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ABSTRACT. The article considers a new approach for small area estimation based on a joint
modelling of mean and variances. Model parameters are estimated via expectation—-maximization
algorithm. The conditional mean squared error is used to evaluate the prediction error. Analytical
expressions are obtained for the conditional mean squared error and its estimator. Our approxima-
tions are second-order correct, an unwritten standardization in the small area literature. Simulation
studies indicate that the proposed method outperforms the existing methods in terms of prediction
errors and their estimated values.
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1. Introduction

Small area estimation and the statistical techniques therein have been a topic of great interest
to applied and theoretical statistician in recent years. The necessity of reliable small area esti-
mates is felt by many agencies, both public and private, for making useful policy decisions.
For example, the small area statistics are being used to monitor socio-economic and public
health conditions for different sub-populations defined by age, sex and racial groups over small
geographical areas.

It is well known that the direct survey estimates for small areas are usually unreliable, being
accompanied with large standard errors and coefficients of variation. Therefore, it is neces-
sary to use models, either explicit or implicit, to connect the small areas, and obtain estimates
of improved precision by ‘borrowing strength’ across areas. The survey-based direct small
area estimates and their variance estimates are main ingredients to build area level small area
models. Typical modelling strategy assumes that the sampling variances are known, whereas a
suitable linear regression model is assumed for the means, and detailed reviews can be found
in Ghosh & Rao (1994), Pfeffermann (2002) and Rao (2003). The typical area-level models are
subject to two criticisms of interest here: (i) in practice, the sampling variances are estimated
quantities, and these are subject to substantial errors because they are often based on equiva-
lent sample sizes as the direct estimates are being calculated; and (ii) the assumption of known
and fixed sampling variances does not take into account the uncertainty of (sampling variance)
estimation into the overall small area estimation strategy.

The development in small area literature, so far, can be ‘loosely’ viewed as (i) shrinkage
estimation of small area means without variance modelling; (ii) smoothing the direct sam-
pling error variances (not necessarily Bayes or empirical Bayes) to obtain stable variance
estimates; and (iii) accounting uncertainty of sampling variance estimation while applying the
Fay-Herriot model for mean estimation. Arora & Lahiri (1997), You & Chapman (2006),
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Liu et al (2007), Dass et al. (2012) among others, used sampling variance model in conjunction
to small area modelling and hence addressed both the criticisms. Wang & Fuller (2003) pro-
vided improved mean squared error (MSE) of small area predictors when direct area variances
are estimated. Rivest & Vandal (2003) provided similar results on MSE estimation when the
unknown sampling variance is approximated by a normally distributed statistic. Thus, their
results addressed the second criticism but not the first one. Otto & Bell (1995), Gershunskaya &
Lahiri (2005), Huff et al. (2002), Cho et al. (2002) and Eltinge et al. (2002) explored modelling
of direct survey variance estimates. The variance estimation approach considered by Otto &
Bell (1995) and Gershunskaya & Lahiri (2005) provides Bayesian or empirical Bayes smoothing
of the sampling variances. Thus, their models addressed the first criticism but did not address
the second criticism.

For a good discussion on the aforementioned articles and for further references, we refer to
Bell (2008). Besides nicely summarizing the latest developments in this aspects of small area
estimation, Dr Bell also examined the consequences of this issue in the context of MSE estima-
tion of model-based small area estimators. He further provided numerical evidence of the effect
of assuming known sampling variance for the estimation of MSE in the context of Fay—Herriot
model (given in (1)).

In our opinion, very less attention has been given for accounting sampling variance estima-
tion effectively while modelling the mean compared with the amount of research devoted to
modelling and inferring the small area means. We also feel that there is a lack of systematic
development in the small area literature that includes ‘shrinking’ both means and variances
simultaneously. This motivates us to exploit the technique of ‘borrowing strength’ from other
small areas to ‘improve’ variance estimates as we do for ‘improving’ the small area mean esti-
mates. We develop a hierarchical model that uses both the point estimates (direct survey-based)
and sampling variance estimates to infer all model parameters that determine the stochastic
system. Our methodological goal is to develop the dual ‘shrinkage’ estimation for both the
small area means and variances, exploiting the structure of the simultaneous mean-variance
modelling so that the final small area estimators are more precise. Numerical evidence shows
the effectiveness of dual shrinkage on small area estimates of the mean in terms of prediction
error criteria.

Although our modelling perspective is closely related to You & Chapman (2006), their model
for true sampling variance should be treated as a prior distribution and hence involve hyper-
parameters. So one has to use suitable values of the hyperparameters, which could be sensitive
from the user’s perspective. In our case, this is part of the model and estimated from the like-
lihood. In their case, another layer of prior distribution is needed if one likes to extend the
variance modelling to include regression. But this feature could be easily adopted in our model
and estimation. Also they developed Markov Chain Monte Carlo-based full Bayesian approach
for model implementation, whereas we developed an empirical Bayes or arguably a frequentist
approach where the model parameters are estimated by maximizing the likelihood.

For measuring the uncertainty of the small area estimators, we used the conditional MSE
of prediction (CMSEP) to assess the uncertainty of small area estimators. Booth & Hobert
(1998) argued strongly for CMSEP as opposed to unconditional MSE to assess the prediction
errors for generalized linear mixed models. Recently, the technique has been emphasized by
Lohr & Rao (2009) in the context of nonlinear mixed effect models. These authors favoured
CMSEP particularly for non-normal models when the conditional variance of the random
effects depends on the data. Our model is different from Booth & Hobert (1998) or Lohr &
Rao (2009). Hence, the contribution is unique.

A brief outline of the remainder of this article is as follows. In Section 2, we introduce our
model. Section 3 describes the method of estimation. In Section 4, we provide an estimation
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of prediction error in terms of CMSEP. A simulation study has been conducted in Section 5.
Section 6 contains some concluding remarks.

2. Model and assumptions

Suppose that there are n small areas, and let (X i Slz) be the pair of direct survey estimate and

sampling variance for the i-th small area, i = 1,2,--- ,n. Let Z; = (Z;y,--- ,Z,-,,)T be the
vector of p covariates available at the estimation stage. We consider the following hierarchical
model:

Xi|6;.0? ~ Normal (6;,07)

(D
0; ~ Normal (Zl-Tﬂ,rz)
(i=DS? | > o
Il L @
-2
o; = ~ Gamma(a, y),
independently for i = 1,2,---,n. Here, n; is the sample size for a simple random sample

in the i-th area, g = (8,--- ,ﬂp)T is the p x 1 vector of regression coefficients and B =

(.. B. rz)T is the collection of all unknown parameters in the model. Also, Gamma(e, y) is
the Gamma density function with positive shape and scale parameters o and y, respectively,
defined as f(x) = {y*T(@)} "' e™*/¥ x*~1 for x > 0, and 0 otherwise. The unknown o7 is
the true variance of X; and is usually estimated by the sample variance Siz. The model (1),
popularly known as Fay—Herriot model, has been widely used in small area literature; see Rao
(2003). The modelling of sampling variance in (2) is valid only under simple random sampling
with independent and identically distributed normal data in which case the Sl.2 ’s are the sam-
ple variances. This assumption is not exactly valid for most of the applications. However, the
chi-squared distribution with a careful determination of the degrees of freedom can provide
a reasonably useful approximation. Wang & Fuller (2003) suggested the degrees of freedom
estimation by approximating the sampling distribution by an ‘appropriate’ chi-squared distri-
bution. The issue has also been discussed in Maples et al. (2009). See remarks 1 and 2 for
further discussion on model assumptions. The second level modelling of o7~ 2 in (2) can be fur-
ther extended to ai_z ~ Gamma(exp (ZiTﬂz) /v, v) (so that E (ol._z) = exp (Z[Tﬁz)) for
another set of p regression coefficients f, to accommodate the covariate information in the
variance modelling.

Although our models are motivated by Hwang ef al. (2009), we like to mention that Hwang
et al. (2009) considered shrinking means and variances in the context of microarray data where
they prescribed an important solution by plugging in a shrinkage estimator of variance into
the mean estimator. The shrinkage estimator of variances in Hwang et al. (2009) is a function
of Sl-2 only, and not of both X; and Siz. Thus, the shortcomings of their method are as follows:
(i) sampling variance estimation is independent of means; (ii) inference on means does not take
into account the full uncertainty in variance estimation; and (iii) their model does not include
any covariate information.

In our model formulation, the inference for the small area mean parameter 6; is based on the
conditional distribution of 6; given all the data { (X;,S?.Z;).i =1,---,n}. However, the
conditional distribution of 6; is a non-standard distribution and does not have a closed form
expression, thus requiring numerical methods, and for estimation of parameters, we adopt the
expectation—maximization (EM) algorithm. The details are provided in the next section.

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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3. Method of estimation
3.1. Estimation of the small area parameters

If the parameters B are known, the joint distribution of {X i Sl.z, 0;, 01.2} is

1 X; —0;)?
b4 (X,-,Sl-2,9,~,01-2|B> = exp —%
2ncrl.2 20:‘

1 2 (ni—1)/2—1
X . (ni —H—=%
{(n; —1)/2)20i=1/2 o?

1

e (ni —DS?| (n; —1 1
P 207 o ) V2nc?

a+1
X exp _(9,- — ZiTﬂ)z ! L exp —71
272 T'(a)y® o'i2 yaiz

. _0.)2 - —1)S2
aexp{—(X' 0i) _(n, )S;

201.2 201.2

i 1
6 -2zTp? 1 )2 1
272 yo? | \o? V2T (a)y

[(&-—Z,-Tﬂ)z {(Xi—ef)z
:exp — —

272 2
o 1
mi—Ds2 1) 1 (1) 1
2 v)oi [ \% V2T (a)y®
(3)
Therefore, the conditional distribution of 01.2 and 6; given the data (X i Slz) i=1,---,nand
B are
_(xi—z78)  (mi-» 2 1} i
21X, 52 B eXp[ 2(07+72) { 7 Sty 4
T (Ui | Xi, 7, ) x (Giz)(n,-—l)/2+a+1 (o2 +r2)1/2 ’ “
2
0;— 2B
p— i 2
7 (6:1X;. 57, B) o< exp —(%2) 7 ®)

where ¥; = 0.5(X; — 6;)? + 0.5(n; — 1)S? + 1/y. Note that the aforementioned conditionals
are obtained by integrating out 6; and oiz, respectively, from the joint distribution (3). Note
that (4) can be used to estimate the true sampling variances. The estimator is clearly dependent
on both the mean and sampling variance estimates.

From now on, we will borrow the notations from Booth & Hobert (1998) for determining
all related stochastic distributions. In this context, a meaningful point estimator for 6; is its
conditional mean,

6, (B:X;.?) = Ep (6:1X;. 7). (6)

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.



Scand J Statist 0 Small area predictors 5

where E g represents the expectation with respect to the conditional distribution of 6; with
known B. A sensible prediction error can be measured by the posterior variance

Vi (B;X,',S,-Z)ZVELI”B (95|X,‘,Si2). (7)

Neither (6) nor (7) has any closed form expression. Therefore, we have used numerical quadra-
ture to compute these integrals. In practice, B is unknown. We estimate them by maximizing
the marginal likelihood, and the details are given in the next section. Let B denote the corre-
sponding estimator. Substituting B by B in formulas (6) and (7) will produce the estimates of

0; and v;:
b = 0:(B:X;.57) = E (0:1X;.57). ®
b = v (B: X;,S?) = var  (6;|X;. S?). ©)

The estimator (8) is popularly known as the empirical Bayes estimator, and (9) is the estimated
Bayes risks. It is well known that the b; only considered the variability in the prediction proce-
dure, but not the variability due to the parameter estimation (B). We accounted this additional
variability by adapting the technique of Booth & Hobert (1998) in this set-up. The details are
discussed in Section 4.1.

3.2. Estimation of the structural parameters

We obtain the maximum likelihood estimate of B by maximizing the marginal likelihood
Ly =102, LM of{(Xi,Sl.z,Z,-)" B},Where

i=1 i=1"

o —2T8)
ni ;o— . n;
Lo T [ (@20 | (e,

© VP 22 ’ :

Note that L p is eventually a function of &, y, 8 and t2. Direct maximization of L 5y is difficult
as it involves non-standard integrals with respect to unobserved 6;s. Therefore, we adopt the
EM algorithm to estimate the parameters iteratively. The EM algorithm consists of two steps, E
and M steps, and the unobserved ;s are treated as missing data. Note that LIM is the observed
data likelihood, and for the EM algorithm, we also need complete data likelihood L; compl in
terms of complete data 6;, X;, Z;, where

pAa o —( =L
Li,compl X 2 CXp 4 — 2l W,- 2
V12T (o) y® 2t

In the E step of the ¢/ iteration, we take expectation of the complete data log likelihood with
respect to the conditional density of the unobserved variable, which is 6; in our case. In the
M step, we maximize the expected log complete data likelihood with respect to the unknown
parameters keeping the conditional expectations fixed. We repeat these two steps until the
parameter estimates converge. Let B “@ (%2)(1), @@ and y® be the estimates of B, and y,
respectively, at the /% iteration. Then, at the t/” iteration of the EM algorithm,

n -1 n i
B = (Z zz] ) {Z ziE“—“(e,-)} @0 =3B (6-208)

i=1 i=1 i=1
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and @¥ and P are estimated by solving S, = 0 and S, = 0 where

So = Z:lzl [8log {T(n;/2+a)}/da —dlog{T(x)}/da — logy — E(’_”{log(t/fi)}] ,

Sy =—nafy + Y {0/ +o}ECTD (v 1) /2.

i=1

The expectations at the r# iteration, EY~D, are the expectations with respect to the
conditional density of 6;, & (9i|Xi,Si2,B(’_1)), i = 1,....n, with B®™D denoting the
estimate of B at the (f — 1)’” iteration. Because the conditional density is a non-standard
density, one may use the Monte Carlo method (such as rejection sampling) or numer-
ical integration to evaluate those integrals. We used Gauss—Hermite 20-point numerical
integration. The details on how we obtain S, and S, are given in the Supporting information
(Supplementary Appendix).

4. Prediction error calculation
4.1. Mean squared error of prediction

Following the definition of CMSEP of Booth & Hobert (1998), the prediction error variance is

. 2
CMSEP (B:X;,S?) = Ep [(ei ) |X,~,S,-2}
. 2
—Ep [{ei 6 (B.Xi.S2) + 6, (B. X, 5?) - 61} |X,~,S,-2] ,
where é,- and 0; (B, X;, Slz) are defined in (8) and (6), respectively. Because 6; (B; X;, Siz) —0;
and 0; — 6;(B; X;, S?) are conditionally uncorrelated given X; and S?,
. 2
CMSEP (B; X;,S2) =varp (6:1%;,5?) + En [{ei — 6 (B;X,-, S,?)} |Xl~,s,.2]
= vi (B: Xi.S2) +ci (B: Xi.S2).
(10)

where ¢; (B; X;, Slz) is the correction term due to the estimation of unknown parameters B.
The correction contribution is of order O, (n~!). Note that the aforementioned measure is still
not usable because it involves the unknown structural parameters B. It is natural to plug-in the
estimate B of B and get an usable measure of mean squared prediction error

CMSEP; = MSE (B: X;.S?) = v; (B: X, S?) +c; (B: Xi.S7) = by + &5,
As it will be clear in the next section (as well as from small area estimation literature), the esti-
mator (10) has considerable bias. Typically, the order of the bias is O, (n~!) due to estimation
of v; by V;.

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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4.2. Bias correction for v; (B Xi, Slz)

For the bias correction of the estimated conditional variance v; (f?; X;, Sl-z), we expand this
about B

b =v;

I};Xl',Sl-z)

. dv; (B: X;, S?
B;X,-,Sf)+(B—B)T% (1)

dv; (B: X;.5?)
IBIBT

Vi

+

W= — —

(B-B)T (B—B)+ 0,(n"?).

Then, the approximated bias involved in v; (1}, X;, Slz) is

E(B-B)— D710 4 58T

ov; (B;X,',Siz) 1 av; (B;Xi,SiZ)
JaB 2

,_1(3)} :

where I (B) is the Fisher’s information matrix obtained from the marginal likelihood L 5, given
in the beginning of Section 3.2.

Handling the bias analytically is difficult. Booth & Hobert (1998) adopted bootstrap bias
correction approach in a similar scenario. This is because there is no closed form expressions
available for this bias terms. The bootstrap method requires repeated estimation of model
parameters on the basis of a re-sampled data. This often pauses practical and computational
difficulties in this hierarchical model. As we will see in the next subsection, handling the second
term in (10) is also difficult because of the same difficulty of not having any closed form expres-
sion. Thus, if we have to do the bootstrap for the bias correction of v;, the estimation of ¢; can
also be performed in the same run. It is not necessary to obtain any analytical approximations.
The resampling techniques has been used in Jiang et a/. (2002) and Hall & Maiti (2006). Here,
we derived Taylor expansion-based approximations and handle the inside integrals by applying
the Gauss—Hermite quadrature formula and thereby avoiding the repeated evaluation of model
parameters. The estimation becomes computationally fast.

Let B be the maximum likelihood estimator of B as proposed in the previous section. Fol-
lowing Cox & Snell (1968, Equation (20)), we approximate E (f? — B) up to O(n~1). Taking

I = I(B), define I™! = ((I"%)) as the inverse of I = ((I¢)), where I,s = E (—V,(S])) and
Vr(é) = 2% log LlM/aBraBs. The bias in the s/ element of B is

E(By—B)~ 5 33 S I Ry + 21, (12)
r t u

93 longM
0B,0Bs0B;

dlog L,M

Krst = E (Wr(;v)t) WS = 9B,

Jrsi =E {Z Ur(i)VS(ti)},Ur(i) -

where the LM is the marginal likelihood of (X;,S?) defined in the previous section. The
detailed formulas are given in the Supporting information (Supplementary Appendix).
With

i\ _ o )
0B T\ a3y 9B e )’

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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and v; (B; X;,S?) = varg (6;|X;, S?), we have

% = —cov* {62, log()| + 2E* (6;)cov* {6; . log(¥)}

av; (i 1 * 2 | *(0; * i L
G- (e ) e 1)
d; 1 * (92 p. *(6; *(6:,0;

o2 {cov (95 ’9:) —2E7(6;)cov (9”0’)}

g% - 2(1%)2 [cov* {9,.2, (9,» - Z?ﬁ)z} —2E*(6;)cov* {0,~, (9,» - Zfﬁ)zﬂ :

where the * means that the expectation, variance and covariance are calculated with respect
to the conditional distribution of 6; at the estimated parameters’ value. The approxi-
mated expression of dv; (B: X;.S?)/dBOB” is given in the Supporting information. The
expectation, variance and covariance are computed on the basis of the numerical integration.
Therefore,

N N dv; 1 |dv; (B:X;.5?)
o~ v (B X: S2) —(B — B) 2L — _qp ] A0 i ) g1
Vi A v (B,X,,Sl) (B—-B) 3B 2tr{ 3BoBT 1= (B),.

This expression is second-order correct meaning that the bias of this term is of order 0, (n™!).

4.3. Approximation of ¢; (B: X;, S?)

The definition of ¢; (B; X;, Slz) is given in the previous section,
2 5 2\12 2
¢ (B:Xi.S?) = Eg [{el-—ei (B:x1.52)} |X,-,s,-],

where 6; — 6; (B:X;,S?) =6 (l?; X;, Sl.z) —6; (B: X;.S?). Using the Taylor series expansion

and ignoring the term of the order Op(|lA3 —B |2), we write
4, (B;X,-,Siz) — 4 (B; X;, Sl?) ~ AT (B; X;, Sl?) (B - B), (13)
where
20; (B; X,',Siz)
0B

_ 39,' (B;X,',Sl-z) 39,' (B;X,',Siz) 39[ (B;Xj,Siz) 39,’ (B;X,',Sl-z)
oo ’ dy ’ B ’ 072 '

A (B;Xi,Siz)t _

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Because 0; (B: X;,S?) = Eg (6;|X;. S?)., the components of A; are

W = E*(0:)E™{log(¥i)} — E*{6; log(yi)} = —cov™{6;, log(vi)},
) ()l () ()
— (% +0) yeov (61 ).
BT e 67) - e 007] = v
& (Bagiﬁsg) - 2(:12)2 [E* {9" (6: - ZiTﬂ)z} ~E*@0E" (b - Z"Tﬂ)z]

= Z]?COV* {Qi, (Oi — ZlT,B)z} .

As a consequence of (13),
T
ci (B: X;.S?) ~ A; (B: Xi.S2) 1(B)™'4; (B: X;.S?). (14)

and the approximation is correct up to the order O, (n~!). Substituting B into formula (14)
will yield an estimate of the correction term,

~ o T . A
ci (B:Xi.S2) ~ 4 (B:Xi.S2) 10B)™ 4; (B x,.57).
) —1
As the estimated information matrix is {I (B)} = 0, (n~"), the error in the approximation
is of order o0 (n~1). Similar to the case of v;, the entries in A; (B; X;, Slz) do not have closed

forms. They are approximated by numerical integrals. By summing up all the derivations and
approximations, we obtain the following result.

Theorem 1. The estimated CMSEP for é,- is

— . 0 1 |ov; (B;X;,S?
CMSEP = v; (B: X;,57) - (B - B)l B=é—2tr{v';BaBlT’)I_l(B)} |

~ T . ~
e (B;X,-,Siz) 1(B)~' 4; (B;Xi,Siz).
The error is 0 p(n™1).

Remark 1. As mentioned in Section 2, the degree of freedom associated with the y2 distribu-
tion for the sampling variance is not simply n; — 1, n; being the sample size for i-th area, except
the scenario when the survey design is a simple random sampling. There is no sound theoretical
result for determining the degree of freedom when the survey design is complex. Wang & Fuller
(2003) suggested a moment-based estimation of the degrees of freedom that requires the fourth
moment of sampling error distributions. For example, Equation (44) in their paper, suggested a
degree-of-freedom estimator, c?f = /QLIZ(ni — 1) where k4; is an estimator of the standardized
fourth moment of the error distribution. Thus, in this case, the approximated distribution of S2
is d )( 02 Alternatively, if one knows the exact sampling design, then the simulation-based
gu1dehne of Maples et al. (2009) could be useful. For county level estimation using the Amer-
ican Community Survey, they suggested the estimated degrees of freedom to be 0.36 x /n;.

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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The normal distribution-based approximation may not work well unless the sample sizes n;’s
are large.

Remark 2. Note that without any hierarchical modelling assumption, S 12 and X; are indepen-
dent as Sl.2 and X; are, respectively, ancillary and the complete sufficient statistics for 6; under
the normal distribution assumption. However, under models (1) and (2), the conditional dis-
tribution of 0[2 and 6; involves both X; and S,.Z, which is seen from (4) and (5). Therefore, the
shrinkage estimators for both al.z and 6; naturally involve all the observed data. Furthermore,
the estimated structural parameters are also functions of X; and Sl.z. Thus, our estimation is
mean-variance integrated as opposed to augmented.

5. Simulation study

Simulation design : In order to study finite sample performance of the proposed estima-
tors, a simulation set-up closely related to Wang & Fuller (2003) was considered. To simplify
the simulations, we set Z = 1 and did not choose any other covariate; only (X i Slz) were
generated. First, we generated observations for each small area using the model

Xij=B+uj+eij,j=1,....n;,i =1,...,n,

where u; ~ Normal(0, t2) and e¢; ; ~ Normal (O, n ,-01.2). Then the random effects model for
the small area mean is

Xi=B+u;+e, i=1,...,n,

where X; = X;. =n;! Zf’:l Xij.ei=6.=n;" Z;l’:l eij. Therefore, X; ~ Normal(6;,067),
where 6; = B + u;; 6; ~ Normal(B,7?), and ¢; ~ Normal (0,07). The parameter of interest

is the mean, 6;, for the i-th small area, i = 1,...,n. The direct estimator for Uiz we
used is
| -2
87 = — Xi—Xi)~.
1 n; — 1 n; = ( iy l)

It is to be noted that (n; — 1)S7/07 ~ xi,._,,- Like Wang & Fuller (2003), we set all n;
equal to m that eased our programming efforts. However, the sampling variances were still
unequal by choosing one-third of the aiz that was equal to 1, one-third was equal to 4 and
the rest were equal to 16. In the simulations, we set § = 10 and took three different values
of 72 as 0.5, 1 and 4. For each of the 2, we generated N = 10 000 samples for each of the
combinations (m,n) = (9,36), (18, 180), (40,36) and (40, 180). In Table 1, we present the
mean and standard deviation over the simulations of the estimates of 8 and z2 on the basis of
the proposed method. The maximum likelihood estimators of the model parameters perform
reasonably well, even for small samples. It is known that the ¢ is difficult to estimate from a
small sample when its true value is small. In our case, this estimate is, in fact, very reasonable.
One reason could be, although these are maximum likelihood estimators, unlike the standard
mean model (Fay—Herriot), because we used the joint distribution of (X i Sl-z).

Next, we report the performance on point prediction and MSE of prediction (MSEP)
estimation. The results are averaged over areas within the group having same sampling vari-
ances. We will denote our method as method I, whereas the point estimators and the MSEP
estimators obtained from Wang & Fuller (2003) are referred to as method II. Because we do not
have the access of Wang and Fuller’s computing code, we reproduced all the numerical results
using a code written by us. For the sake of clarity, we copied their reported values whenever
available. They are in Tables 2—5 within parentheses.

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Table 1. Results of the simulation study

72 Mean SD Mean SD
n=36,m=9 n=180,m =18
For B
0.5 9.994 0.404 10.000 0.185
1 10.004 0.399 10.004 0.185
9.999 0.490 9.996 0.220
For 2
0.5 0.536 0.050 0.522 0.015
1 1.087 0.144 1.054 0.043
4 4.299 0.853 4.230 0.269
n=236,m=40 n =180, m = 40
For B
0.5 9.993 0.407 10.000 0.185
1 9.996 0.404 10.002 0.186
4 9.996 0.493 9.998 0.220
For 72
0.5 0.515 0.032 0.511 0.013
1 1.033 0.091 1.027 0.038
4 4.084 0.559 4.105 0.256

Here, we present average and standard deviation (SD) on the basis of
simulation of the estimates of 8 and t2. We set 8 = 10.

Table 2. Results of the simulation study whenn = 36 andm = 9

2=0.5 =1 2=4
o? I 11 I II I II
Performance of the point predictor
Bias 1 —0.004  —0.005 0.002 0.001 —0.001  —0.001
4 —0.005  —0.003 0.003 0.002 0.007 0.007
16  —0.007 —0.006 0.002  —0.001 —0.001  —0.002
MSEP 1 0.422 0.491 (0.493)  0.564 0.623 (0.633) 0.846 0.859 (0.859)

4 0.587  0.770(0.755) 0937  LI31(1.110) 2179  2.293(2.290)
16 0.648  0.841(0.820) 1.101 1.359(1.310)  3.535  3.853(3.760)

Performance of estimated MSEP

RB 1 0.028 0.204 (0.156)  0.124 0.085 (0.038) 0.209 0.022 (0.019)
4 —0.027 0.315(0.223)  0.040 0.138 (0.072) 0.055 0.009 (—0.026)
16  —0.031 0.471(0.329)  0.052 0.232(0.137) 0.038 0.010 (—0.037)
RRMSEP 1 0.596 0.600 0.309 0.484 0.501 0.446
4 0.125 0.861 0.178 0.606 0.306 0.372
16 0.095 1.181 0.140 0.795 0.216 0.378
RSD 1 0.595 0.564 0.283 0.476 0.455 0.446
4 0.122 0.801 0.173 0.590 0.301 0.372
16 0.090 1.082 0.130 0.760 0.212 0.378

Note: The values within parentheses are from Wang and Fuller (2003).

The upper panel presents the bias of éi and the MSEP of éi , whereas the lower panel represents the relative
bias, the relative root mean squared error and the relative standard deviation of the estimated MSEP. The
proposed method and the method of Wang and Fuller are abbreviated as I and II, respectively.

RB, relative bias; MSEP, mean squared error of prediction; RRMSEP, relative root mean squared error of
prediction; RDS, relative standard deviation.
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Statistics for comparing the point estimators : We report empirical bias and MSEP for com-
paring the point prediction in Tables 2-5 for various combination of sample sizes. Here, the

R 2
MSEP for area i is calculated as the average over the 10 000 replications of (Qi — 0,-) .

Although, for large model variance 72, both methods provide comparable biases, method I
tends to have larger bias for small t2. As the sample size increases, bias under both methods
reduces.

The most striking outcome of our method is in reducing the MSEP. The MSEP under
method I is almost always lower than the MSEP under method II. The ratio of MSEP
for method II over MSEP for method I indicates gain in all cases except (m,n,7%,07) =
(40, 36,0.5,16) and (m n,t2,0 ) (40, 180, 0.5, 16), where the ratios are 0.974 and 0.993
respectively. In these cases, the ratlo of sampling variance to model variance is very high. How-
ever, the ratio is 1.313 and 1.085, respectively, for (m,n, 2.0 ) (9,36,0.5,4) and (18,180,
0.5,4). Thus, there is a gain for small within sample sizes. The maximum reduction in MSEP by
method I compared with method IT is 31%. The relative bias (RB) (ratio of square of bias to
MSEP) is negligible because of low bias in every situation.

Statistics for comparing estimated MSEP : The lower part of Tables 2-5 contains results for
comparing estimated MSEP. We used empirical measures of RB and relative root MSE to
quantify the performance of MSEP estimators. RB of the MSEP estimator was defined by

E{]\@i} — MSEP;

RB; = ,
MSEP;
Table 3. Results of the simulation study whenn = 180 and m = 18
2=05 =1 2 =4
o? I 11 I 11 I 1T
Performance of the point predictor
Bias 1 0.001 0.001 0.002 0.001 0.000 0.000
4 0.001 0.001 0.003 0.002 —0.002 —0.002
16 0.000 —0.001 0.003 0.002 —0.004 —0.003
MSEP 1 0.356 0.390(0.387) 0.521 0.544(0.543) 0.816 0.819(0.818)
4 0.476 0.516(0.511) 0.838 0.883(0.877) 2.065 2.094(2.100)
16 0.520 0.532(0.527) 0.978 1.003(1.000) 3.293 3.350(3.350)
Performance of estimated MSEP
RB 1 0.027 0.204(0.199) 0.064 0.096(0.087) 0.127 0.015(0.013)
0.007 0.342(0.315) 0.024 0.163(0.140) 0.035 0.026(0.010)
16 0.007 0.460(0.417) 0.036 0.235(0.200) 0.032 0.044(0.024)
RRMSEP 1 0.118 0.432 0.182 0.297 0.309 0.291
4 0.052 0.644 0.089 0.370 0.186 0.217
16 0.031 0.814 0.059 0.475 0.102 0.191
RSD 1 0.115 0.381 0.171 0.281 0.281 0.291
4 0.052 0.545 0.086 0.333 0.183 0.215
16 0.030 0.672 0.047 0.413 0.096 0.186

Note: The values within parentheses are from Wang and Fuller (2003).

The upper part presents the bias of 0 and the MSEP of 9, , where as the lower part represents the relative
bias, the relative root mean squared error and the relative standard deviation of estimated MSEP. The
proposed method and the method of Wang and Fuller are abbreviated as I and II, respectively.

RB, relative bias; MSEP, mean squared error of prediction; RRMSEP, relative root mean squared error of
prediction; RDS, relative standard deviation.
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Table 4. Results of the simulation study when n = 36 and m = 40

2=05 =1 2=4
a? I II I II I 1T
Performance of the point predictor
Bias 1 —0.004 —0.002 —0.001 0.000 —0.005 —0.005
4 —0.008 —0.005 —0.001 —0.001 —0.004 —0.004
16 —0.007 —0.004 —0.005 —0.004 —0.003 —0.004
MSEP 1 0.414 0.435 0.544 0.589 0.819 0.849
4 0.579 0.610 0.916 0.984 2.107 2.197
16 0.643 0.627 1.089 1.120 3.401 3.524

Performance of estimated MSEP

RB 1 —0.036 0.197 0.050 0.043 0.064 —0.001
4 —0.070 0.273 0.008 0.068 0.033 —0.014
16 —0.081 0.399 0.003 0.137 0.033 —0.004
RRMSEP 1 0.098 0.467 0.142 0.325 0.204 0.207
4 0.087 0.830 0.082 0.566 0.144 0.256
16 0.093 1.149 0.073 0.776 0.119 0.365
RSD 1 0.091 0.424 0.133 0.322 0.193 0.207
4 0.052 0.783 0.081 0.562 0.140 0.256
16 0.047 1.078 0.073 0.764 0.115 0.365

The upper part presents the bias of é,- and the MSEP of é,-, where as the lower part represents the relative
bias, the relative root mean squared error and the relative standard deviation of estimated MSEP. The
proposed method and the method of Wang and Fuller are abbreviated as I and 11, respectively.

RB, relative bias; MSEP, mean squared error of prediction; RRMSEDP, relative root mean squared error of
prediction; RDS, relative standard deviation.

Table 5. Results of the simulation study when n = 180 and m = 40

2=10.5 2=1 2=4
o} I 11 I 11 I II
Performance of the point predictor
Bias 1 0.001 0.001 0.002 0.002 0.000 0.000
4 0.000 0.001 0.000 0.000 0.002 0.001
16 0.000 0.000 0.003 0.004 0.002 0.002
MSEP 1 0.352 0.374 0.514 0.531 0.808 0.813
4 0.473 0.487 0.831 0.852 2.043 2.064
16 0.517 0.514 0.972 0.976 3.267 3.296

Performance of estimated MSEP

RB 1 0.005 0.119 0.031 0.053 0.057 0.007
4 —0.006 0.195 0.010 0.081 0.017 0.009
16 —0.007 0.245 0.018 0.115 0.015 0.016
RRMSE 1 0.079 0.383 0.120 0.230 0.194 0.190
4 0.036 0.578 0.058 0.332 0.122 0.158
16 0.026 0.685 0.042 0.413 0.072 0.177
RSD 1 0.078 0.364 0.116 0.224 0.185 0.190
4 0.035 0.544 0.057 0.322 0.121 0.158
16 0.025 0.640 0.038 0.397 0.070 0.176

The upper part presents the bias of é,- and the MSEP of é,- , whereas the lower part represents the relative
bias, the relative root mean squared error and the relative standard deviation of estimated MSEP. The
proposed method and the method of Wang and Fuller are abbreviated as I and II, respectively.

RB, relative bias; MSEP, mean squared error of prediction; RRMSEP, relative root mean squared error of
prediction; RDS, relative standard deviation.
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fori = 1,---,n, where E {A@ ,-} was estimated empirically as the average of values of

MSEP i over 10 000 replications. The M SEP;’s are as defined earlier and whose values are

given in the top half part in Tables 2-5. The relative root MSE of the MSEP estimator was
taken to be

1

e 272

[E {MSEPi - MSEPi} ]

RRMSEP; = VSEP ,
i

fori = 1,---,n. We also report the ‘relative standard deviation’ (RSD) of MSEP estimators,

and it is defined as RSD = [Var(AﬁE\P]'S /MSEP = [RRMSEP? — RB?]>. Note that
this is not exact definition of coefficient of variation, but are meant to compare the RB relative
with relative root MSE. Thanks to the reviewer for suggesting this measure. The MSEP, as
calculated here, is unconditional because it is not clear how to compute a conditional MSEP.

The RB of MSEP estimators under the proposed method are generally less than that of
method II except the case when 2 = 4 and 01.2 = 1 (high model variance, low sampling
variance). Note that, in this case, the regression model is less reliable. The proposed method
might have low underestimation (about 8%) in case of n = 36. On the other hand, method II
can have very large overestimation which could be as large as 47% for small n and high ratio
of sampling variance to model variance. This kind of overestimation was also noted by Rivest
& Vandal (2003) when model parameters are estimated by methods of moments. Apparently,
this characteristic depends on the number of small areas instead of within area sample sizes.
In terms of relative root MSE of MSEP, the proposed method outperforms method II. The
RSDs of MSEP estimators under the proposed method are also lower compared with that of
method II, indicating more stability of our MSEP estimators. The gain is significant in most
cases except the case with high model variance compared with sampling variance. Again, in this
case, model is generally less reliable. The decreasing values of the RB and the relative root MSE
with increasing sample size indicate consistency properties of the proposed MSEP estimators.

Rivest & Vandal (2003) extended the Prasad—Rao MSEP estimators when the direct area
variances are estimated and compared their biases when the estimation of sampling variances
is accounted for versus when it is not. For the sake of completeness, we report the equation
here with the notations used in this paper. Equation (2.7) of Rivest & Vandal (2003) is

A 5?22 S4zT f-17; SAVar (32) + 245,
msepRrg (9;‘) = — TAZ Lt 2l +2-1L ar (¢ )+3T Vi
STHE (5249 (7 +7)

where 7; is an estimator of y; = 20/(n; — 1), A= Y; Z; ZI'/ (S? + ?) and Var (¢?) is an
estimator of the variance of 2. Note that, the Prasad—-Rao MSEP estimators can be obtained
by plugging in y = 0 in this equation.

As pointed out by a referee, it may be interesting to see the performance of Prasad—Rao
MSEP estimators in the context of our simulation set-up. We computed the Prasad-Rao MSEP
estimates under the following ways: (i) use true aiz, but estimate B and t2 as described in Rivest
& Vandal (2003); (ii) replace o7 by the direct estimate S7, but estimate 8 and 2 as described
in Rivest & Vandal (2003); and (iii) estimate 07, 8 and 2 as described in Section 3. Note that
the shrinkage estimate of al.z is used in case (iii). The maximum underestimation occurs when
(m.n.7%,07) = (9.36,4,16), and they are —5%, —15% and —14% for cases (i), (ii) and (iii),
respectively. Thus, the Prasad—Rao MSEP estimators perform much better when the actual
sampling variance is known compared with the situation when it is estimated. Note that in this
scenario, our method does not have any underestimation. The RB is 3.8% . This fact supports
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that our method is effective when the sampling variances are unknown and only their direct
estimates are available.

6. Concluding remarks

In this article, we have considered joint modelling of mean and variances for the well-known
Fay-Herriot model. We derived the formula for prediction error by asymptotic expansion. The
method is computationally less intensive compared with resampling-based or Markov chain
Monte Carlo-based full Bayesian approach. Our approach does not need any prior specifica-
tions. The code is developed using the software R and is available upon request. In principle,
the proposed techniques of prediction error calculation could be useful to obtain prediction
errors for high-dimensional data analysis. For example, Hwang et al. (2009) used a veriant of
this model for analysing microarray gene expression data.
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