Supplementary Materials for "A Test of Homogeneity of Distributions when Observations are Subject to Measurement Errors"

DongHyuk Lee ${ }^{1}$, Soumendra N. Lahiri ${ }^{2}$, and Samiran Sinha ${ }^{3, *}$
${ }^{1}$ Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
${ }^{2}$ Department of Statistics, North Carolina State University, Raleigh, NC, USA
${ }^{3}$ Department of Statistics, Texas A\&M University, College Station, TX, USA
*email: sinha@stat.tamu.edu

Appendix

1 Proof of Theorems 1, 2 and 3

Let $c_{j w}(t)=\cos \left(t \bar{W}_{j}\right), d_{j w}(t)=\sin \left(t \bar{W}_{j}\right)$. Next define $e_{j w}(t)=M_{x}^{-1} \sum_{\left(l_{1}, l_{2}\right) \in \mathcal{S}_{x}} \cos \left\{\left(t / m_{x}\right)(\right.$ $\left.\left.W_{j l_{1}}-W_{j l_{2}}\right)\right\}$. Denote the expectations by $c_{0 w}(t)=E\left\{c_{j w}(t)\right\}, d_{0 w}(t)=E\left\{d_{1 w}(t)\right\}$, and $e_{0 w}(t)=$ $E\left\{e_{1 w}(t)\right\}$. Then, $\boldsymbol{\Lambda}_{\boldsymbol{W}_{j}}(t) \equiv\left(c_{j w}(t)-c_{0 w}(t), d_{j w}(t)-d_{0 w}(t), e_{j w}(t)-e_{0 w}(t)\right)^{T}$ are iid mean zero random vectors. Similarly define $\boldsymbol{\Lambda}_{\boldsymbol{V}_{j}}(t)$ by replacing \boldsymbol{W}_{j} 's by \boldsymbol{V}_{j} 's in the definition of $\boldsymbol{\Lambda}_{\boldsymbol{W}_{j}}(t)$. Let $t_{0}=\max \left\{\left|t_{1}\right|,\left|t_{2}\right|\right\}$, where recall that $\omega(t)=0$ for all $t \notin\left[t_{1}, t_{2}\right]$. Define

$$
\boldsymbol{Z}_{n}(t)=n_{x}^{-1 / 2}\binom{\sum_{j=1}^{n_{x}} \boldsymbol{\Lambda}_{\boldsymbol{W}_{j}}(t)}{\sum_{j=1}^{n_{y}} \boldsymbol{\Lambda}_{\boldsymbol{V}_{j}}(t)},|t| \leq t_{0}
$$

Let $C, C(\cdot)$ denote generic constants with values in $(0, \infty)$ that may depend on their arguments (if any) but not on n_{x}, n_{y}. Also, let $\ell^{\infty}\left[-t_{0}, t_{0}\right]$ denote the set of all bounded measurable functions from $\left[-t_{0}, t_{0}\right]$ to the real line and let $\|x\|_{\infty}=\sup \left\{|x(t)|: t \in\left[-t_{0}, t_{0}\right]\right\}, x \in \ell^{\infty}\left[-t_{0}, t_{0}\right]$. Finally, let A^{T} denote the transpose of a matrix (vector) A.

Then we have the following result.
Lemma 1. $\boldsymbol{Z}_{n} \xrightarrow{d} \boldsymbol{Z}$ as random elements of the space $\left(l^{\infty}\left[-t_{0}, t_{0}\right]\right)^{6}$, where \boldsymbol{Z} is a 6 -dimensional zero-mean Gaussian process on $\left[-t_{0}, t_{0}\right]$ with the covariance function

$$
\Gamma(s, t)=\left[\begin{array}{ll}
\Gamma_{w}(s, t) & 0 \\
0 & \rho^{-2} \Gamma_{v}(s, t)
\end{array}\right]
$$

with $\Gamma_{v}(s, t)=E\left\{\boldsymbol{\Lambda}_{\boldsymbol{W}_{1}}(s) \boldsymbol{\Lambda}_{\boldsymbol{W}_{1}}(t)\right\}, \Gamma_{v}(s, t)=E\left\{\boldsymbol{\Lambda}_{\boldsymbol{V}_{1}}(s) \boldsymbol{\Lambda}_{\boldsymbol{V}_{1}}(t)\right\}$, for $-t_{0} \leq s, t \leq t_{0}$. Further, the paths of $\boldsymbol{Z}(\cdot)$ are continuous on $\left[-t_{0}, t_{0}\right]$ with probability one.
Proof: Note that i) $\boldsymbol{\Lambda}_{\boldsymbol{W}_{j}}(t)$ and $\boldsymbol{\Lambda}_{\boldsymbol{V}_{j}}(t)$ are bounded random vectors, $\left.i i\right)$ the collection of functions $\left\{\left(\boldsymbol{\Lambda}_{\boldsymbol{w}}(t), \boldsymbol{\Lambda}_{\boldsymbol{v}}(t)\right) ; t \in\left[-t_{0}, t_{0}\right]\right\}$ is a VC-class, where $\boldsymbol{\Lambda}_{\boldsymbol{w}}(t)=\left[\cos \left(t \sum_{j=1}^{m_{x}} w_{j} / m_{x}\right)\right.$, sin
$\left.\left(t \sum_{j=1}^{m_{x}} w_{j} / m_{x}\right), M_{x}^{-1} \sum_{\left(l_{1}, l_{2}\right) \in S} \cos \left\{t\left(w_{l_{1}}-w_{l_{2}}\right) / m_{x}\right\}\right]$, and $\boldsymbol{\Lambda} \boldsymbol{v}(t)$ is defined similarly. Hence, by using the Multivariate CLT (cf. Ch 11.1, Athreya and Lahiri, 2006), the finite dimensional distribution of the $\boldsymbol{Z}_{n}(\cdot)$-process converges in distribution to those of the $\boldsymbol{Z}(\cdot)$-process. Further, using the standard exponential inequalities (e.g., Hoeffding, 1963) and the chaining argument (Wellner and van der Vaart, 2006), it follows that $\boldsymbol{Z}_{n} \rightarrow \boldsymbol{Z}$ in distribution, where \boldsymbol{Z} is a random element of $\left.l^{\infty}\left(\left[-t_{0}, t_{0}\right]\right)\right]^{6}$ and it has continuous paths on $\left[-t_{0}, t_{0}\right]$ with probability one.
Proof of Theorem 1. Recall the definitions of $\widehat{a}_{x}(t)$ and $\widehat{a}_{2 x}(t)$ given in Section 2.2 of the main document. Define $a_{2 x}(t)=\phi_{u_{x}}^{m_{x}}\left(t / m_{x}\right)$ and let $Z_{k n}(t)$ be the k th component of $\boldsymbol{Z}_{n}(t)$ defined in Lemma 1. Then $a_{x}(t)=c_{0 w}(t) / a_{2 x}(t)$, and

$$
\begin{aligned}
\sqrt{n_{x}}\left\{\widehat{a}_{x}(t)-a_{x}(t)\right\} & =\sqrt{n_{x}}\left\{\frac{n_{x}^{-1} \sum_{j=1}^{n_{x}} c_{j w}(t)}{\widehat{a}_{2 x}(t)}-\frac{c_{0 w}(t)}{a_{2 x}(t)}\right\} \\
& =\sqrt{n_{x}}\left[\frac{n_{x}^{-1} \sum_{j=1}^{n_{x}}\left\{c_{j w}(t)-c_{0 w}(t)+c_{0 w}(t)\right\}}{\widehat{a}_{2 x}(t)}-\frac{c_{0 w}(t)}{a_{2 x}(t)}\right] \\
& =\sqrt{n_{x}}\left[\frac{n_{x}^{-1} \sum_{j=1}^{n_{x}}\left\{c_{j w}(t)-c_{0 w}(t)\right\}}{\widehat{a}_{2 x}(t)}+\frac{c_{0 w}(t)}{\widehat{a}_{2 x}}-\frac{c_{0 w}(t)}{a_{2 x}(t)}\right] \\
& =\frac{Z_{1 n}(t)}{\widehat{a}_{2 x}(t)}-\frac{c_{0 w}(t) \sqrt{n_{x}}\left\{\widehat{a}_{2 x}(t)-a_{2 x}(t)\right\}}{a_{2 x}(t) \widehat{a}_{2 x}(t)} .
\end{aligned}
$$

Now using the fact that $\widehat{a}_{2 x}(t)=\left\{\phi_{u_{x}}^{2}\left(t / m_{x}\right)+Z_{3 n}(t) / \sqrt{n_{x}}\right\}^{m_{x} / 2}$, we get

$$
\begin{aligned}
\sqrt{n_{x}}\left\{\widehat{a}_{x}(t)-a_{x}(t)\right\} & =\frac{Z_{1 n}(t)}{a_{2 x}(t)}-\frac{m_{x} c_{0 w}(t) Z_{3 n}(t) \phi_{u_{x}}^{m_{x}-2}\left(t / m_{x}\right)}{2 a_{2 x}^{2}(t)}+R_{n x}(t) \\
& \equiv A_{n x}(t)+R_{n x}(t)
\end{aligned}
$$

where

$$
A_{n x}(t)=\frac{Z_{1 n}(t)}{a_{2 x}(t)}-\frac{m_{x} c_{0 w}(t) Z_{3 n}(t) \phi_{u_{x}}^{m_{x}-2}\left(t / m_{x}\right)}{2 a_{2 x}^{2}(t)}
$$

and where, with a suitable constant $C\left(m_{x}\right) \in(0, \infty)$,

$$
\begin{gathered}
\left|R_{n x}(t)\right| \leq \frac{\left|Z_{1 n}(t)\right|\left|Z_{3 n}(t)\right|}{\sqrt{n_{x}}} \times \frac{m_{x}\left\{1+\left|Z_{3 n}(t) / \sqrt{n_{x}}\right|^{m_{x} / 2-1}\right\}}{2\left|a_{2 x}(t)\right| \widehat{a}_{2 x}(t)}+\frac{\left|c_{0 w}(t)\right|\left\{1+\left|Z_{3 n}(t)\right|^{m_{x}}\right\}}{\left|a_{2 x}(t)\right| \sqrt{n_{x}}\left|\widehat{a}_{2 x}(t)\right|} \times C\left(m_{x}\right) \\
+\frac{m_{x}\left|c_{0 w}\right|\left|Z_{3 n}(t)\right|^{2}\left\{1+\left|Z_{3 n}(t) / \sqrt{n_{x}}\right|^{m_{x} / 2-1}\right\}}{2\left|a_{2 x}(t)\right|^{3} \sqrt{n_{x}}\left|\widehat{a}_{2 x}(t)\right|} .
\end{gathered}
$$

Hence,

$$
\int\left|R_{n x}(t)\right|^{2} \omega(t) d t \leq \frac{C\left(m_{x}\right)}{n_{x}}\left\{\int \frac{\omega(t)}{a_{2 x}^{2}(t)} d t\right\}\left[\left\|Z_{1 n}\right\|_{\infty}^{2}\left\|Z_{3 n}\right\|_{\infty}^{2}+\frac{\left\{1+\left\|Z_{3 n}\right\|_{\infty}^{2 m_{x}}\right\}}{\alpha_{x}^{4 m_{x}}}\right]
$$

$$
\times \frac{\left\{1+\left(\left\|Z_{3 n}\right\|_{\infty} / \sqrt{n_{x}}\right)^{m_{x} / 2-1}\right\}^{2}}{\left(\alpha_{x}^{2}-\left\|Z_{3 n}\right\|_{\infty} / \sqrt{n_{x}}\right)^{m_{x}}}
$$

where $\alpha_{x}=\min \left\{\left|\phi_{u_{x}}\left(t / m_{x}\right)\right| ;|t| \leq t_{0}\right\}$. Since $\|\cdot\|_{\infty}$ is continuous on $\ell^{\infty}\left[-t_{0}, t_{0}\right]$, it follows that $\left\|Z_{k n}\right\|_{\infty} \xrightarrow{d}\left\|Z_{k}\right\|_{\infty}$ for $k=1, \ldots, 6$. Hence

$$
\begin{equation*}
\int\left|R_{n x}(t)\right|^{2} \omega(t) d t \rightarrow 0 \tag{A.1}
\end{equation*}
$$

in probability. Next, define $a_{2 y}(t)=\phi_{u_{y}}^{m_{y}}\left(t / m_{y}\right)$ and write $\widehat{a}_{2 y}(t)=\left\{\phi_{u_{y}}^{2}\left(t / m_{y}\right)+\left(\sqrt{n_{x}} / n_{y}\right) Z_{6 n}(t)\right\}^{m_{y} / 2}$. Then, using similar steps as above, we obtain

$$
\sqrt{n_{x}}\left\{\widehat{a}_{y}(t)-a_{y}(t)\right\}=\frac{n_{x}}{n_{y}}\left\{A_{n y}(t)+R_{n y}(t)\right\}
$$

where

$$
A_{n y}=\frac{Z_{4 n}(t)}{a_{2 y}(t)}-\frac{m_{y} c_{0 v}(t) Z_{6 n}(t) \phi_{u_{y}-2}^{m_{y}}\left(t / m_{y}\right)}{2 a_{2 y}^{2}(t)}
$$

and where, retracing arguments above, one can show that

$$
\begin{equation*}
\int\left|R_{n y}(t)\right|^{2} \omega(t) d t \rightarrow 0 \tag{A.2}
\end{equation*}
$$

in probability. Under $H_{0}: \phi_{x}(t)=\phi_{y}(t)$, that means $a_{x}(t)=a_{y}(t)$ for all t. So, under H_{0},

$$
\begin{aligned}
I_{1} & =n_{x} \int\left\{\widehat{a}_{x}(t)-\widehat{a}_{y}(t)\right\}^{2} \omega(t) d t \\
& =n_{x} \int\left[\left\{\widehat{a}_{x}(t)-a_{x}(t)\right\}-\left\{\widehat{a}_{y}(t)-a_{y}(t)\right\}\right]^{2} \omega(t) d t \\
& =I_{11}+Q_{n},
\end{aligned}
$$

where

$$
I_{11}=\int\left\{A_{n x}(t)-\frac{n_{x}}{n_{y}} A_{n y}(t)\right\}^{2} \omega(t) d t
$$

and using the Cauchy-Schwartz inequality

$$
\left|Q_{n}\right| \leq \int\left\{R_{n x}(t)+\frac{n_{x}}{n_{y}} R_{n y}(t)\right\}^{2} \omega(t) d t+2\left[I_{11} \times \int\left\{R_{n x}(t)+\frac{n_{x}}{n_{y}} R_{n y}(t)\right\}^{2} \omega(t) d t\right]^{1 / 2}
$$

By (A.1) and (A.2), $\left|Q_{n}\right| \rightarrow 0$ in probability. Next applying the continuous mapping theorem, we obtain

$$
I_{11} \xrightarrow{d} I_{1 \infty} \equiv \int \xi_{1}^{2}(t) \omega(t) d t,
$$

where $\xi_{1}(t)=A_{x}(t)-\rho^{2} A_{y}(t)$. Repeating the arguments above with $I_{2}=n_{x} \int\left\{\widehat{b}_{x}(t)-\widehat{b}_{y}(t)\right\}^{2} \omega(t) d t$ and using the joint weak convergence result of Lemma 1, one can show that

$$
\begin{aligned}
T_{n}= & I_{1}+I_{2} \\
= & I_{11}+\int\left[\left\{\frac{Z_{2 n}(t)}{a_{2 x}(t)}-\frac{m_{x} d_{0 v}(t) Z_{3 n}(t) \phi_{u_{x}}^{m_{x}-2}\left(t / m_{x}\right)}{2 a_{2 x}^{2}(t)}\right\}\right. \\
& \left.\quad-\frac{n_{x}}{n_{y}}\left\{\frac{Z_{5 n}(t)}{a_{2 y}(t)}-\frac{m_{y} d_{0 v}(t) Z_{6 n}(t) \phi_{u_{y}}^{m_{y}-2}\left(t / m_{y}\right)}{2 a_{2 y}^{2}(t)}\right\}\right]^{2} \omega(t) d t+o_{p}(1) \\
\xrightarrow{d} & I_{1 \infty}+\int\left[\left\{\frac{Z_{2}(t)}{a_{2 x}(t)}-\frac{m_{x} d_{0 v}(t) Z_{3}(t) \phi_{u_{x}-2}^{m_{x}}\left(t / m_{x}\right)}{2 a_{2 x}^{2}(t)}\right\}\right. \\
& \left.-\rho^{2}\left\{\frac{Z_{5}(t)}{a_{2 y}(t)}-\frac{m_{y} d_{0 v}(t) Z_{6}(t) \phi_{u_{y}}^{m_{y}-2}\left(t / m_{y}\right)}{2 a_{2 y}^{2}(t)}\right\}\right]^{2} \omega(t) d t \\
\equiv & \int\left[\xi_{1}^{2}(t)+\xi_{2}^{2}(t)\right] \omega(t) d t .
\end{aligned}
$$

This completes the proof of Theorem 1.
Proof of Theorem 2. First suppose that $\int D_{a}^{2}(t) \omega(t) d t \neq 0$. Let $W_{a}(t)=\left\{\widehat{a}_{x}(t)-a_{x}(t)\right\}+\left\{a_{y}(t)-\right.$ $\left.\widehat{a}_{y}(t)\right\},|t| \leq t_{0}$. Then, it follows that

$$
T_{1 n_{x}} \equiv n_{x} \int\left[\left\{\widehat{a}_{x}(t)-a_{x}(t)\right\}+\left\{a_{x}(t)-a_{y}(t)\right\}+\left\{a_{y}(t)-\widehat{a}_{y}(t)\right\}\right]^{2} \omega(t) d t \geq L_{1 n_{x}}
$$

where $L_{1 n_{x}}=n_{x} \int\left\{a_{x}(t)-a_{y}(t)\right\}^{2} \omega(t) d t+2 n_{x} \int W_{a}(t)\left\{a_{x}(t)-a_{y}(t)\right\} \omega(t) d t$. Now, using the steps in the proof of Theorem 1 and the continuous mapping theorem, one can show that the second term of $L_{1 n_{x}}$ is $O_{p}\left(\sqrt{n_{x}}\right)$ while the first term diverges at the rate n_{x}. Thus, $L_{1 n_{x}}=O_{p}\left(n_{x}\right)$. Hence, for

$$
\operatorname{pr}\left(T_{1 n_{x}} \leq r\right) \leq \operatorname{pr}\left(L_{1 n_{x}} \leq r\right) \rightarrow 0 \text { for any } r \in(0, \infty)
$$

Next consider the case where $\int D_{b}^{2}(t) \omega(t) d t \neq 0$. Then, defining $T_{2 n_{x}}$ by replacing $\widehat{a}_{x}, \widehat{a}_{y}, a_{x}, a_{y}$ in $T_{1 n_{x}}$ by $\widehat{b}_{x}, \widehat{b}_{y}, b_{x}, b_{y}$ and using the arguments above, we have $\operatorname{pr}\left(T_{2 n_{x}} \leq r\right) \rightarrow 0$ for any $r \in(0, \infty)$. Thus, if $\int\left[D_{a}^{2}(t)+D_{b}^{2}(t)\right] \omega(t) d t \neq 0$, then for any α,

$$
\begin{aligned}
\operatorname{pr}\left(T_{n_{x}}>t_{n_{x}, \alpha}\right) & =1-\operatorname{pr}\left(T_{1 n_{x}}+T_{2 n_{x}} \leq t_{n_{x}, \alpha}\right) \\
& \geq 1-\min \left\{\operatorname{pr}\left(T_{1 n_{x}} \leq t_{\alpha}\right), \operatorname{pr}\left(T_{2 n_{x}} \leq t_{\alpha}\right)\right\} \rightarrow 1 \text { as } n_{x} \rightarrow \infty
\end{aligned}
$$

proving Theorem 2.
Proof of Theorem 3. First we show that $\widehat{\phi}_{x}(t) \equiv \widehat{\phi}_{\bar{W}}(t) /\left\{\widehat{\phi}_{u_{x}}\left(t / m_{x}\right)\right\}^{m_{x}}=\widehat{\phi}_{1}(t) \phi_{K}\left(h_{w} t\right) /\left\{\widehat{\phi}_{u_{x}}\left(t / m_{x}\right)\right\}^{m_{x}}$ converges to $\phi_{x}(t)$ uniformly over $|t| \leq t_{0}$, almost surely. Since $h_{w} \rightarrow 0$, it is enough to show that

$$
\begin{align*}
& \sup \left\{\left|\widehat{\phi}_{1}(t)-\phi_{1}(t)\right|:|t| \leq t_{0}\right\} \rightarrow 0 \text { almost surely, and } \tag{A.3}\\
& \sup \left\{\left|\widehat{\phi}_{u_{x}}(t)-\phi_{u_{x}}(t)\right|:|t| \leq t_{0} m_{x}\right\} \rightarrow 0 \text { almost surely. } \tag{A.4}
\end{align*}
$$

Since $\widehat{\phi}_{1}(t)=n_{x}^{-1} \sum_{j=1}^{n_{x}} \exp \left(i t \bar{W}_{j}\right)$ is an average of i.i.d., bounded random variables, one can prove (A.3) using a discretization argument and Hoeffding's inequality (Hoeffding, 1963); see, e.g., Lahiri (1994). Next, for $h>0$, write $e_{j w}(t, h)=M_{x}^{-1} \sum_{\left(l_{1}, l_{2}\right) \in \mathcal{S}_{x}} \cos \left\{\left(t / m_{x}\right)\left(W_{j l_{1}}-W_{j l_{2}}\right)\right\}(1-$ $\left.h^{2} t^{2}\right)^{3} I(|h t| \leq 1)$ and $e_{0 w}(t, h) \equiv E\left\{e_{j w}(t, h)\right\}$. Then, it is easy to check that $e_{0 w}(t, h)=$ $\left|\phi_{u_{x}}\left(t / m_{x}\right)\right|^{2}\left(1-h^{2} t^{2}\right)^{3} I(|h t| \leq 1)$, and hence, $\sup \left\{\left|e_{0 w}\left(t, h_{w}\right)-\phi_{u_{x}}\left(t / m_{x}\right)\right|:|t| \leq t_{0} m_{x}\right\} \rightarrow 0$, as $h_{w} \rightarrow 0$. Further, using arguments similar to those in the proof of (A.3), one can show that $\sup \left\{\left|\widehat{\phi}_{u_{x}}(t)-e_{0 w}\left(t, h_{w}\right)\right|:|t| \leq t_{0} m_{x}\right\} \rightarrow 0$, almost surely. Thus, (A.4) holds. Let A be the event where (A.3) and (A.4) hold. Then $\operatorname{pr}(A)=1$. Next, let B be the event where

$$
\begin{aligned}
& \sup \left\{\left|\widehat{\phi}_{2}(t)-\phi_{2}(t)\right|:|t| \leq t_{0}\right\} \rightarrow 0, \text { and } \\
& \sup \left\{\left|\widehat{\phi}_{v_{x}}(t)-\phi_{v_{x}}(t)\right|:|t| \leq t_{0} m_{y}\right\} \rightarrow 0,
\end{aligned}
$$

as $n_{x} \rightarrow \infty$. Then, by similar arguments, $\operatorname{pr}(B)=1$, implying, $\operatorname{pr}(A \cap B)=1$.
We shall now show that $T_{n_{x}}^{*}$ converges in distribution to $T_{\infty} \equiv \int\left[\left[\xi_{1}^{2}(t)+\xi_{2}^{2}(t)\right] \omega(t) d t\right.$, i.e., the Prohorov distance between the Bootstrap probability distribution of $T_{n_{x}}^{*}$ and the the probability distribution of T_{∞} goes to zero, on the set $A \cap B$. Let $\boldsymbol{Z}_{n}^{*}(t)$ be defined by replacing $\left(\boldsymbol{W}_{1}, \ldots, \boldsymbol{W}_{n_{x}}\right)$ and $\left(\boldsymbol{V}_{1}, \ldots, \boldsymbol{V}_{n_{y}}\right)$ in $\boldsymbol{Z}(t)$ by the corresponding Bootstrap variables $\left(\boldsymbol{W}_{1}^{*}, \ldots, \boldsymbol{W}_{n_{x}}^{*}\right)$ and $\left(\boldsymbol{V}_{1}^{*}, \ldots, \boldsymbol{V}_{n_{y}}^{*}\right)$, respectively. Also, let $\hat{\Gamma}(s, t)$ denote the covaraince matrix function of $\boldsymbol{Z}_{n}^{*}(\cdot)$, i.e., $\hat{\Gamma}(s, t)=E_{*} \boldsymbol{Z}_{n}^{*}(t) \boldsymbol{Z}_{n}^{*}(t)^{T}, \quad s, t \in\left[-t_{0}, t_{0}\right]$, where E_{*} denotes expectation under P_{*}. Then, using Lemma 1 , it is easy to check that on the set $A \cap B$,

$$
\sup \left\{\|\hat{\Gamma}(s, t)-\Gamma(s, t)\|: s, t \in\left[-t_{0}, t_{0}\right]\right\} \rightarrow 0 \text { as } n_{x} \rightarrow \infty
$$

As a result, for any $\omega \in A \cap B$, the finite dimensional distributions of the \boldsymbol{Z}_{n}^{*}-process converges to those of the \boldsymbol{Z}-process, and further by Hoeffding's inequality, the tightness condition continues to hold. This implies that on the set $A \cap B, \boldsymbol{Z}_{n}^{*}$ converges in distribution to the same limiting process \boldsymbol{Z} as in Lemma 1. Further, repeating the arguments in the proof of Theorem 1 and using uniform convergence of $\widehat{\phi}_{1}(t), \widehat{\phi}_{2}(t), \widehat{\phi}_{u_{x}}(t)$ and $\widehat{\phi}_{v_{y}}(t)$ o their respective limits on the set $A \cap B$, one can show that, for any $\omega \in A \cap B$,

$$
T_{n_{x}}^{*} \rightarrow^{d} T_{\infty}
$$

Theorem 3 now follows from Theorem 1, Polya's Theorem, and the continuity of the limiting random variable T_{∞}.

2 Figures for the sensitivity analysis of Section 4

Figure 1: Boxplots of the optimal and bad choices of bandwidth $\left(h_{w}, h_{v}\right)$ for simulation scenarios D1 and D6.

Figure 2: Boxplots of t_{1} and t_{2} for the optimal and bad choices of bandwidth $\left(h_{w}, h_{v}\right)$ for simulation scenarios D1 and D6.

Figure 3: Boxplots of test statistics for the optimal and bad choices of bandwidth $\left(h_{w}, h_{v}\right)$ for simulation scenarios D1 and D6.

References

Athreya, K. B. and Lahiri, S. N. (2006). Measure Theory and Probability Theory. Springer-Verlag: New York.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58, 13-30.

Lahiri, S. N.(1994). Two term Edgeworth expansion and bootstrap approximation for multivariate studentized M-estimators. Sankhya, Series A 56, 201-226.
Wellner, J. A. and van der Vaart, A. W. (2006). Weak Convergence and Empirical Processes: With Applications to Statistics. Springer, NY.

