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Summary

The paper considers the problem of determining the number of matched sets in 1 : M matched case-
control studies with a categorical exposure having k þ 1 categories, k � 1. The basic interest lies in
constructing a test statistic to test whether the exposure is associated with the disease. Estimates of the
k odds ratios for 1 : M matched case-control studies with dichotomous exposure and for 1 : 1 matched
case-control studies with exposure at several levels are presented in Breslow and Day (1980), but
results holding in full generality were not available so far. We propose a score test for testing the
hypothesis of no association between disease and the polychotomous exposure. We exploit the power
function of this test statistic to calculate the required number of matched sets to detect specific depar-
tures from the null hypothesis of no association. We also consider the situation when there is a natural
ordering among the levels of the exposure variable. For ordinal exposure variables, we propose a test
for detecting trend in disease risk with increasing levels of the exposure variable. Our methods are
illustrated with two datasets, one is a real dataset on colorectal cancer in rats and the other a simulated
dataset for studying disease-gene association.

Key words: Chi-squared test; Colon carcinogenesis; Discordant matched sets; Disease-gene
association; Eigen values; Non-centrality parameter; Odds-ratio; Ordinal expo-
sure, Power function; Score test; Trend effect.

1 Introduction

In popular epidemiologic study designs, such as case-control, case-cohort, and nested case-control
design, often there is a significant amount of cost and time involved in sampling the units, especially
for a rare disease. In such situations, one would like to determine the number of sampling units
required to detect specific departures from the hypothesis of interest at the planning stages of the
experiment (Schlesselman, 1974). For a individually matched case-control design, a case is matched
with one or more controls with respect to a set of confounding variables. The design itself is hard to
implement as it becomes necessary to determine the appropriate set of controls and collect informa-
tion on them. For such designs one would like to know the number of matched sets needed to attain
desired level of accuracy. In the present article, we propose a method for determining the number of
matched sets for 1 : M (M � 1) matched case-control studies with a categorical exposure variable hav-
ing k þ 1, k � 1 categories.

Though stratification is often introduced in epidemiologic designs to control the effects of con-
founding, there is only a limited amount of literature on determining the number of matched sets for
highly stratified studies with categorical exposure. Analyzing exposure data with the existing cate-
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gories can throw some light on the underlying nature of disease-exposure association which may be
obscured if one simply dichotomizes the categorical exposure variable. For example, in genetic asso-
ciation studies, interest lies in the association between a disease and a candidate gene. If one assumes
a bi-allelic marker locus for the candidate gene, there would be three possible genotypes (three cate-
gories of the exposure variable), and sometimes dichotomization of the genotype may hide the true
nature of association specially for the complex diseases which do not obey single-gene dominant or
single-gene recessive Mendallian law (Jarvik, 1998).

Sample size determination is an important aspect in any comparative study. For individually
matched case-control studies with binary exposure, standard formulas for sample size determination is
available in Schlesselman (1982). Parker and Bregman (1986) proposed sample size determination
strategy for 1 : M matched case-control studies with a binary exposure variable taking into account the
heterogeneity in exposure prevalence among the controls in different matched sets. Dupont (1988)
considered sample size selection problems for 1 : M matched case control studies taking the associa-
tion for the exposure between matched case and control patients into account. Recently Nam (1992),
Nam and Fears (1992a, b), and Nam (1997) considered the same problem for general case-control
study designs. Breslow and Day (1980) contains other methods of sample size determination for poly-
chotomous exposure variable in unmatched and 1 :1 matched case-control studies and for binary expo-
sure variable in 1 : M (M > 1) matched case-control study designs. However, to the best our knowl-
edge, there is no work on sample size determination for 1 : M matched case-control studies with a
polychotomous exposure variable.

In order to determine sample size for matched case-control studies with categorical exposure vari-
able one can use likelihood ratio (LR) test, Wald test, or score test (Rao, 1947). Both the LR test and
Wald test require calculation of maximum likelihood estimates (MLE) of the model parameters under
the alternative hypothesis which in turn needs substantial computational effort for solving a system of
nonlinear equations. Therefore, we focus on score test for the hypothesis of our interest, and exploit-
ing the power function of the test we derive the required sample size, that is the number of matched
sets required to detect a specified departure from the null hypothesis with certain probability. When
there is a natural ordering among the levels of the exposure variable, we propose a test for detecting
the presence of a trend in disease risk with increasing levels of the exposure variable and derive the
power function of the proposed test. Sample sizes for trend detection are based on this power func-
tion. The attractive features of using the score test are two-fold. First, it does not require computation
of the MLE’s of the parameters under the alternative hypothesis, and second, it has similar first order
asymptotic property as Wald and Likelihood ratio test under both the null and Pitman type alternative
hypothesis (Serfling, 1980, pp. 156). However one must recognize that inspite of the first order asymp-
totic equivalence, finite sample properties of these three types of test could be different, depending on
the nature of the problem (Lusbader, Moolgavkar and Venzon, 1984). Due to difficulties involved in
computing the MLE the score test seems to be a preferable alternative in this situation. The score test
has many other attractive and well-known theoretical features and is also most powerful for local
alternatives (Cox and Hinkley, 1974, p. 113). As one referee has pointed out, determining sample size
by using the score test may serve as a good precursor even when other test statistics are used at the
analysis stage.

Two datasets have been analyzed in this paper. We apply the proposed method to these datasets and
then perform a small scale simulation study motivated by the examples to determine required sample
sizes for various combinations of the odds ratio parameters. The first one is a real dataset on color-
ectal cancer of rats (Hong et al., 2001). We explore the association between apoptosis and prolifera-
tion in stem cells in rats, the data structure is decried in detail in Section 6.1. The second one is a
simulated dataset following a real genetic data on allele frequencies of 12 marker loci in Buenos
Aires metropolitan population (Sala et al., 1999). Among several marker loci, F13A is chosen as the
candidate gene associated with a disease we simulated. We consider the most frequent allele at this
marker locus to be the disease causing allele. Using the genotypes at this marker locus as a categori-
cal exposure variable we generate a hypothetical matched case-control dataset and apply our method
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to test the hypothesis of no association between the disease and the candidate gene. The examples
presented in this paper represent two different situations, one when the prevalence value of some
exposure categories are very rare and when the prevalence values are moderate. In both the situations
we calculate the test statistics and determine sample sizes from given prevalence values of the expo-
sure variable. We also carry out the test for detecting trend in disease risk for both the examples. Both
of these examples share a common feature that collecting data on study units is expensive (in example 1,
it is through examination of colon cells, in example 2, through genotyping), and thus determining the
right sample size can substantially save resources.

Most of the currently available literature on sample size determination in matched studies is for
dichotomous exposure. In context of the two data examples we dichotomize the exposure variable,
and then compare the sample sizes required by our method and the ad hoc method proposed by
Schlesselman (1982) for a set of plausible values of the odds ratio.

The rest of the article is organized as follows. Model and notations are described in Section 2. Test
procedures for a general polychotomous exposure is considered in Section 3, while Section 4 contains
a special treatment of ordinal variables. In Section 5 we discuss the sample size determination prob-
lem. Section 6 contains numerical examples based on the real datasets and some simulation results.
Section 7 contains concluding remarks. Details of some formulae are relegated to the Appendix.

Before we conclude this section we highlight some of the main features of this article. First, we
propose a test of the hypothesis of independence of the exposure and the disease variable in a 1 : M
matched case-control study with polychotomous exposure variable. For an ordinal exposure variable
we propose a test for detecting a trend in disease risk with increasing levels of the exposure variable.
Second, we consider the problem of sample size determination for 1 : M matched case-control studies
with polychotomous exposure variable. Finally, one major advantage of the proposed method is that
the test statistics are very easy to calculate simply by using the knowledge of the discordant matched
sets. Using the distribution of the MLE’s obtained from conditional logistic regression which is the
classical method of analyzing matched case-control data, to determine the sample size will require
more computation.

2 Model and Assumptions

Suppose we have N matched sets and each matched set consists of 1 case and M controls. Let X be a
single exposure variable. Assume that the exposure variable has k þ 1 categories, denoted by 0,
1; . . . ; k. Although we use numerical indices to denote the exposure levels, these categories are in
nominal scale, and 0 is assumed to be the baseline category. Let p0h and p1h denote the prevalence of
h-th level of the exposure variable among the control and case population respectively, i.e.,

p0h ¼ Pr ðX ¼ h j D ¼ 0Þ and p1h ¼ Pr ðX ¼ h j D ¼ 1Þ :
Suppose wh be the ratio of odds of disease in exposure category h to that of the category 0. So

wh ¼
p1hp00

p10p0h
; for h ¼ 0; 1; . . . ; k : ð1Þ

By definition w0 ¼ 1. We assume that the odds ratios are the same across the matched sets. The goal
is to test the hypothesis H0: w1 ¼ w2 ¼ . . . ¼ wk ¼ 1, i.e., the exposure variable and the disease out-
come are independent. The alternative hypothesis is that at least one of wj, j ¼ 1; . . . ; k is different
from 1.

3 Methods

As the formulation for general k is very complicated, we first derive the case for k ¼ 2. Following the
same structure of argument, we derive the formula for any general k in Appendix 1. We focus our
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attention only to the discordant matched sets as the concordant matched sets are noninformative re-
garding the parameters of our interest (Breslow and Day (1980), pp 164).

For 1 : M (M � 1) matched study with polychotomous exposure variable the concordant sets are
those where case and controls are exposed to the same level of exposure variable, and the discordant
sets are defined as the matched sets with at least two distinct levels of the exposure variable being
present.

The probability that a matched set has m1 subjects exposed at the level 1 and m2 subjects exposed
at the level 2 along with the restrictions m1 � 1, m2 � 1, and m1 þ m2 � M, is given by,

pm1;m2 ¼ Pr ðcase is exposed at the level 0; and m1 and m2 controls are exposed at the

level 1 and 2 respectivelyÞ þ Pr ðcase is exposed at the level 1; and m1 � 1

and m2 controls are exposed at the level 1 and 2 respectivelyÞ
þ Pr ðcase is exposed at the level 2; and m1 and m2 � 1 controls are exposed

at the level 1 and 2 respectivelyÞ

¼ ð1� p11 � p12Þ
M!

m1!m2!ðM � m1 � m2Þ!
pm1

01 pm2
02 ð1� p01 � p02ÞM�m1�m2

þ p11
M!

ðm1 � 1Þ! m2!ðM � m1 � m2 þ 1Þ! pm1�1
01 pm2

02 ð1� p01 � p02ÞM�m1�m2þ1

þ p12
M!

m1!ðm2 � 1Þ! ðM � m1 � m2 þ 1Þ! pm1
01 pm2�1

02 ð1� p01 � p02ÞM�m1�m2þ1 : ð2Þ

Let Tm1;m2 ¼ n0
m1;m2

þ n1
m1;m2

þ n2
m1;m2

be the total number of matched sets where m1 subjects are ex-
posed at the level 1 and m2 are exposed at the level 2 of the exposure variable while nj

m1;m2
denotes

the number of matched sets out of Tm1;m2 where case is exposed at the level j, j ¼ 0; 1; 2. Here m1,
m2 ¼ 1; 2; . . . ;M and m1 þ m2 � M. Thus conditionally,

ðn1
m1;m2

; n2
m1;m2
Þ j Tm1;m2 � Multinomial ðTm1;m2 ; p1 jm1;m2

; p2 jm1;m2
Þ; ð3Þ

where p1jm1;m2
¼ Pr ðcase is exposed at the level 1 j m1 and m2 subjects are exposed at the levels 1 and

2 respectivelyÞ ¼ m1w1=fm1w1 þ m2w2 þ ðM � m1 � m2 þ 1Þg and similarly the other conditional
probability is p2 jm1;m2

¼ m2w2=fm1w1 þ m2w2 þ ðM � m1 � m2 þ 1Þg.
Let T ði;jÞm be the number of matched sets where m subjects are exposed at the level i and the rest are

exposed at the level j of the exposure variable. Here i and j are different and i; j ¼ 0; 1; 2; and
m ¼ 1; 2; . . . ;M. So the total number of discordant matched sets is

ND ¼
PM

m1¼1

PM
m2¼1

Iðm1 þ m2 � MÞ Tm1;m2 þ
PM

m¼1
T ð1; 0Þm þ

PM
m¼1

Tð2; 0Þm þ
PM
m¼1

Tð1; 2Þm ; ð4Þ

where Ið�Þ is an indicator function. We write T ði; jÞm ¼ niði; jÞ
m þ njði; jÞ

m , where niði; jÞ
m denotes the number of

matched set out of T ði; jÞm where case is exposed at the level i. Further define

pði; jÞm ¼ Pr ða matched set has m subjects exposed at the level i; and the rest are

exposed at the level jÞ
¼ Pr ð the case is exposed at the level i;m� 1 controls are exposed at the level i;

and the rest are exposed at the level jÞ þ Pr ð the case is exposed at the level j;

m controls are exposed at the level i; and the rest are exposed at the level jÞ

¼ p1i
M

m� 1

� �
pm�1

0i pM�mþ1
0j þ p1j

M

m

� �
pm

0ip
M�m
0j : ð5Þ
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Hence conditional on T ði; jÞm , niði; jÞ
m follows a binomial distribution with success probability

piði; jÞ
m ¼

p1i
M

m� 1

� �
pm�1

0i pM�mþ1
0j

p1i
M

m� 1

� �
pm�1

0i pM�mþ1
0j þ p1j

M

m

� �
pm

0ip
M�m
0j

¼ mwi

mwi þ ðM � mþ 1Þwj
; for i; j ¼ 0; 1; 2 : ð6Þ

The conditional probability given in (6) turns into Eq. (5.13) of Breslow and Day (1980) if one
assumes only two levels of the exposure variable.

The likelihood function of the odds ratios for the matched case-control data is

L /
Q

m1;m2

ðp0 jm1;m2
Þn

0
m1 ;m2 ðp1jm1;m2

Þn
1
m1 ;m2 ðp2jm1;m2

Þn
2
m1 ;m2

�
Q
m
ðp1ð1; 2Þ

m Þn
1ð1; 2Þ
m ðp2ð1; 2Þ

m Þn
2ð1; 2Þ
m

Q
m
ðp1ð1; 0Þ

m Þn
1ð1; 0Þ
m ðp0ð1; 0Þ

m Þn
0ð1; 0Þ
m

�
Q
m
ðp2ð2; 0Þ

m Þn
2ð2; 0Þ
m ðp0ð2;0Þ

m Þn
0ð2; 0Þ
m : ð7Þ

The proposed score statistic for testing H0 is,

S ¼ ZT D�1
0 Z ; ð8Þ

where

ZT ¼ @ log L
@w

����
w¼1
¼ ðY1 � m10; Y2 � m20Þ

and

D0 ¼
�
� @

2 log L
@w @wt

����
w¼1

�
¼ s2

10 s120

s120 s2
20

� �
: ð9Þ

Where

Y1 ¼
PM

m1¼1

PM
m2¼1

Iðm1 þ m2 � MÞ n1
m1;m2

þ
PM
m¼1

n1ð1; 2Þ
m þ

PM
m¼1

n1ð1; 0Þ
m ð10Þ

and,

Y2 ¼
PM

m1¼1

PM
m2¼1

Iðm1 þ m2 � MÞ n2
m1;m2

þ
PM
m¼1

n2ð1; 2Þ
m þ

PM
m¼1

n2ð2; 0Þ
m ; ð11Þ

represent the total number of discordant matched sets where the case is exposed at the level 1 and 2
of the exposure respectively. m10, m20, s2

10, s2
20 are the mean and variance of Y1 and Y2 evaluated

under H0, and s120 is the covariance between Y1 and Y2 under H0. Exact expressions for these quanti-
ties are collected in Appendix 2. Note that we can write Y ¼ ðY1; Y2Þ as a sum of independent random

variables i.e., Y ¼
PN
i¼1

Qi, where Qi ¼ ðQi1;Qi2Þ and Qij ¼ Iði-th matched set is a discordant set and

the case is exposed at the level jÞ, j ¼ 1; 2. For finite M, Y asymptotically follows a bivariate
normal distribution and under H0 it has mean ðm10; m20Þ and variance covariance matrix D0. Hence,
under the null hypothesis, S asymptotically follows a central Chi-square distribution with 2 degrees
of freedom.
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We propose the following test function for testing H0 at level of significance a,

f ¼
n 1 if S > c2

2;a
0 otherwise;

ð12Þ

where c2
2;a is the upper a percentile point of central chi-square distribution with 2 degrees of freedom.

Remark 1 Note that for binary exposure variable the test statistic S reduces to

S ¼

PM
m¼1

n1ð1;0Þ
m �

PM
m¼1

Tð1; 0Þm m=ðM þ 1Þ
� �2

PM
m¼1

T ð1; 0Þm mðM � mþ 1Þ=ðM þ 1Þ2
ð13Þ

which is the same as Eq. (5.19) of Breslow and Day (1980) without continuity correction.
As mentioned earlier, maximum likelihood estimators of the odds ratio parameters are obtained by

solving a set of nonlinear equations in two variables and hence are not easy to obtain. Therefore, we
provide a set of computationally simpler estimates following Mantel and Haenszel (1959),

bww1MH ¼

P
m1;m2

ðM � m1 � m2 þ 1Þ n1
m1;m2

þ
P
m
ðM � mþ 1Þ n1ð1;0Þ

mP
m1;m2

m1n0
m1;m2

þ
P
m

mn0ð1; 0Þ
m

; ð14Þ

bww2MH ¼

P
m1;m2

ðM � m1 � m2 þ 1Þ n2
m1;m2

þ
P
m
ðM � mþ 1Þ n2ð2; 0Þ

mP
m1;m2

m2n0
m1;m2

þ
P
m

mn0ð2; 0Þ
m

: ð15Þ

The potential drawback of the Mantel-Haenszel estimator is that it does not use the information con-
tained in the matched sets where the baseline category (level 0) does not appear, which may entail
loss of efficiency.

4 Trend test for Ordinal Exposures

The proposed test statistic (8) is derived for categorical exposure variable with nominal levels. How-
ever, if there is some natural ordering in the exposure categories, specially for a quantitative variable,
one may want to detect a linear trend in disease risk with increasing levels of the exposure variable,
that means, we test H0 : g ¼ 0 against Ha : g 6¼ 0, where wl ¼ exp ðgxlÞ and xl is the value of the
exposure variable at l-th level. Without loss of generality one may assume that x0 ¼ 0 and
x1 < x2 < . . . < xl. This is equivalent to assuming a prospective model for the disease probability
logit PðD ¼ 1jxlÞ ¼ ai þ gxl, where ai defines the effect of i-th matched set on the disease probability.
The above hypothesis can be restated in terms of the odds ratios of the exposure variable as
H0 : w1 ¼ . . . ¼ wk ¼ 1 against Ha : wk > . . . > w1 > 1 (increasing linear trend) or wk < . . . < w1 < 1
(decreasing linear trend). The trend test statistic first appear in the work of Armitage (1955). The
score test for detecting presence of a linear trend in (log) of odds ratios wl with increasing levels of

the exposure variable is based on the statistic
P2
h¼0

xhNi
1h for every matched set, where Ni

1h denotes the

number of cases exposed at the level xh of the exposure variable in the i-th matched set. The score
statistic for testing H0 is

c2 ¼

PN
i¼1

P2
h¼0

xhNi
1h � e0 jT

� �2

v0 j T
¼
ðY1x1 þ Y2x2 � e0 j TÞ2

v0 j T
; ð16Þ
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where

e0 j T ¼
1

M þ 1

P
m1;m2

ðm1x1 þ m2x2Þ Tm1;m2 þ x1
P
m

mT ð1; 0Þm þ x2
P
m

mT ð2; 0Þm

�
þ
P
m
ðmx1 þ ðM � mþ 1Þ x2Þ T ð1; 2Þm

o
;

v0 jT ¼
1

ðM þ 1Þ
P

m1;m2

ðm1x2
1 þ m2x2

2Þ Tm1;m2 þ x2
1

P
m

mT ð1; 0Þm þ x2
2

P
m

mT ð2; 0Þm

�
þ
P
m
ðmx2

1 þ ðM � mþ 1Þ x2
2Þ Tð1; 2Þm

�
� 1

ðM þ 1Þ2
P

m1;m2

Tm1;m2ðm1x1 þ m2x2Þ2 þ x2
1

P
m

T ð1; 0Þm m2 þ x2
2

P
m

Tð2; 0Þm m2
�
þ
P
m
ðmx1 þ ðM � mþ 1Þ x2Þ2 T ð1; 2Þm

�
:

Note that e0jT and v0jT are the expectation and variance of ðY1x1 þ Y2x2Þ evaluated under H0, condi-
tioned on T ¼ ðTm1;m2 ; T

ð1; 2Þ
m ; Tð1; 0Þm ; T ð2;0Þm Þ.

Under H0, the statistic asymptotically follows a central chi-squared distribution with 1 degrees of
freedom and may be used to detect trend effects of the exposure on the disease risk.

5 Sample Size Determination

5.1 Categorical exposure variable: detecting association

To determine the power of the test as given in (8) we need to determine the distribution of the test
statistic S under the alternative hypothesis.

The mean D and the variance-covariance matrix m of Z are

m ¼ ðEðEwðY1Þ � m10Þ; EðEwðY2Þ � m20ÞÞ ð17Þ

D ¼
EðVarw ðY1ÞÞ EðCovw ðY1; Y2ÞÞ

EðCovw ðY1; Y2ÞÞ EðVarw ðY2ÞÞ

� �
; ð18Þ

where the outer expectation denotes the expectation with respect to T, and
EðTÞ ¼ Nðpm1;m2 ; pð1; 2Þm ; pð1; 0Þm ; pð2;0Þm Þ. EwðY1Þ, EwðY2Þ, Varw ðY1Þ, Varw ðY2Þ, and Covw ðY1; Y2Þ denote
the conditional mean, variance, and covariance of Y1 and Y2 given T. Let zi’s be the eigen vectors of
D0 with eigen values li’s, then we have the following result.

Theorem Under the alternative hypothesis, S has approximate Chi square distribution with degrees
freedom

n ¼ max 1;
2
P

i
liwið1þ diÞ � 1P

i
l2

i w2
i ð1þ 2diÞ

8><>:
9>=>;

and non-centrality parameter d ¼ max 0; n
�P

i
liwið1þ diÞ � 1

�� �
, where di ¼ ðzT

i mÞ2 and

wi ¼ zT
i Dzi, and the expression for m and D are given in (17) and (18).

Note that all the quantities are function of N as indicated in the appendix. Proof of this result and a
guideline of how to use it in practice are given in Appendix 4. For given type-II error probability, b,
one can now find the required sample size by satisfying,

inf
n

N :pr ðc2
nðdÞ � c2

2;aÞ � 1� b
o
;
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where c2
nðdÞ denotes chi-square distribution with n degrees of freedom and non-centrality para-

meter d.
Note that both the non-centrality parameter and degrees of freedom of the chi-squared distribution

as specified above are functions of the number of matched sets N, the exposure prevalences in the
control population, and the odds ratios. Therefore to determine the sample size for given values of
exposure prevalences in the control population, the odds ratios, type-I error probability a, and type-II
error probability b, we first calculate pr ðc2

nðdÞ � c2
a; 2Þ for smallest possible value of N, and then we

keep on increasing N by 1 until the above probability exceeds ð1� bÞ. The value of N when we stop
is reported as the required sample size.

5.2 Ordinal Categorical Exposure Variable: Detecting Trend

To determine required sample size to detect linear trend in disease risk with ordinal levels of exposure
variable, we need to calculate the power function of the test defined in (16). Let, e0 ¼ Eðe0 j TÞ,
v0 ¼ Eðv0 jTÞ, where these expectations are evaluated at w ¼ 1. Let the expectations evaluated at any

value of w in the alternative space be denoted by, e1 ¼ E E
PN
i¼1

P2
h¼0

xhNi
1h j T

 !( )
and

v1 ¼ E Var
PN
i¼1

P2
h¼0

xhNi
1h j T

 !( )
. The exact expressions for e1 and v1 are collected in Appendix 5.

Then using standard asymptotics we write

Power ¼ 1� P e0 � za=2v
1=2
0 �

PN
i¼1

P2
h¼0

xhNi
1h � e0 þ za=2v

1=2
0

 !

¼ 1� P
e0 � za=2v

1=2
0 � e1

v
1=2
1

�

PN
i¼1

P2
h¼0

xhNi
1h � e1

v
1=2
1

�
e0 þ za=2v

1=2
0 þ e1

v
1=2
1

0B@
1CA

¼ 1�F
e0 þ za=2v1=2

0 � e1

v
1=2
1

 !
þF

e0 � za=2v
1=2
0 � e1

v
1=2
1

 !
; ð19Þ

where Fð�Þ stands for cumulative probability function for standard normal distribution. We use this
power function to obtain the required sample size.

Remark 2 When the Type II error probability b is small, the last term on the right-hand side of
(22) is negligible. In this case,

�zb ¼
e0 � e1 þ za=2v

1=2
0

v
1=2
1

¼
N1=2ðe*0 � e*1Þ þ za=2v*0

1=2

v*1=2
1

; ð20Þ

where, from the expressions of ei as collected in the appendix, we can write, ei ¼ Ne*i and
v

1=2
i ¼ N1=2v*i

1=2
, where e*i and v*i are free of N. It follows that,

N ¼
ðzbv*1

1=2 þ za=2v*0
1=2Þ2

ðe*0 � e*1Þ2
: ð21Þ

6 Example and Simulation

6.1 Example 1: colorectal cancer in rats

The dataset we are considering is part of a large study conducted by a team of Texas A & M Univer-
sity researchers (Hong et al., 2001) to investigate the effect of dietary fat on the development of colon
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carcinogenesis in rats. In brief, colon cells replicate and spend their entire life cycle within crypts,
finger like structures that grow into the wall of colon. The function of the normal crypts is to produce
cells that line the colon. The entire study consists of 6 rats, and within each rat 20 crypts were
considered, identified by the numbers 1 through 20. Here we focused on particular stem cells and
noted if the cell has undergone apoptosis. Apoptosis is termed as programmed cell death or cell
suicide in response to a variety of stimuli. This is a normal process in multicellular organisms. In our
dataset a cell is considered as a case if it has undergone apoptosis and considered as a control cell
otherwise. Cell proliferation is defined as growth in the number of cells due to reproduction and
division of cells in a multicellular organism. For each stem cell in our dataset one has information on
proliferation status which is categorized as no proliferation, medium proliferation, and high prolifera-
tion and would be considered as our exposure variable. There were a total of 214 stem cells which
underwent apoptosis and we randomly selected three controls for each case using crypt as a matching
variable. So, we formed a 1 :3 matched case-control study with 214 total matched sets. In the follow-
ing, we outline the computational steps for calculating the odds ratio and the proposed test statistic for
this particular dataset.

Note that here M ¼ 3. From Table 1 we get all the quantities needed to compute the estimates in
(14) and (15), and we obtain ŵw1MH ¼ 2:0975 and ŵw1MH ¼ 11:20. In order to test the null hypothesis of
no association between proliferation status and apoptosis, we calculate our test statistic in (8) using
the following two steps.

Step 1. Using Table 1 we calculate Y1 and Y2 as described in (10) and (11) and they are obtained as
Y1 ¼ 30 and Y2 ¼ 20: Similarly following the similar type of calculations we obtain m20 ¼ 6:75:

Using the formulas given in the Appendix, we obtain m10 ¼ 20:75 and m20 ¼ 6:75, whereas the
elements of D0 are obtained as, s2

10 ¼ 13:4375, s2
20 ¼ 5:625, and s120 ¼ �0:6875.

Step 2. Using formula (8), we obtain S ¼ 31:7608. So according to (12) we reject the null hypoth-
esis of no association between proliferation and apoptosis at 5% level of significance.

Since there is a natural ordering among the proliferation status, we also perform a test of trend on
the risk of apoptosis with increasing levels of proliferation as given in (16). For this dataset, we take
x1 ¼ 1 and x2 ¼ 2, and e0 jT ¼ 34:25; v0 j T ¼ 30:9375. Hence by (16), the test statistics is
c2 ¼ 41:3111: Comparing with the chi-squared distribution (with df ¼ 1) cut-off value, we reject the
null hypothesis of no trend effect at 5% level of significance. This finding, in fact conforms with the
biological association expected between apoptosis and cell proliferation.

To do a realistic simulation we mimic the colon carcinogenesis dataset in hand. We note that
among the controls, the prevalence of the different categories of the exposure variable are 0:9101,
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Table 1 Calculation of the relevant quantities as defined on page 6 for the discordant matched sets

for example 1, where
P2
i¼0

ni
m1;m2

¼ Tm1;m2 ;
P

i¼0; 1
nið1;0Þ

m ¼ Tð1; 0Þm ; and
P

i¼0; 2
nið2;0Þ

m ¼ Tð2; 0Þm :

ðm1;m2Þ n0
m1;m2

n1
m1;m2

n2
m1;m2

Tm1;m2

(1, 1) 1 0 4 5
(1, 2) 0 0 0 0
(2, 1) 1 2 0 3

m n0ð1;0Þ
m n1ð1;0Þ

m Tð1; 0Þm n0ð2;0Þ
m n2ð2;0Þ

m Tð2; 0Þm n1ð1;2Þ
m n2ð1;2Þ

m T ð1; 2Þm

1 29 24 53 3 16 19 0 0 0
2 3 2 5 0 0 0 0 0 0
3 1 2 3 0 0 0 0 0 0

# 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



0:0799, and 0:01. With the above specifications of the exposure prevalence p00, p01, and p02 respec-
tively, we calculate the required sample sizes for different values of w1 and w2. All the sample sizes
are calculated after setting the Type I error probability a ¼ 0:05 and Type II error probability
b ¼ 0:20. As expected one needs more sample for smaller values w1 and w2 compared to the higher
values of the odds ratios as in the latter case, departures from the null hypothesis is more pronounced.
The results are presented in Table 2.

In addition, we compute the required sample sizes for detecting trend with 3 ordered levels of the
exposure variable using the power function (19) for different values of g. As expected, as g increases,
the required number of matched sets decreases.

6.2 Example 2: association between disease and A genetic factor

In this example we first generate a prototype case-control dataset for exploring disease-gene associa-
tion by mimicking a real data on allele frequencies of 12 marker loci in the Buenos Aires metropoli-
tan population as described in Sala et al. (1999), Table 3. We chose the most frequent allele at marker
locus F13A as the disease causing allele. This selection is arbitrary. Sala et al. (1999) reports the
frequency of this allele in the population to be p ¼ 0:312. Assuming the population is in Hardy–
Weinberg (HW) equilibrium we calculate the prevalence of three possible genotypes. If A denotes
the disease causing allele, then PðAAÞ ¼ p2 ¼ 0:0974, PðAaÞ ¼ 2pð1� pÞ ¼ 0:4293, and
PðaaÞ ¼ ð1� pÞ2 ¼ 0:473. Let g0, g1, and g2 denote the genotypes aa, Aa, and AA. Note that though
the bi-allelic gene is assumed to be in HW equilibrium in the general population, among the case and
control population the genotype frequencies may not be in HW equilibrium. We assume that the log-
odds ratios of the disease among persons with no copy (aa), one copy (Aa), and two copies (AA) of
the disease causing allele to be 0, 1, and 1, i.e., b0 ¼ 0, b1 ¼ 1 and b2 ¼ 1. In other words, the
disease risk is elevated if you have at least one copy of the disease causing allele. For generating the
disease status data, we assume the prospective stratified logistic regression model for a matched case
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Table 2 Required sample size for detecting association in example 1, 1 :3
matched study, where w1 and w2 are the two odds ratios. The type I error is set
at 5% while the power is set at 80%.

w2 w1

1.5 2.0 2.5 3.0 5.0

1.5 1048 798 638 535 355
2.0 550 496 445 400 300
2.5 356 342 322 304 253
3.0 258 254 246 238 216
5.0 116 118 119 120 124

Table 3 Required sample sizes for trend test in example 1, 1 : 3 matched study,
where w1 ¼ eg and w2 ¼ e2g are the two odds ratios, and N denotes the required
number of matched sets. The type I error is set at 5% while the power is set at
80%.

g 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.2

w1 1.35 1.49 1.65 1.82 2.01 2.22 2.46 3.32
w2 1.82 2.22 2.72 3.32 4.05 4.95 6.05 11.02

N 1140 845 406 219 127 78 49 15
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control study (Breslow et al. (1978)),

PðD ¼ 1 j Si;G ¼ gmÞ ¼
exp ðai þ bmgmÞ

1þ exp ðai þ bmgmÞ
; m ¼ 0; 1; 2 ;

where Si denotes the unmeasured or measured stratum specific covariates and ai is effect of the i-th
matched set on the disease probability, i ¼ 1; . . . ;N (N is the number of matched sets).

To simulate a 1 :2 matched case-control data with 100 matched sets, we first generate the genetic
exposure variable G for each of the three subjects in every matched set according to the prevalence
values mentioned before. Let Gi1, Gi2 and Gi3 denote the genetic exposure corresponding to the three
subjects in the i-th matched set, i ¼ 1; . . . ; 100. Given these exposure values we determine the disease
status Dij of the j-th subject in the i-th stratum following a conditional logistic regression model (Breslow
et al. (1978)), conditioning on the event that the number of cases in each matched set is pre-fixed by the
study design to be 1. First, We generate a Bernoulli random variable Di1 with success probability

p ¼ P Di1 ¼ 1 j Gi1;Gi2;Gi3;
P3
j¼1

Dij ¼ 1

 !
¼

exp ðbGi1
Þ

exp ðbGi1
Þ þ exp ðbGi2

Þ þ exp ðbGi3
Þ ;

where

bGij
¼

b0 if Gij ¼ g0

b1 if Gij ¼ g1

b2 if Gij ¼ g2 :

8><>:
If Di1 equals 1, set Di2 and Di3 equal to zero. Otherwise, we generate Di2 from a Bernoulli distribu-
tion with success probability

p ¼ P Di2 ¼ 1 j Gi1;Gi2;Gi3;
P3
j¼1

Dij ¼ 1;Di1 ¼ 0

 !
¼

exp ðbGi2
Þ

exp ðbGi2
Þ þ exp ðbGi3

Þ :

Now, if Di2 equals 1, set Di3 ¼ 0, otherwise set Di3 ¼ 1. Following the above scheme we generate
N ¼ 100 matched sets with one case and three controls. Table 4 gives the summary of discordant
matched sets in the simulated dataset.

Note that here M ¼ 2. As in example 1, we first calculate the two odds ratio estimates given in (14)
and (15), and they are, ŵw1MH ¼ 3:0 and ŵw2MH ¼ 4:5. Next we calculate the test statistic to test the null
hypothesis of no disease-exposure association by using the following two steps.

Step 1. Using Table 4, Eqs. (10) and (11), and the formulas given in the Appendix we calculate
Y1 ¼ 53, Y2 ¼ 10, m10 ¼ 37:3333, and m20 ¼ 9:3333. The elements of D0 are obtained as:
s2

10 ¼ 16:8889, s2
20 ¼ 5:8889, and s120 ¼ �3:8889.
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Table 4 Calculation of the relevant quantities as defined on page 6 for the discordant matched sets for

example 2, where
P2
i¼0

ni
m1;m2

¼ Tm1;m2 ;
P

i¼0;1
nið1;0Þ

m ¼ Tð1; 0Þm ;
P

i¼0; 2
nið2;0Þ

m ¼ Tð2; 0Þm ; and
P

i¼1;2
nið1; 2Þ

m ¼ Tð1; 2Þm .

ðm1;m2Þ n0
m1;m2

n1
m1;m2

n2
m1;m2

Tm1;m2

(1,1) 1 6 2 9

m n0ð1; 0Þ
m n1ð1; 0Þ

m Tð1; 0Þm n0ð2; 0Þ
m n2ð2;0Þ

m T ð2; 0Þm n1ð1;2Þ
m n2ð1;2Þ

m Tð1; 2Þm

1 12 19 31 1 3 4 0 0 0
2 4 19 23 0 1 1 9 4 13
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Step 2. Plugging all the values in (8) we obtain the value of the test statistic S ¼ 18:19 with a
P-value of 0:00014: So there is significant association between the disease and the candidate gene.

We also calculate the test statistic in (16) to see if there is any trend in the disease risk with
increasing levels of the exposure variable (the three possible genotypes in this case with zero, one or
two copies of the allele A respectively). The value of this test statistic turns out to be 15:434 which is
statistically significant when compared with the chi-squared cut off value (with df ¼ 1) at 5% level of
significance.

For the above scenario we calculate the required sample sizes to detect the departures from the null
hypothesis of no association for given prevalence values and various choices of w1 and w2. For the
simulation, we assume that the exposure prevalence values in the control population are the same as
in the overall population. This is equivalent to assuming the disease to be rare. Therefore we take
p01 ¼ 0:4293 and p02 ¼ 0:0974. The results are presented in Table 5.

We also calculate sample sizes for detecting trend with the ordered categorical exposure variable.
The results are presented in Table 6. All the sample sizes are calculated after setting a ¼ 0:05 and
b ¼ 0:20.

Figure 1 presents a plot of the power function against the required sample size when one wants to
detect a given difference in w1 and w2 with a pre-specified probability (power) for a 1 : 2 matched
study. The exposure prevalences are chosen as in the simulated dataset. With the same prevalence
values of the exposure variable, we also calculate the power of the ordinal trend test for different
sample sizes. Figure 2 presents two such power curves with g ¼ 0 and g ¼ 1 for a 1 : 2 matched case-
control design.
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Table 5 Required sample size for detecting association in
example 2, 1 :2 matched study, where w1 and w2 are the two
odds ratios. The type I error is set at 5% while the power is
set at 80%.

w1 w2

1.5 2.0 2.5 3.0 5.0

1.5 158 115 86 72 51
2.0 84 98 91 79 54
2.5 55 70 78 79 58
3.0 42 53 63 69 63
5.0 23 28 33 39 59

Table 6 Required sample size for detecting trend in example 2, 1 : 2 matched
study, where w1 ¼ eg and w2 ¼ e2g are the two odds ratios, and N denotes the
required number of matched sets. The type I error is set at 5% while the power
is set at 80%.

g 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.2

w1 1.35 1.49 1.65 1.82 2.01 2.22 2.46 3.32
w2 1.82 2.22 2.72 3.32 4.05 4.95 6.05 11.02

N 292 137 76 47 32 22 16 8
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6.3 Binary exposure variable

In conjunction with our two examples, in this sub-section, we explore the performance of our method
if the exposure levels are dichotomized. We compare our sample size recipe with the standard formula
provided by Schlesselman (1982). For 1 : 1 matched pair data with binary exposure, the required sam-
ple size (Schlesselman, 1982, Eqs. 6–20 and 6–23, Parker and Bregman, 1986, Eq. (3.1), modified
for a two-tailed test) is given as,

N*S ¼

Za=2ð1þ wÞ þ 2Zbw
1=2

w� 1

( )2

ðwþ 1Þ p01ð1� p01Þ
1þ ðw� 1Þ p01

: ð22Þ

Where w is the odds ratio and p01 is the exposure prevalence in the control population. This formula
for sample size for pair-matched studies is based on the normal approximation to testing a single
binomial proportion and a crude estimate of the probability of a discordant exposure pair.

For 1 : M matched case-control study with binary exposure variable the number of matched sets
required to attain a certain power of the test is the fraction ðM þ 1Þ=2M of the sample size
required for 1:1 matched case-control design. According to Ury (1975) this fraction is the recipro-
cal of the asymptotic relative efficiency of a 1 : M to 1 :1 matched study design. Therefore for
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Figure 1 Power function for testing association with polytomous exposure variable is plotted against
sample size for p01 ¼ 0:4293 and p02 ¼ 0:0974 for 1 : 2 matched case-control studies. The top figure
is for w1 ¼ w2 ¼ exp ð1Þ ¼ 2:72, and the bottom figure is for w1 ¼ exp ð1Þ ¼ 2:72 and
w2 ¼ exp ð1:5Þ ¼ 4:48.
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1 : M matched design the needed sample size is NS ¼ ðM þ 1Þ N*S=2M. In contrast, according to
our method the required sample size for binary exposure variable is derived based on the power
function of the test statistic in (13). When the Type II error probability is small (set at 20% for
our simulations), for binary exposure one could alternatively use (21) with e*0 ¼

P
m

mpð1; 0Þm ,

v*0 ¼
P
m

mðM � mþ 1Þ pð1; 0Þm =ðM þ 1Þ2, e*1 ¼
P
m

pð1; 0Þm mw=ðmwþM � mþ 1Þ, and v*1 ¼P
m

pð1; 0Þm mwðM � mþ 1Þ=ðmwþM � mþ 1Þ2, and pð1; 0Þm ¼ p11
M
ðm�1Þ

� 	
pm�1

01 pM�mþ1
00 þ p10

M
m


 �
pm

01pM�m
00 .

Here w ¼ p11p00=p10p01, where p11 þ p10 ¼ 1 and p01 þ p00 ¼ 1. Recall that for the binary exposure
case our methods are essentially identical to that of Breslow and Day (1980, Chapter 5).

For the setting of the first example with 1 : 3 matching, in order to dichotomize the exposure, we
collapse categories 1 and 2 of the exposure variable and call it category 1. Therefore the exposure
prevalence among the control becomes p01 ¼ 0:0799þ 0:01 ¼ 0:0899. The sample size results are
presented in Table 7. Note that, the number of matched sets required by our method, is typically
larger than those obtained by Schlesselman’s formula. One of the reasons for Schlesselman’s method
to underestimate the sample size could be that obtaining the sample size formula for 1 : M studies by
multiplying the sample size for 1 :1 matched design with the factor of ðM þ 1Þ=2M may not always
be optimal. The ad hoc estimate of probability of discordant exposure pairs used in Schlesselman’s
formula is often quite crude. Also note that the exposure prevalence is low in this setting as a result
the required number of matched sets in both methods is relatively large.
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Figure 2 Power function for detecting trend with ordinal categorical exposure variable is plotted
against sample size for p01 ¼ 0:4293 and p02 ¼ 0:0974 for 1 :2 matched case-control studies. The top
figure is for g ¼ 0:50, and the bottom figure is for g ¼ 1.
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In the setting of the second example with 1 :2 matched design for detecting disease-gene associa-
tion, the prevalence of the genetic exposure after collapsing the categories G ¼ g1 and G ¼ g2 is
given by p01 ¼ 0:4293þ 0:0974 ¼ 0:5267. The results comparing our method with those of Schlessel-
man are presented in Table 8. In this case, our sample sizes are marginally larger than those of Schles-
selman but both the methods furnish very similar sample sizes. Note that with larger prevalence of the
genetic factor, the sample sizes for both the methods are smaller when compared with those obtained
in Table 7. Based on these simulation, the matching ratio, as well as the the exposure prevalence
seems to play a role in determining the relative performances of these methods.

Parker and Bregman (1986) take Schlesselman’s standard formula in (22) as a starting basis and
incorporate the new dimension that the exposure prevalence p01 could vary in each matched set. In
presence of such heterogeneity, (22) normally underestimates the required sample size (Parker and
Bregman, 1986), thus the sample sizes obtained by Parker and Bregman will be typically larger than
NS. Since the principal goal of this paper is to address exposure variables with multiple categories in a
1 : M matched study, for the binary exposure, we take Schlesselman’s formula as a precursor for
comparison purposes and refrain from specifically exploring the effect of stratum heterogeneity on
sample size determination along the lines of Parker and Bregman (1986).

7 Discussion and Final Comments

In this paper we furnish an easy to use recipe for determining the number of matched sets in a 1 : M
matched case-control study with multiple levels of the exposure variable. In the process we derive a
test statistic for the independence of the exposure and the disease variable when the categories are
nominal and when they are ordinal. The advantage of this method is that it does not require computa-
tion of the MLE’s of the parameters to perform the test, rather we can do the test by simply construct-
ing tables of discordant matched sets. One may also derive a score test for testing homogeneity of the
k odds ratios, i.e. H0 : w1 ¼ w2 ¼ . . . ¼ wk, using the likelihood function we have used in this paper.

We briefly indicate that estimation of the common odds ratio following the classical ideas of Man-
tel and Haenszel (1959) but do not furnish standard error formulae. For interval estimation of the odds
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Table 7 Required sample sizes for 1:3 matched case-control
study with binary exposure by Schlesselman’s method and the
method proposed in the current paper. Here w denotes the
odds ratio. Exposure prevalence p01 is set at 0.0899. The type
I error is set at 5% while the power is set at 80%.

w 1.5 2 2.5 3 3.5 4

NS 660 202 107 70 51 40
N 751 251 142 98 75 61

Table 8 Required sample sizes for 1 :2 matched case-con-
trol study with binary exposure by Schlesselman’s method
and the method proposed in the current paper. Here w denotes
the odds ratio. Exposure prevalence p01 is set at 0.5267. The
type I error is set at 5% while the power is set at 80%.

w 1.5 2 2.5 3 3.5 4

NS 295 105 62 45 36 30
N 288 99 58 41 32 26
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ratio and derivation of the standard errors, one may resort to modern resampling techniques like the
bootstrap as an alternative to establishing closed-form approximation formulae. However the goal of
this paper is more modest. We focus on the designing issue when one wants to detect exposure-dis-
ease association in a matched case-control study with categorical exposure. Extension of the results to
a set of multivariate categorical exposures which may be associated among themselves poses interest-
ing technical challenges one might undertake. Admittedly, the approach presented in this paper is not
the natural framework to deal with continuous exposure variables. In the most general setting, when
one has a mixed set of continuous and discrete exposure variables, the problem needs to be recast in
very different ways than proposed in this paper. A more general strategy to attack the design problem
could be adopted by following simulation based design ideas as described in M�ller (1999) under a
Bayesian paradigm. The R code for calculating the sample size and the datasets used in this paper are
available on http://stat.tamu.edu/�sinha.

Appendix

1 Formulation of the test statistic (8) for general k

Let ni
mr1 ;mr2 ;...;mrj

be the number of matched sets where case is exposed at the level i and mrs subjects
are exposed at the level rs, rs ¼ r1; . . . ; rj and i 2 ðr1; r2; . . . ; rjÞ. Here mr1 þ mr2 þ . . .þ mrj ¼ M þ 1.
Let Sj be the set of all possible combinations of any j levels out of k þ 1 levels, j ¼ 2; . . . ; k þ 1.

Then S ¼
Skþ1

j¼2
Sj is the collection of all possible combinations of at least two levels taken at a time

from k þ 1 levels. Define

Yi ¼
Pkþ1

j¼2

P
ðr1;...;rjÞ 2 Sj

P
mr1 ;...;mrj

ni
mr1 ;...;mrj

Iði 2 ðr1; . . . ; rjÞÞ for i ¼ 1; 2; . . . ; k :

Let ¼ ðm1; . . . ; mkÞ, where

mi ¼ EðYiÞ ¼
Pkþ1

j¼2

P
ðr1;...; rjÞ 2 Sj

P
mr1 ;...;mrj

Tmr1 ;...;mrj

miwiIði 2 ðr1; . . . ; rjÞÞ
mr1wr1

þ . . .þ mrjwrj

and Tmr1 ;...;mrj
¼
Pk
i¼0

ni
mr1 ;...;mrj

Iði 2 ðr1; . . . ; rjÞ: Under H0, the mean mi’s will be

Pkþ1

j¼2

P
ðr1;...;rjÞ 2 Sj

P
mr1 ;...;mrj

Tmr1 ;...;mrj

miPj

s¼1
mrs

Iði 2 ðr1; . . . ; rjÞÞ :

Further assume that Dk�k ¼ ðspqÞ be the variance-covariance matrix of Y ¼ ðY1; . . . ; YkÞ, where

spq ¼ �
Pkþ1

j¼2

P
ðr1;...;rjÞ 2 Sj

P
mr1 ;...;mrj

Tmr1 ;...;mrj

mpmqwpwqIððp; qÞ 2 ðr1; . . . ; rjÞÞ
ðmr1wr1

þ . . .þ mrjwrj
Þ2

if p 6¼ q :

The test statistics to test H0 is

Yð�m0Þ
T D�1

0 ðY � m0Þ ;

where m0 and D0 are the mean and variance-covariance matrix of Y ¼ ðY1; . . . ; YkÞ evaluated under
H0. Using the analogous argument that we used in the main text, one can derive the asymptotic
distribution of the above statistics, and under H0 this statistic approximately follows central chi-square
distribution with k degrees of freedom.
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2 Expressions for the moments of Y1 and Y2

EwðY1Þ ¼
PM

m1¼1

PM
m2¼1

Iðm1 þ m2 � MÞ Tm1;m2

m1w1

fm1w1 þ m2w2 þ ðM � m1 � m2 þ 1Þg

þ
PM
m¼1

T ð1; 2Þm
mw1

fmw1 þ ðM � mþ 1Þ w2g
þ
PM
m¼1

T ð1; 0Þm
mw1

fmw1 þ ðM � mþ 1Þg

EwðY2Þ ¼
PM

m1¼1

PM
m2¼1

Iðm1 þ m2 � MÞ Tm1;m2

m2w2

fm1w1 þ m2w2 þ ðM � m1 � m2 þ 1Þg

þ
PM

m¼1
T ð1; 2Þm

ðM � mþ 1Þ w2

fmw1 þ ðM � mþ 1Þ w2g
þ
PM

m¼1
Tð2;0Þm

mw2

fmw2 þ ðM � mþ 1Þg

Varw ðY1Þ ¼
PM

m1¼1

PM
m2¼1

Iðm1 þ m2 � MÞ Tm1;m2

ðm1w1Þ fm2w2 þ ðM � m1 � m2 þ 1Þg
fm1w1 þ m2w2 þ ðM � m1 � m2 þ 1Þg2

þ
PM

m¼1
T ð1; 2Þm

ðM � mþ 1Þ w2mw1

fmw1 þ ðM � mþ 1Þ w2g
2 þ

PM
m¼1

T ð1; 0Þm
mw1ðM � mþ 1Þ

fmw1 þ ðM � mþ 1Þg2

Varw ðY2Þ ¼
PM

m1¼1

PM
m2¼1

Iðm1 þ m2 � MÞ Tm1;m2

ðm2w2Þfm1w1 þ ðM � m1 � m2 þ 1Þg
fm1w1 þ m2w2 þ ðM � m1 � m2 þ 1Þg2

þ
PM

m¼1
T ð1; 2Þm

ðM � mþ 1Þ w2mw1

fmw1 þ ðM � mþ 1Þ w2g
2 þ

PM
m¼1

T ð2; 0Þm
mw2ðM � mþ 1Þ

fmw2 þ ðM � mþ 1Þg2

Covw ðY1; Y2Þ ¼ �
PM

m1¼1

PM
m2¼1

Iðm1 þ m2 � MÞ Tm1;m2

ðm2w2Þ m1w1

fm1w1 þ m2w2 þ ðM � m1 � m2 þ 1Þg2

�
PM
m¼1

Tð1; 2Þm
ðM � mþ 1Þ w2mw1

fmw1 þ ðM � mþ 1Þ w2g
2

m10 ¼
PM

m1¼1

PM
m2¼1

Iðm1 þ m2 � MÞ Tm1;m2

m1

M þ 1
þ
PM
m¼1

Tð1; 2Þm
m

M þ 1
þ
PM
m¼1

T ð1; 0Þm
m

M þ 1

m20 ¼
PM

m1¼1

PM
m2¼1

Iðm1 þ m2 � MÞ Tm1;m2

m2

M þ 1
þ
PM
m¼1

T ð1; 2Þm
ðM � mþ 1Þ

M þ 1
þ
PM
m¼1

T ð2;0Þm
m

M þ 1

s2
10 ¼

PM
m1¼1

PM
m2¼1

Iðm1 þ m2 � MÞ Tm1;m2

m1ðM � m1 þ 1Þ
ðM þ 1Þ2

þ
PM

m¼1
T ð1; 2Þm

ðM � mþ 1Þ m

ðM þ 1Þ2

þ
PM
m¼1

T ð1; 0Þm
mðM � mþ 1Þ
ðM þ 1Þ2

s2
20 ¼

PM
m1¼1

PM
m2¼1

Iðm1 þ m2 � MÞ Tm1;m2

m2ðM � m2 þ 1Þ
ðM þ 1Þ2

þ
PM

m¼1
T ð1; 2Þm

ðM � mþ 1Þ m

ðM þ 1Þ2

þ
PM
m¼1

T ð2;0Þm
mðM � mþ 1Þ
ðM þ 1Þ2

s120 ¼ �
PM

m1¼1

PM
m2¼1

Iðm1 þ m2 � MÞ Tm1;m2

m2m1

ðM þ 1Þ2
�
PM
m¼1

Tð1; 2Þm
ðM � mþ 1Þ m

ðM þ 1Þ2
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3 Proof of the theorem

By spectral decomposition one can write

S ¼ ZT D�1
0 Z ¼ ZT P

i
liziz

T
i Z ðA:1Þ

where 0 < l1 � l2 are the eigen values of D�1
0 with corresponding orthogonal eigenvectors z1 and z2.

Rewrite (A.1) as

S ¼ ZT P
i

liziz
T
i Z ¼

P
i

liZT ziz
T
i Z ¼

P
i

liU
2
i ; ðA:2Þ

where Ui ¼ zT
i Z. Therefore Ui has expectation zT

i m and variance zT
i Dzi. Under the usual regularity

condition U2
i s are independent and approximately

U2
i � wic

2
1ðdiÞ ; ðA:3Þ

where di ¼ ðzT
i mÞ2 and wi ¼ zT

i Dzi: Hence S is a linear combination of non-central chi-square distri-
butions. Although originally S has a very complicated distribution, the Satterthwaite (1959) approxi-
mation works well in this situation.

Assume that

S �approx 1
n

c2
nðdÞ ; ðA:4Þ

where c2
nðdÞ is a non-central chi-square distribution with n degrees of freedom and non-centrality

parameter d. Equating first two moments of both sides of (A.4) one gets

EðSÞ ¼
P

i
liwið1þ diÞ ¼ 1þ d

n
; ðA:5Þ

Var ðSÞ ¼
P

i
l2

i w2
i ð2þ 4diÞ ¼

2
n
þ 4

d

n2
: ðA:6Þ

Using Eqs. (A.5), (A.6) and applying the restriction that n � 1 and d � 0, one obtains

n ¼ max 1;
2
P

i
liwið1þ diÞ � 1P

i
l2

i w2
i ð1þ 2diÞ

8><>:
9>=>; and d ¼ max 0; n

P
i

liwið1þ diÞ � 1
n on o

: ðA:7Þ

This completes the proof of the theorem.

4 Expressions for e1 and v1 in (19)

e1 ¼
P

m1;m2

EðTm1;m2Þ
m1w1x1 þ m2w2x2

m1w1 þ m2w2 þ ðM � m1 � m2 þ 1Þ þ x1
P
m

EðT ð1; 0Þm Þ mw1

mw1 þ ðM � mþ 1Þ

þ x2
P
m

EðTð2; 0Þm Þ mw2

mw2 þ ðM � mþ 1Þ þ
P
m

EðT ð1; 2Þm Þ mw1x1 þ ðM � mþ 1Þ w2x2

mw1 þ ðM � mþ 1Þ w2
ðA:8Þ

v1 ¼
P

m1;m2

EðTm1;m2Þ
ðM � m1 � m2 þ 1Þ ðm1w1x2

1 þ m2w2x2
2Þ þ m1m2w1w2ðx1 � x2Þ2

fm1w1 þ m2w2 þ ðM � m1 � m2 þ 1Þg2

þ x2
1

P
m

EðTð1; 0Þm Þ mw1ðM � mþ 1Þ
ðmw1 þM � mþ 1Þ2

þ x2
2

P
m

EðT ð2; 0Þm Þ mw2ðM � mþ 1Þ
ðmw2 þM � mþ 1Þ2

þ ðx1 � x2Þ2
P
m

EðTð1; 2Þm Þ mw1ðM � mþ 1Þ w2

fmw1 þ ðM � mþ 1Þ w2g
2 : ðA:9Þ
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