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In this paper, we propose an easy-to-use semiparametric method for analysing matched case-control data
when one of the covariates of interest is partially missing. Missing covariate information in matched
case-control studies may create bias and reduce efficiency of the parameter estimates. In order to cope
with this situation we consider a robust approach which is comprised of estimating some functionals of the
distribution of the partially missing covariate using a kernel regression technique in a conditional likelihood
framework. The large sample theory of the proposed estimator is investigated and the asymptotic normality
is obtained. A simulation study is conducted to assess the performance of the proposed method in terms of
robustness and efficiency. The proposed method is also applied to a real dataset which motivates this work.

Keywords: conditional logistic regression; estimating equation; kernel regression; matched case-control
study; missing at random

1. Introduction and background

One of the most common types of epidemiological studies is a case-control design which involves
two independent random samples from diseased and non-diseased groups of a target population,
and then exposure or covariate information is ascertained from the sampled individuals. In order
to control the confounding effect of nuisance factors (factors other than the covariates of interest)
matched case-control study is often used where matched strata are defined by the combination of
the levels of the nuisance factors [1]. Due to the retrospective nature of the data collection, often
covariate(s) contains missing values. One motivating example is the Los Angeles Endometrial
Cancer Study which was conducted to investigate the effects of gall-bladder disease, use of
estrogen, and hypertension on endometrial cancer which is one of the common cancers among
US women who have gone through menopause and are 45 years old or older. Two important
covariates, duration of estrogen use and obesity, were missing for approximately 5% and 16% of
the subjects. The concern is then how to handle subjects with missing covariates in a matched
case-control design. The complete ignorance of the subjects with missing covariates may lead to
inefficient and/or biased estimates of the relative risk parameters.

*Corresponding author. Email: sinha@stat.tamu.edu

ISSN 1048-5252 print/ISSN 1029-0311 online
© 2009 Taylor & Francis
DOI: 10.1080/10485250903019523
http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
e
x
a
s
 
A
&
M
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
2
1
:
5
0
 
2
 
O
c
t
o
b
e
r
 
2
0
0
9



890 S. Sinha and S. Wang

There are many articles on missing covariate data in a cohort study, such as Ibrahim [2], Wang
et al. [3], Lipsitz et al. [4], just to name a few. In a Bayesian context Mukherjee et al. [5] modelled
the exposure variable of an unmatched case-control study without missing data using the Dirichlet
process prior. However, missing covariate data in matched case-control studies have received less
than deserved attention from researchers. There are two important issues that need to be taken into
account while analysing matched case-control data with a missing covariate. According to the
study design each matched set is sparse as it typically contains only one case (diseased) subject
and maybe a couple of control (non-diseased) subjects, and thus there is a lack of enough degrees
of freedom to estimate the matched set’s specific nuisance parameter. The second issue is that
as the sampling is conditional on the disease status and the matching variable(s), the marginal
distribution of the covariate is not identifiable from the data unless the marginal disease prevalence
is known for each stratum.

There are two basic approaches for handling missing covariate data in matched case-control
studies. Lipsitz et al. [6] parametrically modelled the missingness probability in terms of the
observed quantities. In this approach the subjects with a missing covariate are used only when
modelling the missingness probability. Along the same line of thought Rathouz et al. [7] proposed
a class of semiparametric estimators which efficiently use data from all subjects, and produce more
efficient estimators for the relative-risk parameters corresponding to the covariates which have
no missing values. In an alternative school of thought, people have modelled the distribution of
the missing covariate. The pioneering work in this approach was done by Satten and Kupper
[8], Paik and Sacco [9], and Satten and Carroll [10]. They used different types of conditional
likelihood functions which require some type of distributional assumptions regarding the missing
covariate. Satten and Carroll [10] modelled the distribution of the missing covariate given the
observed covariates among the control population when all the covariates take only finite many
values. On the other hand, Paik and Sacco [9] modelled the missing covariate given the completely
observed covariate and the disease status with a distribution belonging to an exponential family
of distributions.

As pointed out by Satten and Carroll [10], Paik and Sacco’s method enjoys consistency and
may be more robust toward the specified model for the missing covariate. The reason is that
their assumed model affects only the subjects with missing exposure, and the contribution of the
other subjects to the conditional likelihood remains the same. A good discussion can be found
in [11] regarding the optimality of different procedures for estimating parameters in this context.
Sinha et al. [12] proposed a nonparametric Bayesian procedure to capture unobserved stratum
heterogeneity in the distribution of the missing covariate. Importantly, in the inference procedure
they also used a likelihood function similar to that proposed in Satten and Carroll’s paper that is
quite different from the conditional likelihood function in our current approach. All these methods
considered missing at random (MAR) data, and modelled the distribution of the missing covariate
parametrically. The above mentioned methods produce consistent and asymptotically unbiased
parameter estimates as long as the assumed parametric form of the distribution of the missing
covariate is correct; a violation of the model assumption may lead to biased estimates of the
parameters. There are two types of model violations. First the assumed distributional form for
the missing covariate may not be true, and second the assumed form of relationship between the
missing covariate and the observed covariate(s) is incorrect. In each case the estimated parameters
may be biased; of course the amount of the bias depends on the amount of missing data, the degree
of a model violation, and the type of the likelihood function or the estimating equation used for
this purpose.

The aim of this paper is to provide a completely robust method of estimation of the relative
risk parameters, which is free from any distributional assumption of the missing covariates, and
whose point estimation procedure does not require the estimation of the missingness probability
function. In order to achieve this goal we use a set of estimating equations which involve several
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functionals of the conditional distribution of the missing covariate given the observed covariates
and the disease status, and these functionals are estimated via a kernel method. Though the
estimated functionals have slower rate of convergence than

√
n, we show that the estimates for

the parameters of interest remain to be
√

n consistent. We also provide a formula for the calculation
of the standard error of the estimates. The proposed method yields conditional logistic regression
(CLR) estimates of the parameters when there is no missing data. We conduct a simulation study
to assess the performance of the proposed method and to compare it with an alternative parametric
approach as well as the complete case analysis (CCA) in several finite sample settings. In addition,
we apply the proposed method to a real matched case-control study.

The rest of the paper is outlined as follows. In Section 2 we describe the primary disease risk
model and notation while the proposed method is discussed in Section 3. Section 4 contains the
related asymptotic theory with technical details given in the Appendix. A simulation study is
given in Section 5 to evaluate the performance of the proposed method in terms of robustness and
variability of the estimates. Some details are also suggested on how to choose the kernel function
and the smoothing parameters. The data analysis is illustrated in Section 6. Some concluding
remarks are given in Section 7.

2. Model and notation

Suppose we have an 1:M matched case-control study with n strata. The ith stratum contains
one case and M(≥ 1) control subjects, and let j be the index for subjects. Let Yij be the binary
disease variable for the j th subject in the ith stratum which takes on value one for cases and zero
for controls. Let Z be a p × 1 vector of covariates which is always observed, and X be a scalar
covariate which may not be observed for all subjects. Also, let W be a q × 1 vector of covariates
which are used as the matching variables, and W i be the value of W for the ith case subject. For
the ith matched set M controls are drawn from p(X, Z|Y = 0,W = W i ), for i = 1, . . . , n. We
assume a logistic disease risk model for prospective data

pr(Yij = 1|Xij , Zij ,W i ) = H(β0i + ZT
ijβ1 + Xijβ2),

where H(u) = {1 + exp(−u)}−1 and β0i is the nonparametric effect of the matching variables
W i on the disease probability. The main parameters of interest β1 and β2 can be interpreted as
the global log-odds ratio parameter associated with Z and X, respectively. Note that the log-odds
ratio parameters do not vary across the strata, which is a standard assumption in this context. Our
main goal here is to estimate β1 and β2 when X is partially missing.

When X is observed for all sampled subjects, a semiparametric inference can be carried out by
using the following CLR [13].

LCLR =
n∏

i=1

∑M+1
j=1 YijA

∗
ij∑M+1

k=1 A∗
ik

, (1)

where A∗
ij = P(Yij = 1|Xij , Zij , W i )/P (Yij = 0|Xij , Zij , W i ) = exp(β0i + ZT

ijβ1 + Xijβ2).

Note that, in LCLR, without loss of generality one can replace A∗
ij by Aij = exp(ZT

ijβ1 + Xijβ2).
The conditional maximum likelihood estimate of the parameters are obtained by maximising
LCLR with respect to β1 and β2. Let θ = (βT

1 , β2)
T. Then the conditional score equations obtained

from (1) are
∑n

i=1

∑M+1
j=1 vij = 0, where vij = (Yij − Aij/

∑M+1
k=1 Aik)∂ log(Aij )/∂θ. It should

be noted that E(vij ) = 0 as the conditional expectation of Yij given the covariate information,
matching variable and

∑M+1
k=1 Yik = 1 in the ith matched set is Aij/

∑M+1
k=1 Aik .
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3. Method of estimation

In order to handle the missing covariate we introduce non-missing value indicator δij :

δij =
{

1 if Xij is observed

0 otherwise.

We assume that data are MAR [14] in the sense that given the observed data the missingness mech-
anism neither depends on the variable of interest X nor on the parameters of interest θ. Therefore,
pr(δij = 1|Xij , Zij ,W ij , Yij ) = pr(δij = 1|Zij ,W ij , Yij ). Importantly, in a matched case-control
study sampling is done from p(Zij , Xij |Yij = y,W i ), and following the notation of Hosmer
and Lemeshow [15] and Paik and Sacco [9] define p(Zij , Xij |Yij = y,W i ) = h(y; Zij , Xij ,W i ).
Thus, without loss of generality if j = 1 stands for the case and the rest for the controls, the
unconditional likelihood is

n∏
i=1

⎧⎨⎩h(1; Zi1, Xi1,W i )

M+1∏
j=2

h(0; Zij , Xij ,W i )

⎫⎬⎭ .

The conditional likelihood function is
n∏

i=1

h(1; Zi1, Xi1,W i )
∏M+1

j=2 h(0; Zij , Xij ,W i )∑M+1
k=1 h(1; Zik, Xik,W i )

∏M+1
j=1,j �=k h(0; Zij , Xij ,W i )

. (2)

According to Breslow [16], (2) is the conditional likelihood of the event where (Zi1, Xi1) is for
the case and (Zi2, Xi2), . . . , (ZiM+1, XiM+1) are for the controls in stratum i, given the set of
observed (M + 1) exposures.

For MAR data, the unconditional likelihood is

n∏
i=1

⎡⎣hδi1(1; Zi1, Xi1,W i )g
1−δi1(1; Zi1,W i )

M+1∏
j=2

{
hδij (0; Zij , Xij ,W i )g

1−δij (0; Zij ,W i )
}⎤⎦,

where g(y; Zij ,W i ) = p(Zij |Yij = y,W i ), and the conditional likelihood is

Lc =
n∏

i=1

hδi1(1; Zi1, Xi1,W i )g
1−δi1(1; Zi1,W i )

∏M+1
j=2

×{hδij (0; Zij , Xij ,W i )g
1−δij (0; Zij ,W i )}∑M+1

k=1 hδik (1; Zik, Xik,W i )g
1−δik (1; Zik,W i )

∏M+1
j=1,j �=k

×{hδij (0; Zik, Xik,W i )g
1−δij (0; Zij ,W i )}

.

In each term above if we divide the numerator and the denominator by
∏M+1

j=1 {hδij (0; Zij , Xij ,
W i )g

1−δij (0; Zij ,W i )}, we obtain

Lc =
n∏

i=1

δi1A
∗
i1 + (1 − δi1)a

∗
i1∑M+1

k=1 {δikA
∗
ik + (1 − δik)a

∗
ik}

, (3)

where a∗
ij is the conditional expectation of A∗

ij with respect to f (X|Z,W, Y = 0), the density of
X given Z, W , and Y = 0, i.e.,

a∗
ij = pr(Yij = 1|Zij ,W i )

pr(Yij = 0|Zij ,W i )
=
∫

pr(Yij = 1|Zij , Xij ,W i )

pr(Yij = 0|Zij , Xij ,W i )
f (Xij |Zij ,W i , Yij = 0)dXij

=
∫

A∗
ij f (Xij |Zij ,W i , Yij = 0)dXij ,

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
e
x
a
s
 
A
&
M
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
2
1
:
5
0
 
2
 
O
c
t
o
b
e
r
 
2
0
0
9



Journal of Nonparametric Statistics 893

and A∗
ij ’s were defined earlier. Note that the second equation above is readily shown following

Satten and Kupper [8]. After dividing the numerator and the denominator of (3) by eβ0i , we obtain

Lc =
n∏

i=1

∑M+1
j=1 Yij {δijAij + (1 − δij )aij }∑M+1

k=1 {δikAik + (1 − δik)aik}
, (4)

where aij = exp(ZT
ijβ1)

∫
exp(β2x)f (x|Zij ,W i , Y = 0)dx. Note that neither Aij nor aij is a func-

tion of Yij . Likelihood (4) allows any j th subject to be the case in stratum i. The score function
for θ derived from (4) is then

Un(θ, a, b) = n−1/2
n∑

i=1

M+1∑
j=1

Sij (θ, a, b)

{
δij

∂ log(Aij )

∂θ
+ (1 − δij )

bij

aij

}
, (5)

where Sij (θ, a, b) = Yij − ψij (θ, a, b), with

ψij (θ, a, b) = δijAij + (1 − δij )aij∑M+1
k=1 {δikAik + (1 − δik)aik}

(6)

and bij = ∂aij /∂θ.
Note that both aij and bij are the expectation of Aij and ∂Aij /∂θ, respectively, with respect to

the conditional density of X given Z, W , and Y = 0. We propose to estimate them by the kernel
method. Let V = (ZT,WT)T, and d be the number of continuous components of V . Let K be an
rth-order kernel function of d(< r) variables as in [3]; for example with d = 1, K will satisfy∫

K(t)dt = 1,
∫

t sK(t)dt = 0 for s = 1, . . . , (r − 1), and
∫

t rK(t)dt �= 0. Also, assume that
Kh(·) = (1/h)K(·/h), where h is the smoothing parameter. For each θ define Nadaraya–Watson
estimator of aij and bij as

âij = âij (θ) = exp(ZT
ijβ1)

∑n
k=1

∑M+1
l=1 (1 − Ykl)δkle

Xklβ2Kh(Vij − Vkl)∑n
k=1

∑M+1
l=1 (1 − Ykl)δklKh(Vij − Vkl)

,

b̂ij = b̂ij (θ) =

⎛⎜⎜⎝Ê

(
∂Aij

∂β1

)
Ê

(
∂Aij

∂β2

)
⎞⎟⎟⎠ =

⎛⎜⎜⎝
Zij âij (θ)

exp(ZT
ijβ1)

∑n
k=1

∑M+1
l=1 (1 − Ykl)δklXkle

Xklβ2Kh(Vij − Vkl)∑n
k=1

∑M+1
l=1 (1 − Ykl)δklKh(Vij − Vkl)

⎞⎟⎟⎠.

We propose to estimate the parameters by solving the following estimated score equations

Un(θ, â, b̂) = n−1/2
n∑

i=1

M+1∑
j=1

Sij (θ, â, b̂)

{
δij

∂ log(Aij )

∂θ
+ (1 − δij )

b̂ij

âij

}
= 0. (7)

For given h, the parameter estimates are obtained as follows:

Step 0 Initialize θ = θ(0).
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894 S. Sinha and S. Wang

Step 1 Calculate Un{θ(0), â(θ(0)), b̂(θ(0))} and Gn{θ(0), â(θ(0)), b̂(θ(0))} = −n−1/2[∂Un{θ, â(θ),

b̂(θ)}/∂θT]θ=θ(0)
, where

Gn(θ, â, b̂) = −1

n

n∑
i=1

⎡⎣M+1∑
j=1

Sij (θ, â, b̂)

{
δij

∂2 log Aij

∂θ∂θT + (1 − δij )
∂2 log âij

∂θ∂θT

}

−
∑M+1

j=1 {δij (∂Aij /∂θ)∂ log(Aij )/∂θT + (1 − δij )(∂âij /∂θ)∂ log(̂aij )/∂θT∑M+1
j=1 {δijAij + (1 − δij )̂aij }

+
∑M+1

j=1 {δij ∂Aij /∂θ + (1 − δij )∂âij /∂θ}∑M+1
j=1 {δijAij + (1 − δij )̂aij }

×
∑M+1

j=1 {δij ∂Aij /∂θT + (1 − δij )∂âij /∂θT}∑M+1
j=1 {δijAij + (1 − δij )̂aij }

⎤⎦ . (8)

Step 2 Obtain θ(1) = θ(0) + n−1/2G−1
n {θ(0), â(θ(0)), b̂(θ(0))}Un{θ(0), â(θ(0)), b̂(θ(0))}.

Step 3 Repeat the iterative procedure above until θ(k) converges to θ̂.

4. Asymptotic properties of the proposed estimator

We assume that the following regularity conditions hold in an open neighbourhood containing the
true parameter value θ0 of θ. Define the selection probabilities π0(V ) = pr(δ = 1|V, Y = 0) and
π1(V ) = pr(δ = 1|V, Y = 1), where V = (ZT,WT)T. In our consideration of asymptotics, M is
viewed as fixed while n increases to ∞.

(A1) The selection probabilities have r partial and bounded derivatives with respect to the
continuous components of V .

(A2) For every v in the domain of V , π0(v) ≥ k0 and π1(v) ≥ k1 for some constants k0 > 0 and
k1 > 0.

(A3) The probability density functions f[V |δ=1,Y=0](·) and f[V |δ=0](·) have r continuous and
bounded derivatives with respect to the continuous components of V .

(A4) The density functions f[V |δ=1,Y=0](·) and f[V |δ=0](·) have the same support, and
f[V |δ=0](·)/f[V |δ=1,Y=0](·) is bounded over the support.

(A5)
∑M+1

j=1 S1j {δ1j ∂ log(A1j )/∂θ + (1 − δ1j )b1j /a1j } has a finite second moment, and

G(θ) = E

⎡⎣− ∂

∂θT

M+1∑
j=1

S1j (θ, a, b)

{
δ1j

∂ log(A1j )

∂θ
+ (1 − δ1j )

b1j

a1j

}⎤⎦ (9)

is positive definite.

Note that Assumption (A2) is crucial for the estimation of the standard errors of the parameter
estimates. The reason is that if there are few observed X around the conditioning variables even
when the sample size is large, then the kernel method will not work well to produce good estimates
of conditional quantities such as a or b. We now present the following main results.
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Theorem 1 Under Assumptions (A1)–(A5), if the bandwidth h satisfies that nh2d → ∞ and
nh2r → 0, as n → ∞, then θ̂ obtained by solving (7) is a consistent estimator of θ, and

√
n(̂θ − θ)

is asymptotically normally distributed with mean 0 and a variance–covariance matrix � defined
at the end of the Appendix.

The proof of Theorem 1 is given in the Appendix.

Theorem 2 The variance–covariance matrix � in Theorem 1 can be consistently estimated by

G−1
n (̂θ, â, b̂)

(
1

n

n∑
i=1

Ĵi Ĵ
T

i

)
G−T

n (̂θ, â, b̂), (10)

where

Ĵi =
M+1∑
j=1

(
Sij (̂θ, â, b̂)

{
δij

∂ log(Aij )

∂θ
+ (1 − δij )

b̂ij

âij

}
+ (1 − Yij )δij

[
1

âij

(
∂Aij

∂θ
− b̂ijAij

âij

)

× {Ŝ1ij ĉ
∗

10(Vij ) + Ŝ0ij ĉ
∗

00(Vij )} −
(

b̂ij

âij

D̂∗
ij − T̂ ∗

ij

)
(Aij − âij ){̂c ∗

10(Vij ) + ĉ ∗
00(Vij )}

])
,

and ĉ ∗
	0(Vij ) is the kernel estimate of c∗

	0(V ) = pr(δ = 0|V, Y = 	)/pr(δ = 1|V, Y = 0) for
	 = 0, 1. For the sake of simplicity, with a little abuse of notation here â and b̂ denote the
estimates of a and b evaluated at θ = θ̂. Furthermore,

D̂∗
ij =

∑n
k=1

∑M+1
l=1 Dk(̂θ, â, b̂)Kh(Vkl − Vij )∑n

k=1

∑M+1
l=1 Kh(Vkl − Vij )

and

T̂ ∗
ij =

∑n
k=1

∑M+1
l=1 Tk(̂θ, â, b̂)Kh(Vkl − Vij )∑n

k=1

∑M+1
l=1 Kh(Vkl − Vij )

,

with Dk(θ, a, b) = 1/
∑M+1

j=1 {δkjAkj + (1 − δkj )akj } and Tk(θ, a, b) = ∑M+1
j=1 {δkj ∂Akj /∂θ +

(1 − δkj )∂akj /∂θ}/[∑M+1
j=1 {δkjAkj + (1 − δkj )akj }]2, for k = 1, . . . , n.

In addition

Ŝ	ij = 	 −
∑n

k=1

∑M+1
l=1 ψkl (̂θ, â, b̂)Kh(Vkl − Vij )∑n
k=1

∑M+1
l=1 Kh(Vkl − Vij )

.

The proof of Theorem 2 follows easily from the proof of Theorem 1.

5. A simulation study

In this section we evaluate the performance of the proposed method via a simulation study. First,
we generated a cohort of size N = 16,000 by simulating W, Z, X and then Y . Then from the
cohort we constructed 1:1 matched case-control data with n = 150 and n = 300 strata using W

as the matching variable. In addition, the case of n = 100 has been added after a comment by a
referee. In order to simulate realistic data we closely followed the LosAngeles Endometrial Cancer
data, and the parameter values were close to the corresponding estimates which were obtained
while the dataset was analysed by a parametric approach. We simulated the data according to the
following steps.

• Simulate W from N(0.53, 0.242).
• Simulate Z from Gamma(0.23, 1.20), so that E(Z) = 0.276.
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• Simulate X from
Case I N(0.1445 + 0.5430W + 0.1180Z, 0.42).

Case II I (W < 0.5)U [0.9, 3.0] + I (W ≥ 0.5)N(W, 0.22).
Case III (1/2)N(1.2Z, 0.42) + (1/2)N(−1.2 + Z2, 0.52).

• Simulate the disease variable Y from the Bernoulli distribution with success probability
H(−3.5 + 1.1W + Z + 0.5X). Therefore, the true values of β1 and β2 are 1 and 0.5. For
each scenarios MAR data were generated by generating the non-missing value indicator from
the Bernoulli distribution with success probability H(1 + Z + 0.35W) and H(Z + 0.35W).
They resulted in about 20% and 40% missing data, respectively.

Under each scenario we generated R = 1000 datasets, and each dataset was analysed by the
following four methods. First we assumed that there is no missing data, and the fully observed
data were analysed by the CLR method. This approach is hereafter referred to as full data analysis
(FDA). Second we considered only the matched sets which have no missing covariate, and this
reduced dataset was analysed via the CLR method. This approach is hereafter referred to as CCA.
For the sake of comparison we analysed each missing dataset by a parametric approach. Here
we applied Paik and Sacco’s method, which is easy to apply and reduces to the CLR approach if
there is no missing exposure variable. Since X is a continuous random variable in all three cases,
in the parametric approach we model X as N(γ0 + γ1Z + γ2W + γ3Y, σ 2). This method will be
abbreviated as PARA. Figure 1 shows the distribution of X for cases I, II, and III respectively.
The density plots of the last two distributions clearly indicate that the normal model assumption is
violated in Cases II and III. Lastly we analysed 1000 datasets using the proposed nonparametric
method which is abbreviated as NONP.

In the NONP method V = (Z, W) has two continuous components so that d = 2. The band-
width h of the kernel should satisfy nh2d → ∞ and nh2r → 0, which implies r > d. We choose
h = O(n−1/p). Then r must be the smallest even integer ≥ (p − d). Following the idea of
Wang et al. [3] we take p = 5, and consequently we choose a kernel of order r = 4, K(u) =
2 exp(−u2/2)/

√
2π − exp(−u2/4)/

√
4π [17]. Note that K(u) ≥ 0 for u ∈ [−2.05, 2.05] and

−0.0249 < K(u) ≤ 0 for u ∈ [−2.05, 2.05]C . It is easily seen that the above symmetric kernel
satisfies

∫
K(u)du = 1,

∫
ujK(u)du = 0 for j = 1, 2, 3, and

∫
u4K(u)du = −6. One should

also note that the above kernel may give biased estimate of the quantities of interest if the point
where the kernel is evaluated is near the boundary points of the observed dataset, and that bias may
induce bias in the original relative risk parameters for small sample size. Therefore, following
Hart and Wehrly [18] we construct a boundary kernel based on K(u). Let Wmin and Wmax be the
observed minimum and maximum values of W . For a given bandwidth h, for a given value of W

and any other point W ∗ we define the boundary kernel as

Kb

(
W − W ∗

h

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2√
2πh

exp

{
− (W − W ∗)2

2h2

}
− 1√

4πh
exp

{
− (W − W ∗)2

4h2

}
,

if W ∈ (Wmin + h, Wmax − h)

(α0 + α1t + α2t
2 + α3t

3)

[
2√
2πh

exp{−(5t)2/2}

− 1√
4πh

exp{−(5t)2/4}
]

,

otherwise,
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Figure 1. Marginal density plot of X in Cases I, II, and III, respectively.

where t = (W − W ∗)/(5h) and α0, . . . , α3 are constants such that∫ q1

−q2

(α0 + α1t + α2t
2 + α3t

3)5

[
2√
2π

exp{−(5t)2/2} − 1√
4π

exp{−(5t)2/4}
]

dt = 1∫ q1

−q2

t j (α0 + α1t + α2t
2 + α3t

3)5

[
2√
2π

exp{−(5t)2/2} − 1√
4π

exp{−(5t)2/4}
]

dt = 0

for j = 1, 2, 3,

and q1 and q2 are defined as q1 = min{1, (W − Wmin)/(5h)} and q2 = min{1, (Wmax − W)/(5h)}.
The constants are obtained by solving

Aα =

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠ , where A =

⎛⎜⎜⎝
e0 e1 e2 e3

e1 e2 e3 e4

e2 e3 e4 e5

e3 e4 e5 e6

⎞⎟⎟⎠ and αT = (α0, α1, α2, α3).
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Here ej = (2/5j )Ij (−5q2, 5q1) − (
√

2/5)j Ij (−5q2/
√

2, 5q1/
√

2) for j = 0, 1 . . . , 6, and
Ij (x1, x2) = ∫ x2

x1
uj exp(−u2/2)du/

√
2π for x1 ≤ x2. We adopt the following iterative

way to compute the integrals I0(x1, x2) = 
(x2) − 
(x1), I1(x1, x2) = {exp(−x2
1/2) −

exp(−x2
2/2)}/√2π , and Ij (x1, x2) = {xj−1

1 exp(−x2
1/2) − x

j−1
2 exp(−x2

2/2)}/√2π + (j − 1)

Ij−2(x1, x2). The constants vary from observation to observation, so for each boundary point
we need to solve these constants.

We consider the product of the two boundary kernels Kb{(z − Z)/h1}Kb{(w − W)/h2}. In
order to properly define the kernel based estimates of aij and bij ’s which are outside the observed
boundary of Z among the controls we define Zmin and Zmax as the minimum and maximum values
of Z in the observed data irrespective of the case and control status. By taking product of two
boundary kernels we avoid the selection of bandwidth matrix which is a fairly difficult task. Let
h1 and h2 be the smoothing parameters for Z and W respectively. We choose h1 = c1σ̂Zn−1/5 and
h2 = c2σ̂Wn−1/5, where σ̂Z and σ̂W are the sample standard deviation of Z and W in the overall
dataset. These bandwidths satisfy the bandwidth criteria. The constants c1 and c2 play a crucial
role in determining the proper bandwidth for the distribution of X among the controls. Their
data-driven choice is as follows. These constants are varied over a grid of values from 0.05 to 2.5
with increment 0.05. The joint grid point which maximises the log of the estimated likelihood
function Lec is taken as our (c1, c2), where

Lec =
n∏

i=1

∑M+1
j=1 Yij {δijAij + (1 − δij )̂aij }∑M+1

k=1 {δikAik + (1 − δik )̂aik}
.

Alternatively one may use a cross-validation method to choose a reasonable bandwidth.

Table 1. Results of the simulation study based on 1000 replications of 1:1 matched case-control data with the number
of strata n = 100.

β1 = 1.0 β2 = 0.50

Case Method Mean True SE SE CP Mean True SE SE CP

I 1.048 0.333 0.324 0.957 0.539 0.443 0.417 0.937
I(a) CCA 1.064 0.372 0.385 0.955 0.565 0.557 0.527 0.955

PARA 1.055 0.336 0.357 0.956 0.538 0.493 0.488 0.958
NONP 1.057 0.340 0.317 0.932 0.539 0.539 0.497 0.932

I(b) CCA 1.126 0.509 0.504 0.956 0.583 0.773 0.724 0.970
PARA 1.057 0.341 0.360 0.953 0.550 0.550 0.570 0.967
NONP 1.056 0.347 0.315 0.931 0.572 0.636 0.616 0.927

II FDA 1.068 0.331 0.329 0.962 0.534 0.387 0.371 0.953
II(a) CCA 1.091 0.380 0.394 0.966 0.534 0.485 0.475 0.970

PARA 1.067 0.323 0.361 0.956 0.450 0.386 0.403 0.963
NONP 1.066 0.328 0.319 0.950 0.532 0.453 0.443 0.944

II(b) CCA 1.134 0.486 0.509 0.958 0.553 0.697 0.673 0.969
PARA 1.071 0.327 0.363 0.966 0.391 0.420 0.436 0.952
NONP 1.085 0.333 0.326 0.958 0.549 0.507 0.481 0.929

III FDA 1.083 0.552 0.555 0.967 0.535 0.260 0.257 0.963
III(a) CCA 1.115 0.677 0.685 0.973 0.553 0.336 0.325 0.960

PARA 1.099 0.595 0.644 0.969 0.486 0.285 0.296 0.949
NONP 1.108 0.578 0.554 0.949 0.535 0.313 0.299 0.949

III(b) CCA 1.162 0.880 0.921 0.980 0.572 0.455 0.446 0.958
PARA 1.109 0.651 0.703 0.967 0.436 0.321 0.332 0.929
NONP 1.111 0.593 0.589 0.953 0.545 0.360 0.394 0.942

Note: ‘Mean’ and ‘True SE’ represent the average value of the estimates and the square root of the variance of the estimates across the
simulated datasets. ‘SE’ represents the average value of the standard error.
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The results for n = 100, 150, and 300 strata are presented in Tables 1–3, respectively, where
missingness mechanism (a) and (b) indicate selection probability H(1 + Zij + 0.35Wij ) and
H(Zij + 0.35Wij ), respectively, so that ‘Case I(a)’ means Case I with missingness mecha-
nism (a), etc. The tables show the empirical means of the parameter estimates, the empirical
standard errors of the estimates (‘True SE’) across the simulations, and the average values of
the standard errors. For the NONP method the standard error was calculated based on for-
mula (10). First of all the CCA produces estimates with large variances. The reason for this
is that it ignores many subjects with missing covariate data. Consequently, the variance increases
with the proportion of missing data. Both the parametric and nonparametric approaches work
well in Case I where X is generated from a normal distribution. For Cases II and III and
when n = 150 and n = 300 the parametric method produces a significantly biased estimate of
β2 compared to the proposed nonparametric method. The advantage of the proposed method
over the parametric method is not clear for the smaller sample size of n = 100. Overall the
variances of the estimates decrease with the sample size, and by increasing the sample size
one can remove the small sample bias in the parameter estimates. For n = 150 the param-
eter estimates due to CCA method did not converge for approximately 7% of the datasets.
The results presented in the tables are based on the converged estimates. This problem is
reduced when the sample size n increases. Neither the parametric approach nor the nonpara-
metric approach faced any convergence problem. For the PARA method the standard error
of the estimates was calculated via the Jackknife method. Note that in the calculation of the
standard error using formula (10) we estimated pr(δ = 1|V, Y = y) for y = 0, 1 by a kernel
method.

Table 2. Results of the simulation study based on 1000 replications of 1:1 matched case-control data with the number
of strata n = 150.

β1 = 1.0 β2 = 0.50

Case Method Mean True SE SE CP Mean True SE SE CP

I 1.038 0.263 0.261 0.967 0.520 0.342 0.335 0.953
I(a) CCA 1.063 0.313 0.311 0.965 0.529 0.430 0.422 0.950

PARA 1.040 0.263 0.276 0.958 0.519 0.380 0.385 0.955
NONP 1.039 0.267 0.254 0.946 0.520 0.418 0.385 0.948

I(b) CCA 1.102 0.401 0.397 0.975 0.549 0.594 0.573 0.962
PARA 1.040 0.263 0.278 0.962 0.528 0.448 0.449 0.962
NONP 1.044 0.270 0.256 0.949 0.532 0.514 0.458 0.948

II FDA 1.052 0.267 0.264 0.949 0.517 0.297 0.298 0.957
II(a) CCA 1.036 0.271 0.306 0.973 0.551 0.389 0.381 0.964

PARA 1.051 0.264 0.281 0.958 0.455 0.302 0.318 0.959
NONP 1.060 0.271 0.259 0.946 0.533 0.345 0.340 0.932

II(b) CCA 1.090 0.399 0.395 0.959 0.553 0.526 0.526 0.966
PARA 1.051 0.261 0.281 0.961 0.408 0.327 0.344 0.956
NONP 1.066 0.269 0.263 0.949 0.545 0.405 0.393 0.928

III FDA 1.047 0.449 0.44 0.963 0.521 0.204 0.206 0.959
III(a) CCA 1.081 0.549 0.540 0.959 0.525 0.255 0.258 0.958

PARA 1.057 0.476 0.489 0.963 0.471 0.217 0.231 0.963
NONP 1.065 0.461 0.437 0.950 0.529 0.230 0.232 0.960

III(b) CCA 1.111 0.716 0.714 0.971 0.539 0.349 0.348 0.973
PARA 1.078 0.521 0.537 0.962 0.413 0.242 0.259 0.939
NONP 1.077 0.490 0.457 0.938 0.535 0.270 0.287 0.952

Note: ‘Mean’ and ‘True SE’ represent the average value of the estimates and the square root of the variance of the estimates across the
simulated datasets. ‘SE’ represents the average value of the standard error.
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Table 3. Results of the simulation study based on 1000 replications of 1:1 matched case-control data with the number
of strata n = 300.

β1 = 1.0 β2 = 0.50

Case Method Mean True SE SE CP Mean True SE SE CP

I 1.022 0.187 0.181 0.945 0.509 0.233 0.235 0.953
I(a) CCA 1.031 0.215 0.213 0.953 0.515 0.286 0.293 0.958

PARA 1.022 0.187 0.187 0.948 0.508 0.256 0.265 0.959
NONP 1.022 0.188 0.179 0.939 0.519 0.261 0.268 0.949

I(b) CCA 1.053 0.273 0.265 0.968 0.525 0.406 0.392 0.951
PARA 1.022 0.187 0.187 0.951 0.521 0.307 0.307 0.945
NONP 1.023 0.189 0.180 0.942 0.521 0.315 0.329 0.947

II FDA 1.031 0.189 0.183 0.946 0.506 0.197 0.207 0.965
II(a) CCA 1.038 0.220 0.215 0.953 0.516 0.262 0.263 0.958

PARA 1.031 0.189 0.189 0.944 0.440 0.205 0.217 0.951
NONP 1.036 0.192 0.183 0.938 0.525 0.226 0.236 0.967

II(b) CCA 1.056 0.276 0.268 0.946 0.537 0.363 0.356 0.961
PARA 1.031 0.189 0.188 0.947 0.384 0.252 0.244 0.932
NONP 1.038 0.193 0.184 0.941 0.527 0.265 0.281 0.946

III FDA 1.015 0.313 0.303 0.944 0.512 0.145 0.143 0.949
III(a) CCA 1.029 0.384 0.369 0.957 0.515 0.184 0.179 0.955

PARA 1.007 0.329 0.328 0.950 0.467 0.160 0.159 0.935
NONP 1.035 0.316 0.308 0.942 0.520 0.162 0.165 0.954

III(b) CCA 1.084 0.501 0.484 0.961 0.524 0.248 0.240 0.947
PARA 1.032 0.360 0.361 0.952 0.407 0.182 0.179 0.903
NONP 1.033 0.327 0.330 0.944 0.520 0.184 0.209 0.958

Note: ‘Mean’ and ‘True SE’ represent the average value of the estimates and the square root of the variance of the estimates across the
simulated datasets. ‘SE’ represents the average value of the standard error.

6. A real data example

We now return to the example briefly discussed in the introduction. Endometrial cancer is one
common type of malignancy that occurs in the inner membrane of the uterus. It is found that this
cancer is associated with a high level of estrogen use. Use of estrogen or other hormone therapy is
widely prevalent among post-menopausal women. In order to study the effect of several risk factors
on this cancer a study was conducted among post-menopausal women in an affluent retirement
community of Los Angeles. The data comprises of n = 63 strata and each stratum consists of 1
case and M = 4 controls [1]. The controls were chosen from a roster of all women in the same
community, and then matched with a case based on their age.Among several measured risk factors,
the binary exposure variable obesity was missing for about 16% of the study participants. Obesity
is treated as the partially missing exposure variable (X) and presence of gall-bladder disease is
considered as a binary completely observed covariate (Z). For the purpose of illustration, in this
article we assume that the data are MAR as is done by other researchers, although there is no
clear way to validate this assumption.

The reason of considering gall-bladder disease as one of the risk factors is that estrogen, which
is one of the well known regulating factors of endometrial cancer, raises the level of cholesterol in
bile. Bile, a substance produced by the liver and stored in the gall-bladder, promotes the growth of
gallstones and other gall-bladder diseases. Also, since fat tissues can increase a women’s estrogen
levels, overweight or presence of obesity is considered as a potential risk factor. In the original
study obesity was determined, as is customarily defined, according to whether the body mass
index (BMI) value exceeds the normal value of 30 or not [19]. In the analysis age is transformed
into [0, 1] scale and then used as a matching variable W . The disease risk model of our interest
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Table 4. The results of the analyses of the Los Angeles
Endometrial Cancer Data by three different methods.

Presence of gall
Method bladder disease Obesity

CCA Estimate 1.279 0.440
Std err 0.394 0.376

PARA Estimate 1.270 0.597
Std err 0.365 0.294

NONP Estimate 1.304 0.636
Std err 0.366 0.321

Note: Std err represents the standard error of the parameter estimates.

is H(β0i + β1Zij + β2Xij ), where β1 and β2 are the disease-exposure association parameter for
Z and X, respectively.

The dataset is analysed by three methods. First we analysed it with the CLR method ignoring
the subjects with missing X, ignoring the stratum with missing X for the case subject, and ignoring
the stratum where all controls have missing X. With a little abuse of terminology we will call this
method ‘CCA’. Second we analysed the data using the parametric approach. For the parametric
method the distribution of the missing covariate was modeled as logit{pr(X = 1|Z, W, Y )} =
γ0 + γ1Z + γ2W + γ3Y . The estimate (standard error) of γ0, γ1, γ2, and γ3 were 0.115(0.319),
0.118(0.387), 0.543(0.539), and 0.479(0.335). These estimates are used to obtain the estimates
of β1 and β2. Lastly, we analysed the data using the proposed nonparametric approach.

Note that in this data example V = (Z, W) and the number of continuous components in V

is d = 1, and that is the matching variable age (W). We used the same kernel function as in the
simulation study. Two bandwidths h∗

0 and h∗
1 were needed for W corresponding to Z = 0 and

Z = 1. We chose h∗
0 = c∗

0n
−1/5
CO σ̂W0 and h∗

1 = c∗
1n

−1/5
CO σ̂W1, where σ̂W0 and σ̂W1 are the observed

standard deviation of W among Z = 0 and Z = 1, respectively, and nCO = 252 is the total number
of controls. The point (c∗

0, c
∗
1) that maximises the estimated likelihood function Lec over a grid of

values (0.25, 0.5, 1.0, 1.5, 2.0, 2.25, 2.5, 2.75, 3) for each of c∗
0 and c∗

1 was used in our analysis.
For this data example we found (c∗

0, c
∗
1) = (2, 2.5).

The estimate and standard error of β1 and β2 are presented in Table 4. It is seen that the presence
of gall-bladder disease appears to increase the risk of having endometrial cancer. From the CCA
and NONP analyses we do not find a significant association between the cancer and obesity while
the PARA method shows a statistically significant association. As expected the CCA method
produces largest standard error for β̂1 and β̂2. The standard errors in the parametric approach are
somewhat smaller than that of the nonparametric approach. Since the model assumption used in
the PARA method is difficult to verify, we would be more comfortable with the conclusion drawn
from the NONP analysis.

7. Discussion

This paper provides a flexible method for analysing matched case-control data with missing
covariate data. The proposed method relies on a simple kernel technique, and the estimates are
easy to compute. A formula for standard error calculations has been derived, and some guidelines
on how to choose the smoothing parameters and the appropriate kernel function have also been
given. The use of a boundary kernel has been considered for a given kernel. The proposed method
is not only robust against model misspecification for X, but also reduces to the standard conditional
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likelihood analysis when there is no missing data. One limitation of the proposed method is that
this paper only deals with a single missing covariate. Indeed theoretically the method can be
extended to handle multiple missing covariates. On the other hand, in practice due to a slower
rate of convergence the kernel method might not be a very viable option to handle multiple
missing covariates. Like many nonparametric approaches the proposed method works well for
large sample sizes as is suggested in our limited simulation study. The computer code is available
from the authors upon request.

The proposed method has a broader applicability beyond this particular problem. It is possible
to generalise the new method to K:M matched case-control studies where K ≥ 1 and M ≥ 1 can
vary over different strata. Furthermore, the method can be extended in principle to derive robust
estimates of the parameters in presence of covariate measurement error in matched case-control
studies. It may also be extended to handle missing covariate data in the Cox’s proportional hazard
(CPH) model as the partial likelihood derived from the CPH model and the conditional likelihood
of matched studies have some similarities.

As commented by a reviewer, one may address the missing covariate problem in matched case-
control studies by using partially linear models to model the association between the disease and
the matching variables which can alleviate the issue of high-dimensional parameters. With the
above modelling one can analyse the matched data as if the data are collected prospectively, and
without using the conditional likelihood. However, the details of this method will be considered
in a future work.
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Appendix

Proof of Theorem 1

In this proof the main and lengthy task is to approximate Un(θ, â, b̂) by a sum of independent and identically distributed
(iid) random variables with mean zero, as in Equation (A5).

Define ηn = {nh2r + (nh2d )−1}1/2. Let noc and noco denote the number of cases and controls with observed X,
respectively, whereas nmc and nmco are the corresponding values with unobserved X in a dataset of n strata. Therefore,
n = noc + nmc and n × M = noco + nmco. Let

Un(θ, â, b̂) − Un(θ, a, b) = U1n − U2n,

where

U1n = n−1/2
n∑

i=1

M+1∑
j=1

Sij (θ, a, b)(1 − δij )

(
b̂ij

âij

− bij

aij

)
,

and

U2n = n−1/2
n∑

i=1

M+1∑
j=1

[
δijAij + (1 − δij )̂aij∑M+1

k=1 {δikAik + (1 − δik )̂aik}
− δijAij + (1 − δij )aij∑M+1

k=1 {δikAik + (1 − δik)aik}

]

×
{

δij

∂Aij /∂θ

Aij

+ (1 − δij )
b̂ij

âij

}
.

Define

Pnij = 1

nocohd

n∑
k=1

M+1∑
l=1

(1 − Ykl)δkl exp(ZT
ijβ1 + Xklβ2)Kh(Vij − Vkl),

Qnij = 1

nocohd

n∑
k=1

M+1∑
l=1

(1 − Ykl)δklKh(Vij − Vkl),

Rnij = 1

nocohd

⎡⎢⎢⎢⎢⎢⎣
n∑

k=1

M+1∑
l=1

(1 − Ykl)δklZij exp(ZT
ijβ1 + Xklβ2)Kh(Vij − Vkl)

n∑
k=1

M+1∑
l=1

(1 − Ykl)δklXkl exp(ZT
ijβ1 + Xklβ2)Kh(Vij − Vkl)

⎤⎥⎥⎥⎥⎥⎦ .

Note that âij = Pnij /Qnij and b̂ij = Rnij /Qnij , and Qnij = f̂[V |δ=1,Y=0](Vij ). Using Lemma 1 of Wang and Wang
[20, p. 446] we have

âij − aij = Pnij − aijQnij

f[V |δ=1,Y=0](Vij )
+ Op(ξn) and b̂ij − bij = Rnij − bijQnij

f[V |δ=1,Y=0](Vij )
+ Op(ξn), (A1)

where ξn = h2r + (nhd)−1. Furthermore, it follows from Lemma 1 of Wang and Wang [20] that E(̂aij − aij ) = O(hr )

and var(̂aij − aij ) = O{(nhd)−1}, which together imply (̂aij − aij )
2 = Op(h2r ) + Op{(nhd)−1} = Op(ξn). Similarly,

we can show that (̂bij − bij )
2 = Op(ξn) and thus (̂aij − aij )(̂bij − bij ) = Op(ξn). Therefore, using the Taylor series

expansion we can write

b̂ij

âij

= bij {1 + (̂bij − bij )/bij }
aij {1 + (̂aij − aij )/aij } = bij

aij

{
1 + b̂ij − bij

bij

− âij − aij

aij

}
+ Op(ξn). (A2)

Replacing b̂ij /̂aij by the dominating term on the right-hand side of (A2) in U1n and since n1/2ξn has a smaller order than
ηn, we obtain

U1n = n−1/2
n∑

i=1

M+1∑
j=1

Sij (θ, a, b)(1 − δij )

{
b̂ij − bij

aij

−
(

bij

aij

)
âij − aij

aij

}
+ Op(ηn). (A3)
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Now consider the first term in the summand of U2n:

δijAij + (1 − δij )̂aij∑M+1
k=1 {δikAik + (1 − δik )̂aik}

− δijAij + (1 − δij )aij∑M+1
k=1 {δikAik + (1 − δik)aik}

= δijAij + (1 − δij )aij∑M+1
k=1 {δikAik + (1 − δik)aik}

{
1 + (1 − δij )(̂aij − aij )

δijAij + (1 − δij )aij

}

×
{

1 +
∑M+1

k=1 (1 − δik)(̂aik − aik)∑M+1
k=1 {δikAik + (1 − δik)aik}

}−1

− δijAij + (1 − δij )aij∑M+1
k=1 {δikAik + (1 − δik)aik}

= δijAij + (1 − δij )aij∑M+1
k=1 {δikAik + (1 − δik)aik}

[
(1 − δij )(̂aij − aij )

δijAij + (1 − δij )aij

−
∑M+1

k=1 (1 − δik)(̂aik − aik)∑M+1
k=1 {δikAik + (1 − δik)aik}

]
+ Op(ξn).

Using the derivation above and (A2) we obtain

U2n = n−1/2
n∑

i=1

M+1∑
j=1

δijAij + (1 − δij )aij∑M+1
k=1 {δikAik + (1 − δik)aik}

×
{

(1 − δij )(̂aij − aij )

δijAij + (1 − δij )aij

−
∑M+1

k=1 (1 − δik)(̂aik − aik)∑M+1
k=1 {δikAik + (1 − δik)aik}

}

×
{
δij

∂Aij /∂θ

Aij

+ (1 − δij )
bij

aij

}
+ Op(ηn)

= n−1/2
n∑

i=1

M+1∑
j=1

{
(1 − δij )(̂aij − aij )∑M+1

k=1 {δikAik + (1 − δik)aik}
− {δijAij + (1 − δij )aij }∑M+1

k=1 (1 − δik)(̂aik − aik)

[∑M+1
k=1 {δikAik + (1 − δik)aik}]2

}

×
{
δij

∂Aij /∂θ

Aij

+ (1 − δij )
bij

aij

}
+ Op(ηn)

= n−1/2
n∑

i=1

M+1∑
j=1

(1 − δij )bij (̂aij − aij )/aij∑M+1
k=1 {δikAik + (1 − δik)aik}

− n−1/2
n∑

i=1

M+1∑
j=1

{δij ∂Aij /∂θ + (1 − δij )bij }∑M+1
k=1 (1 − δik)(̂aik − aik)[∑M+1

k=1 {δikAik + (1 − δik)aik}
]2 + Op(ηn).

(A4)

Furthermore, let δi = ∏M+1
j=1 δij , V ∗

ij = δiVij , and X∗
ij = δiXij . We will use Assumptions (A1), (A3), and (A4), and

Lemma 1 of Wang and Wang [20] in the following derivation. Note that we can write
∑n

i=1
∑M+1

j=1 (1 − δij )(Sij /aij )(̂bij −
bij ) = ∑n

i=1
∑M+1

j=1 (1 − δij ){Yij + (1 − Yij )}(Sij /aij )(̂bij − bij ). Consider

E

{
Sij

aij

(̂bij − bij )|δij = 0, Yij = 	, all (δ, Y, V ∗, X∗)
}

= 1

noco

n∑
k=1

M+1∑
l=1

(1 − Ykl)δkl

∫
Sij

aij

(
∂Akl

∂θ
− bij

)
Kh(Vij − Vkl)

f[V |δ=0,Y=	](Vij )

hdf[V |δ=1,Y=0](Vij )
dVij + Op(ξn)

= 1

noco

n∑
k=1

M+1∑
l=1

(1 − Ykl)δkl

S	kl

akl

(
∂Akl

∂θ
− bkl

)
c	0(Vkl) + Op(hr + ξn),

where c	0(Vkl) = f[V |δ=0,Y=	](Vkl)/f[V |δ=1,Y=0](Vkl) and S	kl = 	 − E{ψij (θ, a, b)|Vkl} for 	 = 0, 1 and ψij is
defined in (6). Now let

En = n−1/2
n∑

i=1

M+1∑
j=1

(1 − δij )

{
Sij

aij

(̂bij − bij ) − Yij

noco

n∑
k=1

M+1∑
l=1

(1 − Ykl)δkl

S1kl

akl

(
∂Akl

∂θ
− bkl

)
c10(Vkl)

− (1 − Yij )

noco

n∑
k=1

M+1∑
l=1

(1 − Ykl)δkl

S0kl

akl

(
∂Akl

∂θ
− bkl

)
c00(Vkl)

}
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which represents the first dominating term of U1n given in (A3) minus its conditional expected value. Using Lemma 1 of
Wang and Wang [20] it can be shown that var{En|all (δ, Y, V ∗, X∗)} = Op(ξn), resulting in En = Op(ηn). Therefore,

n−1/2
n∑

i=1

M+1∑
j=1

(1 − δij )
Sij

aij

(̂bij − bij )

= n−1/2
n∑

i=1

M+1∑
j=1

(1 − δij )
Yij

noco

n∑
k=1

M+1∑
l=1

(1 − Ykl)δkl

S1kl

akl

(
∂Akl

∂θ
− bkl

)
c10(Vkl)

+ n−1/2
n∑

i=1

M+1∑
j=1

(1 − δij )
(1 − Yij )

noco

n∑
k=1

M+1∑
l=1

(1 − Ykl)δkl

S0kl

akl

(
∂Akl

∂θ
− bkl

)
c00(Vkl) + Op(ηn)

= n−1/2
n∑

k=1

M+1∑
l=1

(1 − Ykl)δkl

S1kl

akl

(
∂Akl

∂θ
− bkl

)
c∗

10(Vkl)

+ n−1/2
n∑

k=1

M+1∑
l=1

(1 − Ykl)δkl

S0kl

akl

(
∂Akl

∂θ
− bkl

)
c∗

00(Vkl) + Op(ηn)

= n−1/2
n∑

k=1

M+1∑
l=1

(1 − Ykl)δkl

1

akl

(
∂Akl

∂θ
− bkl

)
{S1klc

∗
10(Vkl) + S0klc

∗
00(Vkl)} + Op(ηn),

where c∗
10(Vkl) = pr(δ = 0|V, Y = 1)pr(Y = 1|V )/pr(δ = 1|V, Y = 0)pr(Y = 0|V ) and c∗

00(Vkl) = pr(δ = 0|V, Y =
0)/pr(δ = 1|V, Y = 0). Similarly, the second term of U1n given in (A3) is

−n−1/2
n∑

k=1

M+1∑
l=1

(1 − Ykl)δkl

bkl

a2
kl

(Akl − akl){S1klc
∗
10(Vkl) + S0klc

∗
00(Vkl)} + Op(ηn).

Hence,

U1n = n−1/2
n∑

k=1

M+1∑
l=1

(1 − Ykl)δkl

1

akl

(
∂Akl

∂θ
− bklAkl

akl

)
{S1klc

∗
10(Vkl) + S0klc

∗
00(Vkl)} + Op(ηn).

Using similar arguments as above we can write U2n as

U2n = n−1/2
n∑

i=1

M+1∑
j=1

(1 − δij )

(
bijDi

aij

− Ti

)
(̂aij − aij ) + Op(ηn)

= n−1/2
n∑

k=1

M+1∑
l=1

(1 − Ykl)δkl

(
bkl

akl

D∗
kl − T ∗

kl

)
(Akl − akl){c∗

10(Vkl) + c∗
00(Vkl)} + Op(ηn),

where Di = Di(θ, a, b) and Ti = Ti(θ, a, b) are defined in Theorem 2. Also, D∗
kl = E(Dk |Vkl) and T ∗

kl = E(Tk |Vkl).
Therefore,

Un(θ, â, b̂) = Un(θ, a, b) + U1n − U2n + Op(ηn) = n−1/2
n∑

i=1

Ji + Op(ηn), (A5)

where

Ji =
M+1∑
j=1

(
Sij

{
δij

∂ log(Aij )

∂θ
+ (1 − δij )

bij

aij

}
+ (1 − Yij )δij

[
1

aij

(
∂Aij

∂θ
− bijAij

aij

)

× {S1ij c
∗
10(Vij ) + S0ij c

∗
00(Vij )} −

(
bij

aij

D∗
ij − T ∗

ij

)
(Aij − aij ){c∗

10(Vij ) + c∗
00(Vij )}

])
are identically and independently distributed. Hence it is seen that Un(θ, â, b̂) is asymptotically a sum of iid mean zero
random variables. If θ̂ is the estimate of θ, then by Taylor’s series expansion, the influence function type representation is
given by

n1/2 (̂θ − θ) = G−1
n (θ, â, b̂)n−1/2

n∑
i=1

Ji + Op(ηn),

where Gn(θ, a, b) = −n−1/2∂Un(θ, a, b)/∂θT as in (8). By calculating the mean and variance, and since
√

ξn has a smaller
order than ηn, it can also be shown that Gn(θ, â, b̂) − Gn(θ, a, b) = Op(ηn), and that Gn(θ, â, b̂) converges in probability
to G(θ) which is given in (9). Now under the assumption that G(θ) is positive definite, n1/2 (̂θ − θ) follows an asymptotic
normal distribution with mean zero. Moreover, using Slutsky’s theorem, we obtain its asymptotic variance-covariance
matrix as � = G−1(θ)cov(J1)G

−T(θ).
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