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Binary data

In a binary dataset, the variable of interest can be categorized as 0 and 1,
and they are usually referred as failure or success.

Suppose that Y is a binary variable. To characterize this variable we talk
about its success probability, i.e., π = pr(Y = 1).

For a binary variable Y with success probability π, the mean is

µ = E (Y ) = 0× pr(Y = 0) + 1× pr(Y = 1) = 0 + π = π,

and the variance is Var(Y ) = E (Y 2)− E 2(Y ). Note that
E (Y 2) = E (Y ) = π. So,

Var(Y ) = π − π2 = π(1− π).
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Inference on proportion (estimation)

One of our goals is to make inference about the success probability, π based
on a sample data.

Suppose that the interest is in identifying the prevalence of influenza C virus
(ICV) infection among among cattle with respiratory disease. The paper1

makes use of information from an observational study to estimate the
prevalence.

1Influenza C Virus in Cattle with Respiratory Disease, United States, 2016–2018
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Inference on proportion

Briefly, the study collected clinical samples from 1,525 infected animals, and
sent the samples for laboratory testing.

The result showed 64 were positive for ICV, hence the estimate of the
prevalence was 64/1525 = 0.042.
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Inference on proportion

Suppose that we have observed data on n independent units (think each
unit is an animal in the context of our data example), Y1, . . . ,Yn.

Note Y1 = 1 if the 1st unit is a success and 0 otherwise. In our data
example, Y1 = 1 if the 1st animal is positive for the virus and 0 otherwise.
This way we can define Y2, . . . , Yn for unit 2, . . . , n, respectively.

The estimator of π is π̂ =
∑n

i=1 Yi/n = sum of ones/n.

For a large sample size n, we use π̂±Zα/2
√
{π̂(1− π̂)/n} as the

(1− α)100% confidence interval, where Zα/2 denotes the upper α/2
percentile point of N(0, 1) distribution. This is known as Wald’s CI.

This large sample confidence interval is usually used when nπ̂ ≥ 15 and
n(1− π̂) ≥ 15.
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Inference on proportion

However, there are issues (the actual coverage probability is different from
the nominal coverage probability) about this confidence interval specially for
a) small sample size (like when both conditions do not hold together) and b)
when the true π is close to 0 or 1.

When the true π is close to zero, then for a small sample size π̂ could be
zero that leads to zero-length confidence interval.

Also, for a small sample size the CI may have small/larger confidence level
than the nominal level.

Several alternatives have been proposed, like Wilson, Agresti-Coull, Jeffreys,
Clopper–Pearson interval etc.

Samiran Sinha (TAMU) Binary Data September 3, 2021 6 / 82



Inference on proportion

Wilson interval:

π̂ + z∗2/(2n)

1 + z∗2/n
± z∗

1 + z∗2/n

√
π̂(1− π̂)

n
+

z∗2

4n2

This interval has good properties even for a small number of trials and for π
close to zero or one. Here z∗ = Zα/2.

Jeffrey’s interval is a Bayesian credible interval based on the posterior
distribution of π using the Jeffrey’s prior. It is α/2 and 1− α/2 percentile
points of the Beta(

∑n
i=1 Yi + 0.5, n −

∑n
i=1 Yi + 0.5) distribution. To avoid

low coverage probability, if
∑n

i=1 Yi = 0, the lower limit of the confidence
interval is replaced by 0 and when

∑n
i=1 Yi = n the upper limit of the

interval is replaced by 1.

Another simple CI is Agresti-Coull CI, p̃ ± z∗
√
p̃(1− p̃)/n, where

p̃ = (
∑n

i=1 Yi + z∗2/2)/(n + z∗2).

Once a (1− α)100% two-sided CI is calculated, we can use that interval to
conduct two sided hypothesis test.
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Different types of CI for π

Code
library(DescTools)

BinomCI(2, 6, conf.level = 0.95,

method = c("agresti-coull", "jeffreys",

"wilson", "clopper-pearson"))

est lwr.ci upr.ci

agresti-coull 0.3983890 0.09252396 0.7042541

jeffreys 0.3333333 0.07677014 0.7135770

wilson 0.3333333 0.09677141 0.7000067

clopper-pearson 0.3333333 0.04327187 0.7772219

# This function can produce many other types of CI for

# proportion
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Inference on proportion (testing)

Suppose that the interest is in testing H0 : π = π0 against an alternative
hypothesis Ha.

One can use T =
√
n(π̂ − π0)/

√
π0(1− π0) as the test statistic, and

depending on Ha calculate the p-value using the following table.

Note that for a large n, T approximately follows N(0, 1) distribution (Z
distribution).

Ha p-value
Ha : π > π0 prH0

(T > Tobs) = pr(Z > Tobs)
Ha : π < π0 prH0

(T < Tobs) = pr(Z < Tobs)
Ha : π 6= π0 2prH0

(T > |Tobs|) = 2pr(Z > |Tobs|)

Tobs : the observed value of T

This test is valid for a large sample and it is usually recommended when
nπ0 ≥ 10 and n(1− π0) ≥ 10.

If at least one of the above conditions does not hold, then the exact test is
recommended.
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Inference on proportion (exact test)

Let Y =
∑n

i=1 Yi , then Y ∼ Binomial(n, π). Let Yo be the observed value
of Y .

Then the p-value is the probability of observing the random variable Y that
is at least as extreme as Yo under H0. The meaning of extreme changes
with the alternative hypothesis.

The following table contains the exact p-value formula. Define
p0(u) =

(
n
u

)
πu
0 (1− π0)n−u.

Ha p-value
Ha : π > π0

∑
u≥Yo

p0(u)

Ha : π < π0
∑

u≤Yo
p0(u)

Ha : π 6= π0
∑

u:p0(u)≥p0(Yo)
p0(u)
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Large sample test

Consider the previous example where Yo = 2 and n = 6, and we want to test H0 : π = 0.5 versus Ha : π < 0.5.

Code
prop.test(2, 6, correct=F, alternative="less")

1-sample proportions test without continuity correction

data: 2 out of 6, null probability 0.5

X-squared = 0.66667, df = 1, p-value = 0.2071

alternative hypothesis: true p is less than 0.5

95 percent confidence interval:

0.0000000 0.6529852

sample estimates:

p

0.3333333

Since the test is one sided, the above CI is a one sided CI.
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Exact test

Code
binom.test(2, 6, p=0.5, alternative="less")

Exact binomial test

data: 2 and 6

number of successes = 2, number of trials = 6, p-value = 0.3437

alternative hypothesis: true probability of success is less than 0.5

95 percent confidence interval:

0.0000000 0.7286616

sample estimates:

probability of success

0.3333333

Since the test is one sided, the above CI is a one sided CI.
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Two sided test

Code
binom.test(2, 10,p=0.18, alternative="two.sided")

Exact binomial test

data: 2 and 10 number of successes = 2, number of trials = 10, p-value =

0.6983

alternative hypothesis: true probability of success is not equal to 0.18

95 percent confidence interval: 0.02521073 0.55609546

sample estimates: probability of success 0.2
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Association between two categorical variables

Suppose that there are two variables, each of them is a categorical variable
having two categories. The observed data can be categorized in the
following table:

B Total
A No Yes
No n00 n01 n0+
Yes n10 n11 n1+
Total n+0 n+1 n

nij : observed frequency corresponding to the ith category of the row variable
(like, A) and the jth category of the column variable (like, B).

The goal is to test if there is any association between the two. The null
hypothesis H0 is that there is no association between the variables. The
alternative hypothesis Ha is either Yes of A tend to occur more with Yes of
B or No of B.
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This is tested via the test statistic

T =
{n00 − E (n00)}2

E (n00)
+ · · ·+ {n11 − E (n11)}2

E (n11)
.

E (nij): expected value of the count nij under the null hypothesis, that there
is no such association, and it is n(ni+/n)× (n+j/n) = ni+n+j/n, and n is
the total number of observations

Under H0, T follows the χ2 distribution with 1 degree of freedom. The
p-value is pr(χ2

1 > tobs), where tobs is the observed value of T . This is
Pearson Chi-square test.
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Now assume that A and B have I and J categories, respectively. The
categories of A (B) are now denoted by 1, . . . , I (1, . . . , J).

The test statistics is

T =
{n11 − E (n11)}2

E (n11)
+ · · ·+ {nIJ − E (nIJ)}2

E (nIJ)
.

E (nij): expected value of the count nij under the null hypothesis, that there
is no such association, and it is n(ni+/n)× (n+j/n) = ni+n+j/n, and n is
the total number of observations

Under H0, T follows the χ2 distribution with (I − 1)× (J − 1) degrees of
freedom. The p-value is pr(χ2

(I−1)×(J−1) > tobs).
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An example

Let us look at the survey dataset available in the R package MASS. We shall study

the association between smoking and exercise of people.

Code
library(MASS) # load the MASS package

tbl = table(survey$Smoke, survey$Exer)

Freq None Some

Heavy 7 1 3

Never 87 18 84

Occas 12 3 4

Regul 9 1 7

chisq.test(tbl)

Pearson’s Chi-squared test

data: tbl

X-squared = 5.4885, df = 6, p-value = 0.4828

Warning message:

In chisq.test(tbl) : Chi-squared approximation may be incorrect

# Indeed, because some cells have counts less than 5

Samiran Sinha (TAMU) Binary Data September 3, 2021 17 / 82



The above mentioned Chi-square test are asymptotic test. If the sample
sizes are large then the performance of the test is satisfactory (neither
conservative nor liberal). To check if the chi-square test is okay, we need to
make sure that the expected cell frequencies are greater than 5 for all cells
of the contingency table. Otherwise, we adopt Yate’s continuity correction
in the test statistic. However, this correction method is also not a foolproof
solution.

Continuity corrected test statistic is

T =
{|n11 − E (n11)| − 0.5}2

E (n11)
+ · · ·+ {|nIJ − E (nIJ)| − 0.5}2

E (nIJ)
.

Under H0, T approximately follows the χ2 distribution with (I − 1)× (J − 1)
degrees of freedom. The p-value is pr(χ2

(I−1)×(J−1) > tobs).

For a large sample size, corrected or uncorrected methods will produce
similar results.
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An example

Revisit the survey data example of library(MASS).

Code
library(MASS) # load the MASS package

tbl = table(survey$Smoke, survey$Exer)

Freq None Some

Heavy 7 1 3

Never 87 18 84

Occas 12 3 4

Regul 9 1 7

chisq.test(tbl, correct=T)

Pearson’s Chi-squared test

data: tbl

X-squared = 5.4885, df = 6, p-value = 0.4828

Warning message:

In chisq.test(tbl, correct = T) :

Chi-squared approximation may be incorrect

# Indeed, because some cells have counts less than 5
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Fisher’s exact test

The best solution in the small sample scenario (actually in all samples) is to use

the Fisher exact test (FET). FET is time consuming for a large sample data,

however, due to the availability of superior computing power nowadays we can

easily use FET for small to moderate sample size data. The asymptotic test that

is quick to compute, can be used for a large sample data. I will not not show you

the formula of FET that involves with the Hypergeometric distribution, rather

show you how to conduct the test in R.
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Fisher’s exact test

Code
library(MASS) # load the MASS package

tbl = table(survey$Smoke, survey$Exer)

Freq None Some

Heavy 7 1 3

Never 87 18 84

Occas 12 3 4

Regul 9 1 7

fisher.test(tbl)

Fisher’s Exact Test for Count Data

data: tbl

p-value = 0.4138

alternative hypothesis: two.sided

Samiran Sinha (TAMU) Binary Data September 3, 2021 21 / 82



Odds ratio

Odds ratio is a commonly used measure to check association between two
variables. It is frequently used for checking association between two binary
variables.

Revisit the 2× 2 scenario.

B Total
A N Y

N n00 n01 n0+
Y n10 n11 n1+
Total n+0 n+1 n

Odd ratio is defined as ratio of the odds of A being Y when B is Y to the odds of
A being Y when B is N. Note that the odds of A being Y when B is
Y= pr(A = Y |B = Y )/pr(A = N|B = Y ) and the odds of A being Y when B is N
= pr(A = Y |B = N)/pr(A = N|B = N). Hence, the odds ratio is

OR =
pr(A = Y |B = Y )/pr(A = N|B = Y )

pr(A = Y |B = N)/pr(A = N|B = N)

=
pr(A = Y |B = Y )pr(A = N|B = N)

pr(A = N|B = Y )pr(A = Y |B = N)
.
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Odds ratio

It is defined as the odds of disease in exposed individuals relative to the odds of disease
in the unexposed. It can also be defined as the odds of the exposure.
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Odds ratio

If there is no association between A and B, then
pr(A = Y|B = Y) = pr(A = Y|B = N). Consequently,
pr(A = N|B = Y) = pr(A = N|B = N), and OR becomes 1. Thus, OR (log-OR)
equals 1 (0) implies no association between A and B.

One can estimate pr(A = Y|B = Y) by n11/n+1, pr(A = Y|B = N) by n10/n+0,
pr(A = N|B = Y) by n01/n+1 and pr(A = N|B = N) by n00/n+0.

So the estimated odds ratio is ÔR = n11n00/n01n10. A larger or a smaller value of

ÔR (log(ÔR)) compared to 1 (0) indicates a possible association.

For a large sample size, the variance of log(ÔR) can be estimated by
τ 2 = (1/n00 + 1/n10 + 1/n01 + 1/n11).

For a large sample size, {log(ÔR)− log(OR)}/τ approximately follows the
Normal(0, 1) distribution.

Approximate (1− α)100% CI for log(OR): log(ÔR)± Zα/2τ
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Odds ratio: Example

In a simple unmatched case-control study, 1327 women aged 50-81 years with hip
fractures, who lived in a largely urban area in Sweden, were compared with 3262
controls with the same age range randomly selected from the national registry. The
objective was to determine whether women currently taking postmenopausal hormone
replacement therapy (HRT) were less likely to have hip fractures than those who are not
under HRT. The results were given in a 2x2 table format show the number of women
who were current users of HRT and those who had never used or formerly used HRT2.

Hip HRT Total
fracture Never/former user Current user

No (controls) 3023 239 3262
Yes (cases) 1287 40 1327

Total 4589

2Measures derived from a 2× 2 table for an accuracy of a diagnostic test
Samiran Sinha (TAMU) Binary Data September 3, 2021 25 / 82



Odds ratio: Example

ÔR = 40× 3023/(239× 1287) = 0.393. So, log(ÔR) = −0.93

Standard error of log(ÔR) is 0.174.

95% CI: (−1.27, −0.59)

Suppose that we are interested in testing H0: there is no association between the
two variables, hip fracture and current use of HRT against Ha : there is an
association. In other words, H0 : log(OR) = 0 versus Ha : log(OR) 6= 0.

Based on the two-sided 95% CI, we reject H0 at the 5% level (the CI does not
include 0, the null value of log(OR)), and conclude that the data provide a strong
evidence that the two variables are associated.
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Odds ratio: Example

For the stated objective in the question “The objective was to determine whether
women currently taking postmenopausal hormone replacement therapy (HRT)
were less likely to have hip fractures than those who are not under HRT”, we have
to test H0 : OR = 1 versus Ha : OR < 1.

It is important to understand why the objective of the question is reflected in
OR < 1.

Under the objective pr(Hip = Y |HRT = Y ) < pr(Hip = Y |HRT = N) which
implies pr(Hip = Y |HRT = Y )/pr(Hip = Y |HRT = N) < 1. Also, consequently,
pr(Hip = N|HRT = Y ) > pr(Hip = N|HRT = N) which implies
1 > pr(Hip = N|HRT = N)/pr(Hip = N|HRT = Y ).

So, OR < 1, or log(OR) < 0.

To test this hypothesis at 100α% level one may use the one sided CI for log(OR),

[log(ÔR)− Zατ,∞].
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Odds ratio

Code
library(epitools) # load the MASS package

mydata=array(c(3023, 239, 1287, 40), dim=c(2, 2),

dimnames=list( HRT=c("never or former", "current"), HF=c("no", "yes")))

> mydata

HF

HRT no yes

never or former 3023 1287

current 239 40

> oddsratio.wald(mydata)

$data

HF

HRT no yes Total

never or former 3023 1287 4310

current 239 40 279

Total 3262 1327 4589

$measure

odds ratio with 95% C.I.

HRT estimate lower upper

never or former 1.0000000 NA NA

current 0.3931169 0.2794948 0.5529293

$p.value

two-sided

HRT midp.exact fisher.exact chi.square

never or former NA NA NA

current 4.101568e-09 4.975764e-09 2.978215e-08

$correction

[1] FALSE

attr(,"method")

[1] "Unconditional MLE & normal approximation (Wald) CI"
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Risk ratio

Risk ratio is a ratio of two risks. For the two variables example the rsik ratio can
be defined as RR = pr(A = Y|B = Y)/pr(A = Y|B = N).

If there is no association between A and B, then
pr(A = Y|B = Y) = pr(A = Y|B = N). Consequently, RR becomes 1. Thus, RR
(log-RR) equals 1 (0) implies no association between A and B.

Assuming that we have random sample from the poulation, we can estimate
pr(A = Y|B = Y) by n11/n+1, pr(A = Y|B = N) by n10/n+0.

So the estimated risk ratio is R̂R = n11n+0/n+1n10. A larger or a smaller value of

R̂R (log(R̂R)) compared to 1 (0) indicates a possible association.

For a large sample size, the variance of log(R̂R) can be estimated by
τ 2 = (n+1 − n11)/n11n+1 + (n+0 − n10)/n10n+0 = n01/n11n+1 + n00/n10n+0.

For a large sample size, {log(R̂R)− log(RR)}/τ approximately follows the
Normal(0, 1) distribution.

Approximate (1− α)100% CI for log(RR): log(R̂R)± Zα/2τ
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Risk ratio

Risk ratio and relative risk are the same.

For a random sample of data, we can also estimate the risk ratio if it is defined the
other way, RR = pr(B = Y|A = Y)/pr(B = Y|A = N).

However, for a case-control data, if A denotes the case-control status, then we can
only estimate the latter risk ratio RR = pr(B = Y|A = Y)/pr(B = Y|A = N) but
not the former RR = pr(A = Y|B = Y)/pr(A = Y|B = N).
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risk ratio

Code
mydata

HF

HRT no yes

never or former 3023 1287

current 239 40

> riskratio.wald(mydata)

$data

HF

HRT no yes Total

never or former 3023 1287 4310

current 239 40 279

Total 3262 1327 4589

$measure

risk ratio with 95% C.I.

HRT estimate lower upper

never or former 1.0000000 NA NA

current 0.4801252 0.3590985 0.6419415

$p.value

two-sided

HRT midp.exact fisher.exact chi.square

never or former NA NA NA

current 4.101568e-09 4.975764e-09 2.978215e-08
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Confounder

Confounder is a third variable other than the disease and main exposure that 1)
has some direct effect on the disease and 2) is also associated with the exposure.

As a measure of the degree of confounding one may compare ψp and ψ, where ψp

denotes the the pooled odds ratio (or relative risk) of the disease from exposed to
unexposed group, and ψ is the common odds ratio across the tables defined for
various levels of the confounding variable.

Let us consider the following data from the book Case-Control Studies by James
Schlesselman. It is report on recent oral contraceptive (OC) use among 234 cases
of myocardial infraction (MI) and 1742 controls. Age is a confounding factor. The
pooled data are

Recent OC use MI Controls

Yes 29 135
No 205 1607

The estimated odds ratio is approximately 1.7. Thus, the odds of MI among OC
users is 1.7 times that among non users.
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Confounder

Age Recent OC use MI Controls Estimated OR

25-29 Yes 4 62 7.2
No 2 224

30-34 Yes 9 33 8.9
No 12 390

35-39 Yes 4 26 1.5
No 33 330

40-44 Yes 6 9 3.7
No 65 362

45-49 Yes 6 5 3.9
No 93 301

Based on this stratified data, all age-specific odds ratios exceed 1.7 except in one

instance, so the common odds ratio must be significantly higher than 1.7. This

difference between ψ̂p and ψ̂ indicates a profound confounding effect of age.
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Common odds ratio

Let the data from the ith table (ith level of confounding) is

Confounding E Disease No disease

ith group Yes ai bi
No ci di ni

then the estimate of the common odds ratio after adjusting for the confounding
variables can be obtained via the Mantel-Haenszel’s method,

ψ̂ =

∑
i aidi/ni∑
i bici/ni

.
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Code
mydata <-array(c(4, 2, 62, 224,

9, 12, 33, 390,

4, 33, 26, 330,

6, 65, 9, 362,

6, 93, 5, 301),

dim = c(2, 2, 5),

dimnames = list(OCuse = c("Yes", "No"),

Response = c("MI", "Controls"),

Age = c("25-29", "30-34", "35-39", "40-44", "45-49")))
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Mantel-Haenszel estimate

Code
mantelhaen.test(mydata)

Mantel-Haenszel chi-squared test with continuity

correction

data: mydata

Mantel-Haenszel X-squared = 32.793, df = 1, p-value =

1.025e-08

alternative hypothesis: true common odds ratio is not equal to 1

95 percent confidence interval:

2.426983 6.493688

sample estimates:

common odds ratio

3.969895
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Real data example3

Sixty-four women with chronic, treatment-resistant PTSD were randomly assigned
to either trauma-informed yoga or supportive women’s health education, each as a
weekly 1-hour class for 10 weeks. Assessments were conducted at pretreatment,
midtreatment, and posttreatment and included measures of DSM-IV PTSD, affect
regulation, and depression. The study ran from 2008 through 2011.

The primary outcome measure was the Clinician-Administered PTSD Scale
(CAPS). At the end of the study, 16 of 31 participants (52%) in the yoga group no
longer met criteria for PTSD compared to 6 of 29 (21%) in the control group
(n = 60, χ2 = 6.17, p-value= 0.013).

3Yoga as an adjunctive treatment for posttraumatic stress disorder: a randomized
controlled tria, J Clin Psychiatry, 2014
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In order to check if yoga has any effect on PTSD, create two variables.

The first one is the treatment with two categories yoga and control.
The second one is if the PTSD criteria are met (call it eligible PTSD),
this has two groups yes and no.

Then we shall test dependence between these two variables using the Chi-square
test. Do it on your own.
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Sample size calculation for inference on proportion

Sample size needs to be calculated before conducting a clinical trials so that
necessary plan/resources can be allocated for collecting data.

Suppose that our end goal is to test H0 : π = π0 versus Ha : π 6= π0 at the 100α%
level of significance. Also, we desire to reject H0 with probability (1− β) when in
fact π = π1. Then the required sample size is

n =

(
Z1−α/2

√
π0(1− π0) + Z1−β

√
π1(1− π1)

(π1 − π0)

)2

For one sided alternative Ha : π > π0 the required sample size is

n =

(
Z1−α

√
π0(1− π0) + Z1−β

√
π1(1− π1)

(π1 − π0)

)2

The only difference between these two formulas is the coefficient associated with
the first term.
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Sample size calculation for inference on proportion

Often we want to estimate the proportion with a prespecified margin of error.

For instance we want to estimate π with the margin of error no more than
m = 0.01 for the 95% CI.

Then the required sample size would be

n =
Z 2
α/2π

∗(1− π∗)

m2
,

where π∗ denotes the potential success rate of the trial (this can be obtained from
a pilot study).

If π∗ is difficult to obtain, then replace it by 0.5 that will yield a sample size that is
more than what is required.

The margin of error often referred to as the precision, and expressed as a
percentage of the actual proportion, like m is 10% of π∗.
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Binary regression

Supposed that we have observed data on X and Y , where X is a
continuous/binary explanatory and Y is a binary response.

We want to see how the mean of Y depends on X .

Note that E(Y |X ) = pr(Y = 1|X ), and suppose that the success probability
depends on X through the following model

pr(Y = 1|X ) =
exp(β0 + β1X )

1 + exp(β0 + β1X )
.

Note that this model (logistic model) ensures that this probability lies between 0
and 1.
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Interpretation of β1

If β1 > 0, then pr(Y = 1|X ) increases with X and for β1 < 0 the probability
decreases with X .

If β1 = 0 then there is no association between X and Y .

Odds ratio interpretation, the odds ratio of the disease for X0 + 1 to X0 is exp(β1)

odds of pr(Y = 1|X = X0 + 1)

odds of pr(Y = 1|X = X0)
=

pr(Y = 1|X = X0 + 1)/pr(Y = 0|X = X0 + 1)

pr(Y = 1|X = X0)/pr(Y = 0|X = X0)

=
exp{β0 + β1(X0 + 1)}

exp{β0 + β1(X0)}
= exp(β1).

Logarithm of the odds ratio is β1.
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Data example copied from a website

This dataset has a binary response (outcome, dependent) variable called admit.
There are three predictor variables: gre, gpa and rank. We will treat the variables
gre and gpa as continuous The variable rank takes on the values 1 through 4.
Institutions with a rank of 1 have the highest prestige, while those with a rank of
4 have the lowest. We can get basic descriptives for the entire data set by using
summary command.

We want to do a model fitting to the data, like fit a logistic model to the data,
and estimate the model parameters and other quantities.
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Fitting the logistic model to a dataset

Code
library(MASS)

mydata <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv")

head(mydata)

admit gre gpa rank

1 0 380 3.61 3

2 1 660 3.67 3

3 1 800 4.00 1

4 1 640 3.19 4

5 0 520 2.93 4

6 1 760 3.00 2

nrow(mydata) # to check the number of observations

mydata$rank <- factor(mydata$rank)

mylogit <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")
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Code
summary(mylogit)

Call:

glm(formula = admit ~ gre + gpa + rank, family = "binomial",

data = mydata)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.6268 -0.8662 -0.6388 1.1490 2.0790

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.989979 1.139951 -3.500 0.000465 ***

gre 0.002264 0.001094 2.070 0.038465 *

gpa 0.804038 0.331819 2.423 0.015388 *

rank2 -0.675443 0.316490 -2.134 0.032829 *

rank3 -1.340204 0.345306 -3.881 0.000104 ***

rank4 -1.551464 0.417832 -3.713 0.000205 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 499.98 on 399 degrees of freedom

Residual deviance: 458.52 on 394 degrees of freedom

AIC: 470.52

Number of Fisher Scoring iterations: 4
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Interpretation

Interpretation of coefficient estimates (MLE)

Inference on the coefficents (hypothesis test and confidence interval)

Residual analysis for model checking (deviance residual)
plot(mylogit$deviance.resid)

Leverage points and influential observations plot(hatvalues(mylogit)) and
plot(cooks.distance(mylogit))

Estimation of probability for a given set of covariates

Cautionary note: do not use residual deviance to check goodness-of-fit for
binary data
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Test

Interest is in checking in higher GPA is associated with the higher chance of
admission

H0 : β2 = 0 versus Ha : β2 > 0

Test statistic TS = β̂2/se(β̂2); for a large sample TS follows the Z
distribution (standard normal),

The observed value of TS is 0.8/0.33 = 2.42.

The p-value is pr(Z > 2.42) = 0.0079.

We reject H0, and we conclude that the data provide sufficient evidence for
the Ha that higher GPA is associated with the higher chance of admission at
the 1% level of significance.
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Confidence interval

99% CI (two-sided) for β2: β̂2 ± Z0.005se(β̂2)

Based on this 99% CI, we can test H0 : β2 = 0 versus Ha : β2 6= 0. Check if
the CI contains the null value, 0 in this particular example. If the CI
contains the null value, then we fail to reject H0 otherwise we reject H0 at
the 1% level.
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CI

Code
confint(mylogit)

Waiting for profiling to be done...

2.5 % 97.5 %

(Intercept) -6.2716202334 -1.792547080

gre 0.0001375921 0.004435874

gpa 0.1602959439 1.464142727

rank2 -1.3008888002 -0.056745722

rank3 -2.0276713127 -0.670372346

rank4 -2.4000265384 -0.753542605
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Test of multiple parameters

Interest is in checking if the variable rank is associated with the chance of
admission.

That means H0 : β3 = β4 = β5 = 0 versus Ha : at least one of β3, β4, β5 is
non-zero.

We do likelihood ratio test (given in the next slide).

Since the p-value came out to be so small, we decide to reject H0 and
conclude that at least one of β3, β4, β5 is non-zero, or conclude that the
chance of admission depends on the rank of the school.
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Test of multiple parameters

Code
mylogit.ha <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")

mylogit.h0 <- glm(admit ~ gre + gpa, data = mydata, family = "binomial")

anova(mylogit.h0, mylogit.ha, test="LRT")

#Analysis of Deviance Table

#Model 1: admit ~ gre + gpa

#Model 2: admit ~ gre + gpa + rank

# Resid. Df Resid. Dev Df Deviance Pr(>Chi)

#1 397 480.34

#2 394 458.52 3 21.826 7.088e-05 ***

#---

#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Wald test

Interest is in H0 : β3 = β4 = β5 = 0 versus Ha : at least one of β3, β4, β5 is
non-zero.

We may use Wald’s procedure to test this hypothesis.

We need the estimate of the parameters and the variance-covariance matrix
of the estimator.

Basic idea has already been discussed in the linear regression context. If the
interest is in testing H0 : Aβ = b versus Ha : Aβ 6= b, then the test statistic
is (Aβ̂ − b)T{AVar(β̂)AT}−1(Aβ̂ − b) and this test statistic follows χ2

distribution with degrees of freedom rank(A).

We can write H0 : β3 = β4 = β5 = 0 as Aβ = 0, where
β = (β0, β1, β2, β3, β4, β5)T and

A =

 0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .
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Code
library(aod)

wald.test(b = coef(mylogit), Sigma = vcov(mylogit), Terms = 4:6)

Wald test:

----------

Chi-squared test:

X2 = 20.9, df = 3, P(> X2) = 0.00011
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Wald test

Next suppose that interest is in testing H0 : β3 = β4 = β5 versus Ha : at
least one of β3, β4, β5 is different from the other two.

We can write H0 as H0 : β3 − β4 = 0 and β3 − β5 = 0, so that we can write
H0 as Aβ = 0, where β = (β0, β1, β2, β3, β4, β5)T and

A =

(
0 0 0 1 −1 0
0 0 0 1 0 −1

)
.

Here rank(A) = 2.
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Wald test

Note that one may wonder why we did not include β4 − β5 = 0 in H0

Suppose that we had included it in H0, the resulting A would have been

A =

 0 0 0 1 −1 0
0 0 0 1 0 −1
0 0 0 0 1 −1

 .

Note that the 3rd row of A can be obtained as (−1)× 1st row of A+ (1)×
2nd row of A. Hence, the 3rd row is dependent on the first two. In other
words, β4−β5 = 0 does not carry anything extra in the presence of the other
two statements β3 − β4 = 0 and β3 − β5 = 0, consequently it is omitted.
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Code
library(aod)

myl=cbind( c(0, 0), c(0, 0), c(0, 0), c(1, 1), c(-1, 0), c(0, -1))

wald.test(b = coef(mylogit), Sigma = vcov(mylogit), L=myl)

Wald test:

----------

Chi-squared test:

X2 = 8.7, df = 2, P(> X2) = 0.013
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Prediction

Suppose that the interest is in estimating the probability of success when the
explanatory variables are X1 = X ∗

1 , . . . ,Xp = X ∗
p .

First, based on the observed data we obtain estimate and standard error for
β-parameters.

Define η = β0 + β1X
∗
1 + · · ·+ βpX

∗
p , then the success probability, when

X1 = X ∗
1 , . . . ,Xp = X ∗

p , is

p∗
def
= pr(Y = 1|X1 = X ∗

1 , . . . ,Xp = X ∗
p ) =

exp(η)

1 + exp(η)
.
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Prediction

The estimator of p∗ is

exp(η̂)

1 + exp(η̂)
or

1

1 + exp(−η̂)
,

where η̂ = β̂0 + β̂1X
∗
1 + · · ·+ β̂pX

∗
p .

A 95% CI (large sample) for p∗ is[
1

1 + exp[−{η̂ − 1.96se(η̂)}]
,

1

1 + exp[−{η̂ + 1.96se(η̂)}]

]
,

where se(η̂) standard error of η̂.
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Prediction

Code
myout=predict.glm(mylogit, newdata=data.frame(gre=600, gpa=3.8, rank=as.factor(1)), se.fit=TRUE)

1/(1+exp(-as.numeric(myout[1]))) # estimate of the probability

#[1] 0.6044446

ll=1/(1+exp(-(as.numeric(myout[1])-1.96*as.numeric(myout[2]))))

ul=1/(1+exp(-(as.numeric(myout[1])+1.96*as.numeric(myout[2]))))

print(c(ll, ul)) # 95 percent confidence interval

#[1] 0.4634509 0.7299750
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Another data example, response is a Binomial count

This is a survey data on 1607 currently married and fecund women interviewed in

the Fiji Fertility Survey. Age, education, desire for more children and current use

of contraception are recorded.

Code
mydata2 <- read.table("http://data.princeton.edu/wws509/datasets/cuse.dat", header=TRUE)

head(mydata2)

age education wantsMore notUsing using

1 <25 low yes 53 6

2 <25 low no 10 4

3 <25 high yes 212 52

4 <25 high no 50 10

5 25-29 low yes 60 14

6 25-29 low no 19 10

out=glm( cbind(using, notUsing) ~ age + education + wantsMore, data=mydata2, family=binomial)

summary(out)
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Goodness-of-fit

The purpose of a goodness-of-fit test is to check if a model fits the data well.

For the linear model, we usually do the goodness-of-fit via residual analysis.

For the binary data context, we cannot use residual ei = Yi − π̂i to check
model goodness-of-fit because ei does not behave like the linear model
residual even when the model fits the data well.

We need a different method – Hosmer Lemeshow test.

Samiran Sinha (TAMU) Binary Data September 3, 2021 61 / 82



Goodness-of-fit

Based on the MLE of β, we first obtain the estimate of the success
probability

π̂i =
exp(ZT

i β̂)

1 + exp(ZT
i β̂)

,

where Zi = (1,Xi,1, . . . ,Xi,p)T .

Then observations are grouped into g mutually exclusive groups based on
their estimated probabilities. Usually g is taken as 10 (the default value),
then the groups are (mn, p1], (p1, p2], . . . , (p9,mx ], where pj denotes the
j × 10th percentile point of (π̂1, . . . , π̂n), and mn and mx denote the
minimum and maximum of the estimated probabilities.
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Goodness-of-fit

Now, for each group, we count the number of successes based on the
observations that fall in that group. Let the Ok,1 (Ok,0) be the number of
observed successes (failures) in the kth group.

The expected number of successes (failures) ek,1 (ek,0) in the kth group will
be n(pk − pk−1) (Ok,0 + Ok,1 − npk + npk−1), where n is the total sample
size.

If the model holds true, we expect ek,1 and Ok,1 will be close, and motivated
by this fact Hosmer-Lemeshow considered the Pearson Chi-square test
statistic

T =

g∑
k=1

{
(Ok,0 − ek,0)2

ek,0
+

(Ok,1 − ek,1)2

ek,1

}
.
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Goodness-of-fit

Under the null hypothesis that the model fits the data well T follows
approximate χ2 distribution with g − 2 degrees of freedom.

The major limitation is that the test result varies with the number of groups
g . A large g is good for detecting model misspecification, but that may
result in some groups to have 0 observed frequency. On the other hand a
small g will not be able to detect a model misspecification.
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Code
library(MASS)

mydata <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv")

mylogit <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")

library(generalhoslem)

logitgof(mydata$admit, fitted(mylogit))

# Hosmer and Lemeshow test (binary model)

#

#data: mydata$admit, fitted(mylogit)

#X-squared = 3.2185, df = 8, p-value = 0.9199
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Goodness-of-fit

In linear model R2 measures the percentage of variability in the response
explained by the regression model.

However, in the binary data regression R2 cannot be defined.

There is a concept of pseudo-R2 (pR2) defined as

pR2 = 1− log(Lf )

log(Ln)
,

where Lf and Ln denote the likelihood of the full model and the likelihood of
the null model containing only the intercept term.

pR2 close to zero indicates that the model does not have much predictive
power, whereas a higher value of pR2 indicates a better fit.
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Goodness-of-fit

Since deviance= −2× log-likelihood, pR2 can be expressed as

pR2 = 1− Residual deviance of the full model

Residual deviance of the null model
.

Note that this pR2 is known as McFadden’s pR2. There are other
pseudo-R2 statistics too, and none of them is the best in all situations.

Some cautionary note: it is generally not presented to common people who
are used to use R2 for linear regression because pR2 does not have the same
interpretation as of the R2 value. For the logistic regression usually it is
small, and even for a very accurate model fitting (with high prediction) pR2

may be close to 0.5.
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Code
library(MASS)

mydata <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv")

outf <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")

out0 <- glm(admit ~ 1, data = mydata, family = "binomial")

pr2= 1- as.numeric(logLik(outf))/as.numeric(logLik(out0))

print(pr2)

# 0.08
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Prediction accuracy measures

Other than finding association between the success probability and
explanatory variables, sometimes we are interested in finding predictive
power of the model.

To check the predictive power, using the parameter estimate the response is
predicted in a test dataset.

Note that the test dataset is not used in model fitting.

Then we compare the predicted value (responses) and observed value
(responses) in the test data.
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Prediction accuracy measures

To find the predicted responses, first we estimate the success probabilities
for every subject of the test data. Then based on a chosen cutoff value, we
declare the predicted response to be one (success) or zero (failure). If the
estimated success probability is greater than the cutoff we call it a success
otherwise failure.

Suppose that we obtain the following table comparing the predicted and
observed values of the response on a test data

Predicted Observed response
response Fail Success
Fail m00 m01

Success m10 m11

The above matrix is called a confusion matrix.
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Prediction accuracy measures

One measure is false positive prediction, that means, predicted to be success
while actually it is a failure.

Usually we want the number of false positives to be low.

In the above table, it is the (2, 1)th entry, m10.

Another thing that we may pay attention to is false negative prediction, that
means, predicted to be failure while actually it is a success.

Usually we want the number of false negatives to be low.

In the above table, it is the (1, 2)th entry, m01.
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Prediction accuracy measure

Now we talk about sensitivity and specificity that takes into account the
concepts of false positive and false negative.

Sensitivity (Sens) is the proportion of observed positives that were predicted
to be positives.

In the above table it is

(2, 2)th entry

(1, 2)th entry + (2, 2)th entry
=

m11

m01 + m11
.

Specificity (Spec) is the proportion of observed negatives that were
predicted to be negatives.

In the above example it is

(1, 1)th entry

(1, 1)th entry + (2, 1)th entry
=

m00

m00 + m10
.
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Prediction accuracy measures

One measure of goodness of prediction is higher value of sensitivity plus
specificity

proportion of predicted successes among the observed successes

+

proportion of predicted failures among the observed failures
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Revisit the admission data

Code
library(MASS)

mydata <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv")

outf <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")

testd=data.frame(admit=c(0, 0, 0, 1, 1, 1),

gre=c(300, 350, 380, 700, 800, 790),

gpa=c(3.5, 3.2, 3.2, 3.88, 3.9, 3.95),

rank=c(4, 4, 4, 1, 1, 1))

out10=predict(outf, newdata=testd) #

# the above only calculates X-traspose x beta-hat

out10=predict(outf, newdata=testd, type="response")

# to calculate the pr(admit=1|given X)

mypred.admit=rep(0, length(testd$admit))

### Here I have used 0.6 as the cutoff point, so if the estimated probability is

### greater than 0.6, we declare the predicted response to be 1 otherwise 0

mypred.admit[out10>0.6]<-1

mypred.admit[out10<=0.6]<-0

mytab=table(mypred.admit, testd$admit)

accuracy= sum(diag(mytab))/sum(mytab)

print(accuracy)

#1#
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Revisit the admission data

Code
library(MASS)

mydata <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv")

outf <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")

testd=data.frame(admit=c(0, 0, 0, 1, 1, 1),

gre=c(300, 350, 380, 700, 800, 790),

gpa=c(3.5, 3.2, 3.2, 3.88, 3.9, 3.95),

rank=c(4, 4, 4, 1, 1, 1))

out10=predict(outf, newdata=testd) #

library(e1071)

library(caret)

confusionMatrix(data = as.factor(as.numeric(out10>0.6)),

reference = as.factor(testd$admit))
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Revisit the admission data

Code
Confusion Matrix and Statistics

Reference

Prediction 0 1

0 3 0

1 0 3

Accuracy : 1

95% CI : (0.5407, 1)

No Information Rate : 0.5

P-Value [Acc > NIR] : 0.01563

Kappa : 1

Mcnemar’s Test P-Value : NA

Sensitivity : 1.0

Specificity : 1.0

Pos Pred Value : 1.0

Neg Pred Value : 1.0

Prevalence : 0.5

Detection Rate : 0.5

Detection Prevalence : 0.5

Balanced Accuracy : 1.0

’Positive’ Class : 0
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Revisit the admission data, continues

Code
library(MASS)

mydata <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv")

outf <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")

testd=data.frame(admit=c(0, 0, 0, 1, 1, 1),

gre=c(300, 350, 380, 600, 750, 790),

gpa=c(3.5, 3.5, 3.2, 3.88, 3.7, 3.95),

rank=c(4, 2, 4, 2, 1, 1))

out10=predict(outf, newdata=testd) #

# the above only calculates X-traspose x beta-hat

out10=predict(outf, newdata=testd, type="response")

# to calculate the pr(admit=1|given X)

mypred.admit=rep(0, length(testd$admit))

mypred.admit[out10>0.6]<-1

mypred.admit[out10<=0.6]<-0

mytab=table(mypred.admit, testd$admit)

accuracy= sum(diag(mytab))/sum(mytab)

print(accuracy)

#0.833
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Spec and Sens change with the cutoff

Code
library(MASS)

mydata <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv")

outf <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")

testd=data.frame(admit=c(0, 0, 0, 1, 1, 1),

gre=c(300, 350, 380, 600, 750, 790),

gpa=c(3.5, 3.5, 3.2, 3.88, 3.7, 3.95),

rank=c(4, 2, 4, 2, 1, 1))

out10=predict(outf, newdata=testd) #

# the above only calculates X-traspose x beta-hat

out10=predict(outf, newdata=testd, type="response")

# to calculate the pr(admit=1|given X)

mypred.admit=rep(0, length(testd$admit))

mypred.admit[out10>0.6]<-1

mypred.admit[out10<=0.6]<-0

mytab=table(mypred.admit, testd$admit)

mysp= mytab[1, 1]/sum(mytab[, 1])

mysn= mytab[2, 2]/sum(mytab[, 2])

print(c(mysp, mysn))

#1 0.666
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Spec and Sens change with the cutoff

Code
library(MASS)

mydata <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv")

outf <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")

testd=data.frame(admit=c(0, 0, 0, 1, 1, 1),

gre=c(300, 350, 380, 600, 750, 790),

gpa=c(3.5, 3.5, 3.2, 3.88, 3.7, 3.95),

rank=c(4, 2, 4, 2, 1, 1))

out10=predict(outf, newdata=testd) #

# the above only calculates X-traspose x beta-hat

out10=predict(outf, newdata=testd, type="response")

# to calculate the pr(admit=1|given X)

mypred.admit=rep(0, length(testd$admit))

mypred.admit[out10>0.7]<-1

mypred.admit[out10<=0.7]<-0

mytab=table(mypred.admit, testd$admit)

mysp= mytab[1, 1]/sum(mytab[, 1])

mysn= mytab[2, 2]/sum(mytab[, 2])

print(c(mysp, mysn))

#1 0.33
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ROC curve

ROC curve is a plot of the values of sensitivity against one minus specificity,
as the value of the cutoff that increases from 0 to 1.

A higher area under the ROC curve indicates a better discriminatory power
of the model.

If the ROC curve closely follows the 45o line, that is not a good indication of
the discriminatory power of the model.
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ROC curve

Code
library(MASS)

mydata <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv")

outf <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")

out10=predict(outf, type="response")

library(pROC)

roccurve <- roc(mydata$admit ~ out10)

roccurve

Call:

roc.formula(formula = mydata$admit ~ out10)

Data: out10 in 273 controls (mydata$admit 0) < 127 cases (mydata$admit 1).

Area under the curve: 0.6921

plot(roccurve)
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ROC curve

Specificity
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