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ABSTRACT. Functional data analysis has become an important area of research because of its
ability of handling high-dimensional and complex data structures. However, the development is
limited in the context of linear mixed effect models and, in particular, for small area estimation. The
linear mixed effect models are the backbone of small area estimation. In this article, we consider
area-level data and fit a varying coefficient linear mixed effect model where the varying coefficients
are semiparametrically modelled via B-splines. We propose a method of estimating the fixed effect
parameters and consider prediction of random effects that can be implemented using a standard
software. For measuring prediction uncertainties, we derive an analytical expression for the mean
squared errors and propose a method of estimating the mean squared errors. The procedure is
illustrated via a real data example, and operating characteristics of the method are judged using
finite sample simulation studies.
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1. Introduction

The word ‘small area’ or ‘small domain’ generally defines a sub-population in a small geograph-
ical region or by age–sex–race categorized within a large population. The parameter of interest
could be the total or mean of a variable of interest for the sub-populations. The need for reli-
able small area estimates is felt by many agencies, both public and private, for making useful
policy decisions, for example, the small area statistics being used to monitor socio-economic
and health condition for different age–sex–race groups or the pattern over small geographical
areas. Thus, the small area estimation and the statistical techniques therein have become a topic
of growing importance in recent years. The aim of this paper is to propose a method of esti-
mating the sub-population mean and estimating the corresponding mean squared error (MSE)
using a varying coefficient model based on aggregated data.

It is now widely recognized that the direct survey estimates for small areas are usually
unreliable, being accompanied with large standard errors and large coefficients of variations.
Therefore, it is necessary to use models, either explicit or implicit, to connect the small areas,
and to obtain estimates of improved precision by ‘borrowing strength’ from related areas. This
estimation is usually performed by using shrinkage estimators where the direct survey estimates
are shrunken towards the regression mean. The technique can also be viewed as a smoothing
technique where regression is being used as the smoother. The survey-based direct small area
estimates and their variance estimates are the main ingredients to build aggregate-level small
area models. Typical modelling strategy assumes that the sampling variances are known while
a suitable linear regression model is assumed for the means. The fundamental of small area
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estimation can be found in the works of Ghosh & Rao (1994), Pfeffermann (2002), Rao (2003)
and Datta & Ghosh (2012).

While most research in small area estimation is focused on cross-sectional data, there are
many surveys that are repeated over time. Therefore, intuitively, more precise small area esti-
mates can be obtained by borrowing information not only across small areas but also across
time. Previous research on small area estimation by combining cross-sectional and time series
data includes Pfeffermann & Burck (1990), Rao & Yu (1994), Ghosh et al. (1996), Datta et al.
(1999), Datta et al. (2002) and Bell (2012). These research extended the linear parametric mod-
els developed for cross-sectional data to accommodate time series nature of data by modifying
the area-specific random effect assumption. The modifications are generally adding an area
adjusted time-specific random effects with a simple time series model, such as an AR(1) or a
random walk model. However, none of these articles considered varying coefficient models in
the context of small area estimation.

The purpose of this article is to develop functional regression models for small area esti-
mation that combines time series and cross-sectional data. Functional data is an active area
of research for analysing high-dimensional data. Typically, a functional data consists of sev-
eral functions or curves sampled on a fine grid. Functional models are well suited when the
regression surfaces are not easy to express in a simple parametric form. This technique has
been increasingly popular for growth curve models and longitudinal data analysis. One of the
aspects of functional data analysis is to combine multiple observations across the curves. This
is in spirit of small area estimation methodology where we combine information across areas,
and an area, in our context, is represented by a curve observed at multiple time points. Thus,
this article is connecting functional data analysis to small area estimation research.

In real small area applications, the data are recorded in some prespecific discrete time points
despite being outcome of a (approximated) continuous time process. For example, consider the
unemployment data that are usually reported quarterly or monthly. However, the actual process
changes in much finer timescale. The top left part of Fig. 1 shows the quarterly unemployment
rate for all the US states over a period from 2001 to 2011. For policymaking, an interest could
be estimating the state profiles of quarterly unemployment rates. The figure indicates that (i) the
statewise quarterly unemployment rate profiles are not linear and (ii) there is a variation among
the curves and also among the state averages over time, and these are common characteristics
of functional data. For a general description and the methodology of functional data analysis,
we refer to Ramsay & Silverman (2005), Ferraty & Vieu (2006) and Guo (2002). Additionally,
Morris & Carroll (2006) provided an excellent review of functional regression in the context of
linear mixed models.

Our approach is to consider a varying coefficient linear regression model for each area.
Within an area, the regression coefficients are assumed to be a smooth function of time. Hoover
et al. (1998) introduced the idea of varying coefficient linear regression model, and it is a spe-
cial case of functional linear model as discussed in the work of Ramsay & Silverman (2005).
In our context, the curves over different small areas are combined through random effects to
borrow strength. Our random effects distribution is more general and flexible compared with
that used in existing small area estimation literature. In particular, our model can handle a gen-
eral stationary covariance function, which includes AR(1), heteroskedastic AR(1) or random
walk models.

In the functional data context, we first reduce the dimension of the curves (varying coeffi-
cients) by approximating them using a semiparametric method. There are several approaches
to approximate the curves semiparametrically. For example, Ramsay & Silverman (2005) and
Guo (2002) used smoothing splines, and Morris & Carroll (2006) used wavelet basis. However,
we model the curves as a linear combination of B-spline basis functions for flexible smoothing,
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and these basis functions are computationally more stable (Eilers & Marx, 1996). The semi-
parametric modelling is not common in small area estimation context, although the approach
is quite popular in other areas of statistics. Opsomer et al. (2008) used a penalized regression
splines for small area estimation in the context of cross-sectional data. Their model is a semi-
parametric extension of the Battese, Harter & Fuller (1988) model. Briefly, they modelled the
mean of the response conditional on the covariate using a penalized regression model. Unlike
ours, they considered neither the time-course data nor a combination of time-series and cross-
sectional data. Finally, but most importantly, we derive an analytical expression for the MSE
of prediction and derive a consistent estimator of this MSE. In this context, we deduce sev-
eral theoretical results that are new in the context of functional data analysis and small area
estimation. Note that Das et al. (2004) derived theoretically valid mean squared prediction
error under a general linear mixed model. However, our theoretical results cannot be directly
derived from Das et al. (2004), as the parameter characteristics in our model are different
compared with standard linear mixed models and consequently the model estimation requires
separate theoretical developments. Some of the other recent non/semiparametric small area
estimation research includes Pratesi et al. (2008), Salvati et al. (2010, 2011), Giusti et al. (2012),
Ugarte et al. (2009) and Militano et al. (2012). However, our approach is different from these
works in terms of implementation and theoretical validation.

The remainder of the paper is organized as follows. Section 2 contains the functional linear
small area models with flexible covariance structure. Section 3 contains the proposed method of
estimation, while prediction and MSE calculations are collected in Section 4. The finite sample
performance of the proposed method is judged via simulation studies, and the details are given
in Section 5. Section 6 contains a real data example followed by a discussion given in Section 7.
All technical details are collected to an online supporting information.

2. Models and assumptions

Let ¹Yi .tj /; Xi1.tj /; : : : ; Xip.tj /º be the observed data at time points t1; : : : ; tm 2 Œ0; �� and
for i D 1; � � � ; n. Here, Y denotes the response, and X ’s denote the covariates. In the small area
context, i stands for area, and tj ’s are time points when the response variable and covariates
are observed. Our proposed model is

Yi .t/ D ˇi0.t/C

pX
kD1

Xik.t/ˇik.t/C �i .t/; (1)

where ˇi0.t/ is the time-varying intercept and ˇi1.t/; : : : ; ˇip.t/ are the time-varying regression
coefficients for the p time-varying covariates. Most models in small area estimation assume a
constant slope parameter with respect to time and space except Pfeffermann & Burck (1990)
who considered a general state-space model for the regression coefficients. However, their
model is fully parametric and for discrete time points, and thus, it is not applicable in our
functional regression context. Following the mixed model literature, we break the regression
coefficients as

ˇi0.t/ D ˇ0.t/C Ui0.t/; ˇik.t/ D ˇk.t/C Uik.t/; k D 1; : : : ; p;

where ˇk.t/ is the deterministic component of the area-specific function ˇik.t/, capturing the
common mean, and Uik.t/ are the area-specific time-varying random effects, measuring the
deviation from the common mean, for k D 0; 1; : : : ; p. Here, �i .t/ denotes the sampling error
associated with area i; i D 1; : : : ; n. This type of break-up (one deterministic and one random)
is commonly used in shrinkage estimation (Datta & Ghosh, 2012) and in related applica-
tions, like in geostatistics (Cressie & Wikle 2011). Following the standard customs (Rao, 2003),
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we assume that .�i .t1/; : : : ; �i .tm// follows an m-variate normal distribution with mean zero
and known covariance�i . The random effect Uik.t/ is assumed to be a Gaussian process with
mean zero and stationary covariance function cov¹Uik.t/; Uik.s/º D †uik.jt � sj/. In this
paper, we assume †uik.jt � sj/ is independent of i and known up to a .q C 1/-dimensional
parameter vector �k . Hence, we write the covariance function as †uk WD †k.jt � sjI �k/ D

 kAm.�k/, for k D 0; 1; : : : ; p with �k D
�
 k ; �

T
k

�T
, where  k is a scalar and �k is a q-

dimensional vector, and Am is a correlation matrix. This structure of the covariance is quite
general. For example, a commonly used isotropic covariance function is the exponential func-
tion with †k.t I �k/ D  exp.��t/, where �k D . ; �/T , and this covariance function can be
written as the product of variance function and correlation functions. Recently, Bell (2012)
mentioned several parametric models for the covariance matrix †k.t I �k/ in the context of
multivariate random intercept Fay–Herriot model that includes the stationary AR(1), het-
eroskedastic AR(1) and random walk AR(1) processes, and these covariances are special cases
of our general covariance function.

3. Estimation methodology

Note that in the small area estimation, the main interest is in prediction of small area-specific
parameters, which in turn requires prediction of random effects and estimation of the deter-
ministic functional regression coefficients ˇ0.�/; ˇ1.�/; : : : ; ˇp.�/. Our objective is to develop
a method that can exploit the well-established linear mixed model machinery and hence will
be simple from practitioners’ perspective. We assume that the regression functions belong to
a normed space of continuous functions with finite .d � 1/th derivatives. This assumption
allows us to write ˇ0; ˇ1; : : : ; ˇp as a linear combination of several d th-degree B-spline basis
functions, that is,

ˇk.t/ D

LX
`D1

B`;d .t/bk`; k D 0; 1; : : : ; p;

where B1;d .�/; : : : ; BL;d .�/ are L B-spline bases based on L knot points .�1 � �2 : : : � �L/.
The d th-degree spline basis is defined as B`;d .t/ D .t � �`/B`;d�1.t/=.�`Cd�1 � �`�1/ C

.�`Cd � t /B`C1;d�1.t/=.�`Cd � �`/, and B`;0.t/ D I.t 2 .�`�1; �l �/. Then writing
bk D .bk1; : : : ; bkL/

T , for k D 0; 1; : : : ; p,Z.0/
i
.t/ D .B1;d .t/; : : : ; BL;d .t//

T , andZ.k/
i
.t/ D

.B1;d .t/Xik.t/; : : : ; BL;d .t/Xik.t//
T , k D 1; : : : ; p, model (1) becomes

Yi .t/ D

pX
kD0

bTk Z
.k/

i
.t/C Ui0.t/C

pX
kD1

Xik.t/Uik.t/C �i .t/: (2)

In order to avoid subjective choice of the knot points, usually moderately large number of knot
points are chosen within Œ0; ��. Then the parameters bk`; ` D 1; : : : ; L; k D 0; 1; : : : ; p are
estimated by maximizing a penalized likelihood to avoid overfitting. The main idea is that the
regression functions should be smooth, meaning one should associate a penalty for large cur-
vature that is measured via .�2bk/T .�2bk/, for the kth coefficient, ˇk.t/, where�2 represents
the matrix of the second-order finite differences (Eilers & Marx, 1996). In particular, the lth
row of �2bk is bk.lC2/ � 2bk.lC1/ C bkl , for l D 1; : : : ; .L � 2/. We shall denote the penalty
corresponding to ˇk.t/ by 	2

bk
. Now, we write the entire model in the linear mixed effect model

framework.
For this purpose, we introduce some notations. Let�T

2
�2 D VSV

T , where V is a matrix of
the orthonormal eigenvectors of �T

2
�2 and S is a diagonal matrix containing the eigenvalues
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of �T
2
�2 along the diagonal. Particularly, write S D Diag.
L1 ; 
L2/, where 
L1 represents

the L1 large (non-zero) eigenvalues and V D .VL1 ; VL2/ is the partition corresponding to

.
L1 ; 
L2/withL1CL2 D L. Define Y D
�
Y T
1
; : : : ; Y Tn

�T
, where Yi D .Yi .t1/; : : : ; Yi .tm//T ;

ZF D
�
ZT
F1
; : : : ; ZT

Fn

�T
, where ZFi D .ZFi .t1/; : : : ; ZFi .tm//

T , ZFi .tj / D
�
Z
.0/

i

T
.tj /

VL2 ; Z
.1/

i

T
.tj /VL2 ; : : : ; Z

.p/

i

T
.tj /VL2

�T
; bF D

�
bT
0
VL2 ; b

T
1
VL2 ; : : : ; b

T
p VL2

�T
; W D .ZR;

M0;M1; : : : ;Mp/, where ZT
R
D

�
ZT
R1
; : : : ; ZT

Rn

�
, ZRi D .ZRi .t1/; : : : ; ZRi .tm//

T , ZRi

.tj / D
�
Z
.0/

i

T
.tj /VL1 ; Z

.1/

i

T
.tj /VL1 ; : : : ; Z

.p/

i

T
.tj /VL1

�T
, M0 D Imn, Mk D Diag�

XT
1k
; : : : ; XT

nk

�
, k D 1; : : : ; p; � D

�
bT
R
; UT
0
; UT
1
; � � � ; UTp

�T
, where bR D

�
bT
0
VL1 ;

bT
1
VL1 ; : : : ; b

T
p VL1

�T
, Uk D

�
UT
1k
; : : : ; UT

nk

�T
, UT

ik
D .Uik.t1/; : : : ; Uik.tm//; and ‡ D�

�T
1
; : : : ; �Tn

�T
, where �i D .�i .t1/; : : : ; �i .tm//

T , for i D 1; : : : ; n. Then we can rewrite the
model as

Y D ZF bF CW� C‡; (3)

where E.‡/ D 0, cov.‡/ D Diag.�1; : : : ; �n/, and E.�/ D 0;G D cov.�/ D Diag .cov

.bR/; In ˝†u0; : : : ; In ˝†up/, cov.bR/ D Diag
�
	2
b0

Diag.
�1
L1
/; : : : ; 	2

bp
Diag

�

�1
L1

��
.

Thus, cov.Y / � † D †.ı/ D Diag.†1.ı/; : : : ; †n.ı//, where †i D †i .ı/ D ZFi

cov.bR/ZTFi C cov.Ui0/ C
Pp

kD1
Diag.Xik/ cov.Uik/Diag.Xik/ C �i for i D 1; : : : ; n.

For identifiability of cov.Ui0/, the covariance �i has to be known. Here, ı D�
	2
b0
; 	2
b1
; : : : ; 	2

bp
;  0; : : : ;  p; �

T
0
; : : : ; �Tp

�T
includes all the variance component parameters

of †. The variance components  D . 0; : : : ;  p/
T and � D

�
�T
0
; : : : ; �Tp

�T
are model-

induced variance components due to the covariance of .Ui0; : : : ; Uip/T , whereas the variance

components
�
	2
b0
; 	2
b1
; : : : ; 	2

bp

�
are the penalties for B-splines.

Because (3) represents a linear mixed model, the generalized least square estimator for the
fixed effects bF and the best linear unbiased predictors (BLUP) of the random effects are

bbF .ı/ D ®ZTF†�1.ı/ZF ¯�1ZTF†�1.ı/Y;bbR.ı/ D cov.bR/ZR†�1.ı/¹Y �ZFbbF .ı/º;bUk.ı/ D cov.Uk/Mk†�1.ı/¹Y �ZFbbF .ı/º; k D 0; 1; : : : ; p;b�.ı/ D GW T†�1.ı/.Y �ZFbbF /:

9>>>>=>>>>; (4)

To simplify notations, we will suppress the dependence on ı in the previous expressions. Note
that the aforementioned estimators and the predictors involve †, a function of unknown ı.
The variance components ı are estimated by restricted maximum likelihood method, that
is, by maximizing L.ı/ D j

Pn
iD1Z

T
Fi
†�1
i
ZFi j

�1=2
Qn
iD1 j†i j

�1=2 exp¹�.1=2/
Pn
iD1.Yi �

ZFbbF /T†�1i .Yi � ZFbbF /º with respect to ı. The estimated variance componentsbı are then

plugged into (4) to obtainbbF .bı/;bbR.bı/, bUk.bı/ andb�.ı/.
Remark 1. Knot selection is an important practical issue in this procedure. Many heuris-
tic procedures are suggested in literature that often work well in many applications. Ruppert
et al. (2003) noted that automatic knot selection could be complicated and computation-
ally intensive. One of their recommendations for a non-parametric regression of Y on X is
to choose the knots on quantile points of X ’s with the approximate number of knots being
L D min.0:25 � number of unique X; 35/.
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4. Prediction and prediction error

4.1. Point prediction

Our objective is to predict Y i .tm/, the i th area mean at time point tm conditional on the
random effects, and

Y i .tm/ D Z
T
Fi .tm/bF CZ

T
Ri .tm/bRCUi0.tm/C

pX
kD1

Xik.tm/Uik.tm/ WD Ql
T bF C Qm

T �;

where QlT D ZT
Fi
.tm/ and QmT D

�
ZT
Ri
.tm/; e

T
im;0

; eT
im;x1

; : : : ; eT
im;xp

�
, with eim;0 being an

mn � 1 column vector of zeros but the .im/th component is 1, and eim;xj being an mn � 1
column vector of zeros but the .im/th component isXij .tm/, for j D 1; : : : ; p. Then the BLUP
for Y i .tm/ is bYi .tmI ı/ D QlTbbF .ı/C QmTb�.ı/, and the estimated BLUP (EBLUP) is bYi .tmIbı/.
The estimatorsbbF .ı/;b�.ı/ andbı are defined in the previous section.

4.2. Asymptotic expression for the mean squared error

Assessing the uncertainty of the EBLUP under the linear mixed model is a challenging task.
It is well known that there is no closed-form expression for the MSE of the EBLUP. Prasad &
Rao (1990), Das et al. (2004), Kackar & Harville (1984) and Booth & Hobert (1998) among
others derived the asymptotic expressions for the MSE under parametric models. To simplify
the notations, we define the BLUP estimator of Y i .tm/ as t . Oı/ D bYi .tmI Oı/. Next, we break up
the MSE of t .bı/ (Kackar & Harville, 1984) as

MSE
°
t .bı/± D E °t .bı/ � Y i .tm/±2 D E ®t .ı/ � Y i .tm/¯2 CE °t .bı/ � t .ı/±2 : (5)

The first term on the right-hand side of (5) could be obtained by direct calculation using the
moments of the multivariate normal distribution. One of the key steps in obtaining the asymp-
totic expression for MSE in (5) is to establish an approximation of E¹t .bı/ � t .ı/º2 using the
first-order Taylor expansion of t .bı/ around ı. Namely, under some regularity conditions, we
wish to establish

E
°
t .bı/ � t .ı/±2 D E ²@t.ı/

@ı

�bı � ı�³2 C o �n�1� : (6)

Theorem 3.1 in the work of Das et al. (2004) provides a general approximation of the expres-
sion (6) for the MSE of empirical BLUP in a linear mixed effect model. Unfortunately, we
are not able to apply their result, because some of the regularity conditions in their theo-
rems do not hold in our model. In particular, we observe that bYi .tm; ı/ can be written asbYi .tm; ı/ D Pn

kD1

Pm
jD1 akjYk.tj / C

Pn
kD1

Pm
jD1 �kjYk.tj /, where .ak1; : : : ; akm/ D

QlT
�Pn

kD1Z
T
Fk
†�1
k
ZFk

��1
ZT
Fk
†�1
k

, �T .ı/ D QmTGW T†�1 WD
�b�T
1
.ı/; � � � ;b�Tn .ı/�,

so that b�T
k
.ı/ D .b�k1; : : : ;b�km/ D ZT

Ri
.tm/cov.bR/ZTRk†

�1
k

for k ¤ i . If k D i ,b�T
i
.ı/ D

°
ZT
Ri
.tm/cov.bR/ZTRi C†

.m/
u0 C

Pp

jD1
Xij .tm/Œ†uj diag.Xij /�.m/

±
†�1
i

, where

Q.m/ denotes the mth row of a generic matrix Q. Now, condition (iii) of theorem 3.1 in the
work of Das et al. (2004) requires that

Pn
kD1

Pm
jD1 j@akj =@ıl j and

Pn
kD1

Pm
jD1 j@�ij =@ıl j

to be bounded, and they do hold if cov.bR/ D 0. In our case, cov.bR/ is not zero, and conse-
quently,

Pn
kD1

Pm
jD1 j@�ij =@ıl j is no longer bounded. Therefore, one of the key assumptions

of Das et al. (2004) does not hold here.
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For the asymptotic expressions, we introduce some notations. Let s D .p C 1/.q C 2/ be
the number of parameters in the variance component ı, and Vl D diag.Vl1; � � � ;Vln/, where
1 � l � s is the index of parameters and Vl is an mn �mn matrix. The i th .1 � i � n/ block
diagonal m �m matrix component of Vl is

Vli D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

Z
.l/

Ri
diag.��1L1 /Z

.l/T

Ri
for 1 � l � pC 1I

Am.�0/ for l D pC 2I
diag.Xil 0 /Am.�k/diag .Xil 0 / for pC 3 � l � 2.pC 1/

and k D l � .pC 2/I
@Am.�0/=@�0;l 0 for 2.pC 1/C 1 � l � 2.pC 1/C qI

and l 0 D l � 2.pC 1/I
diag.Xil 0 / .@Am.�k/=@�k;l 0 / diag .Xil 0 / for 2.pC 1/C .k � 1/qC 1 � l � 2.pC 1/C kq;

2 � k � pC 1 and l 0 D l � 2.pC 1/C .k � 1/q;

where Z.l/
Ri
D

�
Z
.l/

Ri
.t1/; : : : ; Z

.l/

Ri
.tm/

�T
is an m-dimensional column vector, �k;l 0 is the

l 0th component of �k and l 0 is used to index the components in the q-dimensional vari-
ance component vector �k . Define D D I � ZF

�
ZT
F
†�1ZF

��1
ZT
F
†�1 and P D †�1D.

Let r� D Œ@�.ı/=@ı1; : : : ; @�.ı/=@ıs �
T and  D A�1h, where l.ı/ D log¹L.ı/º, A D

E¹@2`.ı/=@ı2º D ¹�0:5tr.PVk1PVk2/º1�k1;k2�s is an s � s matrix and h D .hT
1
; : : : ; hTs /

T ,

hi D ¹Ql
T � �T .ı/ZF º

�
ZT
F
†�1ZF

��1
ZT
F
.@†=@ıi /D C ¹@�.ı/=@ıi ºD. Next, to establish (6)

for our model, we assume that the following regularity conditions hold.

(a) The elements of ZR and ZF are uniformly bounded, and n�1
Pn
iD1Z

T
Fi
†�1
i
ZFi D

Op.1/.
(b) The smallest and largest eigenvalues of †i , @†i=@ıj , @2†i=@ıj @ık ,

n�1
Pn
iD1Z

T
Fi
†�1
i
ZFi ; n

�1
Pn
iD1Z

T
Fi
.@†i=@ıj /ZFi and n�1

Pn
iD1Z

T
Fi

�
@2†i=

@ıj @ık
�
ZFi are uniformly (for all 1 � i � n) bounded away from 0 and infinity.

(c) Am.�k/ has bounded second derivatives with respect to �k;l 0 for 1 � l 0 � q.
(d) The eigenvalues 
�1

L1
D o.n�1=2/.

Condition (a) is similar to the condition given in the work of Prasad & Rao (1990). Condition
(b) can be easily satisfied because all the matrices are of fixed m �m dimension. Condition (c)
is a mild condition on smoothness of Am.�k/ with respect to the parameters in �k . Condition
(d) is used to guarantee that the higher-order terms in the Taylor expansion in (5) are of order
o.n�1/. In lemma 4 in the Supporting Information, we establish (6) under conditions (a)–(d).
This result is one of the key steps in proving the following theorem that summarizes the MSE
of t .bı/.
Theorem 1. Under conditions (a)–(d), the MSE of the predictor t .bı/ D bYi .tm;bı/ is

MSE
°
t .bı/± D g1.ı/C g2.ı/C g3.ı/C g4.ı/C o �n�1� ; (7)

where g1.ı/ D QmT .G � GW T†�1WG/ Qm; g2.ı/ D . Ql � ZT
F
†�1WG Qm/T�

ZT
F
†�1ZF

��1 � Ql �ZT
F
†�1WG Qm

�
; g3.ı/ D �tr .r�†r�TA�1/ and g4.ı/ D

4
Ps
jD1

Ps
lD1 

T
j
†.PVjPVlP C PVlPVjP /†l .

Note that this MSE expression is different from those derived for the longitudinal model
(Prasad & Rao, 1990; Datta & Lahiri, 2000). There are two important differences. First, unlike
longitudinal models, all areas share the same random effects bR. Then, W in (3) cannot be

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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written as a block diagonal matrix (Prasad & Rao, 1990; Datta & Lahiri, 2000), and conse-
quently, the coefficient vector �.ı/ corresponding to the random effects in the prediction is no
longer a sparse vector. By sparsity of a vector, we refer to the scenario where many components
are 0 and only a few of them are non-zero. Sparsity of �.ı/ is crucial in showing that the g4.ı/
is a smaller order of n�1 (see Prasad & Rao, 1990, and the proof in their Appendix). Second,
unlike the assumptions made in previous work (Datta & Lahiri, 2000; Das et al., 2004), the
variance components in G are not linear in parameters �0; : : : ; �p . Now, we outline the main
steps in the proof of Theorem 1.

Proof of theorem 1: Using a standard computation (Das et al., 2004), we have MSE¹t .ı/º D
g1.ı/C g2.ı/. Combining with (5), we obtain

MSE
°
t .bı/± D g1.ı/C g2.ı/CE °t .bı/ � t .ı/±2 : (8)

Next, using lemmas 3 and 4 given in the Supporting Information, E¹t .bı/ � t .ı/º2 D

E
h
¹@t.ı/=@ıº

�bı � ı�i2 C o �n�1� D E
°
hT .bı � ı/±2 C o �n�1� D E

�
hTA�1a

�2
C o

�
n�1

�
,

where h and A are defined before, a D @`.ı/=@ı WD .a1; � � � ; as/
T with ai D @`.ı/=@ıi D

.1=2/
®
�TPViP� � tr.PVi /

¯
and � D Y � ZF bF . Therefore, by lemma A.2 in Prasad & Rao

(1990), we know

E
�
hTA�1a

�2
D �tr

�
h†hTA�1

�
C 4

sX
jD1

sX
lD1

Tj †
�
PVjP†PVlP C PVlP†PVjP

�
†l

D �tr
�
h†hTA�1

�
C g4.ı/: (9)

Notice that hj D h
.0/

j
C @�.ı/=@ıj , where h

.0/

j
D

°
QlT � �T .ı/ZF

± �
ZT
F
†�1ZF

��1
ZT
F
.@†=@ıj /D � ¹@�.ı/=@ıj ºZF

�
ZT
F
†�1ZF

��1
ZT
F
†�1. By condition (b), it can be seen

that each element in ZF
�
ZT
F
†�1ZF

��1
ZT
F

is of order n�1. Because † is a block diagonal

matrix with finite-dimensional blocks, all the elements in ZF
�
ZT
F
†�1ZF

��1
ZT
F
†�1 are of

order n�1, and D is a matrix with all the off-diagonal elements at the order of n�1. By con-
dition (d), we know each element in �.ı/ is of order o.n�1=2/. It then can be shown that each
element in h.0/

j
.ı/ are o.n�1=2/. Then tr .h†hTA�1/ D tr

�
r�†r�TA�1

�
C o

�
n�1

�
D

g3.ı/C o.n
�1/, and combining (8) and (9), we obtain (7).

4.3. Estimation of the mean squared error

Because the approximated MSE (7) is a function of unknown parameters ı, it is not com-
putable. The seminal work of Prasad & Rao (1990) showed that simply plugging in a consistent
estimator bı in place of ı may produce an underestimated MSE. Therefore, in the following
theorem, we state how to consistently estimate the MSE.

Theorem 2. Under conditions (a)–(d), the MSE MSE¹t .bı/º can be estimated by

eMSE
°
t .bı/± D g1 �bı �C g2 �bı �C 2g3 �bı �C g4 �bı � ;

and the bias of eMSE¹t .bı/º in estimating MSE
°
t .bı/± is a smaller order of n�1, which means

E
h
eMSE¹t .bı/ºi DMSE

°
t
�bı �±C o �n�1�.

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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Note that this approximation is based on the number of curves rather than the number of
times points where the data were observed. This second-order correction often has a significant
impact in real applications as shown in the work of Rao (2003).

Proof of theorem 2: Letbı be the REML estimate. From lemma 3 given in the Supporting Infor-
mation, we know thatbı� ı D �A�1aCop.n�1/: The Taylor series expansion of g1.bı/ around
ı gives

g1

�bı � D g1.ı/C �bı � ı�T rg1.ı/C 1

2
tr
²�bı � ı� �bı � ı�T Hg1.ı/³CR.ı�/; (10)

where R.ı�/ D 0:5tr
²�bı � ı� �bı � ı�T �Hg1³, �Hg1 D Hg1.ı

�/ � Hg1.ı/, kı
� � ık �

kbı� ık, andHg1 is the second derivative of g1 with respect to ı. We want to show that R.ı�/ is
of order op

�
n�1

�
: Let �T .ı/ D QmTGW . Then the .i; j /th component of the second derivative

of g1.ı/ is

H ijg1 D
@2g1.ı/

@ıi@ıj
D QmT

@2G

@ıi@ıj
Qm � 2

@2�T .ı/

@ıi@ıj
†�1�.ı/ � 2

@�T .ı/

@ıi
†�1

@�.ı/

@ıj

C 2
@�T .ı/

@ıi
†�1

@†

@ıj
†�1�.ı/C 2

@�T .ı/

@ıj
†�1

@†

@ıi
†�1�.ı/

� 2�T .ı/†�1
@†

@ıj
†�1

@†

@ıi
†�1�.ı/C �T .ı/†�1

@2†

@ıj @ıi
†�1�.ı/ WD K1 C : : :CK7:

Because bı � ı D Op.n
�1=2/ and tr¹.bı � ı/.bı � ı/T�Hg1º D Ps

iD1

Ps
jD1.

bıi � ıi /.bıj �
ıj /�H

ij
g1 , where �H ijg1 is the .i; j /th element of �Hg1 ; we want to show that j�H ijg1 j �

Ckbı � ık: Let K�
l

denote the corresponding Kl evaluated at ı�. Then we know that j�H ijg1 j �P7
lD1 jK

�
l
� Kl j. In the Supporting Information, we show that jK�

l
� Kl j � Ckı

� � ık for
l D 1; : : : ; 7. Therefore,

E

�
tr
²�bı � ı� �bı � ı�T �Hg1³� � sX

iD1

sX
jD1

Ej
�bıi � ıi� �bıj � ıj� jj�H ijg1 j

� C

sX
iD1

sX
jD1

Ej
�bıi � ıi� �bıj � ıj� jkbı � ık D o �n�1� :

From (10), we haveE
°
g1.bı/± D g1.ı/C.1=2/tr °var

�bı�Hg1.ı/±Co �n�1� D g1.ı/�g3.ı/C
o.n�1/: Next, we would like to show that

E
°
g2.bı/± D g2.ı/C o �n�1� : (11)

Again, by Taylor’s expansion of g2.bı/ around ı, we have g2.bı/ D g2.ı/C¹@g2.ı�/=@ıº.bı� ı/,
where kı� � ık � kbı � ık. The first derivative of g2.ı/ is

@g2.ı/

@ıi
D 2

²
Ql �ZTF

@�.ı/

@ı

³T �
ZF†

�1ZF
��1 °Ql �ZTF �.ı/±

C
°
Ql �ZTF �.ı/

±T �
Z0F†

�1ZF
��1

ZTF†
�1 @†

@ıi
†�1ZF

�
ZTF†

�1ZF
��1 °Ql �ZTF �.ı/± :

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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Because of j@g2.ı/=@ıi j D o.n�1=2/ and j@g2.ı�/=@ıi � @g2.bı/=@ıi j � Ckbı � ık; we have

ˇ̌̌̌
E

²
@g2.ı

�/

@ı
.bı � ı/³ˇ̌̌̌ � sX

iD1

ˇ̌̌̌
@g2.ı/

@ıi

ˇ̌̌̌
Ejbıi � ıi j¹1C o.1/º D o �n�1� :

Hence, we obtain (11). Next, consider g3.ı/. By the Taylor expansion, we have

g3.bı/ D g3.ı/C @g3.ı
�/

@ı

�bı � ı� ;
where kı� � ık � kbı � ık and

@g3.ı/

@ıi
D �tr

²
r�.ı/

ıi
†r�.ı/TA�1

³
� tr

´
r�.ı/†

r�.ı/

ıi

T

A�1

μ

� tr
²
r�.ı/

@†

@ıi
r�.ı/TA�1

³
C tr

²
r�.ı/†r�.ı/TA�1

@A

@ıi
A�1

³
:

Because the derivation for each terms in @g3.ı/=@ıi are similar, we only show the third term.
Let Alk be the .l; k/th component of A�1. Then

tr
²
r�.ı/

@†

@ıi
r�.ı/TA�1

³
D

sX
lD1

sX
kD1

@�T .ı/

@ık

@†

@ıi

@�.ı/

@ıl
Alk

D

sX
lD1

sX
kD1

nX
jD1

@�T
j
.ı/

@ık

@†j

@ıi

@�j .ı/

@ıl
Alk :

It can be shown that j
°
@�T
j
.ı�/=@ık

± °
@†�
j
=@ıi

±
¹@�j .ı

�/=@ılº �
°
@�T
j
.ı/=@ık

±
¹@†j =@ıi º

¹@�j .ı/= @ılºj � Ckbı � ık and jA�lk � Alk j � Ckbı � ık. Then jtr
°
r�.ı�/

.@†�=@ı�
i
/r�.ı/TA�

�1
±
j � jtr.r�.ı/.@†=@ıi /r�.ı/TA�1/j.1 C Ckbı � ık/. Similarly, the

other terms in @g3.ı�/=@ıi can be shown to be bounded. Notice that @g3.ı/=@ıi D o.n�1=2/.
Hence, jEŒ¹@g3.ı�/=@ıº .bı � ı/�j � EŒj ¹@g3.ı/=@ıi º .bı � ı/j¹1C o.1/º� D o.n�1/. Therefore,
E¹g3.bı/º D g3.ı/C o.n�1/. The proof for g4.bı/ is similar to that for g2 and g3 by noting that
@g4.ı/=@ıi D o.n

�1=2/, and the details are given in the Supporting Information. Therefore, it
can be shown that E¹g4.bı/º D g4.ı/C o.n�1/, and hence, the proof follows.

5. Simulation study

In this section, we conduct a simulation study to illustrate the performance of our new method
of estimation and compare it with some existing approaches.

Simulation design: We considered n D 32 small areas, and on each area, we observed
m D 16 timescaled observations. The data were generated from three designs, and for all
designs, the structure of the small area-specific errors remained the same. First, we simulated
i id X from Normal.0; 1/ distribution. Then, we generated responses based on the follow-
ing three designs: design 1: Yi .t/ D 2 C 2Xi .t/ C Ui0.t/ C Ui1.t/Xi .t/ C �i .t/; design 2:
Yi .t/ D ˇ0.t/ C ˇ1.t/Xi .t/ C Ui0.t/ C Ui1.t/Xi .t/ C �i .t/, with ˇ0.t/ D 2 cos.2�t=m/,
ˇ1.t/ D 0:4 for all t ; and design 3: Yi .t/ D ˇ0.t/C ˇ1.t/Xi .t/C Ui0.t/C Ui1.t/Xi .t/C �i .t/
with ˇ0.t/ D ˇ1.t/ D 2 sin.1:5�t=m/. Here, the time variable t takes on values 1; : : : ; m. For all

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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three designs, we took .Ui0.1/; : : : ; Ui0.m//T
iid
� Normalm.0;†0/, .Ui1.1/; : : : ; Ui1.m//T

iid
�

Normalm.0;†1/, with †0 D †1 D  0Am.0:1/, and the .j; k/th element of Am.�/ is defined
as �jj�kj, j; k D 1; : : : ; m. Here, Normalm denotes an m-variate normal distribution. We set

 0 D 0:1 and took �i .t/ � Normal
�
0;
p
0:025

2
�

, i D 1; : : : ; 8, �i .t/ � Normal
�
0;
p
0:05

2
�

,

i D 9; : : : ; 16, �i .t/ � Normal
�
0;
p
0:1
2
�

, i D 17; : : : ; 24 and �i .t/ � Normal
�
0;
p
0:2
2
�

,

i D 25; : : : ; 32. Observe that we took four different error variances for four subsets of the small
areas; in particular, the ratio var¹�i .t/º= 0 is a non-decreasing function of i . We want to point
out the difference between the three designs. In design 1, the coefficients are not varying; in
design 2, the intercept is a time-varying function, while the slope is a constant; and in design 3,
both the intercept and the slope are time varying. This simulation study will be referred to as
scenario 1.

Method of analyses: We analysed the simulated data using the proposed method referred to
as method I, the following model referred to as method II (Rao & Yu, 1994)

´
Yi .t/ D �0 C �1Xi .t/C ai C ˛i .t/C �i .t/;

ai � Normal
�
0; �2a

�
; ˛i .t/ D �˛i .t � 1/C �i .t/; �i .t/

iid
� Normal

�
0; �2

�

�
; j�j < 1; t D 1; : : : ;m;

and using the following linear mixed model referred to as method III (Datta et al., 2002)

´
Yi .t/ D �0 C �1Xi .t/C ai C ˛i .t/C �i .t/;

ai � Normal
�
0; 	2a

�
; ˛i .t/ D ˛i .t � 1/C �i .t/; �i .t/

iid
� Normal

�
0; 	2

�

�
; t D 1; : : : ; m:

Additionally, we also considered direct survey estimates, and that is referred to as method
IV. In method I, and for all designs, we have used .2; 5; 8; 11; 14/ as the inner knot points
for the B-splines. Also, in the simulation and in the real data analysis, we have used cubic
.d D 3/ B-splines as they are the lowest degree splines with added flexibility at the end
points. The performance of these methods are judged via prediction and its accuracy. We
considered prediction of Y for four area indices i D 8; 16; 24; 32, selected from four dif-
ferent variance groups, and at time point m D 16. Our results are based on R D 500

replications. For the i th area, let bY r
i
.16/ be predicted value for Y

r

i .16/ at the rth replication
and the corresponding eMSE be denoted by eMSEri .16/, for r D 1; : : : ; 500. We com-
pare the performance of the methods based on the following statistics: absolute bias (AB),
absolute relative bias (ARB), coefficient of variation (CV), MSE, estimated MSE (eMSE),
relative bias of eMSE (RBeM) and 95 per cent coverage probability (CP), where AB D

.1=500/
P500
rD1 j

bY r
i
.16/ � Y

r

i .16/j, ARB D .1=500/
P500
rD1 j

°bY r
i
.16/ � Y

r

i .16/
±
=Y
r

i .16/j,

CV D .1=500/
P500
rD1

p
eMSEri .16/=bY ri .16/, MSE D .1=500/

P500
rD1.

bY r
i
.16/ � Y

r

i .16//
2,

RBeM D
°
.1=500/

P500
rD1 eMSEri .16/ �MSE

±
=MSE, CP D .1=500/

P500
rD1 I

°
Y
r

i .16/ 2
bY r
i

.16/˙ 1:96
p

eMSEri .16/
±

, where I denotes the indicator function. Additionally, each table

contains MSE2 D ¹g1.ı/C g2.ı/ºıDbı , to show the underestimation of uncertainty when ı is
unknown and is estimated from the data. Additionally, for assessing efficiency, in the tables, we
provide ratio of the MSE to the MSE of method I. Although Rao & Yu (1994) proposed a sep-
arate approach for estimating their variance components, in our simulations, we used the same
Restricted maximum likelihood (REML) approach for estimating variance components for all
three methods for a fair comparison. For method IV, Y r

i
.16/ was the direct survey estimator

for Y
r

i .16/, for r D 1; : : : ; 500, and var¹�i .16/º was used as the corresponding eMSE. Here,
Y r
i
.16/ denotes the observed data Yi .16/ in the rth replication.
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To implement the proposed method both in the simulation and in the real data analysis, we
have used R statistical software. In particular, the computation involves two steps, estimation
and MSE estimation. The key step of estimation is the estimation of the variance components
using an optimization routine. Once they are estimated, the other components are estimated
using (4). Next, for the MSE estimation, we write code for calculating g1.bı/, g2.bı/, g3.bı/ and
g4.bı/.

Results: Results given in Table 1 show that for designs 2 and 3 where at least one of the
two coefficients vary over time, the proposed method (I) generally outperforms the other two
approaches in terms of bias and MSE especially when var¹�i .t/º= 0 � 1. The maximum ARB
of point estimates for the proposed method is 13 per cent, whereas this is 33 per cent for method
II and 41 per cent for method III. While the maximum CV is 27 per cent for our method, this
is 43 per cent and 74 per cent for methods II and III. The maximum MSE for our method is
6 per cent, while this is 21 per cent for both the methods II and III. The gain is more promi-
nent when var¹�i .t/º= 0 is large, meaning that the small area models are more effective. On the
other hand, for design 1, method I is at least as good as the other two methods in terms of all
the statistics. Compared with methods I–III, usually method IV has larger bias and MSE. This
result is expected and is confirming the effectiveness of functional approach over existing linear
model-based approaches, and the direct survey estimators. Also, when var¹�i .t/º= 0 D 0:25,
there is a very high correlation between the model-based estimator and the direct estimator,
and that correlation decreases with var¹�i .t/º= 0. Furthermore, the results indicate the perfor-
mance of eMSE is very satisfactory in terms of relative bias of this estimator and the coverage
probability. Also, a close comparison between MSE2 and eMSE reveals that failure to con-
sider g3.ı/ and g4.ı/ in the MSE estimation results in underestimation of the uncertainty in
some cases.

To study the robustness of the proposed method towards a different variance structure of
Ui0 and Ui1, we simulated data using †0 D †1 D 0:2Jm C 0:1Am.0:1/, while the rest of
the design remain unchanged, and we shall refer it to as scenario 2. Here, Jm denotes an m �
m matrix with all entries are one. This was the variance structure of Rao & Yu (1994), and
this variance–covariance structure was different from the assumed structure in the proposed
method of analysis. The results presented in Table 2 show the supremacy of method I over the
other approaches for larger values of var¹�i .t/º= 0 even when the model assumption regarding
the variances of Ui0 and Ui1 is violated.

The simulation results clearly establish the effectiveness of the proposed method for small
area estimation when both cross-sectional and times series data are available.

6. Analysis of unemployment data

For the purpose of illustration of the proposed method, we present a secondary data anal-
ysis of the unemployment data. Unemployment rate analysis is currently a topic of interest
for policymaking. Monthly or quarterly unemployment data are often used for various socio-
economic benefits. From the Bureau of Labor Statistics website http://www.bls.gov/lau/, we
obtained monthly unemployment rate for 51 states including Hawaii, and Washington DC,
and excluding Puerto Rico from January 2001 to December 2011. We considered loga-
rithm of unemployment rate as the response variable. Then we transformed the data to
quarterly data by taking average of 3-month log-transformed unemployment rates and conse-
quently calculated the standard errors based on 3-month data. Because the proposed method
was developed under the assumption that the area-level error variance �i is known, the
quarterly average will be taken as the small area-specific estimate, and the corresponding
standard error will be considered as variance of �i .t/. By Yi .tj / we denote the transformed

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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unemployment rate for the i th state and for the j th quarter, j D 1; : : : ; 44, and i D 1; : : : ; 51.
We do not have any covariate in the data. For method I, we fit Yi .tj / D ˇi0.tj / C �i .tj /,
ˇi0.tj / D ˇ0.tj / C U0i , and ˇ0.tj / is semiparametrically modelled via cubic B-splines with
equidistant knots .4; 9; 14; 19; 24; 29; 34; 39/. This data set is also analysed by method II (Rao
& Yu, 1994) and method III (Datta et al., 2002). Note that in the last two methods, the fixed
effect component is only the intercept that is assumed to be constant over time. In particular, we
fit Yi .tj / D �CaiC˛itjC�i .tj /, where ˛itj D �˛itj�1C�itj , j�j < 1, ai � Normal.0; 	2a / and
�itj � Normal.0; 	2

�
/ for method II, and Yi .tj / D �CaiC˛itj C�i .tj /, ˛itj D ˛itj�1C�itj ,

ai � Normal.0; 	2a / and �itj � Normal.0; 	2
�
/ for method III.

The results of the proposed method are insensitive to the choice of the knot locations as
long as they are large in number and cover the entire spectrum of the timescale. Because of a
very small sampling variability (i.e., small var¹�i .t/º), we were not able to see any appreciable

Fig. 1. Top left panel shows the quarterly unemployment rate for the period from 2001 to 2011 for 51
states. The top right, bottom left and bottom right panels show residual plots due to methods I, II and III,
respectively.

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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difference among the methods in terms of the point prediction and prediction interval. Figure 1
shows the residual plots (Y �ZFbbF ), and the corresponding quantile plots given in Fig. 2 indi-
cate that method I has a somewhat better fit to the data among the methods. Also, the left panel
of Fig. 3 compares the eMSEs for the methods. To illustrate the effectiveness of our approach,
we artificially increased the sampling variability by multiplying the actual sampling variability
by 3 and then re-analysed the data. The corresponding eMSEs are given in the right panel of
Fig. 3. These comparisons are consistent with the simulation results that the superiority of our
method is evident when the sampling variability becomes large.

A striking feature of this data is non-linear time trend in unemployment rates. While the
proposed method captures this well, the linear models fail to incorporate this. We further inves-
tigated the usefulness of functional approach for this application. Thus, we are interested to

Fig. 2. Plot of quantiles of the re-scaled residuals against the theoretical quantiles of the standard normal
distribution.

Fig. 3. Boxplot of the estimated mean squared errors for the four methods. The left and right panels
correspond to the original sampling variance and the artificially increased sampling variance, respectively.

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.
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check if ˇ0.t/ is constant across all t . If ˇ0.t/ D
PL
lD1 Bl;d .t/b0l is a constant function, then

b0l are all equal as
PL
lD1 Bl;d .t/ D 1. Here, for eight inner knot points along with d D 3

makes L D 12. Now, we can writebb0 D V.bbTR0;bbTF0/T D V �.bı/Y , where

�.ı/ D

24 cov.bR/ZR†�1
°
I �ZF

�
ZT
F
†�1ZF

��1
ZT
F
†�1

±
�
ZT
F
†�1ZF

��1
ZT
F
†�1

35 :
For testing equality of all components of b0, we test H0 W Cb0 D 0, where C is a 11 � 12
matrix and Ci;1 D 1 and Ci;.iC1/ D �1 for all i D 1; : : : ; 11 and 0 otherwise. We usebbT
0
CT

°
CV �.bı/†.bı/�T .bı/V TCT ±�1 Cbb0 as our test statistic. Note that we expect a large

value of the test statistic when the null hypothesis is violated. Under the null hypothesis, the
model is Yi .tj / D ˇi0.tj /C �i .tj / with ˇi0.tj / D ˛0 C U0i , and the model for U0i remains
the same as model I. We have applied a parametric bootstrap approach to compute the p-value
of our test. The test statistic was 141.31, and the p-value was smaller than 0.001, indicating a
strong evidence against the null hypothesis.

7. Concluding remarks

Functional approach has been explored in many areas of statistics in recent years. This article
develops functional regression theory and methodology in the context of small area estimation.
The dimension reduction in this functional approach has been performed in such a way that
the method can be used by the people familiar with small area estimation techniques without
having theoretical training of functional analysis. The necessary theory has been developed to
support the methodology. This advances the theory of functional mixed models.

The numerical findings support the effectiveness of our functional approach over traditional
linear regression-based approach. There is a clear advantage in case of functional data and
almost no loss in the case of linear regression. The computational time is minimal. The com-
puter code is based on several in-built routines in R, and it is available from the authors upon
request.

Although the estimation procedure was introduced for a balanced designed data set without
missing time points, it can be applied to data with missing time points without much of a
difficulty. Theoretical and numerical quantification of efficiency loss due to missing data is an
interesting problem that can be pursued in a future project. Although the proposed method is
developed solely for aggregated data, the techniques can be applied to deal with unit-level data
where the sampling variability need not be known.
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