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Appendix

1 Proof of Theorems 1, 2 and 3

Let cjw(t) = cos(tW j), djw(t) = sin(tW j). Next define ejw(t) = M−1
x

∑
(l1,l2)∈Sx cos{(t/mx)(

Wjl1 −Wjl2)}. Denote the expectations by c0w(t) = E{cjw(t)}, d0w(t) = E{d1w(t)}, and e0w(t) =
E{e1w(t)}. Then, ΛW j

(t) ≡ (cjw(t) − c0w(t), djw(t) − d0w(t), ejw(t) − e0w(t))T are iid mean zero

random vectors. Similarly define ΛV j
(t) by replacing W j’s by V j’s in the definition of ΛW j

(t).

Let t0 = max{|t1|, |t2|}, where recall that ω(t) = 0 for all t 6∈ [t1, t2]. Define

Zn(t) = n−1/2x

( ∑nx

j=1 ΛW j
(t)∑ny

j=1 ΛV j
(t)

)
, |t| ≤ t0.

Let C,C(·) denote generic constants with values in (0,∞) that may depend on their arguments (if
any) but not on nx, ny. Also, let `∞[−t0, t0] denote the set of all bounded measurable functions from
[−t0, t0] to the real line and let ‖x‖∞ = sup{|x(t)| : t ∈ [−t0, t0]}, x ∈ `∞[−t0, t0]. Finally, let AT

denote the transpose of a matrix (vector) A.
Then we have the following result.

Lemma 1. Zn
d→ Z as random elements of the space (l∞[−t0, t0])6, where Z is a 6-dimensional

zero-mean Gaussian process on [−t0, t0] with the covariance function

Γ(s, t) =

[
Γw(s, t) 0
0 ρ−2Γv(s, t)

]
,

with Γv(s, t) = E{ΛW 1
(s)ΛW 1

(t)}, Γv(s, t) = E{ΛV 1
(s)ΛV 1

(t)}, for −t0 ≤ s, t ≤ t0. Further,
the paths of Z(·) are continuous on [−t0, t0] with probability one.
Proof: Note that i) ΛW j

(t) and ΛV j
(t) are bounded random vectors, ii) the collection of

functions {(Λw(t),Λv(t)); t ∈ [−t0, t0]} is a VC-class, where Λw(t) = [cos(t
∑mx

j=1wj/mx), sin
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(t
∑mx

j=1wj/mx),M
−1
x

∑
(l1,l2)∈S cos{t(wl1−wl2)/mx}], and Λv(t) is defined similarly. Hence, by using

the Multivariate CLT (cf. Ch 11.1, Athreya and Lahiri, 2006), the finite dimensional distribution
of the Zn(·)-process converges in distribution to those of the Z(·)-process. Further, using the stan-
dard exponential inequalities (e.g., Hoeffding, 1963) and the chaining argument (Wellner and van der
Vaart, 2006), it follows that Zn → Z in distribution, where Z is a random element of l∞([−t0, t0])]6
and it has continuous paths on [−t0, t0] with probability one. �
Proof of Theorem 1. Recall the definitions of âx(t) and â2x(t) given in Section 2.2 of the main docu-
ment. Define a2x(t) = φmx

ux (t/mx) and let Zkn(t) be the kth component of Zn(t) defined in Lemma
1. Then ax(t) = c0w(t)/a2x(t), and

√
nx{âx(t)− ax(t)} =

√
nx

{
n−1x

∑nx

j=1 cjw(t)

â2x(t)
− c0w(t)

a2x(t)

}

=
√
nx

[
n−1x

∑nx

j=1{cjw(t)− c0w(t) + c0w(t)}
â2x(t)

− c0w(t)

a2x(t)

]

=
√
nx

[
n−1x

∑nx

j=1{cjw(t)− c0w(t)}
â2x(t)

+
c0w(t)

â2x
− c0w(t)

a2x(t)

]

=
Z1n(t)

â2x(t)
−
c0w(t)

√
nx{â2x(t)− a2x(t)}
a2x(t)â2x(t)

.

Now using the fact that â2x(t) = {φ2
ux(t/mx) + Z3n(t)/

√
nx}mx/2, we get

√
nx{âx(t)− ax(t)} =

Z1n(t)

a2x(t)
−
mxc0w(t)Z3n(t)φmx−2

ux (t/mx)

2a22x(t)
+Rnx(t),

≡ Anx(t) +Rnx(t),

where

Anx(t) =
Z1n(t)

a2x(t)
−
mxc0w(t)Z3n(t)φmx−2

ux (t/mx)

2a22x(t)

and where, with a suitable constant C(mx) ∈ (0,∞),

|Rnx(t)| ≤
|Z1n(t)||Z3n(t)|

√
nx

×
mx{1 + |Z3n(t)/

√
nx|mx/2−1}

2|a2x(t)|â2x(t)
+
|c0w(t)|{1 + |Z3n(t)|mx}
|a2x(t)|

√
nx|â2x(t)|

× C(mx)

+
mx|c0w||Z3n(t)|2{1 + |Z3n(t)/

√
nx|mx/2−1}

2|a2x(t)|3
√
nx|â2x(t)|

.

Hence, ∫
|Rnx(t)|2ω(t)dt ≤ C(mx)

nx

{∫
ω(t)

a22x(t)
dt

}[
||Z1n||2∞||Z3n||2∞ +

{1 + ||Z3n||2mx
∞ }

α4mx
x

]
2



×
{1 + (||Z3n||∞/

√
nx)

mx/2−1}2

(α2
x − ||Z3n||∞/

√
nx)mx

,

where αx = min{|φux(t/mx)|; |t| ≤ t0}. Since || · ||∞ is continuous on `∞[−t0, t0], it follows that

||Zkn||∞
d→ ||Zk||∞ for k = 1, . . . , 6. Hence∫

|Rnx(t)|2ω(t)dt→ 0 (A.1)

in probability. Next, define a2y(t) = φ
my
uy (t/my) and write â2y(t) = {φ2

uy(t/my)+(
√
nx/ny)Z6n(t)}my/2.

Then, using similar steps as above, we obtain

√
nx{ây(t)− ay(t)} =

nx
ny

{
Any(t) +Rny(t)

}
,

where

Any =
Z4n(t)

a2y(t)
− myc0v(t)Z6n(t)φ

my−2
uy (t/my)

2a22y(t)
,

and where, retracing arguments above, one can show that∫
|Rny(t)|2ω(t)dt→ 0 (A.2)

in probability. Under H0 : φx(t) = φy(t), that means ax(t) = ay(t) for all t. So, under H0,

I1 = nx

∫
{âx(t)− ây(t)}2ω(t)dt

= nx

∫
[{âx(t)− ax(t)} − {ây(t)− ay(t)}]2ω(t)dt

= I11 +Qn,

where

I11 =

∫ {
Anx(t)−

nx
ny
Any(t)

}2

ω(t)dt,

and using the Cauchy-Schwartz inequality

|Qn| ≤
∫
{Rnx(t) +

nx
ny
Rny(t)}2ω(t)dt+ 2

[
I11 ×

∫
{Rnx(t) +

nx
ny
Rny(t)}2ω(t)dt

]1/2
.

By (A.1) and (A.2), |Qn| → 0 in probability. Next applying the continuous mapping theorem, we
obtain

I11
d→ I1∞ ≡

∫
ξ21(t)ω(t)dt,
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where ξ1(t) = Ax(t)− ρ2Ay(t). Repeating the arguments above with I2 = nx
∫
{b̂x(t)− b̂y(t)}2ω(t)dt

and using the joint weak convergence result of Lemma 1, one can show that

Tn = I1 + I2

= I11 +

∫ [{
Z2n(t)

a2x(t)
−
mxd0v(t)Z3n(t)φmx−2

ux (t/mx)

2a22x(t)

}
−nx
ny

{
Z5n(t)

a2y(t)
− myd0v(t)Z6n(t)φ

my−2
uy (t/my)

2a22y(t)

}]2
ω(t)dt+ op(1)

d→ I1∞ +

∫ [{
Z2(t)

a2x(t)
−
mxd0v(t)Z3(t)φ

mx−2
ux (t/mx)

2a22x(t)

}
−ρ2

{
Z5(t)

a2y(t)
− myd0v(t)Z6(t)φ

my−2
uy (t/my)

2a22y(t)

}]2
ω(t)dt

≡
∫

[ξ21(t) + ξ22(t)]ω(t)dt.

This completes the proof of Theorem 1. �
Proof of Theorem 2. First suppose that

∫
D2
a(t)ω(t)dt 6= 0. Let Wa(t) = {âx(t)− ax(t)} + {ay(t)−

ây(t)}, |t| ≤ t0. Then, it follows that

T1nx ≡ nx

∫ [
{âx(t)− ax(t)}+ {ax(t)− ay(t)}+ {ay(t)− ây(t)}

]2
ω(t)dt ≥ L1nx ,

where L1nx = nx
∫
{ax(t)− ay(t)}2ω(t)dt+ 2nx

∫
Wa(t){ax(t)− ay(t)}ω(t)dt. Now, using the steps in

the proof of Theorem 1 and the continuous mapping theorem, one can show that the second term of
L1nx is Op(

√
nx) while the first term diverges at the rate nx. Thus, L1nx = Op(nx). Hence, for

pr(T1nx ≤ r) ≤ pr(L1nx ≤ r)→ 0 for any r ∈ (0,∞).

Next consider the case where
∫
D2
b (t)ω(t)dt 6= 0. Then, defining T2nx by replacing âx, ây, ax, ay in

T1nx by b̂x, b̂y, bx, by and using the arguments above, we have pr(T2nx ≤ r) → 0 for any r ∈ (0,∞).
Thus, if

∫
[D2

a(t) +D2
b (t)]ω(t)dt 6= 0, then for any α,

pr(Tnx > tnx,α) = 1− pr(T1nx + T2nx ≤ tnx,α)

≥ 1−min
{

pr(T1nx ≤ tα), pr(T2nx ≤ tα)
}
→ 1 as nx →∞,

proving Theorem 2. �
Proof of Theorem 3. First we show that φ̂x(t) ≡ φ̂W (t)/{φ̂ux(t/mx)}mx = φ̂1(t)φK(hwt)/{φ̂ux(t/mx)}mx

converges to φx(t) uniformly over |t| ≤ t0, almost surely. Since hw → 0, it is enough to show that

sup{|φ̂1(t)− φ1(t)| : |t| ≤ t0} → 0 almost surely, and (A.3)

sup{|φ̂ux(t)− φux(t)| : |t| ≤ t0mx} → 0 almost surely. (A.4)
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Since φ̂1(t) = n−1x
∑nx

j=1 exp(itW j) is an average of i.i.d., bounded random variables, one can
prove (A.3) using a discretization argument and Hoeffding’s inequality (Hoeffding, 1963); see, e.g.,
Lahiri (1994). Next, for h > 0, write ejw(t, h) = M−1

x

∑
(l1,l2)∈Sx cos{(t/mx)(Wjl1 − Wjl2)}(1 −

h2t2)3I(|ht| ≤ 1) and e0w(t, h) ≡ E{ejw(t, h)}. Then, it is easy to check that e0w(t, h) =
|φux(t/mx)|2(1 − h2t2)3I(|ht| ≤ 1), and hence, sup{|e0w(t, hw) − φux(t/mx)| : |t| ≤ t0mx} → 0,
as hw → 0. Further, using arguments similar to those in the proof of (A.3), one can show that

sup{|φ̂ux(t) − e0w(t, hw)| : |t| ≤ t0mx} → 0, almost surely. Thus, (A.4) holds. Let A be the event
where (A.3) and (A.4) hold. Then pr(A) = 1. Next, let B be the event where

sup{|φ̂2(t)− φ2(t)| : |t| ≤ t0} → 0, and

sup{|φ̂vx(t)− φvx(t)| : |t| ≤ t0my} → 0,

as nx →∞. Then, by similar arguments, pr(B) = 1, implying, pr(A ∩B) = 1.
We shall now show that T ∗nx

converges in distribution to T∞ ≡
∫

[[ξ21(t) + ξ22(t)]ω(t)dt, i.e.,
the Prohorov distance between the Bootstrap probability distribution of T ∗nx

and the the prob-
ability distribution of T∞ goes to zero, on the set A ∩ B. Let Z∗n(t) be defined by replacing
(W 1, . . . ,W nx) and (V 1, . . . ,V ny) in Z(t) by the corresponding Bootstrap variables (W ∗

1, . . . ,W
∗
nx

)

and (V ∗1, . . . ,V
∗
ny

), respectively. Also, let Γ̂(s, t) denote the covaraince matrix function of Z∗n(·), i.e.,

Γ̂(s, t) = E∗Z
∗
n(t)Z∗n(t)T , s, t ∈ [−t0, t0], where E∗ denotes expectation under P∗. Then, using

Lemma 1, it is easy to check that on the set A ∩B,

sup
{
‖Γ̂(s, t)− Γ(s, t)‖ : s, t ∈ [−t0, t0]

}
→ 0 as nx →∞.

As a result, for any ω ∈ A ∩ B, the finite dimensional distributions of the Z∗n-process converges to
those of the Z-process, and further by Hoeffding’s inequality, the tightness condition continues to
hold. This implies that on the set A ∩ B, Z∗n converges in distribution to the same limiting process
Z as in Lemma 1. Further, repeating the arguments in the proof of Theorem 1 and using uniform
convergence of φ̂1(t), φ̂2(t), φ̂ux(t) and φ̂vy(t) o their respective limits on the set A∩B, one can show
that, for any ω ∈ A ∩B,

T ∗nx
→d T∞.

Theorem 3 now follows from Theorem 1, Polya’s Theorem, and the continuity of the limiting random
variable T∞. �

2 Figures for the sensitivity analysis of Section 4
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Figure 1: Boxplots of the optimal and bad choices of bandwidth (hw, hv) for simulation scenarios D1
and D6.
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Figure 2: Boxplots of t1 and t2 for the optimal and bad choices of bandwidth (hw, hv) for simulation
scenarios D1 and D6.
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D1 : unif0.99 D1 : norm0.99
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Figure 3: Boxplots of test statistics for the optimal and bad choices of bandwidth (hw, hv) for
simulation scenarios D1 and D6.
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