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Abstract

Typically locus specific genotype data do not contain information regarding the gametic phase
of haplotypes, especially when an individual is heterozygous at more than one locus among a large
number of linked polymorphic loci. Thus, studying disease-haplotype association using unphased
genotype data is essentially a problem of handling a missing covariate in a case-control design.
There are several methods for estimating a disease-haplotype association parameter in a matched
case-control study. Here we propose a conditional likelihood approach for inference regarding the
disease-haplotype association using unphased genotype data arising from a matched case-control
study design. The proposed method relies on a logistic disease risk model and a Hardy-Weinberg
equilibrium (HWE) among the control population only. We develop an expectation and conditional
maximization (ECM) algorithm for jointly estimating the haplotype frequency and the disease-
haplotype association parameter(s). We apply the proposed method to analyze the data from the
Alpha-Tocopherol, Beta-Carotene Cancer prevention study, and a matched case-control study of
breast cancer patients conducted in Israel. The performance of the proposed method is evaluated
via simulation studies.
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1 Introduction

In a gene-disease association study, attention is paid to certain locations of
Deoxyribo Nucleic Acid (DNA) which carry variations in its nucleotide struc-
ture. A single nucleotide polymorphism (SNP) could be defined as a single base
change in a DNA sequence that occurs in a population with a large propor-
tion (more that 1%). Due to rapid growth of molecular techniques, identifying
several polymorphic loci or SNP on the same chromosome has become very
common, and now is used for mapping complex-disease genes or identifying
genetic variants responsible for a disease. However, the simple SNP based
association study can be expanded to understand the biologically more rele-
vant contiguous region of DNA containing a risk allele by examining a number
of adjacent loci. This type of haplotype based analysis takes advantage of
the linkage disequilibrium information from multiple SNPs together in a sin-
gle analysis, and can be informative regardless of whether these SNPs simply
represent markers of risk or interact in some genetically relevant manner.

A haplotype is a set of closely linked SNP’s present on one chromosome
which tend to be inherited together. Thus two haplotypes one from father and
one from mother go together and form a pair of haplotypes which is called a
diplotype. The list of unordered pairs of alleles in a diplotype is called a geno-
type. That means, a genotype is obtained from a pair of haplotypes without
any information regarding the chromosome which is associated with each al-
lele, and this is known as phase information. For example, if we consider three
loci, with genotypes Aa, Bb, and cc, then there are two possible pairs of hap-
lotypes ABc/abc and Abc/aBc. Due to ambiguous phase information about
multiple SNP-based haplotypes, the standard method for analyzing matched
case-control data, such as conditional logistic regression method treating hap-
lotypes as a covariate is inapplicable in its standard form.

Due to high cost of molecular haplotyping, numerous methods have been
proposed for assessing association of haplotypes and/or environmental risk
factors with disease variable using unphased haplotype data. Clark (1990) in-
troduced a method based on the Hardy Weinberg equilibrium (HWE) assump-
tion to determine the phase information of multiple SNP genotypes. Excoffer
and Slatkin (1995) used expectation maximization algorithm to estimate hap-
lotype frequencies from unphased genotype data in a diploid population. Niu
et al. (2002) used a Bayesian technique to estimate the unknown haplotype
frequencies for large number of linked loci by using progressive ligation Gibbs
sampler. Greenspan & Geiger (2003) proposed a Bayesian approach incorpo-
rating priors which takes into account the aspects of recombination. Kraft et
al. (2005) presented a comprehensive review of some of the existing meth-
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ods for analyzing matched case-control data in presence of unphased genotype
data. Recently, Lin and Zeng (2006) presented a likelihood based approach
for the analysis of these data collected through cohort or case-control study.

Generally, for a matched case-control study, a random sample of cases
(diseased subject) is drawn from a target population, and then each case
is matched with a number of controls (nondiseased subject) based on some
matching variables. The unphased genotype data on multiple loci (or other
covariate) are then collected from each sampled individual. In a naive method,
first the haplotype frequencies are estimated by the Expectation-Maximization
(EM) based algorithm using case-control sample (Excoffier and Slatkin, 1995;
Fallin and Schork, 2000; Qin et al., 2002). Next each subject is assigned the
most likely haplotype pair given the observed genotype, and then the stan-
dard analysis is carried out as if the haplotypes are exactly observed. The
drawback of the naive strategy is that ignoring the uncertainty in the assigned
haplotype pair can lead to overly narrow confidence intervals and bias, de-
pending on the degree of misclassification. As noted in Kraft et al. (2005), if
the misclassification rates differ between the cases and controls (i.e., if there
is differential misclassification), then the test of haplotype-effect parameter
estimates can be biased. In order to handle the uncertainty in the haplotype
assignment one may employ multiple imputation technique. In multiple impu-
tation, multiple datasets are created by randomly assigning a haplotype pair
to each subject which is in accordance with the locus specific genotype data.
Then disease-haplotype association parameter is estimated by taking the av-
erage of the estimates across the imputed datasets. Kraft et al. proposed
to use a weighted average of the conditional likelihood, where the weights
are the probabilities corresponding to different haplotype combination for the
cases and controls. In a conditional likelihood paradigm Chen and Chatterjee
(2006) proposed a semiparametric method for joint estimation of relative-risk
parameter and cumulative baseline hazard function using cohort or nested
case-control study. They proposed an alternative EM algorithm to estimate
haplotype frequency from cohort and nested case-control study under HWE.
Recently, Zhang et al. (2006) considered haplotype-based association study
under a matched case-control design with the rare disease assumption. In all
these methods, the haplotype frequencies are separately estimated from the
control sample or from the combined sample of cases and controls under the
HWE. Then the estimated haplotype frequencies are plugged into the pre-
scribed likelihood for estimating the disease-haplotype association. Though
Epstein and Satten (2003) estimated the relative risk parameters and the hap-
lotype frequencies simultaneously in an unmatched case-control study, it has
not been previously done for matched case-control data.
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In order to take into account the uncertainty of the haplotype frequency
estimates we propose to estimate the haplotype frequencies and the disease-
haplotype association parameters simultaneously through a conditional likeli-
hood of the observed data. Considering the fact that the validity of HWE in
the population may often be in doubt, following Epstein and Satten (2003), we
relax that assumption, and assume that only the control population is under
HWE. This assumption along with the disease risk model induces a probabil-
ity structure for a pair of haplotypes among the cases, which generally do not
obey HWE.

The rest of the article is organized as follows. Section 2 contains model and
notation while a brief description of existing methods for analyzing matched
case-control data is collected in Section 3. Section 4 presents the details of
the proposed method. In Section 5, the proposed method is applied to two
real matched case-control datasets. The first is based on the data from Alpha-
Tocopherol, Beta-Carotene (ATBC) Cancer Prevention Study (Woodson et
al., 2003), and the second is a population-based case-control study on inci-
dent breast cancer conducted in northern Israel (Pujana et al., 2007). The
second study recently associated three haplotype-tagging SNPs (htSNPs) at
the HMMR (hyaluronan-mediated motility receptor) locus with increased risk
of breast cancer. Since then, haplotype data on additional cases and controls
have been added to the study-base and we analyze the same three htSNPs
on this extended database including new subjects. Section 6 contains exten-
sive simulation study which assesses the performance of the proposed method
in terms of bias, efficiency, and robustness under violation of various model
assumptions. Section 7 contains discussion.

Before we conclude this section, we would like to point out the main fea-
tures of this article. We propose a conditional likelihood approach for in-
ference regarding the disease-haplotype association parameters in matched
case-control studies in presence of unphased genotype data. The unknown pa-
rameters are all simultaneously estimated by the expectation and conditional
maximization (ECM) algorithm. The proposed method depends neither on
the rare disease assumption nor on the HWE in the target population. It
assumes that only the control population is under HWE. Extensive simula-
tion study is an important asset of this paper, which shows that in terms of
bias and efficiency the proposed method works well, and in many situations it
outperforms the existing methods.
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2 Model and Notation

Suppose we have n matched sets each comprising of 1 case and M (M≥ 1)
unrelated controls. Let S be the set of matching variables. Let Yij denote
the binary disease variable for the subject j in the ith matched set, and Gij =
(gij1, · · · , gijp) be the set of p SNPs within a candidate region. The genotype

gijk at the locus k consists of unordered pair of alleles gijk = (g
(1)
ijk, g

(2)
ijk). If

g
(1)
ijk and g

(2)
ijk are inherited from the father and the mother of the subject, then

the corresponding diplotype, the pair of haplotypes, will be Dij = (h
(1)
ij , h

(2)
ij ),

where the haplotype h
(l)
ij = (g

(l)
ij1, · · · , g

(l)
ijp), for l=1, 2. The disease-risk model

we are interested in is

pr{Y = 1|D = (hs, ht), Si} = H{β0(Si) + β(st)}, (1)

where H(u) = {1 + exp(−u)}−1. Here β0(S) is the matched set specific inter-
cept parameter, which could be any type of function of the matching variables
S, and β(st) is the log-odds ratio parameter associated with the diplotype D.
Depending on the mode of inheritance one can write β(st) in different ways.
Following the notation of Lin and Zeng (2006), if h∗ is the haplotype of our
interest, then β(st) = βI(hs = ht = h∗) is termed as the recessive model,
β(st) = β{I(hs = h∗) + I(ht = h∗) − I(hs = ht = h∗)} is termed as the
dominant model, and β(st) = β{I(hs = h∗) + I(ht = h∗)} is termed as the
log-additive model, where β is the effect of the haplotye in the disease risk.
Though (1) includes only the haplotype effect, one can easily extend it to
incorporate some environmental covariates and its interaction term with the
other predictor variables in the model.

3 Previous Work

If the complete information on the haplotype pair were available, one could
have estimated the log-odds ratio parameter β by using the conditional likeli-
hood of the disease status given the diplotypes, the matching variable, and the
conditioning event T =

∑M+1
j=1 Yij = 1. Let Y i,−k = (Yi1, · · · , Yik−1, Yik+1, · · · ,

YiM+1 ), then the conditional likelihood is

LCLR(β) =

n∏
i=1

pr(Yi1 = 1, Y i,−1 = 0|Si, {Dij}M+1
j=1 ,

M+1∑
j=1

Yij = 1). (2)

Note that due to conditioning on the number of cases in every matched set,
we get rid of the nuisance parameter β0(Si). Hereafter this method will be
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referred as Method-I. Kraft et al. (2005) proposed the following likelihood for
matched case-control study with unphased genotype data.

LK(β, π) =
n∏

i=1

∑
Di∈

⊗M+1
j=1 D(Gij)

{
pr(Yi1 = 1, Y i,−1 = 0|Si, {Dij}M+1

j=1 ,

M+1∑
j=1

Yij = 1) ×
M+1∏
r=1

pr(Dir|Gir)

}
(3)

where Di = (Di1, · · · , DiM+1) is a set of (M +1) diplotypes, and D(Gij) is the
set of all possible diplotypes which are compatible with the unphased geno-
type Gij . Note that pr(Dir|Gir) is a function of the haplotype frequency π.
This likelihood is the expectation of (2) with respect to missing haplotypes

given the unphased genotype. β̂ is obtained by solving the score equation
∂logLK(β, π̂)/∂β = 0, where π̂ is the estimate of the haplotype frequency
obtained from the combined sample of cases and controls using the EM algo-
rithm. In future, we will refer this method as Method-II.

Although the method proposed in Chen and Chatterjee (2006) was targeted
for nested case-control study, it can also be applied for matched case-control
data. Suppose t is the true age of onset of the disease, then the disease hazard
at age t for a subject with diplotype D = (hr, hs) is λ(t) = λ0(t) exp{βD},
where λ0(t) is the baseline hazard function, and βD is the log-odds ratio pa-
rameter associated with the diplotype D. Then partial likelihood function
proposed in Equation (3) of the article involves the cumulative baseline hazard
function (CBHF). Since, in general, matched case-control data do not contain
age of onset of the disease, the authors proposed the following likelihood under
the rare disease assumption to estimate βD for matched case-control data.

LCC =

n∏
i=1

∑
D∈D(Gi1)

exp(βD)pr(D|Gi1; π̂)∑M+1
j=1

∑
D∈D(Gij)

exp(βD)pr(D|Gij; π̂)
, (4)

where π̂ is the estimated haplotype frequency of the target population obtained
by using an EM algorithm under HWE. Under the rare disease assumption,
one may obtain π̂ by applying an EM algorithm only to the data on the control
subjects. In rest of the article this method is referred as Method-III.

Zhang et al. (2006) considered a slightly different approach by adopting

5

Sinha et al.: Matched Case-Control Study Using Unphased Genotype Data

Published by The Berkeley Electronic Press, 2008



the following likelihood

LZ(β, π) =
n∏

i=1

∑
Di1∈D(Gi1)

· · ·
∑

DiM+1∈D(GiM+1)

pr (Yi1 = 1, Y i,−1 = 0,

{Dij}M+1
j=1 |Si,

M+1∑
j=1

Yij = 1 ) , (5)

which conditions only on T , but not on the diplotypes, and the contribution
of the ith matched set pr(Yi1 = 1, Y i,−1 = 0, {Dij}M+1

j=1 |Si,
∑M+1

j=1 Yij = 1) is

pr(Yi1 = 1, Y i,−1 = 0|{Dij}M+1
j=1 , Si)

∏M+1
j=1 pr(Dij)∑

Di

∑M+1
k=1 pr(Yik = 1, Y i,−k = 0|{Dj}M+1

j=1 , Si)
∏M+1

j=1 pr(Dj)

Note that the above conditional likelihood function involves the matched set
specific nuisance parameter β0(Si). Thus Zhang et al. (2006) assumed that the
disease is rare, which makes the likelihood free from the nuisance parameters,
and it becomes proportional to the retrospective likelihood of Epstein and
Satten (2003), and the estimate of β is then obtained by solving the score
equation ∂logLZ(β, π̂)/∂β = 0, under the rare disease assumption. Here π̂ is
the estimate of the haplotype frequency among the controls. Hereafter we will
refer this method as Method-IV whereas the proposed method will be referred
as Method-V.

4 Proposed Method

4.1 Modeling Haplotype Frequency

Although haplotype frequencies may vary in the target population due to ad-
mixture or stratification of the population, for the sake of simplicity we assume
that the target population is genetically homogeneous, and the haplotype fre-
quencies do not confound with the matching variables S. Later on in the
simulation study we consider a departure from these assumptions. Following
Epstein and Satten (2003), we assume that the control population is under
HWE. Let π(st) = pr{D = (hs, ht)|Y = 0}, then π(st) is equal to 2πsπt for
s < t and π2

s otherwise, where π = (π1, · · · , πm) are the haplotype frequencies
among the control population, where m is the the total number of haplotypes
that are present in the dataset with non-zero frequency. Let the odds of the
disease given a specific diplotype D = (hs, ht) in the matched set i is

θ(st) =
pr{Y = 1|Si, D = (hs, ht)}
pr{Y = 0|Si, D = (hs, ht)} = exp{β0(Si) + β(st)},
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then by using the result of Satten and Kupper (1993) and Satten and Carroll
(2000) we obtain the expression for the prevalence of the diplotype D = (hs, ht)
among the cases, and it is

ρ(st) =
θ(st)π(st)∑

(j,k) θ(jk)π(jk)

=
exp{β(st)}π(st)∑

(j,k) exp{β(jk)}π(jk)

.

Thus even though the control population is under HWE, in general the case
population does not follow HWE unless one assumes log-additive model for
the haplotype effect.

4.2 Likelihood of the Proposed Method

We start out with the joint likelihood of the disease variable given the genotype
data and condition on the number of cases of every matched set. Thus the
likelihood function is

LOBS(β, π) =
n∏

i=1

pr(Yi1 = 1, Y i,−1 = 0|Si, {Gij}M+1
j=1

M+1∑
j=1

Yij = 1)

=
n∏

i=1

pr(Yi1 = 1, Y i,−1 = 0|Si, {Gij}M+1
j=1 )∑M+1

k=1 pr(Yik = 1, Y i,−k = 0|Si, {Gij}M+1
j=1 )

=

n∏
i=1

pr(Yi1 = 1|Gi1, Si)/pr(Yi1 = 0|Gi1, Si)∑M+1
k=1 pr(Yik = 1|Gik, Si)/pr(Yik = 0|Gik, Si)

. (6)

By a straight forward calculation one can show that the odds of the disease
given the genotype data is a function of β and π, and it is

pr(Yij = 1|Gij, Si)

pr(Yij = 0|Gij, Si)
=

∑
(hs,ht)∈D(Gij )

θ(st)

π(st)∑
(ht,h′

t)∈D(Gij ) π(tt′)
. (7)

Hence using the relation (7) in Equation (6) we obtain

LOBS =

n∏
i=1

∑
(hs,ht)∈D(Gi1) θ(st){π(st)/

∑
(ht,h′

t)∈D(Gi1) π(tt′)}∑M+1
j=1

∑
(hs,ht)∈D(Gij ) θ(st){π(st)/

∑
(ht,h′

t)∈D(Gij ) π(tt′)}

=

n∏
i=1

∑
(hs,ht)∈D(Gi1) exp{β(st)}{π(st)/

∑
(ht,h′

t)∈D(Gi1) π(tt′)}∑M+1
j=1

∑
(hs,ht)∈D(Gij ) exp{β(st)}{π(st)/

∑
(ht,h′

t)∈D(Gij)
π(tt′)}

.(8)

Note that likelihood (8) is free from the nuisance parameter β0(Si).
Remark 1. Likelihood (6) is an exact likelihood without the rare disease as-
sumption. It is a function of the haplotype frequency π of the control popu-
lation and the association parameter β.
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Remark 2. One should carefully note that when the phase information is avail-
able, likelihood (6) does not reduce to LCLR, which is semiparametrically effi-
cient. Thus in absence of phase ambiguity, the proposed method may not be
a better choice for analyzing the data compared to the CLR approach which
does not require the estimation of the haplotype frequencies.
Remark 3. Likelihoods (8) and (4) are very similar, except π is replaced by π̂
in (4). Also, likelihood (4) is obtained under the rare disease assumption.
Remark 4. The difference between different likelihood functions should be
noted. Though likelihood (3) is lack of proper probabilistic interpretation,
one can think of it as a marginal likelihood. Both the likelihood functions (6)
and (4) are conditional on the observed genotype data, whereas likelihood (5)
is a direct function of the diplotype. Thus, if the diplotypes were observed,
(5) will produce more efficient estimate of the parameter than the other meth-
ods when the disease is rare. The other reason for gain in efficiency of (5)
is that it extracts information from all matched sets even the ones which are
diplotype concordant. In the downside, this likelihood heavily relies on HWE
for calculating marginal probability of the diplotypes, compared to likelihoods
(6) and (4) which use conditional probability of diplotype given the unphased
genotype and the disease status. Nonetheless we only assume HWE among the
control population, hence the violation of HWE in the target population will
have less impact on the proposed method than the method based on likelihood
(5).
Remark 5. As noted in Breslow (1996), the conditional likelihood (6) is both
prospective and retrospective, thus it corrects for ascertainment bias. Also (5)
implicitly corrects for ascertainment bias as it is equivalent to retrospective
likelihood under the rare disease assumption. For discussion related to bias
and efficiency for different likelihoods see Kraft and Thomas (2000).

4.3 Method of Estimation

In presence of missing diplotypes, one may think of using EM algorithm to esti-
mate the parameter of interest, where the E-step reduces to finding conditional
expectation of the log of complete data likelihood, and the M-step is simply
the maximization of the conditional expectation obtained in the previous step.
However, if the M-step is not simple, as in this situation, one may consider
to break up the M-step into two conditional maximization (CM) steps– which
is known as ECM algorithm (Meng and Rubin, 1993). Let Θ = (β, π). Fur-
thermore we assume that given the genotype and disease status diplotypes and
the stratification variables S are independent. If the dipolotyes were observed,
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then the complete data likelihood would be

Lcompl(Θ) =

n∏
i=1

pr(Yi1 = 1, Y i,−1 = 0, {Dij}M+1
j=1 |{Gij}M+1

j=1 , Si,

M=1∑
j=1

Yij = 1)

=
n∏

i=1

{
pr(Di1|Yi1 = 1, Gi1)

M+1∏
j=2

pr(Dij|Gij, Yij = 0)

pr(Yi1 = 1, Y i,−1 = 0|{Gij}M+1
j=1 , Si,

M=1∑
j=1

Yij = 1)

}
.

The ECM algorithm consists of the following three steps. In the E-step of
the (t + 1)th iteration we take expectation of the log of complete data like-
lihood with respect to the unobserved Dij with the following probability
mass function. Let c(rs),ij(Θ

(t)) = pr{Dij = (hr, hs)|Gij, Yij = 1; Θ(t)} and
c(rs),ij(Θ

(t)) = pr{Dij = (hr, hs)|Gij, Yij = 0; Θ(t)}, then

c(rs),ij(Θ
(t)) =

π
(t)
(st)∑

(ht,h′
t)∈D(Gij)

π
(t)
(tt′)

for (hr, hs) ∈ D(Gij)

c(rs),ij(Θ
(t)) =

π
(t)
(st) exp{β(t)

st)}∑
(ht,h′

t)∈D(Gij)
π

(t)
(tt′) exp{β(t)

(tt′)}
for (hr, hs) ∈ D(Gij).

Let Q(Θ(t+1)|Θ(t)) = E

[
log{Lcompl(Θ)}

]
, then Q(Θ(t+1)|Θ(t)) is

n∑
i=1

{ ∑
(hr ,hs)∈D(Gi1)

c(rs),i1(Θ
(t))logpr{Dij = (hr, hs)|Gij, Yij = 1; Θ(t+1)}

+

M+1∑
j=2

∑
(hr ,hs)∈D(Gij)

c(rs),ij(Θ
(t))logpr{Dij = (hr, hs)|Gij, Yij = 0; Θ(t+1)}

+logpr(Yi1 = 1, Y i,−1 = 0|{Gij}M+1
j=1 , Si,

M=1∑
j=1

Yij = 1; Θ(t+1))

}
(9)

Next we maximize Q(Θ(t+1)|Θ(t)) with respect to Θ(t+1).
CM step for β

We fix π(t+1) = π(t) in Q(Θ(t+1)|Θ(t)), and then maximize it with respect
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to β(t+1). The part of (9) which is a function of β(t+1) is

n∑
i=1

{ ∑
(hr,hs)∈D(Gi1)

c(rs),i1(Θ
(t))logpr{Dij = (hr, hs)|Gij, Yij = 1; Θ(t+1)}

+logpr(Yi1 = 1, Y i,−1 = 0|{Gij}M+1
j=1 , Si,

M=1∑
j=1

Yij = 1; Θ(t+1))

}
.

We maximize the above function using Newton-type algorithm, which numer-
ically calculates the gradient and the Hessian matrix of the above function.
CM step for π

In this step we determine π(t+1) by fixing β(t+1) to its recently updated
value. Note that π is present in all three components of Q(Θ(t+1)|Θ(t)). The

score equation corresponding to π(t+1) with the constraint
∑m

l=1 π
(t+1)
l = 1 is

∂Q(Θ(t+1)|Θ(t))/∂π(t+1) − λIm = 0, which is equivalent to

π
(t+1)
k

[ n∑
i=1

M+1∑
j=1

∂A
(t+1)
ij /∂π

(t+1)
k

A
(t+1)
ij

+
n∑

i=1

∂

∂π(t+1)
log{

M+1∑
j=1

B
(t+1)
ij

A
(t+1)
ij

} + λ

]

=

n∑
i=1

[ ∑
(hr,hs)∈D(Gi1)

c(rs),i1(Θ
(t)){I(s = k) + I(r = k)}

+

M+1∑
j=2

∑
(hr ,hs)∈D(Gij)

c(rs),ij(Θ
(t)){I(s = k) + I(r = k)}

]
, (10)

for k = 1, · · · , m, where λ is the Lagrangian multiplier, and Im is the iden-
tity matrix of order m. Also, A

(t+1)
ij =

∑
(hr ,hs)∈D(Gij ) π

(t+1)
(rs) and B

(t+1)
ij =∑

(hr ,hs)∈D(Gij ) exp{β(t+1)
(rs) }π(t+1)

(rs) . Thus λ is determined by setting
∑m

i=1 πi

equal to 1. π(t+1) is solved iteratively. We start with an initial value
π(t+1) = π(t+1),0, and then calculate π(t+1),1 using Equation (10), and repeat
this step until π(t+1) converges. Thus the steps for the ECM algorithm are as
follows.
Step 0. Initialize β = β(0) and π = π(0), and Θ(0) = (β(0), π(0)).

Step 1. Calculate Q(Θ(1)|Θ(0)).

Step 2. Determine β(1) by fixing π(1) = π(0).

Step 3. Determine π(1). Set Θ(1) = (β(1), π(1)).
Step 4. Repeat step 1 through 3 until∣∣∣∣

∣∣∣∣β(t+1) − β(t)

β(t)

∣∣∣∣
∣∣∣∣+

∣∣∣∣
∣∣∣∣π(t+1) − π(t)

π(t)

∣∣∣∣
∣∣∣∣< 10−5.
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In the ECM algorithm the initial values should be carefully chosen. The initial
value of π was set to π̂ which is obtained by applying the EM algorithm to
the combined case and control sample, and the initial value of β can be set to
any reasonable estimate of β. For our data analysis and simulation we used
the estimate of β obtained by using Kraft’s method as the initial value for
β. For the data analysis and simulation study, the ECM algorithm converged
within 5 or 6 iterations. The estimate of the variance of the estimator can be
obtained by inverting observed information matrix (Louis, 1982).

Remark 6. The proposed method can easily handle missing genotype data. We
assume that data are either missing completely at random (MCAR) or missing
at random (MAR), which do not require to model the missingness process in
the likelihood-based inference. An unphased data G with missing genotype at
one/more locus results in larger set D(G) than a G without missing genotype.
For example if G = (21100), D(G) = {(11100, 10000), (11000, 10100)}. On the
other hand if G∗ = (2NA100), where the genotype at locus 2 is missing, then
D(G∗) = {(11100, 11000), (11100, 10000), (11000, 10100), (10100, 10000)}.
Remark 7. A more flexible model for the diplotype frequency is to assume

π(st) = 2(1 − f)πsπt + fπsI(s = t) (11)

among the control population, which involves the fixation parameter f . Fol-
lowing Satten and Epstein (2004) the model parameters are still identifiable
as we have already assumed that the haplotype frequencies do not vary across
the strata. Furthermore, for the estimation one needs to estimate f using a
conditional maximization step. Note that even this flexible model may entail
bias if the diplotype frequencies follow some other pattern which is neither
captured by HWE nor by (11).

5 Real Data Examples

5.1 Application to Data from the ATBC Study

For illustration purposes we apply all four methods, Method-II through
Method-V, on the data from ATBC cancer prevention study conducted in
Finland jointly by National Public Health Institute of Finland and National
Cancer Institute (NCI) of USA. This data have previously been analyzed by
Chen and Chatterjee (2006). It is a large randomized, double blinded, placebo-
controlled, primary prevention trial to determine whether daily supplementa-
tion of alpha-tocopherol, beta-carotene, or both would reduce the chance of
having lung or other cancers among male smokers. The cohort of the ATBC
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Method Haplotype
AC/GT GC
Association Parameter

β1 β2

II EST -0.1637 0.0922
SE 0.4339 0.1657

III EST -0.1560 0.0909
SE 0.4225 0.1645

IV EST -0.1493 0.0876
SE 0.4917 0.1749

V EST -0.1541 0.0903
SE 0.4690 0.1754

Table 1: Results of the ATBC data analysis. Here EST and SE stand for the
estimate and standard error.

study consisted of 29,133 men between age 50 to 69 years, and who smoked
at least 5 cigarettes per day, and the participants were assigned to one of 4
treatment groups. The participants received either alpha-tocopherol, beta-
carotene, both supplements, or placebo capsules for 5-8 years. From January
1, 1983 to December 31, 1994 208 prostate cancer patients have been identi-
fied in the cohort, and corresponding to each case one control has been chosen
based on the matching variables length of follow-up, age at randomization,
intervention group, and study clinic. Here we just focus our attention on
the effect of interleukin-1 (IL1A) gene cluster on the risk of prostate cancer.
Two polymorphisms, IL1A889 (A/G) and IL1A4845 (T/C) were genotyped
within the IL1A region. Out of 208 case-control pairs we consider only 179
case-control pairs excluding the matched sets with no information on the geno-
type of both case and control. There were four possible haplotypes AT, AC,
GT, and GC. The estimated frequencies of the haplotypes among the control
population are 0.6473, 0.0212, 0.0225, and 0.309. We found that the two poly-
morphisms are in strong linkage disequilibrium with D

′
= 0.8962 and the test

statistic χ2
1 = 144.5953. Following Chen and Chatterjee (2006) we treat AT

as the reference category which has maximum frequency among the possible
haplotypes, and assumed additive model for the haplotype effect. As AC and
GT have low frequency (< 3%) we decide to clump these two categories and
will refer them as HAP-I, and GC will be denoted as HAP-II. Let β1 and β2 are
the two relative risk parameters corresponding to HAP-I and II respectively,
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then the disease incidence model can be written as

pr(Yij = 1|Dij, Si) = H{β0(Si) +

2∑
k=1

βkXk},

where Xk represents the number of copies of haplotype k present in the diplo-
type Dij, We analyze the data by using methods II, III, IV, and V. The results
of the data analysis are given in Table (1). None of the methods shows any
significant association between the disease and any of the haplotypes. Un-
der the proposed method the odds ratio estimate of HAP-I and HAP-II are
0.85 (95% CI=(0.07, 1.65), P -value=0.371) and 1.09 (95% CI=(0.72, 1.47),
P -value=0.31) respectively. One should also note that there is not much
difference among the estimates obtained under different methods. The AIC
value corresponding to this additive model was 247.9972. As suggested by
a reviewer, we also consider dominant and recessive model alternatives with
HAP-I as the main haplotype of interest. Under the dominant model the dis-
ease prevalence model is pr{Yij = 1|Dij = (hr, hs), Si} = H [β0(Si)+β{I(hr =
HAP-I) + I(hs = HAP-I) − I(hr = hs = HAP-I)}]. Using Method V the odds
ratio estimate of HAP-I is 1.03 (95% CI=(0.58, 1.48), P -value=0.4463). The
AIC value of this dominant model is 246.422. For the recessive model we fit
pr{Yij = 1|Dij = (hr, hs), Si} = H{β0(Si)+βI(hr = ht = HAP-I)}. The odds
ratio estimate due to Method V is 1.86(95% CI=(0.25, 3.47), P -value=0.079).
The AIC value of this model is 242.422, which suggests that the recessive
model is preferable than the other models. However, in all the models the
effect of HAP-I is statistically insignificant. In contrast to the null results in
this example, in the next example we will observe another inferential scenario
where a haplotype on the HMMR locus significantly increases the risk of breast
cancer in an Israeli population.

5.2 Application to Israeli Breast Cancer Data

This case-control study conducted in northern Israel is a population-based
study of incident breast cancer cases identified through rapid case ascertain-
ment between January 2000 and July 2006. Control women were randomly
selected from a comprehensive list of insurees which covers approximately 70%
of the women of northern Israel who are at risk. For each case, a control woman
was identified randomly who was within 1 year age difference with the case
subject, who has the same self-reported ancestry as the case (Jewish versus
non-Jewish) and who is in the same geographical clinic area. Genomic DNA
derived from blood lymphocytes was used for genotyping, and for our anal-
ysis, we consider genotype data for three htSNPs namely, rs7712023 (A/T),
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rs299290 (C/T), and rs10515860 (A/G). Pujana et al. (2007) analyzed the
same htSNPs based on 923 1:1 matched case-control pairs and found a statis-
tically significant association between the presence of breast cancer and A-C-A
haplotype. They also found that htSNP rs10515860 captured almost all of the
variation associated with the risk. Our analysis is based on the combined 1:1
matched case-control dataset with n = 1445 matched pairs which included
the test data of 923 matched pairs as well as the validation dataset from the
Israel study used in the original article. We will note that the exciting finding
published in the original scientific article is consistent with the results of our
current analysis. Note that based on the three htSNPs there are 8 possible
haplotypes A-C-A, T-C-A, A-T-A, T-T-A, A-C-G, T-C-G, A-T-G, and T-T-
G. Due to small prevalences we merge the first four haplotypes having allele
A at rs10515860, and call them as HAP-I. As haplotype A-C-G has also very
small frequency we will merge it with T-T-G. Since this combined category
bears maximum frequency we will consider it as the reference category. The
remaining haplotypes T-C-G and A-T-G will be referred as HAP-II and HAP-
III. Approximately 36% of the genotype data were missing for the location
rs7712023 and rs299290. However the difference of the missingness probability
does not vary across the case-control status. Therefore we may assume that
the data were missing at random and the proposed method can be applied
to the dataset. The dataset is analyzed by all four methods with an additive
model, and the results are presented in Table 2. Based on all the methods
HAP-I is significantly associated with breast cancer incidence. By Method-V
the presence of each copy of HAP-I increases a woman’s risk of having breast
cancer by 29%. The odds ratio estimate is obtained as ÔR = 1.29 with P -value
0.005, and 95% confidence interval (1.06, 1.57). Under the proposed method
the AIC value for this additive model is 1991.76. We also fit a dominant model
using the proposed method to the data treating HAP-I as the haplotype of
interest. The estimate of the corresponding OR is 1.31 (95% CI=(1.08,1.60),
P -value=0.007), and the AIC value corresponding to the dominant model is
1994.91. Finally, we fit a recessive model to the data using the proposed
method with HAP-I as the main haplotype. The estimate of the odds ra-
tio parameter for the model is 1.44 (95% CI=(0.63,3.3), P -value=0.389), an
insignificant association in contrast to the findings of the additive and the dom-
inant model. However, the AIC value corresponding to this recessive model
is 2002.30. Thus in terms of AIC values, the additive model is superior than
the other models and this result is consistent with the findings of Pujana et
al. (2007).

14

The International Journal of Biostatistics, Vol. 4 [2008], Iss. 1, Art. 6

http://www.bepress.com/ijb/vol4/iss1/6



Method Haplotype
HAP-I HAP-II HAP-III

Association Parameter
β1 β2 β3

II EST 0.2515 0.1859 -0.0122
SE 0.0977 0.1246 0.0770

III EST 0.2526 0.1893 -0.0089
SE 0.0973 0.1261 0.0787

IV EST 0.2788 0.2595 -0.0200
SE 0.1522 0.1773 0.0995

V EST 0.2550 0.1893 -0.0083
SE 0.0995 0.1240 0.0768

Table 2: Results of the Israeli breast cancer data analysis. Here EST and SE
stand for the estimate and standard error.

6 Simulation Study

In order to study the performance of the proposed method we conduct a de-
tailed simulation study. For generating realistic data, we consider 17 haplo-
types based on 5 tightly linked SNPs on a putative region on chromosome
22 among the control sample of FUSION data as illustrated in Epstein and
Satten (2003). Three haplotypes 01110, 10010, and 11110 occurred with fre-
quency less than 10−6, therefore we discarded these haplotypes and the re-
maining haplotypes with their frequency are given by the second column of
Table (3). Following Epstein and Satten (2003) we focused on the haplotype
01100 which may increase the odds of type 2 diabetes. So using the haplo-
type frequencies and assuming HWE we generate dipoltypes for a cohort of
size N = 20, 000. In addition, we generate a matching variable S from the
Gamma(α = 1.25, β = 1.65). We consider only the log-additive effect of the
haplotype 01100. Next we generate the disease variable Y from the Bernoulli
distribution with the success probability H{−3.2 + 0.51S + βs(D)}, where
s(D) represents the number of copies of haplotype 01100 present in the diplo-
type D. Thus s(D) can only take values 0, 1, or 2. We consider three distinct
values of β, a) β = 0, b) β = 0.3, and c) β = 0.6. The coefficient of S is so
chosen that the odds of the disease is increased by 2 for changing S from its
10th quantile to the 90th quantile. From this cohort we construct 1:1 matched
case-control data as follow. First we randomly sample 150 cases out of the co-
hort, and for each sampled case we draw a control subject from the cohort so
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Haplotype Frequency

10000 0.0136 0.0360 0.1360
01000 0.0000 0.1000 0.1000
00100 0.0035 0.1350 0.1350
10100 0.0520 0.0520 0.0520
01100 0.2514 0.1334 0.0334
11100 0.0110 0.0110 0.0110
00010 0.0000 0.1000 0.1000
00110 0.0018 0.0018 0.0018
10110 0.0317 0.0317 0.0317
01101 0.0012 0.0012 0.0012
00011 0.0042 0.0042 0.0042
10011 0.3574 0.1235 0.1235
01011 0.1292 0.1292 0.1292
11011 0.1391 0.1391 0.1391
01111 0.0019 0.0019 0.0019
11111 0.0020 0.0000 0.0000

Table 3: Haplotype frequencies used for simulation studies.

that the values of the matching variable of the case and control subject are at
most 0.01 apart. In order to induce more phase ambiguity we randomly select
20% of the subjects and then delete the genotype information of a randomly
selected locus.

Each dataset is analyzed by five different methods discussed in Sections 3
and 4. For the simulated dataset we record phase information, and using the
phase information we obtain the CLR estimate of the parameter β (Method-I).
For the other methods we do not use the phase information, rather work only
with the unphased genotype data. We simulate ns = 300 datasets, and report
the estimate (EST) of the parameter which is obtained by taking average of
the estimates across the simulated datasets. The performance of the methods
is examined through i) simulation variance of the estimate (SVAR) which is∑ns

i=1(β̂i−β)2/(ns−1), where β =
∑ns

i=1 β̂i/ns, and ns is the number of simu-

lations, ii) average of the estimated variance (AEV) which is
∑ns

i=1 v̂ar(β̂i)/ns,
iii) 95% coverage probability (CP) which is the proportion of times the esti-
mated 95% confidence interval contains the true value of the parameter, iv)
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power (PWR) which is the proportion of times |β̂/v̂ar(β̂)| > 1.96, and v)

mean square error (MSE) which is equal to
∑ns

i=1(β̂i −β)2/ns. The results are
presented in Table (4). As expected, with known phase information, Method
I performs well in terms of bias and efficiency. For β = 0.3 and β = 0.6 the
amount of bias due to Method IV is large. The intuitive reason for this bias
may be that Method IV presumes that the disease is rare which is not true
when the log odds ratio parameter gets large. Hence, the method produces
conservative estimate of the association parameter which is bias towards null.
On the other hand, due to smaller value of the standard error, Method IV has
better power than the other procedures. Among Methods II, III, and V, the
proposed method has smallest SVAR and MSE. Also the proposed method
shows some gain in power over Methods II and III.

Hardy-Weinberg disequilibrium
To study the robustness of the proposed method when HWE is violated in the
control population we do the following. We generate diplotypes for a cohort
with the following probability

pr{D = (hr, hs)} =

{
(1 − f)π2

r + fπr if r = s
2(1 − f)πrπs otherwise,

where
∑m

s=1 πs = 1. Here f is called the fixation index which is the probability
that both the pair of haplotypes trace back to a common ancestor. Generally
this inbreeding is very low in human population (Tzeng and Roeder, 2006),
therefore for the simulation purpose we consider f = 0.02 and f = 0.05. One
should note that if the HWE is violated in the target population, and the same
holds for the control population as well. The results are presented in Table 5.
Among Methods II, III, IV, and V, the proposed method shows gain in power
when β = 0.3 and β = 0.6. MSE and simulation variance are smaller in the
proposed method than Method II and III. When f increases from 0.02 to 0.05,
the MSE increases for all four methods for β = 0, 0.3 and 0.6.

Mixture of populations but no admixture
For unrelated case-control studies it is often the case that a population con-
sists of several subpopulations with varying genetic characteristics. Therefore,
we assume that the target population consists of three subpopulations which
have different haplotype frequencies. The haplotype frequencies of the three
subpopulations are given by columns 2, 3, and 4 of Table (3), and an indi-
vidual has equal probability of being one of the three subpopulations. Also
we assume that the disease risk model for the three subpopulations are dif-
ferent and they are H{−3.2 + 0.51S + βs(D)}, H{−3 + 0.51S + βs(D)}, and
H{−2.7 + 0.51S + βs(D)} respectively. We assume that HWE holds within

17

Sinha et al.: Matched Case-Control Study Using Unphased Genotype Data

Published by The Berkeley Electronic Press, 2008



Method β = 0 β = 0.3 β = 0.6

I EST -0.0081 0.2846 0.5831
(known SVAR 0.0342 0.0352 0.0389
phase) AEV 0.0383 0.0361 0.0404

MSE 0.0343 0.0354 0.0392
CP 94.3 93.0 91.0
PWR 5.7 35.7 85.7

II EST -0.0015 0.2852 0.5812
SVAR 0.0372 0.0367 0.0424
AEV 0.0404 0.0384 0.0429
MSE 0.0372 0.0369 0.0428
CP 94.7 92.7 92.3
PWR 5.3 30.7 80.7

III EST 0.0043 0.2891 0.5831
SVAR 0.0372 0.0400 0.0423
AEV 0.0421 0.0373 0.0443
MSE 0.0372 0.0401 0.0426
CP 95.0 93.0 92.0
PWR 5.0 31.3 81.0

IV EST -0.0183 0.2649 0.5505
SVAR 0.0362 0.0365 0.0368
AEV 0.0393 0.0362 0.0363
MSE 0.0365 0.0377 0.0393
CP 93.0 92.0 92.5
PWR 7.0 39.0 84.0

V EST -0.0010 0.2832 0.5865
SVAR 0.0365 0.0358 0.0409
AEV 0.0396 0.0376 0.0413
MSE 0.0365 0.0361 0.0411
CP 94.7 93.0 92.7
PWR 5.3 34.0 83.3

Table 4: Results of the simulation study where the haplotype frequencies are
given by column 2 of Table (3), and the HWE holds (f=0).

each subpopulation. We simulate ns = 300, 1:1 matched case-control data
using the matching variable S, and then analyze them by using all five meth-
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f=0.02 f=0.05
Method β = 0 β = 0.3 β = 0.6 β = 0 β = 0.3 β = 0.6

I EST -0.0015 0.3109 0.6152 0.0028 0.3042 0.6154
(known SVAR 0.0362 0.0408 0.0349 0.0407 0.0386 0.0373
phase) AEV 0.0358 0.0370 0.0379 0.0366 0.0360 0.0379

MSE 0.0362 0.0409 0.0351 0.0407 0.0386 0.0375
CP 91.3 91.0 92.3 91.7 93.3 95.3
PWR 8.7 38.7 90.7 8.3 40.3 90.7

II EST -0.0020 0.3122 0.6175 0.0023 0.3027 0.6188
SVAR 0.0399 0.0415 0.0365 0.0442 0.0428 0.0392
AEV 0.0381 0.0391 0.0409 0.0393 0.0385 0.0406
MSE 0.0399 0.0416 0.0368 0.0442 0.0428 0.0396
CP 91.7 93.0 93.7 92.7 92.7 96.3
PWR 8.3 39.3 90.0 7.3 36.7 92.0

III EST 0.0009 0.3161 0.6209 0.0069 0.3082 0.6209
SVAR 0.0404 0.0426 0.0367 0.0446 0.0437 0.0388
AEV 0.0394 0.0403 0.0422 0.0407 0.0399 0.0416
MSE 0.0404 0.0429 0.0371 0.0446 0.0438 0.0392
CP 92.7 93.7 94.7 91.3 93.7 96.0
PWR 7.3 37.0 90.7 8.7 37.3 90.3

IV EST -0.0178 0.2940 0.6087 -0.0106 0.2936 0.6208
SVAR 0.0397 0.0396 0.0337 0.0482 0.0429 0.0350
AEV 0.0376 0.0378 0.0374 0.0429 0.0388 0.0377
MSE 0.0400 0.0396 0.0338 0.0483 0.0429 0.0354
CP 92.0 92.0 94.3 92.3 91 95.7
PWR 8.0 36.0 87.0 7.7 35.0 90.7

V EST -0.0010 0.3099 0.6120 0.0027 0.3010 0.6130
SVAR 0.0392 0.0405 0.0353 0.0435 0.0419 0.0379
AEV 0.0373 0.0381 0.0393 0.0386 0.0375 0.0391
MSE 0.0392 0.0406 0.0354 0.0435 0.0419 0.0381
CP 91.7 93.0 94.7 92.0 93.0 96.0
PWR 8.3 39.9 92.3 8.0 38.3 92.3

Table 5: Results of the simulation study where the haplotype frequencies are
given by column 2 of Table (3), and the HWE is violated.
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ods. The results are presented in the left panel of Table 6. The results show
that type-I error probability has inflated for all methods. MSE increased and
power of all the methods decreased for β = 0.3 and 0.6, and also bias increased
compared to Table 4. The intuitive reason for this change is that though
all subpopulations follow standard assumption of population genetics such as
Hardy-Weinberg equilibrium, a pooled sample from many subpopulations vi-
olate that assumption. In addition, since these subpopulations have different
risks of disease, the subpopulation membership acts as a confounder (Klein-
baum et al. 1982). Therefore haplotype-disease association is over estimated
for not properly accounting the population structure. However, Method-V
produces less biased estimate than the other alternative procedures.

The fact is that there are lot of uncertainties in the haplotype frequencies (it
is neither homogeneous across the matched sets nor within a matched set), and
that uncertainty has taken into account in the estimation of β by employing
the ECM algorithm of simultaneous estimation. The right panel of Table 6
presents the simulation results when the haplotype frequency varies across the
subpopulations but the disease risk model remains the same. Compared to the
left panel of the table, the amount of bias is significantly less in this situation.

In summary we say that each of the four Methods II, III, IV, and V has
some advantages and disadvantages, and under certain assumptions one is
better than the others. However, in Tables 3, 4, and 5 MSE due to Method
V is smaller than that of Methods II and III, and in many instances the MSE
due to Method V is smaller than that of Method IV. Also, in Tables 4 and 5,
among the methods II, III, IV, and V, Method V has uniformly better power
than the alternatives procedures. Under the violation of model assumptions
all the methods are affected, however the proposed method seems to be least
affected in terms of bias and MSE, and gain in power is observed for β = 0.3
and 0.6.

Finally, we study certain other robustness aspects of the methods. We
simulate data according to the simulation scenario which corresponds to Table
(4), but using a recessive model. However, we analyze the simulated data by
assuming an additive model. The estimate and MSE are presented in Table
(7). It is clearly seen that all the methods underestimate the β parameter,
except the situation when the true value of β is zero. In an alternative scenario
we simulate data from an additive model keeping everything else remain the
same as before but analyze them using a recessive model. The results are
presented in Table (8). It is obvious that all the methods overestimate the
parameter except in the situation when the true parameter is zero, i.e. under
the null model.

The proposed method and other methods did not converge for approx-
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Method β = 0 β = 0.3 β = 0.6 β = 0 β = 0.3 β = 0.6

I EST 0.0733 0.3427 0.6743 0.0138 0.2919 0.5916
(known SVAR 0.056 0.0548 0.0616 0.0618 0.0578 0.0540
phase) AEV 0.0555 0.0529 0.0564 0.0566 0.0534 0.0554

MSE 0.0614 0.0566 0.0671 0.0620 0.0579 0.0541
CP 91.1 92.9 92.7 93.6 93.6 94.2
PWR 6.7 34.7 83.6 6.4 25.7 73.1

II EST 0.1152 0.3584 0.7053 0.0298 0.3057 0.5989
SVAR 0.0750 0.0740 0.0819 0.0782 0.0725 0.0733
AEV 0.0784 0.069 0.0782 0.0786 0.0753 0.0762
MSE 0.0883 0.0774 0.0930 0.0791 0.0725 0.0733
CP 91.5 92.6 92.0 93.6 93.9 94.9
PWR 7.4 29.3 75.9 6.4 20.3 57.9

III EST 0.1170 0.3606 0.7040 0.0349 0.306 0.6032
SVAR 0.0760 0.0775 0.0848 0.0784 0.0736 0.0759
AEV 0.0813 0.0734 0.0796 0.0827 0.0793 0.0804
MSE 0.0897 0.0812 0.0956 0.0796 0.0736 0.0759
CP 92.6 93.6 93.7 94.0 95.9 94.9
PWR 6.4 28.9 73.5 6.0 22.0 57.2

IV EST 0.1047 0.3597 0.7115 0.0172 0.3095 0.623
SVAR 0.0818 0.0849 0.0824 0.0854 0.0808 0.0817
AEV 0.0868 0.0767 0.0789 0.0885 0.0832 0.0837
MSE 0.0928 0.0885 0.0948 0.0857 0.0809 0.0822
CP 91.8 91.9 91.3 93.6 95.3 94.6
PWR 7.2 26.7 75.3 6.4 18.9 61.3

V EST 0.1061 0.3526 0.6790 0.0198 0.2998 0.5986
SVAR 0.0767 0.0679 0.0713 0.0747 0.0673 0.0623
AEV 0.0834 0.0722 0.0785 0.0818 0.0752 0.0771
MSE 0.0880 0.0707 0.0775 0.0751 0.0673 0.0623
CP 92.4 92.9 94.8 93.0 96.2 93.6
PWR 6.6 33.7 78.6 6.1 22.3 64.3

Table 6: Results of the simulation study where the target population consists
of three subpopulations with different haplotype frequencies. We assume HWE
holds in each subpopulation. Left panel: the disease prevalence varies across
the subpopulations. Right panel: the disease prevalence does not vary across
the subpopulations.
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Method β = 0 β = 0.3 β = 0.6

I EST 0.0049 0.0458 0.1038
MSE 0.0590 0.1313 0.3104

II EST 0.0050 0.0571 0.1114
MSE 0.0730 0.1384 0.3106

III EST 0.0072 0.0622 0.1175
MSE 0.0748 0.1388 0.3063

IV EST -0.0097 0.0477 0.1090
MSE 0.0700 0.1441 0.3179

V EST 0.0045 0.0589 0.1114
MSE 0.0782 0.1413 0.3012

Table 7: Results of the simulation study where the haplotype frequencies are
given by column 2 of Table (3), and the HWE holds (i.e., f=0). Here data are
simulated from a recessive model but they are analyzed by an additive model.

Method β = 0 β = 0.3 β = 0.6

I EST 0.0509 0.5474 1.0843
MSE 0.6730 0.6708 0.6921

II EST 0.0509 0.5476 1.0942
MSE 0.6730 0.6722 0.6934

III EST 0.0665 0.5481 1.0946
MSE 0.6728 0.6688 0.6975

IV EST -0.1006 0.4421 0.9674
MSE 0.4795 0.3523 0.3686

V EST 0.0508 0.5473 1.0756
MSE 0.6730 0.6695 0.6915

Table 8: Results of the simulation study where the haplotype frequencies are
given by column 2 of Table (3), and the HWE holds. Here data are simulated
from an additive model but they are analyzed by a recessive model.
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imately 2 − 3% datasets. This is only due to small sample size. For our
computations, subroutines were written in Fortran and we used nlm() func-
tion of R for optimization purposes. The computer codes are available at
http://www.stat.tamu.edu/~sinha/research.html.

7 Discussion

This article proposes a likelihood based approach for analyzing matched case-
control data in presence of unphased genotype data. For the estimation of the
parameter of interest, we develop an ECM algorithm which allows to estimate
the disease-haplotype association parameter and the haplotype frequency si-
multaneously. Consequently it is easy to calculate the standard error of the
parameter by using the observed information matrix. As always the proposed
method relies on some sort of model assumptions. In order to estimate the
diplotype frequency, we impose HWE only among the control population, and
we do not assume that the disease is rare. The proposed likelihood properly
accounts the sampling strategy of the data collection, thus the estimate should
be free from any design bias. Though the simulation and data example focus
only on the effect of haplotype, the proposed method can easily accommodate
other covariate effect in the model. The proposed method presumed that con-
trols are unrelated to the cases. Thus, for family based case-control studies,
such as case-parent or case-sib studies, the method need to be modified to
account for family-wise association.

As the proposed method is a likelihood based approach, one can easily
calculate some model diagnostic statistics such as AIC or BIC to have a notion
of goodness of the fitted model. For instance, in absence of prior knowledge of
haplotype effect on the disease, one may fit additive, dominant, and recessive
model, and check which one yields the best fit for the data.

The extensive simulation study shows that in terms of bias and MSE the
proposed method outperforms the existing alternatives in almost all situations,
and it has significantly better power in many situations. With a moderate
degree of model violation, the proposed method works quite well in terms
of bias and MSE. Hence the method is robust under departures from model
assumptions. Robustness is always an issue of the likelihood based approach
which uses the HWE, hence in order to make the inference free from the HWE
assumption, one may adopt the strategy of Zhao et al. (2003) for estimating
the haplotype frequencies.

All the methods essentially assume that haplotype frequencies do not vary
across the matched sets, however it is likely that the frequencies may vary
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across the matched sets if the matched sets are coming from different ethnic, or
racial groups. Even if all subjects come from the same ethnic class, they might
have different origins which may result in varying genetic structure within
a population. The concern is then how to handle this heterogeneity in the
genetic structure of the population. Although, through simulation study we
demonstrate the robustness of the proposed method, a more rigorous approach
is needed to handle the issues related to population stratification.
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