)b(u, εt−s).

We will use Lemma C.3 to prove the assertion in Example 3.3. The above expansions

for Xt,N and Xt(u) allow us to apply Lemma C.3 to obtain the physical dependence

bound. In the same spirit we require analogous expansions for et,N = Xt,N −Xt(t/N) and

X̃v1,v2
t = Xt(v1)−Xt(v1)

et,N =
∞∑
s=0

s−1∏
i=0

[
A

(
(t− i)
N

, εt−i

)
b

(
(t− s)
N

, εt−s

)
−

s−1∏
i=0

A

(
t

N
, εt−i

)
b

(
t

N
, εt−s

)]

=
∞∑
s=0

s−1∑
k=0

k−1∏
i=0

A

(
t− i
n

, εt−i

)[
A

(
t− k
n

, εt−k

)
− A

(
t

n
, εt−k

)]

×
s−1∏
i=k+1

A

(
t

n
, εt−i

)
b(
t− s
n

, εt−s)

+
∞∑
s=0

s−1∏
i=0

A(u, εt−i)

[
b

(
t− s
N

, εt−s

)
− b
(
t

n
, εt−s

)]
.

and

X̃v1,v2
t =

∞∑
s=0

s−1∑
k=0

[
k−1∏
i=0

A(v1, εt−i)][A(v1, εt−k)− A(v2, εt−k)][
s−1∏
i=k+1

A(v2, εt−i)]b(
t− s
n

, εt−s) +

∞∑
s=0

s−1∏
i=0

A(v2, εt−i)[b(v1, εt−s)− b(v2, εt−s)].

Using the above expansion we can prove Example 3.3, which is given in the following

lemma.

Lemma C.4. Suppose supu ‖E[A(u, εt)A(u, εt)
>]‖2 < ρ < 1, supu ‖E[b(u, εt)b(u, εt)

>]‖2 <

58



∞ and for all v1 and v2 ‖E[(A(v1, εt) − A(v2, εt))(A(v1, εt) − A(v2, εt))
>]‖2 ≤ K|v1 − v2|

and ‖E[(b(v1, εt)− b(v2, εt))(b(v1, εt)− b(v2, εt))
>]‖2 ≤ K|v1 − v2|. Then

sup
N

sup
t
‖Var(Xt,N −Xt,N |{t−j})‖2 ≤ Kρj

sup
u
‖Var(Xt|{t−j}(u)−Xt|{t−j}(u))‖2 ≤ Kρj

‖Var(Xv1,v2
t −Xv1,v2

t|{t−j}])‖2 ≤ K|v1 − v2|(
∞∑
s=j

sρ(s−1)/2)2

and sup
N

sup
t
‖Var(et,N − et,N |{t−j})‖2 ≤ KN−1(

∞∑
s=j

s3/2ρ(s−1)/2)2.

Proof. To prove the result we obtain bounds for ‖V [bt−s(εt−s)]‖2 and ‖V [Bt−s+1,t(Ft−s+1,t)]‖2

and apply Lemma C.3. By using that {εt}t are iid random vectors and applying (75) we

have ∥∥∥∥∥V
(
s−1∏
i=0

A(u, εt−i)

)∥∥∥∥∥
2

≤ ‖V (A(u, ε0))‖s2 ≤ ρs,

∥∥∥∥∥V
(
s−1∏
i=0

A((t− i)/n, εt−i)

)∥∥∥∥∥
2

≤
s−1∏
i=0

‖V (A((t− i)/n, ε0))‖2 ≤ ρs.

Further, by using (33) we have∥∥∥∥∥V
(
s−1∑
k=0

[
k−1∏
i=0

A(v1, εt−i)][A(v1, εt−k)− A(v2, εt−k)][
s−1∏
i=k+1

A(v2, εt−i)]

)∥∥∥∥∥
2

≤

 s−1∑
k=0

∥∥∥∥∥V
(

[
k−1∏
i=0

A(v1, εt−i)][A(v1, εt−k)− A(v2, εt−k)][
s−1∏
i=k+1

A(v2, εt−i)]

)∥∥∥∥∥
1/2

2

2

≤

(
s−1∑
k=0

‖V (A(v1, εt−i)‖k/22 ‖V [A(v1, εt−k)− A(v2, εt−k)‖1/2
2 ‖V (A(v2, εt−i)])‖(s−k−1)/2

2

)2

≤ Ks2ρs−1|v1 − v2|
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and∥∥∥∥∥V
(
s−1∑
k=0

[
k−1∏
i=0

A(
t− i
n

, εt−i)][A(
t− k
n

, εt−k)− A(
t

n
, εt−k)][

s−1∏
i=k+1

A(
t

n
, εt−i)]

)∥∥∥∥∥
2

≤ Ks3ρs−1

n
.

We use the above bounds obtain the result.

To bound ‖Var(Xt,N −Xt,N |{t−j})‖2 we set

Bt−s+1,t(Ft−s+1,t) =
s−1∏
i=0

A((t− i)/n, εt−i) and bt−s(εt−s) = b((t− s)/n, εt−s).

Now by applying Lemma C.3 we have

sup
N

sup
t
‖Var[Xt,N −Xt,N |{t−j})‖2 ≤ (K

∑
s=j

ρs/2)1/2 ≤ Kρj.

By using similar arguments we obtain the remaining bounds.

C.3 Proof of results in Sections 3.3 and 3.4

Proof of Theorem 3.4. We begin with the proof of (13). Note that C−1 = D. Using the

classical matrix inverse expansion we have

D(u)−D(v) = C(u)−1 −C(v)−1 = C(u)−1[C(v)−C(u)]C(v)−1

= D(u)[C(v)−C(u)]D(v). (79)

Thus by the Lipschitz continuity of C (see Assumption 3.1(iii)) and Theorem 2.1, we have

‖Dt−τ (u)−Dt−τ (v)‖2 =
∑

s1,s2∈Z

(D(v))t,s1(C(u)−C(v))s1,s2(D(u))s2,τ

≤ KK2
∑

s1,s2∈Z

ζ(t− s1)κ−1 |u− v|
v(s2 − s1)κ

ζ(s2 − τ)κ−1

= KK2
∑

s1,s2∈Z

ζ(s1)κ−1 |u− v|
v(s2 + τ − t− s1)κ

ζ(s2)κ−1

≤ 49KK2|u− v|ζ(τ − t)κ−1,

where the last inequality follows from Lemma A.4 and K is finite constant, independent

of u, v, t, τ . This proves (13).
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To prove (14), we note that using the classical inverse matrix expansion (analogous to

(77)) we have

D(N) −D(t/N) = D(N)
(
C(t/N)−C(N)

)
D(t/N).

Theorem 2.1 gives bounds for the entries in D(t/N) and D(N). On the other hand,

Assumption 3.1 gives the bound

‖
(
C(t/N)−C(N)

)
s1,s2
‖2 ≤ ‖ (C(t/N)−C(s1/N))s1,s2 ‖2 + ‖

(
C(s1/N)−C(N)

)
s1,s2
‖2

≤ K

(
min

(
|t− s1|

Nv(s1 − s2)κ
,

2

v(s1 − s2)κ

)
+

1

Nv(s1 − s2)κ−1

)
.

Substituting these bounds into [D(N)
(
C(t/N)−C(N)

)
D(t/N)]t,τ gives

‖(D(N) −D(t/N))t,τ‖2

≤ KK2
∑

s1,s2∈Z

ζ(t− s1)κ−1

(
v(s1 − s2)−κ min(

|t− s1|
N

, 2) +
1

Nv(s1 − s2)κ−1

)
ζ(τ − s2)κ−1

≤ KK2 min

( ∑
s1,s2∈Z

ζ(t− s1)κ−2 × 1

Nv(s1 − s2)κ
× ζ(τ − s2)κ−1,

2
∑

s1,s2∈Z

ζ(t− s1)κ−1 × 1

v(s1 − s2)κ
× ζ(τ − s2)κ−1

)
+KK2

∑
s1,s2∈Z

ζ(t− s1)κ−1 × 1

Nv(s1 − s2)κ−1
× ζ(τ − s2)κ−1

≤ 98KK2ζ(t− τ)κ−2 min(1/N, 2ζ(t− τ)),

where the last bound follows from Lemma A.4. This proves (14).

Proof of equation (15). By using (77) we have

Dr(u)−Dr(v) =
∑

s1,s2∈Z

Ds1(u)[Cs1(u)− Cs2(v)]Ds2−r(v).

Let h ∈ R\{0}, and substitute v = u+ h and u = u into the above to give

[Dr(u)−Dr(u+ h)]/h =
∑

s1,s2∈Z

Ds1(u)
[Cs1(u)− Cs2(u+ h)]

h
Ds2−r(u+ h).

Taking the limit h → 0 (and using dominated convergence to exchange limit and sum)
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gives the entry-wise matrix derivative

dDr(u)

du
= −

∑
s1,s2

Ds1(u)
dCs1−s2(u)

du
Ds2−r(u)

and the bound∥∥∥∥dDr(u)

du

∥∥∥∥
2

≤
∑
s1,s2

‖Ds1(u)‖2‖
dCs1−s2(u)

du
‖2‖Ds2−r(u)]‖2 ≤ Kζ(r)κ−1,

where the last inequality follows from Theorem 3.4, the condition supu ‖
dCr(u)
du
‖2 ≤ Kζ(r)κ−1

and Lemma A.4.

Proof of Corollary 3.1. To prove the result we start with the inverse matrix D(N) =

(C(n))−1 which we show below has simple easily derivable properties. We then apply

Theorem 3.2, Lemma B.1, and Theorem 3.4 to obtain analogous properties on its inverse

C(N) = (D(n))−1.

Define the matrix

Φ̃j(t/N) =


Ip j = 0

−Φj(t/N) 1 ≤ j ≤ p

0 otherwise

.

Using {Φj(u)}j we define the stationary time Xt(u) =
∑d

j=1 Φj(u)Xt−j(u) + Σ(u)1/2εt.

This has the inverse (stationary) covariance D(u) = (Dt−τ (u); t, τ ∈ Z) where

Dt−τ (u) =
d∑
`=0

Φ̃`(u)>Σ(u)−1Φ̃(t−τ)+`(u). (80)

The corresponding inverse spectral density is f(ω;u)−1 =
∑

r∈ZDr(u) exp(irω). Under

the stated conditions on the roots associated with {Φj(u)}r we have that for some γ1

and γ2 that 0 < γ1 ≤ infu infω λinf(f(ω;u)−1) ≤ supu supω λsup(f(ω;u)−1) ≤ γ2 < ∞
and thus the eigenvalues of D(u) are uniformly bounded away from γ1 and γ2. Let

C(u) = D(u)−1 = (Ct−τ ; t, τ ∈ Z). Then by using Lemma B.1 we have

sup
u
‖Cr(u)‖2 ≤ Kρ|r| (81)

for some 0 < ρ < 1. Further, by using (13) (applied to exponential decay rather than
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polynomial decay) we have ‖Cr(u)− Cr(v)‖2 ≤ Kρ|r||u− v|.
Using the Cholesky decomposition it can be shown that the inverse covariance is

D(N) = (Dt,τ ; t, τ ∈ Z) where

D
(N)
t,τ =

d∑
`=0

Φ̃`

(
t+ `

N

)>
Σ

(
t+ `

N

)−1

Φ̃(t−τ)+`

(
t+ `

N

)
. (82)

The Lipschitz conditions on Φj(·) together with (78) and (79) imply that D
(N)
t,τ is approx-

imated by Dt−τ (t/N). I.e.

|D(N)
t,τ −Dt−τ (t/N)‖2 ≤

{
K
N
|t− τ | ≤ d

0 |t− τ | > d
.

Now by using the above and Theorem 3.2 for large enough N the conditions in Assumption

3.1 hold (in terms of the inverse covariance). Therefore for sufficiently large N , the rate

‖C(N)
t,τ ‖2 ≤ Kρ|t−τ | follows from Lemma B.1. Further, the conditions in Theorem 3.4 hold

and we have

‖C(N)
t,τ − Ct−τ (t/N)‖ ≤ Kρ

|r|

N
,

which gives ‖C(N)
t,τ − Ct−τ (t/N)‖2 ≤ K ρ|t−τ |

N
. Thus we have proved the result.

Proof of Theorem 3.5. The result uses the bounds ‖[C(N)(−∞, T )−1]s1,s2 ≤ Kζ(s1−s2)κ−1

and ‖[C(−∞, T ;u)−1]s1,s2 ≤ Kζ(s1 − s2)κ−1. The assertion follows by the same steps as

in the proof of Theorem 3.4.

Proof of Theorem 3.6. To prove the result we start with the following identities

Φ
(N)
T,j = −([C(N)(−∞, T )−1]T,T )−1[C(−∞, T )−1]T,T−j (83)

and Φj(u) = −([C(−∞, T ;u)−1]T,T )−1[C(−∞, T ;u)−1]T,T−j

where C(N)(−∞, T ) = (C
(N)
t,τ ; t, τ ≤ T ) and C(−∞, T ;u) = (Ct,τ (u); t, τ ≤ T ). These

identities together with Theorem 3.5 will be used to prove the result.
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We first obtain a bound for ‖Σ(N)
T − Σ(T/N)‖2. We note that

Σ
(N)
T − Σ(T/N) = ([C(N)(−∞, T )−1]T,T )−1 − ([C(−∞, T ;T/N)−1]T,T )−1

= ([C(−∞, T ;T/N)−1]T,T )−1([C(−∞, T ;T/N)−1]T,T

−[C(N)(−∞, T )−1]T,T )([C(N)(−∞, T )−1]T,T )−1.

Thus by using Theorem 3.5 (with t = T and τ = T ) we have

‖Σ(N)
t − Σ(t/N)‖2 ≤ ‖([C(−∞, T ;T/N)−1]T,T )−1‖2‖([C(N)(−∞, T )−1]T,T )−1‖2

×‖[C(−∞, T ;T/N)−1 −C(N)(−∞, T )−1]T,T‖2

≤ KN−1. (84)

This proves the first part of (i)

To prove the second part of (ii), we use (79) to give the decomposition Φ
(N)
t,j −Φj(t/N) =

J1 + J2, where

J1 = −
[
([C(N)(−∞, T )−1]T,T )−1 − [C(−∞, t; t/N)−1]T,T )−1

]
[C(N)(−∞, T )−1]T,T−j,

J2 = −([C(−∞, T ;T/N)−1]T,T )−1
[
[C(N)(−∞, T )−1 −C(−∞, T ;T/N)−1]T,T−j

]
.

First we bound J1 this gives

‖J1‖2 ≤
∥∥∥([C(N)(−∞, T )−1]T,T )−1 − ([C(−∞, T ;T/N)−1]T,T )−1

∥∥∥
2

×‖[C(N)(−∞, T )−1]T,T−j‖2

≤ K 1

N
ζ(0)κ−1 × ζ(j)κ−1.

where we have used the bounds in Theorem 2.1 and (80) in the above. Using a similar

argument (and Theorem 3.5 (with t = T and τ = T − j) ) we have

‖J2‖2 ≤ ‖([C(−∞, T ;T/N)−1]T,T )−1‖2

∥∥∥[C(N)(−∞, T )−1 −C(−∞, T ;T/N)−1]T,T−j

∥∥∥
2

≤ Kζ(j)κ−2 min(2ζ(j), 1/N).

Altogether this gives ‖Φ(N)
T,j − Φj(T/N)‖2 ≤ Kζ(j)κ−2 min(2ζ(j), 1/N). Thus we have

proved the second part of (i). The proof for (ii) follows a similar method as given in the

proof of Theorem 3.4, and we omit the details.
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We now prove Theorem 3.7. To prove this result we will use the alternative repre-

sentation of the covariance operator C(N) defined in Remark 2.2. With this in mind, we

define the sub-operators C(e,f) : `2 → `2 which are infinite dimensional matrices where

[C(e,f)]t,τ = Cov[X
(e)
t,N , X

(f)
t,N ]. Note that to reduce cumbersome notation, we have dropped

the N from the definition C(e,f). We also define the corresponding “stationary” matrix

operators C(e,f)(u) : `2 → `2, where [C(e,f)(u)]t,τ = Cov[X
(e)
t (u), X

(f)
t (u)]. This represen-

tation is instrumental in proving the result below.

Proof of Theorem 3.7. We first prove (26) and (27). We start by obtaining an expression

for

Var
[
X

(c)|9{a,b}
t ; t ∈ Z, c ∈ {1, 2}

]
= (∆

9{a,b}
t,τ,N ; t, τ ∈ Z)

and Var
[
Xt(u)(c)|9{a,b}; t ∈ Z, c ∈ {1, 2}

]
= (∆

9{a,b}
t−τ (u); t, τ ∈ Z).

To simplify notation, and without loss of generality, we focus on the case a = 1, b = 2.

We will represent the above in terms of block matrices of C(N) and C(u). We define

A(1,2) : `2,2 → `2,2, B(1,2) : `2,p−2 → `2,2 and E(1,2) : `2,p−2 → `2,p−2 where

A(1,2) =

(
C(1,1) C(1,2)

C(2,1) C(2,2)

)
,B(1,2) =

(
C(1,3) . . . C(1,p)

C(2,3) . . . C(2,p)

)
and E(1,2) = (C(e,f); e, f ∈ {3, . . . , p}).

Analogously, we define A(1,2)(u),B(1,2)(u),E(1,2)(u). It is clear the operators A(1,2), B(1,2)

and E(1,2) are comprised of an infinite number of 2 × 2, 2 × (p − 2) and (p − 2) × (p −
2) matrices respectively. To denote these sub-matrices we use the following notation.

Suppose H : `2,p1 → `2,p2 for some p1, p2 then [H ]t,τ := (Ip1 ⊗ et)>B(1,2)(Ip2 ⊗ eτ ) refers

to their p1 × p2-dimensional submatrices.

It is well known that the conditional covariance of X
(c)
t,N and X

(c)
t (u) can be represented

as the Schur complement

Var
[
X

(c)|9{1,2}
t,N ; t ∈ Z, c ∈ {1, 2}

]
= A(1,2) −B(1,2)(E(1,2))−1(B(1,2))>

and

Var
[
Xt(u)(c)|9{1,2}; t ∈ Z, c ∈ {1, 2}

]
= A(1,2)(u)−B(1,2)(u)(E(1,2)(u))−1(B(1,2)(u))>.
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Then, we have

∆
9{a,b}
t,τ,N = [A(1,2) −B(1,2)(E(1,2))−1(B(1,2))>]t,τ

and ∆
9{a,b}
t−τ (u) = [A(1,2)(u)−B(1,2)(u)(E(1,2)(u))−1(B(1,2)(u))>]t,τ . (85)

We use the above representations to prove (26). Using (81) we have

‖∆9{a,b}
t,τ,N −∆

9{a,b}
t−τ (t/N)‖2 ≤ J1 + J2 + J3 + J4

where

J1 = ‖(A(1,2) −A(1,2)(t/N))t,τ‖2

J2 = ‖(B(1,2)(E(1,2))−1(B(1,2) −B(1,2)(t/N))>)t,τ‖2

J3 = ‖(B(1,2)((E(1,2))−1 − (E(1,2)(t/N))−1)(B(1,2)(t/N))>)t,τ‖2

J4 = ‖((B(1,2) −B(1,2)(t/N))(E(1,2)(t/N))−1(B(1,2)(t/N))>)t,τ‖2.

Under Assumption 3.1 and by using Theorem 2.1 we bound the terms above (the proof

is in the spirit of the proof of Theorem 3.4). Assumption 3.1 directly implies

J1 = ‖(A(1,2) −A(1,2)(t/N))t,τ‖2 ≤ K
1

Nv(t− τ)κ−1
.

The bounds for J2, J3 and J4 are more involved, however all three follow a similar strategy.

We focus on obtaining a bound for J3. Using standard matrix multiplication it can be

seen that

J3 = ‖
∑

s1,s2∈Z

[B(1,2)]t,s1 [(E
(1,2))−1 − (E(1,2)(t/N))−1]s1,s2 [B

(1,2)(t/N))>]s2,τ‖2

≤
∑

s1,s2∈Z

‖[B(1,2)]t,s1‖2 · ‖[(E(1,2))−1 − (E(1,2)(t/N))−1]s1,s2‖2 · ‖(B(1,2)(t/N))>]s2,τ‖2 (86)

To bound ‖[B(1,2)]t,s1‖2 and ‖(B(1,2)(t/N))>]s2,τ‖2 we simply use Assumption 3.1, which

immediately gives

‖[B(1,2)]t,s1‖2 ≤ Kv(t− s1)−κ and ‖(B(1,2)(t/N))>]s2,τ‖2 ≤ Kv(s2 − τ)−κ. (87)

The bound for ‖[(E(1,2))−1 − (E(1,2)(t/N))−1]s1,s2‖2 needs a little more work. We first
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note that the covariance operator E(1,2) is a suboperator of C(N), thus it satisfies As-

sumption 3.1 where E(1,2)(u) is its locally stationary approximation. Therefore we can

apply the results of Theorem 3.4 to (E(1,2))−1 and this gives

‖((E(N),(1,2))−1 − (E(1,2)(s1/N))−1)s1,s2‖2 ≤ Kζ(s1 − s2)κ−2 min(1/N, 2ζ(s1 − s2)) (88)

and

‖((E(1,2)(s1/N))−1 − (E(1,2)(t/N))−1)s1,s2‖2 ≤ K|s1 − t|ζ(s1 − s2)κ−1/N. (89)

Substituting (83), (84) and (85) into (82) we have

J3 ≤ KK2
∑

s1,s2∈Z

1

v(t− s1)κ
×
(
ζ(s1 − s2)κ−2 min(1/N, 2ζ(s1 − s2))

+ |s1 − t|ζ(s1 − s2)κ−1/N
) 1

v(s2 − τ)κ

≤ 2× (49)K2Kζ(t− τ)κ−2 min(1/N, ζ(t− τ)) =: Kζ(t− τ)κ−2 min(1/N, ζ(t− τ)),

where the last line follows from Lemma A.4.

To bound J2, we use Theorem 2.1 to give, ‖[(E(1,2))−1]s1,s2‖ ≤ Kζ(s1 − s2)(κ−1). This

together with (83), using the bounds stated in Assumption 3.1(iii) and following the same

proof as above we can show that

J2 ≤ Kζ(t− τ)κ−1/N and J4 ≤ Kζ(t− τ)κ−1/N.

Altogether the bounds for J1, J2, J3 and J4 prove

‖∆9{a,b}
t,τ,N −∆

9{a,b}
t−τ (t/N)‖2 ≤ Kζ(t− τ)κ−2 min(1/N, ζ(t− τ))

thus proving (26). The proof of (27) follows a similar technique.

Finally, the proofs for (28) and (29) are the same as the proofs for (26) and (27), thus

we omit the details.
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