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In this paper we consider nonparametric estimation for dependent data, where the

observations do not necessarily come from a linear process. We study density estimation

and also discuss associated problems in nonparametric regression using the 2-mixing

dependence measure. We compare the results under the 2-mixing with those derived under

the assumption that the process is linear.
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1. Introduction

Nonparametric estimation for dependent observations has a long history in statis-

tics. Rosenblatt [42] first studied density estimation for dependent data. Since then

several authors have considered nonparametric estimation under various assump-

tions (notable early articles include Robinson [39] and Hart [29]). For example,

Hall and Hart [25], Giraitis et al. [22], Mielniczuk [34] and Estevas and Vieu [18]

consider density estimation for linear processes which have long memory, whereas

Cheng and Robinson [9] consider density estimation for random variables which

are nonlinear functions of a linear process. A notable result, is that they show

if the observations were from a linear process and have short memory, then the

usual rate of convergence, known for independent observations, also holds for de-

pendent observations. On the other hand, for long memory processes, the rate of

convergence is different. Interestingly, despite long memory influencing the rate of

convergence, there is no influence of long memory on the bandwidth choice, which

is same regardless of short or long memory. In other words, if the observations come

from a linear process, a larger bandwidth does not improve the rate of convergence
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of the density estimator. Similar results can also be derived for nonparametric re-

gression problems (c.f. Hall and Hart [26], Cheng and Robinson [10], Hall et al.

[28], Claesken and Hall [11] and Csörgö and Mielniczuk [13, 14, 15] and Bryk and

Mielniczuk [7]). However, usually it is assumed that the observations come from

a linear process or are functions of a linear or Gaussian process (often refered to

as generalised Gaussian processes). In the case of linearity, the joint density of the

observations can be characterized (in some sense) in terms of the autocovariances.

It is this representation that allows for the mean squared error of the nonparamet-

ric estimator to be derived in terms of the autocovariance function. However this

result does not necessarily hold when the process is nonlinear.

The assumption of linearity can be relaxed by using the notion of 2-mixing

(see Bosq [3] and Bradley [5]). Unlike the autocovariance function, 2-mixing can

be considered as a measure of dependence between two random variables (see

Definition 2.3, below) and the 2-mixing size quantifies this dependence: a large

mixing size indicates little dependence, whereas a small mixing size indicates large

dependence. Since the strong mixing size gives a lower bound for the 2-mixing size

it can be established for several types of processes, for example, linear processes, see

Athreya and Pantula [1], Chanda [8], Gorodetskii [24] and Appendix A.3, and also

nonlinear processes, see, Pham [35], Masry and Tjøstheim [33], Cline and Pu [12],

Bousamma [4] and Basrak et al. [2] (where many of the these results show geometric

ergodicity, which implies 2-mixing of the process). Assuming that the 2-mixing size

(or strong mixing size) is sufficiently large, Robinson [39] (see assumption A3.1 and

A3.2) and Bosq [3] (see, also, Vieu [46], Viano et al. [45], Mielniczuk [34], Fan and

Yao [19] etc.) obtain the rate of convergence for nonparametric kernel estimators.

However, despite, there existing a huge body of literature on rates of convergence

for nonparametric kernel estimators based on the assumption of linearity of the

process, and some on rates of convergence for processes which are 2-mixing with

a sufficiently large 2-mixing size, as far as we are aware, very little exists on rates

of convergence of nonparametric kernel estimators for nonlinear processes whose

2-mixing size can be small. This is particularly pertinent, as nonlinear processes

with small mixing sizes can arise in several applications, for example the ARCH(∞)

process is a nonlinear process which is used to model finance time series and can

have a small mixing size (see Fryzlewicz and Subba Rao [20] for the details). In

this paper we address this issue, and obtain rates of covergence for nonparametric

kernel estimators for dependent data and formulate the results in terms of the 2-

mixing size. We study both density estimation and also problems in nonparametric

regression.

In Section 3 we consider kernel density estimation, in particular we obtain the

sampling properties of the Rosenblatt-Parzen kernel estimator and obtain a bound

for the mean squared error under the assumption that the time series are sta-

tionary and 2-mixing. We show that, like the long memory process, the 2-mixing

size can influence the rate of convergence. But unlike the long memory process, a

much larger 2-mixing size may be required to obtain the usual rate of convergence.

Moreover, the bandwidths which minimise the obtained bounds are influenced by
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the 2-mixing size - the smaller the 2-mixing size the larger the bandwidth. We

demonstrate that several problems could arise if one were to falsely suppose that

observations were from a linear process, when they do not. For example, if the usual

optimal bandwidth for linear processes were used on nonlinear processes, the mean

squared error may no longer converge to zero. Thus our results give a warning to

practitioners who apply well known results for the linear process, without checking

whether the process is linear or not.

In Section 4 we consider nonparametric regression for dependent data. We discuss

this with reference to two models. First we suppose the response and explanatory

variables (Xt, Zt) satisfy (i) Xt = ϕ(Zt) + h(Zt)ηt, where {ηt} and {Zt} are in-

dependent of each other (Hart [30] considers a particular example of this model,

where h(·) is a constant), and secondly we assume the conditional expectation sat-

isfies (ii) (Xt|Zt) = ϕ(Zt). We observe that the latter model includes the former

model as a special case. We estimate ϕ(·) using the classical kernel estimator and

derive rates of convergence similar to those obtained for the density estimator.

But in the case of model (i) the rate of convergence depends on two factors, the

2-mixing size of {Zt} and the rate of decay of the autocovariance function of {ηt},

whereas for model (ii) the rate of convergence is determined by the mixing size of

the multivariate random process {(Xt, Zt)}.

All the proofs can be found in the appendix. Also some 2-mixing inequalities for

linear processes used here are included in the appendix.

2. Notation

In this section we introduce some definitions that will be used in the paper. Note

we will assume all the necessary densities exist. We start by defining the kernel.

Definition 2.1 A kernel K is of order r (see Scott [43]), if K is a univariate, even

function such that

∫
du K(u) = 1,

∫
du uiK(u) = 0

for all i = 1, . . . , r − 1 and there exists a constant SK such that

∫
du |u|rK(u) = SK .

Let Kb(z) := b−dK(z/b), where b > 0 is a bandwidth. Below we define the

smoothness class (c.f. Robinson [38]) which we use to bound the bias of the esti-

mators.

Definition 2.2 For s,△ > 0, the space G
s
△ is the class of functions g : →

satisfying: g is everywhere (m − 1)-times differentiable for m − 1 < s 6 m; where
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for some ρ > 0 and for all x, the inequality

sup
y:|y−x|<ρ

|g(y) − g(x) − Q(y − x)|

|y − x|s
6 △,

holds true with Q = 0 when m = 1 and for m > 1, Q is an (m − 1)th-degree

homogeneous polynomial in y − x, whose coefficients are the derivatives of g of

orders 1 to m − 1 evaluated at x; and △ is a finite constant.

The dependence of the process {Yt} is quantified in terms of 2-mixing size, which

we define below.

Definition 2.3

(i) A stationary process {Yt} is said to be 2-mixing with size v if for all t 6= 0

sup
A∈σ(Yt),B∈σ(Y0)

|P (A ∩ B) − P (A)P (B)| ≤ C|t|−v.

for some C < ∞ independent of t.

(ii) The covariance of a stationary process {Yt} has size u if for all t 6= τ ,

|cov(Yt, Y0)| ≤ C|t|−u for some C < ∞ independent of t.

We note that the notion of the strong mixing is defined in a similar way (see

Bradley [5] for properties of strong mixing and Rio [37] for applications in central

limit theorems). However the crucial difference between 2-mixing and strong mixing

are the sigma-algebras over which the supremum is taken. In the definition of

strong-mixing the sigma algebra is over the entire left and right tails of {Xt},

whereas the sigma-algebras in the definition 2-mixing are more restrictive. We

observe that the covariance is a measure of linear dependence, whereas 2-mixing

is a generalization of this, and can be considered as a measure of dependence.

2-mixing is quite a general notion, which is satisfied by several processes. For

example, under certain conditions on the innovations, most linear models are 2-

mixing (see Appendix A.3, and Athreya and Pantula [1], Cline and Pu [12] and

Chanda [8], where strong mixing is shown). Further, under additional conditions

on the innovations and the parameters, ARCH/GARCH processes are also strongly

mixing (c.f. Masry and Tjøstheim [33], Bousamma [4] and Basrak et al. [2]) which

implies that they also 2-mixing. Most of the results and bounds in this paper are

derived using 2-mixing. In general, the larger the mixing size the faster the rate

of convergence. For example, in the case of iid observations (the 2-mixing size can

be treated as ∞) using just a few observations, information over the entire domain

of the density function can be obtained. On the other hand, a sample which has

a small mixing size (so tends to be clustered about certain points) will require a

much larger number of observations to give the same information.

For brevity, we use the standard notation ∧ to denote minimum and ∨ to denote

maximum.
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3. Kernel density estimation

Suppose we observe the stationary time series {Z1, . . . , ZT }, and let f denote the

density of Zt. The most popular estimator of f , is the Rosenblatt-Parzen kernel

estimator

f̂(u) =
1

T

T∑

t=1

Kb(Zt − u), (1)

where Kb(z) is defined below Definition 2.1. In this section we investigate the

sampling properties of the kernel density estimator defined above. The dependence

of the process {Zt} is quantified in terms of its 2-mixing size (see Definition 2.3).

We first derive a bound for the mean squared error (MSE) |f̂(z)− f(z)|2 using

only minimal assumptions on the distribution of {Zt}.

Proposition 3.1 Suppose the univariate stationary process {Zt} is 2-mixing with

size v and the marginal density f of Zt and its second derivative f ′′ are both

uniformly bounded. Let f̂ be defined as in (1), where K is a rectangular kernel,

i.e., K(x) = 1 if x ∈ [−1/2, 1/2] and zero otherwise. Then we have

|f̂(z) − f(z)|2 = O(b4 + T−[v∧1]b
−[(v∨1)+1]

v∨1 ) =

{
O(b4 + T−1b−

v+1

v ) v > 1

O(b4 + T−vb−2) v ≤ 1

Proof. To prove the result we will bound the risk using the standard variance

bias decomposition. First the bias: as we are using a rectangular kernel and f ′′ is

uniformly bounded, it is clear that f̂(z) = f(z) + O(b2). To obtain a bound for

the variance we require a bound for the covariances inside the variance expansion

T 2 · var(f̂(z)) =
∑

t,τ cov[Kb(Zt − z), Kb(Zτ − z)]. Since {Zt} is 2-mixing with size

v by using the covariance inequality in Bradley [6] (see also Rio [36]) we have

|cov[Kb(Zt − z), Kb(Zτ − z)]|

≤ 4·

∫ ∞

0

∫ ∞

0
min

(
C|t − τ |−v, P (|Kb(Zt − z)| > x), P (|Kb(Zτ − z)| > y)

)
dxdy.

(2)

Studying P (|Kb(Zt − z)| > x) and recalling that K(·) is a rectangular kernel we

can show that

P (|Kb(Zt − z)| > x) =

{
0, if x > 1/b;

P (Zt ∈ [z − b/2, z + b/2]), otherwise.

By using the mean value theorem we have P (Xt ∈ [z − b/2, z + b/2]) = bf(z̃), for
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some z̃ ∈ [z − b/2, z + b/2]. Substituting this into (2) leads to

|cov[Kb(Zt − z), Kb(Zτ − z)]| ≤ 4 ·

∫ 1/b

0

∫ 1/b

0
min

(
C|t − τ |−v, b · f(z̃)

)
dxdy

= 4 · b−2 min
(
C|t − τ |−v, b · f(z̃)

)
. (3)

Altogether this yields the bound

T 2 · var(f̂(z)) ≤ 4
∑

t,τ

b−2 min
(
C|t − τ |−v, b · f(z̃)

)
.

Examining the minimum inside the summand above, we partition the sum into two

parts which we bound separately (for the details see the proof of Theorem 3.3, in

the Appendix). Finally recalling that | f̂(z)− f(z)|2 = O(b4) leads to the desired

result. �

We observe, in the proof above, that besides the 2-mixing condition we do not

have any assumptions on the joint distribution of (Zt, Zτ ). The cost of using such

weak assumptions is that the usual bound O(b4 + (bT )−1) for the MSE, obtained

for independent observations, is not achieved. Even for large v the 2-mixing size

has an influence on the bound. However, introducing some assumptions on the

joint densities of {Zt} allows us to tighten the bound derived in (3) and, hence

for a sufficiently large mixing size v to recover the usual bound O(b4 + (bT )−1) for

the MSE (we note that the rest of the proofs in this section and the subsequent

sections require more subtle arguments, and these can be found in the appendix).

Assumption 3.2 Densities and kernels

(i) The marginal density f is uniformly bounded.

(ii) For each t, τ ∈ let f (t) denote the joint density of (Zt, Z0). Define1 F t :=

f t − f ⊗ f . Then ‖F (t)‖pF
is uniformly bounded in t for some pF > 2 and we

define qF = 1 − 2/pF .

(iii) The kernel K is uniformly bounded and has a finite first and second moment,

i.e., ‖K‖1 < ∞ and ‖K‖2 < ∞.

We use these assumptions to derive an uniform bound for the MSE of the density

estimator.

Theorem 3.3 Let us suppose the stationary time series {Zt} is 2-mixing with

size v and Assumption 3.2 is fulfilled for some qF ∈ (0, 1). In addition assume that

f ∈ G
s
△ for some △, s > 0 (see Definition 2.2). Let f̂ be defined as in (1), where

K is a kernel of order s. Then we have uniformly for all z ∈

|f̂(z) − f(z)|2 = O
(
b2s + b−1 · T−1 + b−2−qF (1−[v∨1]) · T−[v∧1]

)
, T → ∞.

1We use the notation f ⊗ g(x, y) = f(x)g(y) and ‖f‖p = (
R

|f(x)|pdx)1/p.
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For ease of presentation we have only stated the result for univariate {Zt}, how-

ever it is straightforward to extend this result for multivariate {Zt}.

Remark 3.4 We note that in the bound given in Theorem 3.3 the second term

dominates the third term when v > 1 + 1/qF . Conversely, when v < 1 + 1/qF the

third term dominates the second term. Moreover, the third term can be partitioned

into two further cases, when 1 < v ≤ 1 + 1/qF and when v ≤ 1. This means that

Theorem 3.3 can be written as

(i) if v > 1 + 1/qF , then |f̂(z) − f(z)|2 = O
(
b2s + 1

bT

)
;

(ii) if 1 < v ≤ 1 + 1/qF , then |f̂(z) − f(z)|2 = O
(
b2s + 1

b(2+qF (1−v))T

)
;

(iii) if v ≤ 1 then |f̂(z) − f(z)|2 = O
(
b2s + 1

b2T v

)
;

as T → ∞.

Studying the three bounds, we see that the bound increases linearly with v for

0 ≤ v ≤ 1, after this point there is a change in behavior and the increase is more

gradual. The bound plateaux when v > 1+1/qF , after this point we have the usual

nonparametric bound obtained for iid observations. There is also a continuity in

the three bounds. More precisely, when v is at the boundary of 1 and 1+q−1
F , there

is a continuous transition between the bounds. �

We now consider the rate of convergence by using a bandwidth b∗ which balances

the three terms in the bound of Theorem 3.3.

Corollary 3.5 Under the assumptions of Theorem 3.3 if b∗ ≈ T−γ/(2s+1) with

γ :=

{
1, v > 1 + 1/qF ;

[v ∧ 1] · 2s+1
2s+(2+qF (1−[v∨1])) , 1 + 1/qF ≥ v.

(4)

Then uniformely for all z ∈ we have |f̂(z)− f(z)|2 = O
(
T− 2s

2s+1
·γ

)
as T → ∞.

In other words, if b∗ ≈ T−γ/(2s+1), then we have

|f̂(z) − f(z)|2 :=






O
(
T− 2s

2s+1

)
, v > 1 + 1/qF ;

O
(
T
− 2s

2s+1
·( 2s+1

2s+(2+qF (1−v))
)
)
, 1 + 1/qF ≥ v > 1;

O
(
T (v· 2s+1

2s+2
)
)
, 1 ≥ v.

. (5)

We note that if supz |f(z)| < ∞ and supt supz |f
(0,t)(z)| < ∞ (both the density

and the joint densities are uniformly bounded), then uniformly in all t, ‖F (t)‖∞ <

∞. This means qF = 1, and the bound can be divided into the three cases where

v ≤ 1, 1 ≤ v ≤ 2 and v ≥ 2. On the other hand when ‖F (t)‖pF
< ∞ for only a

finite pF , then qF < 1 and v > 1 + q−1
F > 2 to be sure of the usual nonparametric

bound.

Referring to Corollary 3.5, we observe that when v < 1 + q−1
F , then the used

bandwidth b∗ is much larger than usual bandwidths encountered in nonparametric

regression (b ≈ T
−1

2s+1 ). We discuss this further in Section 3.2.
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3.1. A comparison of the MSEs for linear processes

In this section we compare the MSE in Theorem 3.3 with the results obtained

under the stronger condition that the observations {Zt} come from a linear process

(which is a much stronger assumption than 2-mixing, see Appendix A.3). We will

use the results in Appendix A.3 and show that if the process were linear, and not

just mixing, that then the rate of convergence is better than the rate obtained

in Corollary 3.5. However, in Section 3.2 we demonstrate that by misspecifying

the process to be linear, can lead to several problems with the density estimator,

including bounds which do not converge to zero.

Let us suppose {Zt} has a linear process representation and satisfies

Zt =
∞∑

j=0

ajεt−j , (6)

where the innovations {εt} are iid. Under the assumptions in Lemma A.8 (see the

Appendix), it can be shown that cov(Kb(Z0), Kb(Zt)) = O(cov(Z0, Zt)). Using this

as the basis, Hall and Hart [25], Giraitis et al. [22], Mielniczuk [34] and Estevas

and Vieu [18]) have shown that the MSE is

|f̂(z) − f(z)|2 = O

(
b2s +

1

bT
+

1

T
RT

)
, (7)

where RT =
∑T

t=1 |cov(Z0, Zt)|. It is clear that both cov(Z0, Zt) and RT depend

on the rate of decay of the parameters {aj}. We observe if |aj | ≤ Cj−θ, then

|cov(Z0, Zt)| = O(T−2θ+1) and RT = O(T−(2θ−1)+1) if 1/2 < θ ≤ 1

|cov(Z0, Zt)| = O(T−θ) and RT = O(T−θ+1) if θ > 1.

Substituting these rates into (7) we see that the bound of the MSE depends on θ. We

recall that a process {Zt} is called a short memory process if
∑

t |cov(Z0, Zt)| < ∞,

otherwise it is called a long memory process. Now studying (7) we see that RT does

not depend on the bandwidth b. In other words long memory has no influence on

the choice of the optimal bandwidth. To summarize, the rate of convergence for

observations coming from a linear process is

|f̂(z) − f(z)|2 ≤

{
O(T−(2θ−1)), if 2θ − 1 ≤ 2s

2s+1 ;

O(T
−2s

2s+1 ), if 2θ − 1 > 2s
2s+1 .

(8)

Hall and Hart [25] have shown that the rates above are optimal. On the other hand

let us recall Corollary 3.5, above, in particular the case v ≤ 1, where we have shown

|f̂(z) − f(z)|2 = O(T−v+ 2v

2s+2 ). (9)

It is difficult to directly compare (8) and (9), since (8) is in terms of its long memory

parameter whereas (9) is in terms of its mixing size v. However in the special case

that {Zt} is Gaussian (and thus linear), there is a one-to-one correspondence, for
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example, if 2θ − 1 ≤ 1 then the covariance size and mixing size are the same, and

v = (2θ − 1) = u. We illustrate the case when the mixing and the covariance sizes

are the same in Figure 1 (for both large and small s). In the non-Gaussian case,

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

0.00.20.40.60.81.0

siz
e

rate
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0

0.00.20.40.60.81.0
siz

e

rate

Figure 1. The top and bottom plot corresponds to s = 1 and s = 5, respectively. The x-axis is the

covariance and mixing size (assuming both are the same) and the y-axis is the index δ in the MSE

|f̂(x) − f(x)|2 = O(T−δ). The solid line is the MSE using 2-mixing and dotted line is the MSE when

{Zt}t is a linear process. We have assumed that qF = 1 (in other words ‖F (t)‖∞ < ∞).

where the 2-mixing and covariance size do not necessarily coincide (v 6= u), if all the

moments of {Zt} exist, then for 1/2 < θ ≤ 1 we have that (2θ−1)/2 ≤ v ≤ (2θ−1)

(see (A32) in the appendix). In this case, it is not clear whether the rate (9) is worse

than (8). However substituting the lower bound v ≥ (2θ − 1)/2 into Corollary 3.5

yields a rate which is less than (8). In summary better rates of convergence can

often be obtained if the observations come from a linear process. On the other hand,

2-mixing is a weaker condition, that is satisfied by a far wider class of processes.

We consider below the MSE for processes which are not linear, and show that

misspecifying the model, and assuming linearity, when the process is nonlinear

could severely affect the MSE.

3.2. The MSE for nonlinear processes

As far as we are aware, theory is required to bridge the gap for processes which

are nonlinear but have a small mixing size. One of the main aims of Theorem 3.3

is to fill in the gap in the theory, and to derive a bound for the MSE when the

observations come from nonlinear processes with small 2-mixing size.
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The joint densities of processes which are nonlinear do not necessarily satisfy

the density decomposition in Lemma A.8. Without this result it cannot be shown

that cov(Kb(Z0), Kb(Zt)) = O(cov(Z0, Zt)), and the rates in (8) do not necessarily

hold. Instead, to prove the results, under Assumption 3.2, we use classical mixing

inequalities to tighten the bound given in (3) (see the proof of Proposition 3.1).

More precisely, to prove Theorem 3.3 we show that

|cov(Kb(Zt − z), Kb(Zτ − z))| ≤ C · b−2 min
(
|t − τ |−v, b(1+qF )

)
,

where C is a finite constant (see Lemma A.1, for the proof).

Looking at some of the implications of Theorem 3.3, we demonstrate below that

several problems could arise if one were to falsely suppose that the observations

come from a linear process, when they do not.

(i) In the case of linear processes, the optimal bandwidth has the same order as

the bandwidth for iid random variables (regardless of long memory). The same

is not necessarily true when all that is known is that the process is 2-mixing.

Moreover, if the mixing size satisfies v ≤ 1 and the bandwidth is such that

b2T v < ∞, then we see from Theorem 3.3 that the bound does not converge to

zero. An important example, is when the ‘usual’ bandwidth for linear or iid data

is used (that is b ≈ T− 1

2s+1 ). In this case, substituting b ≈ T− 1

2s+1 into Theorem

3.3 leads to the result

|f̂(z) − f(z)|2 =






O(T
−2s

2s+1 ) v > 1 + 1/qF

O(T
1+qF (1−v)−2s

2s+1 ) 1 < v ≤ 1 + 1/qF

O(T
2−v(2s+1)

2s+1 ) 0 ≤ v ≤ 1

Studying the rates above we see when v < 1+1/qF , the rates are lower than the

rates given using the bandwidth which balances bias and variance (compare the

above with the rates in Corollary 3.5). Moreover, in the case that v ≤ 2
2s+1 , the

bound cannot be used to show consistency of the estimator - since the bound

does not even converge to zero.

In short, to estimate the density at any given point, the number of observations

(approximately bT ) needs to be much larger than in the iid case.

(ii) Rather surprisingly even when
∑∞

t=1 |cov(Z0, Zt)| < ∞, the ‘usual O(T− 2s

2s+1 )’

rate, may not hold, unlike for linear processes. However, the usual rate does hold

when v ≥ 1+1/qF > 2. Therefore, even when the mixing and covariance size are

the same, a far larger mixing size may be require to obtain the ‘usual O(T− 2s

2s+1 )’

rate of convergence.

Our results give a cautionary warning to practitioners who apply the optimal

bandwidths for linear processes to nonlinear process. In the subsequent sections,

where we consider nonparametric regression problems, the assumptions and proofs

will be more involved, however the underlying message is the same. That is, more

than just the second order autocovariance function may have influence on the rate

of convergence, and the rate of convergence can be severely compromised if the
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usual bandwidths were used.

Example 3.6 It is almost impossible to estimate the 2-mixing size from the obser-

vations, in contrast to long memory (c.f. Geweke and Porter-Hudak [21], Künsch

[31] and Robinson [41]). However to conclude this section we give an example of

a nonlinear process whose 2-mixing size is less than 1 + δ, for some δ > 0. Let us

consider the ARCH(∞) process (see Robinson [40]), where {Zt} satisfies

Zt = σtεt σ2
t = a0 +

∞∑

j=1

ajZ
2
t−j ,

with (εt) = 0 (estimation of ARCH(∞) parameters is considered in Subba Rao

[44]). Giraitis et al. [23] have shown that if for large t, at ≈ t−(1+δ) (for some

δ < 0) and [ (ε4
t )]

1/2
∑∞

j=1 aj < 1, then |cov(Z2
0 , Z2

t )| ≈ t−(1+δ). That is, the

absolute sum of the covariances is finite, but ‘only just’ if δ is small. Furthermore,

if we assume that |εt| < 1, then it is straightforward to show that Zt is a bounded

random variable. This means that using the mixing inequality for bounded random

variables (see Hall and Heyde [27]) we can show

|cov(Z2
0 , Z2

t )| ≤ C sup
A∈σ(Z0),B∈σ(Zt)

|P (A ∩ B) − P (A)P (B)|,

for some C < ∞. Altogether, this gives a lower bound for the 2-mixing size of the

ARCH(∞) process with at ≈ t−(1+δ), and v ≤ (1 + δ).

In other words the 2-mixing size for some ARCH(∞) process is small, and far from

the geometric rate often assumed in nonparametric estimation. An upper bound

for the 2-mixing size can be found in Fryzlewicz and Subba Rao [20]. �

4. Nonparametric regression

In this section we consider nonparametric regression, with random design, where

the observations are dependent. It is worth mentioning that there has been exten-

sive research done on nonparametric regression with fixed design and dependent

errors (c.f. Hall and Hart [26], Csörgö and Mielniczuk [13], and the references

therein). In this case typically, one observes Yt, where Yt = ϕ( t
T )+ εt and {εt}t are

stationary random variables with varying degrees of dependence. It has been shown

that the rate of convergence depends on the covariance of {εt}t, in particular their

absolute sum,
∑∞

t=1 |cov(ε0, εt)|.

In the random design model, one observes the stationary two-dimensional vector

time series {(Xt, Zt)}t, where

Xt = ϕ(Zt) + εt (10)

with (Xt|Zt = z) = ϕ(z) and εt = Xt − (Xt|Zt). The randomness in this model

is determined by two factors: the design {Zt} and the errors {εt = Xt− (Xt|Zt)}.

Therefore, unlike the fixed design model, the rate of convergence of any estimator
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of ϕ must depend on the sampling properties of the design density estimator. Thus,

it is clear that similar results to those in Section 3 should also apply to an estimator

of ϕ.

We now define the classical Nadaraya-Watson estimator of ϕ(·) and study its

sampling properties, under various assumptions on {(Xt, Zt)}. Let p(x, z) be the

joint density of (Xt, Zt). The estimator is

ϕ̂(z) =
ĝ(z)

f̂(z)
, (11)

where ĝ(z) := 1
T

∑T
t=1 XtKb(Zt − z) and f̂(z) := 1

T

∑T
t=1 Kb(Zt − z) are estimators

of g(z) =
∫

xp(x, z)dx and f(z), which is the density of Zt.

We first consider the sampling properties for a particular class of models which

satisfy (10). Suppose the vector time series {(Xt, Zt)} satisfies the representation

Xt = ϕ(Zt) + h(Zt)ηt (12)

for some h : → +, where the time series {Zt} and {ηt} are independent of each

other. This class of models is similar to the fixed design model Xt = ϕ( t
T )+ηt, but in

(12) the design is random and the conditional variance var(Xt|Zt) = h(Zt)
2var(ηt),

depends on the design. This model arises in various applications and we consider

one application in Remark 4.5. We will show in the theorem below that the rate of

convergence depends both on the mixing size of the design {Zt}, but also on the

size of the covariances of the process {ηt} (which we denote by u, see Definition

2.3).

We require the following assumptions.

Assumption 4.1 Densities, moments and kernels

(i) For some p > 2 the functions h2 · f and |ϕ|p · f are uniformly bounded and

we define q := 1 − 2/p.

(ii) Let f (t) and F (t) be defined as in Assumption 3.2 (ii),

g(t)(z1, z2) := [XtX0|Zt = z1, Z0 = z2] · f
(t)(z1, z2).

and G(t) := g(t) − g ⊗ g. Then ‖F (t)‖pF
and ‖G(t)‖pG

are uniformly bounded in t

for some pF , pG > 2. We define qF := 1−2/pF , qG := 1−2/pG and qFG := qF∧qG.

(iii) The kernel K has finite first and p-th moment.

Studying Assumption 4.1(i), we see that it allows for various types of growth

of the regression function ϕ and the conditional variance h. The type of growth

depends on the rate the density f decays to zero. For example, if f were the

Gaussian density, then exponential growth of ϕ and h is possible. However, as we

shall demonstrate in the theorem below, the larger the p, such that supx h(x)p ·

f(x) < ∞ and supx |ϕ(x)|p · f(x) < ∞, then the faster the rate of convergence of

|ϕ̂(z) − ϕ(z)|2.

Theorem 4.2 Suppose the stationary time series {(Xt, Zt)} satisfies (12), {Zt}
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is 2-mixing with size v and the autocovariance of the time series {ηt} has size u.

Let Assumption 4.1 be fulfilled for some q, qFG ∈ (0, 1). In addition assume that

ϕ · f, f ∈ G
s
△ for some △, s > 0 and that f is bounded away from zero. Let the

estimator ϕ̂(z) be defined as in (11), where K is a kernel of order s. Then we have

for all z ∈

|ϕ̂(z)−ϕ(z)|2 = OP

(
b2s+b−1·T−(u∧1)+b−1−q−qF G(1−[(qv)∨1])·T−[(qv)∧1]

)
, T → ∞.

Remark 4.3 We observe that the bound obtained in Theorem 4.2 are similar to

the bound derived for the density estimator in Theorem 3.3, where

|f̂(z) − f(z)|2 = O
(
b2s + b−1 · T−1 + b−2+qF (1−[v∨1]) · T−[v∧1]

)
. (13)

The difference is the inclusion of the covariance size u of the errors and the q which

‘balances’ the tails of 1/ϕ and f (see Assumption 4.1(i)). However, we observe

that we can partition the bound in Theorem 4.2 into three cases, which are similar

to the three cases considered in Remark 3.4. Most notably, we observe if u > 1

and v > 1/qFG + 1/q then we obtain the usual bound OP (b2s + b−1 · T−1) for

the squared error. It is interesting to note that in the case hp · f and |ϕ|p · f are

uniformly bounded for all p, then q = 1 (eg. h and ϕ are bounded functions and f

is exponential density). In this case the bounds given in (13) and Theorem 4.2 are

quite similar. The main difference is the appearance of qFG rather than qF and,

the term b−1T−(u∧1) which replaces b−1T−1. �

Corollary 4.4 Under the assumptions of Theorem 4.2 if b∗ ≈ T−γ/(2s+1) with

γ :=

{
min(u, 1), qv > 1 + 1/qFG;

min
(
u, [(qv) ∧ 1] · 2s+1

2s+1+q+qF G(1−[(qv)∨1])

)
, 1 + 1/qFG ≥ qv.

, (14)

then we have |ϕ̂(z) − ϕ(z)|2 = OP

(
T− 2s

2s+1
·γ

)
for all z ∈ .

Let us now compare Theorem 4.2 with the bound obtained for the deterministic

design Xt = ϕ( t
T ) + εt, where u is the covariance size of the errors. In the case

of the fixed design, the bound for the deviation of the kernel estimator is O(b2s +

T−(u∧1)b−1) (c.f. Hall and Hart [26]). We see that the bound in Theorem 4.2 include

this term, but also the additional term O(b−1−q−qF G(1−[(qv)∨1]) · T−[(qv)∧1]), which

is the influence of the design, in particular, v. If the mixing size of the design were

sufficiently large, then the fixed design and random design estimators have the

same rate of convergence, O(T− 2s

2s+1 ).

Example 4.5 Examples of processes which satisfy (12) are stochastic volatility mod-

els (c.f Linton and Mammen [32]), where one observes {Yt}, which satisfies the

representation

Yt = σ(Zt)ηt.

Here {ηt} are iid random variables, (η2
t ) = 1 and {Zt} are explanatory variables
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which can include past values of Yt. Usually in finance the object is to estimate the

conditional volatility σ2. By noting that Y 2
t can be written as

Y 2
t = σ(Zt)

2 + (η2
t − 1)σ(Zt)

2,

we see that Y 2
t satisfies (12) with Xt = Y 2

t , εt = (η2
t − 1) and h(·) = σ(·)2.

Therefore we can estimate the volatility σ(·)2 using (11), where σ̂(·)2, is the kernel

estimator of σ(·)2. Furthermore, Theorem 4.2 can be applied to obtain the rate

of convergence. More precisely, let v be the mixing size of {Zt}, and noting that

cov{(η2
t − 1), (η2

s − 1)} = 0, when t 6= s, which implies u = ∞, we obtain

|σ̂(z)2 −σ(z)2|2 = OP

(
b2s + b−1−q−qF G(1−[(qv)∨1]) ·T−[(qv)∧1]

)
. �

From Corollary 4.4 we see that there are two factors which affect the rate of

convergence: the mixing size v of the random design {Zt} and the size u of the

covariance function of {ηt}. There are however several models of interest, which do

not satisfy condition (12). In this case Theorem 4.2 cannot be applied and it is of

interest to investigate what happens in the general case.

Examples of models which do not necessarily satisfy (12) include the Cheng-

Robinson model, where {Xt} satisfies the representation Xt = F (Ut) + G(Ut, Yt)

with (G(Ut, Yt)|Ut) = 0 and {Yt} is a long memory process, which is independent

of the weakly dependent design random variables {Ut} (c.f. Cheng and Robinson

[10], Csörgö and Mielniczuk (1999, 2001)). However, the results are derived under

the assumption that {Yt} comes from a linear process and G(·) has a particular

form.

An alternative approach is developed in Bosq [3], who considers nonparametric

prediction for time series, where one observes the stationary time series {(Xt, Zt)}

and the parameter of interest is ϕ(z) = (Xt|Zt = z). The sampling results in Bosq

[3] are based on the assumption that the mixing size of {(Xt, Zt)} is sufficiently

large, (thus excluding Cheng-Robinson type models) yielding an estimate which

has the same rate as the kernel estimator for iid random variables.

We now consider the sampling properties of ϕ̂, when the observations {(Xt, Zt)}

satisfy the general model defined in (10), and dependence is quantified through its

2-mixing size, which can be arbitrary.

We will use the following assumptions.

Assumption 4.6 Densities, moments and kernels

(i) Let |Xt|
p < ∞ for some p > 2 and define g(p)(z) := [|Xt|

p|Zt = z] · f(z).

Then the functions g(p) and f are uniformly bounded and we define q := 1−2/p.

(ii) Let f (t) and F (t) be defined as in Assumption 3.2 (ii) and let g(t) and G(t)

be defined as in Assumption 3.2 (ii). Then ‖F (t)‖pF
and ‖G(t)‖pG

are uniformly

bounded in t for some pF , pG > 2, where we define qF := 1−2/pF , qG := 1−2/pG

and qFG := qF ∧ qG.

(iii) The kernel K has finite first and p-th moment.
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We note that assumptions above are similar to Assumption 4.1. The difference

lies in Assumption 4.1(i) and Assumption 4.6(i). Assumption 4.6(i) is in terms of

moments whereas Assumption 4.1(i) is in terms of functions.

In the following theorem we derive an error bound for the estimator ϕ̂.

Theorem 4.7 Suppose the stationary time series {(Xt, Zt)} satisfies (10), and is

2-mixing of size v. Furthermore, Assumption 4.6 is fulfilled for some qFG, q ∈ (0, 1).

In addition assume that ϕ · f, f ∈ G
s
△ for some △, s > 0 and that f is bounded

away from zero. Let the estimator ϕ̂(z) be defined as in (11), where K is a kernel

of order s. Then we have for all z ∈

|ϕ̂(z)−ϕ(z)|2 = OP

(
b2s+b−1 ·T−1+b−1−q−qF G(1−[(qv)∨1]) ·T−[(qv)∧1]

)
, T → ∞.

We now obtain the rates of convergence by balancing the three terms in the

bound of the last assertion.

Corollary 4.8 Under the assumptions of Theorem 4.7 if b∗ ≈ T−γ/(2s+1) with

γ :=

{
1, qv > 1 + q/qFG;

[(qv) ∧ 1] · 2s+1
2s+1+q+qF G(1−[(qv)∨1]) , 1 + q/qFG ≥ qv.,

(15)

then we have |ϕ̂(z) − ϕ(z)|2 = OP

(
T− 2s

2s+1
·γ

)
for all z ∈ .

5. Discussion

In this paper we have considered nonparametric estimation for dependent data.

Focusing on the case that the observations are nonlinear and highly dependent.

We have obtained bounds for the kernel density estimator and also rates of

convergence of two types of nonparametric regression models, both using the

2-mixing dependence measure. We show that when the assumption of linearity is

relaxed, the rate of convergence does not necessarily depend on the autocovariance

function of the observations.

As we are working under relatively weak conditions, we do not claim that the

bounds obtained are minimax. However, the bounds can be considered as the

worst case scenario for the nonparametric estimator. In future work, it would be

of interest to investigate if the bounds in the paper are indeed close to minimax

for certain nonlinear time series. It would also be of interest to develop bandwidth

selection methods when the 2-mixing size of the observations is unknown.
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Appendix A.

A.1. Proofs: Nonparametric density estimation

We now prove the results in Section 3.

Lemma A.1 Suppose the time series {Zt} is 2-mixing with size v and Assumption

3.2 is fulfilled for some qF ∈ (0, 1). If 1 ≤ t, τ ≤ T , then 1

|cov {Kb(Zt − z), Kb(Zτ − z)} | . min
(
b−(1−qF ); b−2|t − τ |−v

)
. (A1)

Proof. Writing the covariance as an integral, and using the notation in Assump-

tion 3.2 (ii) we have

cov {Kb(Zt − z), Kb(Zτ − z)} =

∫
Kb(u − z)Kb(v − z)F (t−τ)(u, v)dudv.

Now by using Hölder’s inequality with p−1
F + p̄−1

F = 1, and recalling that qF =

1 − 2/pF , it is clear that

|cov {Kb(Zt − z), Kb(Zτ − z)} | ≤
1

b2
· b2/p̄F ‖K‖2

p̄F
· ‖F (t−τ)‖pF

. b−(1−qF ).

Using Assumption 3.2 we have that ‖F (t−τ)‖pF
is uniformly bounded and by using

Lyaponov’s inequality ‖K‖p̄F
< ∞ for all 1 < p̄F < 2. This gives us the first bound

in (A1). On the other hand, under Assumption 3.2 (i) the kernel K is uniformly

bounded and therefore, using the 2-mixing property of {Zt} together with Hall and

Heyde [27], Theorem A.5, we obtain

|cov {Kb(Zt − z), Kb(Zτ − z)} | . b−2 · |t − τ |−v,

which gives the second bound in (A1). �

Proof of Theorem 3.3. We mention that parts of the following proof are moti-

vated by techniques used in Bosq [3]. Consider the standard decomposition

|f̂(z) − f(z)|2 = var(f̂(z)) + | f̂(z) − f(z)|2. (A2)

Under the stated assumptions we will derive the following two bounds, which give

together the result of the theorem. The bias is bounded by

| f̂(z) − f(z)|2 . b2s, (A3)

while for the variance we have

var(f̂(z)) . T−1 · b−1 + T−[v∧1] · b−(2+qF−qF [v∨1]). (A4)

1We write A . B when there exists a positive constant c independent of A and B such that A 6 cB.
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Proof of (A3). We can write

f̂(z) =
1

T

T∑

t=1

(
Kb(Zt − z)

)
=

∫
du f(u)Kb(u − z).

Since f ∈ G
s
△ and K is a kernel of order s with

∫
du|u|sK(u) ≤ SK , using a

Taylor expansion up to the order s leads to f̂(z) = f(z) + bsR with reminder

|R| ≤ △SK < ∞, which proves (A3).

In order to proof (A4), we consider the expansion

var(f̂(z)) =
1

T 2

T∑

t=1

var {Kb(Zt − z)} +
2

T 2

∑

t>τ

cov {Kb(Zt − z), Kb(Zτ − z)}

=: A1 + A2. (A5)

We will show that |A1| . T−1 · b−1 and

|A2| .

{
T−v · b−2, v ≤ 1;

T−1 · {b−1 + b−(2+qF−qF v)}, 1 < v.
(A6)

Furthermore, if 0 ≤ v ≤ 1/qF + 1 then |A1| is dominated by |A2|. Whereas for

v > 1/qF + 1 the terms |A1| and |A2| are of the same order O(T−1b−1). Therefore,

the bounds derived for |A2| will lead to (A4).

First let us consider A1. Due to stationarity, we have the bound

T · A1 ≤ [K2
b (Z1 − z)] =

∫
du f(u)K2

b (u − z).

Since under the stated assumptions ‖K‖2 < ∞ and the density f is uniformly

bounded this leads to A1 . T−1 · b−1.

The term T · |A2| is bounded by the sum 4
∑T

t=2 |cov {Kb(Zt − z), Kb(Z1 − z)} |.

If v ≤ 1 then we estimate the sum using the second bound in Lemma A.1, i.e.,

T · |A2| . T−v+1b−2, which is the first bound in (A6). On the other hand if v > 1

we partition the sum into two parts which we estimate separately using the bounds

in Lemma A.1, thus giving us

T · |A2| .
{ h∑

t=2

b−(1−qF ) +
T∑

t=h+1

b−2t−v

}
.

{
h · b−(1−qF ) + h−v+1 · b−2

}
.

Thereby using h ≈ b−qF we obtain T · |A2| . b−1 + b−1(2+qF−qF v), i.e., the second

bound in (A6). Thus we have proved (A4). �

Proof of Corollary 3.5 Under the assumption on the bandwidth the result is

obtained by balancing the terms in the bound given in Theorem 4.2. �
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A.2. Proofs: Nonparametric regression

We now prove the results in Section 4.

Lemma A.2 Suppose the stationary time series {Xt, Zt} satisfies (12), and {Zt}

is 2-mixing with size v and the autocovariances of the time series {ηt} have size u

(see Definition 2.3). Suppose Assumption 4.1 is fulfilled for some q, qG ∈ (0, 1). If

1 ≤ t, τ ≤ T , then

|cov {XtKb(Zt − z), XτKb(Zτ − z)} | . b−(1−qG), (A7)

|cov {ϕ(Zt)Kb(Zt − z), ϕ(Zτ )Kb(Zτ − z)} | . b−(1+q)|t − τ |−qv, (A8)

|cov {h(Zt)Kb(Zt − z)ηt, h(Zτ )Kb(Zτ − z)ητ} | . b−1|t − τ |−u. (A9)

Proof. Using the notation in Assumption 4.1 together with Hölder’s inequality,

and recalling that qG = 1 − 2/pG with p−1
G + p̄−1

G = 1, we have

|cov {XtKb(Zt − z), XτKb(Zτ − z)} | . b−(1−qG),

where we use that under Assumption 4.1, K has finite 1 < p̄G < p moment (by

Lyaponovs inequality) and ‖Gt,τ‖pG
is uniformly bounded. This gives us (A7).

We now prove (A8). Under Assumption 4.1 the function |ϕ|p · f is uniformly

bounded and ‖K‖p is finite for some p = 2/(1 − q) > 2, therefore we have

[ |ϕ(Z1)Kb(Z1 − z)|p]2/p . b−(q+1). Using the 2-mixing property of {Zt} together

with Hall and Heyde [27], Theorem A.6, we obtain (A8).

We now prove (A9). The series {Zt} and {ηt} are independent, therefore expand-

ing the term A := cov {h(Zt)Kb(Zt − z)ηt, h(Zτ )Kb(Zτ − z)ητ} gives

A = cov(ηt, ητ ) · [h(Zt)Kb(Zt − z)h(Zτ )Kb(Zτ − z)].

Since the covariance of the time series {ηt} has size u, applying the Cauchy-Schwarz

inequality gives

|A| . |t − τ |−u · |h(Z1)Kb(Z1 − z)|2.

Under Assumption 4.1 the function |h|2 · f is uniformly bounded and ‖K‖2 < ∞,

therefore |h(Z1)Kb(Z1 − z)|2 . b−1, and hence we obtain (A9). �

Lemma A.3 Suppose the stationary time series {Zt} is 2-mixing with size v and

Assumption 4.1 is fulfilled for some q, qF ∈ (0, 1). If 1 ≤ t, τ ≤ T , then

|cov {Kb(Zt − z), Kb(Zτ − z)} | . min
(
b−(1−qF ); b−(1+q)|t − τ |−qv

)
. (A10)

Proof. The proof is very similar to the proof of Lemma A.2 and we omit the

details. �
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Lemma A.4 Suppose the assumptions in Theorem 4.2 are satisfied. Let ĝ be

defined as in (11). Then we have

|ĝ(z)−g(z)| . b2s+b−1T−1+b−(1+q+qg(1−[(qv)∨1]))T−[(qv)∧1]+b−1T−(u∧1). (A11)

Proof. Consider the standard variance bias decomposition

|ĝ(z) − g(z)|2 = var(ĝ(z)) + | ĝ(z) − g(z)|2. (A12)

Under the stated assumptions we will derive the following two bounds, which al-

together give the estimate in (A11). The bias is bounded by

| ĝ(z) − g(z)|2 . b2s, (A13)

while for the variance we have

var(ĝ(z)) . b−1T−1 + b−(1+q+qG(1−[(qv)∨1]))T−[(qv)∧1] + b−1T−(u∧1). (A14)

We first prove (A13). We can write

ĝ(z) =
1

T

T∑

t=1

(
[Xt|Zt]Kb(Zt − z)

)
=

∫
du g(u)Kb(u − z).

Since g ∈ G
s
△ and K is a kernel of order s with

∫
du|u|sK(u) ≤ SK , using a

Taylor expansion up to the order s leads to ĝ(z) = g(z) + bsR with reminder

|R| ≤ △SK < ∞, which proves (A13).

In order to proof (A14), we consider the expansion

var(ĝ(z)) =
1

T 2

T∑

t=1

var {XtKb(Zt − z)} +
2

T 2

∑

t>τ

cov {XtKb(Zt − z), XτKb(Zτ − z)}

=: A1 + A2. (A15)

We will show that |A1| . T−1 · b−1 + T−(u∧1) · b−1 and

|A2| .

{
T−qv · b−(1+q) + T−(u∧1) · b−1, qv ≤ 1;

T−1 · b−1 + T−1 · b−(1+q+qG(1−qv)) + T−(u∧1) · b−1, 1 < qv.
(A16)

Furthermore, if 0 ≤ qv ≤ q/qG + 1 then we show that |A1| is dominated by |A2|.

Whereas for qv > q/qG + 1 the terms |A1| and |A2| are of the same order O(T−1 ·

b−1+T−(u∧1) ·b−1). Therefore, the bounds derived for |A2| will lead to the estimates

in (A14).

First let us consider A1. Due to stationarity of the process, we have the bound

T · A1 ≤ |X1Kb(Z1 − z)|2 . |ϕ(Z1)Kb(Z1 − z)|2 + |h(Z1)Kb(Z1 − z)|2.
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Under the stated assumptions the functions |ϕ|p · f with p > 2 and |h|2 · f are

uniformly bounded and the kernel ‖K‖2 < ∞, therefore A1 . T−1 · b−1.

Let us now consider the term A2, which is bound by

T · |A2| ≤ 4
T∑

t=2

|cov {XtKb(Zt − z), X1Kb(Z1 − z)} |, (A17)

where using representation (12) the t-th summand in (A17) can be estimated by

|cov {ϕ(Zt)Kb(Zt − z), ϕ(Z1)Kb(Z1 − z)} |

+ |cov {h(Zt)Kb(Zt − z)ηt, h(Z1)Kb(Z1 − z)η1} |. (A18)

If qv ≤ 1 and u ≤ 1 then we bound the sum (A17) using (A18), i.e.,

T · |A2| .

T∑

t=2

|cov {ϕ(Zt)Kb(Zt − z), ϕ(Z1)Kb(Z1 − z)} |

+
T∑

t=2

|cov {h(Zt)Kb(Zt − z)ηt, h(Z1)Kb(Z1 − z)η1} |. (A19)

We use the bounds (A8) and (A9) in Lemma A.2 to estimate each of the sums in

(A19) separately, which gives

T · |A2| . T−qv+1 · b−(1+q) + T−u+1 · b−1. (A20)

On the other hand if qv > 1 or if u > 1 we partition the sum (A17) into two

parts, where we estimate the first part using the bound (A7) in Lemma A.2 and

the second using (A18), thus giving us

T · |A2| . h · b−(1−qG) +
T∑

t=h+1

|cov {ϕ(Zt)Kb(Zt − z), ϕ(Z1)Kb(Z1 − z)} |

+
T∑

t=h+1

|cov {h(Zt)Kb(Zt − z)ηt, h(Z1)Kb(Z1 − z)η1} |. (A21)

We use the bounds (A8) and (A9) in Lemma A.2 to estimate each of the sums in

(A21) separately, which gives

T ·|A2| . h·b−(1−qG)+






T−qv+1 · b−(1+q) + h−u+1 · b−1, qv ≤ 1 and u > 1;

h−qv+1 · b−(1+q) + T−u+1 · b−1, qv > 1 and u ≤ 1;

h−qv+1 · b−(1+q) + h−u+1 · b−1, qv > 1 and u > 1.

(A22)
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Thereby using h ≈ b−qG we obtain

T · |A2| . b−d +






T−qv+1 · b−d(1+q) + b−(1+qG(1−u)), qv ≤ 1 and u > 1;

b−(1+q+qG(1−qv)) + T−u+1 · b−1, qv > 1 and u ≤ 1;

b−(1+q+qG(1−qv)) + b−(1+qG(1−u)), qv > 1 and u > 1.

(A23)

and hence, combining (A20) and (A23) gives the bound (A16) for the term A2. �

We now state a slight variation of Theorem 3.3, where f can satisfy slightly

weaker conditions. We use this result to prove Theorem 4.2.

Lemma A.5 Suppose the stationary time series {Zt} is 2-mixing with size v and

Assumption 4.1 is fulfilled for some q, qF ∈ (0, 1). In addition assume, that the

function f belongs to G
s
△ for s,△ > 0. Let f̂ be defined as in (1), where the kernel

is of order s. Then we have

|f̂(z) − f(z)| . b2s + b−1T−1 + b−(1+q+qF (1−[(qv)∨1]))T−[(qv)∧1]. (A24)

Proof. Under the stated assumptions using Lemma A.3 the proof is very similar

to the proof of Lemma A.4 and we omit the details. �

Proof of Theorem 4.2. Consider the decomposition

ϕ̂(z) − ϕ(z) =
ĝ(z)

f̂(z)
−

f̂(z)

f̂(z)
ϕ(z)

=
ĝ(z) − f̂(z)ϕ(z)

f(z)
+

f(z) − f̂(z)

f̂(z)
·
ĝ(z) − f̂(z)ϕ(z)

f(z)
.

We first note that Lemma A.5 gives |f(z) − f̂(z)|2 = o(1), which implies that

|f̂(z)−1| is bounded in probability. Therefore the second term in the above expan-

sion is of order oP ({ĝ(z)− f̂(z)ϕ(z)}/f(z)), hence in the decomposition above the

second term is negligible in comparison to the first term. Thereby bounding the

first term of the decomposition we obtain the result. By using Lemma A.4 and A.5

and noting that qFG = qF ∧ qG, we obtain Theorem 4.2. �

Proof of Corollary 4.4 Under the assumption on the bandwidth the result is

obtained by balancing the terms in the bound given in Theorem 4.2. �

Lemma A.6 Suppose the stationary vector time series {(Xt, Zt)} is 2-mixing with

size v and Assumption 4.6 is fulfilled for some q, qG ∈ (0, 1). If 1 ≤ t, τ ≤ T , then

|cov {XtKb(Zt − z), XτKb(Zτ − z)} | . min
(
b−(1−qG), b−(1+q)|t−τ |−qv

)
. (A25)

Proof. Under Assumption 4.6 (ii) the first bound in (A25) follows from (A7)

in Lemma A7. On the other hand, under Assumption 4.1 (i,iii) the function
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[|X1|
p|Z1] · f is uniformly bounded and ‖K‖p is finite for some p = 2/(1− q) > 2,

therefore we have [ |X1Kb(Z1 − z)|p]2/p . b−(q+1). Using the 2-mixing property of

{Zt} together with Hall and Heyde [27], Theorem A.6, we obtain the second bound

in (A25). �

Lemma A.7 Suppose the stationary vector time series {(Xt, Zt)} is 2-mixing with

size v and Assumption 4.6 is fulfilled for some q, qG ∈ (0, 1). In addition assume,

that the function g = ϕ · f belongs to G
s
△ for s,△ > 0. Let ĝ be defined as in (11),

where the kernel is of order s. Then we have

|ĝ(z) − g(z)| . b2s + b−1T−1 + b−(1+q+qG(1−[(qv)∨1]))T−[(qv)∧1] (A26)

Proof. Under the stated assumptions using Lemma A.6 the proof is very similar

to the proof of Lemma A.4 and we omit the details. �

Proof of Theorem 4.7. Using Lemma A.5 and A.5 we obtain the result using

a similar proof as Theorem 4.2. �

Proof of Corollary 4.8 Under the assumption on the bandwidth the result is

obtained by balancing the terms in the bound given in Theorem 4.2. �

A.3. Covariances and 2-mixing rates for linear processes

We use the results derived in this section in Section 3.1, where we compared the

rates of convergence for linear processes with the rates in the general 2-mixing case.

Let us suppose {Zt} satisfies the linear process representation in (6). By placing

some additional conditions on the innovations we have the following lemma, which

is due to Giraitis et al. [22], Lemma 1 and 2.

Lemma A.8 Giraitis et al. [22] Suppose {Zt} is a linear process which satisfies

(6), and cov(Z0, Zt) ≤ Ct−θ. Let f be the density of Zt and let ft denote the joint

density Z0, Zt. If (|ε3
t |) < ∞, and for all u ∈ R suppose the characteristic function

satisfies | [exp(−iuε1)]| ≤
1

(1+|u|)δ for some δ > 0, then the joint density satisfies

the relation

ft(x, y) = f(x)f(y) + r(t)f ′(x)f ′(y) + O(t−θ−d),

where f ′ ∈ L1(R) and r(t) = cov(Z0, Zt), for some 0 < d < min( θ
7 , 1−θ

12 ).

Using the result above the MSE of the kernel estimator with observations from

a linear process can be derived.

For most processes, there isn’t a direct correspondence between the 2-mixing and

the covariance size. However for Gaussian processes both sizes are linked by the

inequality

|cov(Z0, Zt)|

var(Z0)
≤ sup

A∈σ(Z0),B∈σ(Zt)
|P (A∩B)−P (A)P (B)| ≤ 2π

|cov(Z0, Zt)|

var(Z0)
(A27)
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(see Doukhan [17], Section 2.1), thus the covariance and the 2-mixing sizes are

the same. Suppose that {Zt} satisfies (6), where the innovations are Gaussian and

|aj | . j−θ. Then we have

|cov(Z0,Zt)|
var(Z0)

and

sup
A∈σ(Z0)B∈σ(Zt)

|P (A ∩ B) − P (A)P (B)|





.

{
t−(2θ−1), if 1/2 < θ ≤ 1;

t−θ, if θ > 1.
(A28)

We now consider more general linear processes, which are not necessarily Gaus-

sian. Then the covariance size does not immediately give the 2-mixing size. How-

ever, if the density of the innovations satisfies certain smoothness conditions then

we can obtain the following bound. We note that the supremum in the below is

taken over a larger sigma-algebra than the one used in the definition of 2-mixing.

Lemma A.9 Suppose {Zt} is a linear process which satisfies the representation

Zt =
∑∞

j=0 ajεt−j , the function 1
P

∞

j=0 ajzj =
∑∞

j=0 bjz
j is analytic inside and on the

unit circle. Let fε be the density of the innovation εt, which satisfies
∫
|fε(x+ a)−

fε(x)|dx ≤ C|a|. If E(|εt|
ℓ) < ∞,

sup
A∈σ(Z0,Z−1),B∈σ(Zt)

|P (A ∩ B) − P (A)P (B)| ≤ C(
∞∑

j=t+1

a2
j )

ℓ/(2(ℓ+1))

where C is an arbitrary constant.

PROOF. The following proof is motivated by Chanda [8], Gorodetskii [24] and

Davidson [16] (Theorem 14.9). To prove the result, we use the decomposition Zt =

a0εt +
∑t

j=1 ajεt−j + Vt, where Vt =
∑∞

j=t+1 ajεt−j . We first note that under the

stated assumptions, {Zt}, is an invertible time series that is εt =
∑∞

j=0 bjZt−j ,

hence σ(Zt, Zt−1, . . .) = σ(εt, εt−1, . . .), and the event {Vt ≤ η} ∈ σ(Z0, Z−1, . . .).

Now by slightly adapting Proposition 2.1, in Fryzlewicz and Subba Rao [20], we

obtain

sup
A∈σ(Zt)

B∈σ(Z0,Z−1,...)

|P (A ∩ B) − P (A)P (B)| (A29)

≤ 2 sup
|v|≤η

∫
fεt−1

(εt−1)

{∫ ∣∣fZt|εt−1,Vt
(x|εt−1, v) − fZt|εt−1,Vt

(x|εt−1, 0)
∣∣dx

}
dεt−1 + 3P (|Vt| ≥ η),

where fZt|εt−1,Vt
is the conditional density of Zt given εt−1 = (εt−1, . . . , ε1) and Vt.

We now bound each of the terms in (A29).

We first obtain an expression the conditional density fZt|εt−1,Vt
in terms of

the innovation density fε. Since εt = a−1
0 (Zt −

∑t
j=1 ajεt−j − Vt) we have

fZt|εt−1,Vt
(x|εt−1, v) = a−1

0 fZ(a−1
0 (xt −

∑t
j=1 ajεt−j − z)). Substituting this into

(A29) and by using the stated assumptions we have

∫
fεt−1

(ε)

{∫ ∣∣fZt|εt−1,Vt
(x|εt−1, v) − fZt|εt−1,Vt

(x|εt−1, 0)
∣∣dx

}
dεt−1 ≤ K|z|.(A30)
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This means that for all η > 0

sup
A∈σ(Zt)

B∈σ(Z0,Z−1,...)

|P (A ∩ B) − P (A)P (B)| ≤ 2K|η| + 3P (|Vt| ≥ η), (A31)

where K is a constant independent of η. We now bound P (|Vt| ≥ η). Using the

Markov and Burkhölder inequalities we have

P (|Vt| ≥ η) ≤
E|V ℓ

t |

ηℓ
≤

2ell−1(
∑∞

j=t+1 a2
j )

ℓ/2E(|εℓ
t|)

ηℓ
.

Substituting the above bound into (A31) gives

sup
A∈σ(Zt)

B∈σ(Z0,Z−1,...)

|P (A ∩ B) − P (A)P (B)| ≤ 2K

[
|η| +

(
∑∞

j=t+1 a2
j )

ℓ/2)

ηℓ

]
.

The minimum of the right hand side of the above is obtained when η =

(
∑∞

j=t+1 a2
j )

ℓ/(2(ℓ+1)), giving

sup
A∈σ(Zt)

B∈σ(Z0,Z−1,...)

|P (A ∩ B) − P (A)P (B)| ≤ K(

∞∑

j=t+1

a2
j )

ℓ/(2(ℓ+1)).

Thus yielding the desired result. �

Remark A.10

(i) Let us suppose the parameters in the linear process satisfy |aj | ≤ Cj−θ (with

θ > 1/2 and E(|εt|
ℓ) < ∞). Then we have

sup
A∈σ(Z0,Z−1,...),B∈σ(Zt)

|P (A ∩ B) − P (A)P (B)| ≤ Cj
(−2θ+1) ℓ

2(ℓ+1)

where C is an arbitrary constant.

(ii) It is interesting to compare the 2-mixing sizes derived in Lemma A.9 with the

strong α-mixing results for MA(∞) processes. Under the same set of conditions,

but with the additional restriction that θ > 3/2, we have that

sup
A∈σ(Z0,Z−1,...),B∈σ(Zt,Zt+1,...)

|P (A ∩ B) − P (A)P (B)| . |t|
(−2θ+1) ℓ

2(ℓ+1)+1 .

In other words, the 2-mixing size is larger than the α-mixing size. This is because,

by definition, the σ-algebras involved in the definition of α-mixing is far larger

than the σ-algebras in the definition of 2-mixing, thus allowing more extreme

cases. �

Comparing Lemma A.9 with the covariance size given in (A28) we see when the

Gaussianity assumption is relaxed the covariance and 2-mixing sizes no longer nec-

essarily coincide. However by using Lemma A.9 and Hall and Heyde [27], Theorem
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A.5, we have the upper and lower bounds

j
(−2θ+1) ℓ

(ℓ−2) . sup
A∈σ(Z0),B∈σ(Zt)

|P (A ∩ B) − P (A)P (B)| . j
(−2θ+1) ℓ

2(ℓ+1) .

Therefore the 2-mixing size v of the linear process {Zt} is bounded by

(2θ − 1)
ℓ

2(ℓ + 1)
≤ v ≤ (2θ − 1)

ℓ

(ℓ − 2)
. (A32)
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