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Introduction

When there is no covariate, or interest is focused on a homogeneous group of
subjects, then we can use a nonparametric method of analyzing time-to-event data.

When there are two or more treatment groups, and each group has sufficient
number of subjects, then also we can use a nonparametric method of analysis. The
advantage of the nonparametric methods is that we do not impose any condition
on the behavior of the time-to-event.

In the presence of several covariates (potential predictors), we consider a

parametric method of analysis, and see how the time-to-event is associated with

the covariates. In the parametric approaches considered, we modeled the mean of

the logarithm of the time-to-event as a linear function of the predictors (AFT

model). Specifically, in the AFT model we assume that

log(T ) = XTβ + U
The mean of log(T ) was XTβ+constant
We put some distributional assumption on U, that helped us to obtain
the density of T and the survival function of T
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If we think carefully, in the AFT model we impose the restriction that

the predictors influence only the mean of log(T ),

the noise term U is independent of the predictors,

by assigning a distribution on U, we dictate a particular type of shape to the
distribution of T .

In the nonparametric modelling we do not impose any such restriction. However,
we also need to note that in the presence of several predictors, non-parametric
modelling is not feasible.

In this class note we shall talk about a strategy of modelling the effect of a
number of explanatory variables on the time-to-event T . This strategy is slightly
different from the AFT models and the completely nonparametric approaches
discussed previously.
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Alternative to modelling the mean of log(T ) in terms of the predictors, we can
model the hazard function in terms of the potential predictors.

We know that once the hazard function λ(t|X ) is specified, from there we can
obtain the cumulative hazard Λ(t|X ) and thereby obtain the survival function
S(t|X ) and the density function f (t|X ). In other words,

λ(t|X ) −→ Λ(t|X ) −→ S(t|X ) −→ f (t|X )

Once we know S(t|X ) and f (t|X ), we can write out the likelihood function that
can be used to estimate the model parameters.
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Proportional hazard

In particular, consider this model:

λ(t|X ) = λ0(t)r(X ′β)

Here λ0(t) ≥ 0 is called the “baseline” hazard, which describes how the hazard
changes with time.

And r(X ′β) describes how the hazard changes as a function of the covariates X .
Here X does not include any intercept term.

Cox (1972) proposed r(X ′β) = exp(X ′β), resulting in what became called the Cox
Proportional Hazards (CPH) model:

λ(t|X ) = λ0(t)exp(X ′β).

In a semiparametric model, the baseline hazard λ0(t) is left unspecified.
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Proportional hazard interpretation:

If X ′i = (TXi ), where TXi is a binary indicator of treatment group (0 for control, 1
for treatment, say), then the hazard ratio between a treated and a control at time
t is:

λ(t|(1))

λ(t|(0))
= exp(β),

giving the model a “relative risk”-like interpretation.

Note also that in the above ratio, the “baseline” hazard λ0 get canceled.

Importantly, the proportional hazard assumption implies that the ratio of two
hazards for two different set of covariates at any given time is free from the time.
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Relating survival and hazard functions

The cumulative hazard is

Λ(t|X ) =

∫ t

0

λ(u|X )du

=

∫ t

0

λ0(u) exp(X ′β)du

={
∫ t

0

λ0(u)du} exp(X ′β)

=Λ0(t) exp(X ′β).

Here Λ0(t) is called the baseline cumulative hazard function.

Let’s derive the survival function in this scenario

S(t|X ) = exp{−Λ(t|X )} = exp{−Λ0(t) exp(X ′β)}.
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Relating survival and hazard functions

The density function is

f (t|X ) =− d

dt
S(t|X )

=− d

dt
exp{−Λ0(t) exp(X ′β)}

= exp{−Λ0(t) exp(X ′β)}dΛ0(t)

dt
exp(X ′β)

=exp{−Λ0(t) exp(X ′β)}λ0(t) exp(X ′β)

=S(t|X )λ(t|X ).
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Cox PH model estimation

For the observed data (Vi ,∆i ,Xi ), i = 1, . . . , n, the likelihood for the Cox PH
model is

L(β) =
n∏

i=1

f ∆i (Vi |Xi ){S(Vi |Xi )}1−∆i

=
n∏

i=1

{λ(Vi |Xi )S(Vi |Xi )}∆i {S(Vi |Xi )}1−∆i

=
n∏

i=1

{λ(Vi |Xi )}∆iS(Vi |Xi )

=
n∏

i=1

{λ0(Vi ) exp(X ′i β)}∆i exp{−Λ0(Vi ) exp(X ′i β)}

To estimate β by maximizing L(β), one may specify a parametric form for the
function λ0(·). Once the functional form of λ0 is specified, the model becomes a
parametric model.

In a semiparametric model (Cox PH) λ0 is left unspecified.
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Parametric form for λ0(·)

If λ0(t) = c0, a constant, we obtain the exponential model discussed in the
previous class notes.

If λ0(t) = c0t
c1 , a polynomial in t, we obtain the Weibull model discussed in the

previous class notes.
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Cox PH model (λ0 is unspecified) estimation

For the semiparametric model (λ(t|X ) = λ0(t)exp(X ′β)), Cox proposed to estimate β
by maximizing the “partial likelihood” function

Lp(β) =
n∏

i=1

{
exp(X ′i β)∑

j∈R(Vi )
exp(X ′j β)

}∆i

,

R(Vi ) is the “risk set” at time Vi , comprised of all individuals with survival or
censoring times ≥ Vi ;

using mathematics beyond the scope of this course, it can be shown that β̂
obtained by maximizing Lp(β) has the same distributional properties as that
obtained by maximizing L(β);
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Cox PH model estimation

To maximize Lp(β), we first log transform Lp(β)

`p(β) =
n∑

i=1

∆i

[
X ′i β − log{

∑
j∈R(Vi )

exp(X ′j β)}
]

then differentiate

∂

∂β
`p(β) =

n∑
i=1

∆i

{
Xi −

∑
j∈R(Vi )

Xj exp(X ′j β)∑
j∈R(Vi )

exp(X ′j β)

}
,

and we can solve ∂
∂β
`p(β) = 0 by numerical methods, to obtain β̂.
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Cox PH model estimation continues...

The estimator of the baseline hazard is

λ̂0(t) =

{
∆k∑

j∈R(Vk ) exp(X ′
j β̂)

if t = Vk for some k

0 otherwise.

The estimator of the cumulative baseline hazard is

Λ̂0(t) =

∫ t

0

λ̂0(u)du =
∑
Vk≤t

∆k∑
j∈R(Vk ) exp(X ′j β̂)

.

The estimator of the survival function at time τ is

Ŝ(τ |X ) = exp{−Λ̂0(τ) exp(XT β̂)}.
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Cox PH model standard errors

What about standard errors for β̂? We can estimate Var(β̂) by I−1(β̂), where

I (β) = −∂
2`p(β)

∂β∂β′

is called the “observed information matrix,” and I (β̂) is obtained by plugging β̂ in for β.

Standard errors for β̂ are then the square root of the diagonal elements of I−1(β̂).
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A linear model connection: Information matrix and MLEs

In the linear regression model, Yi = XT
i β + εi , i = 1, . . . , n, with

(ε1, . . . , εn)T ∼ N(0, σ2I ).

Then β̂ = (X ′X )−1X ′Y and Var(β̂) = σ2(X ′X )−1, where

X =

 XT
1

...
XT

n

 , Y = (Y1, . . . ,Yn)T .
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A linear model connection: Information matrix and MLEs

We obtain these results via ML estimation.

The log-likelihood is:

`(β) = constant− 1

2σ2
(Y − Xβ)′(Y − Xβ)

Then the score function is

∂

∂β
`(β) = − 1

2σ2

(
−2X ′Y + 2X ′Xβ

)
The Hessian matrix is

∂2

∂β∂β′
`(β) = − 1

σ2
(X ′X ),

The observed information matrix is I = −∂2`(β)/∂β∂β′ so Var(β̂) is estimated by
σ̂2(X ′X )−1.
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Likelihood ratio tests

With estimates β̂, we can also carry out likelihood ratio tests as usual, but by
using the partial likelihood.

Suppose that there are two explanatory variables, X and Z , and the corresponding
regression coefficients are β1 and β2, respectively. Let β = (βT

1 , β
T
2 )T . We are

interested in testing if X has any association with the hazard of the time-to-event.
Then H0 : β1 = 0 and Ha : β1 6= 0.

The test statistic is
T = −2{log(Lp0)− log(Lpa)},

where Lp0 and Lpa are the maximized partial likelihood value under H0 and Ha.

When H0 holds, T approximately follows χ2
q, where q is the difference in the

number of parameters for the unrestricted and null models.
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Wald tests

An alternative test is the “Wald” test. Suppose that we are interested in testing the jth
component of the β vector. Suppose that H0 : βj = β∗j versus Ha : βj 6= β∗j . Then the
test statistic is

T =
β̂j − β∗j
se(β̂j)

,

which approximately follows N(0, 1) under the null hypothesis. Note that this is

essentially the t-statistic we use in the linear regression. The p-value is calculated based

on the Z distribution, and use 2pr(Z > |Tobs|) as the p-value for this two-sided

alternative hypothesis. Here Tobs denotes the observed value of the test statistic T .
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Wald tests

Wald’s test can be used in a more general context. Suppose that we are interested in
testing H0 : Aβ = b versus Ha : Aβ 6= b. Then the test statistic is

T = (Aβ̂ − b)TΣ−1(Aβ̂ − b),

where Σ = AVar(β̂)AT . Under H0, T approximately follows χ2
q with q being the rank of

A.

Samiran Sinha (TAMU) Survival Analysis October 26, 2021 19 / 76



Application to the lung cancer data

Consider the Veteran Lung cancer data given in the survival package of R

https:

//stat.ethz.ch/R-manual/R-devel/library/survival/html/veteran.html

The model for the hazard is

λ(t|predictors) = λ0(t) exp{β1age + β2I (prior therapy = Yes)

+β3I (cell type = small) + β4I (cell type = adeno)

+β5I (cell type = large)}
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Application to the lung cancer data

Code
library(survival)

data(veteran)

head(veteran)

trt celltype time status karno diagtime age prior

1 1 squamous 72 1 60 7 69 0

2 1 squamous 411 1 70 5 64 10

3 1 squamous 228 1 60 3 38 0

4 1 squamous 126 1 60 9 63 10

5 1 squamous 118 1 70 11 65 10

6 1 squamous 10 1 20 5 49 0

out=coxph(Surv(time, status)~age+as.factor(prior)+celltype,

data=veteran)
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Output

Code
summary(out)

Call:

coxph(formula = Surv(time, status) ~ age + as.factor(prior) +

celltype, data = veteran)

n= 137, number of events= 128

coef exp(coef) se(coef) z Pr(>|z|)

age 0.005990 1.006008 0.009367 0.639 0.523

as.factor(prior)10 0.049047 1.050269 0.205806 0.238 0.812

celltypesmallcell 0.999603 2.717202 0.256167 3.902 9.53e-05 ***

celltypeadeno 1.168623 3.217559 0.298658 3.913 9.12e-05 ***

celltypelarge 0.237791 1.268445 0.277956 0.855 0.392

---

Samiran Sinha (TAMU) Survival Analysis October 26, 2021 22 / 76



Output

Code
exp(coef) exp(-coef) lower .95 upper .95

age 1.006 0.9940 0.9877 1.025

as.factor(prior)10 1.050 0.9521 0.7016 1.572

celltypesmallcell 2.717 0.3680 1.6446 4.489

celltypeadeno 3.218 0.3108 1.7919 5.778

celltypelarge 1.268 0.7884 0.7357 2.187

Concordance= 0.612 (se = 0.03 )

Rsquare= 0.169 (max possible= 0.999 )

Likelihood ratio test= 25.31 on 5 df, p=0.0001215

Wald test = 24.57 on 5 df, p=0.0001684

Score (logrank) test = 25.99 on 5 df, p=8.974e-05
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Output interpretation

There were 137 observations, and out of them 9 were right censored.

There are a total of 5 (five) regression parameters.

The estimate of β1 is 0.0059 with a standard error of 0.0094. The Wald test
statistic for testing H0 : β1 = 0 versus Ha : β1 6= 0, is T = 0.0059/0.0094 = 0.639.
Since the p-value is 0.523, we fail to reject H0 and conclude that the data do not
provide sufficient evidence that the age has a statistically significant association
with the time-to-event in the current model.

More interpretable quantity is exp(β1), often referred to as the relative risk of the
disease. In other words, exp(β1) can be interpreted as the risk ratio of the failure
for changing age by one year. If the age has no association, then the risk ratio is
one. Since the 95% CI for exp(β1) (0.98, 1.02) includes one, we again conclude
that the data do not provide statistical evidence that age has a statistically
significant effect on the time-to-event.
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Output interpretation

By default the coxph function returns three test statistics and the corresponding
p-values.

The likelihood ratio (LR) test and the Wald test we have talked about.

For these test the null hypothesis is H0 : β = (β1, . . . , β5) = (0, . . . , 0) and
Ha : β = (β1, . . . , β5) 6= (0, . . . , 0). In words, Ha says that at least one of 5
components of β is non-zero.

For this data example, the LR and Wald test statistics are 25.31 and 24.57,
respectively.

Concordance denotes the percentage of pairs in the sample, where the
observations with the higher risk score will experience the event earlier than the
subject with the lower risk score. For the ith subject, by risk score we refer to X ′i β̂.
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Likelihood ratio test

Suppose that we are interested in checking if cell type has any effect on the
time-to-event.

The null hypothesis will be H0 : β2 = β3 = β4 = 0 and Ha: at least one of
β2, β3, β4 is non-zero.

Code
out=coxph(Surv(time, status)~age+as.factor(prior)+celltype, data=veteran)

out0=coxph(Surv(time, status)~age+as.factor(prior), data=veteran)

anova(out0, out)

Analysis of Deviance Table

Cox model: response is Surv(time, status)

Model 1: ~ age + as.factor(prior)

Model 2: ~ age + as.factor(prior) + celltype

loglik Chisq Df P(>|Chi|)

1 -504.90

2 -492.79 24.22 3 2.248e-05 ***

---
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Likelihood ratio test

Since the p-value is 2.248e-05, we reject H0 and conclude that cell type has a

statistically significant effect at the 1% level of significance.
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Estimation of Λ0(t)

Code
out2=basehaz(out)

head(out2)

hazard time

1 0.01307452 1

2 0.01964505 2

3 0.02627565 3

4 0.03297489 4

5 0.05346179 7

6 0.08180175 8

plot(out2[, 2], out2[, 1], type="s",

ylab="Baseline Cumulative Hazard", xlab="Time")
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Alternative estimation of Λ0(t)

Code
out3=survfit(out)

# By taking negative of log transformation of the

# survival probability

plot(out3$time, -log(out3$surv), type="s",

ylab="Baseline Cumulative Hazard", xlab="Time")
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Estimated baseline cumulative hazard, Λ̂0(t)
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Estimated baseline survival, exp{−Λ̂0(t)}
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Estimation of Λ0(t) when t = 730 days

Code
out2=basehaz(out)

index1=findInterval(730, out2$time)
caplambda0=out2$hazard[index1]
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Prediction

Suppose that we want to predict the survival probability at time t∗ for a subject
with covariate X∗. Thus,

S(t∗|X∗) = exp{−Λ0(t) exp(XT
∗ β)}

The estimator of S(t∗|X∗)

Ŝ(t∗|X∗) = exp{−Λ̂0(t∗) exp(XT
∗ β̂)}

Suppose that we want to estimate the survival probability for t∗ = 730 days (2
years) for a subject with age 62 years, cell type squamous, and had a prior therapy.
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Estimated survival function for a subject with age 62 years,
cell type squamous, and had a prior therapy

Code
out=coxph(Surv(time, status)~age+as.factor(prior)+celltype, data=veteran)

plot(survfit(out, newdata=data.frame(age=62, celltype="squamous",

prior=as.factor(10)) ) , ylab="Estimated survival function", xlab="Time")
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Estimated survival function for a given covariate value
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Estimated survival probability at a given time t = 730 days
and for a given covariate value

Code
out=coxph(Surv(time, status)~age+as.factor(prior)+celltype, data=veteran)

out200=survfit(out, newdata=data.frame(age=62, celltype="squamous",

prior=as.factor(10)) )

index1=findInterval(730, out200$time)
out200$surv[index1] # estimate of S(730|given the covariate value)

c(out200$lower[index1], out200$upper[index1]) # the 95% CI
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Re-analysis of the veteran lung cancer data

In the previous analysis we treated age as a numeric variable and assumed that its effect
on the hazard is in a log-linear form. How about we bin the age into different groups,
and assume that the age effect is constant within a group, but varies across the groups.
This approach is more general and more nonparametric than assuming a log-linear form
of the effect of age. Usually, for many diseases the age effect is not always linear on the
log-hazard, and in those cases it is better to use age as a categorical variable. On the
other hand, we should avoid creating many categories that will result in highly
variable/unreliable estimates specially when the number of observations corresponding
to each category of the variable is small.

Code
out=coxph(Surv(time, status)~age+as.factor(prior)+celltype, data=veteran)

myage=cut(veteran$age, breaks=c(0, 51, 62, 66, 100), labels=c("A",

"B", "C", "D"))

out2=coxph(Surv(time, status)~myage+as.factor(prior)+celltype,

data=veteran)

extractAIC(out)

[1] 5.0000 995.5898

extractAIC(out2)

[1] 7.0000 994.8146
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A quick comparison of the two coxph objects

Code
out

Call:

coxph(formula = Surv(time, status) ~ age + as.factor(prior) +

celltype, data = veteran)

coef exp(coef) se(coef) z p

age 0.00599 1.00601 0.00937 0.64 0.52

as.factor(prior)10 0.04905 1.05027 0.20581 0.24 0.81

celltypesmallcell 0.99960 2.71720 0.25617 3.90 9.5e-05

celltypeadeno 1.16862 3.21756 0.29866 3.91 9.1e-05

celltypelarge 0.23779 1.26844 0.27796 0.86 0.39

Likelihood ratio test=25.31 on 5 df, p=1e-04

n= 137, number of events= 128

> out2

Call:

coxph(formula = Surv(time, status) ~ myage + as.factor(prior) +

celltype, data = veteran)

coef exp(coef) se(coef) z p

myageB -0.6324 0.5313 0.3524 -1.79 0.07272

myageC -0.3089 0.7343 0.3350 -0.92 0.35644

myageD 0.4267 1.5322 0.7806 0.55 0.58459

as.factor(prior)10 0.0408 1.0416 0.2058 0.20 0.84300

celltypesmallcell 0.9903 2.6920 0.2568 3.86 0.00012

celltypeadeno 1.0927 2.9824 0.3010 3.63 0.00028

celltypelarge 0.1995 1.2208 0.2790 0.72 0.47454

Likelihood ratio test=30.08 on 7 df, p=9e-05

n= 137, number of events= 128
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Practical application continues

If we want to change the reference category of cell type to adeno, we may
use the following code.

Code

myveteran=within(veteran, celltype<-relevel(celltype, ref="adeno"))

out3=coxph(Surv(time, status)~age+prior+celltype, data=myveteran)
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Practical application continues

Next look at the pbc data in the survival package of R.

A description can be found at https:
//stat.ethz.ch/R-manual/R-devel/library/survival/html/pbc.html

Code
library(survival)

head(pbc)

head(pbc)

id time status trt age sex ascites hepato spiders edema bili chol

1 1 400 2 1 58.76523 f 1 1 1 1.0 14.5 261

2 2 4500 0 1 56.44627 f 0 1 1 0.0 1.1 302

3 3 1012 2 1 70.07255 m 0 0 0 0.5 1.4 176

4 4 1925 2 1 54.74059 f 0 1 1 0.5 1.8 244

5 5 1504 1 2 38.10541 f 0 1 1 0.0 3.4 279

6 6 2503 2 2 66.25873 f 0 1 0 0.0 0.8 248

albumin copper alk.phos ast trig platelet protime stage

1 2.60 156 1718.0 137.95 172 190 12.2 4

2 4.14 54 7394.8 113.52 88 221 10.6 3

3 3.48 210 516.0 96.10 55 151 12.0 4

4 2.54 64 6121.8 60.63 92 183 10.3 4

5 3.53 143 671.0 113.15 72 136 10.9 3

6 3.98 50 944.0 93.00 63 NA 11.0 3
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Crude or unadjusted model, stage as the only explanatory
variable

Code

mypbc=pbc[complete.cases(pbc), ]

nstatus=mypbc$status
nstatus[nstatus==1]=0

nstatus=nstatus/2

uout=coxph(Surv(mypbc$time, nstatus)~as.factor(mypbc$stage))
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Adjusted model, age is included along with stage as an
explanatory variable

Code
aout=coxph(Surv(mypbc$time, nstatus)~as.factor(mypbc$stage)+mypbc$age)

If the coefficient estimate for the treatment (or the main exposure variable) for the
adjusted and unadjusted models are different then we say age has a confounding effect,
and a measure of change is

100
(θ̂ − β̂1)

β̂1

θ̂: the estimated coefficient for treatment in uout (unadjusted model)

β̂1: the estimated coefficient for treatment in aout (adjusted model)
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Results

Code
uout

Call:

coxph(formula = Surv(mypbc$time, nstatus) ~ as.factor(mypbc$stage))

coef exp(coef) se(coef) z p

as.factor(mypbc$stage)2 1.34 3.81 1.04 1.29 0.1966

as.factor(mypbc$stage)3 1.93 6.87 1.01 1.90 0.0571

as.factor(mypbc$stage)4 2.81 16.63 1.01 2.78 0.0054

Likelihood ratio test=43.16 on 3 df, p=2e-09

n= 276, number of events= 111

aout

Call:

coxph(formula = Surv(mypbc$time, nstatus) ~ as.factor(mypbc$stage) +

mypbc$age)

coef exp(coef) se(coef) z p

as.factor(mypbc$stage)2 1.23784 3.44816 1.03563 1.20 0.23199

as.factor(mypbc$stage)3 1.83148 6.24310 1.01288 1.81 0.07058

as.factor(mypbc$stage)4 2.57977 13.19405 1.01229 2.55 0.01082

mypbc$age 0.03513 1.03576 0.00981 3.58 0.00034

Likelihood ratio test=55.98 on 4 df, p=2e-11

n= 276, number of events= 111
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Adjusted model, age is included along with stage as an
explanatory variable

For this example, the percentage of change is no more than 10%. So, the confounding
effect is not worth mentioning.
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Effect modifier

If the effect of an exposure on the outcome varies across groups defined by a third
variable, then we say the third variable is an effect modifier. Usually, in statistics, one
way of detecting effect modification is to check the presence of a statistically significant
interaction term.

Code
aout

Call:

coxph(formula = Surv(mypbc$time, nstatus) ~ as.factor(mypbc$stage) +

mypbc$age + as.factor(mypbc$stage) * mypbc$age)

coef exp(coef) se(coef) z p

as.factor(mypbc$stage)2 2.9395 18.9070 5.4020 0.54 0.59

as.factor(mypbc$stage)3 2.7014 14.9004 5.2859 0.51 0.61

as.factor(mypbc$stage)4 3.1816 24.0842 5.2725 0.60 0.55

mypbc$age 0.0521 1.0535 0.1013 0.51 0.61

as.factor(mypbc$stage)2:mypbc$age -0.0339 0.9667 0.1050 -0.32 0.75

as.factor(mypbc$stage)3:mypbc$age -0.0175 0.9827 0.1026 -0.17 0.86

as.factor(mypbc$stage)4:mypbc$age -0.0126 0.9875 0.1022 -0.12 0.90

Likelihood ratio test=56.49 on 7 df, p=8e-10

n= 276, number of events= 111
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Effect modifier

One purpose of identifying effect modifier to check if there is any high risk group. If

there is really an effect modifier, then that should be properly taken into account in the

analysis to accurately estimate the effect of the exposure. If effect modification is

suspected, it should also be taken into account in the design stage of the study.
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Many covariates: Stepwise variable selection

We shall use the stepwise variable selection procedure (mixture of ‘forward’ and
‘backward’) to find the best model. The ‘variable list’ contains relevant covariates and
some of their interaction terms (or moderators). Use the stepwise variable selection with
the AIC criteria (you may also use the BIC criteria).

Code
data(cancer)

newcancer=cancer[complete.cases(cancer), ]

newcen=newcancer$status-1

out=coxph(Surv(time, newcen)~age+wt.loss+pat.karno+ph.karno+sex+ph.ecog+meal.cal,

data=newcancer)

> out

Call:

coxph(formula = Surv(time, newcen) ~ age + wt.loss + pat.karno +

ph.karno + sex + ph.ecog + meal.cal, data = newcancer)

coef exp(coef) se(coef) z p

age 1.080e-02 1.011e+00 1.160e-02 0.931 0.35168

wt.loss -1.420e-02 9.859e-01 7.766e-03 -1.828 0.06748

pat.karno -1.207e-02 9.880e-01 8.116e-03 -1.488 0.13685

ph.karno 2.244e-02 1.023e+00 1.123e-02 1.998 0.04575

sex -5.536e-01 5.749e-01 2.016e-01 -2.746 0.00603

ph.ecog 7.395e-01 2.095e+00 2.250e-01 3.287 0.00101

meal.cal 2.835e-05 1.000e+00 2.594e-04 0.109 0.91298

Likelihood ratio test=28.16 on 7 df, p=0.0002053

n= 167, number of events= 120
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Final output of the step function

Code
step(out)

Call:

coxph(formula = Surv(time, newcen) ~ wt.loss + pat.karno + ph.karno +

sex + ph.ecog, data = newcancer)

coef exp(coef) se(coef) z p

wt.loss -0.014494 0.985611 0.007693 -1.884 0.05957

pat.karno -0.012401 0.987675 0.007978 -1.554 0.12008

ph.karno 0.020366 1.020575 0.011080 1.838 0.06604

sex -0.558190 0.572244 0.199202 -2.802 0.00508

ph.ecog 0.742983 2.102197 0.227604 3.264 0.00110

Likelihood ratio test=27.28 on 5 df, p=5.028e-05

n= 167, number of events= 120
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Checking the proportional hazards (PH) assumption

Consider a single binary covariate X (1 for treatment, 0 for control, say).

The Cox model is
λ(t|X ) = λ0(t) exp(Xβ)

The key assumption is that the effect of the covariate does not depend on time

λ(t|1)

λ(t|0)
= exp(β),

a constant in time.

How to check whether this is a reasonable assumption?
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Checking the PH assumption

Recall that S(t|X ) = exp{−Λ(t|X )}, where

Λ(t|X ) =

∫ t

0

λ(u|X )du = Λ0(t) exp(Xβ)

We can compute a nonparametric estimate of Ŝ(t|X ) for each covariate group using the

Kaplan-Meier (KM) method. In above scenario, we would compute two KM curves:

Ŝ1(t) for X = 1 and Ŝ0(t) for X = 0.
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Checking the proportional hazards assumption:

If the PH assumption holds, then we can write

Ŝ1(t) ≈ exp{−Λ(t|1)}

and
Ŝ0(t) ≈ exp{−Λ(t|0)},

and consequently,

log
[
−log

{
Ŝ1(t)

}]
≈ log {Λ(t|1)} = log {Λ0(t)}+ β

and
log
[
−log

{
Ŝ0(t)

}]
≈ log {Λ(t|0)} = log {Λ0(t)} .

What we see is that if the PH model assumption holds, the cloglog transformation of

the KM survival functions yields two parallel curves. That means the vertical distance

between the curves is constant. So, we can plot , log[−log{Ŝ1(t)}] and log[−log{Ŝ0(t)}]
against t, and verify if they are separated by an approximately constant amount.
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Checking the PH assumption

In general, with more than 2 comparison groups, or with continuous covariates, the
same idea can be applied to get a rough feel for whether the PH model is
appropriate.

With continuous covariates, we can bin the covariates to create artificial
categorical variables and groups.

For other model checking tools, see Hosmer and Lemeshow (2000).

If PH is not a reasonable assumption, consider parametric models (Reference:
Klein & Moeschberger, 2003).
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Example, the veteran lung cancer data

Code

out=coxph(Surv(time, status)~celltype, data=veteran)

> out

Call:

coxph(formula = Surv(time, status) ~ celltype, data = veteran)

coef exp(coef) se(coef) z p

celltypesmallcell 1.001 2.722 0.254 3.95 7.8e-05

celltypeadeno 1.148 3.151 0.293 3.92 8.9e-05

celltypelarge 0.230 1.259 0.277 0.83 0.41

Likelihood ratio test=24.85 on 3 df, p=2e-05

n= 137, number of events= 128
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Example, the veteran lung cancer data

Code

data1=veteran[veteran$celltype=="squamous", ]

data2=veteran[veteran$celltype=="smallcell", ]

data3=veteran[veteran$celltype=="adeno", ]

data4=veteran[veteran$celltype=="large", ]

out1=survfit(Surv(time, status)~1, data=data1)

out2=survfit(Surv(time, status)~1, data=data2)

out3=survfit(Surv(time, status)~1, data=data3)

out4=survfit(Surv(time, status)~1, data=data4)
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Example, the veteran lung cancer data

Code
pdf("fig4_surv_part3.pdf")

plot(out1$time, log(-log(out1$surv)), type="s", ylim=c(-3.3, 1.2),

xlim=c(1, 999), ylab="", xlab="Time", lwd="2", col="red")

par(new=T); plot(out2$time, log(-log(out2$surv)), type="s", ylim=c(-3.3, 1.2),

xlim=c(1, 999), axes=F, lwd=2, col="blue",

ylab="", xlab=" ")

par(new=T); plot(out3$time, log(-log(out3$surv)), type="s", ylim=c(-3.3, 1.2),

xlim=c(1, 999), axes=F, lwd=2, col="purple", ylab="", xlab=" ")

par(new=T); plot(out4$time, log(-log(out4$surv)), type="s", ylim=c(-3.3, 1.2),

xlim=c(1, 999), axes=F, lwd=2, col="brown", ylab="", xlab=" ")

dev.off()
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Estimated curves for all four groups
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Comments on the figure

The red and brown curves (squamous and large cell type) are crossing each other,
so they cannot be treated as parallel. We call these two curves to form group 1.

The blue and purple curves (small and adeno cell type) are crossing each other, so
they cannot be treated as parallel. We call these two curves to form group 2.

Although these two groups, 1 and 2, look the same in the early time, they seem
not to cross each other over the time period where most of the subjects failed.
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A formal test

The above checking is via a visual inspection. A formal test can be conducted via the
method proposed in Grambsch & Therneau (1994), Proportional hazards tests and
diagnostics based on weighted residuals, Biometrika, 81, 515–526.

Code
fit <- coxph(Surv(time, status) ~ celltype, data=veteran)

temp <- cox.zph(fit, transform="log")

print(temp)

chisq df p

celltype 9.69 3 0.021

GLOBAL 9.69 3 0.021

Based on the result of the Global test, we reject H0 : PH assumption holds at the 5%

level.
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The cox.zph function will test proportionality of all the predictors in the model by
creating interactions with time using the transformation of time specified in the
transform option. The default transformation is the KM survival function of time. In
this example we are testing proportionality by looking at the interactions with log(time).
The last row contains the global test for all the interactions tested at once. A p-value
less than 0.05 indicates a violation of the proportionality assumption.
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Background information for cox.zph

Allowing the effect of the jth covariate to change over time:

βj(t) = βj + γjgj(t),

where gj(t) is a specified function of time [e.g., g(t) = ln(t)], in which case

βj(t) = βj + γj ln(t).

The form of the linear predictor is therefore

βjxj + γjxj ln(t).

We can test H0 : γj = 0 via partial likelihood ratio test or Wald test obtained

when time varying interaction xj ln(t) is added to the proportional hazards model.

The cox.zph function also produces the plot of the estimated regression

coefficient β̂j(t) against time. If it is seen than the plot of β̂j againist time is not

much changing over time, then the proportionality assumption is holding

otherwise not.
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Censoring mechanism: sensitivity analysis

Liu (2017) consider A randomized, double-blind, parallel group, low-dose active
controlled study comparing the safety and efficacy of two doses (400 mg/day
versus 50 mg/day) of study medication used as monotherapy for the treatment of
newly diagnosed or recurrent epilepsy.

A total of 487 subjects were enrolled; of those, 16 withdrew during the open
treatment phase. Of the 471 subjects randomized, 470 had at least 1 study visit
after randomization and were included in the intent-to-treat analysis. Primary
efficacy analysis was based on a survival analysis of the difference between TPM
400 and TPM 50 with respect to time to first partial onset seizures or generalized
seizures during the double-blind phase (excluding taper). Kaplan-Meier (referred
to as KM) estimates were calculated for time to first seizure. Statistical
significance of the treatment effect was tested by the log-rank test.
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The next table lists the completion/withdrawal status along with p-value of efficacy

results for original observed data. The first subject’s randomization occurred at

19NOV1999; and afterwards eligible patients were continuously randomized until

15AUG2001. There are 470 subjects (TPM 50=234 and TPM 400=236), with 90 (38%)

and 49 (21%) events occurred in the TPM 50 and TPM 400, respectively. Comparison

of the KM survival curves of time to first seizure favored TPM 400 over TPM 50

(p-value=0.0002; 2-sided log-rank test). When the trial ended at 26FEB2002, there

were 217 (TPM 50=105, TPM 400=112) remained event-free at the time of study

termination, which were considered as being administratively censored since censoring

was caused by trial operation and thus was also considered as non-informative censoring.

Samiran Sinha (TAMU) Survival Analysis October 26, 2021 62 / 76



TPN 50 TPM 400 Total
Category Sub-category N=234 N=236 N=470
Event Seizure 90 (38) 49 (21) 139 (30) p-value=0.0002
Informative Withdrawal due to adverse event 13(6) 40 (17) 53(11)
censoring Withdrawal due to subject choice 9(4) 13(6) 22(5)
Non-informative Administrative censoring 105 (45) 112(47) 217(46)
censoring Withdrawal due to lost to follow-up 9(4) 10(4) 19(4)

Withdrawal due to other reason 8(3) 12(5) 20(4)
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The proportions of withdrawals due to lost to follow-up and other reason were almost

the identical between high and low dose levels (that is: non-differential between two

treatment groups), which hinted the claim of non-informative nature for these two kinds

of withdrawals. However, at the time of study termination, in the TPM 50 group, 6%

(N=13) of subjects had early withdrawal due to adverse event and 4% (N=9) of

subjects due to subject choice while having 17% (N=40) of withdrawals due to adverse

event and 6% (N=13) of withdrawals due to subject choice in the TPM 400 group.

These two types of withdrawals are differential between two treatment groups.

Combining these two types of withdrawals together, dis-proportionality in early

withdrawal rates between two groups (TPM 400=23% vs. TPM 50=10%) makes people

believe that these withdrawals might have informative censoring with being informative

with respect to treatment assignment, resulting in violating of non-informative censoring

assumption in application of logrank test.
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To address this issue, one proposal from the US FDA (Food and Drug Administration)

reviewer then was to impute informative censoring subjects and treat them as they have

had an event occurred at the time of early withdrawal. The number of events then

becomes 112 (48%) in the TPM 50 group and 102 (43%) in the TPM 400 group,

resulting in a big decrease in the difference in event proportion between two groups (5%

in difference: TPM 50=48% vs. TPM 400=43%) in this naive data as compared with

original data (17% in difference: TPM 50=38% vs. TPM 400=21%). More importantly,

p-value of log-rank test from the naive data becomes 0.3859, which fails to support the

claim of superiority of TPM 400 over TPM 50 in preventing time to first seizure in the

double-blind phase. The naive data are very artificial and incorrect because we only

know that subjects who were informatively censored at their withdrawal time but with no

knowledge on whether or when event occurred afterwards. Surely for them, there was no

event occurring at their date of early withdrawal. From this perspective, the naive data

can be viewed as the ‘worst-case- scenario’ imputation of the original data. One question

to ask next is: what else imputations could possibly depict intermediate scenarios?
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Here we list alternative scenarios, and for each scenario we can consider the log-rank
test. Next, we investigate how the p-values are changing across the cases. If the
p-values do not change much then that is the best news. If the p-values change
substantially, then we report the p-value under the independence assumption with
caution, and must state clearly the assumption and need to report the results are
sensitive towards the assumption.

The ‘best-case-scenario’ is assuming that these subjects were administratively
censored. That means for these subjects, the event did not happen until
26FEB2002.

Imputing the missing values of these censored subjects using some models. Then
carry out the analysis (log-rank test). Let ft,c,ωj (·, ·|θj) be the joint distribution of
the failure and censoring time in group j with the known association (correlation)
parameter ωj and unknown parameter θj . We fit this model to the data, and
estimate θj . Then use the model to generate the failure time conditional on the
fact that it is larger than the observed censoring time. Once this imputed data are
generated, we can carry out the log-rank test, and record the p-value.
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Sample size for clinical trials

Suppose that a number of subjects randomly assigned to two arms (groups),
treatment and control. Suppose that X is the binary indicator for the treatment.

Assume that the hazard of the time-to-event T follows the PH model, that means
λ(t|X ) = λ0(t) exp(θX ), where the regression parameter θ is called the log-hazard
ratio and exp(θ) = λ(t|treatment)/λ(t|control) is called the risk ratio.

In a two-arm randomized trial, for given probability of Type-I and II error, α and β,
the required number of events, the total in two trials, is

m =
(Zα/2 + Zβ)2

θ2π(1− π)
,

If clinicians think the treatment provides 25% reduction in the rate of
the event, then exp(θ) = 0.75, so θ = log(0.75)
π : proportion of subjects allocated to the placebo, for equal allocation
trial set π = 0.5
α : the level of significance usually α = 0.05
1− β : power of the test, usually β = 0.20 for 80% power
Page 340 of the Applied Survival Analysis by Hosmer et al.
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Sample size calculation

This is an ideal scenario where all subjects are recruited at time zero, and all of
them are followed-up until the event occurs. In reality that does not happen.

In practice, subjects are recruited over a specified period, we call it accrual period.
Then the subjects are followed for an additional f period of time.

In practice a fraction of subjects experience the event of interest during the
follow-up period, and some will not experience the event of interest during the
follow-up (they are right censored). To take into account this censoring we divide
the number of events by the overall probability of event by the end of the
follow-up period.

Thus the required number of subjects in the trial is

n =
m

pr(T ≤ a + f )
,

where pr(T ≤ a + f ) is the probability of the event by the end of the accrual
period a and then follow-up period f .
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Sample size calculation

a: accrual period, f : is the follow-up period after the accrual period a, L:
total period including accrual and follow-up
u : time when a random subject enters in the study, L− u is the potential
follow-up time for the subject
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Sample size calculation continues

Let F denotes the CDF of T combining both groups. Note that T is the time to
failure measured from the recruitment.

If subjects are recruited uniformly over the accrural period interval (0, a), then the
probability of observing a failure (0, L) is

pr(T ≤ L) =

∫ a

0

du

a
× F (L− u).

The first term of the integral: chance of recruitment over [u, u + du), the second
term of the integrand: probability of observing failure over (0, L− u). Since the
recruitment can happen over (0, a), the final result is obtained as an integration.

Using Simpson’s rule the above integration is approximated by
pr(T ≤ L) = (a/2)(1/3)(1/a){F (L) + F (L− a) + 4F (L− a/2)}. For this
numerical approximation (0, a) is divided into two parts, (0, a/2) and (a/2, a) with
the width of each interval a/2, and this width appears as the first term of the
Simpson’s approximation.
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In terms of survival probability,

pr(T ≤ a + f ) = 1− 1

6
{S(f ) + 4S(0.5a + f ) + S(a + f )},

where
S(t) = 1− F (t) = πS0(t) + (1− π)S1(t),

S0 and S1 are the estimated survival probability for the placebo and treatment
groups, respectively, from the pilot study, and

S1(t) = {S0(t)}exp(θ).

If π∗ is the percentage of subjects lost to follow-up during the follow-up period (or
withdrawal due to non-compliance), then the required sample size will be
n∗ = n/(1− π∗).
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Example: Applied Survival Analysis by Hosmer, Lemeshow
and May, 2008, p. 342.

Suppose that for a hypothetical example, clinicians think that the treatment
provides 50% reduction in the rate of the event, that means exp(θ) = 0.5, so
θ = log(0.5)

The accrual period a = 2 years, and the minimum follow-up after the accrual
f = 3 years. Then the maximum follow-up L = 5 years. Let Ŝ0(3) = 0.5,

Ŝ0(4) = 0.6, Ŝ0(5) = 0.7. With θ = 0.5, Ŝ1(3) = Ŝ0(3)
0.5

= 0.50.5 = 0.71,

Ŝ1(4) = Ŝ0(4)
0.5

= 0.60.5 = 0.77, Ŝ1(5) = Ŝ0(5) = 0.70.5 = 0.84.

For equal allocation, S(3) = 0.605, S(4) = 0.685, S(5) = 0.77. Hence,
pr(T ≤ a + f ) = 1− (0.605 + 0.77 + 4 ∗ 0.685) = 0.314.

For θ = log(0.5), α = 0.05, β = 0.2, m = (1.96 + 0.84)2/(log(0.5)2 ∗ 0.25) = 65.2

n = m/pr(T ≤ a + f ) = 65.2/0.314 = 207.87.

For a 20% drop-out/withdrawl (excluding the administrative censoring), the
required number of total subjects for both arms is 207.87/0.80 = 259.82 ≈ 260
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Alternative way of computing the sample size (following A
Tsiatis’s class notes)

Let r(t) be the accrual rate, the rate at which subjects are recruited in the study.
Mathematically,

r(t) = lim
η→0

expected number of subjects recruited in [t, t + η)

η
.

Assuming the accrual rate is same for both groups, the expected number of
failures for groups 1 and 2 are D0 =

∫ a

0
{r(u)/2}F0(L− u)du and

D1 =
∫ a

0
{r(u)/2}F1(L− u)du.

Under the equal allocation scheme,

m = 4
(Zα/2 + Zβ)2

θ2
= D0 + D1.
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Alternative way of computing the sample size

Suppose that in a hypothetical study, r0 patients are recruited every year, and they
are randomized to one of the two groups. Thus r(t) = r0/2 for every group when t
is measured in years. Let the survival time for each group follow exponential
distribution with parameters λ0 and λ1, respectively. Then

D0 =

∫ a

0

{r0/2}
[

1− exp{−λ0(L− u)}
]
du

=
r0

2

[
a− 1

λ0

{
exp{−λ0(L− a)} − exp(−λ0L)

}]
Let the median survival time for the control and treatment group are (these are
expectations) 4 years and 6 years respectively. The corresponding parameters are
λ0 = log(2)/4 = 0.173 and λ1 = log(2)/6 = 0.115. The log-hazard ratio
θ = log(4/6) = log(2/3). With α = 0.05 and β = 0.2, we need m = 190. Now,
the question is what should be the choice of L and a for a given r0.
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Alternative way of computing the sample size

Let r0 = 100. Then

190 =
100

2

[
a− 1

0.173

{
exp{−0.173(L− a)} − exp(−0.173L)

}]
+

100

2

[
a− 1

0.115

{
exp{−0.115(L− a)} − exp(−0.115L)

}]
.

Clearly, there are many solutions for a and L. Let us consider a few options. 1) Set
a = 2 years, and then find L. 2) Set a = 3 years, and find L. 3) Set a = L/2 and
find L, 4) Set a = L and find L.

In clinical trials sample sizes are calculated for various possible combinations of the
parameters, a, L, θ, β, r0.
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