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Types of Censoring

Left censoring: In a study if it is known that the failure time of a subject is below a
known threshold (left censoring time), then we call the subject is left censored. For
that subject we know that the event has happened some time before the left
censoring time. In this scenario, the exact failure time is observed if it is larger
than the left censoring time.

Example (Reference: Klein and Moeschberger, 2003): In a study to determine the
distribution of the time until first marijuana use among high school boys in
California, the question was asked, “When did you you first use marijuana?” One
of the responses was “I have used it but can not recall just when the first time
was.” A boy who chose this response is indicating that the event had occurred
prior to the boy’s age at interview but the exact age at which he started using
marijuana is unknown. This is an example of a left-censored event time. [Copied
from the book]
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Types of Censoring

Interval censoring: In a study if it is known that the failure time of a subject is
below a known threshold (left censoring time), then we call the subject is left
censored. If the failure time is above a known threshold we call the subject right
censored. In the case of interval censoring, we observe the exact failure time if the
event happens after the left censoring time and before the right censoring time.
For the interval censored subject, although we do not know the exact failure time,
we know if the subject is left or right censored.
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Types of Censoring

For example1 consider the acquired immune deficiency syndrome (AIDS) trials, where

the interest is in times to AIDS for human immunodeficiency virus (HIV) infected

subjects. The onset of AIDS is determined by blood testing (CD4 T cell counts fall

below 200 per cubic millimeter of blood or AIDs defining complications) that is

performed obviously only periodically but not continuously. Consequently, only

interval-censored data may be available for AIDS diagnosis times. A similar case is for

studies on HIV infection times. The HIV infection time of a HIV positive person is

usually determined by a retrospective analysis of the person’s medical history. Therefore,

we are only able to obtain an interval given by the last HIV negative test date and the

first HIV positive test date for the HIV infection time.

1Zhang Z, Sun J. Interval censoring. Stat Methods Med Res. 2010;19(1):53–70.
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Types of censoring

Right censoring: Type I censoring happens when the event is observed only if it occurs

prior to some prespecified time 2. These censoring times may vary from individual to
individual. A typical animal study or clinical trial starts with a fixed number of animals
or patients to which a treatment (or treatments) is (are) applied. Then subjects are
followed up to a fixed time point, say 2 years. Any subjects that are censored between 0
to 2 years are considered randomly censored, any subjects that did experience the event
of interest over (0, 2) years are failures, and the remaining subjects that didn’t
experience the event at the end of 2 years are administratively censored.

2Joffe, MM. Administrative and artificial censoring in censored regression models.
Stat in Med, 2001; 20 (15): 2287–2304.
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Types of censoring

Right censoring: Type II censoring occurs when a study continues until the failure of the

first r subjects, where r is some predetermined integer (r ≤ n). Experiments involving

Type II censoring are often used in testing of equipment life. You may find numerous

articles on accelerated life testing on battery life that make use of the failure time

models. Here, all items are put on test at the same time, and the test is terminated when

r of the n items have failed. Such an experiment may save time and money because it

could take a very long time for all items to fail. It is also true that the statistical

treatment of Type II censored data is simpler because the data consists of the r smallest

lifetimes in a random sample of n lifetimes, so that the theory of order statistics is

directly applicable to determining the likelihood and any inferential technique employed.
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Censoring assumptions

Independent censoring: Within any subgroup, subjects censored at time t
representative of all subjects in that subgroup who are still at risk at time t.

Censoring is random within any subgroup of interest
Censoring time is independent of failure time

Non-informative censoring: The distribution of survival times (T ) provides
no information about the distribution of censorship times (C ), and vice verse.
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Truncation

Truncation is a different concept than censoring. We do not have any
information on the truncated subjects.

On the other hand, if a subject is censored that means we get to observe a
partial information from that subject.

Suppose that in a clinical study on HIV therapy, subjects with age more than
20 years and less than 60 years are recruited. That means those subjects
whose age is outside the range (20, 60) will not be included in the study and
we will not have any information on those subjects. Thus, we will not have
any information (not even partial) on the subjects outside the truncation
limit.
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Example (parametric):

T : time-to-event

Let V be the observed time, ∆ be the censoring indicator (0 if right-censored, 1 if
event is obseved).

Y = log(T ), and suppose that Y ∼ fθ , and C ∼ g .

Assume that censoring is independent of the time-to-event T .

For an uncensored observation (log(Vi ) = log(vi ),∆i = 1), the likelihood
contribution is

Li = pr{log(Vi ) = log(vi ),∆i = 1}
= pr{Yi = log(Ti ) = log(vi ), log(Ci ) ≥ log(vi )}
= fθ(log(vi ))pr{log(Ci ) ≥ log(vi )}

For a censored observation (log(Vi ) = log(vi ),∆i = 0), the likelihood contribution
is

Li = pr{log(Vi ) = log(vi ),∆i = 0}
= pr{log(Ci ) = log(vi ),Yi = log(Ti ) ≥ log(vi )}
= g(vi )pr{Yi ≥ log(vi )}

= g(vi )

∫ ∞
log(vi )

fθ(u)du
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Example (parametric):

Suppose that we have a data on (V ,∆) on two subjects, and they are (5, 1) and
(1, 0).

The likelihood for the first subject is

L1 = pr{Yi = log(Ti ) = log(5), log(Ci ) ≥ log(5)}
= fθ(log(5))pr{log(Ci ) ≥ log(5)}.

The likelihood for the second subject is

L2 = pr{log(Ci ) = log(1),Yi = log(Ti ) ≥ log(vi )}

= g(1)

∫ ∞
log(1)

fθ(u)du.

Samiran Sinha (TAMU) Survival Analysis October 3, 2021 10 / 61



Example (parametric) continued:

The likelihood for an observed sample of n subjects is thus

L =
n∏

i=1

{
fθ(log(vi ))pr{log(Ci ) ≥ log(vi )}

}∆i

×
{
g(vi )

∫ ∞
log(vi )

fθ(u)du

}1−∆i

=
n∏

i=1

f ∆i

θ
(log(vi ))

{∫ ∞
log(vi )

fθ(u)du

}1−∆i

×
n∏

i=1

{∫ ∞
vi

g(u)du

}∆i

g 1−∆i (vi )
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Example (parametric) continued:

The log-likelihood (part involving the parameters of the distribution of T ) is

` =
n∑

i=1

[
∆i log{fθ(log(vi ))}+ (1−∆i )log

{∫ ∞
log(vi )

fθ(u)du

}]
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Example (parametric) continued:

Suppose that fθ ∼ N(µ, σ2). We can estimate θ′ = (µ, σ2) by numerically
maximizing the log-likelihood.

Note: Next, we can then estimate the survival function as 1− F
θ̂

.

Next we shall discuss some special cases.
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AFT model

Suppose that along with (Vi ,∆i ) we observe a set of covariates (explanatory
variables), Xi .

We are interested in the following linear model

Yi = log(Ti ) = β0 + XT
i β1 + Ui ,

where the random noise Ui has a known distribution. This model is known as
accelerated failure time (AFT) model. If the distribution of U is assumed to be a
known family of distributions, we call it parametric AFT otherwise it is a
non-parametric AFT model. Here we shall focus on the parametric AFT model.

A special case is when Ui is assumed to follow Normal(0, σ) distribution (the
normal family of distributions with mean zero and unknown scale σ).

When Ui follows Normal(0, σ), the distribution of Ti is called lognormal and the
mean of log(T ) is β0 + XT

i β1 and scale σ.

The log-likelihood when Ui ∼ Normal(0, σ) is

` =
n∑

i=1

(
−∆i

[
{log(Vi )− β0 − XT

i β1}2

2σ2
+ 0.5log(σ2)

]

+(1−∆i )log

{∫ ∞
log(vi )

exp{−(u − β0 − XT
i β1)2/2σ2}√

2πσ
du

})
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AFT model fitting

In a model fitting, we want to estimate the unknown model parameters from the
data.

Next, we want to estimate the uncertainties, and then statistical inference and
prediction.
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Log-normal model fitting to a simulated data example

Code
library(survival)

set.seed(10)

n=500

myx=runif(n, -1, 1)

myy=1+0.5*myx+0.25*rnorm(n, 0, 1)

mytime=exp(myy)

mycen=runif(n, 3, 15)

myv=apply(cbind(mytime, mycen), 1, min)

mydel=as.numeric(mytime<mycen)

mydata=data.frame(myv, mydel, myx)

names(mydata)<-c("time", "mystatus", "mycov")

head(mydata)

out1=survreg(Surv(time, mystatus)~mycov,data=mydata, dist="lognormal")

#### Alternative method to obtain the exact same result

out2=survreg(Surv(log(time), mystatus)~mycov,data=mydata,

dist="gaussian")
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Simulated data example

Code
summary(out1)

Call:

survreg(formula = Surv(time, mystatus) ~ mycov, data = mydata,

dist = "lognormal")

Value Std. Error z p

(Intercept) 1.0018 0.0119 84.0 <2e-16

mycov 0.4870 0.0209 23.3 <2e-16

Log(scale) -1.3284 0.0323 -41.1 <2e-16

Scale= 0.265

Log Normal distribution

Loglik(model)= -529.2 Loglik(intercept only)= -714.6

Chisq= 370.83 on 1 degrees of freedom, p= 1.2e-82

Number of Newton-Raphson Iterations: 5

n= 500
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Interpretations

The estimate of β0 is 1.0018 and the standard error is 0.0119. The 95% CI is
(1.0018± 1.96× 0.0119) = (0.978, 1.025).

The estimate of β1 is 0.487 and the standard error is 0.0209. The 95% CI is
(.487± 1.96× 0.0209) = (0.446, 0.528).

The estimate of σ is exp(−1.3284) = 0.265, and the 95% CI is
exp(−1.328± 1.96× 0.0323) = (0.249, 0.282).

The Newton-Raphson method was used to maximize the log-likelihood ` in 3 slides
back.
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Estimation of survival probability

Suppose that we are interested in survival probability when X = X0 (a given
value). That means we want to estimate

S(t|X0) = pr(T > t|X0) =pr(Y > log(t)|X0)

=1− Φ

(
log(t)− β0 − XT

0 β1

σ

)
,

where Φ is the CDF of Normal(0, 1) distribution.

The estimator of this survival probability is

Ŝ(t|X0) = 1− Φ

(
log(t)− β̂0 − XT

0 β̂1

σ̂

)
How do we compute the standard error of the 95% CI for S(t|X0)? First, we shall

use the delta method to compute the standard error of {log(t)− β̂0 − XT
0 β̂1}/σ̂,

say it is se∗.

Then the 95% CI for S(t|X0) is

1− Φ

(
log(t)− β̂0 − XT

0 β̂1

σ̂
± 1.96se∗

)
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Simulated data example

Suppose that we are interested in making inference on
S(2|X = 0.5) = pr(T > 2|X = 0.5).

Code
1-pnorm((log(2)-1.0018-0.5*0.487)/exp(-1.3284)) # estimate of S(2|X=0.5)

library(msm) # you need this package for the delta method

sestar= deltamethod(~(log(2)-x1-0.5*x2)/exp(x3), c(1.0018,

0.4870, -1.3284), out1$var)
# 95% CI

ul=1-pnorm((log(2)-1.0018-0.5*0.487)/exp(-1.3284)

-1.96*sestar) # upper limit

ll=1-pnorm((log(2)-1.0018-0.5*0.487)/exp(-1.3284)

+1.96*sestar) # lower limit

print(c(ll, ul))
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Another AFT model

Suppose that our next model is

Yi = log(Ti ) = XT
i β1 + Ui ,

where Ui is the random noise. Suppose that exp(Ui ) follows the exponential
distribution with mean λ0. That means pr{exp(Ui ) > r} = exp(−r/λ0).

Let us figure out the survival function of Ti given covariate Xi .

S(t|Xi ) = pr(Ti > t|Xi ) =pr{log(Ti ) > log(t)|Xi}

=pr{XT
i β + Ui > log(t)}

=pr{Ui > log(t)− XT
i β}

=pr{Ui > log(t)− XT
i β}

=pr[exp(Ui ) > exp{log(t)− XT
i β}]

=pr{exp(Ui ) > t exp(−XT
i β)}

= exp{−t exp(−XT
i β)/λ0}
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Another AFT model

The density function of T conditional on the covariate is

f (t|Xi ) = −dS(t|Xi )

dt
=− d

dt
exp{−t exp(−XT

i β)/λ0}

= exp

{
− t exp(−XT

i β)

λ0

}
exp(−XT

i β)

λ0

The hazard function of T conditional on the covariate is

λ(t|Xi ) =
f (t|Xi )

S(t|Xi )
=

exp(−XT
i β)

λ0
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Simulated data example for the exponential model

Code
library(survival)

set.seed(10)

n=500

myx=runif(n, -1, 1)

myy=0.5*myx+log(rexp(n, 0.8)) #

### rexp(n, 0.8) generates data from Exponential distribution with

### mean lambda_0=1/0.8=1.25

mytime=exp(myy)

mycen=runif(n, 2, 15)

myv=apply(cbind(mytime, mycen), 1, min)

mydel=as.numeric(mytime<mycen)

mydata=data.frame(myv, mydel, myx)

names(mydata)<-c("time", "mystatus", "mycov")

head(mydata)

out1=survreg(Surv(time, mystatus)~mycov,data=mydata, dist="exponential")
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Simulated data example for the exponential model

Code
summary(out1)

Call:

survreg(formula = Surv(time, mystatus) ~ mycov, data = mydata,

dist = "exponential")

Value Std. Error z p

(Intercept) 0.241 0.0453 5.32 1.05e-07

mycov 0.508 0.0799 6.36 2.00e-10

Scale fixed at 1

Exponential distribution

Loglik(model)= -600.8 Loglik(intercept only)= -620.9

Chisq= 40.39 on 1 degrees of freedom, p= 2.1e-10

Number of Newton-Raphson Iterations: 4

n= 500
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Interpretations of the output

The estimate of β1 is 0.508 with the standard error 0.0799.

The estimate of η0 = log(λ0) is 0.241 with the standard error 0.0453.

The estimator of S(t|X∗), the survival function at a given time t for covariate

X = X∗ is exp{−t exp(−XT
∗ β̂)/ exp(η̂0)}, where β̂ and η̂0 are the estimators of β

and η0 respectively.

The 95% CI for S(t|X∗) is

exp
{
−t exp(−η̂0 − XT

∗ β̂ + 1.96se∗)
}
, exp

{
−t exp(−η̂0 − XT

∗ β̂ − 1.96se∗)
}

Here se∗ is the standard error of −η̂0 − XT
∗ β̂.
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Simulated data example

Suppose that we are interested in making inference on S(1.8|X = 0.5).

Code
exp(-1.8*exp(-0.241-0.5*0.508)) # estimate of S(1.8|X=0.5)

0.3379

library(msm) # you need this package for the delta method

sestar= deltamethod(~(-x1-0.5*x2), c(0.241, 0.508), out1$var)
# 95% CI

ul=exp(-1.8*exp(-0.241-0.5*0.508-1.96*sestar)) # upper limit

ll=exp(-1.8*exp(-0.241-0.5*0.508+1.96*sestar))# lower limit

print(c(ll, ul))

[1] 0.2901000 0.3780109
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Mean for the Exponential AFT model

We know when Yi = log(Ti ) = XT
i β1 + Ui where the random noise exp(Ui ) follows

the exponential distribution with mean λ0 = exp(η0), the survival function of Ti

given covariate Xi is

S(t|Xi ) = exp{−t exp(−XT
i β)/λ0}.

The mean of Ti conditional on covariate Xi is

µ(Xi ) =

∫ ∞
0

S(t|Xi )dt =

∫ t

0

exp{−t exp(−XT
i β)/λ0}dt

=
1

exp(−XT
i β)/λ0

= exp(XT
i β)λ0

= exp(η0 + XT
i β).
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Inference on the mean

Inference on the mean conditional on covariate X = X∗

The estimator of µ(X∗) is exp(η̂0 + XT
∗ β̂).

The 95% CI for µ(X∗) is{
exp(η̂0 + XT

∗ β̂ − 1.96se∗), exp(η̂0 + XT
∗ β̂ + 1.96se∗)

}
,

where se∗ is the standard error of η̂0 + XT
∗ β̂.
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Inference on the mean

Suppose that we are interested in making inference on µ(X = 0.5).

Code
exp(0.241+0.5*0.508) # estimate of mu(0.5)

1.640

library(msm) # you need this package for the delta method

sestar= deltamethod(~(x1+0.5*x2), c(0.241, 0.508), out1$var)
# 95% CI

ll=exp(0.241+0.5*0.508-1.96*sestar) # lower limit

ul=exp(0.241+0.5*0.508+1.96*sestar)# upper limit

print(c(ll, ul))

[1] 1.454511 1.850268
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Median for the Exponential AFT model

We know when Yi = log(Ti ) = XT
i β1 + Ui where the random noise exp(Ui ) follows

the exponential distribution with mean λ0 = exp(η0), the survival function of Ti

given covariate Xi is

S(t|Xi ) = exp{−t exp(−XT
i β)/λ0}

The median of Ti conditional on covariate Xi is

m(Xi ) = inf{t : S(t|Xi ) ≤ 0.5} = inf[t : exp{−t exp(−XT
i β)/λ0} ≤ 0.5]

= inf[t : −t exp(−XT
i β)/λ0 ≤ log(0.5)]

= inf[t : t exp(−XT
i β)/λ0 ≥ −log(0.5)]

= inf[t : t ≥ −log(0.5)λ0 exp(XT
i β)]

= inf[t : t ≥ −log(0.5) exp(η0 + XT
i β)]

=− log(0.5) exp(η0 + XT
i β)
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Inference on the median

Inference on the median conditional on covariate X = X∗

The estimator of m(X∗) is −log(0.5) exp(η̂0 + XT
∗ β̂).

The 95% CI for m(X∗) is{
−log(0.5) exp(η̂0 + XT

∗ β̂ − 1.96se∗), −log(0.5) exp(η̂0 + XT
∗ β̂ + 1.96se∗)

}
,

where se∗ is the standard error of η̂0 + XT
∗ β̂.
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Inference on the median

Suppose that we are interested in making inference on m(X = 0.5).

Code
-log(0.5)*exp(0.241+0.5*0.508) # estimate of m(0.5)

1.137

library(msm) # you need this package for the delta method

sestar= deltamethod(~(x1+0.5*x2), c(0.241, 0.508), out1$var)
# 95% CI

ll=-log(0.5)*exp(0.241+0.5*0.508-1.96*sestar) # lower limit

ul=-log(0.5)*exp(0.241+0.5*0.508+1.96*sestar)# upper limit

print(c(ll, ul))

[1] 1.008190 1.282508
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Another AFT model: Weibull

Suppose the model is
Yi = log(Ti ) = XT

i β + Ui ,

where εi = exp(Ui ) follows the Weibull distribution with the scale b and shape a.

The density function of Weibull distribution with the scale b and shape a is

f (εi ) =
a

b

( εi
b

)a−1

exp
{
−
( εi
b

)a}
and the survival function is

pr(εi > r) = exp
{
−
( r
b

)a}
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Another AFT model: Weibull

Under the Weibull model for exp(Ui ), let us figure out the survival function of Ti

given the covariate Xi .

pr(Ti > t|Xi ) =pr(Yi = log(Ti ) > log(t)|Xi )

=pr(XT
i β + Ui > log(t))

=pr(Ui > log(t)− XT
i β)

=pr[εi = exp(Ui ) > exp{log(t)− XT
i β}]

=pr{εi > t exp(−XT
i β)}

= exp

[
−
{
t exp(−XT

i β)

b

}a]
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Another AFT model: Weibull

Let us figure out the hazard function of Ti given the covariate Xi .

λ(t|Xi ) =− d

dt
log{S(t|Xi )}

=− d

dt
log

(
exp

[
−
{
t exp(−XT

i β)

b

}a])
=

d

dt

{
t exp(−XT

i β)

b

}a

=ata−1

{
exp(−XT

i β)

b

}a

It is seen that the hazard function is not a constant, rather it is a polynomial
function of t.
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Median

Let us figure out the median of T given when the covariate X = X∗.

The median is defined as

m(X∗) = inf{t : pr(T > t|X∗) = inf{t : exp

[
−
{
t exp(−XT

∗ β)

b

}a]
≤ 0.5}.

Thus, m(X∗) = {−log(0.5)}1/a exp{XT
∗ β + log(b)}.
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Mean

Let us figure out the mean of T given when the covariate X = X∗.

The mean is (using gamma integration)

µ(X∗) =

∫ ∞
0

pr(T > t|X∗)dt

=

∫ ∞
0

exp

[
−
{
t exp(−XT

∗ β)

b

}a]
dt

=
Γ(1/a)

a exp[(1− a){−XT
∗ β − log(b)}]

.
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Simulated data example for the Weibull model

Code
library(survival)

set.seed(10)

n=500

myx=runif(n, -1, 1)

myy=0.3*myx+log(rweibull(n, scale=2, shape=0.8)) #

### rexp(n, scale=2, shape=0.8) generates data from the Weibull

### distribution with shape=0.8 and scale=2. That means according to

### our notations a=0.8, b=2.

mytime=exp(myy)

mycen=runif(n, 2, 15)

myv=apply(cbind(mytime, mycen), 1, min)

mydel=as.numeric(mytime<mycen)

mydata=data.frame(myv, mydel, myx)

names(mydata)<-c("time", "mystatus", "mycov")

head(mydata)

out1=survreg(Surv(time, mystatus)~

mycov,data=mydata, dist="weibull")
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Output of the analysis

Code
summary(out1)

Call:

survreg(formula = Surv(time, mystatus) ~ mycov, data = mydata,

dist = "weibull")

Value Std. Error z p

(Intercept) 0.637 0.0661 9.63 5.84e-22

mycov 0.283 0.1127 2.51 1.20e-02

Log(scale) 0.318 0.0387 8.21 2.14e-16

Scale= 1.37

Weibull distribution

Loglik(model)= -745.9 Loglik(intercept only)= -749.1

Chisq= 6.32 on 1 degrees of freedom, p= 0.012

Number of Newton-Raphson Iterations: 5

n= 500
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Interpretations of the results

The estimate of β is 0.283 with the standard error 0.1127.

The estimate of the shape parameter a is the inverse of the Scale value in the
output. It is important to note that the Scale value in the output is different from
the scale parameter of the Weibull model. So the estimate of a is 1/1.374 = 0.727.

Also, note that we can obtain the estimate of a as
exp{−Log(scale)} = exp(−0.318) = 0.727.

The 95% for a is [exp{−Log(scale)− 1.96se}, exp{−Log(scale) + 1.96se}], where
se is the standard error corresponding to Log(scale). In this example, se = 0.0387,
so the 95% CI for a is[

exp(−0.318− 1.96× 0.0387), exp(−0.318 + 1.96× 0.0387)

]
= (0.674, 0.785)
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Interpretations of the results

The estimate of the Weibull scale parameter b is exp(Intercept), and here it is
exp(0.637) = 1.891.

The 95% CI for b is exp(0.637± 1.960.0661) = (1.661, 2.152).

The good news is that the true values of a and b are in the respective confidence
intervals. Here we can verify this because we know the true values of a and b. In
case of real dataset, we do not know the true values of a and b.
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Inference of the survival probability for the Weibull model

The following formula always produces a CI that is between zero and one.

Suppose that we are interested in estimating

S(t∗|X = X∗) = exp
[
−
{

t∗ exp(−XT
∗ β)

b

}a]
.

Suppose that a = exp(−ζ), where ζ is the Log(scale) in the output.

Then re-write

S(t∗|X = X∗) = exp

(
−
[
exp{−XT

∗ β − log(b) + log(t∗)}
]exp(−ζ)

)
= exp

(
− exp[{−XT

∗ β − log(b) + log(t∗)} exp(−ζ)]
)
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Inference of the survival probability for the Weibull model

Suppose that se is the standard error of {−XT
∗ β − log(b) + log(t∗)} exp(−ζ).

Then the 95% CI for S(t∗|X = X∗) is

exp
(
− exp[{−XT

∗ β̂ − l̂og(b) + log(t∗)} exp(−ζ̂)± 1.96se]
)

.
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Inference on the survival probability

Code
library(survival)

set.seed(10)

n=500

myx=runif(n, -1, 1)

myy=0.3*myx+log(rweibull(n, scale=2, shape=0.8)) #

### rexp(n, scale=2, shape=0.8) generates data from the Weibull

### distribution with shape=0.8 and scale=2. That means according to

### our notations a=0.8, b=2.

mytime=exp(myy)

mycen=runif(n, 2, 15)

myv=apply(cbind(mytime, mycen), 1, min)

mydel=as.numeric(mytime<mycen)

mydata=data.frame(myv, mydel, myx)

names(mydata)<-c("time", "mystatus", "mycov")

head(mydata)

out1=survreg(Surv(time, mystatus)~

mycov,data=mydata, dist="weibull")
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Inference on the survival probability

Suppose that we are making inference for S(2|X = 0.5).

Code
exp( -(2*exp(-0.5*out1$coef[2]-out1$coef[1]))^(1/out1$scale) ) #estimate

## of S(2|X=0.5)

[1] 0.3907299

library(msm)

### 95% CI

se=deltamethod(~(-0.5*x2-x1+log(2))*exp(-x3), c(0.637,

0.2831,0.3182), out1$var)

ul=exp( -exp((-0.5*out1$coef[2]-out1$coef[1]+log(2))*
(1/out1$scale)-1.96*se))

ll=exp( -exp((-0.5*out1$coef[2]-out1$coef[1]+log(2))*
(1/out1$scale)+1.96*se))

print(as.numeric(c(ll, ul)))

[1] 0.3441040 0.4370086
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Inference of the median conditional on the covariate value

Suppose that we are interested in estimating the median survival time when
X = X∗, m(X∗) = {−log(0.5)}1/a exp{XT

∗ β + log(b)}.

The estimator is m̂(X∗) = {−log(0.5)}1/â exp{XT
∗ β̂ + log(b̂)}. Let a = exp(−ζ),

where ζ is the Log(scale) of the output. Then we can re-write

m̂(X∗) = {−log(0.5)}exp(ζ̂) exp{XT
∗ β̂ + l̂og(b)}

= exp

[
XT
∗ β̂ + log(b̂) + exp(ζ̂)log{−log(0.5)}

]

The 95% CI for m(X∗) is exp
[
XT
∗ β̂ + log(b̂) + exp(ζ̂)log{−log(0.5)} ± 1.96× se

]
,

where se is the standard error of XT
∗ β̂ + log(b̂) + exp(ζ̂)log{−log(0.5)}.
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Inference on the median

Suppose that we are interested in making inference on the median survival time when
X = 0.5.

Code
as.numeric(exp(0.5*out1$coef[2]+out1$coef[1]+(1/out1$scale)*
log(-log(0.5)))) # estimate of m(0.5)

[1] 1.668574

### 95% CI

se=deltamethod(~ (0.5*x2+x1+exp(x3)*log(-log(0.5))),

c(0.637, 0.2831,0.3182), out1$var)

ll=as.numeric(exp(0.5*out1$coef[2]+out1$coef[1]+
(1/out1$scale)*log(-log(0.5))-1.96*se ))

ul=as.numeric(exp(0.5*out1$coef[2]+out1$coef[1]+
(1/out1$scale)*log(-log(0.5))+1.96*se ))

print(c(ll, ul))

[1] 1.391288 2.001122
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Model comparison

Here we know that data are generated from the Weibull model (or the exponential
model), therefore we fit the Weibull model (or the exponential model) to the data.

In real life scenario, we do not know how the nature generates data. In other
words, for real life example, we don’t know the true data generating process.

In that case, we can fit different models to data, and choose the best model based
on the AIC or BIC criteria.
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Model comparison

Consider the colon cancer data available in the survival package of R.

See https:

//stat.ethz.ch/R-manual/R-devel/library/survival/html/colon.html for
more details on the dataset.

The response is the time (in days) from the surgery to the event (recurrence).

For the time being we consider age, treatment, number of nodes involved, and
gender as the explanatory variables.
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AIC in survreg

Code
colondata=colon[colon$etype==1, ]

out1=survreg(Surv(time, status)~age+rx+sex+nodes, data=colondata,

dist="lognormal")

out2=survreg(Surv(time, status)~age+rx+sex+nodes, data=colondata,

dist="exponential")

out3=survreg(Surv(time, status)~age+rx+sex+nodes, data=colondata,

dist="weibull")

extractAIC(out1)

[1] 7.000 7879.945

extractAIC(out2)

[1] 6.000 8042.662

extractAIC(out3)

[1] 7.000 7968.488

# Since the minimum AIC occurs for the lognormal model, we would prefer

# the lognormal model over the other two.
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Variable selection

When there are many potential predictors, for choosing a set of informative
predictors for prediction and model fitting purpose we use the stepwise variable
selection method.

Let us consider the colon dataset. Consider only the subset where etype= 1
(discard deaths). We discard death because from the given data we are not sure if
the death happened due to colon cancer or not. Thus, subjects will experience
recurrence of the disease after the surgery or censored at some time.

Consider the time (in days) from the surgery to the event (recurrence) as the
response variable.

We shall consider age, treatment, number of nodes involved, gender, perfor
(perforation of colon) as the potential explanatory variables. Also, we consider all
two-factor interactions among these explanatory variables.

Then use the stepwise regression to choose the best subset of the explanatory
variables for this dataset.
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step function in survreg

Code
library(survival)

colondata=colon[colon$etype==1, ]

# To remove rows with any missing values, we do

colondata=colondata[complete.cases(colondata), ]

outf=survreg(Surv(time, status)~sex+age+rx+nodes+perfor+

sex*age+sex*rx+sex*nodes+sex*perfor+

age*rx+age*nodes+age*perfor+

rx*nodes+rx*perfor+

nodes*perfor,

data=colondata, dist="lognormal")

out2=step(outf)
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The final selected model using the step function

Code
summary(out2)

Call:

survreg(formula = Surv(time, status) ~ sex + age + rx + nodes +

perfor + sex:age + sex:rx + sex:nodes + sex:perfor, data = colondata,

dist = "lognormal")

Value Std. Error z p

(Intercept) 7.13184 0.50733 14.06 < 2e-16

sex 0.90190 0.73328 1.23 0.219

age 0.01578 0.00789 2.00 0.046

rxLev 0.04477 0.23778 0.19 0.851

rxLev+5FU 0.42338 0.23249 1.82 0.069

nodes -0.19994 0.02697 -7.41 1.2e-13

perfor -1.00204 0.52586 -1.91 0.057

sex:age -0.02121 0.01128 -1.88 0.060

sex:rxLev 0.01222 0.32204 0.04 0.970

sex:rxLev+5FU 0.64213 0.33701 1.91 0.057

sex:nodes 0.08344 0.03636 2.29 0.022

sex:perfor 1.14422 0.76143 1.50 0.133

Log(scale) 0.58914 0.03745 15.73 < 2e-16

Scale= 1.8

Log Normal distribution

Loglik(model)= -3837.3 Loglik(intercept only)= -3894.9

Chisq= 115.13 on 11 degrees of freedom, p= 1.7e-19

Number of Newton-Raphson Iterations: 3

n= 888
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Important points on the final selected model

The model selected by the stepwise regression method has all five explanatory
variables, sex, age, treatment, nodes, perfor, and only the interaction effect of sex
with the other explanatory variables.

As seen in the output, in the final selected model (out2), not necessarily all the
included variables are statistically significant. We see some variables, like sex,
rxLev, sex:rxLev, and sex:perfor have large p-values. Only age, nodes, and
sex:nodes are statistically significant at the 5% level.

In this variable selection method we have used only lognormal distribution. We can
also use some other distribution, such as the exponential, or Weibull distribution,
and then use the stepwise method. Then compare the AIC values of the final
model for each of the three distributions.
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Test of hypothesis

Suppose that we are interested in testing if gender has any effect on the
time-to-recurrence.

Based on the best fitted model (using the lognormal distribution) the null
hypothesis would be
H0 : βgender = βgender:age = βsex:rxLev = βsex:rxLev+5FU = βsex:nodes = βsex:perfor = 0
versus

Ha: at least one of the coefficients mentioned in H0 is non-zero.

This test can be done using Wald’s approach or the likelihood ratio test. Here we
shall talk about the likelihood ratio test (LRT).
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Test of hypothesis

The basic idea of the LRT is that we compute the test statistic
T = −2{log(LH0 )− log(LHa)}.
Under H0, T follows approximate χ2 distribution with ρ degrees of freedom. Here
ρ is the number of coefficients we test in H0.

Important to note that, LRT is applicable where H0 is a special case of Ha (we call
it nested model). Suppose that we are interested in checking if the Weibull model
fits the data well whereas the null model is the lognormal model. You clearly see
that in this case the null model is not nested within the alternative model, hence,
LRT cannot be applied in this scenario. We can make our decision on which of
lognormal or Weibull model to fit, based on the AIC values.
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Hypothesis test for testing the effect of gender (sex) using
lognormal

Code
out2=survreg(formula = Surv(time, status) ~ sex + age + rx +

nodes + perfor +

sex:age + sex:rx + sex:nodes + sex:perfor, data = colondata,

dist = "lognormal")

out3=survreg(formula = Surv(time, status) ~ age + rx +

nodes + perfor, data = colondata,

dist = "lognormal")

anova(out3, out2)

Terms

1 age+rx+nodes+perfor

2 sex+age+rx+nodes+perfor+sex:age+sex:rx+sex:nodes+sex:perfor

Resid. Df -2*LL Test Df Deviance Pr(>Chi)

1 881 7692.896 NA NA NA

2 875 7674.602 = 6 18.29479 0.005536211
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Interpretation of the results

The test statistic was 18.29, and the corresponding p-value was 0.0055. Hence we
reject H0 at the 1% level, and conclude that sex has a statistically significant effect
on the time to recurrence.

In a similar way, we can do that test for the exponential or the Weibull model.

Samiran Sinha (TAMU) Survival Analysis October 3, 2021 58 / 61



Hypothesis test for testing the effect of sex using
exponential

Code
out2=survreg(formula = Surv(time, status) ~ sex + age + rx +

nodes + perfor +

sex:age + sex:rx + sex:nodes + sex:perfor, data = colondata,

dist = "exponential")

out3=survreg(formula = Surv(time, status) ~ age + rx +

nodes + perfor, data = colondata,

dist = "exponential")

anova(out3, out2)

Terms

1 age+rx+nodes+perfor

2 sex+age+rx+nodes+perfor+sex:age+sex:rx+sex:nodes+sex:perfor

Resid. Df -2*LL Test Df Deviance Pr(>Chi)

1 882 7854.004 NA NA NA

2 876 7824.564 = 6 29.43968 5.021971e-05
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Hypothesis test for testing the effect of sex using Weibull

Code
out2=survreg(formula = Surv(time, status) ~ sex + age + rx +

nodes + perfor +

sex:age + sex:rx + sex:nodes + sex:perfor, data = colondata,

dist = "weibull")

out3=survreg(formula = Surv(time, status) ~ age + rx +

nodes + perfor, data = colondata,

dist = "weibull")

anova(out3, out2)

Terms

1 age+rx+nodes+perfor

2 sex+age+rx+nodes+perfor+sex:age+sex:rx+sex:nodes+sex:perfor

Resid. Df -2*LL Test Df Deviance Pr(>Chi)

1 881 7779.324 NA NA NA

2 875 7754.851 = 6 24.47213 0.0004274692
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Alternative to the anova function

Instead of using the anova function, we can directly calculate the test statistic as
follows. Then we compute the p-value.

Code
out2=survreg(formula = Surv(time, status) ~ sex + age + rx +

nodes + perfor +

sex:age + sex:rx + sex:nodes + sex:perfor, data = colondata,

dist = "weibull")

out3=survreg(formula = Surv(time, status) ~ age + rx +

nodes + perfor, data = colondata,

dist = "weibull")

mytest=as.numeric(-2*(logLik(out3)-logLik(out2)))

print(mytest)

[1] 24.47213

### p-value

1-pchisq(24.47213, 6)

[1] 0.0004274686
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